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MAY 2014
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trusted in and tirelessly guided me during my thesis with his scientific knowledge and
experience. His great sincerity, kindness and valuable discussions and suggestions
was indispensable for me. I would like to thank also the members of Nano Energy
Research Group (NERG) and all academic, administrative and employee staff of ITU
Energy Institute for their helps and supports. Lastly, I would like to thank my family
for their invaluable efforts on me.

I hope this thesis can put a drop into the ocean of knowledge.

MAY 2014 Alhun AYDIN
Physicist

ix



x



TABLE OF CONTENTS

Page

FOREWORD........................................................................................................... ix
TABLE OF CONTENTS........................................................................................ xi
ABBREVIATIONS ................................................................................................. xiii
LIST OF TABLES .................................................................................................. xv
LIST OF FIGURES ................................................................................................xvii
LIST OF SYMBOLS .............................................................................................. xxi
SUMMARY .............................................................................................................xxiii
ÖZET ....................................................................................................................... xxv
1. INTRODUCTION .............................................................................................. 1

1.1 Purpose of Thesis ........................................................................................... 2
1.2 Literature Review ........................................................................................... 2
1.3 Structure of Thesis.......................................................................................... 4

2. THERMODYNAMIC QUANTITIES OF IDEAL QUANTUM GASES....... 7
2.1 Exact Expressions of Thermodynamic Quantities ......................................... 7

2.1.1 Nature of Quantum Statistics.................................................................. 7
2.1.2 Distribution Functions in Quantum Statistics......................................... 9
2.1.3 Thermodynamic Quantities Based On Infinite Sums ............................. 12
2.1.4 Thermodynamic Potentials and Conjugate Variables............................. 14

2.2 Conventional Expressions of Thermodynamic Quantities ............................. 15
2.2.1 General Definition of Thermal de Broglie Wavelength.......................... 15
2.2.2 Density of States for a D-dimensional Arbitrary Domain...................... 16
2.2.3 Thermodynamic Quantities of a 3D Quantum Gas ................................ 18
2.2.4 Thermodynamic Quantities of a 2D Quantum Gas ................................ 22
2.2.5 Thermodynamic Quantities of a 1D Quantum Gas ................................ 24

2.3 Confinement Parameter .................................................................................. 26
2.4 Evaluation of Summations by Using Poisson Summation Formula............... 27

3. 1D FERMI GAS CONFINED IN AN ANISOMETRIC DOMAIN ............... 33
3.1 1D Thermodynamic Quantities with Regular Stepwise Behavior.................. 33
3.2 1D Thermodynamic Quantities with Regular Peakwise Behavior ................. 40

3.2.1 Nature of Fermi-Dirac Variance Function and Discrete Fermi Point..... 46
3.3 Size Dependency of 1D Fermi Gas ................................................................ 52

4. 2D FERMI GAS CONFINED IN AN ANISOMETRIC DOMAIN ............... 55
4.1 2D Thermodynamic Quantities with Quasi-irregular Stepwise Behavior...... 55

4.1.1 Diagonal and Non-diagonal Elements of the State Matrix..................... 59
4.2 2D Thermodynamic Quantities with Quasi-irregular Peakwise Behavior ..... 60

xi



4.2.1 Discrete Fermi Line................................................................................ 61
4.3 Oscillatory Quantum Size Effects in 2D Entropy and Heat Capacity ............ 64

4.3.1 Anisotropic Size Dependence................................................................. 64
4.3.2 Isotropic Size Dependence ..................................................................... 65

5. 3D FERMI GAS CONFINED IN AN ISOMETRIC DOMAIN..................... 67
5.1 3D Thermodynamic Quantities with Quasi-irregular Stepwise Behavior...... 67
5.2 3D Thermodynamic Quantities with Quasi-irregular Peakwise Behavior ..... 69

5.2.1 Discrete Fermi Surface ........................................................................... 71
5.3 Oscillatory Quantum Size Effects in 3D Entropy and Heat Capacity ............ 73

6. EXCESS THERMAL ENERGY STORAGE AT NANO SCALE ................. 77
REFERENCES........................................................................................................ 81
APPENDICES......................................................................................................... 83

APPENDIX A: MATHEMATICAL SUPPLEMENT.......................................... 85
1.1 Derivation of Boltzmann Entropy Formula .................................................... 85
1.2 Derivation of Poisson Summation Formula ................................................... 87
1.3 Useful Integrals............................................................................................... 87
1.4 Polylogarithm Functions and Their Series Expansions.................................. 88
1.5 First Order Temperature Corrections To Chemical Potential ......................... 89

1.5.1 Derivation in 3D ..................................................................................... 89
1.5.2 Derivation in 2D ..................................................................................... 90
1.5.3 Derivation in 1D ..................................................................................... 90

APPENDIX B: THERMODYNAMIC SUPPLEMENT ...................................... 91
2.1 Glossary of Thermodynamics......................................................................... 91
2.2 Glossary of Related Quantum Mechanical Concepts ..................................... 92
2.3 Laws of Thermodynamics .............................................................................. 93

CURRICULUM VITAE......................................................................................... 95

xii



ABBREVIATIONS

0D : Zero-dimensional
1D : One-dimensional
2D : Two-dimensional
3D : Three-dimensional
BE : Bose-Einstein
FD : Fermi-Dirac
FWHM : Full Width at Half Maximum
Li : Polylogarithm function
MB : Maxwell-Boltzmann
PSF : Poisson Summation Formula
QBL : Quantum Boundary Layer
QSE : Quantum Size Effects
Var : Variance

xiii



xiv



LIST OF TABLES

Page

Table 2.1 : Exact sum and the terms of PSF for different degeneracy and
confinement values: ............................................................................ 28

xv



xvi



LIST OF FIGURES

Page

Figure 2.1 : Comparison of continuous and confined domains. ............................. 27
Figure 2.2 : Loose separation of continuous and confined domains by

confinement parameter. ....................................................................... 27
Figure 2.3 : Exact sum and terms of PSF in one dimension changing with

dimensionless chemical potential for continuous domain (α = 0.1). 29
Figure 2.4 : Exact sum and terms of PSF in one dimension changing with

dimensionless chemical potential for relatively weakly confined
domain (α = 3)................................................................................... 30

Figure 2.5 : Exact sum and terms of PSF in one dimension changing with
dimensionless chemical potential for strongly confined domain
(α = 40).............................................................................................. 30

Figure 2.6 : Exact sum and terms of PSF in one dimension changing with
confinement parameter (Λ = 40). ....................................................... 31

Figure 3.1 : A prototype of an anisometric 1D domain with α1 = 1, α2 = 40
and α3 = 40......................................................................................... 34

Figure 3.2 : Number of particles vs dimensionless chemical potential for 1D
Fermi gas with α1 = 1, α2 = 40 and α3 = 40..................................... 35

Figure 3.3 : Dimensionless internal energy per particle vs dimensionless
chemical potential for 1D Fermi gas with α1 = 1,α2 = 40,α3 = 40. 38

Figure 3.4 : Variation of number of particles and dimensionless internal energy
per particle with dimensionless chemical potential α1 = 0.1,α2 =
40,α3 = 40.......................................................................................... 39

Figure 3.5 : Variation of dimensionless internal energy per particle for α1 =
1 (left subfigure) and α1 = 0.1 (right subfigure) with number of
particles where α2 = 40,α3 = 40. ...................................................... 40

Figure 3.6 : Variation of dimensionless entropy per particle with dimensionless
chemical potential for 1D Fermi gas with α1 = 1,α2 = 40,α3 = 40. 42

Figure 3.7 : Variation of dimensionless entropy per particle with dimensionless
chemical potential for 1D Fermi gas with α1 = 0.1,α2 = 40,α3 = 40. 43

Figure 3.8 : Dimensionless entropy and entropy per particle and its variation
with confinement parameter in the first direction for Λ = 3250 and
α2 = 40,α3 = 40................................................................................. 43

Figure 3.9 : Variation of dimensionless heat capacity per particle with
dimensionless chemical potential for 1D Fermi gas with α1 = 1
(left subfigure), α1 = 0.1 (right subfigure) and α2 = 40,α3 = 40...... 44

xvii



Figure 3.10: Dimensionless heat capacity and heat capacity per particle and its
variation with confinement parameter in the first direction for Λ =
3250 and α2 = 40,α3 = 40. ................................................................ 45

Figure 3.11: Dimensionless heat capacity divided by dimensionless entropy and
its variation with confinement parameter in the first direction for
Λ = 3250 and α2 = 40,α3 = 40. ........................................................ 45

Figure 3.12: Distribution function (blue curve) and its variance (red curve)
around Fermi point for 1D Fermi gas with α1 = 1,α2 = 40,α3 =
40 and N = 50. .................................................................................... 47

Figure 3.13: Examination of variance function vs dimensionless chemical
potential for confined domains with α1 = 1,α2 = 40,α3 = 40. ......... 48

Figure 3.14: Examination of variance function vs dimensionless chemical
potential for nearly free domains with α1 = 0.1,α2 = 40,α3 = 40.... 48

Figure 3.15: Appearance of stepwise behavior due to size confinement, in FD
distribution function, for constant chemical potential, Λ = 3250
and α2 = α3 = 40................................................................................ 49

Figure 3.16: Appearance of peakwise behavior due to size confinement, in the
FD variance function, for constant chemical potential, Λ = 3250
and α2 = α3 = 40................................................................................ 50

Figure 3.17: Comparison of stepwise and peakwise natures over the 1st law of
thermodynamics.................................................................................. 50

Figure 3.18: How discrete nature appears?.............................................................. 51
Figure 3.19: Number of particles, dimensionless specific internal energy,

entropy and heat capacity changing with confinement parameter
in the first direction for a 1D Fermi gas. ............................................. 52

Figure 4.1 : A prototype of an anisometric 2D domain with α1 = 3, α2 = 3 and
α3 = 40. .............................................................................................. 55

Figure 4.2 : Number of particles vs dimensionless chemical potential for 2D
Fermi gas with α1 = 3, α2 = 3 and α3 = 40....................................... 57

Figure 4.3 : Number of particles vs dimensionless chemical potential for 2D
Fermi gas with α1 = 0.1, α2 = 0.1 and α3 = 40. ............................... 57

Figure 4.4 : Dimensionless internal energy per particle vs dimensionless
chemical potential for discrete (left subfigure) and continuous
(right subfigure) cases with α1 = 3 and α1 = 0.1 respectively.
α2 = 3 and α3 = 40 for both cases. .................................................... 58

Figure 4.5 : Dimensionless internal energy per particle vs number of particles
for discrete (left subfigure) and continuous (right subfigure) cases
with α1 = 3 and α1 = 0.1 respectively. α2 = 3 and α3 = 40 for
both cases. ........................................................................................... 59

Figure 4.6 : Regular behavior becomes quasi-irregular in 2D and 3D Fermi
gases, due to degeneracy of energy levels........................................... 60

Figure 4.7 : Dimensionless entropy per particle vs dimensionless chemical
potential for discrete (left subfigure) and continuous (right
subfigure) cases with α1 = 3 and α1 = 0.1 respectively. α2 = 3
and α3 = 40 for both cases. ................................................................ 60

xviii



Figure 4.8 : Dimensionless heat capacity per particle vs dimensionless
chemical potential for discrete (left subfigure) and continuous
(right subfigure) cases with α1 = 3 and α1 = 0.1 respectively.
α2 = 3 and α3 = 40 for both cases. .................................................... 60

Figure 4.9 : Idealized and discrete Fermi lines and Fermi shell for 2D Fermi
gas with α1 = 3,α2 = 3,α3 = 40. On the left subfigure, N=50 and
on the right subfigure, N=52. .............................................................. 62

Figure 4.10: Dimensionless entropy per particle (left subfigure) and entropy
itself (right subfigure) changing with number of particles where
α1 = 3,α2 = 3,α3 = 40. ..................................................................... 63

Figure 4.11: Dimensionless heat capacity per particle varying with number of
particles for 2D Fermi gas with α1 = 3, α2 = 3 and α3 = 40. ........... 64

Figure 4.12: Number of particles (left subfigure) and dimensionless internal
energy per particle (right subfigure) changing with confinement
parameter in the first direction α1. ...................................................... 65

Figure 4.13: Dimensionless entropy per particle (left subfigure) and specific
heat (right subfigure) changing with confinement parameter in the
first direction α1. ................................................................................. 65

Figure 4.14: Dimensionless entropy per particle (left subfigure) and specific
heat (right subfigure) changing with confinement parameter of first
and second directions α1, α2. ............................................................. 66

Figure 5.1 : A prototype of an isometric 3D domain with α1 = 3, α2 = 3 and
α3 = 3. ................................................................................................ 67

Figure 5.2 : Variation of number of particles with dimensionless chemical
potential for a 3D domain with α1 = 3, α2 = 3 and α3 = 3. .............. 68

Figure 5.3 : Variation of dimensionless internal energy per particle with
dimensionless chemical potential for a 3D domain with α1 = 3,
α2 = 3 and α3 = 3............................................................................... 69

Figure 5.4 : Dimensionless entropy per particle varying with dimensionless
chemical potential for a 3D domain with α1 = 3, α2 = 3 and α3 = 3. 70

Figure 5.5 : Dimensionless entropy per particle varying with particle number
for a 3D domain with α1 = 3, α2 = 3 and α3 = 3. ............................. 70

Figure 5.6 : Dimensionless heat capacity per particle varying with dimension-
less chemical potential for a 3D domain with α1 = 3, α2 = 3 and
α3 = 3. ................................................................................................ 71

Figure 5.7 : Dimensionless heat capacity per particle varying with particle
number for a 3D domain with α1 = 3, α2 = 3 and α3 = 3................. 71

Figure 5.8 : Idealized and discrete Fermi surface and Fermi shell surfaces for
3D Fermi gas with α1 = 3,α2 = 3,α3 = 3. ........................................ 73

Figure 5.9 : Oscillations in dimensionless entropy per particle varying with
confinement parameter in the first direction for N = 50, α2 = 3
and α3 = 3........................................................................................... 74

Figure 5.10: Oscillations in dimensionless heat capacity per particle varying
with confinement parameter in the first direction for N = 50,
α2 = 3 and α3 = 3............................................................................... 74

xix



Figure 5.11: Dimensionless entropy per particle (left subfigure) and dimen-
sionless heat capacity per particle (right subfigure) changing with
isometric confinement in first and second directions while third
one is constant (α3 = 3) for N = 50.................................................... 75

Figure 5.12: Dimensionless entropy per particle (left subfigure) and dimen-
sionless heat capacity per particle (right subfigure) changing with
isometric confinement in all directions. .............................................. 75

Figure 6.1 : Dimensionless specific heat varying with domain size in the 1st
direction for T = 5K. .......................................................................... 78

Figure 6.2 : Dimensionless specific heat varying with domain size in the 1st
direction for T = 7K. .......................................................................... 78

Figure 6.3 : Ratio of the CV vs L1 results for T = 5K and T = 7K. ....................... 79
Figure A.1: Entropy have to be additive while multiplicity is not.......................... 85

xx



LIST OF SYMBOLS

A : Area
C : Circumference
CV : Heat capacity at constant volume
D : Dimension
E : Energy
f : Distribution function
F : Free Energy
g : Energy level
G : Gibbs free energy
h : Planck’s constant
h̄ : Reduced Planck’s constant
H : Enthalpy
He : Helium
i : Momentum state
I : Imaginary unit
k : Wave number
kB : Boltzmann’s constant
K : Kelvin
L : Length
Lc : A scale factor based on de Broglie wavelength
m : Mass
N : Number of particles
p : Momentum
P : Pressure
Q : Heat
S : Entropy
T : Temperature
U : Internal energy
V : Volume
W : Work
ℵ : Number of eigenvalues
α : Confinement parameter
δ : Full width at half maximum
ε : Energy eigenvalue
γe : Proportionality constant of electronic heat capacity
γL : Proportionality constant of lattice heat capacity

xxi



Γ : Gamma function
G : Density of states
λth : Thermal de Broglie wavelength
Λ : Dimensionless chemical potential
µ : Chemical potential
∇ : Vector differential operator
ψ : Wave function
Ψ : Total wave function
Θ : Heaviside step function
Ω : Macrostate multiplicity
Z : Grand partition function

xxii



ON THE DISCRETE NATURE OF THERMODYNAMICS

SUMMARY

Thermodynamics is one of the oldest and most significant disciplines in natural
sciences. Mainly it concerns with energy and its relation to entropy and work. Since we
are surrounded by energy, almost every thing in nature is related with thermodynamics
in some way. Before the quantum revolution in 1920’s, thermodynamics was one
of the most well-established discipline in the scientific world. On the other side,
with the understanding and insight that quantum mechanics gives us now, it might
be the time to reconsider some things even in well-established areas of physics like the
thermodynamics itself.

For centuries, it was assumed that thermodynamic quantities have continuous nature,
since they represent macroscopic properties of the system. For the first time, we
showed for Fermi gases that thermodynamic quantities intrinsically have discrete
nature which reveals itself properly in nano scale where quantum effects dominate
the system. One cannot separate quantum mechanics from thermodynamics at
nano scale and below. Although continuum approximation is very useful to study
thermodynamics of macro systems, in nano scale it apparently fails. Therefore,
thermodynamic properties of nano systems cannot be calculated by classical and
conventional methods.

