
IZMIR KATIP CELEBI UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 

MACHINE LEARNING AND SIGNAL PROCESSING ON 

RECOGNIZING EPILEPTIC SEIZURE PATTERNS 

M.Sc. THESIS

Bark n BÜYÜKÇAKIR 

Department of Electrical and Electronics Engineering 

Thesis Advisor:  
Prof. Dr. Adnan KAYA 

FEBRUARY 2020

2020
IZ

M
IR

 K
A

T
IP C

E
L

E
B

I U
N

IV
E

R
SIT

Y
 

 B
: B

Ü
Y

Ü
K

Ç
A

K
IR



ii 

IZMIR KATIP CELEBI UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 

MACHINE LEARNING AND SIGNAL PROCESSING ON 

RECOGNIZING EPILEPTIC SEIZURE PATTERNS 

M.Sc. THESIS

Bark n BÜYÜKÇAKIR 

 Y180207004 

Department of Electrical and Electronics Engineering 

Thesis Advisor: Prof. Dr. Adnan KAYA 

FEBRUARY 2020



iii 
 

ZM R KAT P CELEB  ÜN VERS TES  

FEN B L MLER  ENST TÜSÜ 

 

 

 

 

 

EP LEPT K KR Z ÖRÜNTÜLER N N TANINMASINDA 

MAK NE Ö RENMES  VE S NYAL LEME 

 

YÜKSEK L SANS TEZ  

Bark n BÜYÜKÇAKIR 

Y180207004 

 

 

 

Elektrik ve Elektronik Mühendisli i Ana Bilim Dal  

 
Tez Dan man : Prof. Dr. Adnan KAYA 

 

UBAT 2020  



Barkm BUYUK<;AKIR., a M.Sc. student of IKCU Graduate School Of Natural 

And Applied Sciences, successfully defended the thesis entitled "Machine Learning 

and Signal Processing on Recognizing Epileptic Seizure Patterns", which he 

prepared after fulfilling the requirements specified in the associated legislations, 

before the jury whose signatures are below. 

Thesis Advisor : 

Jury Members: 

Prof. Dr. Adnan KAY A 
Izmir Katip Celebi University 

Assoc. Prof. Sava~ ~AHiN 
izmir Ka.tip Celebi University 

Asst. Prof. Ozgiin YUCEL 
Ege University 

Asst. Prof. Volkan KILi<; 
Izmir Ka.tip Celebi University 

Assoc. Prof. Devrim UNA Y 
Izmir Ka.tip Celebi University 

Date of Defense : 13.03.2020 

IV 



v 
 

 

FOREWORD 

First and foremost, I would like to thank Dr. Ali Yener MUTLU for his guidance 

during his time as my advisor, and his continuous support during the entirety of my 

studies. I am inmeasurably grateful for having the opportunity to learn from him. It is 

thanks to him that I chose put my passion for machine learning to work and arrived 

where I am now, and his encourement will always be shaping my career and life in the 

future. 

Secondly, I would like to thank my advisor, Prof. Dr. Adnan KAYA, for the great deal 

of understanding that he showed and the support he provided even under unusual 

circumstances, which allowed me to complete my studies with utter peace of mind. 

I also would like to thank Dr. Özgün YÜCEL, for showing me professional guidance 

and always having an open door for me when he did not have to. I thank Dr. Sava  

AH N for the wisdom he shared and his hilarious tales. 

My fellow researcher Furkan ELMAZ deserves a special thanks, as had we not shared 

a laboratory together, I would never have the my current level of progress. All the 

laughter we had with tired looks on our faces and passion in our hearts will always 

stay with me. 

 

February 2020 

 Bark n BÜYÜKÇAKIR 



vi 
 

TABLE OF CONTENTS 

Page 
FOREWORD .............................................................................................................. v
TABLE OF CONTENTS .......................................................................................... vi
LIST OF TABLES .................................................................................................. viii
LIST OF FIGURES .................................................................................................. ix
ABBREVIATIONS ................................................................................................... xi
ABSTRACT .............................................................................................................. xii
ÖZET ........................................................................................................................ xiii
1. INTRODUCTION ............................................................................................... 14

1.1 Motivation ...................................................................................................... 14
1.2 Epileptic Seizure Detection ............................................................................ 15
1.3 Epileptic Seizure Prediction ........................................................................... 16
1.4 Organization ................................................................................................... 17

2. SEIZURE DETECTION .................................................................................... 18
2.1 Related Work .................................................................................................. 18
2.2 Data Acquisition ............................................................................................. 19
2.3 Signal Decomposition .................................................................................... 20

2.3.1 Empirical mode decomposition ............................................................... 20
2.3.2 Multivariate empirical mode decomposition .......................................... 22
2.3.3 Hilbert vibration decomposition ............................................................. 23

2.4 Feature Extraction .......................................................................................... 26
2.4.1 Mean power frequency ............................................................................ 26
2.4.2 Skewness ................................................................................................. 27
2.4.3 Kurtosis ................................................................................................... 27
2.4.4 Variance .................................................................................................. 28
2.4.5 Peak power frequency ............................................................................. 28
2.4.6 Spectral Shannon entropy ....................................................................... 29
2.4.7 Spectral Renyi entropy ............................................................................ 29

2.5 Classifiers ....................................................................................................... 29
2.5.1 Multilayer perceptron .............................................................................. 30
2.5.2 Support vector machine ........................................................................... 33
2.5.3 Random forest ......................................................................................... 34

2.5.3.1 Decision tree ....................................................................................... 34
2.5.3.2 Usage of Decision Tree Forests .......................................................... 36

2.5.4 K-nearest neighbors ................................................................................ 36
2.5.5 10-fold cross-validation .......................................................................... 38

2.6 Results ............................................................................................................ 38
2.6.1 Performance metrics ................................................................................ 38
2.6.2 Performance evaluation ........................................................................... 39
2.6.3 Discussion ............................................................................................... 39

3. SEIZURE PREDICTION ................................................................................... 42
3.1 Related Work .................................................................................................. 43
3.2 Data Acquisition ............................................................................................. 44
3.3 Decomposition Process .................................................................................. 45
3.4 Feature Extraction .......................................................................................... 46



vii 
 

3.4.1 Sample entropy ........................................................................................ 46
3.4.2 Spectral power ......................................................................................... 47
3.4.3 Higuchi’s fractal dimension .................................................................... 48

3.5 Convolutional Neural Network Architecture ................................................. 48
3.6 Post-processing for Alerts .............................................................................. 51
3.7 Results ............................................................................................................ 53

4. CONCLUSION .................................................................................................... 60
REFERENCES ......................................................................................................... 62
APPENDIX ............................................................................................................... 66
CURRICULUM VITAE .......................................................................................... 75
 

  



viii 
 

 

LIST OF TABLES  

Page 

Table 3.1 Classification sensitivity and specificity of the patients. True positives are 
counted as the correct prediction as preictal. ............................................................. 53
Table 3.2 Alarm sensitivity and false alarm rate of the patients. True positives are 
counted as the alarms raised within 120 minutes before a seizure. ........................... 57
Table 3.3 Performance comparison between the methods of this work and other 
similar studies in the literature. .................................................................................. 59
Table A.1 MLP classification metrics of all classes .................................................. 71
Table A.2 Linear SVM classification metrics of all classes ...................................... 71
Table A.3 Quadratic SVM classification metrics of all classes ................................ 72
Table A.4 RBF SVM classification metrics of all classes ........................................ 72
Table A.5 DT classification metrics of all classes .................................................... 73
Table A.6 RF classification metrics of all classes ..................................................... 73
Table A.7 Cosine kNN classification metrics of all classes ...................................... 74
Table A.8 Weighted kNN classification metrics of all classes ................................. 74
  



ix 
 

 

LIST OF FIGURES  

Page 

Figure 2.1 The distribution of sections shown on several EEG recordings from the 
dataset. Differently colored sections signify different stages of an epileptic seizure. 
The purple rectangle depicts the aim of the classification of this section. ................. 19
Figure 2.2 A depiction of IMFs extracted from a 23.6 s period of an EEG signal of 
the dataset. .................................................................................................................. 22
Figure 2.3 The trained model of MLP classifier. The colored lines illustrate the 
weights. Blue stands for negative weight values, while red signifies a positive 
weight. ........................................................................................................................ 32
Figure 3.1 The distribution of sections shown on several EEG recordings from the 
dataset. Differently colored sections signify different stages of an epileptic seizure. 
The purple rectangle depicts the aim of the classification of this section. ................. 43
Figure 3.2 A 1-minute section from the EEG recordings of chb01 as represented on 
PhysioNet. .................................................................................................................. 45
Figure 3.3 Common CNN architecture ..................................................................... 49
Figure 3.4 The features extracted from the first HVD subcomponent of chb01. The 
red points signify the windows predicted as preictal by the CNN. The green lines 
indicate the seizure onsets. Blue lines indicate the point where an alarm is raised. (a) 
Alarms raised on chb01 with no silent period. It is seen to become frequent during 
preictal periods. (b) Alarms raised on chb01 with the silent period. The silent period 
can be seen to stop the alarm spam while also covering all three seizures for this 
patient. ........................................................................................................................ 52
Figure 3.5 The features extracted from the first HVD subcomponent of (a) chb01 
and (b) chb23. Green lines indicate the seizure onsets, and magenta sections indicate 
the signal points labeled as preictal. ........................................................................... 55
Figure 3.6 The classification sensitivity heatmaps from different channels of (a) 
chb01, (b) chb08 and (c) chb16. All 7 HVD subcomponents have been used for this 
classification process. ................................................................................................. 56
Figure 3.7 The alerts and classifier predictions for chb11 illustrated on the features 
of the first subcomponent. Red points signify the preictal predictions by the 
classifier. The green vertical lines indicate seizure onsets and the blue vertical lines 
indicate alarms raised. ................................................................................................ 58
Figure A.1 10-fold cross-validation accuracies of the classification process with 
MLP classifier ............................................................................................................ 66
Figure A.2 10-fold cross validation accuracies of classification process with linear 
kernel SVM classifier ................................................................................................. 67



x 
 

Figure A.3 10-fold cross validation accuracies of classification process with 
quadratic kernel SVM classifier ................................................................................. 67
Figure A.4 10-fold cross validation accuracies of classification process with RBF 
kernel SVM classifier ................................................................................................. 68
Figure A.5 10-fold cross validation accuracies of the classification process with DT 
classifier ..................................................................................................................... 68
Figure A.6 10-fold cross validation accuracies of classification process with RF 
classifier ..................................................................................................................... 69
Figure A.7 10-fold cross validation accuracies of classification process Cosine 
distance kNN classifier .............................................................................................. 69
Figure A.8 10-fold cross validation accuracies of classification process with 
weighted Euclidean distance kNN classifier .............................................................. 70
  



xi 
 

 

ABBREVIATIONS 

EEG : Electroencephalography 

MLP : Multilayer Perceptron 
kNN : k-Nearest Neighbors 

SVM : Support Vector Machine 
DT : Decision Tree 
RF : Random Forest 

CNN : Convolutional Neural Network 
HVD : Hilbert Vibration Decomposition 

EMD : Empirical Mode Decomposition 
MEMD : Multivariate Empirical Mode Decomposition 

