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ON THE DISCRETE NATURE OF THERMODYNAMICS

SUMMARY

Thermodynamics is one of the oldest and most significant disciplines in natural
sciences. Mainly it concerns with energy and its relation to entropy and work. Since we
are surrounded by energy, almost every thing in nature is related with thermodynamics
in some way. Before the quantum revolution in 1920’s, thermodynamics was one
of the most well-established discipline in the scientific world. On the other side,
with the understanding and insight that quantum mechanics gives us now, it might
be the time to reconsider some things even in well-established areas of physics like the
thermodynamics itself.

For centuries, it was assumed that thermodynamic quantities have continuous nature,
since they represent macroscopic properties of the system. For the first time, we
showed for Fermi gases that thermodynamic quantities intrinsically have discrete
nature which reveals itself properly in nano scale where quantum effects dominate
the system. One cannot separate quantum mechanics from thermodynamics at
nano scale and below. Although continuum approximation is very useful to study
thermodynamics of macro systems, in nano scale it apparently fails. Therefore,
thermodynamic properties of nano systems cannot be calculated by classical and
conventional methods.

The proper calculation of thermodynamic quantities in nano scale confined structures
have to be done by using the exact summations of thermodynamic state functions.
Converting them to integrals by using density of states concept is not valid in strongly
degenerate and confined structures, since that process eventually vanishes size effects.
As confinement increases, wavefunctions of particles start to be affected prominently
by the boundaries of the domain due to quantum mechanical reasons. This leads to a
stepwise behavior in the summation of Fermi-Dirac distribution function and since all
thermodynamic properties contains the distribution function inside the summations, all
of them are affected by the confinement and present discrete behaviors.

Two distinct type of discrete behaviors observed in thermodynamic quantities;
stepwise and peakwise behaviors. Stepwise behaviors observed in variations of
number of particles, internal energy, free energy and pressure with chemical potential,
whereas peakwise behaviors observed in variations of entropy and heat capacity with
chemical potential, number of particles, confinement parameter and domain size in one
direction. The ones exhibit stepwise behavior contains the summation over distribution
function which generates steps and others that exhibit peakwise behavior contains the
summation over the derivative of distribution function (or variance function) which
generates peaks. Detailed examination of peakwise behavior in entropy and heat
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capacity showed that Fermi line and Fermi surfaces are also discrete. These odd
phenomena come directly from the quantum nature of Fermi-Dirac statistics.

Behaviors of thermodynamic state functions also depend on the dimension of
the momentum space. In one-dimensional structures, thermodynamic quantities
have regular discrete nature whereas for multi-dimensional structures, they have
quasi-irregular nature due to the degeneracy of energy levels.

Effects introduced in this thesis may lead to the development of new nano devices
that stores thermal energy at nano scale in a more efficient way. Finally, proposal
of an experimental verification of discrete and oscillatory nature in thermodynamic
quantities is discussed.
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TERMODINAMIGIN KESIKLI DOGASI UZERINE

OZET

Temelde sistemin enerjisinin 1s1 ve is alig-verisi ile iligkilerini inceleyen termodinamik
disiplini, doga bilimlerinin en eski ve en Onemlilerinden biridir.  Yasadigimiz
bu diinyada veya daha genel olarak evrende tiim siireclere enerji alig-verisi eslik
ettigZinden aslinda her sey bir bakima termodinamik ile ilgilidir.  1920’lerdeki
kuantum devriminden once bilim camiasinda termodinamik en saglam ve koklii
disiplinlerden biri olarak goriilmekteydi. Giintimiizde ise, kuantum mekaniginin
bize kazandirdig1 anlayis sayesinde, fizigin en oturmus kabul edilen alanlarindan biri
olan termodinamikte bile bazi seyleri yeniden gézden gecirmenin zamaninin geldigi
anlagilmaktadir.

Termodinamik biiyiikliiklerin yillardir siirekli degiskenler olduklar1 varsayilmisti.
Biiyiik Olgekli sistemler i¢cin dogru olan bu yaklasim, nano Ol¢ekte kuantum
davranmiglarin da sebebi olan maddenin dalga karakterinin Onemli hale gelmesi
nedeniyle gecerliligini yitirmektedir. Tezde ilk defa Fermi gazlari i¢in termodinamik
biiytikliiklerin icsel bir kesikli dogast oldugu ve bu ozelli§in kuantum etkilerin
sistemde hakim oldugu nano Olgeklerde daha belirgin bir sekilde ortaya ciktig
gosterilmigtir.  Kuantum etkilerin sistemdeki hakimiyetinden dolayi, nano olgek ve
altinda sistemin termodinamigi, kuantum mekaniginden ayr incelenemez. Siireklilik
yaklasimi her ne kadar biiyiik Olcekte ve hatta orta Olgeklerde kullanish olsa da,
nano sistemlerde gecerli olmayip hatali sonuglar verir. Bu nedenle, nano sistemlerin
termodinamik ozellikleri hesaplanirken alisilagelmis klasik yontemlerin kullanilmasi
dogru olmaz.

Parcacik sayisi, i¢ enerji, entropi, basing, serbest enerji ve 1s1 sigasi gibi termodinamik
biiytikliikler tanimlart geregi toplam formiilleri ile ifade edilir. Klasik termodinamikte
hesap ve islem kolaylig1 agisindan toplamlar siireklilik yaklagimi altinda integrallerle
yer degistirilir. Bu yer degistirme sirasinda hal yogunlugu kavramindan yararlanilir.
Kuantum etkilerinin 6nemsenmedigi biiyiik 6lcekli yapilarda bu islem hem oldukca
iyi sonuclar verir, hem de termodinamik ozelliklerin analitik olarak ifade edilmesini
ve bu sayede aralarindaki iligkilerin kolay goriilmesini saglar. Diger yandan, kuantum
mekaniginin dogasinin bir sonucu olarak kii¢iik 6lcekli yapilarda 6rnegin nano dlgekte
kuantum 6l¢gek etkileri termodinamik 6zellikler {izerinde rol oynamaya baglar.

Kuantum mekaniginin sonucu olarak, tutuklanma arttik¢a termodinamik 6zellikler de
Olcege ve bicime bagl hale gelir. Dogal olarak tutuklanma ve/veya parcacik yogunlugu
ne kadar fazlaysa, bu etki o kadar gii¢clenir.

Tez kapsaminda; tezin amacinin, literatiir aragtirmasinin ve tezin dnemli sonug¢larinin
listelendigi giris niteligindeki ilk boliimiin ardindan ikinci bodliimde, tezi anlamak
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icin gerekli olan tiim bilgiler sistemli bir sekilde verilmeye calisilmigtir. Kuantum
istatistigine giris yapilmis, dagilim fonksiyonlar1 tiiretilmis ve termodinamik
biiyiikliikler tanmitilmigtir.  Literatiirde toplam formiillerinin integrallerle nasil yer
degistirildigi incelenmis ve buna gore termodinamik biiyiikliikler farkli boyutlarda
tiiretilmistir. Ardindan termodinamik toplamlarin analitik gosterimine olanak saglayan
Poisson toplam formiilii tanitilmistir. Tutuklanma degiskeni tanimlanmis ve farklh
tutuklanma degerlerinde Poisson toplam formiiliiniin terimleri incelenmis ve kesikli
yapinin matematiksel gosterimi yapilmistir.

Termodinamik Ozelliklerin kesikli dogasi, 3., 4., ve 5. bolimlerde sirasiyla 1,
2 ve 3 boyutlu domenlerde ayr1 ayri incelenmistir. Her boliimde termodinamik
biiyiikliiklerdeki basamakli ve tepeli yap1 ayr altbagliklar altinda incelenmis ve bu
yapilara neden olan etmenler aciklanmistir. Bunlardan kisaca bahsedersek; kuantum
etkilerin bir sonucu olan termodinamigin kesikli yapisi, termodinamik biiyiikliikler
iistiinde etkisini basamakli ve tepeli olmak iizere iki farkli sekilde gosterir. Parcacik
sayisl, i¢ enerji, basing ve serbest enerji gibi termodinamik biiyiikliiklerin kimyasal
potansiyel ve pargacik sayisi ile degisimlerinde basamakli bir yap1 gozlenmistir. Bu
basamakl1 yap1 temel olarak Fermi-Dirac dagilim fonksiyonunda Fermi gazlarinin ayirt
edici bir 6zelligi olan Pauli disarlama ilkesi ve kiitleli pargaciklarin bir 6zelligi olan
ikinci dereceden enerji-momentum iligkisinin asir1 yogun ve ileri derece tutuklanmis
durumlarda ¢ok belirgin hale gelmesi sonucu gozlemlenir. Belli termodinamik
ozelliklerin tiirevleri ile bulunan entropi ve 1s1 sigas1 gibi termodinamik biiyiikliiklerde
ise Fermi-Dirac dagilim fonksiyonunun degisimi ya da tiirevinin tepeli dogas1 geregi
tepeli davraniglar gozlenir. Entropi ve 1s1 sigasindaki pargacik sayisi ve tutuklanma
siddeti degisimine bagh tepeli davranis 1, 2 ve 3 boyutta sirasiyla Fermi noktasi, Fermi
dogrusu ve Fermi yiizeyinin kesikli yapisinin sonucu olarak agiklanmusgtir.

Termodinamik hal fonksiyonlarinin farkli degiskenler altinda davraniglart domenin kag
boyutlu oldugu ile de dogrudan iligkilidir. Ornegin tek boyutlu yapilarda basamakli ve
tepeli yapilar diizenli bir halde ilerlerken, birden fazla boyutlu yapilarda ayni kuantum
enerji seviyesinde birden fazla hal bulunabileceginden basamakli ve tepeli yapilarin
degisimi diizensiz bir hal alir. Fermi gazlarinda entropi ve 1s1 sigasi sifir boyutlu
bir yapida tam olarak sifir ve tek boyutlu yapilarda neredeyse sifir iken, birden fazla
boyutlu yapilarda anlamli degerler almaya baglar. Ayrica literatiirde Fermi gazlarinda
yaklagik olarak esit kabul edilen entropi ve 1st si@asinin, domendeki tutuklanma
arttik¢a birbirinden oldukca farkli davrandiklari ve esit olmadiklar1 gosterilmistir.

Bazi1 termodinamik 6zellikler i¢in gerek siirekli davranisi, gerekse de kesikli davranisi
temsil edebilen analitik bagintilar tiiretilmistir. Termodinamik 6zelliklerin tutuklanma
degiskeni ve Olcek ile olan bagimhiliklari incelenmis, 2 ve 3 boyuttaki es yonlii
olmayan tutuklanmalarda entropi ve 1s1 sigasinda salinimlar gozlenmistir. Eg yonlii
degisimlerde ise bu salimimlar yerini daha piiriizsiiz degisimlere birakmugtir.

