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ASSEMBLY HOMOGENIZATION OF LIGHT WATER REACTORS BY A
MONTE CARLO REACTOR PHYSICS METHOD AND VERIFICATION BY
A DETERMINISTIC METHOD

SUMMARY

Assembly homogenization is an important part ott@acore physics analysis. The
loading of fuel assemblies in a commercial nucfgawer plant is an important step
before the startup of the reactor. The physicattogacore is modeled in computer
environment. Distribution of fissile materials igaided after reactor physics code
calculations. Many different reactor physics codes used with calculations taking
weeks or months. The purpose in this study is & #&nd verify the assembly
homogenization capability of a Monte-Carlo reagbbiysics code called Serpent,
which is used for the last years and is being waddly each year, and is faster than
the previous ones.

In this study, Serpent did assembly homogenizatdnseveral different core
configurations in two-dimensional geometry, and thesults were tested in
deterministic reactor simulation code called PARRS8sults showed that Serpent is
capable to generate few-group constants for LWR-tgpsemblies. However, the
assembly discontinuity factors generation by Serpanfuel-reflector interface was
not correct, so the objective of this thesis wageaoerate appropriate fuel-reflector
discontinuity factors by off-line calculation, waht access to the reference interface
current. With the appropriately generated discaiitynfactors, the results showed
that assembly homogenization by Serpent is acctodtss than 0.5%¢ error and
less than 1.0% assembly flux ratio (the ratio @f éiveraged fast group of flux to the
averaged thermal group of flux in the assembly).
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HAFIF SU REAKTORLERININ MONTE CARLO REAKTOR F iziGi
YONTEMi ILE HOMOJEN iZASYONU VE DETERMINISTIK YONTEM
iLE DOGRULANMASI

OZET

Reaktor demet homojenizasyonu reaktor kalbi fidikaealizlerinin dnemli bir
bolumudur. Yakit elemanlarinin  yiklenmesi, gunumiiékleer santrallerinde
reaktoriin cabmasinin bglangici 6ncesi icin dnemli bir adimdir. Fiziksebk#or
kalbi bilgisayar ortaminda modellenir. Fisil matigen dasilimlarinin karari reaktor
fizigi kodu hesaplamalarindan sonra verilir. Hesaplambkitalar ve aylar siren bir
cok farkh reaktor fizgi kodlari vardir ve kullanilir. Bu ¢glmanin amaci, son bir kag
yildir kullanilan ve gecen her sene boyunca yaggmni, 6ncekilere gére daha hizli
hesaplamalar yapabilen, Serpent adindaki MontesCagbktor fizgi kodunun
homojenizasyon kabiliyetini test etmek vezgddamaktir.

Bu calsmada dgisik sekilde diizenlenmgireaktor kalbi konfiglrasyonlarinin demet
homojenizasyonu iki-boyutlu geometride Serpent kadwafindan yapilni ve
sonugclar deterministik reaktér simulasyon kodu dR&RCS ile kontrol edilnstir.
Sonuglar Serpent kodunun hafif su reaktor tipi dégneicin grup kesit alani
dretiminin uygun oldgunu gosterdi. Ama vyakit-reflektér araylzd igin déme
devamsizhk faktérleri Gretimi dou desildi. Bu yluzden bu tezin amaci, referans
araylz aki verilerine sahip olmadan, kapall birtgérle yakit-reflektor araytizi igin
dogru devamsizhk faktorleri tretimidir. Uretilen g devamsizlik faktorleri ile
sonugclar, Serpent kodu tarafindan gercggkllen demet homojenizasyonunun ¢ok
kicuk hata yuzdesi ile yaghiz oldigu gorulmigtir. Hata yuzdeletkeff icin 0.5%’in
altinda ve aki oranlar (demet icindeki ortalamaihlgrup akisinin ortalama termal
grup akisina orant) igin 1.0%'in altinda ogdugdoralmtar.
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1. INTRODUCTION

Extensive knowledge of different quantities is resaey for the physics design and
analysis of light water reactors. The predictiometitron density in space, direction
and energy increases the ability to perform colevio calculations where the

determination of power distribution, control rod g shutdown margins and

isotopic depletion rates must be known. With theuagption that thermal-hydraulic

properties of the reactor and fundamental dat&mog/n, three-dimensional neutron
transport equation is a task need to be solvedlidixmodeling of water channels,

fuel pins, control rods and burnable poisons lirtties direct methods of solving the
three-dimensional transport equation. Tools suchhase-dimensional continuous
energy Monte Carlo and deterministic neutron trarnispnethods are similarly

overwhelmed by the complexity of the computationaioblem of explicit

geometrical modeling on a core-wide basis.

Many reactor analysis methods circumvent the coatfutal burden of explicit
geometrical modeling by coupling geometrically-siejp energy-intensive
calculations with few-group, geometrically-comptiea calculations via spatial
homogenization and group condensation. The quebtiento make the best use of
spatial and spectral distributions of reactiongated neutron densities has prompted
several different approaches to reactor analysis.

Alternative methods, which can all be put in a gahelass called nodal diffusion
methods have been developed over the years. Theda&l methods have been
capable of solving three-dimensional neutron difnsequation with a less than 2%
error in assemble-averaged powers using assenddyrmsesh. The assumption of
these nodal methods is that to obtain “equivaldiftusion theory parameters, which
are spatially constant over the whole cross seatiarea of a fuel assembly, pin-by-
pin lattice cross sections have been spatially lgemized. The nodal solution
provides only nodal (volume-averaged) and surfdeeefaveraged) fluxes and
reaction rates. It is important that accurate maghéor homogenizing reactor

assemblies are developed and employed.



1.1 Purpose of The Thesis

The major aim of this thesis is to perform assembdmogenization in two-
dimensional LWR mini-cores with possible fuel aneflector assembly
configurations. Homogenization techniques will h@pleed using Serpent (Monte
Carlo reactor physics code) and verified by PARG&grministic reactor simulation

code).



2. ASSEMBLY HOMOGENIZATION METHODS

2.1 Introduction

A number of homogenization techniques determindusibn coefficients by
matching certain components of heterogeneous modaperties. Consider a
symmetric, repeating array of fuel and moderatemeints of volume ¥and M.

One unit in the array is a cell (see Fig. 2.1).