IMF : Intrinsic Mode Function 
AED : Anti-Epileptic Drug 

MPF : Mean Power Frequency 
PPF : Peak Power Frequency 

SEN : Shannon Entropy 
REN : Renyi Entropy 

SampEn : Sample Entropy 
  



xii 
 

 

THESIS TITLE 

ABSTRACT 

Machine learning methods thrive in cases where there is a present but obscure relation 
between the inputs and outputs of a mechanism. Epilepsy, one of the most common 
brain disorders, is one such case. Leveraging the descriptive power signal processing 
techniques along with the predictive capabilities of machine learning algorithms is, 
therefore, a suitable approach to detect and predict epileptic seizures from EEG 
recordings. This work presents two separate but compatible frameworks in order to 
detect and predict seizures. The first framework consists of feature extraction and 
classification of EEG signals decomposed with the Hilbert vibration decomposition in 
order to detect seizure activity with several classifiers. Also, the performances of the 
HVD method and other conventional decomposition techniques are compared. The 
second framework builds upon the methodology of the first one by shifting the 
classification target to pre-seizure periods to detect preictal activity and raise alarms 
using a convolutional neural network and a novel post-processing algorithm. The 
findings of both frameworks indicate the suitability of signal decomposition and 
feature extraction with machine learning algorithms in the context. The first 
framework can reliably detect epileptic seizures with classification accuracies reaching 
100%. The second framework is able to predict and alert, with a mean sensitivity of 
approximately 90% and false alarm rates as low as 0.02/h, therefore outperforming 
other frameworks proposed in the literature, while demonstrating the effectiveness of 
the HVD method along with machine learning algorithms. 
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TEZ BA LI I 

ÖZET 

Makine ö renimi yöntemleri, bir mekanizman n girdileri ve ç kt lar  aras nda mevcut 
ancak belirsiz bir ili kinin oldu u durumlarda öne ç kmaktad r. En yayg n beyin 
bozukluklar ndan biri olan epilepsi de böyle bir durumdur. Bu nedenle, makine 
ö renme algoritmalar n n öngörücü yetenekleri ile birlikte sinyal i leme tekniklerinin 
aç klay c  gücünden yararlanmak, EEG kay tlar ndan epileptik nöbetleri saptamak ve 
tahmin etmek için uygun bir yakla md r. Bu çal ma, nöbetleri tespit etmek ve tahmin 
etmek için iki ayr  ancak uyumlu çerçeve sunar. lk çerçeve, birkaç s n fland r c  ile 
nöbet aktivitesini tespit etmek için Hilbert titre im ayr mas  ile ayr t r lan EEG 
sinyallerinin özellik ç kar lmas  ve s n fland r lmas ndan olu ur. Ayr ca, HVD 
yönteminin performanslar  ve di er geleneksel ayr ma teknikleri 
kar la t r lmaktad r. kinci çerçeve, bir eviri imli sinir a  ve bir post-proses 
algoritmas  kullanarak, preiktal aktiviteyi tespit etmek ve alarmlar  yükseltmek için 
s n fland rma hedefini nöbet öncesi dönemlere kayd rarak ilkinin metodolojisini 
geli tirmektedir. Her iki çerçevenin bulgular , ba lamda makine ö renme 
algoritmalar  ile sinyal ayr mas n n ve özellik ç karman n uygunlu unu 
göstermektedir. lk çerçeve, %100'e ula an s n fland rma do ruluklar  ile epileptik 
nöbetleri güvenilir bir ekilde tespit edeblmektedir. kinci çerçeve, yakla k %90'l k 
bir ortalama duyarl l k ve 0.02/saate kadar dü en yanl  alarm oranlar  ile öngörme ve 
uyarma yapabilir, bu nedenle, HVD yönteminin makine ö renme algoritmalar  ile 
birlikte etkinli ini gösterirken, literatürde önerilen di er çerçevelerden daha yüksek 
performans gösterir. 
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1. INTRODUCTION 

1.1 Motivation 

Epilepsy is a brain disorder that is characterized by the occurrence of sudden abnormal 

brain activity, which stems from excessive activation or synchronization of neurons in 

a part or the entirety of the brain [1]. More than 50 million people are estimated to 

suffer from epilepsy worldwide, which is approximately 8 in 1000 people, and around 

half of this population experiences active epileptic seizures [2]. These seizures can 

affect the patients in ways that can range from minor behavioral changes to complete 

loss of consciousness and muscular control [3]. As a result, epileptic patients 

experience seizure-related discomfort to varying degrees in their daily lives.  

Epileptic patients were shown to be at higher risk of accidents and injuries due to the 

seizure-related incidents alone [4], as well as having elevated rates of depression [5]. 

Children with epilepsy are reported to sustain more injuries compared to healthy 

children and, therefore, to require parental supervision [6]. Risks are also more 

significant with epileptic patients during pregnancy. In pregnancies where the mother 

has epilepsy, are more likely to result in undesired conditions in which miscarriage or 

post-partum complications occur [7].  

It is, therefore, evident that epileptic seizures cause severe difficulties to the patients 

and their social circles. While anti-epileptic drug (AED) administration is frequently 

applied to newly diagnosed epilepsy patients, recent medical literature specifies the 

success rate of complete seizure control with AEDs to be around 64%, unchanged 

since 2000 [8, 9, 10]. Out of the remaining patient pool, those with drug-resistant 

epilepsy, around 25%, or around 70% of patients who undergo epilepsy surgery, 

achieve long-term seizure control after the procedure [11]. These ratios are promising 

in the sense that approximately 90% of epilepsy patients are able to enjoy seizure 

freedom with medical intervention. On the other hand, this information also means 
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that around 10% of patients that experience active epileptic seizures remain 

unresponsive to treatment, a population of approximately 2.5 million people.  

These numbers reveal the need for alternative precautionary methods of seizure 

control, one of which is the widely studied subject of epileptic seizure detection. This 

working field focuses on the detection of the preictal and ictal stages, usually by 

monitoring the electroencephalography (EEG) recordings of the epileptic brain [12]. 

With the EEG records providing high temporal solution usually with sampling rates 

between 250 to 2000 Hz, the characteristics of epilepsy can be captured within 

recordings, therefore making EEG the preferred method of epileptic signal recording. 

With this incentive and the predictive capabilities of machine learning algorithms, the 

analysis on the field of epileptic seizure detection and prediction from EEG signals 

stands to yield a lot. 

1.2 Epileptic Seizure Detection 

Epileptic seizure detection via EEG signal decomposition has been widely studied in 

recent years. A work applied a discrete wavelet transform to decompose EEG signals 

and achieved an accuracy of 97% using a binary classifier. In [8], empirical mode 

decomposition (EMD), which performs well in extracting sub-components from 

nonlinear and nonstationary signals such as the EEG [9], is employed for decomposing 

regular, ictal and interictal EEG recordings. The extracted sub-components were then 

classified using a support vector machine (SVM) with a classification accuracy above 

85%, where statistical features such as the mean and standard deviation are utilized. 

Another work proposed using the EMD for decomposing EEG signals to differentiate 

between ictal and seizure-free oscillations, which are then classified by the SVM [10]. 

This binary classification perspective yielded above 88% accuracy using different 

kernel functions for the SVM classifier. A work with a neural network classifier, using 

variance, skewness, and kurtosis as features, employed EMD, and achieved 100% 

accuracy for the multi-class problem of epileptic EEG classification. Another signal 

decomposition method, the Hilbert vibration decomposition (HVD), was also 

proposed for the decomposition of nonlinear and nonstationary signals [11] and has 

been used mainly for machine fault diagnosis [12], baseline wander removal of 
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electrocardiogram signals [13] and system identification [14]. HVD has been applied 

to EEG signals with the goal of detecting epileptic seizures using a least-squares SVM 

classifier, where delta, theta and alpha bands of EEG are utilized, and 97.6% 

classification accuracy is achieved [15]. Although both the EMD and the HVD are 

frequently used signal decomposition methods, there is no widely known comparison 

of the two methods on the subject of EEG signal decomposition. This work aims to 

demonstrate the success of the more recent HVD working end to end with machine 

learning classifiers in terms of seizure detection capabilities. 

1.3 Epileptic Seizure Prediction 

There have been many studies in the literature that approach the problem of epileptic 

seizure prediction from EEG recordings. Iasemidis & Sackellares showed that EEG 

recordings on the human cortex show a chaos-order-chaos pattern while transitioning 

from interictal to pre-ictal and to post-ictal states [13]. They were able to quantify the 

chaos of the system by estimating the largest Lyapunov exponents over time in the 

EEG recordings. Later, Mormann et al. investigated the differences in the phase 

synchronization of EEG signals during interictal and pre-ictal intervals [14]. Using 

mean phase coherence as the synchronization metric, they discovered a steady increase 

in mean phase coherence leading to seizure onset. Iasemidis et al. used their previous 

findings in order to predict seizures based on the convergence of the largest Lyapunov 

exponents, achieving 83% sensitivity with a false prediction rate of 0.17/h [15]. Gigola 

et al. applied a wavelet-based method to estimate the accumulated energy in EEG 

signals from epileptic patients [16]. Their framework predicted 12 out of 13 seizures. 

Schelter et al. used tested the statistical significance of seizure prediction techniques 

and have reported a mean sensitivity of 70% and a false prediction rate of 0.15/h [17]. 

Chisci et al. approached the problem by auto-regressive modeling EEG signals and 

performed classification using a support vector machine where the classification 

features were auto-regressive coefficients [18]. Their work reports 100% sensitivity 

with false alarm rates as low as 0/h. Song et al. also followed a classification path in 

their work, using an extreme learning machine as the classifier and sample entropy-

based features, achieving 86.47% sensitivity and 83.80% specificity [19]. Parvez & 

Paul used the phase correlation between the current and reference EEG signals in order 



17 
 

to identify the preictal state [20]. This approach yielded 91.95% prediction accuracy. 

Yang et al. applied the classification perspective once again, using permutation 

entropy extracted in a sliding window from EEG recordings. Employing the support 

vector machine once again, they obtained an average sensitivity of 94% with a false 

prediction rate of 0.111/h [21]. Yuan et al. have employed the Bayesian linear 

discriminant analysis (BLDA) on intracranial epileptic EEG recordings using the 

diffusion distance metric in order to determine preictal EEG periods, and have 

achieved a sensitivity of 85.11% along with a false prediction rate of 0.08/h [22]. These 

studies clearly show that epileptic seizures are preceded by changes in the human brain 

that can be captured in EEG recordings and can be evaluated with specific measures. 

1.4 Organization 

This work is organized as follows: 

- Section 2 describes the framework of seizure detection with machine learning 

and signal decomposition while sharing findings and providing performance 

comparisons of decomposition methods and machine learning classifiers. 