The proper calculation of thermodynamic quantities in nano scale confined structures
have to be done by using the exact summations of thermodynamic state functions.
Converting them to integrals by using density of states concept is not valid in strongly
degenerate and confined structures, since that process eventually vanishes size effects.
As confinement increases, wavefunctions of particles start to be affected prominently
by the boundaries of the domain due to quantum mechanical reasons. This leads to a
stepwise behavior in the summation of Fermi-Dirac distribution function and since all
thermodynamic properties contains the distribution function inside the summations, all
of them are affected by the confinement and present discrete behaviors.

Two distinct type of discrete behaviors observed in thermodynamic quantities;
stepwise and peakwise behaviors. Stepwise behaviors observed in variations of
number of particles, internal energy, free energy and pressure with chemical potential,
whereas peakwise behaviors observed in variations of entropy and heat capacity with
chemical potential, number of particles, confinement parameter and domain size in one
direction. The ones exhibit stepwise behavior contains the summation over distribution
function which generates steps and others that exhibit peakwise behavior contains the
summation over the derivative of distribution function (or variance function) which
generates peaks. Detailed examination of peakwise behavior in entropy and heat
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capacity showed that Fermi line and Fermi surfaces are also discrete. These odd
phenomena come directly from the quantum nature of Fermi-Dirac statistics.

Behaviors of thermodynamic state functions also depend on the dimension of
the momentum space. In one-dimensional structures, thermodynamic quantities
have regular discrete nature whereas for multi-dimensional structures, they have
quasi-irregular nature due to the degeneracy of energy levels.

Effects introduced in this thesis may lead to the development of new nano devices
that stores thermal energy at nano scale in a more efficient way. Finally, proposal
of an experimental verification of discrete and oscillatory nature in thermodynamic
quantities is discussed.

xxiv



TERMODİNAMİĞİN KESİKLİ DOĞASI ÜZERİNE

ÖZET

Temelde sistemin enerjisinin ısı ve iş alış-verişi ile ilişkilerini inceleyen termodinamik
disiplini, doğa bilimlerinin en eski ve en önemlilerinden biridir. Yaşadığımız
bu dünyada veya daha genel olarak evrende tüm süreçlere enerji alış-verişi eşlik
ettiğinden aslında her şey bir bakıma termodinamik ile ilgilidir. 1920’lerdeki
kuantum devriminden önce bilim camiasında termodinamik en sağlam ve köklü
disiplinlerden biri olarak görülmekteydi. Günümüzde ise, kuantum mekaniğinin
bize kazandırdığı anlayış sayesinde, fiziğin en oturmuş kabul edilen alanlarından biri
olan termodinamikte bile bazı şeyleri yeniden gözden geçirmenin zamanının geldiği
anlaşılmaktadır.

Termodinamik büyüklüklerin yıllardır sürekli değişkenler oldukları varsayılmıştı.
Büyük ölçekli sistemler için doğru olan bu yaklaşım, nano ölçekte kuantum
davranışların da sebebi olan maddenin dalga karakterinin önemli hale gelmesi
nedeniyle geçerliliğini yitirmektedir. Tezde ilk defa Fermi gazları için termodinamik
büyüklüklerin içsel bir kesikli doğası olduğu ve bu özelliğin kuantum etkilerin
sistemde hakim olduğu nano ölçeklerde daha belirgin bir şekilde ortaya çıktığı
gösterilmiştir. Kuantum etkilerin sistemdeki hakimiyetinden dolayı, nano ölçek ve
altında sistemin termodinamiği, kuantum mekaniğinden ayrı incelenemez. Süreklilik
yaklaşımı her ne kadar büyük ölçekte ve hatta orta ölçeklerde kullanışlı olsa da,
nano sistemlerde geçerli olmayıp hatalı sonuçlar verir. Bu nedenle, nano sistemlerin
termodinamik özellikleri hesaplanırken alışılagelmiş klasik yöntemlerin kullanılması
doğru olmaz.

Parçacık sayısı, iç enerji, entropi, basınç, serbest enerji ve ısı sığası gibi termodinamik
büyüklükler tanımları gereği toplam formülleri ile ifade edilir. Klasik termodinamikte
hesap ve işlem kolaylığı açısından toplamlar süreklilik yaklaşımı altında integrallerle
yer değiştirilir. Bu yer değiştirme sırasında hal yoğunluğu kavramından yararlanılır.
Kuantum etkilerinin önemsenmediği büyük ölçekli yapılarda bu işlem hem oldukça
iyi sonuçlar verir, hem de termodinamik özelliklerin analitik olarak ifade edilmesini
ve bu sayede aralarındaki ilişkilerin kolay görülmesini sağlar. Diğer yandan, kuantum
mekaniğinin doğasının bir sonucu olarak küçük ölçekli yapılarda örneğin nano ölçekte
kuantum ölçek etkileri termodinamik özellikler üzerinde rol oynamaya başlar.

Kuantum mekaniğinin sonucu olarak, tutuklanma arttıkça termodinamik özellikler de
ölçeğe ve biçime bağlı hale gelir. Doğal olarak tutuklanma ve/veya parçacık yoğunluğu
ne kadar fazlaysa, bu etki o kadar güçlenir.

Tez kapsamında; tezin amacının, literatür araştırmasının ve tezin önemli sonuçlarının
listelendiği giriş niteliğindeki ilk bölümün ardından ikinci bölümde, tezi anlamak
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için gerekli olan tüm bilgiler sistemli bir şekilde verilmeye çalışılmıştır. Kuantum
istatistiğine giriş yapılmış, dağılım fonksiyonları türetilmiş ve termodinamik
büyüklükler tanıtılmıştır. Literatürde toplam formüllerinin integrallerle nasıl yer
değiştirildiği incelenmiş ve buna göre termodinamik büyüklükler farklı boyutlarda
türetilmiştir. Ardından termodinamik toplamların analitik gösterimine olanak sağlayan
Poisson toplam formülü tanıtılmıştır. Tutuklanma değişkeni tanımlanmış ve farklı
tutuklanma değerlerinde Poisson toplam formülünün terimleri incelenmiş ve kesikli
yapının matematiksel gösterimi yapılmıştır.

Termodinamik özelliklerin kesikli doğası, 3., 4., ve 5. bölümlerde sırasıyla 1,
2 ve 3 boyutlu domenlerde ayrı ayrı incelenmiştir. Her bölümde termodinamik
büyüklüklerdeki basamaklı ve tepeli yapı ayrı altbaşlıklar altında incelenmiş ve bu
yapılara neden olan etmenler açıklanmıştır. Bunlardan kısaca bahsedersek; kuantum
etkilerin bir sonucu olan termodinamiğin kesikli yapısı, termodinamik büyüklükler
üstünde etkisini basamaklı ve tepeli olmak üzere iki farklı şekilde gösterir. Parçacık
sayısı, iç enerji, basınç ve serbest enerji gibi termodinamik büyüklüklerin kimyasal
potansiyel ve parçacık sayısı ile değişimlerinde basamaklı bir yapı gözlenmiştir. Bu
basamaklı yapı temel olarak Fermi-Dirac dağılım fonksiyonunda Fermi gazlarının ayırt
edici bir özelliği olan Pauli dışarlama ilkesi ve kütleli parçacıkların bir özelliği olan
ikinci dereceden enerji-momentum ilişkisinin aşırı yoğun ve ileri derece tutuklanmış
durumlarda çok belirgin hale gelmesi sonucu gözlemlenir. Belli termodinamik
özelliklerin türevleri ile bulunan entropi ve ısı sığası gibi termodinamik büyüklüklerde
ise Fermi-Dirac dağılım fonksiyonunun değişimi ya da türevinin tepeli doğası gereği
tepeli davranışlar gözlenir. Entropi ve ısı sığasındaki parçacık sayısı ve tutuklanma
şiddeti değişimine bağlı tepeli davranış 1, 2 ve 3 boyutta sırasıyla Fermi noktası, Fermi
doğrusu ve Fermi yüzeyinin kesikli yapısının sonucu olarak açıklanmıştır.

Termodinamik hal fonksiyonlarının farklı değişkenler altında davranışları domenin kaç
boyutlu olduğu ile de doğrudan ilişkilidir. Örneğin tek boyutlu yapılarda basamaklı ve
tepeli yapılar düzenli bir halde ilerlerken, birden fazla boyutlu yapılarda aynı kuantum
enerji seviyesinde birden fazla hal bulunabileceğinden basamaklı ve tepeli yapıların
değişimi düzensiz bir hal alır. Fermi gazlarında entropi ve ısı sığası sıfır boyutlu
bir yapıda tam olarak sıfır ve tek boyutlu yapılarda neredeyse sıfır iken, birden fazla
boyutlu yapılarda anlamlı değerler almaya başlar. Ayrıca literatürde Fermi gazlarında
yaklaşık olarak eşit kabul edilen entropi ve ısı sığasının, domendeki tutuklanma
arttıkça birbirinden oldukça farklı davrandıkları ve eşit olmadıkları gösterilmiştir.

Bazı termodinamik özellikler için gerek sürekli davranışı, gerekse de kesikli davranışı
temsil edebilen analitik bağıntılar türetilmiştir. Termodinamik özelliklerin tutuklanma
değişkeni ve ölçek ile olan bağımlılıkları incelenmiş, 2 ve 3 boyuttaki eş yönlü
olmayan tutuklanmalarda entropi ve ısı sığasında salınımlar gözlenmiştir. Eş yönlü
değişimlerde ise bu salınımlar yerini daha pürüzsüz değişimlere bırakmıştır.

Tezin son bölümünde ısı sığasındaki tepelerden yola çıkarak nano ölçekte yüksek
miktarlarda enerji depolamayı sağlayabilecek bir nano cihaz önerisi ve deneysel
çalışma için koşulların bilgisi verilmiştir. Nano ölçekte domenin boyutlarındaki
değişim, ısı sığasında literatürdekinin aksine salınımlı bir değişime yol açmaktadır.
Tezde yapılan teorik öngörüler, günümüz deneysel koşullarında test edilebilir nicelikte
görülmektedir. Isı sığasındaki domene bağlı salınımların deneysel doğrulaması,

xxvi



termodinamik özelliklerin kesikli yapısının da ve tezdeki diğer sonuçların da
doğrulaması olacaktır. Bunun yanısıra, günümüz enerji depolama tekniklerine
alternatif olabilecek yüksek miktarda ısıl enerji depolama mümkün olabilecektir.

Son olarak tezin ek kısmında tezde gereken matematiksel ve termodinamik altyapı için
gerekli bilgiler verilmiştir.
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1. INTRODUCTION

Even though quantum theory has revolutionized our way of thinking about the nature,

the results we encounter on quantum nature of matter still continue to surprise us.

Advancements in nanosciences and nanotechnologies in recent years make it possible

to examine the macroscopic manifestations of quantum mechanical behaviors of matter

in laboratories. In fact, three of the last five years Nobel prizes in physics are given

to the experimental developments in various areas of nanotechnology. As a matter of

fact, experiments are going ahead of theory in nanoscience but its theoretical basis’ are

also open to improvement.

In practical context, nanoscience and nanotechnologies have great potential to bring

innovations in energy harvesting. Quantum dot solar cells emerged recently to

increase the efficiency of solar energy systems by tuning the band gaps closely so

that benefiting from wide ranges of solar spectrum. Nano materials with large surface

area like graphene and carbon nanotubes can be used to make supercapacitors, since

increasing surface area of capacitor plates and decreasing their distance between, raises

capacitance vastly.

The importance of nanostructures comes mainly from their quantum mechanical

behaviors. Unlike bulk materials, in nano materials, quantum nature of matter

become prominent and even dominates the behavior of material, which leads

to some significant capabilities that macro materials does not have, like giant

magneto-capacitance and the importance of topological structure.

In consideration of today’s leap forwards, necessity of studying thermal properties

of nano systems became ineluctable. Nano scale thermodynamics or nanothermo-

dynamics, is a brand new as well as an important topic of nanoscience. Along

with the fundamental perspective of quantum statistics, it allows us to examine the

thermodynamic behaviors of nano systems.

1



1.1 Purpose of Thesis

Proper study of thermodynamics of nano structures in a theoretical manner became a

need. All the years before nano-revolution, scientists used classical or conventional

methods of thermodynamics. Even in mesoscales, classical thermodynamics works

quite well. However, when we go down to nano scale, things become too bizarre to be

studied in a classical way.

Appearance of quantum mechanical effects at nano scale makes thermodynamic

properties size and shape dependent. When domain sizes are smaller than thermal de

Broglie wavelength, surface, edge and corner effects reveal themselves. It is insecure

to continue using classical thermodynamics in such cases [1–3].

The main aim of this thesis is, to show that there are considerable deviations from

classical thermodynamics in degenerate quantum gases at nano scale. Specifically for

Fermi gases, they lead to some novel effects like discrete and oscillatory behaviors in

thermodynamic quantities [4, 5]. To be able to observe these behaviors, proper way of

calculating thermodynamic quantities for nano systems is introduced. Thermodynamic

quantities have being supposed to be continuous at macroscale since they are

considered by definition as macroscopic quantities. However, for the first time here, it

is shown that thermodynamic quantities of Fermi gases have intrinsic discrete nature

as a consequence of a combination of several quantum mechanical effects.

1.2 Literature Review

General principles and classical derivations of thermodynamic properties of gases

have been made by considering thermodynamic limit in many textbooks [6–8].

Nevertheless, studies about finite-size effects increased nowadays, in parallel with the

developments in nanotechnology. Numerous researches have been done to discover

the nature of gases confined in finite-size domains [1, 2, 9–14].

In 1998, Schneider and Wallis obtained some results that are in correlation with the

study of this thesis [15]. For ultracold Fermi gases in a harmonic trap, they obtained

chemical potential and specific heat from thermodynamic state sums, and in 2012,
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Chen, Su and Chen, made the similar study for quartic traps, again just for extremely

low temperatures [16].

In 2004, by performing Poisson Summation Formula (PSF) on partition function,

for a rectangular geometry, Sisman and Muller showed that considering exact

summations has several consequences like thermosize effects, anisotropic pressure

tensor and non-additive global thermodynamic properties which are not predicted

by classical thermodynamics [1]. Generalization of this concept on spherical and

cylindrical geometries and interpretation of thermosize effects as surface dependency

of thermodynamics via the geometric dependence from surface/volume ratio has been

done by Sisman in 2004 [2].

In 2007, it is theoretically shown that there is a quantum surface tension due to

inhomogeneous density distribution, which causes the quantum boundary layer (QBL)

in Maxwellian gases confined in a finite domain even in thermodynamic equilibrium

[17]. Generalization of QBL to spherical and cylindrical geometries and to irregular

arbitrary geometries has been shown in 2009 [18, 19].

In 2004 and 2008, temperature dependence of heat capacity has been just numerically

examined for non-interacting fermions with multifractal energy spectra [20, 21].

As shown by Ozturk and Sisman in 2009, QSE make small corrections on thermal and

potential conductivities of ideal Maxwell, Fermi and Bose gases. In addition, QSE are

responsible from geometric dependency of Wiedemann-Franz ratio in nano scale [22].

In 2013, by Firat and Sisman, existence of QSE and QBL is also shown for

D-dimensional arbitrary domains by using Weyl’s conjecture and in addition to that,

experimental setup for the verification of these effects has been proposed [23].

Studies of nanothermodynamics are newly developing and few researches have been

done as they are given here. In this sense, scope and results of this thesis can be

considered as novel and even surprising.
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1.3 Structure of Thesis

Exact expressions of physical quantities in thermodynamics are in notions of

summations. In this thesis, it is shown that there is an intrinsic discrete nature in

thermodynamic properties of Fermi gases. Although discrete behavior is inherent,

it reveals itself in some extreme conditions like drastically degenerate and severely

confined Fermi gas systems. We may sort the main outputs and unique results of the

thesis as

• Intrinsic discrete nature in thermodynamic properties of Fermi gas

• Regular stepwise behavior of number of particles, internal energy, free energy and

pressure in 1D Fermi gas

• Periodic peakwise behavior of entropy and heat capacity in 1D Fermi gas

• Analytic expressions for some thermodynamic properties representing their discrete

nature

• Quasi-irregular stepwise behavior of number of particles, internal energy, free

energy and pressure in 2D and 3D Fermi gases

• Non-periodic oscillatory-like peaks in entropy and heat capacity of 2D and 3D

Fermi gases

• Discrete Fermi point, Fermi line and Fermi surface

• Both behaviors and magnitudes of entropy and heat capacity of Fermi gases at nano

scale are quite different from each other

• Strong size dependency of thermodynamic properties at nano scale

• Experimental proposal for the verification of new effects introduced in the thesis

• Proposition of nano scale thermal energy storage devices based on quantum size

effects

After this introduction, in chapter two, a brief review of quantum statistical

thermodynamics is given together with a summary of supplementary explanations for
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the sake of better understanding of some concepts that are used in the thesis. Then,

in chapters three, four and five, discussions of 1D, 2D and 3D Fermi gases are done

respectively and effects of discrete nature are introduced and examined in detail with

their explanations. Possible experimental verification and useful application in energy

storage are discussed in the last chapter. In addition, some necessary mathematical

information about the formulas, methods and functions that are used in thesis are given

in Appendix A and glossaries of thermodynamics, quantum mechanics and laws of

thermodynamics are given in Appendix B.
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2. THERMODYNAMIC QUANTITIES OF IDEAL QUANTUM GASES

In this informative chapter, thermodynamics of non-interacting or in other words

ideal quantum gases are briefly reviewed. Emergence of two types of particles

with completely different statistical characters, as a direct result of their quantum

wavefunctions, are discussed. Derivation of distribution functions and fundamental

thermodynamic quantities are done in both exact and approximate forms for any

dimension and any domain.