Vm

< Cell >

Figure 2.1 : A cell with fuel and moderator elements.
The absorption rate in the cell"%™
Aretero = FhdpVe + 2§ Py Vy (2.1)
wherex!, =¥ are the absorption cross sectiopig; ¢,,are volume averaged fluxes.

We want to design a homogeneous system where tderator and fuel are mixed.
We also want the average flux in the homogeneositesyto be equal to that of the
real cell. We want to determine(&,)..; for this homogeneous system so that its

absorption rate equals that of the heterogenedls ce

APOMO = (3 N een®eenVeen (2.2)
whereg e, = —d’FV‘; :Z’;”VM

or A"™0 = (3 ) ot (PrVr + by V).



If A"**®*"equals to A°™ then;

_ 2ppve+zlomvuy
(2a>cell - DrVE+OdMV M (2-3)

Dividing the numerator and denominator gayV;

_ 2E+sMvm/ve)E
(Za>cell - 1+(VM/VF)E (2'4)

where ¢ = ‘Z—M and is flux disadvantage factor. This methodolages not apply
F

directly to the diffusion coefficient “D” since iis related to leakage. For

multiregional cells (1>2);

(S Yoo = SEHEL, S Vi/V)E
x/cell — 1+Z{=Z(Vi/vl)fi

(2.5)

Pi Y1 PiVi
andfl' = E y Geetr = ﬁ .

A fuel assembly consists of a large number of pimsich might have differing
composition, each of which is clad and surroundgdnbderator. A unit cell or pin
cell consist of a fuel pin, cladding and surrougdmoderator. The first step in
homogenizing the fuel assembly is to homogenizé e&the pin cells by calculating
the multigroup flux distribution in the fuel celhd using it to calculate homogenized

cross sections for the pin cell.

Although the calculation of the homogenized pinl cebss sections could be made
by combining an infinite medium calculation withnse method for estimating the
disadvantage factor, today more advanced methosisdban transport theory are

preferred.

A simplifying assumption is that the pin cell coldd considered part of an infinite
array identical pin cells and thus reflective boanydconditions at cell boundary are
used to model such an infinite system. But existeot the fuel pin of differing

enrichment, control pins, burnable poisons etc. emaksuch an approach
questionable. The influence of the surroundingssigally introduced by specifying a

partial inward current' and an albed§.

Since the fuel pin cells are cylindrical, it is ¥enient to approximate the actual pin
cell geometry by an equivalent cylindrical cellttpaeserves moderator volume. The

equivalent cylindrical cell is called Wigner-Seazll (see Fig. 2.2).



£

Real Cell Wigner-Seitz Cell

“— p—

Figure 2.2 : Wigner-Seitz approximation.

Wigner-Seitz approximation converts a two-dimenalorproblem to a one-
dimensional problem and is extensively used. Howetlee change from the real
geometry to cylindrical geometry leads to an anouslly high flux in the moderator
of the Wigner-Seitz cell when reflective boundaonditions are used. This effect is

called Newmarch effect (see Fig. 2.3).

Newmarch effect arises because a neutron, intredinte the cell traveling in the
direction of chord that does not pass through tred pin before intersection the
reflecting cell boundary, will never pass throudje fuel pin since reflection from
the cylindrical surface will result in motion aloagsimilar chord. On the other hand,

reflection in the real cell will cause motion irttee fuel pin.

7

Real Cell Wigner-Seitz Cell

Figure 2.3 : Representation of the Newmarch effect.



Newmarch effect could be remedied by employing &/hibundary condition at the
cylindrical boundary. The white boundary condit@ssumes that a neutron that hits
the boundary will be returned with a cosine disttibn, i.e. as if the returning
neutron comes from an infinite outside region withiform isotopic sources. The
Wigner-Seitz approximation, combined with whiteleefion, gives excellent results
and is therefore well established in pin cell citians.

If the pin cell-to-pin cell leakage is to be taketo account, the concept of albedo, or

reflection coefficient, is also employed. The albgd

g=L (2.6)

A
where “s” represents the cylindrical outer surfatthe Wigner-Seitz cell.

Pin cell calculation are usually carried out usthg collision probability method
based on integral transport equation since it ve®lscalar flux instead of angular
flux. But its basic drawback is the isotropic seattg assumption. To take linearly
anisotropic scattering at least approximately iat@ount, there is a prescription,
called transport correction which is usually empldyin collision probability
applications. Transport correction which involvég tsubtraction of the quantity

loZs g Transport corrected group cross sections are:

ztsr,g =259 " HogZsg (2.7)
zirg = Zt,g - ﬁo,gzs,g (28)
tsr,gag = zs;,gﬂg - ﬁo,gzs,g (29)

Usually the transport correction and the superstnipis universally omitted. Once
pin cell homogenization is completed, the assensbiyiade up of a large number of
homogeneous regions (e.g. the homogenized, ussiligre, pin cells) surrounded

by structure, water gaps, control rods, etc.

The next step in the homogenization process isetfopn a multigroup transport
calculation on the pin cell homogenized assembly thee purpose of obtaining
average group fluxes for each homogenized pintbali can be used to calculate
homogenized cross sections that will allow thererassembly to be represented as a

single homogenized region.



Any of the transport method or even diffusion thyelmor some cases can be used for
the full assembly transport calculation. Such dalbons are normally performed

using reflective condition on the assembly boundary

Heterogeneous system is described by multigroursp@rt theory as in (2.10).

O, (r)+28(r) g (r) = Zzg*g%.(r)ﬁ(rzuz?’%.(r) (2.10)

g'=l

We imagine that we know the solution to (2.10) amdh to use it to define
homogenized cross sections. We divide heterogenesystem into N
homogenization regions. We wish to define homog®hizcross sections

5,27 7%, vEZ; so that the homogenized transport equation:

A

00, () + 5% ¢ 229 °.(r) 2uz$,g% r) (2.11)

g'=

iIs obeyed for i=1,2...,N. Denoting the volume of ttle homogenized region by;V

and its k'th surface by, we require:

j% o =20 ) A (2.12)
and

s (e — i=1,2:--,N
sjknmg(r)ds SI 1i3,(r)es k=12 K() (2.13)

where K(i) is the number of surfaces of the i'tmfagenization region. If (2.12) and

(2.13) are satisfied, obviously:

~

k=k (2.14)
Thus, homogenizes cross sections are defined by:
[z(F) g (F)av

39 =4 (2.15)

j oF)dv

and when diffusion theory is to be used in the hgemzed calculation:



BY = _ (2.16)

Even if we know the exact solution of (2.10) we Vablbe knowing only the
numerators of (2.15) and (2.16). To find the dematur, we need to solve
homogenized transport equation (2.11). Since homingd cross sections are needed
for the solution of the homogenized diffusion equatthere seems to be a vicious
circle. Nevertheless, by an iterative process,hmogenized cross sections (2.15)
and (2.16) could be determined. That is, at le&gbgophically, homogenization

seems possible.
(2.16) shows that the homogenized diffusion cofits would take different values
on different surfaces of a homogenization regidmusl it is not possible to define a

uniqueD? for each homogenization region.