Tezin son boliimiinde 1s1 sigasindaki tepelerden yola ¢ikarak nano Slgekte yiiksek
miktarlarda enerji depolamay1 saglayabilecek bir nano cihaz Onerisi ve deneysel
calisma i¢in kosullarin bilgisi verilmistir. Nano 0Ol¢ekte domenin boyutlarindaki
degisim, 1s1 sigasinda literatiirdekinin aksine salimimli bir degisime yol agmaktadir.
Tezde yapilan teorik ongoriiler, giiniimiiz deneysel kosullarinda test edilebilir nicelikte
goriilmektedir.  Is1 sigasindaki domene bagli salinimlarin deneysel dogrulamast,
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termodinamik o©zelliklerin kesikli yapisinin da ve tezdeki diger sonuclarin da
dogrulamas1 olacaktir. Bunun yanisira, giinlimiiz enerji depolama tekniklerine
alternatif olabilecek yiiksek miktarda 1s1l enerji depolama miimkiin olabilecektir.

Son olarak tezin ek kisminda tezde gereken matematiksel ve termodinamik altyapi i¢in
gerekli bilgiler verilmistir.
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1. INTRODUCTION

Even though quantum theory has revolutionized our way of thinking about the nature,
the results we encounter on quantum nature of matter still continue to surprise us.
Advancements in nanosciences and nanotechnologies in recent years make it possible
to examine the macroscopic manifestations of quantum mechanical behaviors of matter
in laboratories. In fact, three of the last five years Nobel prizes in physics are given
to the experimental developments in various areas of nanotechnology. As a matter of
fact, experiments are going ahead of theory in nanoscience but its theoretical basis’ are

also open to improvement.

In practical context, nanoscience and nanotechnologies have great potential to bring
innovations in energy harvesting. Quantum dot solar cells emerged recently to
increase the efficiency of solar energy systems by tuning the band gaps closely so
that benefiting from wide ranges of solar spectrum. Nano materials with large surface
area like graphene and carbon nanotubes can be used to make supercapacitors, since
increasing surface area of capacitor plates and decreasing their distance between, raises

capacitance vastly.

The importance of nanostructures comes mainly from their quantum mechanical
behaviors. Unlike bulk materials, in nano materials, quantum nature of matter
become prominent and even dominates the behavior of material, which leads
to some significant capabilities that macro materials does not have, like giant

magneto-capacitance and the importance of topological structure.

In consideration of today’s leap forwards, necessity of studying thermal properties
of nano systems became ineluctable. Nano scale thermodynamics or nanothermo-
dynamics, is a brand new as well as an important topic of nanoscience. Along
with the fundamental perspective of quantum statistics, it allows us to examine the

thermodynamic behaviors of nano systems.



1.1 Purpose of Thesis

Proper study of thermodynamics of nano structures in a theoretical manner became a
need. All the years before nano-revolution, scientists used classical or conventional
methods of thermodynamics. Even in mesoscales, classical thermodynamics works
quite well. However, when we go down to nano scale, things become too bizarre to be

studied in a classical way.

Appearance of quantum mechanical effects at nano scale makes thermodynamic
properties size and shape dependent. When domain sizes are smaller than thermal de
Broglie wavelength, surface, edge and corner effects reveal themselves. It is insecure

to continue using classical thermodynamics in such cases [1-3].

The main aim of this thesis is, to show that there are considerable deviations from
classical thermodynamics in degenerate quantum gases at nano scale. Specifically for
Fermi gases, they lead to some novel effects like discrete and oscillatory behaviors in
thermodynamic quantities [4,5]. To be able to observe these behaviors, proper way of
calculating thermodynamic quantities for nano systems is introduced. Thermodynamic
quantities have being supposed to be continuous at macroscale since they are
considered by definition as macroscopic quantities. However, for the first time here, it
is shown that thermodynamic quantities of Fermi gases have intrinsic discrete nature

as a consequence of a combination of several quantum mechanical effects.

1.2 Literature Review

General principles and classical derivations of thermodynamic properties of gases
have been made by considering thermodynamic limit in many textbooks [6—8].
Nevertheless, studies about finite-size effects increased nowadays, in parallel with the
developments in nanotechnology. Numerous researches have been done to discover

the nature of gases confined in finite-size domains [1,2,9-14].

In 1998, Schneider and Wallis obtained some results that are in correlation with the
study of this thesis [15]. For ultracold Fermi gases in a harmonic trap, they obtained

chemical potential and specific heat from thermodynamic state sums, and in 2012,



Chen, Su and Chen, made the similar study for quartic traps, again just for extremely

low temperatures [16].

In 2004, by performing Poisson Summation Formula (PSF) on partition function,
for a rectangular geometry, Sisman and Muller showed that considering exact
summations has several consequences like thermosize effects, anisotropic pressure
tensor and non-additive global thermodynamic properties which are not predicted
by classical thermodynamics [1]. Generalization of this concept on spherical and
cylindrical geometries and interpretation of thermosize effects as surface dependency
of thermodynamics via the geometric dependence from surface/volume ratio has been

done by Sisman in 2004 [2].

In 2007, it is theoretically shown that there is a quantum surface tension due to
inhomogeneous density distribution, which causes the quantum boundary layer (QBL)
in Maxwellian gases confined in a finite domain even in thermodynamic equilibrium
[17]. Generalization of QBL to spherical and cylindrical geometries and to irregular

arbitrary geometries has been shown in 2009 [18, 19].

In 2004 and 2008, temperature dependence of heat capacity has been just numerically

examined for non-interacting fermions with multifractal energy spectra [20,21].

As shown by Ozturk and Sisman in 2009, QSE make small corrections on thermal and
potential conductivities of ideal Maxwell, Fermi and Bose gases. In addition, QSE are

responsible from geometric dependency of Wiedemann-Franz ratio in nano scale [22].

In 2013, by Firat and Sisman, existence of QSE and QBL is also shown for
D-dimensional arbitrary domains by using Weyl’s conjecture and in addition to that,

experimental setup for the verification of these effects has been proposed [23].

Studies of nanothermodynamics are newly developing and few researches have been
done as they are given here. In this sense, scope and results of this thesis can be

considered as novel and even surprising.



1.3 Structure of Thesis

Exact expressions of physical quantities in thermodynamics are in notions of
summations. In this thesis, it is shown that there is an intrinsic discrete nature in
thermodynamic properties of Fermi gases. Although discrete behavior is inherent,
it reveals itself in some extreme conditions like drastically degenerate and severely
confined Fermi gas systems. We may sort the main outputs and unique results of the

thesis as

e Intrinsic discrete nature in thermodynamic properties of Fermi gas

e Regular stepwise behavior of number of particles, internal energy, free energy and

pressure in 1D Fermi gas
e Periodic peakwise behavior of entropy and heat capacity in 1D Fermi gas

e Analytic expressions for some thermodynamic properties representing their discrete

nature

e Quasi-irregular stepwise behavior of number of particles, internal energy, free

energy and pressure in 2D and 3D Fermi gases

e Non-periodic oscillatory-like peaks in entropy and heat capacity of 2D and 3D

Fermi gases
e Discrete Fermi point, Fermi line and Fermi surface

e Both behaviors and magnitudes of entropy and heat capacity of Fermi gases at nano

scale are quite different from each other
e Strong size dependency of thermodynamic properties at nano scale
e Experimental proposal for the verification of new effects introduced in the thesis

e Proposition of nano scale thermal energy storage devices based on quantum size

effects

After this introduction, in chapter two, a brief review of quantum statistical

thermodynamics is given together with a summary of supplementary explanations for
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the sake of better understanding of some concepts that are used in the thesis. Then,
in chapters three, four and five, discussions of 1D, 2D and 3D Fermi gases are done
respectively and effects of discrete nature are introduced and examined in detail with
their explanations. Possible experimental verification and useful application in energy
storage are discussed in the last chapter. In addition, some necessary mathematical
information about the formulas, methods and functions that are used in thesis are given
in Appendix A and glossaries of thermodynamics, quantum mechanics and laws of

thermodynamics are given in Appendix B.






2. THERMODYNAMIC QUANTITIES OF IDEAL QUANTUM GASES

In this informative chapter, thermodynamics of non-interacting or in other words
ideal quantum gases are briefly reviewed. Emergence of two types of particles
with completely different statistical characters, as a direct result of their quantum
wavefunctions, are discussed. Derivation of distribution functions and fundamental
thermodynamic quantities are done in both exact and approximate forms for any

dimension and any domain.

2.1 Exact Expressions of Thermodynamic Quantities

Thermodynamic quantities are represented in summation forms by definition. In
classical thermodynamics, it is convenient to replace summations with integrals by
using continuum approximation to obtain analytical and simple expressions which
provide easiness for calculations and algebraic manipulations. Conversion from
summation to integral is useful in thermodynamic limit where the system is considered
as having infinite volume. On the other hand, for finite-size systems it is unsafe to use
integrals, since they give considerably different results than summations. To study the
thermodynamics of low dimensional quantum structures or extremely confined nano
structures, it is more appropriate to use exact state sums instead of integrals. Therefore,
exact definitions of thermodynamic properties of ideal quantum (Fermi or Bose) gases
based on infinite sums are considered in most parts of this thesis. Note that, since
masses and velocities of particles in nanostructures are extremely low in most cases,

gravitational and relativistic effects are neglected as a matter of course.

2.1.1 Nature of Quantum Statistics

To study the thermodynamics of nano scale ideal gases, it is necessary to use
quantum statistics; Fermi-Dirac (FD) or Bose-Einstein (BE), instead of classical

Maxwell-Boltzmann (MB) statistics. In this section, by starting from the most



fundamental concepts, derivation of thermodynamic quantities for quantum gases are

given in grand canonical ensemble which is the most general statistical ensemble.

Unlike classical mechanics, particles are indistinguishable in quantum mechanics. So
an electron here is no different than an electron there. As quoted from David J.

Griffiths,

It is not merely that we don’t know which electron is which; God doesn’t know
which is which, because there is no such thing as "this" electron, or "that"

electron. [24]

Indistinguishability of particles bring a different statistical nature to quantum systems.
To examine the statistical behavior of particles in quantum mechanics, let’s take the
simplest system of two particles with wavefunctions y,(x;) and ¥, (x;). From the joint
probability of independent events, product of their individual wavefunctions gives the
wavefunction of the system, y(x1,x;). As a statistical fact, square of the absolute value

of the wavefunction will not change under the exchange of particles,

lw(xr,x0) > = [y(x,x))? 2.1)

which gives two different solutions,

V(x1,x2) = £y (x2,x1) (2.2)

where "+4" and "—" respectively denote the symmetric and antisymmetric wavefunc-
tions under exchange. This result shows that in quantum mechanics there are two
different types of particles in terms of their statistical behavior. The particle with the
symmetric wavefunction is called Boson, and the antisymmetric wavefunction is called
Fermion. Although it may look a bit trivial at first sight, the sign change leads to
completely different statistical behaviors. For example when we add wavefunctions
of two Fermions to their wavefunction under the exchange, it gives zero which means
there is no wavefunction, in other words, the probability that two Fermions share the

same quantum state is zero.

W(xi,x2) + [~y (x2,x1)] =0 (2.3)
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This result is known as Pauli exclusion principle. On the contrary, since their
wavefunction is symmetric, Bosons have tendency to accumulate to the same quantum

state, which shows itself as Bose-Einstein condensate.