2.1 Exact Expressions of Thermodynamic Quantities

Thermodynamic quantities are represented in summation forms by definition. In

classical thermodynamics, it is convenient to replace summations with integrals by

using continuum approximation to obtain analytical and simple expressions which

provide easiness for calculations and algebraic manipulations. Conversion from

summation to integral is useful in thermodynamic limit where the system is considered

as having infinite volume. On the other hand, for finite-size systems it is unsafe to use

integrals, since they give considerably different results than summations. To study the

thermodynamics of low dimensional quantum structures or extremely confined nano

structures, it is more appropriate to use exact state sums instead of integrals. Therefore,

exact definitions of thermodynamic properties of ideal quantum (Fermi or Bose) gases

based on infinite sums are considered in most parts of this thesis. Note that, since

masses and velocities of particles in nanostructures are extremely low in most cases,

gravitational and relativistic effects are neglected as a matter of course.

2.1.1 Nature of Quantum Statistics

To study the thermodynamics of nano scale ideal gases, it is necessary to use

quantum statistics; Fermi-Dirac (FD) or Bose-Einstein (BE), instead of classical

Maxwell-Boltzmann (MB) statistics. In this section, by starting from the most
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fundamental concepts, derivation of thermodynamic quantities for quantum gases are

given in grand canonical ensemble which is the most general statistical ensemble.

Unlike classical mechanics, particles are indistinguishable in quantum mechanics. So

an electron here is no different than an electron there. As quoted from David J.

Griffiths,

It is not merely that we don’t know which electron is which; God doesn’t know

which is which, because there is no such thing as "this" electron, or "that"

electron. [24]

Indistinguishability of particles bring a different statistical nature to quantum systems.

To examine the statistical behavior of particles in quantum mechanics, let’s take the

simplest system of two particles with wavefunctions ψa(x1) and ψb(x2). From the joint

probability of independent events, product of their individual wavefunctions gives the

wavefunction of the system, ψ(x1,x2). As a statistical fact, square of the absolute value

of the wavefunction will not change under the exchange of particles,

|ψ(x1,x2)|2 = |ψ(x2,x1)|2 (2.1)

which gives two different solutions,

ψ(x1,x2) =±ψ(x2,x1) (2.2)

where "+" and "−" respectively denote the symmetric and antisymmetric wavefunc-

tions under exchange. This result shows that in quantum mechanics there are two

different types of particles in terms of their statistical behavior. The particle with the

symmetric wavefunction is called Boson, and the antisymmetric wavefunction is called

Fermion. Although it may look a bit trivial at first sight, the sign change leads to

completely different statistical behaviors. For example when we add wavefunctions

of two Fermions to their wavefunction under the exchange, it gives zero which means

there is no wavefunction, in other words, the probability that two Fermions share the

same quantum state is zero.

ψ(x1,x2)+ [−ψ(x2,x1)] = 0 (2.3)
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This result is known as Pauli exclusion principle. On the contrary, since their

wavefunction is symmetric, Bosons have tendency to accumulate to the same quantum

state, which shows itself as Bose-Einstein condensate.

2.1.2 Distribution Functions in Quantum Statistics

In order to examine the statistical behaviors of Fermions and Bosons, we derive

distribution functions for FD and BE statistics. Distribution function as the name

implies defines how a statistical system of particles distributes. To find them, we first

define their combinatoric functions. By assuming that all states are equally likely,

number of micro states corresponding to a macro state, Ω, is the product of the

combination functions which are defined as the number of ways to arrange Ni particles

into gi states. As we can deduce the combinatoric nature of FD and BE statistics from

the nature of their particle’s wavefunctions, ΩFD and ΩBE are written as

ΩFD = ∏
i

gi!
Ni!(gi−Ni)!

(2.4)

ΩBE = ∏
i

(Ni +gi−1)!
Ni!(gi−1)!

(2.5)

where i is the quantum state, gi is the number of states corresponding to the same

energy level (in other words the degeneracy of quantum energy levels) and Ni is the

number of particles in an energy level εi. To satisfy the equilibrium condition of

thermodynamics, we maximize entropy, which is defined by Boltzmann as1

S = kB lnΩ (2.6)

where kB is the Boltzmann’s constant, which is just an invented constant and the result

of our choice of temperature scale (Kelvin scale).2 It is convenient to use Stirling’s

approximation for factorials given in Eqs. (2.4) and (2.5), after all it also reserves the

condition to make statistics and saves us from fluctuations.

x >> 1 ⇒ lnx!≈ x lnx− x (2.7)
1For the derivation of the Boltzmann entropy formula, please look at Appendix A.
2Boltzmann’s constant relates energy with temperature and it depends on our temperature scale. If

we choose our temperature scale same as our energy units, there would be no such constant, k would
equal to 1.
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Using the Stirling’s approximation and assuming Ni >> 1 for the Bose case gives,

lnΩFD = ∑
i

gi lngi−Ni lnNi− (gi−Ni) ln(gi−Ni) (2.8)

lnΩBE = ∑
i
(Ni +gi) ln(Ni +gi)−Ni lnNi− (gi−1) ln(gi−1) (2.9)

To find the most probable distribution for equilibrium condition, we’ll maximize

entropy by using Lagrange multipliers, which is a method for finding the extremum

of a function subject to some constraints. Maximizing Eqs. (2.8) and (2.9) by equating

their partial derivatives with respect to Ni leads,

∂ lnΩ

∂Ni
= ∑

i
ln
(

gi∓Ni

Ni

)
= 0 (2.10)

where here "−" sign for FD, "+" sign for BE derivation.3 Assuming total number of

particles N and total energy U are fixed, Ω function has two constraints,

∑
i

Ni = N (2.11)

∑
i

εiNi =U (2.12)

and maximizing them gives,

∂N
∂Ni

= 0 = ∑
i

dNi (2.13)

∂U
∂Ni

= 0 = ∑
i

εidNi (2.14)

where εi is the energy of ith state. Introducing Lagrange multipliers λ1 and λ2 to the

function,

d lnΩ = λ1dN +λ2dU (2.15)

∑
i

ln
(

gi∓Ni

Ni
−λ1−λ2εi

)
dNi = 0 (2.16)

3Please pay attention to ∓ and ± signs. Their order changes along the derivation.
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which becomes,

gi∓Ni

Ni
= eλ1eλ2εi (2.17)

Hence, number of particles in an energy level becomes,

Ni =
gi

eλ1+λ2εi±1
(2.18)

where now "+" sign indicates FD, whereas "−" sign indicates BE. Now, to find

Lagrange constants λ1 and λ2, from the first and second laws of thermodynamics,

in constant volume,

dU = T dS+µdN (2.19)

where T is temperature and µ is chemical potential. By inserting Boltzmann’s entropy

formula and equating Eq. (2.19) to Eq. (2.15),

kBT d lnΩ+µdN−dU = d lnΩ−λ1dN−λ2dU (2.20)

λ1 and λ2 are found as

λ1 =−
µ

kBT
, λ2 =−

1
kBT

(2.21)

We have found Ni that is the number of particles in an energy level. To find the number

of particles in a momentum state, we divide Eq. (2.18) to gi and inserting λ1 and λ2

we get distribution functions for FD (with "+" sign) and BE (with "−" sign)4

fi =
1

e(εi−µ)/kBT ±1
(2.22)

or equivalently,

fi =
1

eε̃i−Λ±1
(2.23)

where energy eigenvalues and chemical potential are written in their dimensionless

forms as ε̃i = εi/kBT and Λ = µ/kBT . It is apparent from the result that for FD,

occupation probability of a state is 0 < fi < 1 regardless of the magnitudes of variables

4For convenience it is common to neglect spin degrees of freedom gi, since for instance for a free
electron gas or He3 it is just a factor of 2, in the absence of an external magnetic field.
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as Pauli exclusion principle restricted. On the other hand, there is no such restriction

for BE as expected.

2.1.3 Thermodynamic Quantities Based On Infinite Sums

Now we are ready to derive thermodynamic properties. Summing the number of

particles in all momentum states gives the total number of particles written as

N = ∑
i

fi (2.24)

where the thermodynamic summations are always from one to infinity. Summation of

the energies of all momentum states gives the total internal energy,

U = ∑
i

εi fi (2.25)

From the definition of entropy by Eq. (2.6), taking the integral of Eq. (2.10) and

inserting lnΩ, we get,

S = kB

[
∑

i
Ni ln

(
gi

Ni
∓1
)
∓gi ln(Ni∓gi)

]
(2.26)

Turning Eq. (2.26) into a sum over momentum states gives,

S = kB

[
∑

i
( fi∓1)(εi−µ)∓ ln fi

]
(2.27)

Eq. (2.27) is the entropy in its exact, infinite summation form where "−" for FD and

"+" for BE. Now, all other thermodynamic properties can be derived by using N, U

and S. For example Helmholtz free energy (or simply called free energy) is defined

as F = U −T S and since we know how to calculate all these variables, we can find

free energy easily. From the first law of thermodynamics, dU = dQ+ dW taking the

derivative of internal energy equation given in Eq. (2.25) gives,

dU = ∑
i

εid fi +∑
i

fidεi (2.28)

In Eq. (2.28), the first term on the right hand side represents the heat term dQ and the

second term represents the work term dW . Using Eq. (2.28) and considering a simple
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system so that dW =−PdV , we can write pressure as

P =−∑
i

fi
∂εi

∂V
(2.29)

where V is volume for a 3D system. It will be area for 2D and line for 1D systems.

Now by inserting energy eigenvalues to the equation above5 pressure is,

P =
2

3V ∑
i

εi fi =
2U
3V

(2.30)

The other important thermodynamic quantity is the heat capacity which is defined as

C =
dQ
dT

(2.31)

in constant volume. From the first law of thermodynamics, it becomes,

CV =
dU
dT

(2.32)

Now let’s derive heat capacity of a Fermi gas at constant volume by differentiating Eq.

(2.25) with respect to T as

dU
dT

= ∑
i

∂εi

∂T
fi +∑

i
εi

∂ fi

∂T
(2.33)

Since ∂εi/∂T = 0, first term of the right hand side of Eq. (2.33) vanishes. Then,

dU
dT

=−∑
i

εi fi(1∓ fi)

[(
∂ ε̃i

∂T

)
V
−
(

∂Λ

∂T

)
V

]
(2.34)

where (∂ ε̃i/∂T )V = −εi/kBT 2. Only unknown term is (∂Λ/∂T )V on the Eq. (2.34).

To find it let’s use the fact that derivative of number of particles with respect to

temperature is zero. By the Eq. (2.24),

∂N
∂T

= 0 = ∑
i

fi(1∓ fi)

[
− εi

kBT 2 −
(

∂Λ

∂T

)
V

]
(2.35)

Derivative of Λ becomes, (
∂Λ

∂T

)
V
=−

∑i
εi

kBT 2 fi(1∓ fi)

∑i fi(1∓ fi)
(2.36)

5In the following subsections, energy eigenvalues will also be derived so that one can confirm this
result.
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Inserting Eq. (2.36) into Eq. (2.34),

dU
dT

= kB ∑
i

ε2
i

k2
BT 2 fi(1∓ fi)−

kB ∑i εi fi(1∓ fi)∑i
εi

k2
BT 2 fi(1∓ fi)

∑i fi(1∓ fi)
(2.37)

Finally, CV becomes,

CV = kB

[
∑

i
(ε̃i)

2 fi(1∓ fi)−
[∑i ε̃i fi(1∓ fi)]

2

∑i fi(1∓ fi)

]
(2.38)

In the derivation of heat capacity, to be able to interchange derivative operator with

summation, sum has to converge uniformly. Although speed of convergence of the our

summation depends on its variables, comparison of analytical and numerical derivative

perfectly matches with each other, so there is no uniform convergency problem in these

summations.

We introduced and derived three basic thermodynamic quantities (N, U and S) in terms

of infinite summations from their definitions and also showed that all thermodynamic

state functions (like F , P and CV ) can be derived based on them.

2.1.4 Thermodynamic Potentials and Conjugate Variables

Thermodynamic potentials are scalar quantities that represent the certain types of

energy of the system in terms of relevant variables. The main thermodynamic potential

is internal energy, U and the fundamental thermodynamic equation is written as

dU = T dS−PdV +µdN (2.39)

Other thermodynamic potentials can easily be reproduced from internal energy, U by

using Legendre transformations,

dF =−SdT −PdV +µdN (2.40)

dH = T dS+V dP+µdN (2.41)

dG =−SdT +V dP+µdN (2.42)
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where F is Helmholtz free energy, H is enthalpy and G is Gibbs free energy.

In thermodynamics, there are three conjugate variables in pairs of temperature-entropy

(T -S), pressure-volume (P-V ) and chemical potential-number of particles (µ-N),

which are representing thermal, mechanical and chemical parameters of a

thermodynamic system respectively. Here P, T and µ are intensive properties that

means independent from the amount of substance and V , S, N are extensive properties

depending on the amount of substance.

Pressure is the thermodynamic driving force that causes displacement in volume.

Analogously, temperature and chemical potential might be considered as driving forces

of displacements in entropy and particle number respectively, though they are not

actually forces in a usual sense. As heat moves from higher temperature to lower

temperature to increase the entropy of the system, particles move from higher to lower

chemical potential. Pressure, temperature and chemical potential can be written as the

gradient of thermodynamic potentials.

2.2 Conventional Expressions of Thermodynamic Quantities

Before examining thermodynamic properties at nano scale, it is appropriate to go over

their conventional forms to understand in which ways they differ from macro scale.

For this reason, in this section, conventional thermodynamic quantities are derived

in thermodynamic limit (without considering finite-size effects) by taking the most

general definitions for thermal de Broglie wavelength and density of states.

2.2.1 General Definition of Thermal de Broglie Wavelength

According to quantum mechanics, matter exhibits wave properties and has a

wavelength corresponding to its matter wave. This wavelength is called de Broglie

wavelength, and average de Broglie wavelength of ideal gas particles with a specified

temperature is called thermal de Broglie wavelength. When domain size is much larger

than thermal de Broglie wavelength, it is useful to neglect quantum effects and consider

energy levels as if they are continuous. Here λth for a general energy-momentum
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dispersion relation E = aps, is written as

λth(D,s) =
h√
π

(
a

kBT

)1/s[
Γ(D/2+1)
Γ(D/s+1)

]1/D

(2.43)

where D denotes dimension of the domain, a is energy-momentum dispersion

constant and s is energy-momentum dispersion order [25]. For massive particles,

energy-momentum dispersion relation is E = p2/2m, so a = 1/2m and s = 2. Since

s = 2 removes dimensional dependency, for any dimension Eq. (2.43) becomes,

λth =
h√

2πmkBT
(2.44)

where h is the Planck’s constant and m is the mass of the particle.

2.2.2 Density of States for a D-dimensional Arbitrary Domain

As you may noticed, there are three common variables (ε,T,µ) appear in all

thermodynamic state functions. ε is the energy eigenvalues that are solved from

relevant differential equation, in this case (quantum gas) Schrödinger equation, a

special type of Helmholtz partial differential equation,

∇
2
ψ + k2

ψ = 0 (2.45)

which turns to time-independent Schrödinger equation when wavenumber is k =
√

2mε/h̄,

− h̄2

2m
∇

2
ψ = εψ (2.46)

where h̄ = h/2π is the reduced Planck’s constant and external potential is zero.

In spectral theory, asymptotic behaviors of eigenvalues of Helmholtz-like partial

differential equations for an arbitrary domain are given by Weyl’s conjecture [23, 26].

