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DESIGN OF FAULT-TOLERANT CASCADED H-BRIDGE MULTILEVEL 

INVERTER WITH OUTPUT-SIDE TRANSFORMERS USING 

BIDIRECTIONAL SWITCHES 

SUMMARY 

Local electricity production, especially from renewable energy sources, seems to be 

one of the ideal solutions for the areas away from electrical grid of the cities. The 

globally increasing energy demand, running short of fossil fuels and researches for 

finding environment friendly choices strengthen this solution. However, the 

produced energy must be conditioned for the requirements of the electrical devices 

so that it can be used. One of the most needed devices for this purpose is the inverter. 

Inverters can convert DC voltage/current signal to the AC voltage/current with 

desired magnitude and frequency. After   invention of multilevel inverter, which 

syntheses the voltage as a staircase waveform, in the early of 80’s, a though 

competition has been started between the multilevel inverters and classic two-level 

inverters. Multilevel inverters can achieve very low total harmonic distortion (THD) 

values at low switching frequencies without using any filtering units when compared 

with classic two-level inverters.  

Among the multilevel inverters cascaded H-Bridge inverters comes to the fore by 

modularity and letting to increase the level of the system easily. However, multilevel 

inverters use high number of semiconductor elements, which increases the 

probability of any fault in the circuit, which may cause the whole system stopping for 

a long time. This is very critical issue for the buildings that have vital importance 

like hospitals or the industries where faults cost large amounts of money.  

In this thesis, as a candidate solution for the problem mentioned above, a fault-

tolerant cascaded H-Bridge quasi-eight-level multilevel inverter with a single DC 

source and with output side transformers is designed and application of 

reconfiguration technique is shown. The proposed inverter system can continue 

working if a fault occurs in one of H-Bridges with a one level decrement in the 

output voltage in quarter period. The proposed inverter system is designed and tested 

in MATLAB-SIMULINK simulation environment and comparisons are made by 

using two types of bi-directional switches, Diode-Bridge (DB) MOSFET and 

Common-Source (CS) MOSFETs, up to the quality parameters, THD and efficiency, 

under no-fault and fault conditions with resistive and series connected resistive-

inductive loads. 
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ÇİFT YÖNLÜ ANAHTARLAR KULLANARAK HATA TOLERANSLI ÇIKIŞ  

TRAFOLU KASKAT H-KÖPRÜ ÇOK-SEVİYELİ EVİRİCİ TASARIMI 

ÖZET 

Şehir elektrik şebekesinden uzak bölgeler için, özellikle yenilenebilir enerji 

kaynaklarını kullanarak yerel-yerinde elektrik üretimi ideal çözümlerden biridir. 

Artan enerji talebi, fosil kaynakların tükenmesi ve çevre dostu seçeneklerin aranması 

bu çözümü güçlü kılmaktadır. Ayrıca bu çözümün maliyeti ile bu bölgelere yeni 

iletim hattı kurulmasının maliyeti kıyaslandığında nu çözümün daha avantajlı olduğu 

söylenebilir. Ancak üretilen bu elektriksel enerjinin evlerde, işyerlerinde 

kullanılabilmesi için, elektrikli cihazların çalışma koşullarıyla uyumlu olması 

gerekmektedir. Bu gerekliliği sağlamak için en yaygın kullanılan cihazlardan biri de 

eviricilerdir.  

Eviriciler DC gerilim/akım sinyalini istenilen büyüklük ve frekansta AC 

gerilim/akım sinyaline çevirebilen güç elektroniği cihazlarıdır. Eviriciler; kare dalga 

eviriciler, modifiye edilmiş sinüs dalga eviriciler, saf sinüs dalga eviriciler ve çok 

seviyeli eviriciler olarak 4 temel grup altında toplanabilir.  

1980’li yılların başında gerilimi merdiven basamağı şeklinde sentezleyebilen çok 

seviyeli eviricilerin hayatımıza girmesi ile çok seviyeli eviriciler ve klasik eviriciler 

arasında amansız bir yarış başlamıştır. Çok seviyeli eviriciler diğer klasik eviriciler 

ile kıyaslandığında, herhangi bir filtre ünitesi kullanmadan düşük anahtarlama 

frekanslarında çok düşük toplam harmonik bozunma değerlerine sahip AC sinyaller 

üretebilirler.  

Çok seviyeli eviriciler: diyot-kenetlemeli, kapasite-kenetlemeli ve kaskad H-Köprü 

eviriciler olarak 3 ana gruba ayrılabilirler  Çok-seviyeli eviriciler içinde kaskad H-

Köprü eviriciler modüler yapıları ve kolaylıkla çıkış sinyalinin seviyesini artırmaya 

izin vermeleri ile ön plana çıkmaktadırlar. Ayrıca kaskad H-köprü eviricilerin 

yenilenebilir enerji kaynakları ile kolaylıkla adapte edilebilmesi bu tip eviricilerin 

evirici piyasasındaki yerini her geçen gün daha da sağlamlaştırmaktadır. Buna karşın 

çok-seviyeli eviricilerde fazla sayıda yarı-iletken eleman bulunması bu tip 

eviricilerin ortak bir dezavantaj olarak karşımıza çıkmakta ve sistemde hata oluşma 

olasılığını artırmaktadır. Bu durumda tüm sistemin uzun sureli olarak durması sorunu 

gerçekleşmektedir. Böylesi durma sorunları, özellikle hastane gibi hayati öneme 

sahip yapılar ve sistemin uzun sureli durması ile kayda değer boyutlarda maddi 

zarara uğrayabilecek büyük ölçekli  işletmeler için kritik ve ciddi bir probleme neden 

olmaktadır.  

Bu tez çalışmasında, belirtilen probleme çözüm seçeneği adayı olarak, hata 

toleranslı, tek fazlı ve tek DC kaynaklı, çıkış tarafında ikncil sarımları çok-sarımlı 

trafo tipli, 15 seviyeli kaskad H-Köprü evirici tasarımı ve yeniden yapılandırma 

tekniğinin uygulaması sunulmaktadır. Tasarlanan çok-seviyeli evirici sistemi, H-

Köprü modüllerinden herhangi birinde hata meydana gelmesi durumunda, kontrol 
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sisteminde uygulanan modifikasyonlar ve trafoların ikincil sarımlarında trafonun 

dönüşüm oranını ayarlayabilme amacıyla bulunan çift-yönlü anahtarlar sayesinde 

gerilim seviyesi çeyrek periyotta bir azalarak çalışmasını sürdürebilmektedir. Çift-

yönlü anahtar çeşitleri olan Diyot-Köprü MOSFET ve Ortak Kaynaklı MOSFET’ler 

ayrı ayrı tasarlanan sistemde test edilerek çıkış gerilimi ve çıkış akımı üzerinden 

kalite parametrelerine göre (toplam harmonik bozunma ve verimlilik) direnç ve seri 

bağlı direnç-bobin yükleri altında kendi aralarında kıyaslamaları yapılmıştır. Sistem 

MATLAB-SIMULINK simülasyon ortamında dizayn ve  test edilmiştir. 
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1.  INTRODUCTION 

According to last report of International Energy Agency (IEA), the world total 

electricity generation was 20055 TWh, and the world total electricity consumption 

was 16759 TWh in 2009. Furthermore, three scenarios are mentioned in IEA’s report 

for the forecasting of the energy vision of the world for the period runs to 2035; The 

New Policies Scenario, The Current Policies Scenario, and The 450 Scenario. 

According to projections done in these scenarios, the world electricity demand is 

varies from 28321 TWh to 31722 TWh [1]. If we consider the statistics for Turkey, 

total net electricity consumption was 169.4 billion kWh and total net electricity 

generation was 211.2 billion kWh in 2010 [2]. Moreover, if Turkey’s growing 

economy and industry is considered, the electricity demand will rise continually year 

after year. In order to meet that demand, new energy resources should be found or 

existing resources should be used in more intelligent ways. Renewable energy 

sources (RES) stand as a wise solution for this problem. Renewable energy continued 

to grow strongly in all end-use sectors, power, heating and cooling, as well as 

transport, and supplied an estimated 17% of global final energy consumption and has 

a share of 20.3%, including hydro-power, in world total electricity generation in 

2011, as shown in Figure 1.1. As in previous years, about half of the new electricity 

capacity installed worldwide was renewable based [3]. 

It is estimated  that 2 billion of people are living without connection to electricity 

grid and this amount is increasing [4]. The electricity produced from RES can be 

integrated to distribution grid system or as an alternative way, RES can be used as 

stand-alone in remote areas from integrated-grid system due to environmental and 

economical reasons. This is especially valid for rarely populated areas where the cost 

for central supply is too high due to long power transfer distances and relatively low 

power demand. For example, electricity supply for the houses in European Alps or 

for hotels in Uludağ (Turkey)  can be provided by the stand alone renewable energy 

sources (SARES). 
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Figure 1.1 : Share of resources of the in electricity production [3]. 

The electricity generated from RES must be compatible with grid system or satisfy 

the necessities of stand-alone systems. For the particular case of SARES, it is of 

common sense that it should be capable of supplying alternating current (AC) 

electricity, thus providing compatibility with standard appliances that are cheap and 

widely available [5]. In Turkey, AC electricity grid needs ±10% of 230Vrms AC 

voltage and 50 Hz frequency. In order to satisfy these needs some power conversion 

systems are required. 

The adoption of AC power has created a trend where most devices adapt AC power 

from an outlet into DC power for use by the device. However, AC power is not 

always available and the need for mobility and simplicity has given batteries an 

advantage in portable power. Thus, for portable AC power, inverters are needed. 

Inverters take a DC voltage from a battery or a solar panel as input, and convert it 

into an AC voltage output [6]. 

Inverters can be classified in four groups according to their output waveform; square-

wave, modified square-wave (also called square wave or modified sine wave), pure 

sine-wave (synthesized by high frequency pulse width modulation-PWM) and 

multilevel (or multi-step). In Figure 1.2 waveforms for each category are shown [7]. 
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Figure 1.2 : Waveforms for different inverter types [7]. 

Square wave and modified sine wave inverters do not take much attention in because 

of their very poor quality waveforms but they are still available in market for 

practical applications. Multilevel and pure sine wave inverters are focused by the 

researches and all works are being done about them. In recent years there is a though 

competition between classical two level inverters and multilevel inverters. Multilevel 

converters show several advantages over conventional two-level converters. Some of 

the most attractive features of multilevel converters are briefly summarized as 

follows in [8] and [9]:  

 Staircase waveform quality: Multilevel converters generate output voltages 

with much lower harmonic content and reduce the dv/dt stresses. Therefore, 

electromagnetic compatibility (EMC) problems can be reduced.  

 Common-mode (CM) Voltage: Multilevel converters produce smaller CM 

voltage. The stress in the bearings of a motor connected to a multilevel motor 

drive, for example, can be therefore reduced. Furthermore, using advanced 

modulation strategies, CM voltage can be eliminated.  

 Input current: Multilevel converters can draw input current with low 

distortion.  

 Switching frequency: Multilevel converters can operate at both fundamental 

switching frequency and high switching frequency PWM. Therefore, through 

lower switching frequency, lower switching losses and higher efficiency can 

be achieved. 

However, multilevel converters have some disadvantages. For these converters, great 

number of power semiconductors needed. This makes the overall system more 

complex, increases the conduction losses and probability of fault. 
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Reliability is a big challenge for the inverters using multilevel technology, due to 

used high number of semiconductor elements. The increasing number of switching 

elements causes the probability switching errors to rise. These switching errors may 

cause the whole system to shut down for a long time. Besides these errors, also short-

circuit fault conditions may occur within the network system. It is wanted that the 

inverters simultaneously detect this error and keep the desired level of output voltage 

so that the energy flow continues. These issues become even more important in the 

buildings of vital importance (hospitals etc.) or in the institutions where these 

collapses cost large amounts of money. As a result, the industry leans to fault 

analysis and reconfiguration strategies so that the collapse time of such systems is 

shortened.  

Conventional protection systems generally use passive devices such as fuse, over 

current relay and breakers, which just disconnect the system from the energy source. 

Fault analysis studies focus on analyzing the fault modes and providing operation 

methods for these modes.  

The main objective of this thesis is to design and simulate a multilevel inverter which 

is based on the single-phase, single DC source cascaded H-Bridge multiple 

transformer inverter topology with bi-directional switches, and to improve the 

reliability of this multilevel inverter. The fault tolerant ability is resulted from the 

inherent redundant nature of the multi-switching-states topology and control signals 

modification and the performance of a reconfiguration technique that allows a 

cascaded H-bridge inverter to keep working even with a faulty bridge. The theory of 

fault-tolerant algorithm and reconfiguration is thoroughly investigated and its 

performance is verified by simulations in MATLAB-SIMULINK environment. 

1.1 Thesis Structure 

In Chapter 2, the state of the art of the multilevel inverters are presented and 

advantages and disadvantages of all multilevel inverter topologies are discussed 

briefly. Moreover, different types of bi-directional switches are shown and a short 

review of fault-tolerant and reconfiguration systems are done. 

In Chapter 3, the proposed inverter scheme will be introduced in detail. The main 

working principle and control system explained briefly. Also, design parameters of 
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used semiconductor devices, transformers and bi-directional switches are shown. 

Fault management and reconfiguration techniques are explained in depth.  

In Chapter 4, the simulation results are presented according to the different types of 

bi-directional switches and fault conditions. The designed systems performance 

parameters Total Harmonic Distortion (THD), efficiency, etc. Results are shown, and 

comments and comparisons are made. In the last chapter, a summary of works which 

have been done in this thesis are presented; finally, future works that can be followed 

as a progression of this thesis are mentioned. 
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2.  THEORETICAL BACKGROUND OF MULTILEVEL INVERTERS 

In this chapter, existing multilevel inverter (MLI) topologies in the market are 

explained and their differences, advantages and disadvantages are exhibited. Besides, 

modulation techniques of the MLIs, bidirectional swtiches’ working principles and 

their types are presented. Finally, the fault tolerant MLI strategies are introduced. 

2.1 Multilevel Inverter Topologies 

Fundamentally, a multilevel converter is able to achieve higher power by using a 

series of power switches with several lower voltage DC sources or with single DC 

source to perform the power conversion by synthesizing a staircase voltage 

waveform. According to the inverter topology requirements, for example; power 

ratings and switching frequencies, appropriate power switches must be chosen. 

Power ranges for the power semiconductors in the market are given in Figure 2.1 

[10,11]. 

Multilevel inverters use medium-power semiconductors as switches. While designing 

inverter circuitry, a choice had to be made between the two main types of switches 

used in power electronics. One is the power MOSFET, which is much like a standard 

MOSFET, but designed to handle relatively large voltages and currents. The other is 

the insulated gate bipolar transistor, or IGBT. Each has its advantages, and there is a 

high degree of overlap in the specifications of the two [12]. 

