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ASSEMBLY HOMOGENIZATION OF LIGHT WATER REACTORS BY A 
MONTE CARLO REACTOR PHYSICS METHOD AND VERIFICATION  BY 
A DETERMINISTIC METHOD 

SUMMARY 

Assembly homogenization is an important part of reactor core physics analysis. The 
loading of fuel assemblies in a commercial nuclear power plant is an important step 
before the startup of the reactor. The physical reactor core is modeled in computer 
environment. Distribution of fissile materials is decided after reactor physics code 
calculations. Many different reactor physics codes are used with calculations taking 
weeks or months. The purpose in this study is to test and verify the assembly 
homogenization capability of a Monte-Carlo reactor physics code called Serpent, 
which is used for the last years and is being used widely each year, and is faster than 
the previous ones.  

In this study, Serpent did assembly homogenization of several different core 
configurations in two-dimensional geometry, and the results were tested in 
deterministic reactor simulation code called PARCS. Results showed that Serpent is 
capable to generate few-group constants for LWR-type assemblies. However, the 
assembly discontinuity factors generation by Serpent for fuel-reflector interface was 
not correct, so the objective of this thesis was to generate appropriate fuel-reflector 
discontinuity factors by off-line calculation, without access to the reference interface 
current. With the appropriately generated discontinuity factors, the results showed 
that assembly homogenization by Serpent is accurate to less than 0.5% keff error and 
less than 1.0% assembly flux ratio (the ratio of the averaged fast group of flux to the 
averaged thermal group of flux in the assembly). 
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HAFİF SU REAKTÖRLER İNİN MONTE CARLO REAKTÖR F İZİĞİ 
YÖNTEM İ İLE HOMOJEN İZASYONU VE DETERM İNİSTİK YÖNTEM 
İLE DOĞRULANMASI 

ÖZET 

Reaktör demet homojenizasyonu reaktör kalbi fiziksel analizlerinin önemli bir 
bölümüdür. Yakıt elemanlarının yüklenmesi, günümüz nükleer santrallerinde 
reaktörün çalışmasının başlangıcı öncesi için önemli bir adımdır. Fiziksel reaktör 
kalbi  bilgisayar ortamında modellenir. Fisil maddelerin dağılımlarının kararı reaktör 
fiziği kodu hesaplamalarından sonra verilir. Hesaplamaları haftalar ve aylar süren bir 
çok farklı reaktör fiziği kodları vardır ve kullanılır. Bu çalışmanın amacı, son bir kaç 
yıldır kullanılan ve geçen her sene boyunca yaygınlaşan, öncekilere göre daha hızlı 
hesaplamalar yapabilen, Serpent adındaki Monte-Carlo reaktör fiziği kodunun 
homojenizasyon kabiliyetini test etmek ve doğrulamaktır.  

Bu çalışmada değişik şekilde düzenlenmiş reaktör kalbi konfigürasyonlarının demet 
homojenizasyonu iki-boyutlu geometride Serpent kodu tarafından yapılmış ve 
sonuçlar deterministik reaktör simulasyon kodu olan PARCS ile kontrol edilmiştir. 
Sonuçlar Serpent kodunun hafif su reaktör tipi demetler için grup kesit alanı 
üretiminin uygun olduğunu gösterdi. Ama yakıt-reflektör arayüzü için demet 
devamsızlık faktörleri üretimi doğru değildi. Bu yüzden bu tezin amacı, referans 
arayüz akı verilerine sahip olmadan, kapalı bir yöntemle yakıt-reflektör arayüzü için 
doğru devamsızlık faktörleri üretimidir. Üretilen doğru devamsızlık faktörleri ile 
sonuçlar, Serpent kodu tarafından gerçekleştirilen demet homojenizasyonunun çok 
küçük hata yüzdesi ile yanlışsız olduğu görülmüştür. Hata yüzdeleri keff için 0.5%’in 
altında ve akı oranları (demet içindeki ortalama hızlı grup akısının ortalama termal 
grup akısına oranı) için 1.0%’in altında olduğu görülmüştür. 
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1.  INTRODUCTION 

Extensive knowledge of different quantities is necessary for the physics design and 

analysis of light water reactors. The prediction of neutron density in space, direction 

and energy increases the ability to perform core-follow calculations where the 

determination of power distribution, control rod worth, shutdown margins and 

isotopic depletion rates must be known. With the assumption that thermal-hydraulic 

properties of the reactor and fundamental data are known, three-dimensional neutron 

transport equation is a task need to be solved. Explicit modeling of water channels, 

fuel pins, control rods and burnable poisons limits the direct methods of solving the 

three-dimensional transport equation. Tools such as three-dimensional continuous 

energy Monte Carlo and deterministic neutron transport methods are similarly 

overwhelmed by the complexity of the computational problem of explicit 

geometrical modeling on a core-wide basis. 

Many reactor analysis methods circumvent the computational burden of explicit 

geometrical modeling by coupling geometrically-simple, energy-intensive 

calculations with few-group, geometrically-complicated calculations via spatial 

homogenization and group condensation. The question how to make the best use of 

spatial and spectral distributions of reaction rates and neutron densities has prompted 

several different approaches to reactor analysis. 

Alternative methods, which can all be put in a general class called nodal diffusion 

methods have been developed over the years. These nodal methods have been 

capable of solving three-dimensional neutron diffusion equation with a less than 2% 

error in assemble-averaged powers using assembly-size mesh. The assumption of 

these nodal methods is that to obtain “equivalent” diffusion theory parameters, which 

are spatially constant over the whole cross sectional area of a fuel assembly, pin-by-

pin lattice cross sections have been spatially homogenized. The nodal solution 

provides only nodal (volume-averaged) and surface (face-averaged) fluxes and 

reaction rates. It is important that accurate methods for homogenizing reactor 

assemblies are developed and employed.  
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1.1 Purpose of The Thesis 

The major aim of this thesis is to perform assembly homogenization in two-

dimensional LWR mini-cores with possible fuel and reflector assembly 

configurations. Homogenization techniques will be applied using Serpent (Monte 

Carlo reactor physics code) and verified by PARCS (deterministic reactor simulation 

code). 
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2.  ASSEMBLY HOMOGENIZATION METHODS 

2.1 Introduction 

A number of homogenization techniques determine diffusion coefficients by 

matching certain components of heterogeneous model properties. Consider a 

symmetric, repeating array of fuel and moderator elements of volume VF and VM. 