2.1.2 Distribution Functions in Quantum Statistics

In order to examine the statistical behaviors of Fermions and Bosons, we derive
distribution functions for FD and BE statistics. Distribution function as the name
implies defines how a statistical system of particles distributes. To find them, we first
define their combinatoric functions. By assuming that all states are equally likely,
number of micro states corresponding to a macro state, €, is the product of the
combination functions which are defined as the number of ways to arrange N; particles
into g; states. As we can deduce the combinatoric nature of FD and BE statistics from

the nature of their particle’s wavefunctions, Qrp and Qpg are written as

_ 8!
Qrp = UN—i! &N (2.4)
(Ni+gi—1)!
Qpp =[] o2 2.5
BE HNi!(gl-—l)! &

where i is the quantum state, g; is the number of states corresponding to the same
energy level (in other words the degeneracy of quantum energy levels) and ; is the
number of particles in an energy level €. To satisfy the equilibrium condition of

thermodynamics, we maximize entropy, which is defined by Boltzmann as'

S =kplnQ (2.6)

where kp is the Boltzmann’s constant, which is just an invented constant and the result
of our choice of temperature scale (Kelvin scale).2 It is convenient to use Stirling’s
approximation for factorials given in Egs. (2.4) and (2.5), after all it also reserves the

condition to make statistics and saves us from fluctuations.

x>>1= Inx!~xlnx—x 2.7)

'For the derivation of the Boltzmann entropy formula, please look at Appendix A.

ZBoltzmann’s constant relates energy with temperature and it depends on our temperature scale. If
we choose our temperature scale same as our energy units, there would be no such constant, k would
equal to 1.



Using the Stirling’s approximation and assuming N; >> 1 for the Bose case gives,

anFD :Zgl-lng,-—Nl-lnN,-— (gi—Ni)ln(gi—Ni) (2.8)
i

InQpe =Y (Ni+ &) In(Ni + g;) — N;InN; — (gi — 1) In(g; — 1) 2.9)

1

To find the most probable distribution for equilibrium condition, we’ll maximize
entropy by using Lagrange multipliers, which is a method for finding the extremum
of a function subject to some constraints. Maximizing Egs. (2.8) and (2.9) by equating

their partial derivatives with respect to N; leads,

dlnQ gi FN;
=V =0 2.10
AR ( N (2.10)
where here "—" sign for FD, "+" sign for BE derivation.?> Assuming total number of

particles N and total energy U are fixed, Q function has two constraints,

Y Ni=N (2.11)
i
Y eN=U (2.12)
i
and maximizing them gives,
ON
—=0=) dN; 2.13
oU
N, = 0= zi:eidNi (2.14)

where €; is the energy of ith state. Introducing Lagrange multipliers A; and A; to the

function,

dInQ = A1dN + AL dU (2.15)

Y In (g"jVEN"—/h—xze,-) dN; =0 (2.16)

3Please pay attention to T and + signs. Their order changes along the derivation.
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which becomes,

e 2.17)
l

Hence, number of particles in an energy level becomes,

- 8i
Ni= eMtht + ] 2.18)

where now "+" sign indicates FD, whereas "—" sign indicates BE. Now, to find
Lagrange constants A; and A, from the first and second laws of thermodynamics,

in constant volume,

dU = TdS + udN (2.19)

where T is temperature and i is chemical potential. By inserting Boltzmann’s entropy

formula and equating Eq. (2.19) to Eq. (2.15),
kgTdInQ+ udN —dU = dInQ — A1dN — A,dU (2.20)

A1 and A, are found as

1

R R

2.21
=l 2.21)

We have found N; that is the number of particles in an energy level. To find the number
of particles in a momentum state, we divide Eq. (2.18) to g; and inserting A; and A,

we get distribution functions for FD (with "+" sign) and BE (with "—" sign)4

1
fi= e(&—1)/ksT ] (2.22)
or equivalently,
1
o 2.2
/i efiA 41 (2:23)

where energy eigenvalues and chemical potential are written in their dimensionless
forms as & = &/kpT and A = u/kgT. 1t is apparent from the result that for FD,

occupation probability of a state is 0 < f; < 1 regardless of the magnitudes of variables

4For convenience it is common to neglect spin degrees of freedom g;, since for instance for a free
electron gas or Hes it is just a factor of 2, in the absence of an external magnetic field.
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as Pauli exclusion principle restricted. On the other hand, there is no such restriction

for BE as expected.

2.1.3 Thermodynamic Quantities Based On Infinite Sums

Now we are ready to derive thermodynamic properties. Summing the number of

particles in all momentum states gives the total number of particles written as

N = Z fi (2.24)

where the thermodynamic summations are always from one to infinity. Summation of

the energies of all momentum states gives the total internal energy,

U=) &f (2.25)

From the definition of entropy by Eq. (2.6), taking the integral of Eq. (2.10) and

inserting InQ, we get,

S =kg [ZMIH (]% F 1) F giln(N; F &) (2.26)
7 i
Turning Eq. (2.26) into a sum over momentum states gives,
S=kp [Z(fiﬂFl)(ei—u)ﬂnfi (2.27)
Eq. (2.27) is the entropy in its exact, infinite summation form where "—" for FD and

"+" for BE. Now, all other thermodynamic properties can be derived by using N, U
and S. For example Helmholtz free energy (or simply called free energy) is defined
as ' = U — TS and since we know how to calculate all these variables, we can find
free energy easily. From the first law of thermodynamics, dU = dQ + dW taking the

derivative of internal energy equation given in Eq. (2.25) gives,
dU =Y edfi+) fide; (2.28)
i i

In Eq. (2.28), the first term on the right hand side represents the heat term dQ and the

second term represents the work term dW. Using Eq. (2.28) and considering a simple

12



system so that dW = —PdV, we can write pressure as

88,-
=—) fi=— 2.29
;f 5 (2.29)
where V is volume for a 3D system. It will be area for 2D and line for 1D systems.

Now by inserting energy eigenvalues to the equation above> pressure is,

2 2U
P= 3VZ i = (2.30)

The other important thermodynamic quantity is the heat capacity which is defined as

_ 40
C=_ (2.31)

in constant volume. From the first law of thermodynamics, it becomes,

dUu
- 2.32
Cy T (2.32)

Now let’s derive heat capacity of a Fermi gas at constant volume by differentiating Eq.

(2.25) with respect to T as

du _ 88, df;
Y Z Z 57 (2.33)

Since dg;/dT = 0, first term of the right hand side of Eq. (2.33) vanishes. Then,

dU:—Ze,f, (15 £) Kae’> —(3—?) ] (2.34)
\% \%4

where (9&;/dT)y = —&;/kgT?. Only unknown term is (dA/dT )y on the Eq. (2.34).
To find it let’s use the fact that derivative of number of particles with respect to

temperature is zero. By the Eq. (2.24),

ON & oA
57 =0= Zf, 1) [ W_(ﬁ%} (2.35)

Derivative of A becomes,

o fi(1F fi
(8A> _ LigpfilF ) 2.36)

aT )y SACESD

>In the following subsections, energy eigenvalues will also be derived so that one can confirm this
result.
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Inserting Eq. (2.36) into Eq. (2.34),

U 2 ksXi€fi(1F fi) Li g i1 F i)
ar LT - T (T f) 230
Finally, Cy becomes,
~ 2
Co —k VA1 f) — Xi&fi(1F 1)) 2.38

In the derivation of heat capacity, to be able to interchange derivative operator with
summation, sum has to converge uniformly. Although speed of convergence of the our
summation depends on its variables, comparison of analytical and numerical derivative
perfectly matches with each other, so there is no uniform convergency problem in these

summations.

We introduced and derived three basic thermodynamic quantities (N, U and S) in terms
of infinite summations from their definitions and also showed that all thermodynamic

state functions (like F', P and Cy) can be derived based on them.

2.1.4 Thermodynamic Potentials and Conjugate Variables

Thermodynamic potentials are scalar quantities that represent the certain types of
energy of the system in terms of relevant variables. The main thermodynamic potential

is internal energy, U and the fundamental thermodynamic equation is written as

dU =TdS — PdV + udN (2.39)

Other thermodynamic potentials can easily be reproduced from internal energy, U by

using Legendre transformations,

dF = —SdT — PdV + udN (2.40)
dH = TdS+VdP+ ndN (2.41)
dG = —SdT +VdP + udN (2.42)
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where F' is Helmholtz free energy, H is enthalpy and G is Gibbs free energy.

In thermodynamics, there are three conjugate variables in pairs of temperature-entropy
(T-S), pressure-volume (P-V) and chemical potential-number of particles (u-N),
which are representing thermal, mechanical and chemical parameters of a
thermodynamic system respectively. Here P, T and pu are intensive properties that
means independent from the amount of substance and V, S, N are extensive properties

depending on the amount of substance.

Pressure is the thermodynamic driving force that causes displacement in volume.
Analogously, temperature and chemical potential might be considered as driving forces
of displacements in entropy and particle number respectively, though they are not
actually forces in a usual sense. As heat moves from higher temperature to lower
temperature to increase the entropy of the system, particles move from higher to lower
chemical potential. Pressure, temperature and chemical potential can be written as the

gradient of thermodynamic potentials.

2.2 Conventional Expressions of Thermodynamic Quantities

Before examining thermodynamic properties at nano scale, it is appropriate to go over
their conventional forms to understand in which ways they differ from macro scale.
For this reason, in this section, conventional thermodynamic quantities are derived
in thermodynamic limit (without considering finite-size effects) by taking the most

general definitions for thermal de Broglie wavelength and density of states.

2.2.1 General Definition of Thermal de Broglie Wavelength

According to quantum mechanics, matter exhibits wave properties and has a
wavelength corresponding to its matter wave. This wavelength is called de Broglie
wavelength, and average de Broglie wavelength of ideal gas particles with a specified
temperature is called thermal de Broglie wavelength. When domain size is much larger
than thermal de Broglie wavelength, it is useful to neglect quantum effects and consider

energy levels as if they are continuous. Here A, for a general energy-momentum
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dispersion relation E = ap®, is written as

h o[ a \'"[C(D/2+1)1YP
w09 = 72 (7) [oresn) (249

where D denotes dimension of the domain, a is energy-momentum dispersion

constant and s is energy-momentum dispersion order [25]. For massive particles,
energy-momentum dispersion relation is E = p?/2m, so a = 1/2m and s = 2. Since

s = 2 removes dimensional dependency, for any dimension Eq. (2.43) becomes,

h
AV 27'L'kaT

where £ is the Planck’s constant and m is the mass of the particle.

Ay = (2.44)

2.2.2 Density of States for a D-dimensional Arbitrary Domain

As you may noticed, there are three common variables (g,7,u) appear in all
thermodynamic state functions. € is the energy eigenvalues that are solved from
relevant differential equation, in this case (quantum gas) Schrodinger equation, a

special type of Helmholtz partial differential equation,
Viy+kPy =0 (2.45)

which turns to time-independent Schrodinger equation when wavenumber is k =

2me /1,
2

—h—vzw = ey (2.46)
2m

where i = h/27 is the reduced Planck’s constant and external potential is zero.
In spectral theory, asymptotic behaviors of eigenvalues of Helmholtz-like partial

differential equations for an arbitrary domain are given by Weyl’s conjecture [23,26].