IGBTs tend to be used in very high voltage applications, nearly always above 200V, 

and generally above 600V. They do not have the high frequency switching capability 

of MOSFETs, and used at frequencies lower than 20 kHz. They can handle high 

currents, are able to output greater than 5 kW, and have very good thermal operating 

ability, being able to operate properly above 100 Celsius. One of the major 

disadvantages of IGBTs is their unavoidable current tail when they turn off. 

Essentially, when the IGBT turns off, the current of the gate transistor cannot 

dissipate immediately, which causes a loss of power each time this occurs [12]. 
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Figure 2.1: Power range of available power semiconductors [10,11]. 

Power MOSFETS have a much higher switching frequency capability than do 

IGBTs, and can be switched at frequencies higher than 200 kHz. They do not have as 

much capability for high voltage and high current applications, and tend to be used at 

voltages lower than 250V and less than 500W. MOSFETs do not have current tail 

power losses, which makes them more efficient than IGBTs. Both MOSFETs and 

IGBTs have power losses due to the ramp up and ramp down of the voltage when 

turning on and off (dV/dt losses). Unlike IGBTs, MOSFETs have body diode [12]. In 

the proposed inverter topology, MOSFETs were used as switches. 

Multilevel converters are a viable solution to increase the power with a relatively low 

stress on the components and with simple control systems. Moreover, multilevel 

converters present several other advantages. First of all, multilevel converters 

generate better output waveforms than the standard converters. Then, multilevel 

converter can increase the power quality due to the great number of levels of the 
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output voltage, by this way; the AC side filter can be reduced. Furthermore, 

multilevel converters can operate with a lower switching frequency sharing the 

whole voltage in small steps, so the electromagnetic emissions generated by them are 

weaker, to comply with the standards [13]. 

As mentioned before, multilevel inverters produces staircase voltage form. The 

generalized staircase waveform is shown in Figure 2.2. [7]. 

 

Figure 2.2: Generalized staircase waveform [7]. 

In this thesis following notations will be used to specify the properties of inverters; 

P  :The number of steps in quarter-cycle 

2 × p+1 :Number of levels of an inverter 

4 × p  :Number of steps of an inverter 

There are lots of multilevel inverter topology in the literature tested and installed. 

Multilevel inverters have been taking place in market about 40 years. Basicly, there 

are three fundamental multilevel topologies; diode clamped (NPC), flying capacitor 

(FC), and cascaded H-Bridge (CHB). Other topologies are the variations of these 

topologies. They can be classified as: 

 Neutral point clamped multilevel inverter (NPC) 

 Capacitor-clamped multilevel inverter (FC) 

 Cascaded H-Bridge multilevel inverter (CHB) 

 Multiple source topology 

 Multi-winding transformer topology (MTT) 
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 Modular topology 

 Multiple-transformer topology 

2.1.1 Neutral point clamped MLI 

This type of multilevel inverter topology was proposed by Nabae et al. in 1981 which 

is shown in Figure 2.3-a [14]. In this circuit, the DC-bus voltage is split into three 

levels by two series-connected bulk capacitors, C1 and C2. The middle point of the 

two capacitors, n, can be defined as the neutral point. The output voltage Van has 

three states: E, 0 and -E. For voltage level E, switches S1 and S2 need to be turned 

on; for -E, switches S1’ and S2’ need to be turned on; and for the 0 level, S2 and S2’ 

need to be turned on like shown in Table 2.1. [15]. It was the first widely used 

multilevel inverter in the market and still popular in industry applications. Number of 

levels can be increased by using the same concept of diode-clamped voltage levels as 

shown in Figure 2.3.b 

 

Figure 2.3 : Diode-clamped mulilevel inverter circuit topologies: (a)Three-level 

(b)Five-level [14]. 

Table 2.1 : Switches states and the output voltage for three-level NPC [15]. 

Output Voltage 

(Van) 

Switches’ States 

S1 S1’ S2 S2’ 

E (V) 1 0 1 0 

-E (V) 0 1 0 1 

0 (V) 0 0 1 1 

Advantages of NPC multilevel inverters are: 

 A large number of levels yield a small harmonic distortion. 

 All phases share the same DC bus. 
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 Reactive power flow can be controlled. 

 Control is simple [16]. 

The disadvantages are the followings: 

 Different voltage ratings for clamping diodes are required. 

 Real power flow is difficult because of the capacitors’ imbalance. 

 Different current ratings for switches are required due to their conduction 

duty cycle [16]. 

2.1.2 Capacitor-clamped MLI 

The capacitor-clamped multilevel converter or flying-capacitor (FC) converter, is 

similar to the diode-clamped topology, which is shown in Figure 2.4. However, the 

capacitor-clamped multilevel topology allows more flexibility in waveform synthesis 

and balancing voltage across the clamped capacitors [16]. The inverter in Figure 

2.4.(a) provides a three level output across a and n, i.e. Van = E, 0, or -E. For the 

voltage level E, switches S1 and S2 need to be turned on; for -E, switches S1’ and 

S2’ need to be turned on; and for the 0 level, either pair (S1, S1’) or (S2, S2’) needs 

to be turned on like shown in Table 2.2. Clamping capacitor C1 is charged when S1 

and S1’ are turned on, and is discharged when S2 and S2’ are turned on. The charge 

of C1 can be balanced by a proper selection of the 0-level switch combinations [15]. 

Number of levels can be increased with the same idea as in NPC shown in Figure 

2.4(b). 

The advantages of the capacitor-clamped multilevel converter are: 

 When the number of levels is increased that allows the capacitors extra 

energy during long discharge transient. 

 Flexible switch redundancy for balancing different voltage levels 

 A large number of levels yields a small harmonic distortion. 

 Active and reactive power flow can be controlled [16]. 
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Figure 2.4 : FC multilevel inverter circuit topologies (a)Three-level (b)Five-level 

[16]. 

Table 2.2: Switches states and the output voltage for three-level FC [15]. 

Output Voltage (Van) 
Switches’ States 

S1 S1’ S2 S2’ 

E (V) 1 0 1 0 

-E (V) 0 1 0 1 

0 (V) 1 1 0 0 

0 (V) 0 0 1 1 

The disadvantages are: 

 Large number of capacitors is bulky and more expensive than the clamping 

diodes used in the diode-clamped multilevel converter. 

 Control for maintaining the capacitors’ voltage balance is complicated. 

 Poor switching utilization and efficiency for real power transmission [16]. 

2.1.3 Cascaded H-Bridge MLI 

Cascaded H-Bridge(CHB) multilevel inverter was first proposed in 1975 by Baker 

and Bannister [17]. The CHB inverter produces a sinusoidal voltage from different 

sources of direct current. The inverter is based on the fullbridge(H-Bridge) inverter 

(cell), that allows increase the number of levels 2m +1 where m is the number of 

cells that build the inverter [18]. This type of inverter avoids the use of interlocking 

diodes, capacitors voltage balancing float also a low THD can be obtained by 

controlling the gate trigger of the different voltage levels, this topology is divided 

into two types:  
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 Symmetric CHB inverter  

 Asymmetric CHB inverter [19]. 

 

Figure 2.5 : Cascaded H-Bridge multilevel inverter with seperate DC sources [19]. 

In the CHB symmetric the power sources in each cell are of same value: If we 

consider topology in Figure 2.5, when 

EVVV DCDCDC  321  (2.1) 

Each H-bridge cell can generate three output voltage: E,-E or 0 according to the 

switch states given in Table 2.3. In this table, switch states and output voltage values 

are given only for the first H-Bridge cell. Moreover, for other H-Bridge cells this 

idea is identical. The output voltage Van is equal to the sum of the all of H-Bridges’ 

output voltages. By the way, the output Van can take values as 3E, 2E, E, 0, -E, -2E, -

3E, then we have 7-level CHB symetric. The output voltage level can be increased 

by adding more H-bridge cells in cascade.  

321 HHHan VVVV   (2.2) 
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Table 2.3 : Switch-Sates for the first H-Bridge cell [19]. 

Output 

Voltage (Van) 

Switches’ States 

S11 S12 S13 S14 

E (V) 1 0 1 0 

-E (V) 0 1 0 1 

0 (V) 1 1 0 0 

0 (V) 0 0 1 1 

Advantages of this topology are: 

 No need for clamping diodes and clamping capacitors. 

 Required a small number of components compared to diode-clamped and 

capacitor-clamped multilevel inverters. 

 By increasing the number of levels, lower harmonic distortion can be 

achieved [20]. 

A disadvantage is that: 

 The number of independent DC sources required increases with the number 

of desired levels [20]. 

The CHB asymmetric get more levels in the output voltage with the same number of 

cells that integrates a CHB symmetric. The difference in levels of output voltage is 

mainly due to use of different supply voltages in the cells of the inverter and the use 

of appropriate modulation technique. The advantage of using the CHB asymmetric is 

that it has less conduction losses favor the results of tension the inverter the output. 

The main disadvantage is that some levels the voltage the output is achieved by the 

sum of voltages of opposite signs, leading, higher switching losses [21]. 

Furthermore, the CHB asymmetric is divided in two classes:  

 CHB asymmetric exponent 2  

 CHB asymmetric exponent 3 

The CHB asymmetric exponent 2 is shown in Figure 2.6, the levels of input voltage 

of each cell are Vdc and 2Vdc (exponent 2). In this configuration 2
m+1

-1 voltage levels 

can be achived at the load voltage where m is the number of H-Bridge cells [22]. 

The CMLI asymmetric exponent 3 is shown in Figure 2.7, the levels of input voltage 

of each cell are Vdc and 3Vdc (exponent 3) [22] . In this topology, the voltage 

delivered to the output has  3
m

 voltage levels where m is the number of H-Bridge 

cells. 
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Figure 2.6 : CHB asymmetric exponent 2 [22]. 

 

Figure 2.7 : CHB asymmetric exponent 3 [22]. 

In general the advantages of the CHB asymmetric are: 

 It requires fewer components because the same amount of cells and more 

symmetric levels are achieved. 

 A greater number of levels, lower harmonic distortion. 

 The active and reactive power flow can be controlled [22]. 

A disadvantage is that: 

 As the number of levels increases, the converter control becomes more 

complex as more levels must be achieved with less number of cells [22]. 
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2.1.4 Multiple source topology 

This topology uses isolated DC sources produce a stepped waveform by the aid of 

just one H-bridge inverter, shown in Figure 2.8. [23]. This topology is one of the 

most efficient multilevel inverter in the market. It has been tested in RES 

applications more than 15 years and proved that it is efficient, robust and reliable 

[24]. However, this configuration requires seperate DC sources and does not provide 

input-output isolation.  

 

Figure 2.8 : Multiple source topology [23]. 

2.1.5 Multi-winding transformer topology 

It is a variation of multiple source topology. An example of three-winding topology 

is shown in Figure 2.9. 

Advantages of this topology: 

 Just a single source is required 

 Input-output isolation achived by the use of transformer. 

 It uses just one transformer so it is efficient. 

Disadvantage is: 

 Lots of switches in the output side [7]. 
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Figure 2.9 : Multi-winding transformer topology [7]. 

2.1.6 Modular topology 

Figure 2.10 shows the eight-module modular topology. This topology is generally 

proposed for high power applications [25,26]. Each module, which is a two terminal 

device, is modelled by two switches and one local DC capacitor. The disadvantage of 

this topology every module’s capacitor needs a voltage measurement circuit and it 

does not support loads with DC current component [7]. 

 

Figure 2.10 : Modular topology [25,26]. 
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2.1.7 Multiple-transformer topology  

This topology is a variation of cascaded multilevel inverter. In this configuration 

each H-Bridge module has a isolation transformer at the output side. Every 

secondary of transformer is connected in series to pile of output level up. There is 

some inverters in the market based on this topology [27,28]. 

The turn ratios of the transformers can be exponent 2 or exponent 3. According to 

these turn ratios of the transformers the level of the inverter is determined. When we 

consider the topology shown in Figure 2.11; 

If we select the turns-ratios of the transformers are as exponent 2, we will have turns-

ratios as followings; the first transformer’s 1:2
0
, the second transformer’s 1:2

1
, and 

for the third transformer’s 2
2
. As a result at the output stage will have 15-level (7 

level positive,7 level negative and level’0’). The formula for determining the voltage 

levels in this system is 2
n+1

-1 where n is the number of H-Bridge cells. 

If we select the turn-ratios of the transformers are as exponent 3, we will have turns-

ratios at first transformer is 1:3
0
, at second transformer 1:3

1
, and at third transformer 

3
2
. As a result, at the output stage will have 27-level (13 level positive,13 level 

negative and level’0’). The number of the levels in this transformer can be easily 

found by the formula 3
n
. 

 

 

Figure 2.11 : Cascaded H-Bridges with isolation transformers [7]. 
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Advantages of this topology: 

 This topology requires only one DC source. 

 It is robust and reliable. 

 The leakage reactance of transformers act like series active filter, so 

THD is reduced. 

 The transformers provide a galvanic isolation between input and 

output. 

 It maintains the advantages of the cascade multilevel inverter: 

o Low dV/dt in the devices.  

o High definition of the output voltage and low harmonic 

content. 

o It uses a smaller quantity of semiconductors that the other two  

topologies of multilevel inverters [7]. 

The only disadvantage of this topology is it requires some low frequency 

transformers.  

2.2 Modulation Techniques for MLIs 

The modulation algorithm used to drive the multi-level converter give the voltage 

level required for each leg; the translation in the proper configuration of switches is 

done by other algorithms which can be hardware or software implemented. It is 

generally accepted that the performance of an inverter, with any switching strategies, 

can be related to the harmonic contents of its output voltage [29]. Power electronics 

researchers have always studied many novel control techniques to reduce harmonics 

in such waveforms. Up-to-date, there are many techniques, which are applied to 

inverter topologies. A classification of the modulation methods for multilevel 

inverters is presented in Figure 2.12. The modulation algorithms are divided into two 

main groups depending on the domain in which they operate: the state-space vector 

domain, in which the operating principle is based on the voltage vector generation, 

and the time domain, in which the method is based on the voltage level generation 

over a time frame [30]. The aim of redundant configurations which is, to improve the 

switching pattern, to balance the current flowing through the switches, must be 

defined for the application. In general, low switching frequency methods are 

preferred for high-power applications due to the necessary reduction of switching 
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losses, while the better output power quality and higher bandwidth of high switching 

frequency algorithms are more suitable for high dynamics applications [31,32,33]. 

2.2.1 MLI PWM strategies 

Classic PWM techniques have been successfully adopted to multilevel inverter 

topologies by using multiple carries to control each power switch of the inverter so 

they are known as multicarrier PWM methods. 