2.2 Conventional Homogenization Theory

In conventional pin cell or assembly homogenizafoocedure, the solution of the
heterogeneous systei, (7) and/é(7) are approximated by (#) andj4(#) which
are approximate solutions to the heterogeneougmayat the pin cell or assembly
level. ¢5(7) andjé(#) are usually obtained with zero current boundanydions.

Both in the numerator and the denominator of (2.4)53[7) are used.

R
29 O+ f@% Fav (2.17)
v,
A possible choice for the homogenized diffusionftioent is:
) [De(F) A (F)av
D? 0¥ M(f)dv (2.18)
Vi

Rather large errors have been found in calculatibasemployed such conventional
homogenization methods when compared with exacttisol The major source of
errors is in the treatment of the diffusion coeérds.



The continuity of flux and current at interfacestvilen homogenization regions
seems also a source of problem. The homogenizedsidih equation, with
continuity of current and flux at interfaces, lacksfficient degree of freedom to

preserve both reaction rates and surface currdits.

2.3Koebke’s Equivalence Theory and Smith’'s General Eqwalence Theory

Equivalence theory involves assembly homogenizatitomogenization at the pin
cell level (see Fig. 2.4) is completed, and homagehpin cell group cross sections

are assumed to be available:

1 6 | 6 6 | 6 6 3
1 5| 6 & | 6 5 2

Assembly Homogenized assembly
(homogenized at the pim cell level)

Figure 2.4 : Assembly homogenization.

Since whole core calculations are wusually -carriedt, oafter assembly
homogenization, by nodal methods, assembly homeggon involves variables
which are defined in the nodal method terminoldgguivalence homogenization is
closely associated with transverse integrated nogethods. We assume a two
dimensional model of the assembly and assume tiséeage of an exact transport

solution for the assembly homogenized at the plineeel. [2]

O, (7)+22() g (7) = Zzg'w(r) a,(7) +XTZuz$' F)a () (2.19)



The equivalent homogenized assembly is a part efr¢lactor core and consists of
other homogenized assemblies. Each assembly idedebw (i, j) where “i” denotes

the row number and “j” the column number (see Ei§).

y
A
Yi+1/4 (1. (1) (1.
Yi-12
(itF1.i+0)
Yi+112 —
@i | L] OarLp|  {a)
Yi-12
(i!j_l
¥aiz 11 1y (i1 (1.1)
=0 > X
yl/2X1/2:0 Xa/2 Xii2  Xis1/2 X172 Xi+1/2

Figure 2.5 :Reactor core consisting of homogenized assemblies.
We denote the cross sections of the homogenizeanddg (i, |) byix,i,j and the flux

and the current by andf respectively. The homogenized transport equatan f

assembly (i, j) is:

oA R G .. . X9& oy - -

O0,(F)+2%, g)=>59¢ ¢;g(r)+72uz“;{i,j %), roved (2.20)
g'=1 g'=1

To inquire whether homogenization is theoreticgllyssible, we assume that we
know the exact transport solutiof, () and fg(?) and try to determine the
homogenized constanfsc,l-,j which would give reaction and leakage rates far th

homogenized assembly which are identical to thegunterparts in the

nonhomogenized assembly.

10



We consider the assembly (i, j) (see Fig. 2.6):

(Xi-1/2,Yj+112) (Xi+1/2,Yi+1/2)

(i.)) Ayi

(Xia2:¥12) o DX y  (Xirv2,Yiam)

Figure 2.6 : Assembly (i,)).
We integrate (2.19) over the assembly (i, j) tcaoht

ij (‘J igi_l/z,j - ‘Jig—+1/2,j )"' AXi (J ig,j_+l/2 - ‘]ig,;—l/2)+ ztg,i,j¢|,gj AXi ij' =

G , 9 G , , (2.21)
DIt X By, +XTZUZ$,i,iW?jAXi Ay,
g'=1 g'=1
where:
1 Xi+1/2 yjj}/Z ( )
o, = @ (X, y)dx dy (2.22)
AX' Ayl Xi-12 Yj-12
1 %12 Yj+12 ( ) ( )
>y = 2% y) @\ y)dxdy (2.23)
. ¢fJAX' Ay' Xi-1/2 yj{/z ’
The edge averaged currents are defined as:
- 1 Yj+12 R ~
‘]iillz,j :A_ Iﬁx Eﬂg(xit_fuw y) dy (2.24)
i Yj-112
. 1 >ﬁ+1/i - B
‘]ig,jﬂlz :E J.ny Eug(X: yj+~_»1/2) dx (2.25)
I %-12

The (-) and (+) superscripts are used to denotatitmt of the assembly (i, j) with

respect to the edge. If we integrate the homogdreg@ation similarly, we obtain:

Ay (‘]i%r_llz,j - ‘]ig—+1/2,j)+ Ax (‘]ig,i_ﬂ/z - Jig,;—1/2)+ 209 0x Ay, =
G ., ., X°& o g (2.26)
2. 207 %@ Ax, Ay, +TZUZ%J,J‘¢'?J‘AXi Ay,

g'=1 g'=1

11



. Vi 2o
jii;./2,j = % J. n, EDQ(XTﬂm y) dy (2.27)
J Yj-12
n s X172 ~ B
Iojsve :i_ I n, EDQ(X, yj+¢1/2) dx (2.28)
' X172

1 %s12 Ytz

@ (% y)dxdy 2.29
AX' Ayl Xi-1/2 Yj-—|.1/zg( ) ( )

&ﬁj:

Since we assume that we knew the heterogeneous$ sodation, we choose the

homogenized constants such that:

=39 (2.30)

X
Zx,i,j X,

If the quality of the edge currents in (2.21) a@d26)can also be enforced, the cell

averaged fluxes of (2.21) and (2.26) would be equal

@ =4 (2.31)
Thus both the reaction rates and the leakage thrtheyedges would be identical to
the exact solution.