In D-dimensions, the number of eigenvalues within an arbitrary domain is written as

Vi3 Ak? . Ck
ND(k):W@(D—3)+(—1)DM®(D—2)—|—(—1)D 1m®(D—l)
_~N¢
+(=1)P 24—1)
(2.47)
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where k is the wavenumber, D denotes dimension, V is volume, A is surface area, C is
circumference, N¢ is the number of corners and holes in the domain and © is Heaviside

step function which is defined as

0 ,x<0
O(x) = ’ 248
0 {1 o 248
Then, density of states in k-space is,
IRp(k) VK p Ak
k)= = ®(D -3 —1)"—55—0(D-2
(2.49)
4 C
+(=1)P lm@)(p— 1)
To convert density of states to €-space we first insert k = /2me /I in Eq. (2.47),
v o /2m\? Ame
Rp(e)=—5 (=5 | &/20(D-3)+(-1)°P———-0(D-2
oe) s (25 ) €003+ (-1 e(-2)
(2.50)
_1CV2me _»N¢c
—1)P~! @D —1)+(-1)P2=

Then, taking the derivative with respect to € gives the density of states in €-space,

v [(2m\*? p Am
QD(S)—W<ﬁ> Ved(D —3)+(~1) D200 (D-2)
(2.51)
& e
+(=1) 4D-12th 8®(D D
or equivalently,
2m\ /2 p 2AmT
Gp(e) =2nV T VEB(D—3)+ (1) m@(D—Z)
(2.52)

4, C 2m
+(=1)P lm,/?(a(z)—l)

where the first, second and third terms of Egs. (2.51) or (2.52) are conventional density

of states equations for 3D, 2D and 1D domains, respectively represented by Gs(€),
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Go(€) and Gj(€). Under continuum approximation, sums can be replaced by integrals

Y () — [ (6(e)e 2.53)

All we need for the derivation of thermodynamic properties of continuous domains are
given in their most general forms in this subsection. Now let’s examine thermodynamic

quantities for 3D, 2D and 1D cases, separately.

2.2.3 Thermodynamic Quantities of a 3D Quantum Gas

Substantially, all structures are 3-dimensional. However, confinement of the domain
in a direction, can result to a quasi-reduction of that dimension. Although the
domain is still 3-dimensional, it may behave as if it’s lower-dimensional. Ordinarily,
3-dimensional structures are called bulk structures. Number of particles N for a 3D
domain under continuum approximation is written as

Y Gi(e)de

where subscripts of 3,2 and 1 throughout this section indicate the numbers of
dimensions of the domain. Taking the 3D density of states only, that is the first term of

Eq. (2.51), and inserting it into Eq. (2.54) gives,

V [ 2mkgT\>* 7
M=+ (h—zB) \/T_L%/z(]Fe“ kT (2.55)

By arranging it and inserting Eq. (2.44) we can represent number of particles in terms

of thermal de Broglie wavelength as

v .
N3 = :FA{_?I’,’LZS/Z(:Fe‘u/kBT) (2.56)
t

By using the first terms of asymptotic expansions of polylogarithm functions in

degenerate Fermi limit (4 >> 1), for Fermi gas, number of particles becomes,

avr (2m\*?
Ny=—- (ﬁ) wl? (2.57)
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where Ur is the chemical potential at Fermi level. Note that since we didn’t consider
temperature correction terms in the expansions of polylogarithm functions yet, t turns
into Ur in this equation. We’ll consider temperature corrections in the derivations of
entropy and heat capacity. From Eq. (2.57), by replacing N /V with denisty n, chemical

potential at Fermi level is found as

R (3n3\23
MF; = m (H) (2.58)

Similarly, internal energy is written in its integral form,

> eGs(e)de

Us= | Semim 1]

(2.59)

Then inserting again the first term of Eq. (2.51) gives,

=F 2 | o Lisp (et (2.60)

VkgT (2kaT>3/2 3T
Us =
By rearranging it and inserting thermal de Broglie wavelength, we have,

3VkgT
2A3

Us=7F Lis 5 (e/5T) (2.61)

Using the first terms of asymptotic expansions of polylogarithm functions for Fermi

limit gives,

avrm (2m\*?
Us=—- (h_z) THe (2.62)

By inserting Eq. (2.57) into Eq. (2.62), we get the very familiar result,

3
Us = §N3,UF3 (2.63)

From Eq (2.30) pressure is obtained as,

2U3

p=23
3T 3y

(2.64)

Until now, in the derivations of conventional 3D thermodynamic quantities, we only

considered the zeroth order approximations of polylogarithm functions, which was
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enough for the derivations of N, U and P. However, when we try to calculate our
other fundamental properties like entropy and then heat capacity, we’ll find them zero,
since we neglected the temperature correction terms in the asymptotic expansions of
polylogarithm functions. To find the expressions for entropy and heat capacity, we

have to consider at least the first order terms also. First order temperature correction to

chemical potential in 3D domain gives®
21272
nokygT
= 1-=5 2.65
H3 = UF, ( 1202 ) (2.65)

By adding the first order correction term to internal energy in Eq. (2.61) we get,

(2.66)

3VkgT 8AS/? ( 57r2>
3 pu—
213 157 8A?

Adding chemical potential correction only to the term in the nominator by using the

assumption (1 +x)" ~ 1+ nx,

5/2 2 2
Us — 3Vk1§T 8AL (1 B 5%2) <1+ Snz) 2.67)
243 15y | 24A2 8AZ

where Ar = ur/kpT. Arranging it by neglecting fourth order terms emerged by

multiplications gives,

4VkgT 5,2 < 512 )
U= =2 N (14 2= 2.68
SREVENZ 12A2 (2.68)

Inserting N3 from Eq. (2.57) into the Eq. (2.68) gives the internal energy expression

with temperature correction,

3 5m2kET?
Us==N 1|+—=-"B 2.69
3=3 3,UF3< + 12“1%3 > ( )

Now let’s derive our other fundamental property; entropy. It’s expression was given in

section (2.1.3) by Eq. (2.27). We can easily arrange it,

1

S3 = kg (Z&fz‘—ﬂz» Zfi—Z(Hs—Si) —Zlnfi> (2.70)

®For the derivation of this, look at Appendix A.
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Then it can be written as,

S3=kplU —Np —Zln(l — fi)]

2.71)

In the equation above, the last term corresponds to the partition function which is a sum

over all states. I didn’t introduce and use the partition function in the derivations of

thermodynamic quantities to show you that it is not an obligation to define somewhat

"magic" quantities to derive thermodynamic state functions. As you see, it emerges

inside of the entropy function as a term and for brevity I’ll just put it to clarify the

notation. Again, pay attention that there is no need for a partition function to derive

thermodynamic properties, as we derived them here without using it. Then converting

sum to the integral,

—Zlnl—f, /Q3ln1—f,)d£_23

and applying density of states concept gives,

VkBT

Z3 = Lls/z(:[:eu/kBT)

th

By adding temperature correction of chemical potential we obtain,

8V Sm? Sn2k3T?
2=l (1- o ) 1+
15 24A7% SUE,

Inserting N3 inside the Eq. (2.74) gives,

SnZkgT2>

2
Z3 = 2N 1
373 3MF3< + 12#%3

Now putting Egs. (2.69), (2.65) and (2.75) respectively into Eq. (2.71),
3 Sn2kaT? k3 T?
Sy =kp|=N 1+=——2 | -N 1-=-B
3 B[S 3UF; ( + 12#%3 ) 3UF; ( 12“%3

2 5m2kAT?
N 1428
+5 3I~LF3( + 12#%3 >]
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Simplifying the above equation gives,

72
Sz = —Nzk 2.77
37 oA, ke (2.77)

Heat capacity’ can easily be found by differentiating Uz in Eq. (2.69) with respect to
T as

2
= —N3k 2.78
Cv Ay ks (2.78)

Freakishly, neglecting other temperature corrections but most importantly ignoring size
effect corrections leads to the equivalence of heat capacity and entropy in Fermi gases,
which is, we’ll see in next chapters, absolutely not true, although in literature ( [6]) it

is being used even in nano systems with incomprehensible complacency.

2.2.4 Thermodynamic Quantities of a 2D Quantum Gas

In 2D quantum gas, one direction is strongly confined so that system behaves as if it
is 2-dimensional. Such systems are also called quantum wells. In the same way we
derived the 3D quantities, let’s derive them for a 2D domain. Number of particles for
a 2D domain under continuum approximation is,

[ Ga(e)de

Inserting the second term of Eq. (2.52) which represents the 2D density of states gives,

2ATm
hz

N =F (kgT)Li (Fe/*sT) (2.80)

Then for Fermions, by expanding polylogarithms to series we obtain the number of

particles for a 2D Fermi gas,

2ATm
Ny =5 2.81)
And chemical potential is,
h2n2
= 2.82
=5 (2.82)

"By heat capacity, we always mean the electronic contribution. Lattice contributions are out of scope
of this thesis.
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where n, = N/A. Two-dimensional internal energy is written in integral form as

[ eGa(e)de

Inserting 2D density of states and taking the integral gives,

2ATm

7 (kpT)? Lin(FeH/*sT) (2.84)

U=+

Expanding polylogarithms in degenerate Fermi limit,

Amm
Ur=—5113 (2.85)
Then internal energy in 2D Fermi gas can be written as
N
U, = 22 (2.86)
2
From Eq. (2.29),
0)
P=— 2.87
2= (2.87)
Now, like we do in 3D case, let’s insert the first order temperature corrections,
N> 1%5%) ﬂzk%;Tz
U,=2,= 1 2.88
2=2=— ( + 312 (2.88)

Here in 2D, internal energy and grand partition function become equal when we neglect
higher order terms. Since Uy = Up, and there is no temperature correction also in

number of particles in 2D, putting these into the entropy equation in Eq. (2.71) gives,

Nz,llz ﬂzklngz N2H2 ﬂzk%Tz
SH, = 1 —N 1 2.89
2 ) ( + 3,“2 2;“'2“’ D) + 3“2 ( )
which turns to
2
S, = —Nok 2.90
2= 3, Noks (2.90)

Taking the derivative of Eq. (2.88) with respect to temperature, we get 2D heat capacity

at constant area,

)
Cy = —N>ok 291
A= 3p, ks (2.91)

where A stands for area.
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2.2.5 Thermodynamic Quantities of a 1D Quantum Gas

Now let’s derive thermodynamic quantities of continuous 1D domains, namely

quantum wires. Number of particles for a 1D domain in thermodynamic limit can

be written as

N _/°° gi(e)de
Y7 o ele—m)/keT £

(2.92)

Inserting the third term of Eq. (2.52) which represents the 1D density of states gives,

C :
N = :FE \/ 27'L'kaTLll/2(:F€“/kBT)

Expanding polylogarithms gives,
2C
Ny = 7V 2my/ 1

Then chemical potential becomes,

hzn%

8m

M1

Internal energy in integral its form is written as

> gGi(e)de

Ui = o e(e—w)/ksT 41

Taking the integral gives,
C T
Uy = $E\/2m(kBT)3/2§Li3 Ja(Fet/keT)
From Appendix A, inserting expansions of polylogarithm function leads,

2C
Uy = ﬁx/zmuf/ 2

Then internal energy is,

Ny
U ==
And here comes 1D pressure,
2U
p="
C

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)



Let’s consider first order temperature corrections to find entropy in 1D. Then relation

between chemical potential at Fermi energy and chemical potential is,

M1 = UF1 (1+

Internal energy in 1D with its first order temperature correction is,

Uy

3

Putting correction of chemical potential into it,

N 2k2T2
y, = Mt <1+7r B )(1+

3 8u?