For multicell topologies, FC and CHB, each carrier can be associated to a particular 

power cell to be modulated independently using sinusoidal bipolar PWM and 

unipolar PWM, respectively, providing an even power distribution among the cells. 

Therefore, this method is known as phase shifted PWM (PS-PWM). This method 

naturally balances the capacitor voltages for the FC and also mitigates input current 

harmonics for the CHB. 

The carriers can also be arranged with shifts in amplitude relating each carrier with 

each possible output voltage level generated by the inverter. This strategy is known 

as level shifted PWM (LS-PWM), and depending on the disposition of the carriers, 

they can be in phase disposition (PD-PWM), phase opposition disposition (POD-

PWM), and alternate phase opposition disposition (APOD-PWM) [34]. LS-PWM 

methods can be implemented for any multilevel topology; however, they are more 

suited for the NPC, since each carrier signal can be easily related to each power 

semiconductor. Particularly, LS-PWM methods are not very attractive for CHB 

inverters, since the vertical shifts relate each carrier and output level to a particular 

cell, producing an uneven power distribution among the cells. This power unbalance 

disables the input current harmonic mitigation that can be achieved with the 

multipulse input isolation transformer, reducing the power quality. 

Finally, the hybrid modulation is in part a PWM-based method that is specially 

conceived for the CHB with unequal dc sources and for the CHB topologies with 

transformers [30]. Moreover, this idea gives significant results for multiple-

transformer topology.The basic idea is to take advantage of the different power rates 

among the cells of the converters to reduce switching losses and improve the inverter 

efficiency. This is achieved by controlling the high-power cells at a fundamental 

switching frequency by turning on and off each switch of each cell only one time per 
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cycle, while the low-power cell is controlled using unipolar PWM. In this thesis, 

hybrid modulation are used and will be discussed detailly in next chapter. 

2.2.2 Space vector modulation techniques 

Space vector modulation (SVM) is a technique where the reference voltage is 

represented as a reference vector to be generated by the power converter. The SVM 

technique generates the voltage reference vector as a linear combination of the state 

vectors obtaining an averaged output voltage equal to the reference over one 

switching period [35].  

2.2.3 Other MLI modulation algorithms 

Although SVM and multicarrier PWM are widely accepted and have reached a 

certain maturity for multilevel applications, other algorithms have been developed to 

satisfy particular needs of different applications.  

Selective harmonic elimination (SHE), for example, has been extended to the 

multilevel case for high-power applications due to the strong reduction in the 

switching losses [36,37,38]. However, SHE algorithms are very limited to openloop 

or low-bandwidth applications, since the switching angles are computed offline and 

stored in tables, which are then interpolated according to the operating conditions. In 

addition, SHE based methods become very complex to design and implement for 

converters with a high number of levels (above five), due to the increase of switching 

angles, hence equations, that need to be solved. In this case, other low switching 

frequency methods are more suitable. The time-domain version of SVC is the nearest 

level control (NLC), which in essence is the same principle but considering the 

closest voltage level that can be generated by the inverter instead of the closest 

vector [39]. As mentioned above, not all of the modulation schemes are suitable for 

each topology; moreover, some algorithms are not applicable to some converters. 

Table 2.4 summarizes the compatibility between the modulation methods and the 

multilevel topologies. 

Selecting the best inverter topology for the application can differ according to system 

requirements. As a particular case for SARES, the most important performance 

parameters are reliabilty,surge power capacity and efficiency.Multilevel inverters are 

presented in recent works that they can  succesfully  satisfy these parameters [7].
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Figure 2.12 : Multilevel inverter modulation classification [30].
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Depending on the application,the multilevel converter topology can be chosen 

according to some factors as shown in Table 2.5. 

Table 2.4 : Applicability of modulation methods to multilevel topologies [30].

Applicable X Not Applicable −Applicable/Not Recommended 

Modulation Methods 
Topologies 

NPC FC CHB 

SVM    

LS-PWM   - 

PS-PWM X   

Hybrid Modulation X X  

SHE    

SVC -   

NLC -   

Table 2.5 : Comparison of multilevel inverter topologies depending on 

implementation factors [30]. 

Implementation 

Factors 

Topologies 

NPC FC CHB MTT 

Specific 

Requirements 

Clamping 

diodes 

Additional 

capacitors 

Isolated 

DC 

sources 

Low 

frequency 

transform

ers 

Modularity Low Low High High 

Design and 

implementation 

complexity 

Low Medium High High 

Control concerns 
Voltage 

balancing 

Voltage 

setup 

Power 

sharing 

Power 

sharing 

Fault tolerance Difficult Easy Easy Easy 

2.3 Bi-directional Switch Technology 

By definition a Bi-Directional Switch (BDS), in literature also named bilateral switch 

or AC-switch or 4Q-switch (Q stands for quadrant), has to be capable of conducting 
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currents and blocking voltages of both polarities, depending on control actual signal 

as shown in Figure 2.13 [40]. 

Since no single device is available as a bidirectional self commutated switch, a 

bidirectional switch is synthesized from the combination of commonly used solid 

state devices. In order to build a composite BDS with the capability of conduction in 

both directions, it is necessary to connect two discrete devices in anti-serial 

association of two unidirectional voltage devices or in anti-parallel association of two 

unidirectional current devices [41]. 

 

Figure 2.13 : Device working quadrants [40]. 

There are lots of BDS configurations in the literature using different semiconductors 

like IGBTs, IGTCs, BJTs and MOSFETs. However, the configurations with 

MOSFETs are mentioned in this work. There are different bi-directional switch 

configurations by MOSFETs in the market shown in Figure 2.14. 

 

Figure 2.14 : Different bi-directional switch implementations by using MOSFETs 

[7]. 

The switch shown in Figure 2.13.a is easy to control. Only one unidirectional 

controllable switch (MOSFET) is used in a four-diode bridge. However, its voltage 

drop is high. It is equal to the sum of the voltage drops of two diodes and the 
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transistor. This arrangement is expensive if high voltage fast recovery diodes are to 

be used. The unique control makes this switch a real bidirectional switch [7]. 

The second proposed configuration of bi-directional switch was the anti-parallel 

arrangement of two active devices, MOSFETs in Fig.2.13.b, with series diode. The 

two diodes are used to provide the reverse voltage blocking capability. This 

configuration reduces the voltage drop but needs two MOSFETs. It is the most 

expensive configuration. Furthermore, compared to the diode bridge switch, this 

solution has also the advantage of lower conduction losses, since only two devices 

are conducting at any given time [7]. 

With MOS-transistors, the switch of Figure 2.13.c is the simplest one. It needs only 

two components because the diodes are part of the transistors. This configuration 

provides lower losses when compared to previously mentioned configurations 

because of the low on resistance of modern MOSFETs and its bi-directional channel 

conduction capability. When both MOSFETs are on, it can be modelled as a two 

times Ron resistance of a single MOSFET [7]. 

2.4 Fault-Tolerant MLI Strategies 

Reliability is an important issue in cascaded H-bridge converters and multi-

transformer topologies because they use a high number of power semiconductors. A 

faulty power semiconductor in any of H-bridges can potentially lead to expensive 

downtime and great losses on the consumer side. Also any failure of the 

semiconductors in H-Bridges break the balance between the positive and negative 

parts of the output voltage that quickly increases the harmonic distortion. It is 

important to maintain normal operation under fault conditions because failed 

operation of a inverter could cause tremendous losses for consumers, especially 

when the inverter is feeding critical loads. Cascaded multilevel inverters have a 

character that each unit can work independently. After a unit stops working because 

of fault, if we can make the other units continue working with the output of the 

system unchanged or changed in acceptable limits, the reliability of the system will 

be improved greatly. [42]. With the fault-tolerant control strategies and 

reconfiguration techniques, operation can continue with the undamaged cells; thus 

increasing the reliability of the system. The key issue when designing a fault-tolerant 

system is to improve system reliability [43]. 
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For a fault-tolerant system, the basic goal is to continue operation in the event of a 

power failure. There are two types of fault-tolerant method, one is hardware 

redundant, and another is to cut the fault unit away [44]. 

The hardware redundant is to design surplus unit in the systematic design. In [43], 

the proposed strategy for the fault-tolerant system is redundancy. In CHB inverters, 

all H-Bridge cells are identical so the redundacy strategy is easily applied by adding 

an H-Bridge cell as a back-up to maintain operation when one of H-Bridge cells fails. 

When the trouble appears, replace the trouble unit with the surplus unit, in order to 

make the system continue working. Dependability of this method is relatively high, 

but it needs at least one unit unused as redundant, which causes the ratio of the 

systematic utilization low. When the trouble appears, replace the trouble unit with 

the surplus unit, in order to make the system continue working. Dependability of this 

method is relatively high, but it needs at least one unit unused as redundant, which 

causes the ratio of the systematic utilization low. 

Cutting the failure unit away takes the advantage of the cascaded inverter’s property 

that is each unit of the inverter can work independently, so after cutting the fault unit 

away, the rest can continue to work. If taking this method, to make the output of the 

three phases balance, each healthy phase should cut one unit, too. As the result, the 

value of output voltage is reduced and the machine system must run at a lower speed 

at this moment [45]. However for the single-phase systems this problem does not 

exist.  

As an alternative method to these methodes mentioned above, B.Wang and et al. 

proposed a reconfiguration method with bi-directional swtiches for 3-phase systems. 

Once a fault is detected in any of the IGBTs of any H-bridge, the control is capable 

to reconfigure the hardware keeping the higher power bridges in operation. In this 

way, the faulty phase can continue working at the same voltage level by adjusting its 

gating signals. This method is based on the multiple-transformers topology. The 

design consists of three H-Bridge cells and   with output transformers for each cell. 

The turn ratios of the transformers scaled in power of three. One of the transformers 

in the topology is multi-winding transformer with bi-directional switches which are 

used between different windings of the transformer. When a fault occurs, by the aid 

of bi-directional switches, the turn-ratio of the transformer changes and the desirable 

voltage level is achived [42]. 
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2.5 Literature Review  

In this subdivision, literature review of the multilevel inverter types, multilevel 

inverter modulation techniques, bi-directional switch types and fault tolerant designs 

of multilevel inverters are done. 

Generally, multilevel inverter applications can be classified in three groups within 

the semi-conductor technologies framework; these are diode-clamped inverters, 

capacitor clamped inverters and multi-cascade H-bridge inverters [46,47,48,49]. 

There are some review studies about multilevel inverters and modulation techniques 

in the literature. J.Rodriguez presented the most important topologies like diode-

clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and 

cascaded multicell with separate dc sources. Emerging topologies like asymmetric 

hybrid cells and soft-switched multilevel inverters are also discussed. Their work  

presents relevant control and modulation methods developed for this family of 

converters: multilevel sinusoidal pulsewidth modulation, multilevel selective 

harmonic elimination, and space-vector modulation [50]. 

J.Rodriguez et al. presented  a technology review of voltage-source-converter 

topologies for industrial medium-voltage drives. This paper presents the operating 

principle of each topology and a review of the most relevant modulation methods, 

focused mainly on those used by industry.They asserted that the topology and 

modulation-method selection are closely related to each particular application, 

leaving a space on the market for all the different solutions, depending on their 

unique features and limitations like power or voltage level, dynamic performance, 

reliability, costs, and other technical specifications [51]. Leopoldo G. Franquelo et al.  

made a review study and claimed that multilevel inverter technology  has potential in 

current and future power applications by expailing MLI topologies,modulation 

techniques,fault-tolerant system designing and usage areas detailly [30]. And current 

survey studies about MLIs are presented in [49,52]. 

As a special case, S.Daher et al. presented a compilation of the most common 

topologies of multilevel converters is  and  showed which ones are best suitable to 

implement inverters for stand-alone applications in the range of a few kilowatts. He 

asserted that  the most suitable topologies are the multiple transformer and the multi-

winding transformer for stand-alone applications [54]. 
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P.Palanivel analysed three carrier pulse width modulation techniques, the constant 

switching frequency (CSF), variable switching frequency (VSF), and phase shifted 

pulse width modulation (PSPWM) , which can minimise the total harmonic 

distortion and enhances the output voltages from five level inverter [53]. 

Steffen Bernet et al. was designed and compared neutral-point clamped, flying 

capacitor and series connected cascaded H-Bridge multilevel inverters at the same 

voltage level and showed that series connected cascaded H-Bridge inverts are very 

attractive for high frequencies [47]. 

In this thesis, cascaded H-Bridge inverters are used as a base for proposed inverter. 

Hence, literature review of cascaded H-Bridge inverter is made in detail.The CHBs 

generally divided into two main categories; CHB with separate DC sources and with 

single DC source. 

A.R.Being et al. proposed a fifteen-level cascaded H-bridge configuration with equal 

seperate DC sources with low harmonic content  using low voltage MOSFETs as 

switching devices [55]. H.Patangia is presented a 8-level 1kW CHB inverter 

prototype with seperate DC sources using sectionalized PWM technique. They 

achived 99% efficiency but their system has high total harmonic distortion which is 

about 15% [56]. O.L.Jimenez et al. focused on the comparative study of cascaded 

multilevel inverter with  two inverter cells, symmetric (5 levels) and asymmetrical (7 

and 9 levels). These inverters are implemented without changes in the power 

semiconductor devices, only modify the control stage and input supply voltages in 

the cells. Their work presented the analysis of the output voltage total harmonic 

distortion (THD) of CHB and ACHB [20]. N.Farokhnia et al. applied minimisation 

of total harmonic distortion (MTHD) switching strategy is applied to the cascaded 

multilevel inverter to reduce the THD. In this paper, they  proposed to consider the 

alterable DC sources instead of constant DC sources, if it is possible. They showed  

that the value of THD in both cases of phase and line voltages is effectively reduced 

[57]. J.Pereda et al. offered a solution to the problem of Cascaded H-Bridge(CHB) 

and  Asymetric cascaded H-bridge(ACHB) inverters that is large number of 

bidirectional and isolated dc supplies. This problem reduces the power quality with 

the voltage amplitude.They presented a solution to this problem by using high-

frequency link using only one DC power source which reduces the number of active 

semiconductors, transformers, and  reduces harmonic  content [58]. Also, Cheol-soon 
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Kwon et al. proposed a cascaded H-bridge multilevel inverter employing trinary dc 

sources in order to obtain a large number of output voltage levels with minimum 

devices which permits to easy increase of the output voltage levels and output power 

owing to modularity characteristic [59]. 