In D-dimensions, the number of eigenvalues within an arbitrary domain is written as

ℵD(k) =
V k3

6π2 Θ(D−3)+(−1)D Ak2

4D−24π
Θ(D−2)+(−1)D−1 Ck

4D−1π
Θ(D−1)

+(−1)D−2 NC

4D

(2.47)
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where k is the wavenumber, D denotes dimension, V is volume, A is surface area, C is

circumference, NC is the number of corners and holes in the domain and Θ is Heaviside

step function which is defined as

Θ(x) =

{
0 , x < 0
1 , x≥ 0

(2.48)

Then, density of states in k-space is,

GD(k) =
∂ℵD(k)

∂k
=

V k2

2π2 Θ(D−3)+(−1)D Ak
4D−22π

Θ(D−2)

+(−1)D−1 C
4D−1π

Θ(D−1)

(2.49)

To convert density of states to ε-space we first insert k =
√

2mε/h̄ in Eq. (2.47),

ℵD(ε) =
V

6π2

(
2m
h̄2

)3/2

ε
3/2

Θ(D−3)+(−1)D Amε

4D−22π h̄2 Θ(D−2)

+(−1)D−1C
√

2mε

4D−1π h̄
Θ(D−1)+(−1)D−2 NC

4D

(2.50)

Then, taking the derivative with respect to ε gives the density of states in ε-space,

GD(ε) =
V

4π2

(
2m
h̄2

)3/2√
εΘ(D−3)+(−1)D Am

4D−22π h̄2 Θ(D−2)

+(−1)D−1 C
4D−12π h̄

√
2m
ε

Θ(D−1)

(2.51)

or equivalently,

GD(ε) = 2πV
(

2m
h2

)3/2√
εΘ(D−3)+(−1)D 2Amπ

4D−2h2 Θ(D−2)

+(−1)D−1 C
4D−1h

√
2m
ε

Θ(D−1)

(2.52)

where the first, second and third terms of Eqs. (2.51) or (2.52) are conventional density

of states equations for 3D, 2D and 1D domains, respectively represented by G3(ε),
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G2(ε) and G1(ε). Under continuum approximation, sums can be replaced by integrals

as

∑
i
(...)−→

∫
(...)G(ε)dε (2.53)

All we need for the derivation of thermodynamic properties of continuous domains are

given in their most general forms in this subsection. Now let’s examine thermodynamic

quantities for 3D, 2D and 1D cases, separately.

2.2.3 Thermodynamic Quantities of a 3D Quantum Gas

Substantially, all structures are 3-dimensional. However, confinement of the domain

in a direction, can result to a quasi-reduction of that dimension. Although the

domain is still 3-dimensional, it may behave as if it’s lower-dimensional. Ordinarily,

3-dimensional structures are called bulk structures. Number of particles N for a 3D

domain under continuum approximation is written as

N3 =
∫

∞

0

G3(ε)dε

e(ε−µ)/kBT ±1
(2.54)

where subscripts of 3,2 and 1 throughout this section indicate the numbers of

dimensions of the domain. Taking the 3D density of states only, that is the first term of

Eq. (2.51), and inserting it into Eq. (2.54) gives,

N3 =∓
V

4π2

(
2mkBT

h̄2

)3/2 √
π

2
Li3/2(∓eµ/kBT ) (2.55)

By arranging it and inserting Eq. (2.44) we can represent number of particles in terms

of thermal de Broglie wavelength as

N3 =∓
V
λ 3

th
Li3/2(∓eµ/kBT ) (2.56)

By using the first terms of asymptotic expansions of polylogarithm functions in

degenerate Fermi limit (µ >> 1), for Fermi gas, number of particles becomes,

N3 =
4V π

3

(
2m
h2

)3/2

µ
3/2
F3 (2.57)
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where µF is the chemical potential at Fermi level. Note that since we didn’t consider

temperature correction terms in the expansions of polylogarithm functions yet, µ turns

into µF in this equation. We’ll consider temperature corrections in the derivations of

entropy and heat capacity. From Eq. (2.57), by replacing N/V with denisty n, chemical

potential at Fermi level is found as

µF3 =
h2

2m

(
3n3

4π

)2/3

(2.58)

Similarly, internal energy is written in its integral form,

U3 =
∫

∞

0

εG3(ε)dε

e(ε−µ)/kBT ±1
(2.59)

Then inserting again the first term of Eq. (2.51) gives,

U3 =∓
V kBT
4π2

(
2mkBT

h̄2

)3/2 3
√

π

4
Li5/2(∓eµ/kBT ) (2.60)

By rearranging it and inserting thermal de Broglie wavelength, we have,

U3 =∓
3V kBT

2λ 3
th

Li5/2(∓eµ/kBT ) (2.61)

Using the first terms of asymptotic expansions of polylogarithm functions for Fermi

limit gives,

U3 =
4V π

5

(
2m
h2

)3/2

µ
5/2
F3

(2.62)

By inserting Eq. (2.57) into Eq. (2.62), we get the very familiar result,

U3 =
3
5

N3µF3 (2.63)

From Eq (2.30) pressure is obtained as,

P3 =
2U3

3V
(2.64)

Until now, in the derivations of conventional 3D thermodynamic quantities, we only

considered the zeroth order approximations of polylogarithm functions, which was

19



enough for the derivations of N, U and P. However, when we try to calculate our

other fundamental properties like entropy and then heat capacity, we’ll find them zero,

since we neglected the temperature correction terms in the asymptotic expansions of

polylogarithm functions. To find the expressions for entropy and heat capacity, we

have to consider at least the first order terms also. First order temperature correction to

chemical potential in 3D domain gives6

µ3 = µF3

(
1− π2k2

BT 2

12µ2
F3

)
(2.65)

By adding the first order correction term to internal energy in Eq. (2.61) we get,

U3 =
3V kBT

2λ 3
th

8Λ5/2

15
√

π

(
1+

5π2

8Λ2

)
(2.66)

Adding chemical potential correction only to the term in the nominator by using the

assumption (1+ x)n ≈ 1+nx,

U3 =
3V kBT

2λ 3
th

8Λ
5/2
F

15
√

π

(
1− 5π2

24Λ2
F

)(
1+

5π2

8Λ2
F

)
(2.67)

where ΛF = µF/kBT . Arranging it by neglecting fourth order terms emerged by

multiplications gives,

U3 =
4V kBT
5λ 3

th
√

π
Λ

5/2
F

(
1+

5π2

12Λ2
F

)
(2.68)

Inserting N3 from Eq. (2.57) into the Eq. (2.68) gives the internal energy expression

with temperature correction,

U3 =
3
5

N3µF3

(
1+

5π2k2
BT 2

12µ2
F3

)
(2.69)

Now let’s derive our other fundamental property; entropy. It’s expression was given in

section (2.1.3) by Eq. (2.27). We can easily arrange it,

S3 = kB

(
∑

i
εi fi−µ3 ∑

i
fi−∑

i
(µ3− εi)−∑

i
ln fi

)
(2.70)

6For the derivation of this, look at Appendix A.
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Then it can be written as,

S3 = kB[U−Nµ−∑
i

ln(1− fi)] (2.71)

In the equation above, the last term corresponds to the partition function which is a sum

over all states. I didn’t introduce and use the partition function in the derivations of

thermodynamic quantities to show you that it is not an obligation to define somewhat

"magic" quantities to derive thermodynamic state functions. As you see, it emerges

inside of the entropy function as a term and for brevity I’ll just put it to clarify the

notation. Again, pay attention that there is no need for a partition function to derive

thermodynamic properties, as we derived them here without using it. Then converting

sum to the integral,

−∑
i

ln(1− fi)−→−
∫
G3 ln(1− fi)dε = Z3 (2.72)

and applying density of states concept gives,

Z3 =−
V kBT

λ 3
th

Li5/2(∓eµ/kBT ) (2.73)

By adding temperature correction of chemical potential we obtain,

Z3 =
8V π

15
µ

5/2
F3

(
1− 5π2

24Λ2
F

)(
1+

5π2k2
BT 2

8µ2
F3

)
(2.74)

Inserting N3 inside the Eq. (2.74) gives,

Z3 =
2
5

N3µF3

(
1+

5π2k2
BT 2

12µ2
F3

)
(2.75)

Now putting Eqs. (2.69), (2.65) and (2.75) respectively into Eq. (2.71),

S3 = kB

[
3
5

N3µF3

(
1+

5π2k2
BT 2

12µ2
F3

)
−N3µF3

(
1− π2k2

BT 2

12µ2
F3

)

+
2
5

N3µF3

(
1+

5π2k2
BT 2

12µ2
F3

)] (2.76)
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Simplifying the above equation gives,

S3 =
π2

2ΛF
N3kB (2.77)

Heat capacity7 can easily be found by differentiating U3 in Eq. (2.69) with respect to

T as

CV =
π2

2ΛF
N3kB (2.78)

Freakishly, neglecting other temperature corrections but most importantly ignoring size

effect corrections leads to the equivalence of heat capacity and entropy in Fermi gases,

which is, we’ll see in next chapters, absolutely not true, although in literature ( [6]) it

is being used even in nano systems with incomprehensible complacency.

2.2.4 Thermodynamic Quantities of a 2D Quantum Gas

In 2D quantum gas, one direction is strongly confined so that system behaves as if it

is 2-dimensional. Such systems are also called quantum wells. In the same way we

derived the 3D quantities, let’s derive them for a 2D domain. Number of particles for

a 2D domain under continuum approximation is,

N2 =
∫

∞

0

G2(ε)dε

e(ε−µ)/kBT ±1
(2.79)

Inserting the second term of Eq. (2.52) which represents the 2D density of states gives,

N2 =∓
2Aπm

h2 (kBT )Li1(∓eµ/kBT ) (2.80)

Then for Fermions, by expanding polylogarithms to series we obtain the number of

particles for a 2D Fermi gas,

N2 =
2Aπm

h2 µ2 (2.81)

And chemical potential is,

µ2 =
h2n2

2πm
(2.82)

7By heat capacity, we always mean the electronic contribution. Lattice contributions are out of scope
of this thesis.
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where n2 = N/A. Two-dimensional internal energy is written in integral form as

U2 =
∫

∞

0

εG2(ε)dε

e(ε−µ)/kBT ±1
(2.83)

Inserting 2D density of states and taking the integral gives,

U2 =∓
2Aπm

h2 (kBT )2 Li2(∓eµ/kBT ) (2.84)

Expanding polylogarithms in degenerate Fermi limit,

U2 =
Aπm

h2 µ
2
2 (2.85)

Then internal energy in 2D Fermi gas can be written as

U2 =
N2µ2

2
(2.86)

From Eq. (2.29),

P2 =
U2

A
(2.87)

Now, like we do in 3D case, let’s insert the first order temperature corrections,

U2 = Z2 =
N2µ2

2

(
1+

π2k2
BT 2

3µ2

)
(2.88)

Here in 2D, internal energy and grand partition function become equal when we neglect

higher order terms. Since µ2 = µF2 and there is no temperature correction also in

number of particles in 2D, putting these into the entropy equation in Eq. (2.71) gives,

S2 =
N2µ2

2

(
1+

π2k2
BT 2

3µ2

)
−N2µ2 +

N2µ2

2

(
1+

π2k2
BT 2

3µ2

)
(2.89)

which turns to

S2 =
π2

3ΛF
N2kB (2.90)

Taking the derivative of Eq. (2.88) with respect to temperature, we get 2D heat capacity

at constant area,

CA =
π2

3ΛF
N2kB (2.91)

where A stands for area.
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2.2.5 Thermodynamic Quantities of a 1D Quantum Gas

Now let’s derive thermodynamic quantities of continuous 1D domains, namely

quantum wires. Number of particles for a 1D domain in thermodynamic limit can

be written as

N1 =
∫

∞

0

G1(ε)dε

e(ε−µ)/kBT ±1
(2.92)

Inserting the third term of Eq. (2.52) which represents the 1D density of states gives,

N1 =∓
C
h

√
2πmkBT Li1/2(∓eµ/kBT ) (2.93)

Expanding polylogarithms gives,

N1 =
2C
h

√
2m
√

µ1 (2.94)

Then chemical potential becomes,

µ1 =
h2n2

1
8m

(2.95)

Internal energy in integral its form is written as

U1 =
∫

∞

0

εG1(ε)dε

e(ε−µ)/kBT ±1
(2.96)

Taking the integral gives,

U1 =∓
C
h

√
2m(kBT )3/2

√
π

2
Li3/2(∓eµ/kBT ) (2.97)

From Appendix A, inserting expansions of polylogarithm function leads,

U1 =
2C
3h

√
2mµ

3/2
1 (2.98)

Then internal energy is,

U1 =
N1µ1

3
(2.99)

And here comes 1D pressure,

P1 =
2U1

C
(2.100)
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Let’s consider first order temperature corrections to find entropy in 1D. Then relation

between chemical potential at Fermi energy and chemical potential is,

µ1 = µF 1

(
1+

π2k2
BT 2

12µ2
F

)
(2.101)

Internal energy in 1D with its first order temperature correction is,

U1 =
N1µ1

3

(
1+

π2k2
BT 2

8µ2
1

)
(2.102)

Putting correction of chemical potential into it,

U1 =
N1µ1

3

(
1+

π2k2
BT 2

8µ2
1

)(
1+

π2k2
BT 2

12µ2
1

)3/2

=
N1µ1

3

(
1+

π2k2
BT 2

8µ2
1

)(
1+

π2k2
BT 2

8µ2
1

)

=
N1µ1

3

(
1+

π2k2
BT 2

4µ2
1

)
(2.103)

Number of particles and grand partition functions with first order temperature

corrections are below respectively,

N1 =
2C
h

√
2mµ1

(
1− π2k2

BT 2

24µ2
1

)
(2.104)

Z1 =
2
3

N1µ1

(
1+

π2k2
BT 2

8µ2
1

)
(2.105)

From Eq. (2.71), entropy in 1D is written,

S1 = kB

[
N1µ1

3

(
1+

π2k2
BT 2

4µ2
1

)
− 2C

h

√
2mµ1

(
1− π2k2

BT 2

24µ2
1

)

+
2
3

N1µ1

(
1+

π2k2
BT 2

8µ2
1

)] (2.106)

Entropy in 1D becomes,

S1 =
π2

6Λ
N1kB (2.107)
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Then 1D heat capacity at constant circumference,

CC =
π2

6Λ
N1kB (2.108)

where C stands for circumference.

For 0D domain, a true quantum dot, one cannot talk about a Fermi gas. For example,

in case the particles are electron, only two of them with opposite spins can occupy the

0D domain with zero-dimensional momentum space. Naturally, it is not meaningful to

talk about statistics in such condition.

2.3 Confinement Parameter

Consider a rectangular 3D domain with dimensions L1, L2 and L3. Since

thermodynamics deals with equilibrium processes, time-independent Schrödinger

equation will be considered here. Assuming that there is no penetration through

domain walls, solution of the time-independent Schrödinger equation for boundary

conditions ψ(0) = ψ(L) = 0 with normalization is,

Ψin(xn) =
3

∏
n=1

√
2
Ln

sin
(

inπxn

Ln

)
, with in = 1,2,3, ..., (2.109)

where in represents quantum states with subscript denotes the directions {1,2,3} of 3D

domain and xn stands for the position of the wavefunction. Then energy eigenvalues

for a rectangular domain are,

εin =
h2

8m

3

∑
n=1

(
in
Ln

)2

(2.110)

For convenience we shall define a confinement parameter, dimensionless inverse scale

factor α as

α =
Lc

L
=

h√
8mkBT L

(2.111)

where Lc is a scale factor based on de Broglie wavelength of particles. Here α indicates

the rate of confinement, since when α increases, confinement also increases and vice

versa. Comparison of continuous and confined domains can be roughly seen in Figure

(2.1) below:
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Figure 2.1: Comparison of continuous and confined domains.

Note that, separation of continuous and confined domains does not occur in one

certain point and transition from continuous to discrete behavior is neither sharp, nor

well-defined, just like in the case of transition from classical behavior to quantum

mechanical one. However, it is possible to loosely separate the regions that are

nearly free, relatively weakly confined and strongly confined by using the confinement

parameter α , in Fig. (2.2).

Figure 2.2: Loose separation of continuous and confined domains by confinement
parameter.

Then, for 3D domain, energy eigenvalues can be expressed in terms of α’s as

ε

kBT
= ε̃ = [(α1i1)2 +(α2i2)2 +(α3i3)2] (2.112)

We’ll use this notation in all thermodynamic state functions throughout the thesis, since

it is possible to write all thermodynamic state functions in terms of dimensionless

energy eigenvalues and dimensionless chemical potential and also it allows us to

arrange the confinement through α easily.

2.4 Evaluation of Summations by Using Poisson Summation Formula

In order to evaluate summations, we used Poisson summation formula (PSF) which

relates the summation of original function to the summation of its Fourier transform.
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For even functions (that is the case for all thermodynamic state functions), PSF can be

written as8

∞

∑
i=1

f (i) =
∫

∞

0
f (i)di︸ ︷︷ ︸

Conventional
Integral

− f (0)
2︸︷︷︸

Zero
Correction

+2
∞

∑
s=1

∫
∞

0
f (i)cos(2πsi)di︸ ︷︷ ︸

Discrete Correction

(2.113)

PSF is an exact summation formula and has some fortuitous advantages. It dissociates

the sum into three terms and fabulously separates three regions with different physical

outcomes. When thermodynamic state functions are applied into the PSF, the first

term gives the conventional integral term and represents the classical region where

the domain sizes are much larger than thermal de Broglie wavelength. The second

term gives the zero correction term that excludes false contribution from the zeroth

momentum state. This term becomes apparent in the transition region from classical

to quantum and examined in literature as QSE [1, 2, 17]. The third term is the discrete

correction term and reveals its contribution only in quantum scale where the domain

size is smaller than the thermal de Broglie wavelength of particles in the domain.