- Section 3 describes the methodology followed in the construction and 

application of the epileptic seizure prediction. The section also describes the 

data preprocessing and the convolutional neural network architecture. The 

findings of the prediction framework are presented in this section. 
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2. SEIZURE DETECTION 

In this section, a framework is proposed in order to extract features from healthy, 

interictal and ictal EEG signals decomposed via EMD and Hilbert vibration 

decomposition (HVD), and then to classify these signals with classifiers such as 

multilayer perceptron (MLP) [6], support vector machine (SVM)[7] and random forest 

(RF) [8]. The chosen classes in this section aim the differentiate the area of EEG 

signals marked, shown in Figure 2.1,Error! Reference source not found. from other 

sections. Then, the performances of all the decomposition method mentioned above in 

detecting epileptic seizures are compared on the sample dataset from Bonn University 

[9].  

2.1  Related Work 

It is generally challenging to differentiate epileptic seizures by manual observation 

from EEG signals due to several factors, such as the length of recordings and the ratio 

of ictal sections to other sections, depicted in Figure 2.1. Furthermore, Fourier based 

signal processing methods are unable to sufficiently analyze EEG signals as they are 

nonlinear and nonstationary by nature [10]. Therefore, methods such as empirical 

mode decomposition (EMD), or more suitably to the nature of EEG signals, the 

multivariate empirical mode decomposition (MEMD) are exploited when working on 

epileptic EEG signals to detect epileptic seizures [11,12]. Another signal 

decomposition method, the Hilbert vibration decomposition (HVD), was also 

proposed for the decomposition of nonlinear and nonstationary signals [13] and has 

been used mainly for machine fault diagnosis [14], baseline wander removal of 

electrocardiogram signals [15] and system identification [16].  
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Figure 2.1 The distribution of sections shown on several EEG recordings from the 
dataset. Differently colored sections signify different stages of an epileptic seizure. 
The purple rectangle depicts the aim of the classification of this section. 

2.2  Data Acquisition 

In this work, the publicly available dataset provided by the University of Bonn was 

used [9]. The EEG signals in this dataset are presented in five sets as Z, O, N, F, and 

S, each consisting of 100 signals, where Z and O contain signals from healthy patients, 

N and F contain interictal signals from epilepsy patients, and S contains ictal signals. 

All data have been previously undergone visual inspection to eliminate segments 

contaminated by artifacts caused by muscle activity and eye movement while 

constructing the dataset. The chosen data were then split into 23.6 seconds segments, 

where all segments conform to the stationarity condition. The EEG signals were 

sampled with 173.61 Hz and were band-pass filtered where the passband ranges from 

0.53 to 40 Hz. Within the scope of this work, only Z, F, and S data sets are used as 

standard, interictal, and ictal recordings. Therefore, only pre-processing for the 

normalization of voltage values of EEG recordings, as shown in Equation 2.1, in order 

to minimize computing time is performed. 
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 (2.1) 

where  and  are the original and normalized recordings, respectively, and 

and represent the minimum and the maximum values within . Using this 

method of normalization, all data were scaled to the fixed range of [0,1]. 
2.3  Signal Decomposition 

One advantage of the signal decomposition – or a necessity thereof – is the ability to 

adaptively overcome the issues of a version of the Heisenberg uncertainty principle. 

Remembering the Heisenberg uncertainty principle at this point is critical. In signal 

decomposition, the precision that can be achieved in generating a time-frequency 

representation is constrained on the basis of this definition [17]. The concept is to 

either correctly allocate the frequency, but then the corresponding time frame is not 

well defined, or vice versa. The decomposition methods enable the estimation of  

2.3.1 Empirical mode decomposition 

Empirical mode decomposition (EMD) is a data-driven signal decomposition 

technique that implements a sifting algorithm in order to adaptively disintegrate the 

processed signal to its AM/FM modulated subcomponents [11]. These components, 

called intrinsic mode functions (IMFs), are the oscillation modes within the original 

signal and, by definition, have their number of local extrema and zero crossings differ 

by one at most, where their upper and lower envelopes average to approximately zero. 

This property of the IMFs allows for the analysis of long recordings of EEG without 

the need to worry about to the nonlinearity and non-stationarity of the signals, as IMFs 

present a quasi-stationary behavior, that is, they can be assumed stationary in short 

periods due to the slow-changing instantaneous frequency and instantaneous 

amplitudes [18].  With the EMD, the target signal can be described as in Equation 2.2, 

 (2.2) 
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where the original signal  is described as the sum of the IMFs ,   1, . . . ,  

and the  is the residual, i.e., the final component of the signal that has no more 

AM/FM subcomponents in it.  

The algorithm of the EMD is of the iterative kind. A sifting process allows for an 

undetermined number of energy-wise decreasing IMFs to be extracted. The steps 

followed in the calculation of IMFs are given in Algorithm 2.1Error! Reference source 

not found.. 

Algorithm 2.1: The EMD process 
1.   
2. Find all local extrema of .  
3. Interpolate through all minima and maxima of , respectively.  
4. Determine the lower envelope  and upper envelope .  
5. Subtract the average of two envelopes from  as:  1/2 _  _   
6. If  satisfies the IMF conditions: 

- Let . 
- Go to step 7. 
Else: 
- Let . 
- Go to step 2. 

7. If the energy of < Energy threshold: 
- Stop. 
Else: 
- Go to step 1. 

In this work, the EMD algorithm is ceased so that each signal in the dataset would 

yield exactly seven IMFs, as depicted in Figure 2.2. Therefore, the uncertainty of input 

dimensions to the classifiers (MLP, RF, SVM), is eliminated.  
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The IMFs extracted from all signals from the dataset are then used for the calculation 

of the features with the process explained in Section 2.4 of this work. 

2.3.2 Multivariate empirical mode decomposition 

One of the main points of the EMD algorithm is the determination of the local mean 

of the initial signal, which is critically dependent on the location of the extrema. 

Though, this is non-trivial for the extension to multivariate signals.  

The multivariate empirical mode decomposition (MEMD), a variation of the original 

method, approached this problem of extrema location by estimating the right set of n-

dimensional vectors through the employment of low-difference points resulting from 

quasi-Monte Carlo methods [19]. The MEMD is, by its multi-channel suitability, 

naturally convenient with EEG signals, and has been previously employed on them in 

various studies [20,21].  

 

Figure 2.2 A depiction of IMFs extracted from a 23.6 s period of an EEG signal of 
the dataset. 



23 
 

In the MEMD method, the local mean of the multiple signals is found by taking 

multiple projections of the original signal. The direction vectors of these projections 

are found by the sampling of a hypersphere.  

The algorithmic process of IMF calculation with the MEMD method is given in 

Algorithm 2.2. 

Algorithm 2.2: The MEMD process 

1. Create a set of points by sampling from an 1 dimensional sphere surface. 
2. For all s, locate the projection  of the original signal  on the 

direction vector . 
3. Find the times  corresponding to the maximum of the projections. 
4. Interpolate through ,x  to find multiple envelope curves . 
5. For  direction vectors, calculate the average of envelopes as: 

 m . 
6. Calculate . 
7. If  satisfies the IMF conditions: 

- Let :  
- Go to step 7. 
Else: 
- Let . 
- Go to step 1. 

8. If the energy of  < Energy threshold: 
- Stop. 
Else: 
- Go to step 1. 

As in the EMD implementation, the number of IMFs is once again set to exactly seven, 

therefore the classifier architectures are kept stable with a set number of inputs. The 

IMFs extracted from all signals from the dataset are then used for the calculation of 

the features with the process explained in Section 2.4 of this work. 

2.3.3 Hilbert vibration decomposition 

In this work, the Hilbert Vibration Decomposition method proposed by Feldmann for 

the extraction of the AM/FM modulated subcomponents from nonstationary signals 

[13] is employed for feature extraction. The method relies on the calculation of the 

analytic signal shown in Equation 2.3. Moreover, the frequently used method of 

synchronous demodulation for the estimation of the signal envelope, therefore 

avoiding the data-driven approach such as the one adopted by empirical mode 
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decomposition (EMD), which is another widely used decomposition technique for 

nonstationary signals. Furthermore, as shown in [22,23], the HVD method is more 

suitable to narrow-band signals with frequency bands packed together, such as the 

EEG signal with conventional bands stated as delta (<4 Hz), theta (47 Hz), alpha (8-

15 Hz) and beta (16-31 Hz). Another desirable aspect of the HVD is the ability to 

change the low-pass filter cutoff frequency in order to change the frequency resolution 

of the extracted monocomponents. Therefore it is possible to get monocomponents 

that oscillate at characteristic EEG frequency bands [13]. 

~  2.3  
In Equation 2.3,   is the analytic signal,  stands for the instantaneous phase, /   for the instantaneous frequency and  for the instantaneous 

amplitudes, and    (Equation 2.4) represents the Hilbert transform of the original 

signal  

~ 1 . .  (2.4) 

where P.V. is the Cauchy principal value to avoid discontinuity. The Hilbert transform 

acts as a filter that shifts the phase of  by /2. The multicomponent signals are 

expressed as a structure of multiple monocomponent vibrations, as can be seen in 

Equation 2.5. The HVD method aims to estimate , ,  that are the instantaneous 

frequency and amplitude of each monocomponent. 

 
(2.5) 

It has been shown in [13] that the instantaneous amplitude A(t) and frequency (t) of 

the analytic signal shown in Equation 2.6,  
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 (2.6) 

both consist of two parts, a slow oscillating part and a faster-oscillating part around it. 

If certain conditions are satisfied, the fast-changing part of  averages to zero, 

leaving only the largest energy part to determine the instantaneous frequency value. 

This central condition allows the low-pass filtering in order to average the 

instantaneous frequency in order to obtain the slow oscillating component. For 

envelope detection, the HVD method employs synchronous demodulation, which 

estimates the quadrature and in-phase projections of the component based on a 

reference frequency value, and computes the signal envelope as the sum of squares of 

the previously estimated projections. 

The in-phase and quadrature projections of the  monocomponent signal within  

with the reference frequency  are represented as in Equation 2.7 and Equation 

2.8, respectively. 

                    12  (2.7) 

~ 12  (2.8) 

where the instantaneous amplitude, frequency, and phase of the lth monocomponent 

signal are ,  and  respectively. 

The fast oscillating components within the projections shown in Equations 2.7 and 2.8, 

which have , are eliminated by employing a low-pass filter with a suitable 

cut-off frequency. So, the phase -and therefore, frequency- and the amplitude of the 

monocomponent signal can be estimated. The iterative approach of the HVD method 

can be listed in the following steps. 
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Algorithm 2.3: The HVD Process 

1. Estimate the mean instantaneous frequency of the largest energy vibration 
by making use of the analytic signal and low-pass filter in accordance with 
this frequency. 

2. Calculate the envelope by setting the instantaneous frequency of the 
reference component with the largest energy as the instantaneous frequency 
computed in the previous step. 

3. Subtract the largest energy component  from 
the signal. 

 

In order to extract seven monocomponents, each 23.6 s portion is decomposed with 

the HVD method with a 4 Hz low-pass filter cutoff frequency. The decomposition is 

applied to all 17 EEG channels, producing 17  7  119 subcomponents per patient 

per window. All these monocomponents are used for the calculation of features 

described in Section 2.4 in order to construct a comprehensive dataset to evaluate the 

classifiers on. 