We have shown that an assembly homogenization,hwhieserves both reaction
rates and leakage, is possible if we knew the esalcttion for the heterogeneous
assembly, which is possibly homogenized at the qefi level. Moreover, the

homogenized diffusion coefficient seems to be eabjtand has not been a factor in

our considerations.
The homogenized edge fluxes, are defined as:

Yj+1/2

é?fuz,,- = A_y] yj(”g (Xii-1/2’ y)dy

(2.32)
~ s Xi+1/2 B
Wis1rz :i J.qog(x, yj+¢1/z)dx

1 Xiap

would be discontinuous.
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That is:

- -
W12 * Derrz

g g
W,j+1/2 7 ¢|,j+1/2

(2.33)

On the other hand, the exact fluxes:

- Yj+112
¢g1/2,j zi J.(ag(xiiﬂ/zxY)dy

j Yij-112

. 1 Xi+1/2

(lf,;iﬂIZ = A I¢ﬁ (X1 yf,iﬂ/z)dx

I Xi-1/2

(2.34)

are certainly continuous. That is:

- +
ﬁllz,j = ¢ﬂ1/2,j

i . (2.35)
Bz = vz

At this point we define discontinuity factors:

_ ¢f+1/2,j

figj(X)i , figj(X)+ = @
Y (‘fﬁl/z, i Y (‘?91/2, j
faly) = qfﬁiflﬂ

(2.36)

~

9 faly)” = Hi-v2
1) ! 1) *
¢fj+1/2 ¢fj—1/2

The imposition of (2.35) requires:

+ N+

fi,gj(x)i ﬁl/z,j = figj(.xj) 4‘&1/2,,’
R NES
fi,gj(X)_ #?j_ﬂ/z =f gj(-:(l) ¢ﬁj++1/2

+ N+

fi,gj(X) #Jj—l/z = fi,gj(—xl)i ([I*,}j?—llz

(2.37)

Thus, during whole core calculations, the homogasdlux becomes discontinuous,
to preserve the continuity of the heterogeneoux s in (2.35). However,

everything we have done so far has only theoretighle since the exact solution of
(2.19) will not be known. So we need an approximsdtition to heterogeneous

problem (2.19). So we define the approximate sofuthé () as the solution of:

G320+ 22 = S o) )+ 4 et ) ) 2.39)
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with zero current boundary condition:
A¢(F)=0, FOS (2.39)

“S” is the union of the four sides of the assemhlging approximate heterogeneous
solutiong (7) in (2.22), (2.23) and (2.29):

Xi+172 Yj+1/2

[=30xy) (% y)dy
59 =X s (2.40)
[ &xy)dy
Xi-172 Yj-12

But (2.40) is no different than the result of tlmeentional homogenization theory.
So the homogenized cross sections have the sanméidefin the conventional and
equivalence homogenization theories. Diffusion fioeht is not needed for
establishing continuity of current across assemmbheequivalence theory. But since
it is still needed in whole core calculations, (®.4ould be employed to calculate

o 1 : e -
Efr'i'j. ThenD?, =_<_— would give us the diffusion coefficient.
tri,j

The only difference between the conventional andivedence homogenization
theories is in the continuity of flux across assimboundaries. Whereas
conventional theory assumes continuity, equivaldraaogenization theory requires
discontinuity in homogenized solution as in (2.3Fus we need to evaluate the flux

discontinuity factors of (2.36) to apply equivalerfiomogenization theory. Since the

numerators in (2.36) involvey,,,, etc., which we do not know, we approximate
with ¢;.,,,;- The denominators in (2.36) have to be the homeges counterpart
of the heterogeneous approximate soluigii). We call itdé (7).

Since¢4 (#) involves zero-current boundary condition at asstyn’nbundary,cﬁjr ()

is subject to the same boundary conditions. Sipé€r) is the solution of a

homogenized system (spatially constant cross sgctand zero-current boundary

condition makes it a part of an infinite systef)ﬁ(?) is constant. That is:

A ~

~ - ot - ot
¢§j+1/2,j = w/gj—llz,j =@ 2 = 3 q-12 = Qg,i,j (2.41)
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But by (2.30):

@i = (2.42)
Thus:

f_g_(x)f - ¢E\i+l/2,i f_g_(x)+ — #’ij—l/z,j

D (2.43)
£l :m o) = qo'/ii,j—m

N i " Rij

That is discontinuity factor for any edge is simgig ratio of the edge average flux
to the assembly average flux. The flux discontinteictors are also called assembly
discontinuity factors. Equivalence theory is acteiraspecially for assemblies for
which there is no significant inter-assembly leakaformulation of equivalence

theory is appropriate for any nodal method thas esie-average fluxes. [3]

15



16



3. DESCRIPTION OF TOOLS

3.1 Introduction

The purpose of this study is to verify the resdtts a defined core configuration
created by a Monte Carlo reactor physics code witleterministic reactor physics
code. The Monte Carlo reactor physics code usethim thesis work is called
Serpent, which is a code developed by VTT. The rdetestic code is three-
dimensional reactor simulator code called PARCShbped by Purdue University
and U.S. NRC.

3.2 Serpent

Serpent is a three-dimensional Monte Carlo regatysics code developed at VTT
since 2004. The code is specialized in two-dimerdidattice physics calculations
but it is possible to model complicated three-disienal geometries also. The code
is capable of generating homogenized multi-groupstamts for deterministic reactor
core simulators, burn-up calculations for fuel eysktudies and research reactors,
demonstration of reactor physics phenomena anddocational studies.

Serpent uses a universe-based geometry whereedsig to describe two or three-
dimensional designs. Material cells and surfacegygre the basis of the geometry.
There are many features to describe cylindricdl fires and spherical fuel particles,
square and hexagonal lattices, circular clustesyarfor CANDU fuels, and fuel

definition for HTGR cores.

Combination of conventional surface-to-surfacetraging and the Woodcock delta-
tracking method have an efficient geometry routfoe lattice calculations. The
track-length estimate of neutron flux in delta-kiag is not efficient for small or thin

volumes located far from active source.
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Serpent reads cross sections from ACE format idgsawhere classical collision
kinematics and ENDF reaction laws are the basthefinteraction physics. The data
in libraries is available for 432 nuclides at temgteres of 300, 600, 900, 1200, 1500
and 1800 K.