One unit in the array is a cell (see Fig. 2.1).  

 

Figure 2.1 : A cell with fuel and moderator elements. 

The absorption rate in the cell, Ahetero; 

������� =  Σ
���
� + Σ
���
�  (2.1) 

where Σ
� , Σ
� are the absorption cross sections; �� , ��are volume averaged fluxes. 

We want to design a homogeneous system where the moderator and fuel are mixed. 

We also want the average flux in the homogeneous system to be equal to that of the 

real cell. We want to determine a 〈Σ
〉���� for this homogeneous system so that its 

absorption rate equals that of the heterogeneous cell. 

����� = 〈Σ
〉���������
����  (2.2) 

where ����� = ���������
�����

 

or ����� = 〈Σ
〉�������
� + ��
��. 

a 

VF 

VM 

Cell 
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If A hetero equals to Ahomo, then; 

〈Σ
〉���� =  !������ !�����
���������

  (2.3) 

Dividing the numerator and denominator by ��
�; 

〈Σ
〉���� =  !�� !���� ��⁄ �#
$���� ��⁄ �#   (2.4) 

where % = ��
��

 and is flux disadvantage factor. This methodology does not apply 

directly to the diffusion coefficient “D” since it is related to leakage. For 

multiregional cells (I>2); 

〈Σ&〉���� =  '(�∑  '* ��* �(⁄ �#*+*,-
$�∑ ��* �(⁄ �#*+*,-

  (2.5) 

and %. = �*
�(

 , ����� = ∑ �*�*+*,(
�����

 . 

A fuel assembly consists of a large number of pins, which might have differing 

composition, each of which is clad and surrounded by moderator. A unit cell or pin 

cell consist of a fuel pin, cladding and surrounding moderator. The first step in 

homogenizing the fuel assembly is to homogenize each of the pin cells by calculating 

the multigroup flux distribution in the fuel cell and using it to calculate homogenized 

cross sections for the pin cell.  

Although the calculation of the homogenized pin cell cross sections could be made 

by combining an infinite medium calculation with some method for estimating the 

disadvantage factor, today more advanced methods based on transport theory are 

preferred.  

A simplifying assumption is that the pin cell could be considered part of an infinite 

array identical pin cells and thus reflective boundary conditions at cell boundary are 

used to model such an infinite system. But existence of the fuel pin of differing 

enrichment, control pins, burnable poisons etc. makes such an approach 

questionable. The influence of the surroundings is usually introduced by specifying a 

partial inward current J- and an albedo β. 

Since the fuel pin cells are cylindrical, it is convenient to approximate the actual pin 

cell geometry by an equivalent cylindrical cell that preserves moderator volume. The 

equivalent cylindrical cell is called Wigner-Seitz cell (see Fig. 2.2). 
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Figure 2.2 : Wigner-Seitz approximation. 

Wigner-Seitz approximation converts a two-dimensional problem to a one-

dimensional problem and is extensively used. However, the change from the real 

geometry to cylindrical geometry leads to an anomalously high flux in the moderator 

of the Wigner-Seitz cell when reflective boundary conditions are used. This effect is 

called Newmarch effect (see Fig. 2.3).  

Newmarch effect arises because a neutron, introduced into the cell traveling in the 

direction of chord that does not pass through the fuel pin before intersection the 

reflecting cell boundary, will never pass through the fuel pin since reflection from 

the cylindrical surface will result in motion along a similar chord. On the other hand, 

reflection in the real cell will cause motion into the fuel pin. 

 

Figure 2.3 : Representation of the Newmarch effect. 

 

 

Real Cell Wigner-Seitz Cell 

RF 

p 

Real Cell 

RF 

R 
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Newmarch effect could be remedied by employing white boundary condition at the 

cylindrical boundary. The white boundary condition assumes that a neutron that hits 

the boundary will be returned with a cosine distribution, i.e. as if the returning 

neutron comes from an infinite outside region with uniform isotopic sources. The 

Wigner-Seitz approximation, combined with white reflection, gives excellent results 

and is therefore well established in pin cell calculations. 

If the pin cell-to-pin cell leakage is to be taken into account, the concept of albedo, or 

reflection coefficient, is also employed. The albedo β, 

/ = 012
013

  (2.6) 

where “s” represents the cylindrical outer surface of the Wigner-Seitz cell. 

Pin cell calculation are usually carried out using the collision probability method 

based on integral transport equation since it involves scalar flux instead of angular 

flux. But its basic drawback is the isotropic scattering assumption. To take linearly 

anisotropic scattering at least approximately into account, there is a prescription, 

called transport correction which is usually employed in collision probability 

applications. Transport correction which involves the subtraction of the quantity 

45Σ6,7. Transport corrected group cross sections are: 

gsggs
tr

gs ,,0,, Σ−Σ=Σ µ   (2.7) 

gsggt
tr

gt ,,0,, Σ−Σ=Σ µ   (2.8) 

gsgggs
tr

ggs ,,0,, Σ−Σ=Σ →→ µ   (2.9) 

Usually the transport correction and the superscript “tr” is universally omitted. Once 

pin cell homogenization is completed, the assembly is made up of a large number of 

homogeneous regions (e.g. the homogenized, usually square, pin cells) surrounded 

by structure, water gaps, control rods, etc. 

The next step in the homogenization process is to perform a multigroup transport 

calculation on the pin cell homogenized assembly for the purpose of obtaining 

average group fluxes for each homogenized pin cell that can be used to calculate 

homogenized cross sections that will allow the entire assembly to be represented as a 

single homogenized region. 
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Any of the transport method or even diffusion theory in some cases can be used for 

the full assembly transport calculation. Such calculations are normally performed 

using reflective condition on the assembly boundary. 

Heterogeneous system is described by multigroup transport theory as in (2.10). 

( ) ( ) ( ) ( ) ( )∑∑
=′

′
′

=′
′

→′ Σ+Σ=Σ+⋅∇
G

g
g

g
f

gG

g
g

gg
g

g
tg r

k
rrrrJ

11

 
vvvvvrr

φυχφφ   (2.10) 

We imagine that we know the solution to (2.10) and wish to use it to define 

homogenized cross sections. We divide heterogeneous system into N 

homogenization regions. We wish to define homogenized cross sections 

Σ8�,.
7 , Σ8.