N1,LL1 ﬂzk%;Tz
= 1 1
3 ( - 8u? "

_ Ny M1 14 ﬂzk%;Tz
3 4uf

k5 T?
120

N 2k2T?
_ it (1+7T 32
8L

(2.101)

(2.102)

(2.103)

Number of particles and grand partition functions with first order temperature

corrections are below respectively,

2
2= §N1LL1 (1 +

From Eq. (2.71), entropy in 1D is written,

Ny mkiT?\  2C
Slsz[ ; (1+ 4;2 =V 2mu (11—

1

2 2 kAT?
=N 1 B
+3 1#1( + 8.U12 )]

Entropy in 1D becomes,
S1 = —Nikp

6A
25
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8

(2.104)

(2.105)

(2.106)
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Then 1D heat capacity at constant circumference,

2
Cc=—Nik 2.108
c=gxNiks ( )

where C stands for circumference.

For OD domain, a true quantum dot, one cannot talk about a Fermi gas. For example,
in case the particles are electron, only two of them with opposite spins can occupy the
0D domain with zero-dimensional momentum space. Naturally, it is not meaningful to

talk about statistics in such condition.

2.3 Confinement Parameter

Consider a rectangular 3D domain with dimensions Lj, L, and L3.  Since
thermodynamics deals with equilibrium processes, time-independent Schrodinger
equation will be considered here. Assuming that there is no penetration through
domain walls, solution of the time-independent Schrodinger equation for boundary

conditions y(0) = y(L) = 0 with normalization is,

3 .
2
¥, () =[] L—sin (’”Zx"), with i, =1,2,3,..., (2.109)
n=1 n

n

where i, represents quantum states with subscript denotes the directions {1,2,3} of 3D
domain and x,, stands for the position of the wavefunction. Then energy eigenvalues
for a rectangular domain are,

h2 3 i 2
& (’—) (2.110)

8m = \ L

For convenience we shall define a confinement parameter, dimensionless inverse scale

factor o as
Lo h
L \/SmksTL

where L. is a scale factor based on de Broglie wavelength of particles. Here « indicates

(2.111)

the rate of confinement, since when ¢ increases, confinement also increases and vice
versa. Comparison of continuous and confined domains can be roughly seen in Figure

(2.1) below:
26



Continuous Domain Confined Domain

A, <L —> a<l1 A, >L — a>1

Can be treated classically Should be treated quantum mechanically

Figure 2.1: Comparison of continuous and confined domains.

Note that, separation of continuous and confined domains does not occur in one
certain point and transition from continuous to discrete behavior is neither sharp, nor
well-defined, just like in the case of transition from classical behavior to quantum
mechanical one. However, it is possible to loosely separate the regions that are
nearly free, relatively weakly confined and strongly confined by using the confinement

parameter o, in Fig. (2.2).

Macro scale (Nearly Free Domain) Nano scale (Confined Domain)
} } ; t i >
0 01 1 3 40
«— >
Continuum Woeakly Confined Strongly Confined

Figure 2.2: Loose separation of continuous and confined domains by confinement
parameter.

Then, for 3D domain, energy eigenvalues can be expressed in terms of &¢’s as

k_ — &= [(Oﬂlil)z —+ ((Xziz)z + (Ot3i3)2] (2.112)
T

We’ll use this notation in all thermodynamic state functions throughout the thesis, since
it is possible to write all thermodynamic state functions in terms of dimensionless
energy eigenvalues and dimensionless chemical potential and also it allows us to

arrange the confinement through « easily.

2.4 Evaluation of Summations by Using Poisson Summation Formula

In order to evaluate summations, we used Poisson summation formula (PSF) which

relates the summation of original function to the summation of its Fourier transform.
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For even functions (that is the case for all thermodynamic state functions), PSF can be

written as®

N R ()
Zf(l)— /O fi)di 2521 / )cos(27si)di (2.113)

=1 2
= —— ~——
Conventional Zero Discrete Correction
Integral Correction

PSF is an exact summation formula and has some fortuitous advantages. It dissociates
the sum into three terms and fabulously separates three regions with different physical
outcomes. When thermodynamic state functions are applied into the PSF, the first
term gives the conventional integral term and represents the classical region where
the domain sizes are much larger than thermal de Broglie wavelength. The second
term gives the zero correction term that excludes false contribution from the zeroth
momentum state. This term becomes apparent in the transition region from classical
to quantum and examined in literature as QSE [1,2, 17]. The third term is the discrete
correction term and reveals its contribution only in quantum scale where the domain

size is smaller than the thermal de Broglie wavelength of particles in the domain.

Examination of the terms of PSF for different degeneracy (A) and confinement (o)
values by choosing the kernel function as FD distribution function is shown in the

Table (2.1) below.

Table 2.1: Exact sum and the terms of PSF for different degeneracy and confinement

values:

A and o values Sum IstTerm 2nd Term 3rd Term
A=0.1, a=0.1 5.44 5.703 -0.2625 0
A=20, a=0.1 44.175 44.675 -0.5 0
A=0.1, =3 0 0.1901 -0.2625 0.0724
A=20, =3 1 1.48916 -0.5 0.01084
A=1000, a=3 10 10.5401 -0.5 -0.0401
A =200, aa=40 0 0.35355 -0.5 0.14645

A =10000, =40 2 2.49983 -0.5 0.00017

As we see before, summation over distribution function gives the total number of

particles in the domain. Functional behaviors of the sum and the terms of PSF

8For the derivation of PSF for even and odd functions, you may look at to the Appendix A
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is examined below in one-dimension for three cases; continuous, relatively weakly
confined and strongly confined domains. The confinement rates of domains are
calibrated through o, the confinement parameter. In Figs (2.3), (2.4) and (2.5) blue
curves represent the exact summation over FD distribution function, namely the exact
calculation of number of particles. Red curves represent the conventional integral term
in PSF or in other words number of particles function that commonly used in literature.
Yellow and green curves represent the second and third terms of PSF respectively. As

PSF suggests, adding red, yellow and green curves gives exactly the blue curves.

o Exact Sum a=0.1 7__,7,__.‘;—_:::-1:""':':;f— ]

Conventional Integral
Zero Correction

(=]
L

Discrete Correction

w
1

A

Figure 2.3: Exact sum and terms of PSF in one dimension changing with
dimensionless chemical potential for continuous domain (& = 0.1).

Asitis seen from Fig (2.3), even for nearly continuous case, there is a small difference
between sum and integral which can be recovered by using just the second term of PSF.
In literature, consequences of this small difference examined as QSE and QBL. When
degeneracy increases, contribution of the third term of PSF vanishes for the continuous

case.
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Figure 2.4: Exact sum and terms of PSF in one dimension changing with
dimensionless chemical potential for relatively weakly confined domain

(o =3).

In Fig. (2.4) domain size is three times smaller than the de Broglie wavelength

of particles and as a consequence of this size confinement, discrete term reveals its

oscillatory-like contribution. In Fig. (2.5) discreteness is even more apparent, where

the domain is extremely confined.

2.3 Exact Sum o =40 1
Conventional Integral
20} Zero Correction ]
Discrete Correction
1.5} 1
-05 4
-1.0 1 . :
0 2000 4000 6000 8000
A

10000

Figure 2.5: Exact sum and terms of PSF in one dimension changing with
dimensionless chemical potential for strongly confined domain (& = 40).
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In Fig. (2.6) variation of the sum and the terms of PSF with confinement parameter
o is shown for constant dimensionless chemical potential. This is a remarkable
figure that shows exactly how PSF represents discreteness of FD distribution function
properly. As confinement of the domain increases discrete contributions of the third
term appears. Even around o = 0.3 effects of confinement start to reveal itself and
as the confinement become strong, deviations from the continuous behavior become

more apparent.

i - - - — T - ™
A=40 Exact Sum
12[ \ Conventional Integral | ]
\ Zero Correction

10 Discrete Correction

8t i

6} AR ]

4l — 4

2L ]

0t 4
0.5 1.0 15 2.0 25 3.0

a

Figure 2.6: Exact sum and terms of PSF in one dimension changing with confinement
parameter (A = 40).

Despite it looks like a purely mathematical equation®, PSF marvelously symbolizes
the quantum mechanical effects arises in confined structures. Even so, don’t let the
beauty of formula trick you, since its third term is exceedingly complicated to calculate
analytically in many cases. That’s why except some certain cases, we used the sum

itself, instead of performing PSF on it.

In this chapter, a brief review of thermodynamics of ideal quantum gases has been done
and all the information needed is given to proceed to the next chapter and understand

the novel results of this thesis.

91In fact, it is not. Fundamentally it is a consequence of Parseval’s theorem and Plancherel theorem
that prove Fourier transform is unitary which means it preserves energy and information so that makes
the whole signal processing phenomenon widely used in physics and engineering possible.
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3. 1D FERMI GAS CONFINED IN AN ANISOMETRIC DOMAIN

In this chapter, the first case of the study, the 1D Fermi gas, is examined. As
quantum mechanics points out, increasing or decreasing domain size changes boundary
conditions of Schrodinger equation, and thus causes a change in energy levels. When
domain size is reduced, gaps between energy levels increase. Confinement in a
direction causes to a restriction in accessible momentum states in that direction, since
some energy levels become too high to be occupied by particles. After a point,
the confinement becomes so strong that no momentum states remain for particles
to become excited. In such a case, for a D-dimensional structure, when there is
no accessible state, except the ground state, in n number of directions, system is
said to be D —n dimensional in its momentum space. Of course if there is enough
energy, particles can occupy the excited states, so technically all structures are always
3-dimensional in our world. However, for a definite range of variables some structures

may practically behave as they are lower dimensional.

3.1 1D Thermodynamic Quantities with Regular Stepwise Behavior

To see the nature of thermodynamic quantities in nano scale, let’s start with the most

basic one, number of particles.

Number of particles in a Fermi gas is stated as the summation of FD distribution

function over all momentum states in all directions,

[}

1

in=1€

where the summation is a triple sum with i, = {i},i>,i3}. In thermodynamic limit,
one have to convert thermodynamic state sums to integrals, because upper limit of

summations is infinite. Luckily, for finite-size systems, one can put an upper limit to
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the summations, since after Fermi level! (ip = \/K/ ), contributions to summation
decrease rapidly. To keep the safety, one can sum up to i, = 2iF, since contributions
become completely negligible after the value i,,,,. Then number of particles can be

expressed as

[ 1max Dmax Bmax 1

N= Z Z Z el(anin)*+(oni)*+(osi3)*—A] 1| (3.2)

i1=lib=1iz=1

Now, consider a domain which is strongly confined in two directions and relatively

weakly confined in the other direction, as the one shown in Fig. (3.1).