Burn-up calculations can be executed as a parbomptete application. However,
memory usage might be a limiting factor for largetems when defining the number
of depletion zones. There is no need for an additiaser effort for selection of
fission products and actinide daughter nuclidestaedrradiation history is defined
in units of time and burn-up. Reaction rates amnematized to total power, specific

power density, flux or fission rate.

It can produce homogenized multi-group constantsdieterministic reactor core

simulators, which is important for the current wofke standard output contains:

« Effective and infinite multiplication factors calated using different

methods
* Homogenized few-group cross sections
« Group-transfer probabilities and scattering masrice
« Diffusion coefficients calculated using two fundartadly different methods
e P, scattering cross sections up to order 5
* Assembly pin-power distributions

Homogenization can be done for multiple universdsene group constants for
several assemblies are produced within a singleTrna user defines the number and

borders of few-energy groups for the group congganeration.

The results for burn-up calculation are given asenm-wise and total values, and
consist of isotopic compositions, transmutationssrgections, activities and decay

heat data.

All numerical output is written in MATLAB m-formatiles for simplification of
post-processing of several calculation cases. Amgéty plotter feature and a

reaction rate plotter are also available for théeco
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Serpent has been widely validated in light watecter lattice calculations. Results
for effective multiplication factors and homogerdziw-group cross sections are
within the statistical accuracy from reference MCNRults when the same ACE

libraries are used.

Comparison to a similar calculation suggests tteapént may run 80 times faster
than codes like MCNP. The reason of the differaag®ot from the efficiency of the

code but rather from the fact of large reactior ftallies of MCNP. The important

point is that Serpent can run full-scale assemhlyntup calculations similar to

deterministic transport codes, and overall calooahatime is counted in hours or
days, rather than weeks or months. [4]

Monte Carlo (MC) methods are stochastic technigoesning they are based on the
use of random numbers and probability statisticswestigate problems. You can
find MC methods used in everything from economacauclear physics to regulating
the flow of traffic. Of course the way they are bgxb varies widely from field to
field, and there are dozens of subsets of MC evighirvchemistry. But, strictly
speaking, to call something a "Monte Carlo" experniin all you need to do is use

random numbers to examine some problem.

The use of MC methods to model physical problen@aal us to examine more
complex systems than we otherwise can. Solving tens which describe the
interactions between two atoms is fairly simplelvem the same equations for
hundreds or thousands of atoms is impossible. Withmethods, a large system can
be sampled in a number of random configurations, trat data can be used to

describe the system as a whole.

The Monte Carlo method provides approximate sahgtioco a variety of
mathematical problems by performing statistical glamy experiments on a
computer. The method applies to problems with mbabilistic content as well as to
those with inherent probabilistic structure. Amalignumerical methods that rely on
N-point evaluations in M-dimensional space to paalan approximate solution, the
Monte Carlo method has absolute error of estintase decreases as N superscript -
1/2 whereas, in the absence of exploitable spstiatture all others have errors that
decrease as N superscript -1/M at best.
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3.3PARCS

PARCS is a three-dimensional reactor core simulatuch solves the steady-state
and time-dependent, multi-group neutron diffusiord &P3 transport equations in
orthogonal and non-orthogonal geometries. PARCSaspled directly to the
thermal-hydraulics system code TRACE from whichwfléield information and

temperature are provided to PARCS during trangialaiulations.

The major calculation features in PARCS are eigemvaalculations, transient
(kinetics) calculations, and adjoint calculationsr fcommercial LWRs. Three-
dimensional calculation model is the primary use RARCS for the realistic
representation of the physical reactors. Howewerfdster simulations for a group of
transients, one-dimensional modeling is availablenvdominant variation of the

flux is in the axial direction.

The input system in PARCS is card name based wdafault input parameters are
maximized and the amount of the input data is miréch. For the continuation of the
transient calculations, a restart feature is akllawhere the calculation restarts
from the point that restart file was written. Vargoedit options are available in
PARCS, also an on-line graphics feature that pew/id quick and versatile
visualization of the various physical phenomena uoweg during transient

calculation.

Accomplishing different tasks with high efficiency established by incorporating
numerous sophisticated spatial kinetics methodo IMARCS. For spatial
discretization, a variety of solution kernels avaikable to include the most popular
LWR two group nodal methods, the Analytic Nodal Nat (ANM) and the Nodal
Expansion Method (NEM).

The usage of the advanced numerical solution methadimizes the computational
burden. The eigenvalue calculation to establishirtii@l steady-state is performed
using the Wielandt eigenvalue shift method. Whemg the two nodal group
methods, a pin power reconstruction method is alkal in which predefined
heterogeneous power form functions are combinetl wihomogeneous intranodal

flux distribution.
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Two modes are available for one-dimensional catmia: normal one-dimensional

and quasi-static one-dimensional. The normal oneedsional mode uses a one-
dimensional geometry and precollapsed one-dimeabkignoup constants, while the
quasi-static one-dimensional keeps the three-dimoeak geometry and cross
sections but performs the neutronic calculationh& one-dimensional mode using
group constants which are collapsed during thestesh. To preserve the three-
dimensional planar averaged currents in the sulesgquone-dimensional

calculations, current conservation factors are eggd in one-dimensional

calculations during one-dimensional group constganeration. PARCS is also
capable of performing core depletion analysis hyoolucing burn-up dependent

macroscopic cross sections.
The calculation features of PARCS are as follows;

» Eigenvalue calculation

Transient calculation

* Xenon/Samarium calculation
e Decay heat calculation

* Pin power calculation

* Adjoint calculation

There are many PARCS calculation methods, whicldaestly related to execution
control, which users can choose the proper optsuiting best for their needs. The
method used for this thesis is 2 group nodal methdtie spatial solution of the
neutron flux in the reactor is determined in PARGHg well-established numerical
methods. Nodal methods are the primary means us&ARCS to obtain higher
order solutions to the neutron diffusion equatiolvieg the two-node problem.

The ANM is regarded as one of the more accuratentques for solving the neutron
diffusion equation. The only approximation requiredhat used for the shape of the
transverse leakage sources which appear in thediommsional, transverse
integrated flux equations. Although the analytituna of this method is responsible
for its remarkable accuracy, it has thus far leadatgebraically complicated
expressions for the nodal coupling relations whiohall practical purposes, appears

to restrict the ANM to only two energy group prabke This apparent limitation is
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not due to the method itself, but arises as a tresuhe original approach taken for
the evaluation of the nodal coupling relations. Treparation of these coupling
coefficients relies on the evaluation of trigononwefunctions ofG by G matrices.