The CHB inverters using single DC source are examined  in literature in two main 

groups;with virtual DC sources and with transformers in literature. CHB inverters 

with virtual DC sources are presented as a new hybrid CHB inverter which modifies 

the traditional CHB inverter by using one DC source. The traditional cascade 

multilevel inverter requires n DC sources for 2n + 1 levels.  The proposed system 

allows the use of a single DC source as the first DC source which would be available 

from PV cells, batteries or fuel cells, with the remaining DC sources being 

capacitors. K.M Tsang et al. designed a PWM-less 27-level inverter has been  based 

on three cascaded H-bridges with a single energy source and two capacitors.These 

capacitors are used as virtual DC sources in this work [60]. There are some studies 

based on this topology with different modulation techniques  [46,48,61 ,62,63]. 

CHB inverter systems with transfromers are presented as a solution to one of the 

major limitations of the cascade multilevel converters which is requirement of 

isolated dc voltage sources for each H-bridge, which increases the converter cost and 

reduces the reliability of the system. E.Barcenas et al , proposed  a CHB topology 

that does not require different DC sources, using a single DC source for all the 

system. On the other hand, it maintains the isolation between the inverter and the 

system, which output transformers can be coupled for the application of series 

compensators.Some of the researchers are focused on adjusting the turn-ratios of 

transformers to achive desired voltage level with less componenet using different 

modulation techniques to reduce the THD,conduction losses and switching losses 

[64]. H.Weiss and K.Ince described design and layout of single phase system quasi-

eight level PWM inverter system with the transformers’ turn ratios of exponent 2 

[65]. As an alternative way some of the authors offered a CHB multilevel PWM 

inverter system with cascaded transformers with turn ratios of exponent 3 to achive 

more output voltage level [66,67,68]. 

Also F.S. Kang proposed a system that reduces two-fold the secondary  turn ratio of 

the transformer that is connected to the PWM inverter to reduce witching losses and 

THD with an efficient switching function [69]. As an alternative way, some studies 
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are done that subsititutes one of the full-bridge inverter by a half-bridge inverter by 

this difference they managed to reduce the number of switches and  have a high 

quality output voltage [70,71]. In order to reduce the number of transformers, 

components size and to trim down the weight, some of the authors used three-phase 

transformers instead of single-phase transformers in CHB inverter systems 

[72,73,74,75]. 

If we look at the studies that employ bi-directinal switches;Yaosuo Xue and Madhav 

Manjrekar have used the full bridge approach with bidirectional switching method 

for a single phase with separated DC source, five-level-cascaded inverter [76]. 

Another work about bidirectional switching method is done by Won-kyun Choi and 

his coworkers for cascaded H-bridge inverter circuit [77]. Chawki Benboujema et al. 

compared various types of bidirectional switching methods. In their work they also 

used MOSFETs as semi-conductor elements within the bidirectional switch circuit 

for AC applications. The results of their work showed that MOSFETs are 

advantageous for applications with low voltage and high frequency requirements, 

whereas IGBTs are the only choice for applications with high voltage requirements 

[78]. In parallel with the study mentioned above, Benboujema et al. aimed to develop 

a bidirectional switch system for electricity networks. They compared voltage, 

current and gain parameters between the Bipolar Junction Transistor (BJT) and 

Trench Base-Shielded Bipolar Transistor (TBSBT) and determined the advantages 

and disadvantages of them [79]. 

With a fault-tolerant control strategy and reconfiguration technique, operation can 

continue with the undamaged cells; thus increasing the reliability of the system. 

Pablo Lezana explained the fault identification methods and hardware modifications 

that allow for operation in faulty conditions.He asserted that that multilevel  inverters 

can significantly increase their availability and are able to operate even with some 

faulty components [80]. 

Christophe Turpin et al. studied the probable faults of hard and soft switching 

techniques and emphasized that the more the switching elements are the higher the 

probability of a fault is [81]. 

Another study on this topic is done by Surin Khomfoi and Leon M. Tolbert, which 

investigates the feasibility of the fault correction techniques using neural networks. 
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They claimed that the mathematical modeling of systems having too many switching 

elements is difficult [82]. 

Another study on the topic of fault tolerance, the publication of Sergio Daher, is 

about the shutdowns of the excitation systems due to fault conditions and the cost of 

these shutdowns [7]. 

Pablo Barriuso et al. indicated  one shortcoming  of the asymmetric H-Bridge 

multilevel inverters scaled by power of three that is the H-Bridges are not 

interchangeable and under certain faulty conditions the inverter can not operate. 

They designed  a reconfiguration system based on bidirectional electronic valves for 

three-phase 27-level cascaded H-bridge inverter. Once a fault is detected in any of 

the insulated gate bipolar transistors of any H-bridge, the control is capable to 

reconfigure the hardware keeping the higher power bridges in operation. In this way, 

the faulty phase can continue working at the same voltage level by adjusting its 

gating signals. The implementation of that proposed scheme may be expensive, but 

constitutes a very good solution for inverters that cannot be taken out of operation 

because a failure may mean thousands of dollars of losses or life risk in hospital 

applications [84]. 

H. Iman-Eini and his co-workers have asserted that the reliability of multi-level 

inverters is low because of their high number of semi-conductor elements. This is 

due to fact that the increasing number of switches also increases the probability of 

the fault conditions. In their work, an H-bridge cell was added to the CHB rectifier to 

achieve redundancy and fault tolerant design. The redundant H-bridge concept helps 

to deal with device failures and to increase system reliability [43]. 

Surin Khomfoi et al. researched the fault correction methods for hybrid cascaded 

multilevel inverter used in renewable energy systems. For this purpose, they first 

used simulation programs such as PSIM and MATLAB, and then they designed an 

experimental layout and tested the efficiency of the overall system [85]. 

Nasim RASHIDI et al. studied the reliability of modular inverters with Half-Bridge 

and Full-Bridge cells. They used Markov Chain  to calculate their reliability which 

models a sequence of random variables. They compared the HB anf FB cells and 

asserted that modular inverters with HB cells will have a better reliability compared 

to the inverters with FB cells [83]. 



  
32 

 



  
33 

3.  PROPOSED MULTILEVEL INVERTER  SYSTEM DESIGN 

In this chapter, the proposed inverter system, the fundamental working principles and 

main duties of each system unit are explained in detail.  

H. Weiss and K. Ince, designed and experimentally tested a Quasi-eight level 

cascaded H-bridge inverter with output-side transformers for a single-phase off-grid 

system. They proved that their inverter system has very low THD when compared 

with the classic two level inverter and other multilevel inverter configurations. The 

schematic view of this system for laboratory model is shown in Figure 3.1 [65]. 

In Weiss and Ince’s system, all H-Bridge inverters are identical and fed by a single 

DC source. Each H-Bridge inverter’s output is connected to its own transformer 

module with the turns-ratios of 1:1, 1:2, 1:4, respectively. The secondary sides of the 

transformers connected in series to sum up all the voltages transferred to the load. 

Totally, the designed laboratory model includes seven transformers. Finally, this 

system achieves 8 level voltages (including zero voltage level) in quarter cycle at the 

output stage. 

This study, offers a fault-tolerant system design and application of reconfiguration 

technique based on quasi-eight level inverter system mentioned above. The general 

schematic view of proposed topology is shown in Figure 3.2. In proposed system, 

reconfiguration technique is achieved by changing two multi-winding transformers’ 

and one linear transformer’s turns-ratios by the aid bi-directional switches and by 

changing the modulation techniques of the H-Bridge inverter modules at fault 

instants. 

At normal operation mode (when no fault exists), this inverter has 15 levels; seven 

positive level, seven negative level and zero level as shown in Figure 3.3. At fault 

instants, the voltage level of the system is decreased one level in quarter period but 

system continues feeding the load without stopping the system. This topology is 

simulated and verified in MATLAB-SIMULINK simulation environment. All of the 

main parts of the proposed system are presented in detail. 
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Figure 3.1  : Laboratory model of Quasi-Eight level inverter system [65]. 
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Figure 3.2  : Proposed multilevel inverter topology. 
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Figure 3.3 : Quasi-8-level inverter’s output voltage. 

3.1 System Components 

This system consists of single DC source, three H-Bridge inverter stages, one fault 

detection element for per H-Bridge stage, two multi-winding and one linear 

transformer, four bi-directional switches and load unit. 

3.1.1 H-Bridge inverter modules 

The system is established on the base of three identical H-Bridge inverter modules 

which are fed by a 52V DC source. Each stage is identical which makes the system 

modular. The only difference between these stages is modulation technique. 

One of the H-Bridge modules is shown in figure 3.4. It is composed of four 

semiconductor devices. In this configuration, the IGBT-Diode module is selected, 

because the system’s switching frequency is not very high and it is suitable for the 

power level of the system. 
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Figure 3.4 : Typical H-Bridge inverter module. 

Each H-Bridge inverter module can produce +52V, -52V and 0 voltage at the  output 

(Vout) according to the states of the switches. In order to produce +52V output 

voltage; the switches S1 and S4 must be in ON state while other switches are in OFF 

state. Controversially, to produce -52V; S2 and S3 must be conducting while other 

switches are non-conducted. There are two ways to achieve 0 voltage at the output of 

the inverter module. These are; 

 S1 and S2 must be in ON state while other switches S3 and S4 are in OFF 

mode. 

 S3 and S4 must be in ON state while other switches S1 and S2 are in OFF 

mode. 

The working principle of the H-Bridge module is summarized in Table 3.1 
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Table 3.1 : Output voltage according to the switch states. 

Output Voltage 

(Vo) 

Switches’ States 

S1 S2 S3 S4 

+52 (V) 1 0 0 1 

-52 (V) 0 1 1 0 

0 (V) 1 1 0 0 

0 (V) 0 0 1 1 

The simulation parameters for the IGBT-Diode devices are presented in Table 3.2. 

Table 3.2 : Simulation parameters for the IGBT-Diode devices. 

Simulation Parameters Value 

Internal resistance (Ω) 0.001 

Snubber resistance (Ω) 10
-5 

Snubber capacitance (F) ∞ 

When the levels of the inverter are increased, the number of H-Bridge modules must 

be increased. As a result, the number of semiconductors in the system is increased, 

too. This situation increases the probability of any fault in the system. However, H-

Bridge modules are galvanically isolated from each other that make the system more 

reliable. A fault in any of the H-Bridge module does not affect the other modules. By 

using this advantage of the system, a fault tolerant system is designed and introduced 

in depth later in this chapter. 

3.1.2 Transformers and bi-directional switches 

In the proposed inverter system, each H-Bridge module is connected to a 

transformer. The objectives of using the transformers in the systems are; 

 To achieve galvanic isolation between input and output stages.  

 To avoid using separate DC sources. 

 While primary sides of the transformers are parallel-connected to the output 

of H-Bridge modules, the secondary windings are connected serially to each 

other to sum up the produced voltages in H-bridge modules. By adjusting the 

turn ratios of the transformers to suitable values, more voltage levels can be 

obtained at the load. 

 The use of multi-winding transformers and bi-directional switches allows us 

to reconfigure the system at fault instants by changing the turns-ratios of the 
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transformers. In addition, by appropriate switching patterns the system can 

stay at acceptable voltage levels. 

The turns-ratios and some parameters of transformers are different from each other. 

The transformer that is connected to first H-Bridge module has turns ratio of 1:1/2, 

which means when no fault exists in the system this transformer has turns ratio of 

1:1. However, when a fault occurs at one of any other H-Bridge inverter modules, the 

turns-ratio of the transformer is changed to 1:2. The equivalent circuit of the used 

transformer is shown in Figure 3.5, and its parameters are presented in Table 3.3. 

 

Figure 3.5 : Equivalent circuit of transformer connected to the output of first 

inverter. 

The simulation parameters of the first transformer are given in SI units and per units 

(pu). The transformation from SI units to pu units can be done easily for the 

transformers by these formulas: 
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Table 3.3  : Simulation parameters of the first inverter’s transformer. 

Simulation Parameters 
Units 

SI Per Unit(pu) 

Nominal Power (VA) 1000 - 

Frequency (Hz) 50 - 

Winding Nominal Voltages- 

V1,V2,V3 (Vrms) 

480 , 480 , 480  - 

Winding Resistances-

R1,R2,R3 (mohm) 

3.68 , 3.68 , 3.68
 

1.6x10
-5

 

Winding Leakage Inductance-  

L1, L2, L3 (mH) 

0.938 , 0.938 , 0.938 128x10
-5 

Magnetization Resistance 

(Mohm) 

1.152 5000 

Magnetization Inductance (H) 3666.5 5000 

The transformer connected to the second H-Bridge inverter has turn ratio of 1:2/4 

whose equivalent circuit is same with the first transformer’s circuit. However, the 

parameters of the transformer are different from first transformer’s that is presented 

in Table 3.4. 

Table 3.4 : Simulation parameters of the second  transformer. 

Simulation Parameters 
Units 

SI Per Unit(pu) 

Nominal Power (VA) 2000 - 

Frequency (Hz) 50 - 

Winding Nominal Voltages-  

V1,V2,V3 (Vrms) 

480,960,960 - 

Winding Resistances- 

R1,R2,R3  ( mohm ) 

3.68, 1.47, 1.47
 

  3,2x10
-5

 

Winding Leakage Inductance- 

L1, L2, L3 ( mH) 

0.469, 1.87,1.87 128x10
-5 

Magnetization Resistance ( Mohm) 0.576 5000 

Magnetization Inductance (H) 1833.46 5000 

The third and last H-Bridge inverter’s transformer has turn ratio of 1:4 which is 

constant all the time, so this transformer is considered as linear transformer. Its 
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equivalent circuit and parameters are shown in Figure 3.6 and Table 3.5, 

respectively. 

 

Figure 3.6: Equivalent circuit of third H-Bridge inverter’s transformer. 

Table 3.5: Parameters of the third inverter. 

Simulation Parameters 
Units 

SI Per Unit(pu) 

Nominal Power (VA) 2000 - 

Frequency (Hz) 50 - 

Winding Nominal Voltages- V1 ,V2 (Vrms) 480 , 1920 - 

Winding Resistances-R1, R2 ( mohm ) 3.68 , 58.98
 

3,2x10
-5

 

Winding Leakage Inductance-  L1, L2 ( mH) 0.46 , 7.5 128x10
-5 

Magnetization Resistance ( Mohm) 0.576 5000 

Magnetization Inductance (H) 1833.5 5000 

The bi-directional switches in the proposed system plays a key role which provides 

an opportunity to design a fault tolerant system and application of reconfiguration 

technique. The BDSs are connected to the output of the transformers so they act like 

being fed by AC voltage source. The BDS is also called as “AC Switch”. In this 

thesis, two types of MOSFET based bi-directional switches are tested and compared 

in the simulation environment. These are: 

 Diode Bridge MOSFET BDS (DB-MOSFET-BDS) 

 Common-Source MOSFETs BDS (CS-MOSFET-BDS) 

Diode Bridge MOSFET BDS is formed of four diodes and one n-channel MOSFET. 