1D Fermi Gas

Figure 3.1: A prototype of an anisometric 1D domain with o¢; = 1, o =40 and 03 =
40.

Confinement parameters can be chosen as a; = 1, oo =40 and o3 =40 in such a case.?
Then, in this case we can replace triple sums over momentum states in all directions by
a single sum over only the first direction as long as A < A = (0)* + (02)? + (2a3)>.
As it can be understood from the two factor in front of the a3, A; is the value where
the excitation of strongly confined directions starts.? Once excitation of states starts in
a direction, then one can no longer neglect that direction and have to make summation
at least up to the ir or more safely to i,,4,. Then for the condition of A < Ay, Eq. (3.2)

becomes,

Nip = g N CTN 3.3)

On the other hand, for a; << 1, PSF can be used to calculate number of particles

analytically. It is sufficient to use the first two terms of PSF for o¢; << 1 and number

Fermi level is defined as the hypothetical energy level that makes the FD distribution function one
half, namely when u = €.

21t is ensured that 40 is not an unrealistic value for «, since for an electron confined in a graphene
with 0.3 nm thickness at 20K, o« = 43 [27].

3Two factor comes from the first excited state and it indicates that the summation is begun. Since we
chose the confinement rate of second and third directions, the factor may well be in front of the oy too,
there is no difference. However, if o and o3 has not been equal, factor would be in front of the least
confined direction.
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of particles can be approximated as

\V/;E . 1\/ 1 . 1\/
Nip = —ELll/z(—e )+ 5Lio(—e™) ~

VA 1 34)

(04

where A’ = A — 0522 — OC% and Li denotes the polylogarithm function. Transition in
Eq. (3.4) is obtained by using asymptotic expansions of polylogarithms for A >> 1,
which is the limit of degenerate Fermi gas. Conversely, for o values that are not much
less than unity, third term of PSF has also to be considered. With some mathematical

operations whole terms of PSF can be analytically obtained for number of particles of

1D Fermi gases,

A1 1 N
NESE =~ VN 5+ arctan [cot (ﬂ\/_>] (3.5)

(04] 0]
where PSF superscript of Nyp refers that the whole terms of PSF is used to obtain this
expression. Then number of particles N varies with dimensionless chemical potential

A is obtained in Fig. (3.2) as
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Figure 3.2: Number of particles vs dimensionless chemical potential for 1D Fermi gas
with a; = 1, ap = 40 and oz = 40.

In Fig. (3.2), striking intrinsic discrete nature is shown. There are three subfigures,

which point out certain regions of N — A relationship in detail. Blue, red and yellow
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curves represent Egs. (3.3), (3.5) and (3.4) respectively, except on the bottom subfigure
blue curve is plotted by using Eq. (3.2). Red dots indicates the certain discrete
chemical potential values that corresponding to the integer particle number. They are
numerically solved from Eq. (3.3). On the bottom subfigure it is seen that after Ay,
second momentum state (the first excited state) of a strongly confined direction starts
to be occupied since there is enough chemical potential. Main subfigure in the middle
shows the intrinsic discrete nature of N — A relationship and the top subfigure zooms
to a step to show the small difference of blue and red curves and to show how yellow
curve passes exactly from the red points. As it is seen, except the sharpness of the
edges of the steps, Eq. (3.5) represents the discrete nature pretty well. On the other
hand, even though Eq. (3.4) cannot represent the intrinsic discrete nature, it passes
from the points exactly where the number of particles is integer. Since as far as we

know, particle number is integer, even Eq. (3.4) is a good approximation too.

It is seen from Eq. (3.5) that chemical potential A can be written as the functions of
particle number N and confinement parameter ¢¢. Note that the third term of Eq. (3.5)
is zero when number of particles is integer. There are two ways to define the formula,
either equating the third term of Eq. (3.5) to zero and looking for its roots, or more
easily solving A from the first two terms of Eq. (3.5). Hence, for large integer N,

1 2
A =a? (N+ 5) (3.6)

Since all thermodynamic state functions contains chemical potential, by using the
formula above, one can express them in terms of N and o. It is also possible to define

the chemical potential interval as
AN =202 (N+1) =204 VA + o 3.7

which allows to specify the forbidden chemical potential values analytically for integer
N. It is apparent that when confinement (&) or degeneracy (A) increase, intervals
between discrete values of chemical potential also increase, which means the discrete

nature becomes more apparent.

Another interesting feature of N-A function is that skewness of the steps are always

same for the domains with same confinement parameter ¢¢. That means change in
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number of particles corresponds to a same change in A and this is true even for the
steps that corresponds to more than one particle changes in particle number in 2D and
3D systems. The reason of this can be understood by comparing Figs. (2.4) and (2.5).
Note that in these figures, skewness of steps does not change with increasing A. To
define a formula for the changes of steps in N — A, we used distribution function and
defined a variable x, which is the value of distribution function where it is equal to a
control variable x. that we assign. Then for all systems, we have a same change in A
corresponds to a stepwise change in particle number and Eq. (3.8) defines the upper

(+) and lower (-) ranges of the function.
x+ = o + 05 4 o £ arcosh(50x.) 3.8

For instance for x, = 0.99 or x, = 0.01, T = arcosh(49.5). We can assign any value to

X to adjust the precision of x.

Now let’s discuss our next fundamental thermodynamic property; internal energy, and
its variation with chemical potential. Dimensionless internal energy is written from its

definition,

U

~ > g
— —_U = 3.9
kgT ingl )

e(E=A) +1
By the same way we do for number of particles, for 1D Fermi gases dimensionless
internal energy can be analytically derived for integer N, by using the first two terms

of PSF and asymptotic series expansions of polylogarithm functions,

_ n3/2 /
Gy = B (VX — 1) (03 + ) (3.10)

30q (04] 2

Interestingly, Eq. (3.4) appears inside of the formula as a factor. As it is seen from
Fig. (3.3), regular stepwise behavior in internal energy-chemical potential relationship

is observed in 1D Fermi gases for number of particles from 65 to 74.
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Figure 3.3: Dimensionless internal energy per particle vs dimensionless chemical
potential for 1D Fermi gas with a; = 1, o = 40, az = 40.

In Fig. (3.3), blue curve is obtained by dividing Eq. (3.9) to Eq. (3.3), since we are
dealing with dimensionless internal energy per particle.* Red curve is the result of
Eq. (3.10) divided by Eq. (3.4). As it is found in chapter 2 Eq. (2.99), relationship of
internal energy per particle and chemical potential is linear in the 1D region, which can
be seen in Fig. (3.3) in the bottom subfigure where before the value of A; indicates
the 1D region. When the second modes in strongly confined directions can become
excited, domain can no longer be considered 1D and linear behavior disappears, as it
is expected. Even for the unit value of «, if N is sufficiently large, A’ becomes so large

that dimensionless internal energy can be written by using Eq. (3.6) and Eq. (3.10) as

- o? 1\°
Up = ?1 (N+ 5) +N(o3 +03) (3.11)

Dimensionless internal energy interval can be obtained from Eq. (3.11) as

U 2 5
Al = | 2 Zo? e 12
N S (N+4) (3.12)

40f course, dimensionless internal energy itself has also discrete and stepwise nature. But, we
discussed quantities per particle to show that the discreteness is not coming from the obvious fact of
discreteness in particle number. Stepwise behavior observed even in quantities per particle.
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It is clear from Eq. (3.12) that, when ¢ goes to zero (in macro scale), stepwise nature

practically disappears, although Eq. (3.9) intrinsically has discrete nature.

Regular stepwise behavior of number of particles and internal energy can be observed
only in strongly degenerate and confined 1D Fermi gases and the behaviors are
completely different than macroscopic (continuous) ones. Their continuous behavior
in macro systems is shown in Fig. (3.4) where o is chosen as 0.1, which means the
first direction is not so confined (in fact it may be considered as nearly free). It is also
interesting that, even for the confinement value of 0.1, system behaves as continuous.
There is a drastic conversion from continuous behavior to discrete one around the unit
value of the confinement parameter &. So, one can loosely separate the continuous
and discrete behaviors as o < 1 and a > 1, though for the values of o very close
to 1, discrete behaviors start to be seen. When domain sizes are getting far from o
to opposite limits, the relevant nature become stronger and the transition region from
continuous to discrete happens around .

100 p
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Figure 3.4: Variation of number of particles and dimensionless internal energy per
particle with dimensionless chemical potential o¢; = 0.1, ap = 40, o3 = 40.

Variation of dimensionless energy per particle vs number of particles is also examined
for discrete () = 1) and continuous (o = 0.1) cases in 1D Fermi gas in Fig. (3.5). In
contrast with the variations of N and U with the chemical potential A, surprisingly there
is no stepwise behavior in their variations with number of particles even in discrete case

where a; = 1.
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Figure 3.5: Variation of dimensionless internal energy per particle for oy = 1 (left
subfigure) and o) = 0.1 (right subfigure) with number of particles where
O = 40, oz = 40.

It is seen that number of particles and chemical potential relationship is intrinsically
discrete as it is a stepwise function. This behavior of N is the result of the nature of
FD distribution function which will be discussed at the end of this chapter. The reason
why internal energy has also same nature is it differs from number of particles by
just a factor €. Free energy and pressure have also same stepwise nature. To prevent
repetitions on figures, we didn’t put their figures, but let’s explain the reason why
they have same stepwise nature. In strongly confined systems, as we shall see in the
next subsection for 1D case, entropy is extremely low. From the definition of free
energy (F' = U —TS) it’s seen that when temperature and entropy are sufficiently low,

difference between free energy and internal energy become very small, so that F ~ U.

Other thermodynamic properties that are derived from dW, work term of the first law
of thermodynamics, dU = dQ + dW, like free energy F and pressure P, have exactly
same discrete, regular stepwise behavior and different with just a factor from internal
energy. Consequently, we only gave the internal energy plots throughout the thesis, but

be sure that free energy and pressure has exactly same behavior as internal energy.

3.2 1D Thermodynamic Quantities with Regular Peakwise Behavior

We discussed the stepwise behavior of some thermodynamic quantities in last section.
The second type of behavior found in confined nano systems is the peakwise behavior

which is observed in entropy and heat capacity.
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Dimensionless entropy of a Fermi gas in its exact form

S ~

o =5= |LUi-DE—p)~Inf (3.13)

or equivalently it can be written in a more familiar form as

S=U—-F=U—-NA+2Z (3.14)

S=Y lefi—Afi—In(1-f)] (3.15)

1

To write entropy in an analytical form for o¢; << 1 we need N, U and Z with their first
order temperature correction terms. They can be expressed from the first term of PSF

and by using their temperature corrections as

VA n?
N (1_24(/\/)2) (3.16)
— (A)3/2 2
Ur~-34 1+ TOE (3.17)
N 2(A/)3/2 nz
a~= <1+ T A,>2> (3.18)

From N, U and Z, free energy becomes,

- (A')3/2 372

By using Egs. (3.16), (3.17), (3.18) and (3.19), entropy in 1D becomes in continuum
limit,
2

S~ (3.20
N VA )

Variation of dimensionless entropy per particle with dimensionless chemical potential

is given Figs. (3.6) and (3.7) for discrete and continuous cases respectively.
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Figure 3.6: Variation of dimensionless entropy per particle with dimensionless
chemical potential for 1D Fermi gas with oy = 1, 0 = 40, az = 40.