7,→7, :Σ8;,.
7  so that the homogenized transport equation: 

( ) ( ) ( ) ( )∑∑
=′

′
′

=′
′

→′ Σ+Σ=Σ+⋅∇
G

g
g

g
if

gG

g
g

gg
ig

g
itg r

k
rrrJ

1
,

1
,

ˆ ˆ
ˆ

ˆˆˆ ˆˆ vvvvrr

φυχφφ   (2.11) 

is  obeyed for i=1,2…,N. Denoting the volume of the i’th homogenized region by Vi 

and its k’th surface by <.=, we require:  

( ) ( ) ( )  
N ,1,2,i

,,,,x 
            ˆˆ

, ∫∫ =
=

Σ=Σ
ii V

g
g
x

V

g
g

ix

sfta
dVrrdVr

L

Krrr φφ       (2.12) 

and 

( ) ( ) ( )iKk
dSrJndSrJn

k
i

k
i S

g

S

g ,,2,1        

N,1,2,i    
  ˆ

L

Lrrrrrr

=
=

⋅=⋅ ∫∫    (2.13) 

where K(i) is the number of surfaces of the i’th homogenization region. If (2.12) and 

(2.13) are satisfied, obviously: 

> = >8  (2.14) 

Thus, homogenizes cross sections are defined by: 

( ) ( )

( )∫

∫Σ
=Σ

i

i

V

V

g
g
x

g
ix

dVr

dVrr

 ˆ

  
ˆ

, r

rr

φ

φ
  (2.15) 

and when diffusion theory is to be used in the homogenized calculation: 
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( )

( )∫

∫

∇⋅

⋅−

=

k
i

k
i

S

g

S

g

g
ik

dSrn

dSrJn

D
 ˆ

 

ˆ
rrr

rrr

φ
   (2.16) 

Even if we know the exact solution of (2.10) we would be knowing only the 

numerators of (2.15) and (2.16). To find the denominator, we need to solve 

homogenized transport equation (2.11). Since homogenized cross sections are needed 

for the solution of the homogenized diffusion equation, there seems to be a vicious 

circle. Nevertheless, by an iterative process, the homogenized cross sections (2.15) 

and (2.16) could be determined. That is, at least philosophically, homogenization 

seems possible. 

(2.16) shows that the homogenized diffusion coefficients would take different values 

on different surfaces of a homogenization region. Thus, it is not possible to define a 

unique ?@.
7 for each homogenization region. 

2.2 Conventional Homogenization Theory 

In conventional pin cell or assembly homogenization procedure, the solution of the 

heterogeneous system, �7�AB� and C7�AB� are approximated by �D
7�AB� and CD

7�AB� which 

are approximate solutions to the heterogeneous system at the pin cell or assembly 

level. �D
7�AB� and CD

7�AB� are usually obtained with zero current boundary conditions. 

Both in the numerator and the denominator of (2.15), �D
7�AB� are used. 

( ) ( )

( )∫

∫Σ
≅Σ

i

i

V

g
A

V

g
A

g
x

g
ix

dVr

dVrr

 

  
ˆ

, r

rr

φ

φ
  (2.17) 

A possible choice for the homogenized diffusion coefficient is: 

( ) ( )

( )∫

∫
≅

i

i

V

g
A

V

g
A

g

g
i

dVr

dVrrD

D
 

  
ˆ

r

rr

φ

φ
  (2.18) 

Rather large errors have been found in calculations that employed such conventional 

homogenization methods when compared with exact solution. The major source of 

errors is in the treatment of the diffusion coefficients.  
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The continuity of flux and current at interfaces between homogenization regions 

seems also a source of problem. The homogenized diffusion equation, with 

continuity of current and flux at interfaces, lacks sufficient degree of freedom to 

preserve both reaction rates and surface currents. [1] 

2.3 Koebke’s Equivalence Theory and Smith’s General Equivalence Theory 

Equivalence theory involves assembly homogenization. Homogenization at the pin 

cell level (see Fig. 2.4) is completed, and homogenized pin cell group cross sections 

are assumed to be available: 

 

Figure 2.4 : Assembly homogenization. 

Since whole core calculations are usually carried out, after assembly 

homogenization, by nodal methods, assembly homogenization involves variables 

which are defined in the nodal method terminology. Equivalence homogenization is 

closely associated with transverse integrated nodal methods. We assume a two 

dimensional model of the assembly and assume the existence of an exact transport 

solution for the assembly homogenized at the pin cell level. [2] 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑
=′

′
′

=′
′

→′ Σ+Σ=Σ+⋅∇
G

g

g
f

gG

g
g

gg
g

g
tg rr

k
rrrrrJ

1
g

1

   
rrrrrrrrr

φυχφφ   (2.19) 
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The equivalent homogenized assembly is a part of the reactor core and consists of 

other homogenized assemblies. Each assembly is denoted by (i, j) where “i” denotes 

the row number and “j” the column number (see Fig. 2.5). 

 

Figure 2.5 : Reactor core consisting of homogenized assemblies. 

We denote the cross sections of the homogenized assembly (i, j) by Σ8&,.,E and the flux 

and the current by �8 and CBF respectively. The homogenized transport equation for 

assembly (i, j) is: 

( ) ( ) ( ) ( ) ( )ji,

1
g,,

1
,,, Vr  , ˆ ˆˆ ˆ ˆˆ ∈Σ+Σ=Σ+⋅∇ ∑∑

=′
′

′

=′

→′ rrrrrrr G

g

g
jif

gG

g
g

gg
jig

g
jitg r

k
rrrJ φυχφφ   (2.20) 

To inquire whether homogenization is theoretically possible, we assume that we 

know the exact transport solution �7�AB� and CB7�AB� and try to determine the 

homogenized constants Σ8&,.,E which would give reaction and leakage rates for the 

homogenized assembly which are identical to their counterparts in the 

nonhomogenized assembly. 

 

 

 

(1,j) 

(i,1) (1,1) (I,1) 

(i,j) (I,j) 

 (I,j)  (1,J)  (I,J) 

x1/2=0 x3/2 xi-1/2 xi+1/2  xI-1/2   xI+1/2 
x 

 (i,j-1) 

 (i+1,j)   (i-1,j) 

 (i+1,j+1) 

y1/2=0 

 y3/2 

yj-1/2 

yj+1/2 

yJ-1/2 

yJ+1/2 

 y 
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We consider the assembly (i, j) (see Fig. 2.6): 

 

Figure 2.6 : Assembly (i,j). 