According to the sign of alternation the current flow path is changed which provides 

bi-directional power flow. First of all, MOSFET must be in ON state for power flow. 

If the applied voltage is bigger than 0, the current follows the way; D1-MOSFET-D4 

and, if it is less than 0, the current flows through D2-MOSFET-D3, as shown in 

Figure 3.7. At both conditions, current flows through two diodes and one MOSFET. 

The power dissipation can be calculated for this BDS by the formula; 
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(a) 

 

(b) 

Figure 3.7: Diode-Bridge MOSFET BDS current flow paths at  

a)Positive alternation b)Negative alternation. 
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2
*]*2[( BDSonddiss IRRP   (3.5) 

Where Rd is the diodes internal resistance, Ron is MOSFET’s ON state resistance and 

IBDS current flowing in the circuit. 

Common Source BDS only consists of two n-channel MOSFETs. Their source 

terminals are connected to each other. At positive and negative alternations, a current 

flows through one MOSFETs Drain-Source terminal and other MOSFETs internal 

diode as shown in Figure 3.8. The power dissipation over this type of switch can be 

expressed as; 

2

int *)][( BDSonddiss IRRP    (3.6) 

where Rd-int denotes the internal diode resistance of the MOSFETs. The power 

dissipation is decreased about four times when compared with the diode-bridge 

MOSFET BDS. Moreover number of components decreased to 2. The number of 

MOSFETs is doubled, so the price increases. 

By taking the advantage of MOSFET’s high switching frequency ability, we can 

quickly apply reconfiguration technique if a fault occurs in the system. The 

simulation parameters for the MOSFETs of the bi-directional switches are shown in 

Table 3.6. 

Table 3.6 : Simulation parameters of MOSFETs 

Simulation Parameters Value 

FET Resistance (Ω) 0.005 

Internal Diode Resistance (Ω) 0.001
 

Internal Diode Inductance (H) 0 

Internal Diode Forward Voltage (V) 0 

Initial Current (A) 0 

Snubber Resistance (Ω) 10
-5

 

Snubber Capacitance (F) ∞ 
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(a) 

 

(b) 

Figure 3.8 : Common Source MOSFETs BDS current flow paths at 

a)Positive alternation b)Negative alternation. 
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3.2 Fault -Tolerant Inverter System and Application of Reconfiguration 

Technique 

The proposed system works under four different modes according to the fault 

conditions. When a fault exists in the system, the modulation techniques of H-Bridge 

inverters are changed and by the aid of bi-directional switches the turns-ratios of the 

transformers are reconfigured to hold the system at desired voltage level. At all 

modes one H-Bridge inverter module is modulated by PWM technique. The system 

is presented in two main parts: 

 Normal Operation Mode 

 Fault Condition Modes 

3.2.1 Normal operation (no-fault) mode 

This mode is valid when no fault exists in the system that is shown in Figure 3.9. The 

system keeps working at this mode until a fault occurred in the system. In this mode 

the system produces 8 voltage levels in quarter cycle including zero voltage level , 

and totally system has 15 voltage levels at the load. The turns-ratios of the 

transformers are 1:1, 1:2, 1:4, respectively. In order to have these turns-ratios the bi-

directional switches BDS1 and BDS3 must be conducted while BDS2 and BDS4 are 

non-conducted. 

The modulation techniques for H-Bridge modules are different from each other. The 

hybrid modulation technique is applied for the system. While high switching 

frequency (1-20 kHz) PWM is applied to the first H-Bridge inverter, other two 

inverters are modulated at low switching frequencies. 

The first H-Bridge inverter module is modulated by sine-triangle PWM technique. 

The fundamental idea of this technique is, comparison of desired voltage waveform 

(sine) with carrier waveforms (triangular) and according to the comparison results 

producing gating signals for the semiconductor devices. The sine wave is compared 

with positive side triangular wave and negative side triangular wave separately to 

control left side and right side switches, respectively. As a result, a 3-level PWM 

signal can be generated with high, low, and zero voltage levels. The compared 
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signals are shown in Figure 3.10. The control signals that sent to the gates of the 

IGBTs of the first inverter is shown in Figure 3.11 where Ton1 is denotes the gating 

signal of S1, and the other signals are likewise. The voltage produced at the output 

terminal of the first inverter is  shown in Figure 3.12. 

 

Figure 3.9 : The proposed inverter when no fault exists. 
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Figure 3.10 : Compared signals for PWM. 

 
 

Figure 3.11 : The compared signal for production of PWM signal (fc=1000Hz and  

fm=50Hz). 
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Figure 3.12 : The output voltage of the first inverter (fc=1000Hz). 

If the sine wave is greater than the positive side triangular wave, the switches S1 and 

S4 conducts while S2 and S3 are in OFF state. If it is smaller, S1 turns OFF S3 turns 

ON and 0 voltage is achieved at the output. 

If the sine wave is smaller than negative side triangular wave,S2 and S3 conducts 

while other switches are in OFF state to produce -52V.If it is greater,S2 turns off and 

S4 turns on to produce 0 voltage at the output. All of these switching functions are 

summarized in Table 3.7. In this table Usin denotes the value of sine wave at any 

instant, while Ut+ and Ut- represents the value of positive side triangular wave and 

negative side triangular wave, respectively.  

Table 3.7 : PWM switching functions up to comparing conditions. 

  

Left Side 

Switches 

Right Side 

Switches 

Conditions s1 s3 s2 s4 

Usin>Ut+ 1 0 0 1 

Usin<Ut+ 0 1 0 1 

Usin>Ut- 0 1 0 1 

Usin<Ut- 0 1 1 0 
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The important parameters for the PWM technique are amplitude modulation index 

(Ma) and frequency modulation index can be defined as; 

peak

peak

a
triangleV

V
M

)(

(sin)
  

(3.7) 

 

m

c
f

f

f
M   (3.8) 

where fc  denotes the frequency of the triangular wave and fm denotes the frequency 

of sine wave. The frequency of sine wave is 50Hz and carrier frequency is selected 

between 1 kHz and 20 kHz in simulations. In this work, amplitude modulation index 

is selected as 1. 

This inverter is connected  to a transformer which has turns ratio of 1:1 which means 

at normal operation mode one level PWM technique is applied. This modulation is 

technique is used to achieve better shaped output voltage (closer to the sine wave) 

with low total harmonic distortion (THD). Main objective of this inverter is to 

improve output voltage rather than energy transfer. 

In order to reduce the conduction losses, the two inverters are modulated at low 

frequencies. Their main purposes are identified as setting a voltage ground for the 

PWM inverter. In one period; the second inverter conducts three times in positive 

direction and three times in negative direction like displayed in Figure 3.13. The 

second inverter is connected to a transformer with the turns ratio of 1:2 which means 

in a quarter periods this inverter is responsible for producing two voltage levels at the 

output side. 

The third inverter conducts one time in positive direction and one time in negative 

direction as presented in Figure 3.14. This inverter feeds the transformer with the 

turn ratio of 1:4, responsible for producing four voltage levels in a quarter cycles at 

the output. Its main duty is power transfer rather than improving the output voltage. 
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Figure 3.13 : The output voltage of the second inverter (f=150Hz). 

 

Figure 3.14 : The output voltage of the third inverter (f=50Hz). 
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The power imposed on each transformer is directly depends on the secondary 

parameter sof turns-ratio of cascaded transformers[66]. Therefore, power distribution 

for each transformer can be specified by the rate of secondary windings and 

formulized by 

100

1 secondaryturns,

secondaryturns,

, 

 

k

n

nTR

T

T
P  

(3.9) 

where Tturn,secondary denotes the secondary parameter of turns-ratio of each transformer 

and k connotes the number of transformers. When no fault exists in the system, the 

percentage of power transferred via first inverter is can be calculated as  

Ptr1=1/(1+2+4)x100= 14.28%. Similarly, the percentage power transferred via second 

and third inverters are 28.57% and 57.14%, respectively. In order to achieve high 

efficiency, lower power distribution imposed on first transformer connected to PWM 

inverter by the reason that it operates at high frequency. 

3.2.2 Fault conditions 

Fault-tolerant system is designed for when only one H-Bridge inverter has a fault at 

any instant. When two or more H-bridge inverter have faults, the reconfiguration 

technique can not be applied. At fault conditions, the voltage level is reduced from 

seven level  to six level in quarter period so we have 13 level inverter in one period. 

The proposed system  requires 230Vrms output voltage  and with the limit of ±10% of 

this voltage can be acceptable. In order to supply this voltage ratings under fault 

conditions, this limit is used. 

The bi-directional switches stay as the most important of the proposed inverter 

system. These switches used for changing the secondary turn-ratio of the 

transformers to system keep working with acceptable voltage level. In addition, by 

the control system modulation techniques of the inverters are changed at fault 

conditions. 

The BDS’ states according to the fault conditions of H-Bridge inverters are shown in 

Table 3.8. In this table “X” means “don’t care”, “1” means that the switch is in 

conduction state, and “0” means the switch is in “OFF” state. 
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Table 3.8 : Bi-directional switches’ states up to the fault conditions. 

Fault-Condition Bi-directional Switches' States 

First 

Inverter 

Has 

Fault?(A)  

Second 

Inverter 

Has 

Fault?(B) 

Third 

Inverter 

Has 

Fault?(C) 

BDS 1 BDS 2 BDS 3 BDS 4 

YES YES YES X X X X 

YES YES NO X X X X 

YES NO YES X X X X 

NO YES YES X X X X 

YES NO NO 1 0 1 0 

NO YES NO 0 1 1 0 

NO NO YES 0 1 0 1 

NO NO NO 1 0 1 0 

According to this table, Boolean algebraic presentation of the gating signals for  

BDSs can be shown as; 

)(1 CBBDS   (3.10) 

 

)(2 CBBDS   (3.11) 

 

))((3 CBABDS   (3.12) 

 

CBABDS  )(4  (3.13) 

 

where ”Λ”  and  “ ┐” denotes the digital operators “AND” and “NOT”, in order. 

Moreover, simulation circuit for these signals is shown in Figure 3.15. 
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Figure 3.15 : The simulation circuits of gating signals of the BDSs. 

3.2.2.1 First inverter fault 

When a fault occurs in first inverter, this inverter no longer can not contribute any 

voltage to the output voltage. Hence, the modulation techniques and turn-ratios of the 

other inverters must be changed to achieve sufficient output voltage and acceptable 

THD value. In order to get smaller THD the modulation technique, the PWM 

modulation technique is transferred to second inverter while its transformer’s turn 

ratio stays unchanged. Now, the second inverter is responsible for two-level PWM 

signals production. 

The third inverter’s modulation technique and its transformer’s turn ratio stays as 

usual. Also, the states of the BDSs are not changed, because the turn ratios of the 

inverters are not changed. The schematic view of the proposed multilevel inverter at 

first inverter fault condition is shown in Figure 3.16. 

At first invert fault, power distribution of the transformers are also changed. The total  

transferred power is shared between second and third inverter. At this time, the 

percentage power transferred via second inverter and third inverter  becomes 33.3% 

and 66.7%, respectively. By the reason of this, the nominal power of the transformers 

are selected a bit high to meet the required power rate at fault instants. 
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Figure 3.16 : Proposed multilevel inverter when a fault exists in the first inverter. 

3.2.2.2 Second inverter fault 

When a fault occurs in the second inverter, the same idea of reconfiguration 

technique works again. The first inverter’s turn ratio is changed to the 1:2 by the aid 

of BDSs. The BDS1  turns to OFF state and BDS2 turns to ON, while BDS3 and 

BDS4 are hold their own states. Now the first inverter is responsible for 2 level 

voltage production with PWM in quarter cycle. The third inverter’s modulation 

technique and its transformer’s turn ratio stay unchanged again. It continues 

contributing 4 level at quarter cycle. The equivalent simulation circuit is shown in 

Figure 3.17. The percentage power transferred via first inverter increases from 

14.28% to 33.3% and this power rate for the third inverter is increased from 57.14% 

to  66.7%. 
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Figure 3.17 : Proposed multilevel  inverter when a fault exists in second inverter. 

3.2.2.3 Third inverter fault 

This fault situation is the most critical situation for the system because this inverter 

transfers most of the produced power in the input stage to the output stage. When a 

fault occurred in the third inverter, the first inverter’s transformer’s turn ratio is 

changed from 1:1 to 1:2, and the second inverter’s transformer’s turn ratio is changed 

from 1:2 to 1:4  by reversing the all conduction states of the BDSs’. At this situation, 

BDS1 and BDS3 are turned OFF while BDS2 and BDS3 are turned to ON state as 

shown in Figure 3.18. 
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Figure 3.18 : Proposed multilevel inverter when a fault exists in third inverter. 
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4.  RESULTS and DISCUSSIONS 

In this chapter, the simulation results of the proposed inverter system according to 

the each fault conditions are presented. The simulations are made under different 

switching frequencies and with different load types (purely resistive and resistive-

inductive loads). Moreover, Diode-Bridge MOSFET bi-directional switch and 

Common-Source MOSFETs bi-directional switch models are tested separately and 

compared with each other considering the quality parameters like total harmonic 

distortion and efficiency.  

4.1 No Fault Condition 

The proposed inverter system is fed by 52V DC source. In this mode, the inverter has 

15 levels in one period at the output stage. The simulations are made for two 

different bi-directional switch configurations: DB-MOSFET-BDS and Common-

Source-MOSFETs-BDS. Furthermore, two types of loads are tested: purely resistive 

(R=50Ω) and series connected resistive-inductive load (R=50Ω, L=10mH). The 

switching frequency is altered from 1 kHz to 20 kHz to achieve best results. 

When DB-MOSFET-BDS is used with purely resistive load, the resulted output 

voltage and the output current with 2 kHz switching frequency are shown in Figure 

4.1 and Figure 4.2, respectively. The peak value of the output voltage is 358.951 V 

and its effective value is 253.81 Vrms. If there were no voltage loss in the circuit, 

expected value of the output voltage would be 52*7=364V. Total voltage loss in the 

circuit is nearly 7V. Output current’s peak value is 7.179A and its effective value is 

5.076.The input current has 50.3A peak value and 32.04A average value. The 

efficiency of the system is calculated by the formula:  

in

out

P

P
xEfficiency 100                                                                                                                                            (4.1) 

Where Pout is defined as multiplication of the output voltage’s effective value with 

output current’s effective value and Pin is defined as multiplication of input voltage 
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(DC) with input currents(shaped as full-rectified wave) average value. The output 

power of the system becomes 1288.33W and input power becomes 1666W ,so the 

efficiency of the system becomes 77.3% when DB-MOSFET-BDS is used with 

purely resistive load under 2 kHz switching frequency. 