These expressions become increasingly complicatekdeanumber of energy groups

increases.

The first polynomial method was NEM. In fact, altigh some variations and
improvements have been considered, the NEM ideoletly dominates the
polynomial class of nodal methods. In this lowesdep form, NEM considers a
quadratic expansion of the transverse averaged(iflexq(x) and@(y)) on each cell.
The expansion coefficients are determined by apglykick’'s law in combination
with discrete nodal balance equation and continofitgormal current. Considerable
effort has been made to utilize higher order poigia expansion within NEM. The
difficulty this creates is centered around the eabn of the higher order expansion
coefficients. In particular, the weighted residymbcedure that is typically used
relies on transverse-integrated and as a resulipgnoximation of the transverse
normal currents (i.e. transverse leakage) is &qaired.

ANM in PARCS has been used frequently within theRVWdustry to solve the two-
group diffusion equation. When there is no net dggkout of a node and the ANM
matrix becomes singular, the problem is calledrag@ node problem and methods
were added to PARCS to address this problem. Témngenodal method, NEM was
added which does not have this potential problemt,id less accurate for certain
types of problems. Replacement of ANM two-node fEwbby a NEM two-node
problem for the near critical nodes is availabléhva hybrid ANM-NEM method.
The user specifies a tolerance on the differendkemodek;; andkes which is used
to switch between the ANM and NEM kernels. NEM Isoaavailable in a multi-

group form for both Cartesian and hexagonal gede®etj5]
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4. DESCRIPTION OF MINI CORE PROB LEMS

The major work done on this the is developing a method of ADF generation

fuel-reflector interface without explicit knowledge ofeterogeneous interfas
conditions andverifying the developed technique by Serpesmid PARCS. The
purpose is t@achiev: correct corkes and flux ratios (the ratio average fast flux to

average thermal fluin the assembly) for each assembly.

4.1 Main Properties of The Core Assemblies

Each assembly consists of 100 pins, which are g@lin 10x1(C lattice. The pin
lattices are square lattices as well as the same ihéoassemblies. There are t
types of assemblies: fuel assembly and reflect@erably. The fuel assembl
consists of the santgpe and enrichme (3.8% U-235) ofuel pins. The fuel pin he
a fuel pelet which has a diameter of 0.848, and the diameter ¢he inner clad is
0.863 cm andhe outer clad is 0.984 (¢ (see Fig. 4.1)The gap between the fu
pellet and the inner clad is filled with HeliuThe pitch size is 1.8 cm for both fu
andreflector assemblies and the assembly size isd®8. The reflector assembly

filled with water.

Helium
gas

Clad mipe

Fuel
pellet

Figure 4.1 : The cross section area of the fuel.
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4.2 Application of The Verification and The Homogenizaton

The verification process starts by homogenizing ginen core design. First, a
Serpent model with the geometry and material ptagseof the core is created. The
model is executed to generate two-group constartsldfusion parameters that are
generated for each assembly separately, so th&t assembly is homogenized
explicitly. For the same core, another Serpent @txac is done to generate two-
group constants over the whole core to be ablalulatekes. kert is the eigenvalue
of the neutron balance equation. The balance gdeet losses and gains of neutrons.
The losses are the absorption and the out-scatagntrons. And the gains are the

fission and the in-scattering neutrons. The twaigreigenvalue equation is written

as follows;
b _ ()
ko] = 14+ Soue = 501171 |5 @.)
where
X . . . .
A= [ at ] is the absorption cross section matrix
0 Zu

0 Yi1.2] . . . . .
Sin = [ZZH 10 2] is the in-scattering cross section matrix

S _ 22<—1

out = | o 21(_2] is the out-scattering cross section matrix,

_ [X1U2f1 X1VZs2

] is the fission cross section matrix
X2VZr1  X2VIf

k is the eigenvalue of the solution which giveshescs.

As Serpent is the first step of the process whaeeeassembly homogenization takes
place, PARCS is the second step of the processewherresults are verified. For the
same core, PARCS model is created where geomewy:gtoup constants and
discontinuity factors are defined. After the exemuiof the model, output of PARCS
gives thek.t value and fast and thermal fluxes of each assenthally, results

were compared to verify the error between PARCSSarpent.
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4.2.1 Generation of the assembly discontinuity facts

The basic parameters, which are converted froncode to the other, are few-group
constants and assembly discontinuity factors. 3¢rpe capable to generate the
correct few-group constants for single and mulsemsbly problem but it is not

capable of generating correct ADFs for multi-assgnvoblem. The ADFs were

generated off-line for a set of 2x2 cores (see Eid, Fig. 4.5 and Fig. 4.6) in a
typical fuel-reflector configuration.

Figure 4.2 : Geometry of combination-1.

Figure 4.3 : Geometry of combination-2.
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R2 R3

Figure 4.4 : Geometry of combination-3.

The two-group constants for each assembly werergetke by Serpent and then
introduced into the cross section card of PARCSb&able to find the ADFs that
give the besk.s and best flux ratio results, a set of ADFs wasegated and tested

with a value region of 0.01 to 1.0.

The ket and flux ratio results were compared with the nerfiee and the optimum
ADF was found. The final choice of ADFs and theutessfor each combination are
seen at the Table from 4.1 to 4.6 (detailed pldtshe results are given in the
Appendix A.1, A.2 and A.3).

Table 4.1: ADFs for fuel and reflector assemblies for comhmatl

Composition ADF fast group ADF thermal group
Fi, R 1.0 1.0
Ry R 0.54 0.55

Table 4.2: Comparison of solutions of combination-1

Assembly  Assembly  Assembly Assembly

Kot F1 Flux F> Flux R; Flux R, Flux
Ratio Ratio Ratio Ratio
Reference | 55009 2.325 2325 0.375 0.376
solution
UDF solution +1.8% -0.4% -0.4% +4.9% +4.9%
ADF solution 0.0% -0.1% -0.1% -0.6% -0.6%

Table 4.3: ADFs for fuel and reflector assemblies for combma?