We integrate (2.19) over the assembly (i, j) to obtain: 

( ) ( )
∑∑

=′

′′

=′

′→′

−+−+

∆∆Σ+∆∆Σ

=∆∆Σ+−∆+−∆
+−+−

G

g
ji

g
ji

g
jif

G

g
ji

g
ji

gg
ji

ji
g

ji
g

jit
g

ji
g
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The edge averaged currents are defined as: 
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The (-) and (+) superscripts are used to denote location of the assembly (i, j) with 

respect to the edge. If we integrate the homogenized equation similarly, we obtain: 
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where: 
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Since we assume that we knew the heterogeneous exact solution, we choose the 

homogenized constants such that: 

g
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g
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If the quality of the edge currents in (2.21) and (2.26)can also be enforced, the cell 

averaged fluxes of (2.21) and (2.26) would be equal: 

g
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Thus both the reaction rates and the leakage through the edges would be identical to 

the exact solution.  

We have shown that an assembly homogenization, which preserves both reaction 

rates and leakage, is possible if we knew the exact solution for the heterogeneous 

assembly, which is possibly homogenized at the pin cell level. Moreover, the 

homogenized diffusion coefficient seems to be arbitrary and has not been a factor in 
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would be discontinuous.  
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That is: 
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On the other hand, the exact fluxes: 
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are certainly continuous. That is: 
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At this point we define discontinuity factors: 

( ) ( )

( ) ( )
+

+

−

−

+

+

−

−

−

−

+

+

−

−

+

+

==

==

g
ji

g
jiyg

jig
ji

g
jiyg

ji

g
ji

g
jixg

jig
ji

g
jixg

ji

ff

ff

2/1,

2/1,
,

2/1,

2/1,
,

,2/1

,2/1
,

,2/1

,2/1
,

ˆ
   , 

ˆ

ˆ
   , 

ˆ

φ
φ

φ
φ

φ
φ

φ
φ

  (2.36) 

The imposition of (2.35) requires: 
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Thus, during whole core calculations, the homogeneous flux becomes discontinuous, 

to preserve the continuity of the heterogeneous flux as in (2.35). However, 

everything we have done so far has only theoretical value since the exact solution of 

(2.19) will not be known. So we need an approximate solution to heterogeneous 

problem (2.19). So we define the approximate solution  �D
7�AB� as the solution of: 
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with zero current boundary condition: 

( ) Sr   , 0 ∈=∇⋅
rrrr

rn g
Aφ   (2.39) 

“S” is the union of the four sides of the assembly. Using approximate heterogeneous 

solution �D
7�AB� in (2.22), (2.23) and (2.29): 
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But (2.40) is no different than the result of the conventional homogenization theory. 

So the homogenized cross sections have the same definition in the conventional and 

equivalence homogenization theories. Diffusion coefficient is not needed for 

establishing continuity of current across assemblies in equivalence theory. But since 

it is still needed in whole core calculations, (2.40) could be employed to calculate 

Σ8��,.,E
7 . Then

g
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g
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, ˆ3

1

Σ
=  would give us the diffusion coefficient. 

The only difference between the conventional and equivalence homogenization 

theories is in the continuity of flux across assembly boundaries. Whereas 

conventional theory assumes continuity, equivalence homogenization theory requires 

discontinuity in homogenized solution as in (2.37). thus we need to evaluate the flux 

discontinuity factors of (2.36) to apply equivalence homogenization theory. Since the 

numerators in (2.36) involve g ji ,2/1+φ  etc., which we do not know, we approximate 

with g
jiA ,2/1, +φ . The denominators in (2.36) have to be the homogeneous counterpart 

of the heterogeneous approximate solution �D
7�AB�. We call it �8D

7�AB�. 

Since �D
7�AB� involves zero-current boundary condition at assembly boundary, �8D

7�AB� 

is subject to the same boundary conditions. Since �8D
7�AB� is the solution of a 

homogenized system (spatially constant cross section), and zero-current boundary 

condition makes it a part of an infinite system, �8D
7�AB� is constant. That is: 
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But by (2.30): 
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That is discontinuity factor for any edge is simply the ratio of the edge average flux 

to the assembly average flux. The flux discontinuity factors are also called assembly 

discontinuity factors. Equivalence theory is accurate especially for assemblies for 

which there is no significant inter-assembly leakage. Formulation of equivalence 

theory is appropriate for any nodal method that uses edge-average fluxes. [3] 
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3.  DESCRIPTION OF TOOLS 

3.1 Introduction 

The purpose of this study is to verify the results for a defined core configuration 

created by a Monte Carlo reactor physics code with a deterministic reactor physics 

code. The Monte Carlo reactor physics code used in this thesis work is called 

Serpent, which is a code developed by VTT. The deterministic code is three-

dimensional reactor simulator code called PARCS developed by Purdue University 

and U.S. NRC. 

3.2 Serpent 

Serpent is a three-dimensional Monte Carlo reactor physics code developed at VTT 

since 2004. The code is specialized in two-dimensional lattice physics calculations 

but it is possible to model complicated three-dimensional geometries also. The code 

is capable of generating homogenized multi-group constants for deterministic reactor 

core simulators, burn-up calculations for fuel cycle studies and research reactors, 

demonstration of reactor physics phenomena and for educational studies. 

Serpent uses a universe-based geometry where it is easy to describe two or three-

dimensional designs. Material cells and surface types are the basis of the geometry. 

There are many features to describe cylindrical fuel pins and spherical fuel particles, 

square and hexagonal lattices, circular cluster arrays for CANDU fuels, and fuel 

definition for HTGR cores.  

Combination of conventional surface-to-surface ray-tracing and the Woodcock delta-

tracking method have an efficient geometry routine for lattice calculations. The 

track-length estimate of neutron flux in delta-tracking is not efficient for small or thin 

volumes located far from active source.  
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Serpent reads cross sections from ACE format libraries where classical collision 

kinematics and ENDF reaction laws are the basis of the interaction physics. The data 

in libraries is available for 432 nuclides at temperatures of 300, 600, 900, 1200, 1500 

and 1800 K.  

Burn-up calculations can be executed as a part or complete application. However, 

memory usage might be a limiting factor for large systems when defining the number 

of depletion zones. There is no need for an additional user effort for selection of 

fission products and actinide daughter nuclides and the irradiation history is defined 

in units of time and burn-up. Reaction rates are normalized to total power, specific 

power density, flux or fission rate. 