Examination of the terms of PSF for different degeneracy (Λ) and confinement (α)

values by choosing the kernel function as FD distribution function is shown in the

Table (2.1) below.

Table 2.1: Exact sum and the terms of PSF for different degeneracy and confinement
values:

Λ and α values Sum 1st Term 2nd Term 3rd Term
Λ = 0.1, α = 0.1 5.44 5.703 -0.2625 0
Λ = 20, α = 0.1 44.175 44.675 -0.5 0
Λ = 0.1, α = 3 0 0.1901 -0.2625 0.0724
Λ = 20, α = 3 1 1.48916 -0.5 0.01084
Λ = 1000, α = 3 10 10.5401 -0.5 -0.0401
Λ = 200, α = 40 0 0.35355 -0.5 0.14645
Λ = 10000, α = 40 2 2.49983 -0.5 0.00017

As we see before, summation over distribution function gives the total number of

particles in the domain. Functional behaviors of the sum and the terms of PSF

8For the derivation of PSF for even and odd functions, you may look at to the Appendix A
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is examined below in one-dimension for three cases; continuous, relatively weakly

confined and strongly confined domains. The confinement rates of domains are

calibrated through α , the confinement parameter. In Figs (2.3), (2.4) and (2.5) blue

curves represent the exact summation over FD distribution function, namely the exact

calculation of number of particles. Red curves represent the conventional integral term

in PSF or in other words number of particles function that commonly used in literature.

Yellow and green curves represent the second and third terms of PSF respectively. As

PSF suggests, adding red, yellow and green curves gives exactly the blue curves.

Figure 2.3: Exact sum and terms of PSF in one dimension changing with
dimensionless chemical potential for continuous domain (α = 0.1).

As it is seen from Fig (2.3), even for nearly continuous case, there is a small difference

between sum and integral which can be recovered by using just the second term of PSF.

In literature, consequences of this small difference examined as QSE and QBL. When

degeneracy increases, contribution of the third term of PSF vanishes for the continuous

case.
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Figure 2.4: Exact sum and terms of PSF in one dimension changing with
dimensionless chemical potential for relatively weakly confined domain
(α = 3).

In Fig. (2.4) domain size is three times smaller than the de Broglie wavelength

of particles and as a consequence of this size confinement, discrete term reveals its

oscillatory-like contribution. In Fig. (2.5) discreteness is even more apparent, where

the domain is extremely confined.

Figure 2.5: Exact sum and terms of PSF in one dimension changing with
dimensionless chemical potential for strongly confined domain (α = 40).
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In Fig. (2.6) variation of the sum and the terms of PSF with confinement parameter

α is shown for constant dimensionless chemical potential. This is a remarkable

figure that shows exactly how PSF represents discreteness of FD distribution function

properly. As confinement of the domain increases discrete contributions of the third

term appears. Even around α = 0.3 effects of confinement start to reveal itself and

as the confinement become strong, deviations from the continuous behavior become

more apparent.

Figure 2.6: Exact sum and terms of PSF in one dimension changing with confinement
parameter (Λ = 40).

Despite it looks like a purely mathematical equation9, PSF marvelously symbolizes

the quantum mechanical effects arises in confined structures. Even so, don’t let the

beauty of formula trick you, since its third term is exceedingly complicated to calculate

analytically in many cases. That’s why except some certain cases, we used the sum

itself, instead of performing PSF on it.

In this chapter, a brief review of thermodynamics of ideal quantum gases has been done

and all the information needed is given to proceed to the next chapter and understand

the novel results of this thesis.

9In fact, it is not. Fundamentally it is a consequence of Parseval’s theorem and Plancherel theorem
that prove Fourier transform is unitary which means it preserves energy and information so that makes
the whole signal processing phenomenon widely used in physics and engineering possible.
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3. 1D FERMI GAS CONFINED IN AN ANISOMETRIC DOMAIN

In this chapter, the first case of the study, the 1D Fermi gas, is examined. As

quantum mechanics points out, increasing or decreasing domain size changes boundary

conditions of Schrödinger equation, and thus causes a change in energy levels. When

domain size is reduced, gaps between energy levels increase. Confinement in a

direction causes to a restriction in accessible momentum states in that direction, since

some energy levels become too high to be occupied by particles. After a point,

the confinement becomes so strong that no momentum states remain for particles

to become excited. In such a case, for a D-dimensional structure, when there is

no accessible state, except the ground state, in n number of directions, system is

said to be D− n dimensional in its momentum space. Of course if there is enough

energy, particles can occupy the excited states, so technically all structures are always

3-dimensional in our world. However, for a definite range of variables some structures

may practically behave as they are lower dimensional.

3.1 1D Thermodynamic Quantities with Regular Stepwise Behavior

To see the nature of thermodynamic quantities in nano scale, let’s start with the most

basic one, number of particles.

Number of particles in a Fermi gas is stated as the summation of FD distribution

function over all momentum states in all directions,

N =
∞

∑
in=1

1
e(ε̃−Λ)+1

(3.1)

where the summation is a triple sum with in = {i1, i2, i3}. In thermodynamic limit,

one have to convert thermodynamic state sums to integrals, because upper limit of

summations is infinite. Luckily, for finite-size systems, one can put an upper limit to
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the summations, since after Fermi level1 (iF =
√

Λ/α), contributions to summation

decrease rapidly. To keep the safety, one can sum up to imax = 2iF , since contributions

become completely negligible after the value imax. Then number of particles can be

expressed as

N =
i1max

∑
i1=1

i2max

∑
i2=1

i3max

∑
i3=1

1
e[(α1i1)2+(α2i2)2+(α3i3)2−Λ]+1

(3.2)

Now, consider a domain which is strongly confined in two directions and relatively

weakly confined in the other direction, as the one shown in Fig. (3.1).

Figure 3.1: A prototype of an anisometric 1D domain with α1 = 1, α2 = 40 and α3 =
40.

Confinement parameters can be chosen as α1 = 1, α2 = 40 and α3 = 40 in such a case.2

Then, in this case we can replace triple sums over momentum states in all directions by

a single sum over only the first direction as long as Λ < Λ1 = (α1)
2 +(α2)

2 +(2α3)
2.

As it can be understood from the two factor in front of the α3, Λ1 is the value where

the excitation of strongly confined directions starts.3 Once excitation of states starts in

a direction, then one can no longer neglect that direction and have to make summation

at least up to the iF or more safely to imax. Then for the condition of Λ < Λ1, Eq. (3.2)

becomes,

N1D =
i1max

∑
i1=1

1
e[(α1i1)2−Λ′]+1

(3.3)

On the other hand, for α1 << 1, PSF can be used to calculate number of particles

analytically. It is sufficient to use the first two terms of PSF for α1 << 1 and number

1Fermi level is defined as the hypothetical energy level that makes the FD distribution function one
half, namely when µ = ε .

2It is ensured that 40 is not an unrealistic value for α , since for an electron confined in a graphene
with 0.3 nm thickness at 20K, α = 43 [27].

3Two factor comes from the first excited state and it indicates that the summation is begun. Since we
chose the confinement rate of second and third directions, the factor may well be in front of the α2 too,
there is no difference. However, if α2 and α3 has not been equal, factor would be in front of the least
confined direction.
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of particles can be approximated as

N1D ≈−
√

π

2α1
Li1/2(−eΛ′)+

1
2

Li0(−eΛ′)≈
√

Λ′

α1
− 1

2
(3.4)

where Λ′ = Λ−α2
2 −α2

3 and Li denotes the polylogarithm function. Transition in

Eq. (3.4) is obtained by using asymptotic expansions of polylogarithms for Λ >> 1,

which is the limit of degenerate Fermi gas. Conversely, for α1 values that are not much

less than unity, third term of PSF has also to be considered. With some mathematical

operations whole terms of PSF can be analytically obtained for number of particles of

1D Fermi gases,

NPSF
1D
∼=
√

Λ′

α1
− 1

2
+

1
π

arctan

[
cot

(
π
√

Λ′

α1

)]
(3.5)

where PSF superscript of N1D refers that the whole terms of PSF is used to obtain this

expression. Then number of particles N varies with dimensionless chemical potential

Λ is obtained in Fig. (3.2) as

Figure 3.2: Number of particles vs dimensionless chemical potential for 1D Fermi gas
with α1 = 1, α2 = 40 and α3 = 40.

In Fig. (3.2), striking intrinsic discrete nature is shown. There are three subfigures,

which point out certain regions of N−Λ relationship in detail. Blue, red and yellow
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curves represent Eqs. (3.3), (3.5) and (3.4) respectively, except on the bottom subfigure

blue curve is plotted by using Eq. (3.2). Red dots indicates the certain discrete

chemical potential values that corresponding to the integer particle number. They are

numerically solved from Eq. (3.3). On the bottom subfigure it is seen that after Λ1,

second momentum state (the first excited state) of a strongly confined direction starts

to be occupied since there is enough chemical potential. Main subfigure in the middle

shows the intrinsic discrete nature of N−Λ relationship and the top subfigure zooms

to a step to show the small difference of blue and red curves and to show how yellow

curve passes exactly from the red points. As it is seen, except the sharpness of the

edges of the steps, Eq. (3.5) represents the discrete nature pretty well. On the other

hand, even though Eq. (3.4) cannot represent the intrinsic discrete nature, it passes

from the points exactly where the number of particles is integer. Since as far as we

know, particle number is integer, even Eq. (3.4) is a good approximation too.

It is seen from Eq. (3.5) that chemical potential Λ can be written as the functions of

particle number N and confinement parameter α . Note that the third term of Eq. (3.5)

is zero when number of particles is integer. There are two ways to define the formula,

either equating the third term of Eq. (3.5) to zero and looking for its roots, or more

easily solving Λ from the first two terms of Eq. (3.5). Hence, for large integer N,

Λ
′ = α

2
1

(
N +

1
2

)2

(3.6)

Since all thermodynamic state functions contains chemical potential, by using the

formula above, one can express them in terms of N and α . It is also possible to define

the chemical potential interval as

∆Λ
′ = 2α

2
1 (N +1) = 2α1

√
Λ′+α

2
1 (3.7)

which allows to specify the forbidden chemical potential values analytically for integer

N. It is apparent that when confinement (α) or degeneracy (Λ) increase, intervals

between discrete values of chemical potential also increase, which means the discrete

nature becomes more apparent.

Another interesting feature of N-Λ function is that skewness of the steps are always

same for the domains with same confinement parameter α . That means change in
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number of particles corresponds to a same change in Λ and this is true even for the

steps that corresponds to more than one particle changes in particle number in 2D and

3D systems. The reason of this can be understood by comparing Figs. (2.4) and (2.5).

Note that in these figures, skewness of steps does not change with increasing Λ. To

define a formula for the changes of steps in N−Λ, we used distribution function and

defined a variable x, which is the value of distribution function where it is equal to a

control variable xc that we assign. Then for all systems, we have a same change in Λ

corresponds to a stepwise change in particle number and Eq. (3.8) defines the upper

(+) and lower (-) ranges of the function.

x± = α
2
1 +α

2
2 +α

2
3 ± arcosh(50xc) (3.8)

For instance for xc = 0.99 or xc = 0.01, τ ∼= arcosh(49.5). We can assign any value to

xc to adjust the precision of x.

Now let’s discuss our next fundamental thermodynamic property; internal energy, and

its variation with chemical potential. Dimensionless internal energy is written from its

definition,

U
kBT

= Ũ =
∞

∑
in=1

ε̃

e(ε̃−Λ)+1
(3.9)

By the same way we do for number of particles, for 1D Fermi gases dimensionless

internal energy can be analytically derived for integer N, by using the first two terms

of PSF and asymptotic series expansions of polylogarithm functions,

Ũ1D =
(Λ′)3/2

3α1
+

(√
Λ′

α1
− 1

2

)
(α2

2 +α
2
3 ) (3.10)

Interestingly, Eq. (3.4) appears inside of the formula as a factor. As it is seen from

Fig. (3.3), regular stepwise behavior in internal energy-chemical potential relationship

is observed in 1D Fermi gases for number of particles from 65 to 74.

37



Figure 3.3: Dimensionless internal energy per particle vs dimensionless chemical
potential for 1D Fermi gas with α1 = 1,α2 = 40,α3 = 40.

In Fig. (3.3), blue curve is obtained by dividing Eq. (3.9) to Eq. (3.3), since we are

dealing with dimensionless internal energy per particle.4 Red curve is the result of

Eq. (3.10) divided by Eq. (3.4). As it is found in chapter 2 Eq. (2.99), relationship of

internal energy per particle and chemical potential is linear in the 1D region, which can

be seen in Fig. (3.3) in the bottom subfigure where before the value of Λ1 indicates

the 1D region. When the second modes in strongly confined directions can become

excited, domain can no longer be considered 1D and linear behavior disappears, as it

is expected. Even for the unit value of α , if N is sufficiently large, Λ′ becomes so large

that dimensionless internal energy can be written by using Eq. (3.6) and Eq. (3.10) as

Ũ1D ∼=
α2

1
3

(
N +

1
2

)3

+N(α2
2 +α

2
3 ) (3.11)

Dimensionless internal energy interval can be obtained from Eq. (3.11) as

∆

(
Ũ
N

)
∼=

2
3

α
2
1

(
N +

5
4

)
(3.12)

4Of course, dimensionless internal energy itself has also discrete and stepwise nature. But, we
discussed quantities per particle to show that the discreteness is not coming from the obvious fact of
discreteness in particle number. Stepwise behavior observed even in quantities per particle.
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It is clear from Eq. (3.12) that, when α goes to zero (in macro scale), stepwise nature

practically disappears, although Eq. (3.9) intrinsically has discrete nature.

Regular stepwise behavior of number of particles and internal energy can be observed

only in strongly degenerate and confined 1D Fermi gases and the behaviors are

completely different than macroscopic (continuous) ones. Their continuous behavior

in macro systems is shown in Fig. (3.4) where α1 is chosen as 0.1, which means the

first direction is not so confined (in fact it may be considered as nearly free). It is also

interesting that, even for the confinement value of 0.1, system behaves as continuous.

There is a drastic conversion from continuous behavior to discrete one around the unit

value of the confinement parameter α. So, one can loosely separate the continuous

and discrete behaviors as α < 1 and α ≥ 1, though for the values of α very close

to 1, discrete behaviors start to be seen. When domain sizes are getting far from α

to opposite limits, the relevant nature become stronger and the transition region from

continuous to discrete happens around α .

Figure 3.4: Variation of number of particles and dimensionless internal energy per
particle with dimensionless chemical potential α1 = 0.1,α2 = 40,α3 = 40.

Variation of dimensionless energy per particle vs number of particles is also examined

for discrete (α1 = 1) and continuous (α1 = 0.1) cases in 1D Fermi gas in Fig. (3.5). In

contrast with the variations of N and U with the chemical potential Λ, surprisingly there

is no stepwise behavior in their variations with number of particles even in discrete case

where α1 = 1.
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Figure 3.5: Variation of dimensionless internal energy per particle for α1 = 1 (left
subfigure) and α1 = 0.1 (right subfigure) with number of particles where
α2 = 40,α3 = 40.

It is seen that number of particles and chemical potential relationship is intrinsically

discrete as it is a stepwise function. This behavior of N is the result of the nature of

FD distribution function which will be discussed at the end of this chapter. The reason

why internal energy has also same nature is it differs from number of particles by

just a factor ε . Free energy and pressure have also same stepwise nature. To prevent

repetitions on figures, we didn’t put their figures, but let’s explain the reason why

they have same stepwise nature. In strongly confined systems, as we shall see in the

next subsection for 1D case, entropy is extremely low. From the definition of free

energy (F =U−T S) it’s seen that when temperature and entropy are sufficiently low,

difference between free energy and internal energy become very small, so that F ≈U .

Other thermodynamic properties that are derived from dW , work term of the first law

of thermodynamics, dU = dQ+ dW , like free energy F and pressure P, have exactly

same discrete, regular stepwise behavior and different with just a factor from internal

energy. Consequently, we only gave the internal energy plots throughout the thesis, but

be sure that free energy and pressure has exactly same behavior as internal energy.

3.2 1D Thermodynamic Quantities with Regular Peakwise Behavior

We discussed the stepwise behavior of some thermodynamic quantities in last section.