2.4  Feature Extraction 

In this work, the selected classifiers were tested using several different features 

extracted from each IMF provided by the EMD and the MEMD, and each 

monocomponent signal provided by the HVD. The features described below were 

selected to be as simple as possible with the goal of minimizing computational 

complexity. 

All features were calculated using all of the monocomponents extracted from all of the 

signals in the dataset, as described in Section 2.2, meaning the following features were 

calculated using all subcomponent signals with the mentioned decomposition 

methods.  

2.4.1 Mean power frequency 

Mean power frequency (MPF) is defined as a weighted sum of signal power over the 

frequency axis and indicates which frequency component has the most substantial 
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dominance in the signal's power spectra [24]. Mean power frequency is described as 

in Equation 2.9, 

 (2.9) 

where  and  are the frequency value and the power of the  point in the Fourier 

transform of the signal, whereas  is the length of the Fourier transform. 

 

 

2.4.2 Skewness 

Skewness is a measure of asymmetry in a distribution [25]. The dataset is symmetric 

if its right side is identical to its left side of the center point. Note that the skewness of 

the data itself was calculated rather than the probability distribution of the time series. 

 (2.10) 

 

In Equation 2.10,  is the  data point in the time series and   is the average of the 

entire time series. 

2.4.3 Kurtosis 

Kurtosis is defined as the normalized form of the fourth central moment of a 

distribution [26]. Intuitively, it is described as the measure of the sharpness of the peak 

of a distribution. Kurtosis represents the "peakedness" of the EEG signal, and it may 

hold valuable information related to brain activity. Kurtosis is defined by the 

formulation shown in Equation 2.11, 
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(2.11) 

where  represents the  central population moment of the distribution about the 

mean. 

2.4.4 Variance 

Variance is a measure of how spread out the data points are in a population, being the 

average of the squared distances from each point to the mean [27]. In the scope of this 

work, the variance is considered to be an indicator of an epileptic seizure as the EEG 

signals may demonstrate increased standard deviation during and in between seizures, 

which is simply the square root of the variance. The variance is given by Equation 

2.12,  

1  (2.12) 

where  is the  data point within the time series and  is the mean of the time 

series. 

2.4.5 Peak power frequency 

Simply being the frequency of maximum power, peak power frequency (PPF), in the 

scope of this work, can be considered as a more specific variant of MPF, again 

conveying information aboutwhich frequency band of the EEG signal carries the most 

power. PPF is signified in Equation 2.13. 

argmax :  (2.13) 

In Equation 2.13,  stands for the power of the signal. argmax :  on the other hand, 

means the frequency in the range of Fourier transform frequencies, that maximizes . 
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2.4.6 Spectral Shannon entropy  

Shannon entropy (SEN) is defined, on average, as the minimum number of yes / no 

questions in base-two,  required to identify a sampled signal (Equation 2.14). SEN can 

be used as a measure of diversity [28]. In the context of this work, Shannon entropy 

was calculated by the Fourier transform of the signal. 

 log  (2.14) 

, 1, 2, … ,  is the power value at the  point of the Fourier transform. In this 

respect, this feature has been evaluated as spectral Shannon entropy. 

2.4.7 Spectral Renyi entropy 

Renyi entropy (REN, Equation 2.15) is again a measure of the irregularity of an 

observed system or the information obtained by observing the system in question [29]. 

Renyi entropy is a generalized form of Shannon entropy and is reduced to Shannon 

entropy for 1. 

11 log  (2.15) 

where , 1, 2, … ,  is the power value at the  data point in the Fourier transform 

of the signal. 

2.5  Classifiers 

All classifiers were presented to the features expressed in Section 2.4. The features 

were organized as all the features, plus the subcomponent number (as in the order of 

extraction) of all the subcomponents. The organization of the classifier input matrix  

in Equation 2.16 . 
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 (2.16) 

where, 
  , 1,2, … ,7  

Also, one more type of input matrix was constructed, which containes only one type 

of feature as shown  in Equation  

 (2.17) 

where  is the feature , which stannds for one type of feature shown in Section 2.4, 

and  is the subcomponent number in the order of extraction. This enables for the 

observation of each feature and its predictive capability in the context of epileptic 

seizure detection. 

2.5.1 Multilayer perceptron 

MLP is a machine learning approach that is influenced by the human brain and its 

information processing system [30]. Because of its proven success in predicting both 
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continuous and discrete variables, it has found widespread use across various types of 

problems in different disciplines [31]. MLP consists of neurons, which are the primary 

processing elements, and neuron clusters, which are called layers. Neurons receive 

input from neurons in the previous layer, process information with activation feature, 

and send feedback to neurons in the next layer [32]. This transmitting process begins 

with the input layer and continues until the neurons in the output layer produce 

output(s). 

A layer between the input and output layers is called a hidden layer, the number of 

hidden layers and the number of neurons on each hidden layer, and the activation 

functions are hyper-parameters that must be calculated beforehand. The output 

formula for a single hidden layer and a single output feed-forward neural network can 

be defined as in Equations 2.18 and 2.19, 

 (2.18) 

  (2.19) 

where, is the prediction vector of the MLP model,  is the number of samples in the 

data set,  is the number of features in the data set.  is the  feature vector, 

are the weights between the hidden layer and the output layer, are the weights of 

inputs connected to the hidden layer  is the activation function of the output layer, 

 is the activation function of the neurons in the hidden layer, and  are the 

bias vectors in the output layer and hidden layer, respectively. In this work’s MLP 

models, two architectures were employed, one for using each feature separately, and 

one for all of them combined. The former model structure contains 8 input nodes, who 

hidden layers with 64 nodes each, and one output node, while the latter preserves the 

same structure with the exception of having 56 input nodes. The sigmoid activation 

function is used in all hidden and output layers. Training of a neural network is 

performed by adjusting the weights between each connection, which minimizes the 

difference between predictions and the actual output. Widely used backpropagation 
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and batch gradient descent algorithms are employed for the training phase [33]. Figure 

2.3 illustrates a trained multilayer perceptron model. 

 

Figure 2.3 The trained model of MLP classifier. The colored lines illustrate the 
weights. Blue stands for negative weight values, while red signifies a positive 
weight.  
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2.5.2 Support vector machine 

A support vector machine (SVM) is a supervised learning type classifier that draws an 

optimal hyperplane to separate two classes [34]. The SVM has been widely used in 

recent years in many fields.  

The SVM applies classification by solving a constrained optimization problem in order 

to draw a hyperplane that has the largest distance to the extreme samples in each class. 

This constrained optimization problem is generally solved by employing the Lagrange 

multiplier method. This aspect of the SVM enables fast and straightforward 

computation of the model. However, the base method of the SVM can only draw a 

linear hyperplane, meaning it may not perform well on nonlinearly separable data [35]. 

This problem is overcome by introducing kernel functions. These functions map the 

input data to a higher dimensional space where the transformed data is linearly 

separable. In other words, instead of separating the data in its original form, the SVM 

can classify the function of input elements in order to perform more desirably. The 

SVM uses the decision function in Equation 2.20.  

f sign g b  (2.20) 

where  is the kernel function that maps an -dimensional input data  to a higher-

dimensional space,  is an -dimensional vector of weights, and  is the bias term.  

and   are computed by solving the constrained optimization problem 

, , J , b, e 2 2 |e |  (2.21) 

Subject to constraints, 

y g b 1 e ,                i 1,2, … , M (2.22) 
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where ,  are the M training pairs, 1 stands for the class that  belongs 

to and , , … , . Implementing the Lagrange multiplier method, the 

objective function becomes as in Equation 2.23. 

, b, e; J , b, e y g x b 1 e   (2.23) 

The decision function then becomes, 

f x sign y x, x b   (2.24) 

where ,  is the more common representation of a kernel function. The kernel 

functions that are implemented in this work are the linear function kernel (Equation 

2.25), quadratic function kernel (Equation 2.26), Gaussian radial basis function kernel 

(Equation 2.27). 

, . 1  (2.25) 

,  .  (2.26) 

,  | |  (2.27) 

2.5.3 Random forest 

In order to clearly understand the random forest (RF) classification, it is essential first 

to clarify its weak learner, the decision tree. 

2.5.3.1 Decision tree 

Decision tree (DT) classifiers are trees where each node represents another feature of 

the data, and each branch represents a decision rule [36]. The DT classifier is widely 
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used because of its straightforward approach to classification and regression and also 

the low computational demand even in higher dimensional data, from which a single 

feature is tested at a time. In this work, the Classification and Regression Trees 

(CART) algorithm for DT model construction is adopted, where the Gini Index is used 

as a metric [37].  

For any subset  of training dataset , the Gini index is given by Equation 2.28. 

G S 1  p ,   (2.28) 

where  is the class label for the data ,  is the conditional probability of class  at 

node . From Equation 2.28, it can be seen that the Gini index reaches the minimum 

0 when all observations fall in a single class, and the maximum is achieved when 

observations are equally distributed among classes. Furthermore, the weighted Gini 

index, or the Gini index of a subset  resulting from the partition of data  can be 

defined as 

wG S , A p , A G L A 1 p , A G R A   (2.29) 

where Gini indices of sets  and  are calculated as in Equation 2.28. The 

splitting function is then defined as the difference between the Gini index and the 

weighted Gini index, and this function is used analogously to information gain 

(Equation 2.30).  

g S , A G S wG S , A  (2.30) 

The maximization of this function, called Gini gain, provides optimal decision 

boundaries. It is therefore desirable to choose the partition ,  as in Equation 2.31. 
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A , g S , A  
(2.31) 

2.5.3.2 Usage of Decision Tree Forests 

The random forest (RF) classifier is a combination of decision tree classifiers where 

each classifier is generated using a random vector separately from the input vector, 

and each tree casts a vote for the most popular class to classify an input vector [38]. In 

this work, the random forest is generated for the x -dimensional training data , 

generating a bootstrap sample of the training data,  , by choosing  random 

observations and  features from the original data for each DT or learner in the 

ensemble. Each learner is then built via using the Gini index of the bootstrap sample 

.  

The significant advantage of RF classification is that the RF classifier, as opposed to 

the DT, is not prone to overfitting [8]. The RF classifier can reduce the error due to 

variance and therefore provide higher classification performance on test data or 

previously unobserved data. 

2.5.4 K-nearest neighbors 

The k Nearest Neighbours (kNN) is a non-parametric classification algorithm that, for 

a given test data, calculates  distances between an -dimensional input and the test 

data point, sorts these points and, with a majority vote or a weighted vote between the 

class labels of  nearest training data points, classifies the given data. The two user-

defined parameters that primarily dictate the performance of the kNN classifier is the 

distance metric calculation and the parameter , the number of neighbors to evaluate. 

The kNN algorithm is advantageous in the sense that it is a simple algorithm that is 

relatively straight-forward, and that it does not make any assumptions about the 

underlying distribution of the data. However, it is not without problems. The kNN 

algorithm is computationally expensive and with too many data points, might be slow. 

Since it is also generalization-free, it stores the training data, resulting in high memory 

requirements.  
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The choice of , the number for neighbors also greatly affect the algorithm 

performance. Choosing a too small value of  may make the classification process 

more susceptible to the effects of noise, and a large  makes the smoothing effects 

more dominant, causing underfitting.  