It can produce homogenized multi-group constants for deterministic reactor core 

simulators, which is important for the current work. The standard output contains: 

• Effective and infinite multiplication factors calculated using different 

methods 

• Homogenized few-group cross sections 

• Group-transfer probabilities and scattering matrices 

• Diffusion coefficients calculated using two fundamentally different methods 

• Pn scattering cross sections up to order 5 

• Assembly pin-power distributions 

Homogenization can be done for multiple universes where group constants for 

several assemblies are produced within a single run. The user defines the number and 

borders of few-energy groups for the group constant generation. 

The results for burn-up calculation are given as material-wise and total values, and 

consist of isotopic compositions, transmutation cross sections, activities and decay 

heat data.  

All numerical output is written in MATLAB m-format files for simplification of 

post-processing of several calculation cases. A geometry plotter feature and a 

reaction rate plotter are also available for the code. 
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Serpent has been widely validated in light water reactor lattice calculations.  Results 

for effective multiplication factors and homogenized few-group cross sections are 

within the statistical accuracy from reference MCNP results when the same ACE 

libraries are used. 

Comparison to a similar calculation suggests that Serpent may run 80 times faster 

than codes like MCNP. The reason of the difference is not from the efficiency of the 

code but rather from the fact of large reaction rate tallies of MCNP. The important 

point is that Serpent can run full-scale assembly burn-up calculations similar to 

deterministic transport codes, and overall calculation time is counted in hours or 

days, rather than weeks or months. [4] 

Monte Carlo (MC) methods are stochastic techniques, meaning they are based on the 

use of random numbers and probability statistics to investigate problems. You can 

find MC methods used in everything from economics to nuclear physics to regulating 

the flow of traffic. Of course the way they are applied varies widely from field to 

field, and there are dozens of subsets of MC even within chemistry. But, strictly 

speaking, to call something a "Monte Carlo" experiment, all you need to do is use 

random numbers to examine some problem.  

The use of MC methods to model physical problems allows us to examine more 

complex systems than we otherwise can. Solving equations which describe the 

interactions between two atoms is fairly simple; solving the same equations for 

hundreds or thousands of atoms is impossible. With MC methods, a large system can 

be sampled in a number of random configurations, and that data can be used to 

describe the system as a whole.  

The Monte Carlo method provides approximate solutions to a variety of 

mathematical problems by performing statistical sampling experiments on a 

computer. The method applies to problems with no probabilistic content as well as to 

those with inherent probabilistic structure. Among all numerical methods that rely on 

N-point evaluations in M-dimensional space to produce an approximate solution, the 

Monte Carlo method has absolute error of estimate that decreases as N superscript -

1/2 whereas, in the absence of exploitable special structure all others have errors that 

decrease as N superscript -1/M at best.  
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3.3 PARCS 

PARCS is a three-dimensional reactor core simulator which solves the steady-state 

and time-dependent, multi-group neutron diffusion and SP3 transport equations in 

orthogonal and non-orthogonal geometries. PARCS is coupled directly to the 

thermal-hydraulics system code TRACE from which flow field information and 

temperature are provided to PARCS during transient calculations. 

The major calculation features in PARCS are eigenvalue calculations, transient 

(kinetics) calculations, and adjoint calculations for commercial LWRs. Three-

dimensional calculation model is the primary use of PARCS for the realistic 

representation of the physical reactors. However, for faster simulations for a group of 

transients, one-dimensional modeling is available when dominant variation of the 

flux is in the axial direction. 

The input system in PARCS is card name based while default input parameters are 

maximized and the amount of the input data is minimized. For the continuation of the 

transient calculations, a restart feature is available, where the calculation restarts 

from the point that restart file was written. Various edit options are available in 

PARCS, also an on-line graphics feature that provides a quick and versatile 

visualization of the various physical phenomena occurring during transient 

calculation.  

Accomplishing different tasks with high efficiency is established by incorporating 

numerous sophisticated spatial kinetics methods into PARCS. For spatial 

discretization, a variety of solution kernels are available to include the most popular 

LWR two group nodal methods, the Analytic Nodal Method (ANM) and the Nodal 

Expansion Method (NEM). 

The usage of the advanced numerical solution methods minimizes the computational 

burden. The eigenvalue calculation to establish the initial steady-state is performed 

using the Wielandt eigenvalue shift method.  When using the two nodal group 

methods, a pin power reconstruction method is available in which predefined 

heterogeneous power form functions are combined with a homogeneous intranodal 

flux distribution.  
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Two modes are available for one-dimensional calculations: normal one-dimensional 

and quasi-static one-dimensional. The normal one-dimensional mode uses a one-

dimensional geometry and precollapsed one-dimensional group constants, while the 

quasi-static one-dimensional keeps the three-dimensional geometry and cross 

sections but performs the neutronic calculation in the one-dimensional mode using 

group constants which are collapsed during the transient. To preserve the three-

dimensional planar averaged currents in the subsequent one-dimensional 

calculations, current conservation factors are employed in one-dimensional 

calculations during one-dimensional group constant generation. PARCS is also 

capable of performing core depletion analysis by introducing burn-up dependent 

macroscopic cross sections.  

The calculation features of PARCS are as follows; 

• Eigenvalue calculation 

• Transient calculation 

• Xenon/Samarium calculation 

• Decay heat calculation 

• Pin power calculation 

• Adjoint calculation 

There are many PARCS calculation methods, which are directly related to execution 

control, which users can choose the proper options suiting best for their needs. The 

method used for this thesis is 2 group nodal methods. The spatial solution of the 

neutron flux in the reactor is determined in PARCS using well-established numerical 

methods. Nodal methods are the primary means used in PARCS to obtain higher 

order solutions to the neutron diffusion equation solving the two-node problem. 

The ANM is regarded as one of the more accurate techniques for solving the neutron 

diffusion equation. The only approximation required is that used for the shape of the 

transverse leakage sources which appear in the one-dimensional, transverse 

integrated flux equations. Although the analytic nature of this method is responsible 

for its remarkable accuracy, it has thus far lead to algebraically complicated 

expressions for the nodal coupling relations which, for all practical purposes, appears 

to restrict the ANM to only two energy group problems. This apparent limitation is 
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not due to the method itself, but arises as a result of the original approach taken for 

the evaluation of the nodal coupling relations. The preparation of these coupling 

coefficients relies on the evaluation of trigonometric functions of G by G matrices. 