In Fig. (3.6), blue curve is the exact entropy from Eq. (3.15) and red curve is the
approximate entropy from Eq. (3.20). Red dots show the entropy values corresponding
to the integer number of particles in the range from 20 to 26. In higher number of
particles even around 50, entropy values become so small that (around 10~%* for 50
particles), plotting the graph without errors become impossible. So, in order to observe
the nature we plotted the graph in such a low number of particle range. Although Eq.
(3.20) matches exactly with the summation in continuous case given in Fig. (3.7), in
discrete case, it passes from the integral averages of summations and cannot represent
the peakwise nature as in Fig. (3.6). While exact entropy is crawling on the bottom
with a range from ~ 10~ to ~ 10~!2, value of its approximation is on the order of
0.004. As it is seen from the huge deviation, using continuum approximation in such

a confined nano structures will give completely wrong results.
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Figure 3.7: Variation of dimensionless entropy per particle with dimensionless
chemical potential for 1D Fermi gas with o = 0.1, o = 40, az = 40.

As in Fig. (2.6), difference of summation and integral approximations are shown for
entropy and entropy per particle changing with confinement parameter for constant
chemical potential® in Fig. (3.8). Before around the confinement value of 0.2

continuum approximation works well, but after that oscillations appear and deviations

between summations and integrals are non-negligible.

0.10
i
20} I
008 \ I /]
I\ J\ |
I | |
1sf N
-
5
5 = NE R |" \" \l \l
10 N o i ﬁc\(“\ J‘ \k \ k (1]
I | | | |7
AL LT | 1
—_MW""'MW‘WHHM 1 JT‘ T T T
R AR AR [ 1 |
0.5 Vi |
o2y AR B
UV A O
voy o o\
0.0F 0.00
02 04 0.6 0.8 1.0

Figure 3.8: Dimensionless entropy and entropy per particle and its variation with
confinement parameter in the first direction for A = 3250 and op =

40, a3 = 40.

In fact this situation might be hard to physicalize since chemical potential is a function of
confinement parameter also. However, examination of the difference between summation and integral

is much clear in this way.
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Heat capacity for Fermi gas from Eq. (2.38) in its summation form given as

Cy
kg

=Cr=Y.@f(1-1)-

In

(X, &f(1-f)?

3.21
Y. f(—f) (21

In the Fig. (3.9) below, comparison of discrete and continuous cases for dimensionless

heat capacity vs dimensionless chemical potential is given. The blue curve is the result

of Eq. (3.21) and red dots show the values correspond to the integer particle number.
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Variation of dimensionless heat capacity per particle with dimensionless
chemical potential for 1D Fermi gas with oy = 1 (left subfigure), o = 0.1
(right subfigure) and o, = 40, oz = 40.

Unlike other thermodynamic properties, in heat capacity, equation that is found by

continuum approximation starts to deviate from even the integral representation of the

trend of summation, as they are seen in Fig. (3.10). Although summation and integral

approximation of it matches in low confinement values and represents the trend until

around 0.4, after that it completely becomes different. This strangeness comes from the

differences of very small values in the heat capacity equation. Note that, heat capacity

is written as the difference of two terms. Although integrals of the summations inside

the terms represent the trend behaviors of their summations individually and term by

term, taking the difference leads to the strong deviation from the representation of the

trend behavior.
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Figure 3.10: Dimensionless heat capacity and heat capacity per particle and its
variation with confinement parameter in the first direction for A = 3250
and ap = 40, oz = 40.

In Fig. (3.11), variation of dimensionless heat capacity divided by dimensionless

entropy is seen with confinement value from 0.1 to 1.
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Figure 3.11: Dimensionless heat capacity divided by dimensionless entropy and its
variation with confinement parameter in the first direction for A = 3250
and ap = 40, oz = 40.

Like we derived in chapter 2, their ratio equals to 1 in continuum limit. However,
when confinement increases after around ¢ = 0.2, strong deviations from this result
appears, which shows that in real, entropy and heat capacity is not equal, as a matter

of fact, completely different.
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3.2.1 Nature of Fermi-Dirac Variance Function and Discrete Fermi Point

From the first law of thermodynamics, entropy can be written as

gdfi
T 3.22)

dQ=TdS — S:/dTQ — szZ&'dfi — SZ/Z

Let’s remember the definition of heat capacity and rewrite it by considering the first
law of thermodynamics,

d dfi
Cy=—= — dQ:Xi:eidf,- — cvzzi:sid—T (3.23)

Here in Egs. (3.22) and (3.23), the derivative of distribution function (with respect
to any of its variables such as T, A or €) includes f(1 — f) which is the variance of
distribution function or in short, variance function in FD statistics. The nature of this
variance is quite interesting. For example, it has peaks in certain values when it is
plotted versus dimensionless chemical potential. It is clear from Eqgs. (3.22) and (3.23)
that since S and Cy contains f(1 — f) inside the summations. Hence, contributions
to entropy and heat capacity only comes from the peaks of the variance function,
which correspond to the Fermi point, Fermi line and Fermi surface in 1D, 2D and
3D Fermi gases respectively. So, contributions from momentum states to entropy and
heat capacity come from D — 1 dimensional momentum space. As it is seen from
Fig. (3.12) the state corresponding to the Fermi point is the state where distribution
function is equal to one half. Also variance of the distribution function f(1 — f) makes
its peak at one quarter. By equating the variance function to 1/8, full band width at

half maximum (FWHM) of the variance function can be expressed as

arcosh(17)

_— 3.24
VI (3-24)

Oip =
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Figure 3.12: Distribution function (blue curve) and its variance (red curve) around
Fermi point for 1D Fermi gas with o¢; = 1, ap =40, a3 =40 and N = 50.

For macro systems there are many states correspond to the variance of distribution
function. However, for nano systems variance becomes too narrow that only few or
no state can correspond to it. As it is clear from Eq. (3.24) that when confinement
(a) or degeneracy (A) increases, FWHM decreases which means the peak of variance
becomes too sharp. In Fig. (3.5) for a 1D Fermi gas with 50 particles, distribution
function and its variance is plotted. As it is seen, it makes it peak at a half-state
and there is no momentum state (integer value by definition) correspond to the
non-vanishing values of variance. Since contributions of states around the peak of
variance is nearly zero, entropy and heat capacity of 1D Fermi gas is also almost zero.
In fact for a OD system they are exactly zero, since summations die out for a 0D system

and entropy and heat capacity equations gives exactly zero.

In Figs. (3.13) and (3.14), the nature of FD variance function is examined. Since

Var(f) = f(1 — f), it can be written as the difference of distribution function and its

square so that f(1 — f) = f — f2.
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Figure 3.14: Examination of variance function vs dimensionless chemical potential
for nearly free domains with o¢; = 0.1, ap = 40, a3 = 40.

The reason of the peaks in the variance is clear when we examine the difference in
detail. However, as it is seen there is a huge difference in the natures of discrete and
continuous cases where the domain is confined and nearly free respectively in Figs

(3.13) and (3.14). The blue and brown curves represents the distribution function and
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its square respectively, whereas red curves in subfigures shows the difference of blue

and brown curves, in other words the variance.

Discreteness its repercussions like stepwise, peakwise and oscillatory behaviors,
intrinsically come from the nature of FD distribution function. When we plot the
summation over momentum states in distribution function vs confinement parameter
a, we see that magnitude of confinement causes the appearance of discrete nature, Fig.

(3.15).

Confinement effects on FD distribution function
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Figure 3.15: Appearance of stepwise behavior due to size confinement, in FD
distribution function, for constant chemical potential, A = 3250 and
o = oz =40.

It is clear that why thermodynamic properties that include summation of distribution
function (like particle number, internal energy, free energy and pressure) have
stepwise nature. Because, distribution function itself gives a stepwise response to the

confinement.

In Fig. (3.16), summation over momentum states of variance function vs confinement
parameter is plotted and as it is expected, the nature is now not stepwise but peakwise.
That’s the reason why thermodynamic properties that contain summation of variance

function (like entropy and heat capacity) have peakwise nature. Because, variance
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function gives a peakwise response to the confinement, which is very natural since it

is the derivative of the distribution function.

Confinement effects on FD variance function
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Figure 3.16: Appearance of peakwise behavior due to size confinement, in the FD
variance function, for constant chemical potential, A = 3250 and o, =
o3 = 40.

As it shown in Fig (3.17), from the first law of thermodynamics, stepwise behavior
is observed in thermodynamic properties that are derived from "work term" which
contains the summation of FD distribution function. On the other hand, peakwise
behavior is observed in properties that are derived from "heat term" that includes the
summation of the derivative of FD distribution function (or equivalently FD variance

function).

AU = d@Q) + dW

L

Heat Term Work Term
[ | [ |
F__'i F__I
dU = E Eiidfi:—l— E ILfé:dez-
- T—— — L7
(3 : 7 :
v v

Peakwise Behavior | | Stepwise Behavior

Figure 3.17: Comparison of stepwise and peakwise natures over the 1st law of
thermodynamics.
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In Fig. (3.18), the appearance of the discrete nature is charted.
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Figure 3.18: How discrete nature appears?

To see the reasons for the discrete nature, let’s interpret the FD distribution function in
detail. First of all, +1 term in the denominator is the result of Pauli exclusion principle
that prohibits more than one fermion on the same quantum state. Also dispersion
relation between energy and momentum is quadratic for all massive particles. These
two are the internal features of the statistics of Fermions and neglecting them (for
instance ignoring +1 like in Maxwell-Boltzmann statistics or lowering the order of
dispersion relation) causes discrete nature to disappear. These internal features are
always there for all Fermi gases. However, they may not enough to reveal the discrete
nature as in macro scale. There are two external parameters that can be arranged;
confinement of the domain and the degeneracy of the matter. o in FD distribution
function indicates the rate of confinement of the domain. More strongly the domain
is confined, more severely the discrete nature appears. A refers to degeneracy in other
words the density of the matter in the domain. Increasing density of the matter also
make a positive effect on the appearance of discrete nature. When these internal and
external effects combined together in strongly confined and degenerate Fermi gases,
discrete nature reveals itself and this leads to oscillations on entropy and heat capacity

while & or A changing.
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3.3 Size Dependency of 1D Fermi Gas

We examined the variations of thermodynamic quantities with chemical potential A
and number of particles N, to show how the degeneracy affects the system. Now let’s
see how thermodynamic quantities react to a change in confinement. We analyzed the
relationships of our four quantities (number of particles N, internal energy U, entropy
S and heat capacity at constant volume Cy) with confinement parameter ¢ for 1D

Fermi gas and obtained the Fig. (3.19) below:
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Figure 3.19: Number of particles, dimensionless specific internal energy, entropy and
heat capacity changing with confinement parameter in the first direction
for a 1D Fermi gas.

As of course, confining the domain has no effect on number of particles in the domain,
particles are always there, unless we allow particle exchange. Dimensionless internal
energy per particle is increasing when the domain size in the first direction decreasing.
On the other hand, entropy and heat capacity drastically drops to zero when the domain

size reduces.