The second type of behavior found in confined nano systems is the peakwise behavior

which is observed in entropy and heat capacity.
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Dimensionless entropy of a Fermi gas in its exact form

S
kB

= S̃ =

[
∑

i
( fi−1)(εi−µ)− ln fi

]
(3.13)

or equivalently it can be written in a more familiar form as

S̃ = Ũ− F̃ = Ũ−NΛ+Z (3.14)

S̃ = ∑
i
[εi fi−Λ fi− ln(1− f )] (3.15)

To write entropy in an analytical form for α1 << 1 we need N,Ũ and Z with their first

order temperature correction terms. They can be expressed from the first term of PSF

and by using their temperature corrections as

N1 ≈
√

Λ′

α1

(
1− π2

24(Λ′)2

)
(3.16)

Ũ1 ≈
(Λ′)3/2

3α1

(
1+

π2

8(Λ′)2

)
(3.17)

Z1 ≈
2(Λ′)3/2

3α1

(
1+

π2

8(Λ′)2

)
(3.18)

From N, Ũ and Z , free energy becomes,

F̃1 ≈
(Λ′)3/2

3α1

(
1− 3π2

8(Λ′)2

)
(3.19)

By using Eqs. (3.16), (3.17), (3.18) and (3.19), entropy in 1D becomes in continuum

limit,

S1 ≈
π2

6α1
√

Λ′
(3.20)

Variation of dimensionless entropy per particle with dimensionless chemical potential

is given Figs. (3.6) and (3.7) for discrete and continuous cases respectively.
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Figure 3.6: Variation of dimensionless entropy per particle with dimensionless
chemical potential for 1D Fermi gas with α1 = 1,α2 = 40,α3 = 40.

In Fig. (3.6), blue curve is the exact entropy from Eq. (3.15) and red curve is the

approximate entropy from Eq. (3.20). Red dots show the entropy values corresponding

to the integer number of particles in the range from 20 to 26. In higher number of

particles even around 50, entropy values become so small that (around 10−24 for 50

particles), plotting the graph without errors become impossible. So, in order to observe

the nature we plotted the graph in such a low number of particle range. Although Eq.

(3.20) matches exactly with the summation in continuous case given in Fig. (3.7), in

discrete case, it passes from the integral averages of summations and cannot represent

the peakwise nature as in Fig. (3.6). While exact entropy is crawling on the bottom

with a range from ≈ 10−9 to ≈ 10−12, value of its approximation is on the order of

0.004. As it is seen from the huge deviation, using continuum approximation in such

a confined nano structures will give completely wrong results.
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Figure 3.7: Variation of dimensionless entropy per particle with dimensionless
chemical potential for 1D Fermi gas with α1 = 0.1,α2 = 40,α3 = 40.

As in Fig. (2.6), difference of summation and integral approximations are shown for

entropy and entropy per particle changing with confinement parameter for constant

chemical potential5 in Fig. (3.8). Before around the confinement value of 0.2

continuum approximation works well, but after that oscillations appear and deviations

between summations and integrals are non-negligible.

Figure 3.8: Dimensionless entropy and entropy per particle and its variation with
confinement parameter in the first direction for Λ = 3250 and α2 =
40,α3 = 40.

5In fact this situation might be hard to physicalize since chemical potential is a function of
confinement parameter also. However, examination of the difference between summation and integral
is much clear in this way.
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Heat capacity for Fermi gas from Eq. (2.38) in its summation form given as

CV

kB
= C̃V = ∑

in

(ε̃)2 f (1− f )−
[∑in ε̃ f (1− f )]2

∑in f (1− f )
(3.21)

In the Fig. (3.9) below, comparison of discrete and continuous cases for dimensionless

heat capacity vs dimensionless chemical potential is given. The blue curve is the result

of Eq. (3.21) and red dots show the values correspond to the integer particle number.

Figure 3.9: Variation of dimensionless heat capacity per particle with dimensionless
chemical potential for 1D Fermi gas with α1 = 1 (left subfigure), α1 = 0.1
(right subfigure) and α2 = 40,α3 = 40.

Unlike other thermodynamic properties, in heat capacity, equation that is found by

continuum approximation starts to deviate from even the integral representation of the

trend of summation, as they are seen in Fig. (3.10). Although summation and integral

approximation of it matches in low confinement values and represents the trend until

around 0.4, after that it completely becomes different. This strangeness comes from the

differences of very small values in the heat capacity equation. Note that, heat capacity

is written as the difference of two terms. Although integrals of the summations inside

the terms represent the trend behaviors of their summations individually and term by

term, taking the difference leads to the strong deviation from the representation of the

trend behavior.
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Figure 3.10: Dimensionless heat capacity and heat capacity per particle and its
variation with confinement parameter in the first direction for Λ = 3250
and α2 = 40,α3 = 40.

In Fig. (3.11), variation of dimensionless heat capacity divided by dimensionless

entropy is seen with confinement value from 0.1 to 1.

Figure 3.11: Dimensionless heat capacity divided by dimensionless entropy and its
variation with confinement parameter in the first direction for Λ = 3250
and α2 = 40,α3 = 40.

Like we derived in chapter 2, their ratio equals to 1 in continuum limit. However,

when confinement increases after around α1 = 0.2, strong deviations from this result

appears, which shows that in real, entropy and heat capacity is not equal, as a matter

of fact, completely different.
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3.2.1 Nature of Fermi-Dirac Variance Function and Discrete Fermi Point

From the first law of thermodynamics, entropy can be written as

dQ = T dS −→ S =
∫ dQ

T
−→ dQ = ∑

i
εid fi −→ S =

∫
∑

i

εid fi

T
(3.22)

Let’s remember the definition of heat capacity and rewrite it by considering the first

law of thermodynamics,

CV =
dQ
dT

−→ dQ = ∑
i

εid fi −→ CV = ∑
i

εi
d fi

dT
(3.23)

Here in Eqs. (3.22) and (3.23), the derivative of distribution function (with respect

to any of its variables such as T , Λ or ε) includes f (1− f ) which is the variance of

distribution function or in short, variance function in FD statistics. The nature of this

variance is quite interesting. For example, it has peaks in certain values when it is

plotted versus dimensionless chemical potential. It is clear from Eqs. (3.22) and (3.23)

that since S and CV contains f (1− f ) inside the summations. Hence, contributions

to entropy and heat capacity only comes from the peaks of the variance function,

which correspond to the Fermi point, Fermi line and Fermi surface in 1D, 2D and

3D Fermi gases respectively. So, contributions from momentum states to entropy and

heat capacity come from D− 1 dimensional momentum space. As it is seen from

Fig. (3.12) the state corresponding to the Fermi point is the state where distribution

function is equal to one half. Also variance of the distribution function f (1− f ) makes

its peak at one quarter. By equating the variance function to 1/8, full band width at

half maximum (FWHM) of the variance function can be expressed as

δ1D =
arcosh(17)

2α1
√

Λ′
(3.24)
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Figure 3.12: Distribution function (blue curve) and its variance (red curve) around
Fermi point for 1D Fermi gas with α1 = 1,α2 = 40,α3 = 40 and N = 50.

For macro systems there are many states correspond to the variance of distribution

function. However, for nano systems variance becomes too narrow that only few or

no state can correspond to it. As it is clear from Eq. (3.24) that when confinement

(α) or degeneracy (Λ) increases, FWHM decreases which means the peak of variance

becomes too sharp. In Fig. (3.5) for a 1D Fermi gas with 50 particles, distribution

function and its variance is plotted. As it is seen, it makes it peak at a half-state

and there is no momentum state (integer value by definition) correspond to the

non-vanishing values of variance. Since contributions of states around the peak of

variance is nearly zero, entropy and heat capacity of 1D Fermi gas is also almost zero.

In fact for a 0D system they are exactly zero, since summations die out for a 0D system

and entropy and heat capacity equations gives exactly zero.

In Figs. (3.13) and (3.14), the nature of FD variance function is examined. Since

Var( f ) = f (1− f ), it can be written as the difference of distribution function and its

square so that f (1− f ) = f − f 2.
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Figure 3.13: Examination of variance function vs dimensionless chemical potential
for confined domains with α1 = 1,α2 = 40,α3 = 40.

Figure 3.14: Examination of variance function vs dimensionless chemical potential
for nearly free domains with α1 = 0.1,α2 = 40,α3 = 40.

The reason of the peaks in the variance is clear when we examine the difference in

detail. However, as it is seen there is a huge difference in the natures of discrete and

continuous cases where the domain is confined and nearly free respectively in Figs

(3.13) and (3.14). The blue and brown curves represents the distribution function and
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its square respectively, whereas red curves in subfigures shows the difference of blue

and brown curves, in other words the variance.

Discreteness its repercussions like stepwise, peakwise and oscillatory behaviors,

intrinsically come from the nature of FD distribution function. When we plot the

summation over momentum states in distribution function vs confinement parameter

α , we see that magnitude of confinement causes the appearance of discrete nature, Fig.

(3.15).

Figure 3.15: Appearance of stepwise behavior due to size confinement, in FD
distribution function, for constant chemical potential, Λ = 3250 and
α2 = α3 = 40.

It is clear that why thermodynamic properties that include summation of distribution

function (like particle number, internal energy, free energy and pressure) have

stepwise nature. Because, distribution function itself gives a stepwise response to the

confinement.

In Fig. (3.16), summation over momentum states of variance function vs confinement

parameter is plotted and as it is expected, the nature is now not stepwise but peakwise.

That’s the reason why thermodynamic properties that contain summation of variance

function (like entropy and heat capacity) have peakwise nature. Because, variance
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function gives a peakwise response to the confinement, which is very natural since it

is the derivative of the distribution function.

Figure 3.16: Appearance of peakwise behavior due to size confinement, in the FD
variance function, for constant chemical potential, Λ = 3250 and α2 =
α3 = 40.

As it shown in Fig (3.17), from the first law of thermodynamics, stepwise behavior

is observed in thermodynamic properties that are derived from "work term" which

contains the summation of FD distribution function. On the other hand, peakwise

behavior is observed in properties that are derived from "heat term" that includes the

summation of the derivative of FD distribution function (or equivalently FD variance

function).

Figure 3.17: Comparison of stepwise and peakwise natures over the 1st law of
thermodynamics.
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In Fig. (3.18), the appearance of the discrete nature is charted.

Figure 3.18: How discrete nature appears?

To see the reasons for the discrete nature, let’s interpret the FD distribution function in

detail. First of all, +1 term in the denominator is the result of Pauli exclusion principle

that prohibits more than one fermion on the same quantum state. Also dispersion

relation between energy and momentum is quadratic for all massive particles. These

two are the internal features of the statistics of Fermions and neglecting them (for

instance ignoring +1 like in Maxwell-Boltzmann statistics or lowering the order of

dispersion relation) causes discrete nature to disappear. These internal features are

always there for all Fermi gases. However, they may not enough to reveal the discrete

nature as in macro scale. There are two external parameters that can be arranged;

confinement of the domain and the degeneracy of the matter. α in FD distribution

function indicates the rate of confinement of the domain. More strongly the domain

is confined, more severely the discrete nature appears. Λ refers to degeneracy in other

words the density of the matter in the domain. Increasing density of the matter also

make a positive effect on the appearance of discrete nature. When these internal and

external effects combined together in strongly confined and degenerate Fermi gases,

discrete nature reveals itself and this leads to oscillations on entropy and heat capacity

while α or Λ changing.
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3.3 Size Dependency of 1D Fermi Gas

We examined the variations of thermodynamic quantities with chemical potential Λ

and number of particles N, to show how the degeneracy affects the system. Now let’s

see how thermodynamic quantities react to a change in confinement. We analyzed the

relationships of our four quantities (number of particles N, internal energy U , entropy

S and heat capacity at constant volume CV ) with confinement parameter α1 for 1D

Fermi gas and obtained the Fig. (3.19) below:

Figure 3.19: Number of particles, dimensionless specific internal energy, entropy and
heat capacity changing with confinement parameter in the first direction
for a 1D Fermi gas.

As of course, confining the domain has no effect on number of particles in the domain,

particles are always there, unless we allow particle exchange. Dimensionless internal

energy per particle is increasing when the domain size in the first direction decreasing.

On the other hand, entropy and heat capacity drastically drops to zero when the domain

size reduces.

As you noticed, when confinement changes, there are no oscillations in entropy and

heat capacity since in 1D Fermi gas there is isotropic confinement (only the first
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direction can be confined, remember second and third directions are already strongly

confined).
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4. 2D FERMI GAS CONFINED IN AN ANISOMETRIC DOMAIN

In this chapter, thermodynamic quantities of degenerate 2D Fermi gas are discussed

considering an anisometric 2D domain like the one seen in Fig. (4.1).

Figure 4.1: A prototype of an anisometric 2D domain with α1 = 3, α2 = 3 and α3 =
40.

Like we did in previous chapter for 1D Fermi gas, again we collect and examine

thermodynamic quantities under two different headings; stepwise and peakwise,

according to their behavior.

4.1 2D Thermodynamic Quantities with Quasi-irregular Stepwise Behavior

Let’s consider an anisometric domain having 2D momentum space. Confinement

parameters are chosen as α1 = 3, α2 = 3 and α3 = 40 for this domain. That means, the

first and second directions are relatively weakly confined, whereas the third direction is

strongly confined, so that no particles can be excited in third direction (i3 = 1). Then,

double summation is sufficient to express thermodynamic state functions of 2D Fermi

gas for a definite range of Λ,

N2D =
i1max

∑
i1=1

i2max

∑
i2=1

1
e[(α1i1)2+(α2i2)2−Λ′′]+1

(4.1)
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where Λ′′ = Λ− α2
3 . Eq. (4.1) represents the 2D nature as long as Λ < Λ2 =

(α1)
2+(α2)

2+(2α3)
2. Like in 1D case, by using the first two terms of PSF, analytical

expression for 2D number of particles is obtained as

N2D ≈
πΛ′′

4α1α2
−
√

Λ′′

2

(
1

α1
+

1
α2

)
+

1
4

(4.2)

In previous chapter, for 1D Fermi gases, we have found an equation that represents

the discrete nature without making summations at all. Instead this time, instead of

that, we can reduce the number of sums and represent the discrete nature only by one

summation, Eq. (4.3),

N2D ∼=
i1max

∑
i1=1

√
Λ′′− (α1i1)2

α2
− 1

2
+

1
π

arctan

[
cot

(
π
√

Λ′′− (α1i1)2

α2

)]
(4.3)

In 2D case, when we look at the behavior of number of particles varying with

dimensionless chemical potential, in Fig. (4.2), we see that there are no longer regular

steps as in 1D case. Blue curve in Fig. (4.2) is plotted by using Eq. (4.1), the

yellow curve by Eq. (4.2), discrete steps with red lines by Eq. (4.3) and red dots

are solved again numerically from Eq. (4.1). It is seen that Eq. (4.2) follows the trend

and Eq. (4.3) represents the discrete steps quite well. The nature still discrete and

stepwise though the skewness of steps changes and there are chemical potential values

corresponding to the steepness of the N−Λ function this time, in addition to the values

corresponding to the plateaus.

In Fig. (4.3), N−Λ is plotted for continuous case where α1 = α2 = 0.1. For nearly

free domains, it is seen that Eq. (4.2) perfectly matches with the exact solution.
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Figure 4.2: Number of particles vs dimensionless chemical potential for 2D Fermi gas
with α1 = 3, α2 = 3 and α3 = 40.

Figure 4.3: Number of particles vs dimensionless chemical potential for 2D Fermi gas
with α1 = 0.1, α2 = 0.1 and α3 = 40.
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For 2D Fermi gases, dimensionless internal energy in double summation is written as

U2D

kBT
= Ũ2D =

i1max

∑
i1=1

i2max

∑
i2=1

(α1i1)2 +(α2i2)2 +(α3)
2

e[(α1i1)2+(α2i2)2−Λ′′]+1
(4.4)

By using the first two terms of PSF, dimensionless internal energy for 2D Fermi gases

can be approximated as

Ũ2D ≈
πΛ′′2

8α1α2
− Λ′′3/2

6

(
1

α1
+

1
α2

)
+α

2
3 N2D (4.5)

where N2D is the Eq. (4.2).

In Fig. (4.4), blue curve is obtained by dividing the exact 2D summation solution of

internal energy Eq. (4.4) to Eq. (4.1) and red curve is obtained by dividing Eq. (4.5) to

Eq. (4.2). As expected, the pattern is the same as in Fig. (4.2) where N−Λ is plotted.

Our approximate solution (represented by red curve) exactly matches with the solution

in continuous case (α1 = α2 = 0.1) and represents the trend behavior in discrete case

(α1 = α2 = 3).

Figure 4.4: Dimensionless internal energy per particle vs dimensionless chemical
potential for discrete (left subfigure) and continuous (right subfigure) cases
with α1 = 3 and α1 = 0.1 respectively. α2 = 3 and α3 = 40 for both cases.

When we look at the variations of dimensionless internal energy per particle with

number of particles, its nature is not stepwise like in 1D, for both discrete and

continuous cases. It seems like parametric plot of two stepwise functions compensate

their stepwise behavior and as a result we observe smooth line even in discrete case in

Fig. (4.5).
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Figure 4.5: Dimensionless internal energy per particle vs number of particles for
discrete (left subfigure) and continuous (right subfigure) cases with α1 = 3
and α1 = 0.1 respectively. α2 = 3 and α3 = 40 for both cases.