These expressions become increasingly complicated as the number of energy groups 

increases. 

The first polynomial method was NEM. In fact, although some variations and 

improvements have been considered, the NEM ideology still dominates the 

polynomial class of nodal methods. In this lowest order form, NEM considers a 

quadratic expansion of the transverse averaged flux (i.e. φj(x) and φi(y)) on each cell. 

The expansion coefficients are determined by applying Fick’s law in combination 

with discrete nodal balance equation and continuity of normal current. Considerable 

effort has been made to utilize higher order polynomial expansion within NEM. The 

difficulty this creates is centered around the evaluation of the higher order expansion 

coefficients. In particular, the weighted residual procedure that is typically used 

relies on transverse-integrated and as a result an approximation of the transverse 

normal currents (i.e. transverse leakage) is also required. 

ANM in PARCS has been used frequently within the LWR industry to solve the two-

group diffusion equation. When there is no net leakage out of a node and the ANM 

matrix becomes singular, the problem is called as critical node problem and methods 

were added to PARCS to address this problem. The second nodal method, NEM was 

added which does not have this potential problem, but is less accurate for certain 

types of problems. Replacement of ANM two-node problem by a NEM two-node 

problem for the near critical nodes is available with a hybrid ANM-NEM method. 

The user specifies a tolerance on the difference in the node kinf and keff which is used 

to switch between the ANM and NEM kernels. NEM is also available in a multi-

group form for both Cartesian and hexagonal geometries. [5] 



 

4.  DESCRIPTION OF MINI CORE PROB
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4.1 Main Properties

Each assembly consists of 100 pins, which are placed 

lattices are square lattices as well as the same is for the assemblies. There are two 

types of assemblies: fuel assembly and reflector assembly. 
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DESCRIPTION OF MINI CORE PROB LEMS 

e major work done on this thesis is developing a method of ADF generation for 

reflector interface without explicit knowledge of heterogeneous interface 

verifying the developed technique by Serpent 

achieve correct core keff and flux ratios (the ratio of 

 in the assembly) for each assembly.  

Main Properties of The Core Assemblies 

Each assembly consists of 100 pins, which are placed in 10x10

tices are square lattices as well as the same is for the assemblies. There are two 

types of assemblies: fuel assembly and reflector assembly. The fuel assembly 

type and enrichment (3.8% U-235) of fuel pins. The fuel pin has 

et which has a diameter of 0.848 cm, and the diameter of 

the outer clad is 0.984 cm (see Fig. 4.1). The gap between the fuel 

pellet and the inner clad is filled with Helium. The pitch size is 1.8 cm for both fuel 

reflector assemblies and the assembly size is 18.0 cm. The reflector assembly is 

 

Figure 4.1 : The cross section area of the fuel pin

is developing a method of ADF generation for 

reflector interface without explicit knowledge of heterogeneous interface 

 and PARCS. The 

 average fast flux to 

10x10 lattice. The pin 

tices are square lattices as well as the same is for the assemblies. There are two 

The fuel assembly 

fuel pins. The fuel pin has 

, and the diameter of the inner clad is 

The gap between the fuel 

The pitch size is 1.8 cm for both fuel 

The reflector assembly is 

The cross section area of the fuel pin.  



 
24

4.2 Application of The Verification and The Homogenization 

The verification process starts by homogenizing the given core design. First, a 

Serpent model with the geometry and material properties of the core is created. The 

model is executed to generate two-group constants and diffusion parameters that are 

generated for each assembly separately, so that each assembly is homogenized 

explicitly. For the same core, another Serpent execution is done to generate two-

group constants over the whole core to be able to calculate keff. keff is the eigenvalue 

of the neutron balance equation. The balance is between losses and gains of neutrons. 

The losses are the absorption and the out-scattering neutrons. And the gains are the 

fission and the in-scattering neutrons. The two-group eigenvalue equation is written 

as follows; 

  > GΦ$ΦI
J = K� + <�L� − <.NOP$KQO GΦ$ΦI

J  (4.1) 

where 

� = GΣ
$ 0
0 Σ
I

J  is the absorption cross section matrix 

 <.N = G 0 Σ$←I
ΣI←$ 0 J is the in-scattering cross section matrix 

<�L� = GΣI←$ 0
0 Σ$←I

J is the out-scattering cross section matrix, 

Q = Gχ$υΣ;$ χ$υΣ;I
χIυΣ;$ χIυΣ;I

J is the fission cross section matrix 

k is the eigenvalue of the solution which gives us the keff. 

As Serpent is the first step of the process where the assembly homogenization takes 

place, PARCS is the second step of the process where the results are verified. For the 

same core, PARCS model is created where geometry, two-group constants and 

discontinuity factors are defined. After the execution of the model, output of PARCS 

gives the keff value and fast and thermal fluxes of each assembly. Finally, results 

were compared to verify the error between PARCS and Serpent. 
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4.2.1 Generation of the assembly discontinuity factors 

The basic parameters, which are converted from one code to the other, are few-group 

constants and assembly discontinuity factors. Serpent is capable to generate the 

correct few-group constants for single and multi-assembly problem but it is not 

capable of generating correct ADFs for multi-assembly problem. The ADFs were 

generated off-line for a set of 2x2 cores (see Fig. 4.4, Fig. 4.5 and Fig. 4.6) in a 

typical fuel-reflector configuration. 

 

Figure 4.2 : Geometry of combination-1. 

 

 

Figure 4.3 : Geometry of combination-2. 
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Figure 4.4 : Geometry of combination-3. 

The two-group constants for each assembly were generated by Serpent and then 

introduced into the cross section card of PARCS. To be able to find the ADFs that 

give the best keff and best flux ratio results, a set of ADFs was generated and tested 

with a value region of 0.01 to 1.0. 

The keff and flux ratio results were compared with the reference and the optimum 

ADF was found. The final choice of ADFs and the results for each combination are 

seen at the Table from 4.1 to 4.6 (detailed plots of the results are given in the 

Appendix A.1, A.2 and A.3). 