When the THD of the output voltage and output current is checked at different 

switching frequencies, it can be seen that all THD values are less %5 than except 

1kHz, as shown in Table 4.1. When the switching frequency is increased, the THD of 

voltage and current approaches to zero. However, switching losses increases with 

increased switching frequency and it reduces the output voltage magnitude.     

Table 4.1 : Output voltage and current parameters with DB-MOSFET and with    

resistive load 

Switching 

Frequency 

fs(kHz) 

DB-MOSFET-BDS 

VTHD=ITHD 

(%) 

VAC-PEAK 

(V) 

IAC-PEAK 

(A) 

1 5,34 358,403 7,168 

2 1,67 358,951 7,179 

4 0,82 358,246 7,165 

6 0,64 357,905 7,158 

8 0,57 357,885 7,157 

12 0,52 357,811 7,156 

20 0,49 357,444 7,148 

When we tested R-L load at the output stage, we see that output voltage reduces 

about 2V when compared with purely resistive load. The THD of the current 

decreases dramatically by the factor of load’s inductance when switching frequency 

is increased, but THD of the voltage stays between the interval of %2-%3, as shown 

in Table 4.2. The efficiency becomes 77.5% for RL load under 2 kHz switching 

frequency. Output voltage and current waveforms are shown in Figure 4.3 and Figure 

4.4, respectively. 
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Figure 4.1 : Output voltage with DB-MOSFET-BDS with purely resistive load. 

 

Figure 4.2 : Output current with DB-MOSFET-BDS with purely resistive load. 
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Table 4.2: Output voltage and current parameters with DB-MOSFET and with R-L 

load. 

Switching 

Frequency 

fs(kHz) 

DB-MOSFET-BDS 

VTHD ITHD VAC-PEAK IAC-PEAK 

1 5,48 4,69 357,780 7,129 

2 2,94 1,3 357,480 7,120 

4 2,72 0,82 356,825 7,100 

6 2,66 0,75 356,548 7,092 

8 2,63 0,72 356,489 7,090 

12 2,54 0,71 356,412 7,088 

20 2,39 0,69 356,319 7,083 

 

 

Figure 4.3 : Output Voltage with DB-MOSFET-BDS with R-L load. 
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Figure 4.4 : Output current with DB-MOSFET-BDS with R-L load. 

When CS-MOSFETs-BDS is used with pure resistive load, the voltage loss decreases 

nearly 2V when compared with DB-MOSFET-BDS. Total voltage loss of the system 

is approximately 4V.  Furthermore, %0.1 improvement is provided in THD 

values.For different switching frequencies the THD value, peak values of output 

voltage and current are shown in Table 4.3. The efficiency becomes 77.81% for 

purely resistive load under 2 kHz switching frequency. 

Table 4.3: Output voltage and current parameters with CS-MOSFETs-BDS and with 

resistive load. 

Switching 

Frequency 

fs(kHz) 

CS-MOSFETs-BDS 

VTHD=ITHD VAC-PEAK IAC-PEAK 

1 5,48 360.4 7.2082 

2 1,63 360.95 7.2192 

4 0,74 360.25 7.2051 

6 0,55 359,91 7,1981 

8 0,47 359.89 7.1978 

12 0,41 359,815 7,1963 

20 0,37 359,456 7,1891 
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When R-L load is tested, again 2V enhancement provided in output voltage peak 

value, but the THD values do not change significantly, as shown in Table 4.4. The 

efficiency becomes 77.48% for resistive-inductive load under 2 kHz switching 

frequency. 

Table 4.4: Output voltage and current parameters with CS-MOSFETs-BDS and with 

R-L load. 

Switching 

Frequency 

fs(kHz) 

CS-MOSFETs-BDS 

VTHD ITHD VAC-PEAK IAC-PEAK 

1 5,56 4,79 359.79 7.1692 

2 2,9 1,25 359.483 7.16 

4 2,7 0,74 358.83 7.1407 

6 2,66 0,66 358,55 7,1324 

8 2,69 0,63 358.487 7.1307 

12 2,66 0,62 358,4 7,1282 

20 2,68 0,6 358,325 7,1235 

 

4.2 Fault Conditions 

When a fault occurres in one of the H-Bridge inverters, the level of the output 

voltage decreases one level at quarter cycle, and system produces 13 voltage levels in 

one period. At fault instants the system is again fed by 52V DC source. Total 

simulation time is 0.1 second and fault instants are identified by the external signals 

at 0.04 second. Moreover, for fault conditions the comparisons of DB-MOSFET-

BDS and CS-MOSFETs-BDS are made again. The fault conditions are examined for 

each H-Bridge inverter separately and output stage parameters are presented in 

depth.  

4.2.1 First inverter fault condition 

When a fault occurred at 0.04 second in the first inverter with resistive load, while 

switching frequency is 2 kHz, if we use DB-MOSFET-BDS, the inverter’s output 

voltage peak value decreases to 307.45V whose effective value is 217.4V, and  

inverter’s output current’s peak value decreases to 6.148A (4.34Arms), as presented in 

Figure 4.5 and Figure 4.6. The average value of drawn current from DC source 
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reduces to 23.5A. After fault condition the efficiency becomes 77.34% for purely 

resistive load under 2 kHz switching frequency. 

If CS-MOSFETs-BDS is used the system’s output voltage peak value  decreases to 

309.43V whose effective value is 218.8 Vrms as shown in Figure 4.7. Moreover, the 

proposed inverter’s output current has 6.188A peak value whose effective value is 

4.37Arms which is  illustrated in Figure 4.8. After fault condition the efficiency 

becomes 77.8% for purely resistive load under 2kHz switching frequency. 

If it is taken into account that the system can continue working in voltage range 

±10% of 230V, these output voltage levels are acceptable. When these two bi-

directional switches are compared for different switching frequencies, which is 

shown in Table 4.5, CS-MOSFETs-BDS has less conduction losses and a bit lower 

THD values. The THD of voltage and current increases due to the  level decrease, 

but still these THD rates are mostly less than 5% which are admissible. The THD 

analyses in Table 4.5 are made for the time interval 0.04-0.1 seconds. 

 

Figure 4.5 : Output voltage when a fault occurred in  first inverter if  DB-MOSFET-

BDS used with resistive load. 
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Figure 4.6 : Output current when a fault occurred in  first inverter if  DB-MOSFET -

BDS used with resistive load. 

 

Figure 4.7 : Output voltage when a fault occurred in the first inverter if  CS-

MOSFET-BDS used with resistive load. 
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Figure 4.8 : Output current when a fault occurred in the first inverter if CS-

MOSFET-BDS is used with resistive load. 

When  R-L load is tested, it can be seen from Table 4.6 that CS-MOSFETs-BDS has 

nearly 2V less conduction losses when compared with DB-MOSFET-BDS at 

different switching frequencies. As expected, THD of current decreases dramatically 

for both BDS types when the switching frequency is increased due to the load’s 

inductance. However, this inductance prompts to output voltage’s THD staying at 5-

6% levels. Especially for the CS-MOSFETs-BDS, the ripples in the output voltage 

blocks the reduction of THD with increasing switching frequency. 

After fault condition, the efficiency becomes 77.02% for purely resistive load under 

2kHz switching frequency when DB-MOSFET-BDS is used and 77.51% when CS-

MOSFET-BDS is used. Output voltage and output current waveforms are presented 

in the Figure 4.9 and Figure 4.10 for DB-MOSFET-BDS, and in Figure 4.11 and 

Figure 4.12 for CS-MOSFETs-BDS.   

 

 



  
66 

Table 4.5 : Output voltage and current parameters for a resistive load when a fault 

occurred in first inverter. 

Switching 

Frequency 

fs(kHz) 

DB-MOSFET-BDS CS-MOSFETs-BDS 

VTHD=ITHD 

(%) 

VAC-PEAK 

(V) 

IAC-PEAK 

(A) 

VTHD=ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

1 6,41 307,36 6,147 6,36 309,36 6,187 

2 3,01 307,45 6,148 2,93 309,43 6,188 

3 1,99 307,05 6,140 1,92 309,00 6,180 

4 1,49 306,77 6,135 1,44 308,77 6,175 

6 1,00 306,43 6,128 0,96 308,44 6,169 

8 0,77 306,57 6,131 0,72 308,58 6,171 

12 0,54 306,27 6,125 0,49 308,29 6,165 

20 0,40 305,63 6,112 0,33 307,65 6,153 

Table 4.6: Output voltage and current parameters for a R-L load when a fault 

occurred in first inverter. 

Switching 

Frequenc

y fs(kHz) 

DB-MOSFET-BDS CS-MOSFETs-BDS 

VTHD 

(%) 

ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

VTHD 

(%) 

ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

1 7,64 4,68 306,91 6,119 7,58 4,66 308,88 6,159 

2 6,39 2,08 306,23 6,100 6,37 2,02 308,21 6,140 

3 6,04 1,37 305,91 6,090 6,11 1,32 307,88 6,130 

4 5,94 1,04 305,63 6,081 6,12 0,99 307,60 6,120 

6 5,68 0,71 305,33 6,072 6,01 0,67 307,32 6,113 

8 5,49 0,56 305,35 6,073 6,07 0,52 307,30 6,113 

12 5,12 0,41 305,10 6,066 6,05 0,37 307,09 6,106 

20 4,57 0,33 304,81 6,052 6,09 0,28 306,89 6,093 
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Figure 4.9 : Output voltage when a fault occurred in the first inverter if  DB-

MOSFET-BDS used with R-L load. 

 

Figure 4.10 : Output current when a fault occurred in the first inverter if  DB-

MOSFET-BDS used with R-L load. 
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Figure 4.11 : Output voltage when a fault occurred in the first inverter if  CS-

MOSFET-BDS used with R-L load. 

 

Figure 4.12 : Output current when a fault occurred in the first inverter if  CS-

MOSFET-BDS used with R-L load. 
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4.2.2 Second inverter fault condition 

Once a fault occurres in the second inverter, similar results with first inverter fault  

emerges if a resistive load is tested. When DB-MOSFET-BDS is used; the output 

voltage’s peak value falls to 306V in average and output current’s peak value drops 

to 6,1A ,shown in Figure 4.13 and Figure 4.14 with 2 kHz switching frequency. 

Likewise, when CS-MOSFETs-BDS is used; the voltage’s peak value falls to 308V 

in average, and current’s peak value drops to 6,15A,represented in Figure 4.15 and 

Figure 4.16. Output voltage and current parameters are shown in Table 4.7. The CS-

MOSFETs-BDS saves the advantage of less conduction losses and  has 2V less 

voltage drop than DB-MOSFET-BDS. The average value of the DC current (input 

current) drops to 23.56A for CS-MOSFETs-BDS and 23.44A for DB-MOSFET-

BDS. After fault, under 2kHz switching frequency, the efficiency becomes 76.81% 

and 77.7% for DB-MOSFET-BDS and CS-MOSFETs-BDS, respectively. 

However, when R-L load is tested, as shown in Figure 4.17, a problem occurs if CS-

MOSFETs-BDS is used that is at fault instant voltage reaches very rapidly up to 

1900V for a very short time. After these impulses, the system recover itself and 

reaches to steady-state conditions. As can be seen in  Table 4.8, these impulses 

makes the THD a bit higher than DB-MOSFET-BDS’s results.   

Table 4.7: Output voltage and current parameters for a resistive load when a fault 

occurred in the second inverter. 

Switching 

Frequency 

fs(kHz) 

DB-MOSFET-BDS CS-MOSFETs-BDS 

VTHD=ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

VTHD=ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

1 5,59 306,79 6,136 5,56 308,80 6,176 

2 2,56 306,59 6,131 2,50 308,59 6,172 

3 1,70 305,84 6,117 1,64 307,85 6,157 

4 1,29 305,83 6,116 1,22 307,84 6,156 

6 0,89 305,49 6,110 0,81 307,49 6,150 

8 0,71 305,43 6,108 0,61 307,44 6,148 

12 0,53 305,15 6,103 0,41 307,162 6,143 

20 0,40 304,62 6,092 0,28 306,8 6,136 
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Figure 4.13 : Output current when a fault occurred in  first inverter if  DB-

MOSFET-BDS is used with resistive load. 

 

Figure 4.14 : Output current when a fault occurred in the second inverter if  CS-

MOSFETs-BDS is used with resistive load. 
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Figure 4.15 : Output voltage when a fault occurred in the second inverter if  DB-

MOSFET-BDS is used with resistive load. 

 

Figure 4.16 : Output current when a fault occurred in the second inverter if  CS-

MOSFETs-BDS is used with resistive load. 
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Table 4.8: Output voltage and current parameters for a R-L load when a fault 

occurred in the second inverter. 

Switching 

Frequency 

fs(kHz) 

DB-MOSFET-BDS CS-MOSFETs-BDS 

VTHD 

(%) 

ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

VTHD 

(%) 

ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

1 6,90 4,21 306,10 6,103 6,78 4,15 308,11 6,141 

2 5,77 1,87 304,96 6,070 5,71 1,81 306,96 6,109 

3 5,50 1,24 304,74 6,063 5,47 1,18 306,74 6,103 

4 5,44 0,94 304,37 6,050 5,58 0,88 306,35 6,092 

6 5,31 0,66 304,10 6,045 5,39 0,58 306,09 6,085 

8 5,22 0,53 304,07 6,044 5,44 0,44 306,07 6,084 

12 5,02 0,41 303,82 6,036 5,41 0,29 305,82 6,077 

20 4,67 0,34 303,53 6,027 5,46 0,2 305,5 6,067 

These impulses are not seen in the output current as illustrated in Figure 4.18 and 

THD of current decreases as usual with increasing switching frequency. 

Furthermore, this problem does not occur when DB-MOSFET-BDS is used  as 

shown in Figure 4.19 and 4.20.After fault, under 2kHz switching frequency, the 

efficiency becomes 77.34% when CS-MOSFETs-BDS is used with R-L load. 

Moreover, the efficiency is 76.31% when DB-MOSFET-BDS is used with R-L load. 

 

Figure 4.17 : Output voltage when a fault occurred in the second inverter if  CS-

MOSFETs-BDS is used with R-L load. 
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Figure 4.18 : Output current when a fault occurred in the second inverter if  CS-

MOSFETs-BDS is used with R-L load. 

 

Figure 4.19 : Output voltage when a fault occurred in the second inverter if  DB-

MOSFET-BDS is used with R-L load. 
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Figure 4.20 : Output current when a fault occurred in the second inverter if  DB-

MOSFET-BDS is used with R-L load. 