4.1.1 Diagonal and Non-diagonal Elements of the State Matrix

As it seen from Figs. (4.2) and (4.4), behaviors of thermodynamic state functions of

2D and (as we’ll see in following chapter) 3D Fermi gases are interestingly different

than that of 1D Fermi gases. To understand the reason of this difference, let’s examine

the nature of summations in detail. As we know, all thermodynamic quantities are

represented by summations over momentum state variables {i1, i2, i3}, which constitute

a state matrix. Each element in the state matrix represents a momentum state of

the system and all contributions to thermodynamic quantities are done over this

momentum state variables. For 2D and 3D Fermi gases, it is possible to decompose

the state matrix into diagonal {i1 = i2 = i3}, and non-diagonal matrices. However, for

1D Fermi gas, since the state matrix becomes the state vector, there are no diagonal or

non-diagonal elements but just a vector. Quasi-irregular behavior of thermodynamic

state functions of 2D and 3D Fermi gases is the result of the contributions of the

non-diagonal state matrix. In non-diagonal state matrix, multiplicity or degeneracy

of energy levels can be different than one, in other words, contributions of states

constantly changes during the progress of summation operator. This quasi-irregular1

changes are mainly due to the combinatorial nature of summations. In Fig. (4.6),

appearance of quasi-ness is charted.

1We are saying quasi-irregular because in fact the patterns are the result of a very definite,
mathematically exact summation process. So they are not actually irregular, though they look like.
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Figure 4.6: Regular behavior becomes quasi-irregular in 2D and 3D Fermi gases, due
to degeneracy of energy levels.

4.2 2D Thermodynamic Quantities with Quasi-irregular Peakwise Behavior

Peakwise behavior of entropy is obtained for 2D Fermi gas in Fig. (4.7) for the discrete

case. Unlike 1D case, now its behavior is not regular but quasi-irregular.

Figure 4.7: Dimensionless entropy per particle vs dimensionless chemical potential
for discrete (left subfigure) and continuous (right subfigure) cases with
α1 = 3 and α1 = 0.1 respectively. α2 = 3 and α3 = 40 for both cases.

Figure 4.8: Dimensionless heat capacity per particle vs dimensionless chemical
potential for discrete (left subfigure) and continuous (right subfigure) cases
with α1 = 3 and α1 = 0.1 respectively. α2 = 3 and α3 = 40 for both cases.

To understand the causes of the peaks, let’s examine the nature of Fermi line in 2D

Fermi gas.
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4.2.1 Discrete Fermi Line

In 1D Fermi gas, contributions to entropy and heat capacity were coming from Fermi

point. Likewise, in 2D Fermi gas, they are coming from the particles on an hypothetical

line called Fermi line. Contributions coming from the outside of Fermi line is totally

negligible, since contributions of particles on outside of the region of Fermi line,

correspond to the bottoms of FD variance function where its value vanishes. Therefore,

summation just over the states on Fermi line gives the values of the entropy and heat

capacity for 2D Fermi gas. To define Fermi line, we need some mathematical tools

like round, ceiling and floor functions. Here, we derived the analytical expressions of

them for any x,

Round(x) = x+
1
π

arctan
[

cot
(

π

(
x+

1
2

))]
(4.6)

by adding one half to x, we obtain ceiling function,

Ceiling(x) = x+
1
2
+

1
π

arctan [cot(π (x+1))] (4.7)

by substracting one half from x, we obtain floor function,

Floor(x) = x− 1
2
+

1
π

arctan [cot(π (x))] (4.8)

Now, it is possible to arrange the lower and upper limits of the summations in entropy

and heat capacity, according to Fermi line.

i1min = 1 (4.9)

i1max =

√
Λ′′

α1
+

1
2

(4.10)

i2min = Ceiling


√

Λ′′−
[
α1
(
i1 + 1

2

)]2
α2

− 1
2

 (4.11)

=

√
Λ′′−

[
α1
(
i1 + 1

2

)]2
α2

+
1
π

arctan

cot

π

√
Λ′′−

[
α1
(
i1 + 1

2

)]2
α2

+
π

2

 (4.12)
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i2max = Floor


√

Λ′′− [α1(i1− 1
2)]

2

α2
+

1
2

 (4.13)

=

√
Λ′′−

[
α1
(
i1− 1

2

)]2
α2

+
1
π

arctan

cot

π

√
Λ′′−

[
α1
(
i1− 1

2

)]2
α2

+
π

2

 (4.14)

Then, the sum over momentum states through those limits gives the discrete Fermi

line shown by solid blue line in Fig. (4.9). Summing from 1 to i1max over√
Λ′′− (α1i1)2/α2 gives the idealized Fermi line represented by red dotted line in

Fig. (4.9). Making summations from 1 to i1max over
√

Λ′′− [α1(i1 +1/2)]2/α2−1/2

and
√

Λ′′− [α1(i1−1/2)]2/α2+1/2 respectively gives lower and upper dashed brown

lines enclosing the discrete Fermi line which are called the Fermi shell. As it happens,

Fermi shell is the consequence of Heisenberg uncertainty principle and discrete Fermi

line always stays inside the area enclosed by Fermi shell.

Figure 4.9: Idealized and discrete Fermi lines and Fermi shell for 2D Fermi gas with
α1 = 3,α2 = 3,α3 = 40. On the left subfigure, N=50 and on the right
subfigure, N=52.

As we’ve seen in previous chapter, the position of momentum states in functional space

of variance function determines the magnitude of the contribution to entropy and heat

capacity. Peaks of the variance correspond to the idealized Fermi line, so the closer

the state to idealized Fermi line, the larger its contribution to entropy and heat capacity

and vice versa.
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In Fig. (4.10), behavior of entropy varying with particle number is seen. Interestingly,

on the right subfigure entropy graph there are several modes for entropy.

Figure 4.10: Dimensionless entropy per particle (left subfigure) and entropy itself
(right subfigure) changing with number of particles where α1 = 3,α2 =
3,α3 = 40.

When number of particles or chemical potential increase, Fermi line and consequently

the Fermi shell extends while its thickness remains constant. There are oscillations in

entropy and heat capacity, since the combination of proximities of momentum states in

Fermi shell to the idealized Fermi line changes and results to a different contribution

for a different combination of states. In short, the proximities of the states to the peaks

of the variance function determines the contribution. For example, in Fig. (4.11),

there is a peak at 50 particles and it vanishes when two more particles are added to the

domain.

Comparison of the same domain with number of particles 50 and 52 represents with

peak and without peak respectively, is shown in Fig. (4.9). For N = 50, there are

more particle near to the idealized Fermi line and for N = 52, they are almost none.

Remember that the thickness of the variance peak decreases when confinement and

degeneracy increases. So even for a little deviation from the idealized Fermi line, the

contribution of that state to the entropy and heat capacity almost vanishes for strongly

confined and degenerate Fermi gases.

Although Fermi shell starts to contain more and more states when N or Λ increases,

the contributions does not increase since FWHM of variance decreases also. Thereby,

despite the oscillations, entropy and heat capacity goes to zero when N→∞ or α→∞.
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Figure 4.11: Dimensionless heat capacity per particle varying with number of particles
for 2D Fermi gas with α1 = 3, α2 = 3 and α3 = 40.

4.3 Oscillatory Quantum Size Effects in 2D Entropy and Heat Capacity

In previous chapter, we’ve seen for the 1D case that entropy and heat capacity change

smoothly when its first direction, which is the only allowed direction, is changed.

However, for 2D case the situation is entirely different. In 2D case, there are two

directions, the first and the second, are allowed.

4.3.1 Anisotropic Size Dependence

Unlike 1D domains, there are two ways for confinement of 2D domain; anisotropic

and isotropic confinements. In both cases, effect of confinement on particle number

and internal energy is the same and trivial, see Fig. (4.12). However, for entropy and

heat capacity, behaviors are quite different.
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Figure 4.12: Number of particles (left subfigure) and dimensionless internal energy
per particle (right subfigure) changing with confinement parameter in the
first direction α1.

In anisometric size confinement case, in Fig. (4.13), quasi-irregular, non-periodic

oscillations in entropy and heat capacity is obtained when confinement changed only

in one direction, α1. Oscillatory behavior is the result of the discrete nature of Fermi

line. When domain size changes anisotropically, distributions of states in Fermi shell

as well as their contributions also change and cause oscillations.

Figure 4.13: Dimensionless entropy per particle (left subfigure) and specific heat
(right subfigure) changing with confinement parameter in the first
direction α1.

4.3.2 Isotropic Size Dependence

On the other hand, when two allowed directions of 2D domain change isotropically

(at once), sharp oscillations disappear yield themselves to very slowly varying smooth

changes, see Fig. (4.14). The reason of the relatively smooth change in isotropic case

is that the distances of integer momentum states to the idealized Fermi line (where

the contribution is maximum), does not change while the sharpness of the variance

function changes for all states in Fermi shell.
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Figure 4.14: Dimensionless entropy per particle (left subfigure) and specific heat
(right subfigure) changing with confinement parameter of first and
second directions α1, α2.
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5. 3D FERMI GAS CONFINED IN AN ISOMETRIC DOMAIN

Although confined structures behave as lower-dimensional for some certain

chemical potential intervals, in the end, all structures in our universe are actually

three-dimensional. In this chapter, we discuss an isometric 3D domain with relatively

weakly confined in all directions like in Fig. (5.1). Confinement parameters are chosen

for this kind of domain as α1 = α2 = α3 = 3.

Figure 5.1: A prototype of an isometric 3D domain with α1 = 3, α2 = 3 and α3 = 3.

5.1 3D Thermodynamic Quantities with Quasi-irregular Stepwise Behavior

In 3D case, behaviors of thermodynamic quantities are very similar to 2D one. Due to

the degeneracy of energy levels, patterns are quasi-irregular just like in the 2D case.

Without any restriction in the range of Λ this time, number of particles can be written

as

N =
i1max

∑
i1=1

i2max

∑
i2=1

i3max

∑
i3=1

1
e[(α1i1)2+(α2i2)2+(α3i3)2−Λ]+1

(5.1)
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By using the first two terms of PSF, we can obtain number of particles approximately

as

N3D ≈
πΛ3/2

6α1α2α3
− πΛ

8

(
1

α1α2
+

1
α2α3

+
1

α1α3

)

+

√
Λ

4

(
1

α1
+

1
α2

+
1

α3

)
− 1

8

(5.2)

where the first term represents the bulk (3D) contribution and second, third and fourth

terms represent the surface, line and corner contributions respectively.

Quasi-irregular stepwise behavior is seen in the relationship of particle number and

chemical potential in Fig. (5.2), where blue and red curves represent Eqs. (5.1) and

(5.2) respectively. Likewise, red dots show the Λ values correspond to integer N.

Figure 5.2: Variation of number of particles with dimensionless chemical potential for
a 3D domain with α1 = 3, α2 = 3 and α3 = 3.

From the first two terms of PSF, internal energy can be approximated as

Ũ3D ≈
πΛ5/2

10α1α2α3
− πΛ2

16

(
1

α1α2
+

1
α2α3

+
1

α1α3

)

+
Λ3/2

12

(
1

α1
+

1
α2

+
1

α3

)
− 1

8

(5.3)

where again like in Eq. (5.2), dimensional contributions are represented by the relevant

terms in the Eq. (5.3).
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In Fig. (5.3), blue curve is obtained by dividing exact 3D internal energy sum to exact

3D number of particles sum and red curve is the result of Eq. (5.3) divided by Eq.

(5.2). Red dots indicates the integer number of particles in internal energy-chemical

potential functional space. Due to degeneracy of energy levels, behaviors of particle

number and internal energy are not regular.

Figure 5.3: Variation of dimensionless internal energy per particle with dimensionless
chemical potential for a 3D domain with α1 = 3, α2 = 3 and α3 = 3.

5.2 3D Thermodynamic Quantities with Quasi-irregular Peakwise Behavior

Like in 2D case, entropy has quasi-irregular peakwise behavior in confined 3D nano

structures contain Fermi gas. In Fig. (5.4), peaks in entropy when it is changing with

chemical potential is shown. Peakwise nature turns into a camber behavior in Fig.

(5.5) where entropy is changing with particle number.
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Figure 5.4: Dimensionless entropy per particle varying with dimensionless chemical
potential for a 3D domain with α1 = 3, α2 = 3 and α3 = 3.

Figure 5.5: Dimensionless entropy per particle varying with particle number for a 3D
domain with α1 = 3, α2 = 3 and α3 = 3.

Peakwise nature in the variation of specific heat with chemical potential and particle

number of 3D Fermi gases is shown in Figs. (5.6) and (5.7) respectively. Reason

of these peaks is similar to the 2D case. This time, they are the consequence of the

discreteness of Fermi surface in confined 3D Fermi gases.
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Figure 5.6: Dimensionless heat capacity per particle varying with dimensionless
chemical potential for a 3D domain with α1 = 3, α2 = 3 and α3 = 3.

Figure 5.7: Dimensionless heat capacity per particle varying with particle number for
a 3D domain with α1 = 3, α2 = 3 and α3 = 3.

5.2.1 Discrete Fermi Surface

In 3D Fermi gases, contribution to entropy and heat capacity comes from the integer

momentum states on the Fermi surface. Entropy and heat capacity contributions are

the consequence of the peaks of FD variance function. If there is a peak in the variation

of variance with energy or chemical potential, then contribution is large and vice versa.

Since peaks of the variance correspond to the discrete Fermi surface within Fermi shell,
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it is enough to sum the momentum states on discrete Fermi surface. Then instead of

summing from 1 to ∞, we can make summations between the following values of

momentum states,

i1min = 1 (5.4)

i1max =

√
Λ′′

α1
+

1
2

(5.5)

i2min = Ceiling


√

Λ′′−
[
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(
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2

)]2− [α3
(
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2

)]2
α2

− 1
2

 (5.6)
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i3min = 1 (5.12)

i3max =

√
Λ′′

α3
+

1
2

(5.13)

Discrete Fermi surface, idealized Fermi surface and its±1/2 neighborhoods are shown

in Fig. (5.8) by rainbow, orange and light blue colored surfaces respectively. States

outside the Fermi shell, have almost no contribution to entropy and heat capacity of

the 3D Fermi gas.
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Figure 5.8: Idealized and discrete Fermi surface and Fermi shell surfaces for 3D Fermi
gas with α1 = 3,α2 = 3,α3 = 3.

5.3 Oscillatory Quantum Size Effects in 3D Entropy and Heat Capacity

As we’ve seen in the 2D case, number of particles and internal energy do not show

any special or unexpected behavior when the confinement changes. On the other

hand, size dependencies in the entropy and heat capacity of confined 3D Fermi gases

are extremely strong. As it is seen in Figs. (5.9) and (5.10), there are oscillatory

behaviors in the variations of entropy and heat capacity with confinement parameter of

the domain in the first direction.
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Figure 5.9: Oscillations in dimensionless entropy per particle varying with confine-
ment parameter in the first direction for N = 50, α2 = 3 and α3 = 3.

Figure 5.10: Oscillations in dimensionless heat capacity per particle varying with
confinement parameter in the first direction for N = 50, α2 = 3 and
α3 = 3.

When two of the three directions are subjected to change, oscillatory behavior can still

be observed, see Fig. (5.11). However, when all three directions are changed at once,

in Fig. (5.12), oscillations almost disappear and functions exhibits smooth changes

with confinement parameters.
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Figure 5.11: Dimensionless entropy per particle (left subfigure) and dimensionless
heat capacity per particle (right subfigure) changing with isometric
confinement in first and second directions while third one is constant
(α3 = 3) for N = 50.

Figure 5.12: Dimensionless entropy per particle (left subfigure) and dimensionless
heat capacity per particle (right subfigure) changing with isometric
confinement in all directions.

As we see, entropy and heat capacity are affected severely by confinement.
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6. EXCESS THERMAL ENERGY STORAGE AT NANO SCALE

Perhaps the best way to verify the results in this thesis is trying to measure the heat

capacity of relatively weakly confined 3D Fermi gas. Confinement rates are easily

obtainable in today’s experimental capabilities. Since oscillations in heat capacity is

a direct consequence of the discrete nature, experimental verification of heat capacity

oscillations means also the verification of the discrete nature of thermodynamics.

In this study so far, only electronic contributions to heat capacity are discussed. In the

heat capacity of metals, there are also lattice contributions and total heat capacity of

metals is written as

C(T )
V =C(e)

V +C(L)
V = γeT + γLT 3 (6.1)

where γe and γL are proportionality constants and (T ), (e) and (L) superscripts denote

total, electronic and lattice contributions respectively. From Eq. (6.1), one can infer

that in low temperatures electronic contributions, whereas in high temperatures lattice

contributions are dominant. Also note that, decreasing temperature increases the

confinement parameter α which is the case in this study. So it is consistent to expect

the dominant contributions to degenerate and confined ideal Fermi gases come from

the electronic one. That’s why lattice contributions are neglected.

Let’s consider a 3D isometric InSb nano structure with sizes L1 = L2 = L3 = 10nm and

conduction electron density around 9.35x1025 m−3 at 5K [28]. Changing the size of

the domain in the first direction from 10 nm to 12 nm will result to the oscillations in

the electronic heat capacity of the substance as in Fig. (6.1).
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Figure 6.1: Dimensionless specific heat varying with domain size in the 1st direction
for T = 5K.