Table 4.1: ADFs for fuel and reflector assemblies for combination-1 

Composition ADF fast group ADF thermal group 
F1, F2 1.0 1.0 
R1, R2 0.54 0.55 

Table 4.2: Comparison of solutions of combination-1 

 
                    

keff 

Assembly 
F1 Flux 
Ratio 

Assembly 
F2 Flux 
Ratio 

Assembly 
R1 Flux 
Ratio 

Assembly 
R2 Flux 
Ratio 

Reference 
solution 

1.26721 2.325 2.325 0.375 0.376 

UDF solution +1.8% -0.4% -0.4% +4.9% +4.9% 
ADF solution 0.0% -0.1% -0.1% -0.6% -0.6% 

Table 4.3: ADFs for fuel and reflector assemblies for combination-2 

Composition ADF fast group ADF thermal group 
F1, F2, F3 1.0 1.0 

R 0.62 0.57 

 



 
27 

 

Table 4.4: Comparison of solutions of combination-2 

 
                    

keff 

Assembly 
F1 Flux 
Ratio 

Assembly 
F2 Flux 
Ratio 

Assembly 
F3 Flux 
Ratio 

Assembly 
R Flux 
Ratio 

Reference 
solution 

1.34083 2.356 2.283 0.282 0.401 

UDF solution +0.9% +0.3% +0.1% +0.1% +5.0% 
ADF solution 0.0% +0.4% +0.3% +0.3% -1.9% 

Table 4.5: ADFs for fuel and reflector assemblies for combination-3 

Composition ADF fast group ADF thermal group 
F 1.0 1.0 

R1, R2, R3 0.40 0.56 

Table 4.6: Comparison of solutions of combination-3 

 
                    

keff 

Assembly 
F Flux 
Ratio 

Assembly 
R1 Flux 
Ratio 

Assembly 
R2 Flux 
Ratio 

Assembly 
R3 Flux 
Ratio 

Reference 
solution 

1.12928 2.336 0.381 0.381 0.293 

UDF solution +4.1% -0.7% +5.1% +5.0% -4.5% 
ADF solution 0.0% -0.7% +1.0% +0.9% -5.7% 

Reference solution is the result from Serpent, UDF solution is the results without 

ADFs and ADF solution is the results with ADFs. The results prove that the ADFs 

make a remarkable improvement in keff and flux ratios prediction. 

In addition, it is seen that the thermal ADF in each three case is very close to each 

other. As the thermal group ADF is more important than the fast group ADF, in the 

mini core problems it is also possible to use average ADFs (aADFs) which will be 

the average of the three cases that ADFs were generated. 
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5.  PRESENTATION AND DISCUSSION OF RESULTS 

In Chapter 4 it was explained how the ADFs were calculated. Once the ADFs were 

determined in Chapter 4, they were tested on 14 different mini cores consisting of 

fuel and reflector assemblies in 5x5 configuration (the configuration of the 

geometries of each core is shown in the Appendix B.1). The results with and without 

ADFs are shown in Table from 5.1 to 5.14. 

Table 5.1: Comparison of solutions of mini core-1 

 keff Assembly R1 Flux Ratio Assembly F1 Flux Ratio 

Reference solution 1.39765 0.376 2.335 
UDF solution +0.42% +4.5% +0.4% 
ADF solution +0.33% -0.9% +0.4% 
aADF solution +0.32% -0.2% +0.3% 

Table 5.2: Comparison of solutions of mini core-2 

 keff Assembly R1 Flux Ratio Assembly F24 Flux Ratio 

Reference solution 1.42596 0.401 2.323 
UDF solution -0.10% -2.0% +3.8% 
ADF solution -0.12% -7.6% +3.7% 
aADF solution -0.13% -6.9% +3.8% 

Table 5.3: Comparison of solutions of mini core-3 

 keff Assembly R1 Flux Ratio Assembly F21 Flux Ratio 

Reference solution 1.41708 0.410 2.332 
UDF solution -0.33% +5.6% +10.1% 
ADF solution -0.39% -1.4% +10.1% 
aADF solution -0.41% -0.3% +10.1% 

Table 5.4: Comparison of solutions of mini core-4 

 keff Assembly R9 Flux Ratio Assembly F16 Flux Ratio 

Reference solution 1.39508 0.408 2.338 
UDF solution +0.22% +4.9% +3.7% 
ADF solution +0.04% -2.0% +3.8% 
aADF solution +0.01% -0.9% +3.8% 
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Table 5.5: Comparison of solutions of mini core-5 

 keff Assembly R1 Flux Ratio Assembly F5 Flux Ratio 

Reference solution 1.26674 0.379 2.326 
UDF solution +1.91% +4.4% -0.5% 
ADF solution +0.03% -1.2% -0.2% 
aADF solution +0.11% -0.6% -0.4% 

Table 5.6: Comparison of solutions of mini core-6 

 keff Assembly R13 Flux Ratio Assembly F3 Flux Ratio 

Reference solution 1.37384 0.377 2.344 
UDF solution +0.68% +4.5% +0.1% 
ADF solution +0.37% -1.1% +0.1% 
aADF solution +0.34% -0.5% +0.1% 

Table 5.7: Comparison of solutions of mini core-7 

 keff Assembly R7 Flux Ratio Assembly F1 Flux Ratio 

Reference solution 1.40274 0.377 2.330 
UDF solution +0.35% +4.3% +0.3% 
ADF solution +0.25% -1.3% +0.3% 
aADF solution +0.24% -0.7% +0.3% 

Table 5.8: Comparison of solutions of mini core-8 

 keff Assembly R5 Flux Ratio Assembly F17 Flux Ratio 

Reference solution 1.41457 0.373 2.330 
UDF solution +0.22% +4.5% +0.4% 
ADF solution +0.17% -1.0% +0.4% 
aADF solution +0.16% -0.4% +0.4% 

Table 5.9: Comparison of solutions of mini core-9 

 keff Assembly R3 Flux Ratio Assembly F5 Flux Ratio 

Reference solution 1.25739 0.378 2.396 
UDF solution +1.75% +6.0% +4.0% 
ADF solution +0.29% +0.6% +4.2% 
aADF solution +0.34% +1.4% +4.1% 

Table 5.10: Comparison of solutions of mini core-10 

 keff Assembly R2 Flux Ratio Assembly F7 Flux Ratio 

Reference solution 1.29401 0.408 2.379 
UDF solution +1.06% +6.3% +5.8% 
ADF solution -0.16% +0.2% +5.9% 
aADF solution -0.07% 0.0% +5.9% 
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Table 5.11: Comparison of solutions of mini core-11 

 keff Assembly R1 Flux Ratio Assembly F11 Flux Ratio 

Reference solution 1.38662 0.400 2.337 
UDF solution +0.28% +5.9% +3.4% 
ADF solution -0.05% -1.1% +3.5% 
aADF solution -0.14% -0.1% +3.5% 