4.2.3 Third inverter fault condition 

The third inverter  fault is the most important fault condition for the system because, 

most of the power is transferred to the load via this inverter’s transformer. When the 

resistive load is tested, it can be seen from Table 4.9, again the CS-MOSFETs-BDS’s 

has the 2V less conduction losses and less THD values when compared to DB-

MOSFET-BDS. Output voltage and current waveforms under 2 kHz switching 

frequency  are represented for both bi-directional switches in Figure 4.21-4.24. On 

the other hand, the voltage magnitudes after the fault is at the lowest level if we 

check against to the other fault conditions. In average, output voltage peak values are  

4V less than first inverter fault condition and 3V less than second inverter fault 

condition, but still this voltage values are enough to keep system working. The 

average value of the DC current (input current) drops to 23.3A for CS-MOSFETs-

BDS and 23.24A for DB-MOSFET-BDS. After fault, under 2kHz switching 

frequency, the efficiency becomes 76.45% and 77.24% for DB-MOSFET-BDS and 

CS-MOSFETs-BDS, respectively. 
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Table 4.9: Output voltage and current parameters for a resistive load when a fault 

occurred in the third inverter. 

Switching 

Frequency 

fs(kHz) 

DB-MOSFET-BDS CS-MOSFETs-BDS 

VTHD=ITHD 

(%) 

VAC-PEAK 

(V) 

IAC-PEAK 

(A) 
VTHD=ITHD VAC-PEAK 

IAC-

PEAK 

1 4,45 305,12 6,103 4,43 307,11 6,142 

2 2,06 304,02 6,079 2,00 305,92 6,121 

3 1,42 303,51 6,070 1,35 305,50 6,110 

4 1,13 302,91 6,059 1,04 304,91 6,099 

6 0,88 302,64 6,053 0,77 304,62 6,092 

8 0,77 302,63 6,052 0,64 304,60 6,091 

12 0,69 302,28 6,045 0,55 304,27 6,085 

20 0,64 301,70 6,034 0,49 303,68 6,073 

 

 

Figure 4.21 : Output voltage when a fault occurred in the third inverter if  DB-

MOSFET-BDS is used with resistive load. 
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Figure 4.22 : Output current when a fault occurred in the third inverter if  DB-

MOSFET-BDS is used with resistive load. 

 

Figure 4.23 : Output voltage when a fault occurred in the third inverter if  CS-

MOSFETs-BDS is used with resistive load. 
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Figure 4.24 : Output current when a fault occurred in the third inverter if  CS-

MOSFETs-BDS is used with resistive load. 

When RL load is tested with CS-MOSFETs-BDS, we faced again voltage impulses 

at fault instant like in the second inverter fault condition as shown in Figure 4.25. At 

fault instant voltage rises up to 4722V, but still THD of the system is not affected. 

When the switching frequency is increased, the THD of the voltage stays at 4-5% by 

the reason of small fluctuations caused by the load’s inductance. If the Figure 4.26 is 

considered, it can be noticed that the output current does not involve any impulses at 

fault instant and its THD drastically decreases by increasing frequency. These 

mentioned voltage impulses are beside the point for DB-MOSFET-BDS. The output 

voltage and current waveforms under 2 kHz switching frequency are presented in 

Figure 4.27 and 4.28, respectively. Output voltage and current parameters for a RL 

load when a fault occurred in the third inverter is presented in Table 4.10. After fault, 

under 2kHz switching frequency, the efficiency becomes 76.43% when CS-

MOSFETs-BDS is used with R-L load. Moreover, the efficiency is 76.15% when 

DB-MOSFET-BDS is used with R-L load. 
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Table 4.10: Output voltage and current parameters for a RL load when a fault 

occurred in the third inverter. 

Switching 

Frequency 

fs(kHz) 

DB-MOSFET-BDS CS-MOSFETs-BDS 

VTHD 

(%) 

ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

VTHD 

(%) 

ITHD 

(%) 

VAC-

PEAK 

(V) 

IAC-

PEAK 

(A) 

1 5,86 3,53 303,87 6,052 5,70 3,51 305,85 6,091 

2 4,88 1,64 302,07 6,004 4,75 1,58 304,02 6,043 

3 4,70 1,16 301,55 5,952 4,55 1,08 303,54 6,029 

4 4,68 0,95 301,31 5,981 4,55 0,85 303,30 6,024 

6 4,63 0,77 300,97 5,974 4,49 0,66 302,96 6,014 

8 4,61 0,69 300,92 5,973 4,52 0,57 302,90 6,013 

12 4,55 0,64 300,57 5,963 4,51 0,5 302,55 6,003 

20 4,40 0,61 300,33 5,951 4,54 0,47 302,31 5,995 

 

 

Figure 4.25 : Output voltage when a fault occurred in the third inverter if  CS-

MOSFETs-BDS is used with R-L load. 
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Figure 4.26 : Output current when a fault occurred in the third inverter if  CS-

MOSFETs-BDS is used with R-L load. 

 

Figure 4.27 : Output voltage when a fault occurred in the third inverter if  DB-

MOSFET-BDS is used with R-L load. 
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Figure 4.28 : Output current when a fault occurred in the third inverter if  DB-

MOSFET-BDS is used with R-L load. 
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5. CONCLUSION 

In this thesis, a fault-tolerant cascaded H-Bridge quasi-eight level multilevel inverter 

with single DC source, output transformers is designed, and reconfiguration 

technique is applied. The simulations are done in MATLAB-SIMULINK 

environment. This thesis aims to increase the fault tolerance of the multilevel 

inverters, which have high number of semi-conductor elements, that is a critical issue 

for the buildings have vital importance like hospitals and for the institutions where 

the stopping the whole system causes very much financial loss. 

The proposed inverter was grounded on three identical cascaded H-Bridge inverters, 

which are fed by a single 52V DC source. One of these inverters was modulated by 

pulse-width modulation while other two inverters are modulated at low switching 

frequencies to reduce the switching losses. Each H-Bridge inverter was connected to 

its own transformer and secondary windings of the transformers are connected in 

series to sum up the produced voltage. The turns ratios of the transformers are 

identified as exponent 2 which are 1:1, 1:2, and 1:4. In order to provide a fault-

tolerant system, four bi-directional switches were used for changing the turns-ratios 

of the transformers to keep the system working at acceptable voltage levels. If any 

fault occurs in one of the H-Bridge inverters, the turn-ratios of the transformers and 

modulation techniques of the H-Bridge inverters are changed, so the proposed 

system can continue working with one level voltage decrease in quarter cycle. Two 

types of bi-directional switches: The Diode-Bridge MOSFET bi-directional switches 

(DB-MOSFET-BDS) and Common Source MOSFETs bi-directional switches (CS-

MOSFETs-BDS) were tested separately for no-fault condition and fault conditions of 

each H-Bridge inverter. Moreover, comparisons were made for these bi-directional 

switches up to the quality parameters of the output voltage and current, total 

harmonic distortion and efficiency, with different switching frequencies (1-20 kHz). 

The simulation results show that the system has nearly 2% THD values when no 

fault exists and less than 5% THD values at fault conditions without any filtering 

stage at the output side the proposed system has 78% efficiency in average. 

Moreover, the results show that the CS-MOSFETs-BDS has 2V less conduction 
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losses and better THD values when compared to DB-MOSFET-BDS. However, if 

CS-MOSFETs-BDS is used, some voltage impulses occur at fault instants of the 

second and third inverters. The efficiency of the proposed inverter is nearly 78% at 

no fault condition and 77% at fault instants. Moreover, the efficiency is a bit higher 

when CS-MOSFET is used. 

The usage of transformers and bi-directional switches in the designed system 

increases cost of production and volume of the whole system. However, this 

proposed inverter can find  a place to itself  in the inverter market under the class of 

“reliable inverters”.  

The future work of this thesis, an inverter can be designed by identifying the turns-

ratios of the transformers as exponent 3 (1:3
0
,1:3

1
,…). Furthermore, fault tolerance 

of the system can be increased by designing a new control system, which can keep 

the system working even if more than one H-Bridge inverter has faults. 

 



  
83 

REFERENCES  

[1] International Energy Agency (IEA), (2011). World Energy Outlook 2011, , 

Paris, France. Retrieved from <http://www.eia.gov>, data retrieved 

16.12.2012 

[2] Turkish National Committee, (2011). Energy Report 2011, ISSN: 1301-6318, 

Ankara, Turkey. 

[3] REN21, (2012). Renewables 2012 Global Status Report, Paris, France. Retrieved 

from <http://www.ren21.net>, data retrieved 16.12.2012, 

[4] P. Schweizer-Ries et al. (2000). Successful User Schemes for Photovoltaic Stand 

Alone Systems, Solar Energy for Rural Electrification-Lesson 

Learned, Fraunhofer-Institut für Solar EnergieSysteme-ISE and 

others, Freiburg, Germany. 

[5] Daher,S. , Schmid, J. and Antunes, F. (2008). Multilevel Inverter Topologies 

for Stand-Alone PV Systems, IEEE Transactions On Industrial 

Electronics, Vol. 55, pp. 2703-2712. 

[6] Bitar,J. (2011). PWM Techniques: A Pure Sine wave Inverter, 2010-2011 

Worcester Polytechnic Institute Major Qualifying Project, Worcester, 

UK. 

[7] Daher, S. (2006). Analysis, Design and Implementation of a High Efficiency 

Multilevel Converter for Renewable Energy Systems, PhD Thesis, 

Kassel University, Germany. 

[8] Khomfoi,S., and Tolbert, L.M. (2007). Multilevel Power Converters, Chapter in 

Power Electronics Handbook, Second Edition: Devices, Circuits and 

Applications, Academic Press. 

[9] Rodriguez, J.,  Lai, J.S., and Peng, F.Z. (2002).  Multilevel Inverters: A Survey 

of Topologies, Controls and Applications, IEEE Transactions on 

Industrial Electronics, Vol. 49, pp. 724-738. 

[10] De Doncker,R.W. (1999). Recent Developments of Power Electronic 

Components for High Power Applications, in Proc. Conf. Rec. Conf.: 

Modern Power Semicond. Power Electron. Syst. Railway Applicat., 

pp.1-32. 

[11] Bernet,S. (2006). State-of-the-art and Developments of Medium Voltage 

Converters – an Overview, Przeglad Elektrotechniczny (Electrical 

Review), Vol. 82, pp.1-10. 

[12] Bitar, S.J. (2011). PWM Techniques: A Sine Wave Inverter, Major Qualifing 

Project, Worcester Polytechnique University.  



  
84 

[13] Calais, M., Agilities, V.G. (1998). Multilevel Converters for Single-phase Grid 

Connected Photovoltaic Systems an Overview, in Proc. of the IEEE 

International Symposium on Industrial Electronics, Pretoria, South 

Africa, Vol. 1, pp. 224-229. 

[14] Nabae, A., Takahashi, I., and Akagi, H. (1980). A New Neutral-point 

Clamped PWM inverter, in Proc. of Industry Applications Society 

Conference, pp.761-766. 

[15] Liu,Y. (2006). Advanced Modulation, Control and Application for Multilevel 

Inverters, USA, PhD Thesis, North Carolina State University, Raleigh. 

[16] Du,Z. (2005). Active Harmonic Elemination in Multilevel Inverters, USA, PhD 

Thesis, The University of Tennesse, Knoxville. 

[17] Baker, R.H., Bannister, L.H. (1975). Electric Power Converter, U.S. Patent, 

No: 3 867 643. 

[18] Mohan, N., Undeland, T. (1989). Power Electronics: Converters, Applications, 

and Design. Wiley, New York. 

[19] Tolbert, L.M., Member, S., Peng, F.Z. (2002). Charge Balance Control 

Schemes for Cascade Multilevel Converter in Hybrid Electric 

Vehicles, in Proc. of  IEEE power engineering society summer 

meeting, pp. 1058-1064. 

[20] Jimenez, O.L.. Vargas, R.A., Aguayo, J. (2011). THD in Cascaded Multilevel 

Inverters Symmetric and Asymmetric, Electronics, in Robotics and 

Automotive Mechanics Conference, pp. 289-295. 

[21] Pérez, M.A., Cortés, P., Rodríguez,J., Member, S. (2008). Predictive Control 

Algorithm Technique for Multilevel Asymmetric Cascaded H-Bridge 

Inverters, in Proc. of IEEE power engineering society summer 

meeting,  pp. 4354-4361. 

[22] González,J., Valla, M.I., and Christiansen, C.F. (2008). Un Nuevo Enfoque 

de Análisis Sobre Topologías Multinivel, Laboratorio de Electrónica 

Industrial, Universidad Nacional de La Plata, CC. 91, Argentina. 

[23] Schmid, M. (1988). Inverter for Converting a Direct Voltage into an Alternating 

Voltage, U.S. Patent, No: 4775923. 

[24] Fraunhofer-Insitut Solare Energiesysteme-ISE. (2001). Compendium of 

Projects on Rural Electrification and Off-Grid Power Supply, 

Freiburg-Germany. 

[25] Glinka, M. (2004). Prototype of Multiphase Modular Multilevel Converter with 

2 MW Power Rating and 17-level-output-voltage, in Proc.of the 

Power Electronics Specialists Conference-PESC 04,Vol. 4, pp. 2572-

2576, Freiburg, Germany. 

[26] Glinka, M., and Marquardt, R. (2005). A New AC/AC Multilevel Converter 

Family, IEEE Transactions on Industrial Electronics, Vol. 4, pp.662-

669. 

[27] Trace Engineering Company Inc. (1999). SW Series Inverter/Charger, 

Owner’s Manual. 



  
85 

[28] Xantrex Technology Inc. (2003). Sine Wave Plus Inverter/Charger Owner’s 

Manual, Canada Patent, No:976-0043-01-02. 

[29] Sirisukpraset, S. (1999). Optimized Harmonic Stepped-waveform for 

Multilevel Inverter, PhD Thesis, Virginia Polytechnic Institute and 

State University, USA. 

[30] Franquelo, L.G., Rodríguez, J., Leon, J.I., Kouro,S. Portillo,R., And Prats, 

M. (2008). The Age of Multilevel Converters Arrives, IEEE 

Industrial Electronics Magazine,Vol. 2, pp. 28-39. 

[31] Tolbert, L.M.,  Peng, F.Z. and Habetler, T.G. (2000).  Multilevel PWM 

Methods at Low Modulation Indices, IEEE Transactions on Power 

Electronics, Vol. 15, pp. 719-725. 

[32] McGrath, B. P., and Holmes, D.G. (1999). Opportunities for Harmonic 

Cancellation with Carrier Based PWM for Two-level and Multi-level 

Cascaded Inverters, in Proc. of Conf. Rec. 1999 IEEE/IAS Annual 

Meeting, Vol. 2, pp. 781-788. 

[33] Mueller, O. and Gran, R. (1998). Reducing Switching Losses in Series 

Connected Bridge Inverters and Amplifiers, U.S. Patent, no: 

5,734,565. 