There are also many choices available for distance metrics. Examples include the 

Euclidean distance, the Manhattan distance, and the Cosine distance, provided in 

Equations 2.32, 2.33, 2.34, respectively. 

 (2.32) 

| | (2.33) 

1 | |  | |  (2.34) 

There is also a weighted approach that can be followed, in which the  nearest 

neighbors contribute on the final decision in proportion to their distances from the test 

data point as 

Final Decision l dd   (2.35) 

where  and  are the class label and the distance from the test point to the  

neighbor point. In this work, the weighted Euclidean distance and the cosine distance 

metrics in the kNN classifier were evaluated. 
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2.5.5 10-fold cross-validation 

The classifier models described were tested by a 10-fold cross-validation method. The 

main purpose of this method is to get a preview of the overall performance of the 

trained model over a limited number of data. The results obtained with the 10-fold 

diameter verification method are less optimistic, but more realistic, than another 

popular method of training and test set separation [39]. 10-fold cross-validation steps 

are implemented as follows. 

- The data set is divided into 10 groups. 
- One of the groups is kept separate as a test set. 
- The model is trained over the remaining 9 groups and an estimate is made 

on the test set. 
- Estimates are stored and the model is reset. 
- The process is repeated until all 10 groups are used as the test set. 
- Using all predictions and all real classes, the performance of the model is 

measured. 

The 10-fold cross-validation results obtained by classifying the features extracted with 

MEMD and HVD are given in Section 2.6. 

2.6  Results 

2.6.1 Performance metrics 

During the performance evaluations, classification accuracy (A), Precision, Recall,  

and F1-Score,  metrics are employed, which are given in Equations 2.36, 2.37, 2.38, 

2.39, respectively. 

A #   #    (2.36) 

 (2.37) 

 (2.38) 



39 
 

1 2  (2.39) 

where a TP (true positive) corresponds to the correct identification of a test sample 

from a particular class, Fn (false negative) means that the prediction is not the class 

that the test sample belongs to, which is the target class. TN (true negative) happens 

when predictions based on samples from classes that are not the target class, and they 

are classified as a non-target class. FP (false positive) happens when the sample is 

predicted wrongly as the target class [40].  

2.6.2  Performance evaluation 

The features kurtosis, skewness, variance, PPF, MPF, Shannon entropy, and Renyi 

entropy, extracted from the subcomponents of the EEG signals decomposed by the 

EMD and the HVD were fed to classifiers using 10-fold cross-validation method In 

addition to these features. The classification process using binary classifiers were 

performed in a one-versus-one fashion. The evaluated classifiers were the MLP, the 

SVM with linear, quadratic and RBF kernels, the decision tree, the random forest, kNN 

with cosine distance,  and weighted kNN with Euclidean distance analysis and the 

convolutional neural network. The classification accuracies, precision, recall, and F1 

scores and the confusion matrices are shared in Appendix A. 

2.6.3 Discussion 

As can be observed from Figure A.1 through Figure A.8, the classification accuracy 

of the 10-fold cross-validation is higher for those features that are extracted from the 

subcomponents decomposed by the HVD (hereby referred to as the HVD features) 

compared to those extracted from the subcomponents provided by the EMD and the 

MEMD (hereby referred to as the EMD features and MEMD features).  

For the 10-fold cross-validation, the HVD features provided higher accuracy compared 

to the EMD and MEMD features with the exceptions of the variance feature with the 

MLP, quadratic kernel SVM and random forest, where the EMD scored higher, and 

the REN feature with the DT, where the MEMD showed better performance. The 
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decision tree and the random forest achieved almost the same accuracy for the EMD, 

MEMD, and HVD,  in all cases. In 10-fold cross-validation, the highest accuracies are 

achieved for the EMD features when the MLP  was used, followed closely by the 

quadratic kernel SVM and the weighted kNN classifiers. The random forest classifier, 

being an ensemble of decision trees, provided higher classification accuracies 

compared to its weak learner, the decision tree. This was also the case for the HVD 

features, where the random forest classifier was able to add to the accuracy of the 

decision tree classifier. There was no single best-performing EMD feature across all 

classifiers in the 10-fold cross-validation results. The variance and REN feature 

provided the highest accuracies with no substantial difference with each classifier. The 

features variance and MPF consistently yielded less accuracy in MEMD than in EMD. 

The cases where all features were used together for classification also provided 

satisfying results across the board. It is also worth noting that the spectral SEN yielded 

lower accuracy than its generalized counterpart, the spectral REN, with all classifiers, 

the only exception being the weighted kNN classifier. The worst performing EMD 

feature was the skewness feature for all classifiers. This is also evident from the F1 

scores of skewness for EMD and MEMD, as they are the lowest among the F1 scores 

of all features.  

10-fold cross-validation using the HVD features provided satisfying results across the 

board. The usage of the HVD features enhanced the classification performance 

notably. Within the HVD features, there were several instances that of perfect 

classification accuracy, most frequently with the MPF and PPF features. These two 

frequency-related features achieved the perfect score invariably with all classifiers. 

This is most likely due to the intrinsic relationship of the HVD method’s inner 

workings. The HVD is known to be more suitable to decompose narrow-band signals 

with frequencies are closer together [22]. This, along with the fact that the EEG is a 

narrow-band signal with its characteristic frequency bands lying in the 0-40 Hz range, 

makes the matchup of EEG signals and the HVD highly preferable. This natural 

suitability is even further indicated by the high classification accuracies and closer-to-

ideal scores provided by all evaluated classifiers using the HVD features in the subject 

of epileptic seizure classification in comparison to the EMD and MEMD features. Not 

only the frequency-based features MPF and PPF, but also the spectral Renyi entropy 
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and variance features, and the combination of all features also provided accuracy 

greater than 90% and F1 metrics greater than 0.9 for all classes with each classifier. 

Aside from these features, the best classification performance was observed with the 

MLP classifier, closely followed by the SVM variants and the random forest. The 

worst-performing feature skewness yielded above 85% accuracy and above 0.8 F1 

scores with this classifier. 



42 
 

3. SEIZURE PREDICTION 

This section focuses on the detection of the preictal stage by monitoring the 

electroencephalography (EEG) recordings of the epileptic brain [41]. With the EEG 

records providing high temporal solution usually with sampling rates between 250 to 

2000 Hz, the characteristics of epilepsy can be captured within recordings, therefore 

making EEG the preferred method of epileptic signal recording. 

In this section, a system that uses the Hilbert Vibration Decomposition (HVD) for 

signal decomposition, -which was shown to perform more reliably on seizure detection 

in Section 2- in order to extract features from epileptic surface EEG signals, and 

utilizes these features for a binary classification between preictal and non-preictal 

periods and provides alarms based on the predictions, is introduced. Another goal of 

this work is to evaluate the performance of traditional classification in the context of 

seizure prediction, and discuss whether a classification-only approach is suitable, or a 

postprocessing step such as alarm creation is beneficial in improving the overall 

performance of the system. The target class for the classification process is illustrated 

in Figure 3.1. 



43 
 

 

Figure 3.1 The distribution of sections shown on several EEG recordings from the 
dataset. Differently colored sections signify different stages of an epileptic seizure. 
The purple rectangle depicts the aim of the classification of this section. 

3.1  Related Work 

There have been many studies in the literature that approach the problem of epileptic 

seizure prediction from EEG recordings. Iasemidis & Sackellares showed that EEG 

recordings on the human cortex show a chaos-order-chaos pattern while transitioning 

from interictal to pre-ictal and to post-ictal states [42]. They were able to quantify the 

chaos of the system by estimating the largest Lyapunov exponents over time in the 

EEG recordings. Later, Mormann et al. investigated the differences in the phase 

synchronization of EEG signals during interictal and pre-ictal intervals [43]. Using 

mean phase coherence as the synchronization metric, they discovered a steady increase 

in mean phase coherence leading to seizure onset. Iasemidis et al. used their previous 

findings in order to predict seizures based on the convergence of the largest Lyapunov 

exponents, achieving 83% sensitivity with a false prediction rate of 0.17/h [44]. Gigola 

et al. applied a wavelet-based method to estimate the accumulated energy in EEG 

signals from epileptic patients [45]. Their framework predicted 12 out of 13 seizures. 

Schelter et al. used tested the statistical significance of seizure prediction techniques 
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and have reported a mean sensitivity of 70% and a false prediction rate of 0.15/h [46]. 

Chisci et al. approached the problem by auto-regressive modeling EEG signals and 

performed classification using a support vector machine where the classification 

features were auto-regressive coefficients [47]. Their work reports 100% sensitivity 

with false alarm rates as low as 0/h. Song et al. also followed a classification path in 

their work, using an extreme learning machine as the classifier and sample entropy-

based features, achieving 86.47% sensitivity and 83.80% specificity [48]. Parvez & 

Paul used the phase correlation between the current and reference EEG signals in order 

to identify the preictal state [49]. This approach yielded 91.95% prediction accuracy. 

Yang et al. applied the classification perspective once again, using permutation 

entropy extracted in a sliding window from EEG recordings. Employing the support 

vector machine once again, they obtained an average sensitivity of 94% with a false 

prediction rate of 0.111/h [50]. Yuan et al. have employed the Bayesian linear 

discriminant analysis (BLDA) on intracranial epileptic EEG recordings using the 

diffusion distance metric in order to determine preictal EEG periods, and have 

achieved a sensitivity of 85.11% along with a false prediction rate of 0.08/h [51]. These 

studies clearly show that epileptic seizures are preceded by changes in the human brain 

that can be captured in EEG recordings and can be evaluated with certain measures. 

3.2  Data Acquisition 

The data used in this work is the surface EEG recording from pediatric patients 

collected in Children’s Hospital Boston [52], provided publicly on PhysioNet [53]. 

Within this dataset, there are continuous and non-continuous recordings from 24 cases, 

where each case contains 9 to 42 multichannel EEG recordings with a total of 664 

record files. These recordings are made in a 16-bit resolution at 256 Hz sampling 

frequency. While most of the recordings contain 23 channels, there are also cases with 

electrocardiography (ECG), or vagal nerve stimulus signals included. Figure 2 shows 

an example section from the recordings from the case named as chb01. 

In this work, 10 cases from the dataset are used. These cases are randomly selected 

and can be listed with their labels in the original dataset as; chb01, chb02, chb07, 

chb08, chb11, chb13, chb16, chb20, chb21, and chb23. Each signal is band-stop 
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filtered with a stopband of 57-63 Hz and 117-123 Hz in order to eliminate line 

oscillations from the recordings. The channels used in this work are identical to the 

ones used in [54]. The labeling process is defined as assigning preictal labels to a 30 

minute period before all seizures. All data outside of this period is labeled as non-

preictal, creating a binary classification problem. 

 

Figure 3.2 A 1-minute section from the EEG recordings of chb01 as represented on 
PhysioNet. 