Table 5.12: Comparison of solutions of mini core-12 

 keff Assembly R1 Flux Ratio Assembly F1 Flux Ratio 

Reference solution 1.41511 0.432 2.329 
UDF solution +0.14% +5.0% +0.5% 
ADF solution -0.01% -3.1% +0.5% 
aADF solution -0.05% -2.0% +0.5% 

Table 5.13: Comparison of solutions of mini core-13 

 keff Assembly R5 Flux Ratio Assembly F20 Flux Ratio 

Reference solution 1.37307 0.420 2.347 
UDF solution +0.62% +4.9% +0.3% 
ADF solution +0.21% -2.7% +0.3% 
aADF solution +0.1% -1.6% +0.4% 

Table 5.14: Comparison of solutions of mini core-14 

 keff Assembly R4 Flux Ratio Assembly F5 Flux Ratio 

Reference solution 1.32844 0.371 2.362 
UDF solution +1.09% +5.1% +0.3% 
ADF solution +0.19% -0.8% +0.4% 
aADF solution -0.04% -0.5% +0.4% 

In general, the error in the results reduces remarkably with the use of ADFs. We can 

see that the generated few-group constants by Serpent are reliable, because the 

reduction error occurs with the use of correctly designed ADFs.  

The three different discontinuity factor solutions (UDF, ADF and aADF) gave the 

same flux ratio results for the fuel assemblies because the value of the discontinuity 

factors in each solution is always 1.0 for fuel assemblies. However, the ADF and 

aADF solutions for the reflector assemblies, which have at least one interface with 

the fuel assemblies, had a remarkable improvement in the flux ratio results. 
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The ADF and aADF solutions always gave very good keff results. However, the UDF 

solution gave inconsistent keff results. The inconsistency is because of the number of 

the fuel assemblies in each configuration. The configurations which had a high 

number of fuel assemblies gave closer keff results to the reference solution, because 

there were fewer reflector assemblies, where the flux distribution was not correct. 

However, when the number of reflector assemblies increased, the UDF solution gave 

bad keff results.  

The thermal flux group is more important than the fast flux group in light water 

reactors. The value of aADF thermal discontinuity factor is very similar to the values 

of ADF thermal discontinuity factor. Therefore, aADF solution gave similar results 

as ADF solution. 
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6.  CONCLUSION 

The major purpose of this research was to verify the assembly homogenization 

capability of Serpent. Since assembly power distribution is very important for 

commercial reactors, the study is important for the application of Serpent as a tool 

for cross section homogenization. The conclusion for few-group constant generation 

is that Serpent is capable to generate few-group constants that can be used in a 

deterministic reactor code. However, generation of ADFs for fuel-reflector interface 

has to be done off-line by a separate method, as presented in this thesis. The effect of 

ADFs is significant and cannot be neglected. With correct ADFs, the homogeneous 

nodal solution errors were acceptable for every mini core. 

As Serpent is much faster than MCNP and being highly efficient, it is recommended 

that it is developed to generate correct ADFs for multi-assembly models.  

The current study was done in two-dimensional geometry and with two type 

assemblies, so further studies should be done for three-dimensional geometries and 

multi type assemblies. 
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APPENDICES 

APPENDIX A.1:  Surface plots of errors of designing ADFs for combination-1 

APPENDIX A.2:  Surface plots of errors of designing ADFs for combination-2 

APPENDIX A.3:  Surface plots of errors of designing ADFs for combination-3 

APPENDIX B.1: Configuration of the geometry for each core 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
38

APPENDIX A.1  

(a) 

 (b) 

 

Figure A.1 : Surface plots of errors of designing ADFs for combination-1: 
(a)K-effective. (b)Fuel flux ratio. (c)Reflector flux ratio.  
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Figure A.1(contd.) : Surface plots of errors of designing ADFs for combination-1: 

(a)K-effective. (b)Fuel flux ratio. (c)Reflector flux ratio.  

APPENDIX A.2  

  

Figure A.2 : Surface plots of errors of designing ADFs for combination-2: 
(a)K-effective. (b)Fuel flux ratio. (c)Reflector flux ratio.  

(c) 

(a) 
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 (b) 

 (c) 

Figure A.2(contd.) : Surface plots of errors of designing ADFs for combination-2: 
(a)K-effective. (b)Fuel flux ratio. (c)Reflector flux ratio.  
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APPENDIX A.3  

 (a) 

 (b) 

Figure A.3 : Surface plots of errors of designing ADFs for combination-3: 
(a)K-effective. (b)Fuel flux ratio. (c)Reflector flux ratio.  
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Figure A.3(contd.) : Surface plots of errors of designing ADFs for combination-3: 

(a)K-effective. (b)Fuel flux ratio. (c)Reflector flux ratio.  
 
 

(c) 
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APPENDIX B.1  

 (a)  (b) 

 (c)  (d) 

 (e) (f) 

Figure B.1 : Configuration of the geometry for each core: (a)mini core-1. (b)mini core-2. (c)mini core-3. 
(d)mini core-4. (e)mini core-5. (f)mini core-6. (g)mini core-7. (h)mini core-8. (i)mini core-9. 
(j)mini core-10. (k)mini core-11. (l)mini core-12. (m)mini core-13. (n)mini core-14. 
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 (g)  (h) 

 (i)  (j)  

 (k)  (l) 

Figure B.1(contd.) : Configuration of the geometry for each core: (a)mini core-1. (b)mini core-2. (c)mini 
core-3. (d)mini core-4. (e)mini core-5. (f)mini core-6. (g)mini core-7. (h)mini core-8. 
(i)mini core-9. (j)mini core-10. (k)mini core-11. (l)mini core-12. (m)mini core-13. 
(n)mini core-14. 
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 (m)  (n) 

Figure B.1(contd.) : Configuration of the geometry for each core: (a)mini core-1. (b)mini core-2. (c)mini 
core-3. (d)mini core-4. (e)mini core-5. (f)mini core-6. (g)mini core-7. (h)mini core-8. 
(i)mini core-9. (j)mini core-10. (k)mini core-11. (l)mini core-12. (m)mini core-13. 
(n)mini core-14. 
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