Composition ADF fast group ADF thermal group
F R, R 1.0 1.0
R 0.62 0.57
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Table 4.4: Comparison of solutions of combination-2

Assembly Assembly Assembly Assembly

Ko F1 Flux F> Flux F5 Flux R Flux
Ratio Ratio Ratio Ratio
Reference ) 3583 2356 2.283 0.282 0.401
solution
UDF solution +0.9% +0.3% +0.1% +0.1% +5.0%
ADF solution 0.0% +0.4% +0.3% +0.3% -1.9%

Table 4.5: ADFs for fuel and reflector assemblies for combmmai3

Composition ADF fast group ADF thermal group
F 1.0 1.0
Ry, R, Rs 0.40 0.56

Table 4.6: Comparison of solutions of combination-3

Assembly Assembly Assembly Assembly

Kot F Flux R1 Flux R, Flux Rs Flux
Ratio Ratio Ratio Ratio
Reference ;) 15958 2336 0.381 0.381 0.293
solution
UDF solution +4.1% -0.7% +5.1% +5.0% -4.5%
ADF solution 0.0% -0.7% +1.0% +0.9% -5.7%

Reference solution is the result from Serpent, WHokition is the results without
ADFs and ADF solution is the results with ADFs. Tiesults prove that the ADFs

make a remarkable improvementif and flux ratios prediction.

In addition, it is seen that the thermal ADF in le#laree case is very close to each
other. As the thermal group ADF is more importdrart the fast group ADF, in the
mini core problems it is also possible to use ayerADFs (aADFs) which will be

the average of the three cases that ADFs were @feder
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5. PRESENTATION AND DISCUSSION OF RESULTS

In Chapter 4 it was explained how the ADFs werewated. Once the ADFs were
determined in Chapter 4, they were tested on li#rdifit mini cores consisting of
fuel and reflector assemblies in 5x5 configurati{the configuration of the
geometries of each core is shown in the Appendly.B.he results with and without
ADFs are shown in Table from 5.1 to 5.14.

Table 5.1: Comparison of solutions of mini core-1

Keft Assembly R Flux Ratio  Assembly fFlux Ratio

Reference solution 1.39765 0.376 2.335
UDF solution +0.42% +4.5% +0.4%
ADF solution +0.33% -0.9% +0.4%
aADF solution +0.32% -0.2% +0.3%

Table 5.2: Comparison of solutions of mini core-2

Ketf Assembly R Flux Ratio  Assembly Iz Flux Ratio

Reference solution 1.42596 0.401 2.323
UDF solution -0.10% -2.0% +3.8%
ADF solution -0.12% -7.6% +3.7%
aADF solution -0.13% -6.9% +3.8%

Table 5.3: Comparison of solutions of mini core-3

Ketf Assembly R Flux Ratio Assembly k; Flux Ratio

Reference solution 1.41708 0.410 2.332
UDF solution -0.33% +5.6% +10.1%
ADF solution -0.39% -1.4% +10.1%
aADF solution -0.41% -0.3% +10.1%

Table 5.4: Comparison of solutions of mini core-4

Kett Assembly B Flux Ratio  Assembly f5 Flux Ratio

Reference solution 1.39508 0.408 2.338
UDF solution +0.22% +4.9% +3.7%
ADF solution +0.04% -2.0% +3.8%
aADF solution +0.01% -0.9% +3.8%
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Table 5.5: Comparison of solutions of mini core-5

Kett Assembly R Flux Ratio  Assembly k Flux Ratio

Reference solution 1.26674 0.379 2.326
UDF solution +1.91% +4.4% -0.5%
ADF solution +0.03% -1.2% -0.2%
aADF solution +0.11% -0.6% -0.4%

Table 5.6: Comparison of solutions of mini core-6

Keff Assembly R3 Flux Ratio  Assembly #Flux Ratio

Reference solution 1.37384 0.377 2.344
UDF solution +0.68% +4.5% +0.1%
ADF solution +0.37% -1.1% +0.1%
aADF solution +0.34% -0.5% +0.1%

Table 5.7: Comparison of solutions of mini core-7

Ket Assembly R Flux Ratio  Assembly fFlux Ratio

Reference solution 1.40274 0.377 2.330
UDF solution +0.35% +4.3% +0.3%
ADF solution +0.25% -1.3% +0.3%
aADF solution +0.24% -0.7% +0.3%

Table 5.8: Comparison of solutions of mini core-8

Kett Assembly R Flux Ratio Assembly {7 Flux Ratio

Reference solution1.41457 0.373 2.330
UDF solution +0.22% +4.5% +0.4%
ADF solution +0.17% -1.0% +0.4%
aADF solution +0.16% -0.4% +0.4%

Table 5.9: Comparison of solutions of mini core-9

Ketf Assembly B Flux Ratio  Assembly §lux Ratio

Reference solution 1.25739 0.378 2.396
UDF solution +1.75% +6.0% +4.0%
ADF solution +0.29% +0.6% +4.2%
aADF solution +0.34% +1.4% +4.1%

Table 5.10:Comparison of solutions of mini core-10

Kett Assembly B Flux Ratio  Assembly FFlux Ratio

Reference solution 1.29401 0.408 2.379
UDF solution +1.06% +6.3% +5.8%
ADF solution -0.16% +0.2% +5.9%
aADF solution -0.07% 0.0% +5.9%
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Table 5.11:Comparison of solutions of mini core-11

Keft Assembly R Flux Ratio Assembly 1 Flux Ratio

Reference solution 1.38662 0.400 2.337
UDF solution +0.28% +5.9% +3.4%
ADF solution -0.05% -1.1% +3.5%
aADF solution -0.14% -0.1% +3.5%

Table 5.12:Comparison of solutions of mini core-12

Ketf Assembly R Flux Ratio Assembly FFlux Ratio

Reference solution 1.41511 0.432 2.329
UDF solution +0.14% +5.0% +0.5%
ADF solution -0.01% -3.1% +0.5%
aADF solution -0.05% -2.0% +0.5%

Table 5.13:Comparison of solutions of mini core-13

ket  Assembly B Flux Ratio Assembly ko Flux Ratio

Reference solution 1.37307 0.420 2.347
UDF solution +0.62% +4.9% +0.3%
ADF solution +0.21% -2.7% +0.3%
aADF solution +0.1% -1.6% +0.4%

Table 5.14:Comparison of solutions of mini core-14

Keft Assembly R Flux Ratio Assembly §Flux Ratio

Reference solution 1.32844 0.371 2.362
UDF solution +1.09% +5.1% +0.3%
ADF solution +0.19% -0.8% +0.4%
aADF solution -0.04% -0.5% +0.4%

In general, the error in the results reduces reatdykwith the use of ADFs. We can
see that the generated few-group constants by Begye reliable, because the

reduction error occurs with the use of correctlgigeed ADFs.