3.3  Decomposition Process 

The HVD process in this section is applied in a window-based fashion. The sliding 

windows over the signals each capture a 16 s portion of the signal, with a 50% overlap 

is set. This portion is then decomposed with the HVD method with a 4 Hz low-pass 

filter cutoff frequency in order to extract 7 monocomponents. The decomposition is 

applied to all 17 EEG channels, producing 17 × 7 = 119 subcomponents per patient 

per window. All these monocomponents are used for the calculation of features 

described in Section 2.3 in order to construct a comprehensive dataset to evaluate the 

classifier on. 
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3.4  Feature Extraction 

In order to construct process-ready data from the EEG recordings, a list of features is 

calculated using the monocomponent signals extracted from the recordings using the 

HVD method. In addition to the previously described features, skewness (Section 

2.4.2), kurtosis (Section 2.4.3), and variance (Section 2.4.4), several new features are 

included in the framework to be processed. These new features are explained in the 

remainder of this section. 

The features explained in this section are calculated on each subcomponent extracted 

in each window of EEG signals. These features are used in order to train the neural 

network classifier with the aim of distinguishing preictal EEG segments from non-

preictal ones, in a binary classification sense. 

3.4.1 Sample entropy 

Sample entropy (SampEn) is a modification of approximate entropy (ApEn), proposed 

for the analysis of physiological time series [55]. As an entropy variant, SampEn is a 

measure of complexity and self-similarity. SampEn is defined as the negative natural 

logarithm of the conditional probability that two signal segments that are similar for 

points are also similar at the following data point. In SampEn, exact matches within 

the signal are disregarded, removing bias within ApEn, where the measure changes 

under different conditions [56]. After SampEn was first proposed, there have been 

approaches in order to reduce the algorithmic complexity and the computation time of 

the SampEn value. The steps taken to calculate SampEn with  complexity, as 

shown in [48], are depicted in Algorithm 3.1. 
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Algorithm 3.1: SampEn calculation 

Result: SampEn 
for 2 to  do 
 0 
for 2 to 1 do 
 0 
for 2 to 1 do 
 for 1 to 1 do 
  if max: | |  then 
   1 1 

if | |  then 
    1 1 

 
for 1 to 1 do 
 if max: | |  then 
  1 1 0 
for 1 to  do 
 1  

 1 0 
for 1 to  do 
 1  

 ln  
 

3.4.2 Spectral power 

The spectral power of EEG signals indicates the sum of the power spectral density 

(PSD) of the signals. The PSD is the power values of each frequency within the signal, 

and as such, it carries information regarding the status of the EEG signals. In the 

context of epilepsy, the spectral power of the characteristic EEG bands is usually 

investigated [57,58]. In this work, since the HVD method is used to decompose the 

EEG signals, merely the power of each subcomponent is calculated. The spectral 

power of each subcomponent is calculated as the logarithmic sum of the PSD. 

, ,  (3.1) 
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In Equation 3.1, ,  stand for the  window of the  subcomponent. PSD is 

the power spectral density operator that estimates the PSD using Welch’s method [59]. 

3.4.3 Higuchi’s fractal dimension 

The fractal dimension of a signal indicates the amount of self-similarity of a signal in 

the time domain, and by extension, the complexity of the signal [60]. This measure is 

between 1 and 2, where a dimension of 1 indicates a straight line and 2 indicates a 2-

dimensional shape, such as a square. Higuchi’s fractal dimension measure is a variant 

of the fractal dimension metric [61]. It has been shown to be more suitable for the 

analysis of physiological signals due to their nonlinear and nonstationary nature, 

compared to other fractal dimension variants [62]. In particular, analysis of signals 

captivating neuronal activity has been shown to benefit from the use of Higuchi’s 

fractal dimension [63]. Higuchi’s fractal dimension was calculated for all windows of 

all subcomponents extracted from the EEG signals via the HVD with the algorithm 

described in [62], with the maximal scale 8. 

3.5  Convolutional Neural Network Architecture 

Convolutional neural networks (CNNs) have been first proposed for, and ever since 

have been widely used within the area of image classification [64,65]. The convolution 

and pooling layers unique to the CNN provide the neural network architecture with the 

ability to extract their own features, which are then simply fed to fully connected 

neural network classifier. This particular ability has been inspired by the human visual 

system. In contrast to the 2-dimensional CNNs architecture used primarily for image 

classification, this work utilizes the 1-dimensional version of the CNNs architecture. 

In CNNs, usually, three types of layers are present: convolution layers, pooling layers 

and fully connected (dense) layers. In convolution layers, many kernel matrices with 

the same number of dimensions slide over the input matrix with a determined step size, 

which results in convolution. These kernels are often randomly generated and layer 

adjusted with backpropagation methods. Although the convolution operation reduces 

the length of the input matrix, pooling layers reduce this length even further. Pooling 

layers scan over their inputs with certain window sizes and output the greatest value 
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in every step. This way the so-called most significant value is used and data sizes are 

further reduced. After a series of convolution and pooling layers, the traditional fully 

connected neural network classifier decides to which class the input belongs [66]. Fig. 

1 illustrates the commonly used CNN architecture.  

 

Figure 3.3 Common CNN architecture 

In this work, the CNN is designed to contain five convolution layers, five pooling 

layers, and two fully connected layers. The inputs to the CNN classifier are provided 

as 

. . . . . .. . .. . .. . .. . .. . .. . .
 (3.2) 

where is the number of sub-signals, i.e., monocomponents. So, for the HVD, the 

input to the CNN consists of a 7 7 matrix since is equal to 7. 

Due to the large class imbalance problem between preictal and non-preictal classes, 

class weights are introduced into the classification process. The class weights are 
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chosen to balance the number of samples in each class from the perspective of the 

classifier. Weights are calculated as in Equation 3.3. 

 
(3.3) 

In Equation 3.3, represents the class weight of class . stands for the number of 

samples belonging to class , and  stands for the number of samples from outside 

of the class . By using such weights, the CNN classifier is made to perceive the 

number of observations from both classes as equal. 

The input matrices were fed to the CNN in batches of 20, and the weights, biases and 

kernel coefficients were adjusted over 50 epochs using backpropagation. At every 

layer except for the output layer, Rectified Linear Unit (ReLu) activation function is 

used. The output layer was assigned a Softmax activation function. The loss function, 

the measure of error between output labels and predictions, were chosen to be 

categorical cross-entropy, which is defined as in Equation 3.4. 

1 1 log  (3.4) 

Here, stands for the number of training example and  for categories. The term 

1  is the indicator function of the observation belonging to the category. 

This model structure was tested on the dataset by the means of 10-fold cross validation. 

10-fold cross validation has the primary purpose of giving a preview of sorts on how 

the model performs in general, extrapolating from a limited dataset [39].  

The classifier is cross validated on the data from all the patients, and the features are 

independent of the patient identity. Therefore it is ensured there is no way the classifier 

to learn which data belongs to which patient, thus making the process non-patient 

specific. 
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3.6  Post-processing for Alerts 

For sounding the alert of an incoming seizure, a sliding window on the predictions is 

used. Here, the window size is chosen as 30 predictions with no overlap, therefore, 

combined with the window length of the feature extraction stage, limiting the seizure 

prediction horizon to a minimum of 8 × 30 = 240 seconds, or 4 minutes. 

The approach for the creation of the alerts is frequency-based. For every 30 

predictions, the number of preictal predictions (1) counted and divided by 30 in order 

to limit the values to the range of [0,1]. After that, a threshold of 0.9 is set in order to 

decide when to raise the alarm. This threshold is chosen based on empirical 

observations of the frequency values seen in all cases. In other words, when 27 out of 

30 predictions are preictal, an alert is given. 

However, this approach sounds the alarm very frequently, especially within preictal 

periods. Therefore, a time limit is imposed on the algorithm where after an alarm is 

raised, it cannot be raised again. By this practice, the ”spamming” of alerts is 

prevented, thus a real system that epileptic patients can use in their daily lives is 

approximated. This period of silence is chosen as 1200 seconds for this work, by 

observation of the intervals between seizures and the frequency of alerts. The alerts 

raised by the algorithm with and without the silent period are illustrated in Figure 3.4 

on the features extracted from the first monocomponent of chb01 recordings. 
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a) 

 

b) 

Figure 3.4 The features extracted from the first HVD subcomponent of chb01. The 
red points signify the windows predicted as preictal by the CNN. The green lines 
indicate the seizure onsets. Blue lines indicate the point where an alarm is raised. (a) 
Alarms raised on chb01 with no silent period. It is seen to become frequent during 
preictal periods. (b) Alarms raised on chb01 with the silent period. The silent period 
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can be seen to stop the alarm spam while also covering all three seizures for this 
patient. 

3.7  Results 

In order to measure the generalization performance of the proposed method across 

patients, the method was applied to all patients it the same manner, which is to extract 

features by sliding windows and decomposition via HVD, and 10-fold cross-validation 

of the CNN classifier. The sensitivity and the specificity metrics are calculated for 

every patient after acquiring predictions from cross-validation. 

As can be seen from Table 3.1, the proposed non-patient specific method performed 

below the conventional thresholds. Especially in chb11 and chb19, 0 sensitivity is 

observed, which means there were no correct preictal predictions by the CNN 

classifier. The only patient which the classifier can be said to perform well on is chb01, 

where reasonable sensitivity is achieved. 

Table 3.1 Classification sensitivity and specificity of the patients. True positives are 
counted as the correct prediction as preictal. 

Patient %Sensitivity %Specificity 
chb01 70.3 85.3 
chb02 6.3 56.3 
chb07 17.3 53.4 
chb08 27.3 50.6 
chb11 0 71.3 
chb13 5.2 52.8 
chb16 20.8 46.7 
chb20 16.2 80.3 
chb21 11.2 40.1 
chb23 24.3 54.6 

It is worth noticing that even with the class weight implementation, the classification 

process alone cannot successfully differentiate between preictal and non-preictal EEG 

signals. It is believed that this problem is originating from the fact that epileptic EEG 

recording from different patients is not similar in preictal stages, meaning that the 

change in a single feature of an epileptic EEG segment from one patient is not the same 

in a segment from another. For example, let us consider the features extracted from the 
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first monocomponents of the recordings of patients chb01 and chb23, given in Figure 

3.5 

In Figure 3.5(a), it is seen that for the first monocomponent of chb01, there is a 

difference from the interictal segments that are observable, especially in spectral power 

and Higuchi’s fractal dimension features. This change makes the interictal and preictal 

segments classifiable even to the naked eye. However, in Figure 3.5(b), it is seen that 

the same changes do not occur preictally for patient chb01. The preictal differences 

for this case are not manually observable but likely more subtle. This makes the 

classification process harder, especially in the case where the classifier is not provided 

information on the identity of the patient. In this work’s non-patient specific method, 

as it was aimed to classify the preictal stages from all patients simultaneously, the 

classifier is exposed to both of these sections, and more, with the same label, where 

evidently, very little similarity is present. This difference in preictal trends are also 

seen in the classification scores in Table 1. The sensitivity of chb01 is 70.3%, which 

is the highest achieved, while the sensitivity of chb23 is 24.3%. The same case can be 

made with all other patients. The observable preictal trend of chb01 is not seen in other 

patients. When the fact that many different types of epilepsy can trigger seizures in 

many different regions of or the entirety of the brain, this is not an unusual finding 

[1,67]. In addition to this, patients with an identified type of epilepsy can experience 

different types of seizures [68]. These observations previously made in the field of 

epilepsy are an indication that a non-patient specific algorithm may not be able to 

discern the preictal patterns from EEG signals of the patients. Furthermore, the 

localization of the EEG channels also affects the classification performance 

concerning epileptic seizures. 
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a) 

 

b) 

Figure 3.5 The features extracted from the first HVD subcomponent of (a) chb01 and 
(b) chb23. Green lines indicate the seizure onsets, and magenta sections indicate the 
signal points labeled as preictal. 
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In Figure 3.6, the classification sensitivity of epileptic seizures for different channels 

is illustrated. In Figure 3.6(a) it can be seen that most of the information related to 

preictal brain activity is contained in the parietal-occipital region of the patient’s brain, 

with some preictal activity dominantly seen in the frontal and temporal lobes. Figure 

3.6(b), it can be observed that the preictal activity is mostly contained to the right 

frontal cortex, but still minimally observed in the entire brain. Figure 3.6(c) shows that 

there is no discernible preictal activity in the entire cortex with the exceptions of the 

left temporal, right parietal and the right frontal-temporal regions, the latter conveying 

the most information. All three patients displayed in Figure 3.6 show preictal activity 

that is clear to the classifier in differing regions of the brain. 