[34] Carrara, G., Gardella, S., Marchesoni, R., Salutari, R., and Sciutto, G. 

(1992). A new Multilevel PWM Method: A Theoretical Analysis, 

IEEE Trans. Power Electron., Vol. 7, pp. 497–505. 

[35] Bornhardt, K.E. (1990-1991). Novel Modulation Techniques for DC-side 

Commutated Inverters, in Proc. 4
th

 Int. Conf. Power Electronics and 

Variable-Speed Drives, pp. 92–97. 

[36] Ozpineci,B., Tolbert, L.M. and Chiasson, J.N. (2005). Harmonic 

Optimization of Multilevel Converters Using Genetic Algorithms, 

IEEE Power Electron. Lett., Vol. 3, pp. 92–95. 

[37] Du, Z., Tolbert,L.M. and Chiasson,J.N. (2006). Active Harmonic Elimination 

for Multilevel Converters, IEEE Trans. Power Electronics, Vol. 21, 

pp. 459–469. 

[38] Li, L., Czarkowski, D., Liu,Y., and Pillay, P. (2000). Multilevel Selective 

Harmonic Elimination PWM Technique in Series-connected Voltage 

Inverters, IEEE Trans. Ind. Applicat., Vol. 36, pp. 160–170. 

[39] Kouro,S., Bernal, R. Silva, C., Rodríguez, J.,  and Pontt, J. (2006). High 

Performance Torque and Flux Control for Multilevel Inverter Fed 

Induction Motors, in Proc. 32nd Ann. Conf. IEEE Industrial 

Electronics Society (IECON’06), pp. 805–810, Paris, France. 

[40] Benboujema, C., Schellmanns, A.,  Batut, N.  Quoirin, J.B., Ventura, L. 

(2000). Low Losses Bidirectional Switch for AC Mains, S2E2 Public 

Research Organizations, Université de Tours, Laboratoire de 

Microélectronique de Puissance, France. 

[41] Benboujema, C., Schellmanns, A.,   Ventura, L., Lequeu, T. (2009). 

Improvement of a Bidirectional Field Effect Transistor (FET) Switch 

with Less Loss, IEEE International Symposium on Industrial 

Electronics (ISlE 2009),Seoul, Korea. 



  
86 

[42] Wang,B. Guo,X.,Wang, L., Li, X., Sun, X. (2009). A new Fault-tolerant 

Control Method for Cascaded Multilevel Inverter, in Proc.of Power 

Electronics and Motion Control Conference, pp. 1479-1482,China. 

[43] Iman-Einiy, H.,  Farhangi , S., Schanen, J. and Khakbazan-Fard, M. 

(2010). A Fault-tolerant Control Strategy for Cascaded H-bridge 

Multilevel Rectifiers, Journal of Power Electronics, Vol. 10, pp. 34-

42. 

[44] Francois, B. (2002). Design of a Fault Tolerant Control System for N.P.C. 

Multilevel Inverter, No: 0-7803-7369-3. 

[45] Hammond, P.W. (2002). Enhancing the Reliability of Modular Medium 

Voltage Drives, IEEE Transaction on Industrial Electronics, pp. 948-

954. 

[46] Khoucha, F., Ales, A., Khoudiri, A.,  Marouani, K., Benbouzid, M.E.H. and 

Kheloui, A. (2010). A 7-level Single DC Source Cascaded H-Bridge 

Multilevel Inverters Control Using Hybrid Modulation, in XIX 

International Conference on Electrical Machines, Rome. 

[47] Bernet, S., Krug, D., Fazel, S.S. and Jalili, K. (2005). Design and Comparison 

of 4.16 kV Neutral Point Clamped, Flying Capacitor and Series 

Connected H-bridge Multi-level Converters, in Proc. of Industry 

Application Conference, Vol 1, pp. 121-128. 

[48] Du, Z., Tolbert, L.M., Chiasson, J.N., and Özpineci, B. (2006). A Cascade 

Multilevel Inverter Using a Single DC Source, in Applied Power 

Electronics Conference and Exposition. 

[49] Colak,I., Kabalci, E., Bayindir, R. (2011). Review of Multilevel Voltage 

Source Inverter Topologies and Control Schemes, Energy Conversion 

and Management, Vol. 52, pp. 1114-1128. 

[50] Rodríguez, J. Lai, J.S., and Peng,F.Z. (2002).  Multilevel Inverters: A Survey 

of Topologies, Controls, and Applications, IEEE Transactions On 

Industrial Electronics, Vol. 49, pp. 724-738. 

[51] Rodríguez, J. , Bernet, S., Wu, B., Pontt, J.O. and Kouro, S. (2007). 
Multilevel Voltage-source-converter Topologies for Industrial 

Medium-voltage Drives, IEEE Transactions On Industrial 

Electronics, vol. 54, pp. 2930-2945. 

[52] Malinowski, M., Gopakumar, K. Rodriguez, J., and Pérez, M.A. (2010). A 

Survey on Cascaded Multilevel Inverters, IEEE Transactions On 

Industrial Electronics, Vol. 57, pp. 2197-2206. 

[53] Palanivel, P., Dash, S.S. (2011). Analysis of THD and Output Voltage 

Performance for Cascaded Multilevel Inverter Using Carrier Pulse 

Width Modulation Techniques, IET Power Electronics, Vol. 4, pp. 

951–958. 

[54] Daher, S., Schmid, J., and Antunes, F.L.M. (2008). Multilevel Inverter 

Topologies for Stand-alone PV Systems, IEEE Transactions On 

Industrial Electronics, Vol. 55, pp.2703-2712. 



  
87 

[55] Beig, A.R.,  Kumar, U., Ranganathan, V.T. (2004). A Novel Fifteen Level 

Inverter for Photovoltaic Power Supply System, in Conference IAS 04, 

India. 

[56] Patangia, H., and Gregory, D. (2010). An Efficient Cascaded Multilevel 

Inverter Suited for PV Application, in Proc.of Photovoltaic Specialists 

Conference, pp. 2859-2863. 

[57] Farokhnia, N., Fathi, S.H., Yousefpoor, N., Bakhshizadeh, M.K. (2012).  
Minimisation of Total Harmonic Distortion in a Cascaded Multilevel 

Inverter by Regulating Voltages of DC Sources, IET Power Electron, 

Vol. 5, pp. 106–114. 

[58] Pereda, J., Dixon, J. (2011). High-Frequency Link: A solution for Using Only 

One DC Source in Asymmetric Cascaded Multilevel Inverters, IEEE 

Transactions On Industrial Electronics, Vol. 58, pp.3884-3892. 

[59] Kwon, C., Choi, W., Hong, U., Hyun, S., Kang, F. (2010). Cascaded H-

Bridge Multilevel Inverter Using Trinary DC sources, in Proc. of 

Electrical Machines and Systems Conf., pp.52-55. 

[60] Tsang, K.M., Chan, W.L. (2012). 27-Level DC–AC Inverter with Single 

Energy Source, Energy Conversion and Management, Vol. 53, pp. 99-

107. 

[61] Liao, J., Corzine, K., and Ferdowsi, M. (2008). A New Control Method for 

Single-dc-source Cascaded H-Bridge Multilevel Converters Using 

Phase-shift Modulation, in Proc. of Applied Power Electronics 

Conf.and Exp., pp.886-890. 

[62] Vazquez, S., Leon, J.I., Franquelo, L.G., Padilla, J.J., and Carrasco, J.M. 

(2009). DC-voltage-ratio Control Strategy for Multilevel Cascaded 

Converters Fed with a Single DC Source, IEEE Transactions On 

Industrial Electronics, Vol. 56, pp. 2513-2521. 

[63] Li, H., Wang, K., Zhang, D., Ren, W. (2007). Improved Performance and 

Control of Hybrid Cascaded H-Bridge Inverter for Utility Interactive 

Renewable Energy Applications, in Proc.of Power Electronics 

Specialists Conf., pp. 2465-2471.  

[64] Barcenas, E., Ramirez, S., Cardenas, V., Echavarria, R. (2002). Cascade 

Multilevel Inverter with Only One DC Source, Proc. in Power 

Electronics Congress, pp. 171-176. 

[65] Weiss, H., Ince, K. (2010). Decentralized Supply System with Renewable 

Energy Based on Quasi-eight-level Inverter, in Proc. Of 

Computational Technologies in Electrical and Electronics 

Engineering, Russia. 

[66] Kang, F., Park, S., Cho, S.E., Kim, C., Ise, T. (2005). Multilevel PWM 

Inverters Suitable for the Use of Stand-alone Photovoltaic Power 

Systems, IEEE Transactions On Energy Conversion, Vol. 20, pp. 906-

915. 



  
88 

[67] Kang, F., Cho, S.E., Park, S., Kim, C., Ise, T. (2005). A New Control Scheme 

of a Cascaded Transformer Type Multilevel PWM Inverter for a 

Residential Photovoltaic Power Conditioning System, Solar Energy, 

Vol. 78, pp. 727–738. 

[68] Kang, F., Park, S., Leeand, L.H., Kim,C. (2005). An Efficient Multilevel-

Synthesis Approach and Its Application to a 27-level Inverter, 

Industrial Electronics,Vol. 52, pp. 1600-1606. 

[69] Kang, F. (2009). A modified Cascade Transformer-based Multilevel Inverter 

and Its Efficient Switching Function, Electric Power Systems 

Research,Vol. 79, pp.1648-1654. 

[70] Kang, F. (2010). Modified Multilevel Inverter Employing Half and Full-bridge 

Cells with Cascade Transformer and Its Extension to Photovoltaic 

Power Generation, Electric Power Systems Research, Vol. 80, 

pp.1437-1445. 

[71] Kang, F., Park, S., Kim, C., and Cho, S.E. (2004). Half-bridge and Full-bridge 

Cell Based Multilevel PWM Inverter with Cascaded Transformers, in 

Proc.of  47th IEEE International Midwest Symposium on Circuits and 

Systems, Vol. 2, pp. 273-276. 

[72] Suresh, Y., Panda, A.K., Mahesh, M. (2010). An Improved Performance of 

Cascaded Multilevel Inverter with Single DC Source by Employing 

Three-phase Transformers, in Proc. of IPEC-10, pp.1088-1093.  

[73] Suresh, Y., Panda, A.K., Mahesh, M. (2010). Performance of Cascade 

Multilevel H-Bridge Inverter with Single DC Source by Employing 

Low Frequency Three-phase Transformers, in Proc. of IECON-10, 

pp.1981-1986. 

[74] Panda, A.K., Suresh, Y. (2012). Research on Cascade Multilevel Inverter with 

Single DC Source by Using Three-phase Transformers, Electrical 

Power and Energy Systems, Vol. 40, pp. 9-20. 

[75] Song, S.G., Kang, F., and Park, S. (2009). Cascaded Multilevel Inverter 

Employing Three-phase Transformers and Single DC Input, Industrial 

Electronics, Vol. 56, pp. 2005-2014. 

[76] Xue, Y. and Manjrekar, M. (2010). A New Class of Single-phase Multilevel 

Inverters, in  Proc. of 2nd IEEE International Symposium on Power 

Electronics for Distributed Generation Systems, pp. 565-571. 

[77] Choi, W., Kwon, C., Hong, U., Kang, F. (2010). Cascaded H-bridge 

Multilevel Inverter Employing Bidirectional Switches, in Proc. of 

International Conference on Electrical Machines and Systems 

(ICEMS), pp. 102-106. 

[78] Benboujema, C., Schellmanns, A., Ventura, L., Lequeu, T. (2009). 
Improvement of a Bidirectional Field Effect Transistor (FET) Switch 

with Less Loss, in Proc. of  IEEE International Symposium on 

Industrial Electronics-ISlE, pp. 2001-2005, Seoul. 



  
89 

[79] Benboujema, C., Schellmanns, A., Ventura, L., Théolier, L. (2009). 

Improvement of a Bidirectional Switch for Electric Network, in Proc. 

of International Conference On Communication, Computer And 

Power-ICCCP, pp.243-246 Muscat. 

[80] Lezana, P., Pou, J., Meynard, T.A., Rodriguez, J., Ceballos, S., and 

Frédéric Richardeau, F. (2010). Survey on Fault Operation on 

Multilevel Inverters, IEEE Trans. Industrial Electronics, Vol. 57, pp. 

2207-2218. 

[81] Turpin, C., Baudesson, P., Richardeau, F., Forest, F., and Meynard, T.A. 

(2002). Fault Management of Multicell Converters, IEEE Trans. 

Industrial. Electronics, Vol. 49, pp. 988-997. 

[82] Khomfoi, S. and Tolbert, L.M. (2006). Fault Diagnosis System for A 

Multilevel Inverter Using a Principal Component Neural Network, in 

Proc. of Power Electronics Specialists Conference -PESC '06, pp. 1-7. 

[83] Rashidi-Rad, N., Rahmati, A., Abrishamifar, A. (2012). Comparison of 

Reliability in Modular Multilevel Inverters, Przegląd 

Elektrotechniczny, Vol. 88, pp. 268-272. 

[84] Barriuso, P., Dixon, J., Flores, P., and Morán, L. (2009). Fault-tolerant 

Reconfiguration System for Asymmetric Multilevel Converters Using 

Bidirectional Power Switches, IEEE Transactions On Industrial 

Electronics, vol. 56, pp. 1300-1306. 

[85] S.Khomfoi, Praisuwanna, N., Tolbert, L.M. (2010). A Hybrid Cascaded 

Multilevel Inverter Application for Renewable Energy Resources 

Including a Reconfiguration Technique, in Proc. of Energy 

Conversion Congress and Exposition (ECCE), pp.3998-4005. 

  



  
90 

 

 

 

 

 

 

 

 

  



  
91 

 

 

CURRICULUM VITAE 

 
 

Name Surname:  Muhammet BİBEROĞLU 

Place and date of birth:  Erzurum – 23/06/1987 

Address:  Yalova University, Engineering Faculty,  

Kazım Karabekir Mah., Rahmi Üstel Cad. No:1,  

77100, Yalova - TURKEY 

E-Mail:  mbiberoglu@yalova.edu.tr 

Universities and 

Colleges attended:    

Eskişehir Osmangazi University, 

Electrical&Electronics Engineering Department, 2010 

Çelebi Mehmet High Scholl, 2005 

Professional Experience and Rewards:  

                                             Research and Teaching Assistant, Energy Systems 

Engineering Department, Yalova University, Since 

2010 

List of Publications: 

 Altıntaşı C., Biberoğlu M., Yufka A., Parlatuna O. (2010). Direct-Motion 

Diagonal and Perpendicular Parking for a Vehicle with and   without a Trailer, in 

Proc. of 1st International Symposium on Computing in Science & Engineering, 

pp. 559-564. 

 