In Fig. (6.1) and then in Figs. (6.2) and (6.3), blue curve represents the exact

summation equation of heat capacity (Eq. 2.38) divided by exact number of

particles (Eq. 5.1) and red line represents the specific heat capacity under continuum

approximation from Eq. (2.78) that is C̃V/N = π2/2Λ. The same experimental setup

but in different temperature, say 7K will change the oscillation pattern as in Fig. (6.2).

Figure 6.2: Dimensionless specific heat varying with domain size in the 1st direction
for T = 7K.

Due to several natural reasons there might be errors in the experiments and

experimental results may not exactly the same with the Figs. (6.1) or (6.2). However,
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we can divide two results to each other and get a relative result of the heat capacity of

structure. In this case, even if there is an experimental error, if the experiment is done

properly, the proportional result of heat capacities of two cases (5K and 7K) should

be the same as in Fig. (6.3). As it is seen from Figs. (6.1), (6.2) and (6.3), there

are experimentally recognizable rise and falls in the specific heat while domain size

changes.

Figure 6.3: Ratio of the CV vs L1 results for T = 5K and T = 7K.

One can also experimentally verify the results by measuring the Fermi surface and

observing its discreteness [29].

Thermal energy storage is directly related to the heat capacity. The higher heat capacity

means the more thermal energy storage. According to the heat capacity equation (Eq.

2.38), heat capacity of nano structures are lower than the macro ones. However, when

oscillations and peaks that we observed are considered, the situation may change.

Finely tuning confinement to the values where heat capacity of the nano structure

makes its peak and gathering many of them may lead to a macroscopic substance

with a pretty larger specific heat capacity than the ordinary one. Making a nano device

based on heat capacity oscillations, will be the manifestation of excess thermal energy

storage at nano scale by quantum size effects.

Apart from the industrial potential, discreteness of thermodynamics broadens our

perspective on nature and intuitively show us even the most well-established concepts
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like continuity of thermodynamic quantities can be considered as an asymptotic

approximation of more general concepts. Almost every breakthrough in science

corroborates the importance of thinking phenomena in opposite limits of conventional

cases. Considering this point of view in fundamental areas like thermodynamics may

take us closer to the reality of nature.
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APPENDIX A: MATHEMATICAL SUPPLEMENT

1.1 Derivation of Boltzmann Entropy Formula

Entropy is fundamentally defined as a measure for the number of microscopic
configurations (denoted by Ω) in a system of objects. In physical processes, this
measure governs a purely physical quantity that is called heat. There is a direct
proportionality between heat and entropy change in a system with a factor called
temperature,

dS≥ dQ
T

(A.1)

It is apparent from the equation above that, since heat is an extensive (additive)
quantity, entropy also have to be. Hence, we cannot directly calculate entropy by
measuring how many microscopic configurations a system has, since as a statistical
fact, combining two systems into one system will result to the multiplication of
the number of microscopic configurations of two systems (Ω1×Ω2 = Ω1,2), which
is a non-additive operation. For consistency with the physical definition, entropy
would be calculated as an extensive quantity, so that multiplication of probabilities or
configurations of systems corresponds to the addition of their entropies (S1+S2 = S1,2),
see Fig. (A.1).

Figure A.1: Entropy have to be additive while multiplicity is not.

So, we want a function that satisfies,

f (xy) = f (x)+ f (y) (A.2)

Suppose f is a differentiable and continuous function. Taking the derivative of above
equation with respect to x and y gives respectively,

y f ′(xy) = f ′(x) −→ f ′(xy) =
f ′(x)

y
(A.3a)

x f ′(xy) = f ′(y) −→ f ′(xy) =
f ′(y)

x
(A.3b)
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so,

f ′(xy) =
f ′(x)

y
=

f ′(y)
x

(A.4)

arranging and equating them to a constant k,

x f ′(x) = y f ′(y) = k (A.5)

which can be written as

f ′(x) =
k
x

and f ′(y) =
k
y

(A.6)

integrating them with respect to x and y respectively,

∫
f ′(x)dx = k

∫ dx
x

and
∫

f ′(y)dy = k
∫ dy

y
(A.7)

that proves f (x) and f (y) are nothing but the logarithm function,

f (x) = k logx+ c and f (y) = k logy+ c (A.8)

As it is seen, only differentiable and continuous function that satisfies the condition is
logarithm function. Statistically, inverse of the number of microstates correspond to a
macrostate gives the probability of a microstate (1/Ωi = pi). If all possible microstates
are not equally likely, taking the average of the logarithm of number of configurations
will give entropy and it is written in its general form as1

S =−∑
i

pi log pi (A.9)

where pi is the probability of ith state. When all states are equally probable and
naturally ∑i pi = 1, above formula reduces to the Boltzmann’s entropy formula,

S = logΩ (A.10)

where temperature scale constant kB is taken as unity (kB = 1) for brevity.

1In fact even this is not the most general form, but a close and thermodynamically sufficient one.
The most general form of entropy is known as Von Neumann entropy in quantum statistical mechanics,
and written as S = Tr(ρ logρ) where Tr is trace and ρ is the density matrix.
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1.2 Derivation of Poisson Summation Formula

Poisson summation formula is stated as

∞

∑
i=−∞

f (i) =
∞

∑
s=−∞

f̂ (s) (A.11)

where f̂ is the Fourier transform of f . Then from the definition of Fourier transform,

∞

∑
i=−∞

f (i) =
∞

∑
s=−∞

∫
∞

−∞

f (i)e−2πIsidi (A.12)

where I is imaginary unit. From Euler’s identity we can write this as

∞

∑
i=−∞

f (i) =
∞

∑
s=−∞

∫
∞

−∞

f (i)[cos(2πsi)− I sin(2πsi)]di (A.13)

For even functions, summation and integral on the right hand side can take the form
below:

f (i) = f (−i) →
∞

∑
i=−∞

f (i) = 2
∞

∑
s=1

[
2
∫

∞

0
f (i)cos(2πsi)di

]
+2

∫
∞

0
f (i)di (A.14)

It is possible to express the summation as

∞

∑
i=−∞

f (i) = 2
∞

∑
i=1

f (i)+ f (0) (A.15)

Then,
∞

∑
i=1

f (i) =
1
2

∞

∑
i=−∞

f (i)− f (0)
2

(A.16)

Writing Eq. (A.14) into Eq. (A.16) gives PSF for even functions,

∞

∑
i=1

f (i) =
∫

∞

0
f (i)di− f (0)

2
+2

∞

∑
s=1

∫
∞

0
f (i)cos(2πsi)di (A.17)

1.3 Useful Integrals

Evaluations of some common integrals that are used in quantum statistics are given
below: ∫

∞

0

(αi)n

e(αi)2−Λ±1
di =∓Γ[(n+1)/2]

2α
Li(n+1)/2(∓eΛ) (A.18)

∫
∞

0

(αi)ne(αi)2−Λ(
e(αi)2−Λ±1

)2 di =∓
(

n−1
4α

)
Γ

(
n−1

2

)
Li(n−1)/2(∓eΛ) (A.19)
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∫
∞

0
(αi)n ln

[
1± eΛ−(αi)2

]
di =∓Γ[(n+1)/2]

2α
Li(n+3)/2(∓eΛ) (A.20)

Integrals above are true except the points where Gamma function goes to infinity.

1.4 Polylogarithm Functions and Their Series Expansions

Polylogarithm Functions are special functions defined as

Lin(z) =
∞

∑
k=1

zk

kn (A.21)

where n is order and z is the argument of the function. It has a beautiful property
that it responses to integration or differentiation with increase or decrease in order
respectively. This property makes it practical in such operations.

Λ >> 1⇒ Lin(−eΛ)∼=−
Λn

Γ[n+1]

[
1+

π2n(n−1)
6Λ2

]
+O(n4) (A.22)

where Γ indicates the Gamma function and O denotes the order of unwritten terms of
the expansion. Most encountered polylogarithm functions in Fermi-Dirac statistics are
given below with their series expansions

Li5/2(−eΛ)∼=−
8Λ5/2

15
√

π

[
1+

5π2

8Λ2

]
(A.23)

Li2(−eΛ)∼=−
Λ2

2

[
1+

π2

3Λ2

]
(A.24)

Li3/2(−eΛ)∼=−
4Λ3/2

3
√

π

[
1+

π2

8Λ2

]
(A.25)

Li1(−eΛ)∼=−Λ (A.26)

Li1/2(−eΛ)∼=−
2Λ1/2
√

π

[
1− π2

24Λ2

]
(A.27)

Li0(−eΛ)∼=−1 (A.28)

Li−1/2(−eΛ)∼=−
1√
πΛ

[
1+

π2

8Λ2

]
(A.29)

Even for Λ = 10, errors of above equations are under 2x10−4 and drastically decrease
with increasing Λ.
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For the integrals encountered in BE statistics below formula can be used,

Λ→− 0⇒ Lin(eΛ) = Γ(1−n)(−Λ)n−1 +
∞

∑
k=0

(−Λ)kζ (n− k)
k!

(A.30)

where ζ is the Riemann zeta function. Even for Λ = −0.1, errors of above equation
are under 3x10−5 and again decrease rapidly with increasing Λ.

1.5 First Order Temperature Corrections To Chemical Potential

1.5.1 Derivation in 3D

From Eq. (2.46), we can write number of particles for 3D by expanding polylogarithms
to zeroth order correction we have,

N3 =
V
λ 3

th

4Λ3/2

3
√

π
(A.31)

We want to find the temperature correction to chemical potential, but we don’t know it
yet. So let’s assume chemical potential differs with a small term of δ3,

µ = µF(1+δ3) (A.32)

or equivalently,

Λ = ΛF(1+δ3) (A.33)

Now the aim is to find the value of δ3. Inserting the above relation to the first order
temperature correction of number of particles equation in Eq. (2.46) gives,

N3 =
V
λ 3

th

4[ΛF(1+δ3)]
3/2

3
√

π

[
1+

π2

8[ΛF(1+δ3)]2

]
(A.34)

Dividing the one with first order correction Eq. (A.34) to zeroth order one Eq. (A.31)
gives,

1 = (1+δ3)
3/2
(

1+
π2

8Λ2
F(1+δ3)2

)
(A.35)

We may neglect the correction term in the denominator and use the approximation of
(1+ x)n ≈ 1+nx which gives

1 =

(
1+

3δ3

2

)(
1+

π2

8Λ2
F

)
(A.36)

Neglecting the fourth order term coming from the multiplication above leads,

1 = 1+
3δ3

2
+

π2

8Λ2
F

(A.37)
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Then temperature correction to chemical potential in 3D domians, δ3 becomes,

δ3 =−
π2

12Λ2
F

(A.38)

and we write for 3D domains,

Λ = ΛF

(
1− π2

12Λ2
F

)
(A.39)

or equivalently,

µ = µF

(
1− π2k2

BT 2

12µ2
F

)
(A.40)

This is A very useful result that by using this it is possible to obtain entropy and heat
capacity for continuous 3D domains.

1.5.2 Derivation in 2D

First order correction of number of particles in 2D does not contain temperature
correction, so µ = µF for 2D case. Entropy and heat capacity in 2D can be derived
by using the first order temperature corrections of other relevant thermodynamic
quantities. See (2.2.4).

1.5.3 Derivation in 1D

In the same manner we do in 3D case, zeroth order and first order corrections for
number of particles in 1D are written respectively as

N1 =
2C
h

√
2m
√

µ1 (A.41)

N1 =
2C
h

√
2m
√

µ1(1+δ1)

(
1− π2

24Λ2
F

)
(A.42)

Dividing Eq. (A.42) to Eq. (A.41) and making relevant approximations leads,

1 = 1+
δ1

2
− π2

24Λ2
F

(A.43)

Then temperature correction of chemical potential for 1D domains,

δ1 =
π2

12Λ2
F

(A.44)

Then the chemical potential in 1D continuous domains can be written along with its
temperature correction as

µ = µF

(
1+

π2k2
BT 2

12µ2
F

)
(A.45)
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APPENDIX B: THERMODYNAMIC SUPPLEMENT

2.1 Glossary of Thermodynamics

• Energy: A property that changes at least one of the state variables of the system.

• Entropy: An extensive measure of the number of microscopic configurations that
an equilibrium thermodynamic system can be found. It can be interpreted as the
quantity of "unknown" or the magnitude of "disorder". So entropy is a property of
macrostate, not of the microstate.

• Heat: A form of energy that spontaneously transfers itself from higher temperature
object to the lower one to balance the entropy difference in between objects.

• Work: A form of energy that can be used in mechanical forms.

• Microstate: An instant state of particles in a system that corresponds to their
degrees of freedom (like positions and momentums) and quantum numbers (like
spins, angular momentums) of individual particles.

• Macrostate: An instant state of a system that corresponds to the macroscopic
properties (like pressure, temperature and volume) of particles. Different
microstates can lead to the same macrostate.

• Thermal equilibrium: A condition that two systems in contact reach to the same
constant temperature.

• Statistical ensemble: A bunch of systems that represents a specific probability
distribution.

• Microcanonical ensemble: An isolated system with fixed total energy and number
of particles.

• Canonical ensemble: A closed system with fixed temperature and number of
particles.

• Grand canonical ensemble: An open system with neither energy nor number of
particles is fixed.

• Maxwell-Boltzmann statistics: An equilibrium statistical concept that particles
are assumed to be non-interacting and system is in its high temperature and/or low
density limit.

• Fermi-Dirac statistics: An equilibrium statistical concept for non-interacting
particles which obey the Pauli exclusion principle.
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• Bose-Einstein statistics: An equilibrium statistical concept for non-interacting
particles which have tendency to condensate into the same energy state.

• Partition function: An abstract statistical concept introduced for describing
the statistical properties of a system in thermodynamic equilibrium. Useful for
simplifying and manipulating thermodynamic functions.

• Chemical potential: A form of potential energy that causes to the movement of
particles in a system.

• Temperature: A measure of infinitesimal change in entropy with respect to
infinitesimal change in energy.

1
T

=

(
∂S
∂U

)
V,N

• Helmholtz free energy: A form of potential energy that can be converted to work.

• Pressure: A force per unit area due to kinetic energies of particles (energetic
pressure) and their tendency to evolve into a more probable configuration (entropic
pressure).

• Heat capacity: Heat energy required to change the temperature of an object by a
given amount.

• Thermal fluctuations: Quasi-random deviations of a system from its equilibrium
state. Disappear at absolute zero temperature.

• Degeneracy: A condition of a system with extremely high density or
low temperatures so that quantum mechanical effects determine the physical
characteristics of the system.

• Multiplicity: Number of momentum state configurations which correspond to the
same energy level. In other words, the degeneracy of energy levels.

2.2 Glossary of Related Quantum Mechanical Concepts

• Quantum state: Quantum mechanical state (like position, spin or momentum) of a
system denoted by quantum numbers.

• Momentum state: A quantum state of particles that characterize their energies.

• Wave function: A function that describes the statistical probabilities of a quantum
state. According to the standard interpretation of quantum mechanics, it contains
all the information about its quantum state.

• Spin: An intrinsic quantum state of elementary particles. It specifies the statistical
behavior of particles as stated by spin-statistics theorem. For example, particles
having half-integer spin exhibits the nature of FD statistics, whereas particles
having integer spin displays the character of BE statistics.
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• Thermal de Broglie wavelength: A quantity defined in the calculation of partition
function and related with the de Broglie wavelength of particles.

• Most probable de Broglie wavelength: Wavelength of particles which makes
distribution function maximum.

• Pauli exclusion principle: A principle states that two or more identical fermions
cannot occupy the same quantum state simultaneously.

• Quantum confinement: When domain size is smaller than the most probable de
Broglie wavelength of particles, they’re said to be quantum mechanically confined
in the domain.

• Quantum fluctuations: Random and temporary change in the amount of energy in
a region of spacetime due to creation and annihilation of particle-antiparticle pairs
allowed by energy-time uncertainty principle.

∆E∆t ≈ h
2π

2.3 Laws of Thermodynamics

• 0th law of thermodynamics: If a system A is in thermal equilibrium with systems
B and C, then B and C are also in thermal equilibrium with each other. It represents
the associative property of the heat. Mathematically,

A≡ B and B≡C −→ A≡C

• 1th law of thermodynamics: Heat is a form of energy and energy is conserved for
closed systems.1 Then change in the internal energy of a closed system corresponds
to a change in heat and/or work.

dU = dQ+dW

• 2th law of thermodynamics: Entropy of an isolated system cannot decrease.2

dS≥ 0

• 3th law of thermodynamics: Entropy of a system with temperature at absolute
zero Kelvin is zero and it is not possible to reach absolute zero with finite number
of processes. Quantum mechanically, this is the consequence of the existence of a
lowest energy state for any particle.

T → 0 =⇒ S(T ) = 0

1Quantum fluctuations are neglected.
2At least within a given time on the order of human observation. On the other hand, since entropy

in fact is a purely statistical notion, fluctuations always happen and according to Poincaré recurrence
theorem, even for an isolated system, if there is sufficiently long (i mean really long) time, entropy will
eventually decrease and system returns to a state very close to its initial state [].
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