             

(a) (b) (c) 

Figure 3.6 The classification sensitivity heatmaps from different channels of (a) 
chb01, (b) chb08 and (c) chb16. All 7 HVD subcomponents have been used for this 
classification process. 

All these factors, namely the type of epilepsy, the type of the seizures and the focal 

brain region, differ among patients. This makes a non-patient specific classification 

that, within the context of non-patient specific seizure process is non-trivially 

challenging. Therefore, it is conculed from the predictions with the HVD, it is not 

practical to rely on pure machine learning classifiers, and instead robust 

pre/postprocessing is needed. This can be seen in Table 3.2, with the sensitivity scores 

after alerting algorithm is applied. These results are critically indicative of the 
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performance improvement available with the use of additional methods to traditional 

classification. 

Table 3.2 Alarm sensitivity and false alarm rate of the patients. True positives are 
counted as the alarms raised within 120 minutes before a seizure. 

Patient %Sensitivity False Alarm/h 
chb01 100 0.03 
chb02 71.4 0.05 
chb07 87.5 0.14 
chb08 90 0.08 
chb11 100 0.05 
chb13 100 0.02 
chb16 100 0.03 
chb20 100 0.06 
chb21 80 0.15 
chb23 69.2 0.20 
Mean 89.81 0.081 

After the alerting process, the alarm sensitivity has shown at minimum 29.7% 

improvement for chb01, and at maximum 100% improvement for chb11. This drastic 

improvement of sensitivity, shows that even though the classification sensitivity can 

be considered low, or the number of correct predictions are not within a desirable 

range, the placement of the correct predictions are more frequently than not correct. 

Let us observe the predictions and alert placement of chb01 on the features of the first 

extracted subcomponent. 

In Figure 3.7, the preictal predictions can be seen to be spread throughout the entire 

signal but the preictal stages, which accounts for 0% classification sensitivity. 

However, it is seen that even though the classifier gives no correct preictal predictions, 

the alarm algorithm provides four alerts within the accepted 120-minute range 

preceding seizure onsets, while providing only two false alarms during interictal 

periods.  
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Figure 3.7 The alerts and classifier predictions for chb11 illustrated on the features of 
the first subcomponent. Red points signify the preictal predictions by the classifier. 
The green vertical lines indicate seizure onsets and the blue vertical lines indicate 
alarms raised. 

This indicates that even though the classifier performance alone cannot determine the 

correct preictal points, the frequency increase of the preictal predictions above the 0.9 

thresholds still occurs towards, but not during, the preictal periods, therefore enabling 

the alarm algorithm to provide high sensitivity with low false alarm rate. This 

phenomenon likely stems from the fact that the non-patient specific classification 

approach imposes the decision criteria learned from the observations of other patients 

onto chb11 in this example, therefore increasing the frequency of the preictal 

predictions outside of the zone labeled as preictal, therefore further indication to the 

notion that the classification alone may not provide high-performance seizure 

prediction, but together with a suitable postprocessing technique making correct 

seizure predictions is possible. 

Furthermore, the epileptic seizure prediction performance of the framework proposed 

in this work is compared to other studies that employ various methods in order to 

achieve the same goal (Table 3.3). As can be seen in Table 3.3, the proposed 

framework was able to outperform other studies that utilize the same performance 

criteria. This framework can be seen to deliver higher sensitivity and lower false alarm 
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rates with the exception of [51], where the false alarm rates are equal. However, the 

proposed framework delivers an approximately 4% increase in the sensitivity metric. 

Therefore it is safe to say that the postprocessing step used in the presented framework 

does indeed increment upon the results that are previously reported in the literature 

concerning the prediction of epileptic seizures from EEG signals. 

Table 3.3 Performance comparison between the methods of this work and other 
similar studies in the literature. 

References Sensitivity (%) False Alarm Rate/h 

[15] 83 0.17 
[17] 70 0.15 
[18] - 0.41 
[22] 85.11 0.08 
[34] 75.8 0.10 

This Study 89.81 0.08 
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4. CONCLUSION 

This thesis addressed two different but complementary mechanisms for identifying 

and forecasting seizures. The first method consists of the extraction and analysis of 

EEG signals decomposed with Hilbert vibration decomposition in order to detect 

seizure activity with several classifiers. The results of the HVD process and other 

popular decomposition methods are also compared The second approach expands on 

the technique of the first one by moving the classification goal to pre-seizure times in 

order to detect pre-seizure behavior and raise alarms using a convolutional neural 

network and a novel post-processing algorithm. 

In the first framework, the classification of the epileptic states of the signals with the 

features extracted from the sub-signals of EEG signals obtained by HVD, EMD and 

MEMD methods. Signals from classes healthy, ictal and interictal are separated into 

sub-components and the attributes calculated from these sub-components are classified 

using MLP, SVM, RF, and kNN classifiers. In the results, higher metrics and 

classification accuracies were observed in the classification of HVD extracted features 

compared to MEMD and EMD extracted features. Therefore, the HVD method 

manifests itself as a reliable candidate in addition to the more common methods within 

the decomposition and analysis of epileptic EEG signals. 

In the second framework, we have designed, applied, and demonstrated an epileptic 

seizure prediction system that extracts features from the subcomponents of EEG 

recordings from the CHB-MIT database presented on PhysioNet by employing the 

HVD, and uses these features for the binary classification as preictal or non-preictal 

with an CNN classifier. After the classification is done, a frequency-based alarm 

algorithm is used for alerting an oncoming epileptic seizure. This approach is shown 

to surpass the performances of other methods reported in the literature. The 

performance of the HVD method in epileptic seizure prediction is also shown in this 

study. The classification performance, in the conventional sense, was undesirable due 
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to the fact that many different factors affect the preictal trends across different patients. 

However, with a supporting alarm algorithm, correct seizure predictions were made. 

This shows that a single classifier may not be able to handle the intrinsic complexity 

of the problem of seizure detection, but a suitable postprocessing algorithm may build 

upon the classification performance and provide satisfactory sensitivity and false 

alarm rates. With the approach followed in this framework, a superior success is 

captured in epileptic seizure prediction; thus, a potential foundation to a robust and 

reliable epileptic seizure warning system which can be utilized in future studies is 

demonstrated.
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APPENDIX 

Results of 10-fold cross validation with all classifiers are provided in this section.  

 

Figure A.1 10-fold cross-validation accuracies of the classification process with MLP 
classifier  
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Figure A.2 10-fold cross validation accuracies of classification process with linear 
kernel SVM classifier 

 

 
Figure A.3 10-fold cross validation accuracies of classification process with quadratic 
kernel SVM classifier 



68 
 

 

Figure A.4 10-fold cross validation accuracies of classification process with RBF 
kernel SVM classifier 

 

Figure A.5 10-fold cross validation accuracies of the classification process with DT 
classifier 
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Figure A.6 10-fold cross validation accuracies of classification process with RF 
classifier 

 

Figure A.7 10-fold cross validation accuracies of classification process Cosine 
distance kNN classifier 
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Figure A.8 10-fold cross validation accuracies of classification process with weighted 
Euclidean distance kNN classifier 
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Table A.1 MLP classification metrics of all classes  

MLP EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.53 0.45 0.82 0.82 0.85 0.99

R 0.48 0.50 0.81 0.85 0.83 0.97
F1 0.51 0.47 0.81 0.83 0.84 0.98

Sk
ew

ne
ss P 0.40 0.41 0.66 0.80 0.96 0.80

R 0.39 0.43 0.63 0.80 0.95 0.81
F1 0.39 0.42 0.64 0.80 0.95 0.81

M
PF

P 0.65 0.67 0.82 1.00 1.00 1.00
R 0.66 0.69 0.79 1.00 1.00 1.00
F1 0.66 0.68 0.81 1.00 1.00 1.00

PP
F

P 0.55 0.54 0.77 1.00 1.00 1.00
R 0.64 0.52 0.68 1.00 1.00 1.00
F1 0.59 0.53 0.72 1.00 1.00 1.00

Va
ria

nc
e P 0.83 0.82 0.90 0.96 0.96 0.97

R 0.75 0.89 0.92 0.95 0.96 0.98
F1 0.79 0.86 0.91 0.95 0.96 0.98

SE
N

P 0.83 0.82 0.90 0.96 0.96 0.97
R 0.75 0.89 0.92 0.95 0.96 0.98
F1 0.79 0.86 0.91 0.95 0.96 0.98

RE
N

P 0.93 0.88 0.97 0.97 0.98 1.00
R 0.91 0.91 0.96 1.00 0.98 0.97
F1 0.92 0.90 0.96 0.99 0.98 0.98

Al
l

P 0.92 0.88 0.94 0.99 1.00 0.97
R 0.85 0.94 0.94 0.98 0.98 1.00
F1 0.88 0.91 0.94 0.98 0.99 0.99

Table A.2 Linear SVM classification metrics of all classes 

Linear SVM EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.54 0.47 0.80 0.87 0.90 0.99

R 0.45 0.57 0.79 0.91 0.84 0.92
F1 0.51 0.51 0.81 0.81 0.91 0.93

Sk
ew

ne
ss P 0.47 0.37 0.72 0.77 1.00 0.78

R 0.39 0.42 0.67 0.85 0.97 0.74
F1 0.32 0.42 0.61 0.75 0.95 0.87

M
PF

P 0.63 0.61 0.81 1.00 1.00 1.00
R 0.66 0.76 0.79 1.00 1.00 1.00
F1 0.66 0.62 0.88 1.00 1.00 1.00

PP
F

P 0.48 0.58 0.71 1.00 1.00 1.00
R 0.65 0.54 0.66 1.00 1.00 1.00
F1 0.62 0.47 0.68 1.00 1.00 1.00

Va
ria

nc
e P 0.86 0.75 0.87 0.91 0.91 1.00

R 0.80 0.96 0.89 0.95 0.98 1.00
F1 0.84 0.79 0.92 0.95 0.98 0.97

SE
N

P 0.87 0.87 0.86 0.97 0.91 0.93
R 0.76 0.93 0.99 0.99 0.93 0.97
F1 0.86 0.79 0.89 0.98 0.90 0.99

RE
N

P 0.95 0.92 0.95 1.00 1.00 1.00
R 0.98 0.84 0.99 1.00 0.91 0.93
F1 0.93 0.95 1.00 0.98 0.97 0.99

Al
l

P 0.97 0.95 0.95 1.00 1.00 0.93
R 0.84 0.93 0.95 0.96 0.93 1.00
F1 0.90 0.95 1.00 1.00 0.95 0.95
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Table A.3 Quadratic SVM classification metrics of all classes 