The three different discontinuity factor solutiofi$DF, ADF and aADF) gave the
same flux ratio results for the fuel assembliesabee the value of the discontinuity
factors in each solution is always 1.0 for fuelemsblies. However, the ADF and
aADF solutions for the reflector assemblies, whielve at least one interface with

the fuel assemblies, had a remarkable improvennethiei flux ratio results.
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The ADF and aADF solutions always gave very gkgdesults. However, the UDF
solution gave inconsisteRs results. The inconsistency is because of the nuwibe
the fuel assemblies in each configuration. The igondtions which had a high
number of fuel assemblies gave clokgrresults to the reference solution, because
there were fewer reflector assemblies, where tive distribution was not correct.
However, when the number of reflector assembliesegsed, the UDF solution gave

badkes results.

The thermal flux group is more important than thstfflux group in light water
reactors. The value of aADF thermal discontinugtér is very similar to the values
of ADF thermal discontinuity factor. Therefore, aR3olution gave similar results

as ADF solution.
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6. CONCLUSION

The major purpose of this research was to verify #8ssembly homogenization
capability of Serpent. Since assembly power distidm is very important for

commercial reactors, the study is important for dpelication of Serpent as a tool
for cross section homogenization. The conclusiarfda/-group constant generation
Is that Serpent is capable to generate few-groupstaats that can be used in a
deterministic reactor code. However, generatioADFs for fuel-reflector interface

has to be done off-line by a separate method,esepted in this thesis. The effect of
ADFs is significant and cannot be neglected. Wilrect ADFs, the homogeneous

nodal solution errors were acceptable for everyi gore.

As Serpent is much faster than MCNP and being higfflcient, it is recommended

that it is developed to generate correct ADFs fattkassembly models.

The current study was done in two-dimensional gépmand with two type
assemblies, so further studies should be donehfeetdimensional geometries and
multi type assemblies.

33



34



REFERENCES

[1] Stacey W. M.,2001, Nuclear Reactor Physics, John Wiley & Soh&:.)
U.S.A

[2] Smith, K. S.,1986: Assembly Homogenization Techniques For Ligtdter
Reactor AnalysisProgress in Nuclear Energy, Vol.17, No. 3, pp.
303-335, Pergamon Journals Ltd., Great Britain.

[3] Koebke, K., 1978. A New Approach To Homogenization and Group
Condensation. In: IAEA Technicalk Committee Meeting on
Homogenization Methods in Reactor Physics, Lugano, Switzerland,
13-15 November, IAEA-TECDOC 231.

[4] Lappéanen, J.,2010. PSG2 / Serpent — a Continuous-energy MoragoC
Reactor Physics Burn-up Calculation Code. VTT TezddrResearch
Centre of Finland.

[5] Downar, T., Xu, Y., Seker, V. And Carlson, D.2007. PARCS v2.7 U.S. NRC
Core Neutronics Simulator. School of Nuclear Engiireg, Purdue
University, W. Lafayette, Indiana, U.S.A. and RES / U.S. NRC,
Rockville, Md, U.S.A..



36



APPENDICES

APPENDIX A.1: Surface plots of errors of designing ADFs for camakion-1
APPENDIX A.2: Surface plots of errors of designing ADFs for camakion-2
APPENDIX A.3: Surface plots of errors of designing ADFs for camation-3
APPENDIX B.1: Configuration of the geometry for each core

37



APPENDIX A.1

! [EERIEEES
=
09 =
08 =
H 25
07
08 E
a
3
= 2
< S5
hlay
w
= —15
2
04
03 1
02
05
04 =
0
0 01 02 03 04 05 08 09 1
ADF Thermal Group
1
5
09 =
= 45
08
4
07
835
06
& -3
5
5
403
o5
= - 25
i ==s
O
T
04 B
03 R EEESEESEREEEESSEEESRES 15
0.2 1
01 05
0 ESEsE

02 03 04 05

ADF Thermal Group

08 09 1

(b)

Figure A.1 : Surface plots of errors of designing ADFs for conaltion-1:
(a)K-effective. (b)Fuel flux ratio. (c)Reflectouft ratio.
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Figure A.1(contd.) : Surface plots of errors of designing ADFs for conaltion-1:
(a)K-effective. (b)Fuel flux ratio. (c)Reflectowit ratio.
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Figure A.2 : Surface plots of errors of designing ADFs for conaltion-2:
(a)K-effective. (b)Fuel flux ratio. (c)Reflectouft ratio.
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Figure A.2(contd.) : Surface plots of errors of designing ADFs for conaltion-2:
(a)K-effective. (b)Fuel flux ratio. (c)Reflectowit ratio.
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APPENDIX A.3

ADF Thermal Group

Figure A.3 : Surface plots of errors of designing ADFs for conaltion-3:

(a)K-effective. (b)Fuel flux ratio. (c)Reflectouft ratio.
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Figure A.3(contd.) : Surface plots of errors of designing ADFs for conalion-3:
(a)K-effective. (b)Fuel flux ratio. (c)Reflectowi ratio.
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Figure B.1 : Configuration of the geometry for each core: (a)ntiofe-1. (b)mini core-2. (c)mini core-3.
(d)mini core-4. (e)mini core-5. (f)mini core-6. fgni core-7. (h)mini core-8. (i)mini core-9.
(j)mini core-10. (k)mini core-11. (I)mini core-1@m)mini core-13. (n)mini core-14.
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Figure B.1(contd.) : Configuration of the geometry for each core: (a)nainie-1. (b)mini core-2. (c)mini
core-3. (d)mini core-4. (e)mini core-5. (fimini esB. (g)mini core-7. (h)mini core-8.
(i)mini core-9. (j)mini core-10. (k)mini core-11rhini core-12. (m)mini core-13.
(n)mini core-14.
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Figure B.1(contd.) : Configuration of the geometry for each core: (a)nuioiie-1. (b)mini core-2. (c)mini
core-3. (d)mini core-4. (e)mini core-5. (f)mini esB. (g)mini core-7. (h)mini core-8.
())mini core-9. (j)mini core-10. (k)mini core-11l)rini core-12. (m)mini core-13.
(n)mini core-14.
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