Quadratic SVM EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.55 0.45 0.77 0.82 0.96 1.00

R 0.44 0.60 0.74 0.85 0.88 0.86
F1 0.53 0.56 0.79 0.74 0.92 0.95

Sk
ew

ne
ss P 0.47 0.41 0.74 0.77 1.00 0.83

R 0.40 0.36 0.64 0.84 0.94 0.81
F1 0.30 0.34 0.58 0.76 0.97 0.92

M
PF

P 0.66 0.55 0.86 1.00 1.00 1.00
R 0.72 0.78 0.75 1.00 1.00 1.00
F1 0.70 0.69 0.84 1.00 1.00 1.00

PP
F

P 0.42 0.63 0.71 1.00 1.00 1.00
R 0.59 0.47 0.68 1.00 1.00 1.00
F1 0.55 0.47 0.64 1.00 1.00 1.00

Va
ria

nc
e P 0.93 0.69 0.91 0.88 0.89 1.00

R 0.77 0.94 0.94 0.94 1.00 1.00
F1 0.88 0.86 0.91 1.00 1.00 1.00

SE
N

P 0.94 0.91 0.92 0.96 0.90 0.92
R 0.77 0.85 0.96 0.99 1.00 0.91
F1 0.82 0.77 0.91 1.00 0.95 0.96

RE
N

P 1.00 0.87 0.95 0.99 0.96 1.00
R 1.00 0.81 1.00 1.00 0.90 0.87
F1 0.97 0.96 1.00 0.95 0.95 0.93

Al
l

P 0.98 0.96 1.00 1.00 1.00 0.99
R 0.87 0.95 0.98 0.91 0.95 1.00
F1 0.90 0.98 0.96 0.94 1.00 0.94

Table A.4 RBF SVM classification metrics of all classes 

RBF SVM EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.49 0.39 0.73 0.78 0.94 1.00

R 0.49 0.58 0.75 0.89 0.86 0.87
F1 0.59 0.57 0.77 0.76 0.96 0.90

Sk
ew

ne
ss P 0.51 0.45 0.73 0.79 0.94 0.76

R 0.35 0.40 0.58 0.80 0.86 0.84
F1 0.24 0.27 0.65 0.69 0.94 0.96

M
PF

P 0.60 0.62 0.82 1.00 1.00 1.00
R 0.68 0.84 0.82 1.00 1.00 1.00
F1 0.69 0.65 0.85 1.00 1.00 1.00

PP
F

P 0.50 0.70 0.75 1.00 1.00 1.00
R 0.60 0.43 0.62 1.00 1.00 1.00
F1 0.62 0.43 0.69 1.00 1.00 1.00

Va
ria

nc
e P 0.92 0.72 0.96 0.84 0.92 1.00

R 0.78 0.96 0.93 0.94 1.00 1.00
F1 0.95 0.82 0.95 0.98 1.00 1.00

SE
N

P 0.88 0.90 0.85 0.92 0.87 0.90
R 0.79 0.93 0.91 0.98 0.92 0.91
F1 0.84 0.77 0.86 0.97 0.92 1.00

RE
N

P 1.00 0.94 0.92 0.92 0.94 1.00
R 1.00 0.88 1.00 1.00 0.95 0.87
F1 0.95 1.00 1.00 0.95 0.91 1.00

Al
l

P 1.00 1.00 0.99 1.00 1.00 0.97
R 0.89 1.00 0.92 0.91 0.97 1.00
F1 0.94 1.00 0.96 0.90 1.00 0.89
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Table A.5 DT classification metrics of all classes 

DT EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.51 0.37 0.80 0.80 0.99 1.00

R 0.49 0.59 0.70 0.89 0.93 0.93
F1 0.58 0.55 0.82 0.77 0.95 0.85

Sk
ew

ne
ss P 0.50 0.42 0.75 0.74 0.98 0.74

R 0.30 0.38 0.51 0.81 0.81 0.87
F1 0.28 0.31 0.59 0.66 1.00 1.00

M
PF

P 0.59 0.62 0.89 1.00 1.00 1.00
R 0.64 0.86 0.75 1.00 1.00 1.00
F1 0.63 0.66 0.85 1.00 1.00 1.00

PP
F

P 0.43 0.75 0.79 1.00 1.00 1.00
R 0.54 0.37 0.59 1.00 1.00 1.00
F1 0.60 0.48 0.68 1.00 1.00 1.00

Va
ria

nc
e P 0.90 0.74 0.89 0.88 0.86 1.00

R 0.84 0.99 0.96 0.87 1.00 0.99
F1 0.97 0.83 0.95 0.92 1.00 1.00

SE
N

P 0.84 0.96 0.83 0.90 0.94 0.98
R 0.77 0.92 0.85 0.98 0.94 0.84
F1 0.81 0.69 0.89 0.93 0.89 0.98

RE
N

P 1.00 0.98 0.85 0.87 0.97 1.00
R 1.00 0.83 1.00 1.00 0.91 0.86
F1 1.00 1.00 1.00 0.93 0.86 1.00

Al
l

P 1.00 1.00 0.97 1.00 1.00 0.91
R 0.85 0.98 0.97 0.84 1.00 1.00
F1 0.87 1.00 0.99 0.87 1.00 0.91

Table A.6 RF classification metrics of all classes 

RF EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.71 0.80 0.72 0.92 0.97 0.94

R 0.73 0.86 0.65 0.94 0.98 0.91
F1 0.72 0.83 0.68 0.93 0.98 0.92

Sk
ew

ne
ss P 0.49 0.57 0.38 0.78 0.76 0.76

R 0.52 0.51 0.40 0.85 0.77 0.68
F1 0.50 0.54 0.39 0.81 0.77 0.72

M
PF

P 0.87 0.80 0.88 1.00 1.00 1.00
R 0.89 0.85 0.81 1.00 1.00 1.00
F1 0.88 0.83 0.84 1.00 1.00 1.00

PP
F

P 0.80 0.68 0.68 1.00 1.00 1.00
R 0.78 0.69 0.68 1.00 1.00 1.00
F1 0.79 0.68 0.68 1.00 1.00 1.00

Va
ria

nc
e P 0.89 0.93 0.95 0.94 0.96 1.00

R 0.92 0.92 0.93 0.98 0.95 0.97
F1 0.91 0.92 0.94 0.96 0.95 0.98

SE
N

P 0.75 0.69 0.93 0.96 0.96 0.96
R 0.80 0.66 0.91 0.99 0.94 0.95
F1 0.77 0.68 0.92 0.98 0.95 0.95

RE
N

P 0.92 0.91 0.96 0.96 0.94 0.98
R 0.95 0.88 0.96 0.99 0.95 0.94
F1 0.94 0.89 0.96 0.98 0.95 0.96

Al
l

P 0.86 0.91 0.92 0.97 0.98 0.99
R 0.90 0.88 0.90 0.99 0.97 0.98
F1 0.88 0.89 0.91 0.98 0.97 0.98



74 
 

Table A.7 Cosine kNN classification metrics of all classes 

Cos kNN EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.50 0.33 0.92 0.87 0.99 1.00

R 0.56 0.70 0.73 0.95 0.88 1.00
F1 0.54 0.45 0.79 0.87 0.98 0.94

Sk
ew

ne
ss P 0.51 0.34 0.76 0.84 0.88 0.78

R 0.26 0.40 0.45 0.82 0.71 0.96
F1 0.27 0.23 0.57 0.72 1.00 1.00

M
PF

P 0.72 0.48 0.85 1.00 1.00 1.00
R 0.52 0.86 0.77 1.00 1.00 1.00
F1 0.64 0.75 0.76 1.00 1.00 1.00

PP
F

P 0.32 0.74 0.80 1.00 1.00 1.00
R 0.53 0.38 0.58 1.00 1.00 1.00
F1 0.66 0.39 0.67 1.00 1.00 1.00

Va
ria

nc
e P 1.00 0.86 0.88 0.81 0.91 1.00

R 0.82 0.94 0.92 0.92 1.00 1.00
F1 1.00 0.77 1.00 0.85 1.00 0.96

SE
N

P 0.71 0.95 0.94 0.92 0.88 1.00
R 0.81 0.96 0.81 1.00 0.95 0.89
F1 0.78 0.68 0.94 0.91 0.92 0.90

RE
N

P 1.00 1.00 0.79 0.92 1.00 1.00
R 1.00 0.84 1.00 1.00 0.81 0.84
F1 1.00 1.00 0.95 1.00 0.86 0.93

Al
l

P 1.00 1.00 0.90 1.00 1.00 0.91
R 0.90 0.96 0.91 0.83 1.00 1.00
F1 1.00 0.99 0.90 0.87 1.00 0.87

Table A.8 Weighted kNN classification metrics of all classes 

w kNN EMD HVD
Z S F Z S F

Ku
rt
os
is P 0.45 0.32 0.97 0.82 1.00 1.00

R 0.49 0.67 0.77 1.00 0.86 1.00
F1 0.47 0.51 0.82 0.91 0.97 0.89

Sk
ew

ne
ss P 0.56 0.39 0.80 0.86 0.94 0.79

R 0.20 0.36 0.43 0.83 0.66 0.98
F1 0.30 0.18 0.64 0.66 1.00 1.00

M
PF

P 0.71 0.48 0.86 1.00 1.00 1.00
R 0.60 0.91 0.80 1.00 1.00 1.00
F1 0.69 0.82 0.74 1.00 1.00 1.00

PP
F

P 0.27 0.69 0.82 1.00 1.00 1.00
R 0.56 0.32 0.64 1.00 1.00 1.00
F1 0.73 0.38 0.61 1.00 1.00 1.00

Va
ria

nc
e P 1.00 0.91 0.92 0.75 0.84 1.00

R 0.75 0.99 0.99 0.98 1.00 1.00
F1 1.00 0.73 1.00 0.90 1.00 0.94

SE
N

P 0.65 0.90 0.96 0.88 0.86 1.00
R 0.87 0.93 0.83 0.96 0.99 0.83
F1 0.82 0.65 0.93 0.85 0.89 0.89

RE
N

P 1.00 1.00 0.77 0.92 1.00 1.00
R 0.94 0.87 1.00 1.00 0.87 0.85
F1 1.00 1.00 0.91 1.00 0.84 0.99

Al
l

P 1.00 1.00 0.84 0.98 1.00 0.99
R 0.97 1.00 0.90 0.84 0.98 1.00
F1 1.00 1.00 0.89 0.89 1.00 0.89
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