As you noticed, when confinement changes, there are no oscillations in entropy and

heat capacity since in 1D Fermi gas there is isotropic confinement (only the first
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direction can be confined, remember second and third directions are already strongly

confined).
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4. 2D FERMI GAS CONFINED IN AN ANISOMETRIC DOMAIN

In this chapter, thermodynamic quantities of degenerate 2D Fermi gas are discussed

considering an anisometric 2D domain like the one seen in Fig. (4.1).

2D Fermi Gas

Figure 4.1: A prototype of an anisometric 2D domain with @; =3, & =3 and o3 =
40.

Like we did in previous chapter for 1D Fermi gas, again we collect and examine
thermodynamic quantities under two different headings; stepwise and peakwise,

according to their behavior.

4.1 2D Thermodynamic Quantities with Quasi-irregular Stepwise Behavior

Let’s consider an anisometric domain having 2D momentum space. Confinement
parameters are chosen as o) = 3, ap = 3 and o3 = 40 for this domain. That means, the
first and second directions are relatively weakly confined, whereas the third direction is
strongly confined, so that no particles can be excited in third direction (i3 = 1). Then,
double summation is sufficient to express thermodynamic state functions of 2D Fermi

gas for a definite range of A,

Lmax Dmax 1

N2D: Z Z [(ali1)2+(a2i2)2_/\//]+1

i1=li=1¢€

4.1)
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where A" = A — OC32. Eq. (4.1) represents the 2D nature as long as A < Ay =
(a1)*+ (a2)? + (203)?. Like in 1D case, by using the first two terms of PSF, analytical

expression for 2D number of particles is obtained as

4o 00 2

o o0

A \/A_(l 1)+}1 42)

2D~

In previous chapter, for 1D Fermi gases, we have found an equation that represents
the discrete nature without making summations at all. Instead this time, instead of
that, we can reduce the number of sums and represent the discrete nature only by one

summation, Eq. (4.3),

Imax /AT (ori )2 1 1 AN — (it )2
Nap = Z OCE 1) —E—l—Earctan [cot(n 052< 1) )] 4.3)

In 2D case, when we look at the behavior of number of particles varying with
dimensionless chemical potential, in Fig. (4.2), we see that there are no longer regular
steps as in 1D case. Blue curve in Fig. (4.2) is plotted by using Eq. (4.1), the
yellow curve by Eq. (4.2), discrete steps with red lines by Eq. (4.3) and red dots
are solved again numerically from Eq. (4.1). It is seen that Eq. (4.2) follows the trend
and Eq. (4.3) represents the discrete steps quite well. The nature still discrete and
stepwise though the skewness of steps changes and there are chemical potential values
corresponding to the steepness of the N — A function this time, in addition to the values

corresponding to the plateaus.

In Fig. (4.3), N — A is plotted for continuous case where ¢ = o = 0.1. For nearly

free domains, it is seen that Eq. (4.2) perfectly matches with the exact solution.
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Figure 4.2: Number of particles vs dimensionless chemical potential for 2D Fermi gas

with o = 3, op = 3 and a3 = 40.
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Figure 4.3: Number of particles vs dimensionless chemical potential for 2D Fermi gas

with a; = 0.1, ap = 0.1 and o3 = 40.
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For 2D Fermi gases, dimensionless internal energy in double summation is written as

U2D = Lmax Dmax (a1i1)2+ (a2i2)2+(a3)2

kB_T =Uyp = = e[(alil)2+(a2i2)2_/\//} +1

(4.4)

By using the first two terms of PSF, dimensionless internal energy for 2D Fermi gases

can be approximated as

_ aA"? A732 /1 1
Usp =~ — ( + —> o3 Nap 4.5)

8o o 6 o o

where N,p is the Eq. (4.2).

In Fig. (4.4), blue curve is obtained by dividing the exact 2D summation solution of
internal energy Eq. (4.4) to Eq. (4.1) and red curve is obtained by dividing Eq. (4.5) to
Eq. (4.2). As expected, the pattern is the same as in Fig. (4.2) where N — A is plotted.
Our approximate solution (represented by red curve) exactly matches with the solution
in continuous case (0 = 0 = 0.1) and represents the trend behavior in discrete case

(0 = ap = 3).
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Figure 4.4: Dimensionless internal energy per particle vs dimensionless chemical
potential for discrete (left subfigure) and continuous (right subfigure) cases
with a; =3 and o = 0.1 respectively. &, = 3 and a3z = 40 for both cases.

When we look at the variations of dimensionless internal energy per particle with
number of particles, its nature is not stepwise like in 1D, for both discrete and
continuous cases. It seems like parametric plot of two stepwise functions compensate
their stepwise behavior and as a result we observe smooth line even in discrete case in

Fig. (4.5).
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Figure 4.5: Dimensionless internal energy per particle vs number of particles for
discrete (left subfigure) and continuous (right subfigure) cases with o; =3
and o; = 0.1 respectively. ap = 3 and a3z = 40 for both cases.

4.1.1 Diagonal and Non-diagonal Elements of the State Matrix

As it seen from Figs. (4.2) and (4.4), behaviors of thermodynamic state functions of
2D and (as we’ll see in following chapter) 3D Fermi gases are interestingly different
than that of 1D Fermi gases. To understand the reason of this difference, let’s examine
the nature of summations in detail. As we know, all thermodynamic quantities are
represented by summations over momentum state variables {iy, i, i3 }, which constitute
a state matrix. Each element in the state matrix represents a momentum state of
the system and all contributions to thermodynamic quantities are done over this
momentum state variables. For 2D and 3D Fermi gases, it is possible to decompose
the state matrix into diagonal {i; = i, = i3}, and non-diagonal matrices. However, for
1D Fermi gas, since the state matrix becomes the state vector, there are no diagonal or
non-diagonal elements but just a vector. Quasi-irregular behavior of thermodynamic
state functions of 2D and 3D Fermi gases is the result of the contributions of the
non-diagonal state matrix. In non-diagonal state matrix, multiplicity or degeneracy
of energy levels can be different than one, in other words, contributions of states
constantly changes during the progress of summation operator. This quasi-irregular!
changes are mainly due to the combinatorial nature of summations. In Fig. (4.6),

appearance of quasi-ness is charted.

'We are saying quasi-irregular because in fact the patterns are the result of a very definite,
mathematically exact summation process. So they are not actually irregular, though they look like.
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Regular Discrete Nature ‘ + ‘ Degenerate Energy Levels ‘ = ‘ Quasi-irregular Discrete Nature

Figure 4.6: Regular behavior becomes quasi-irregular in 2D and 3D Fermi gases, due
to degeneracy of energy levels.

4.2 2D Thermodynamic Quantities with Quasi-irregular Peakwise Behavior

Peakwise behavior of entropy is obtained for 2D Fermi gas in Fig. (4.7) for the discrete

case. Unlike 1D case, now its behavior is not regular but quasi-irregular.
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Figure 4.7: Dimensionless entropy per particle vs dimensionless chemical potential
for discrete (left subfigure) and continuous (right subfigure) cases with
o1 =3 and o = 0.1 respectively. op = 3 and o3 = 40 for both cases.
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Figure 4.8: Dimensionless heat capacity per particle vs dimensionless chemical
potential for discrete (left subfigure) and continuous (right subfigure) cases
with a; =3 and o) = 0.1 respectively. a; = 3 and az = 40 for both cases.

To understand the causes of the peaks, let’s examine the nature of Fermi line in 2D

Fermi gas.
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4.2.1 Discrete Fermi Line

In 1D Fermi gas, contributions to entropy and heat capacity were coming from Fermi
point. Likewise, in 2D Fermi gas, they are coming from the particles on an hypothetical
line called Fermi line. Contributions coming from the outside of Fermi line is totally
negligible, since contributions of particles on outside of the region of Fermi line,
correspond to the bottoms of FD variance function where its value vanishes. Therefore,
summation just over the states on Fermi line gives the values of the entropy and heat
capacity for 2D Fermi gas. To define Fermi line, we need some mathematical tools
like round, ceiling and floor functions. Here, we derived the analytical expressions of

them for any x,

1 1
Round(x) = x+ - arctan [cot (n <x + 5) >] 4.6)
by adding one half to x, we obtain ceiling function,

1 1
Ceiling(x) =x+ 3 + - arctan [cot (7 (x+1))] 4.7)

by substracting one half from x, we obtain floor function,

Floor(x) = x — % + % arctan [cot (7 (x))] 4.8)

Now, it is possible to arrange the lower and upper limits of the summations in entropy

and heat capacity, according to Fermi line.

imin = 1 4.9)

s = {XAI_ +a (4.10)

iamin = Ceiling \/AN _ [Ozz(il +3)° - % 4.11)

IRV IO N O G VCl TR A | R
(0%} b4 (0% 2
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| VA =l -HE
i2max = Floor o + 3 (4.13)

A —Tay (iy — L 2 AN —To (i1 — 1 2
= \/ [ l(ll 2)} +larctan cot ﬂ\/ [ 1<ll 2)} —I—E 4.14)
(07)) T (07)) 2

Then, the sum over momentum states through those limits gives the discrete Fermi
line shown by solid blue line in Fig. (4.9). Summing from 1 to iy, over
\/m /o gives the idealized Fermi line represented by red dotted line in
Fig. (4.9). Making summations from 1 to ij,g, over \/A” — oy (i1 +1/2)]2 /oy — 1/2

and \/A” — [a (i) — 1/2)]2/ o + 1 /2 respectively gives lower and upper dashed brown
lines enclosing the discrete Fermi line which are called the Fermi shell. As it happens,
Fermi shell is the consequence of Heisenberg uncertainty principle and discrete Fermi

line always stays inside the area enclosed by Fermi shell.
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Figure 4.9: Idealized and discrete Fermi lines and Fermi shell for 2D Fermi gas with

o) = 3,00 = 3,03 = 40. On the left subfigure, N=50 and on the right
subfigure, N=52.

As we’ve seen in previous chapter, the position of momentum states in functional space
of variance function determines the magnitude of the contribution to entropy and heat
capacity. Peaks of the variance correspond to the idealized Fermi line, so the closer

the state to idealized Fermi line, the larger its contribution to entropy and heat capacity

and vice versa.
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In Fig. (4.10), behavior of entropy varying with particle number is seen. Interestingly,

on the right subfigure entropy graph there are several modes for entropy.
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Figure 4.10: Dimensionless entropy per particle (left subfigure) and entropy itself
(right subfigure) changing with number of particles where o = 3,0 =
3,03 = 40.

When number of particles or chemical potential increase, Fermi line and consequently
the Fermi shell extends while its thickness remains constant. There are oscillations in
entropy and heat capacity, since the combination of proximities of momentum states in
Fermi shell to the idealized Fermi line changes and results to a different contribution
for a different combination of states. In short, the proximities of the states to the peaks
of the variance function determines the contribution. For example, in Fig. (4.11),
there is a peak at 50 particles and it vanishes when two more particles are added to the

domain.

Comparison of the same domain with number of particles 50 and 52 represents with
peak and without peak respectively, is shown in Fig. (4.9). For N = 50, there are
more particle near to the idealized Fermi line and for N = 52, they are almost none.
Remember that the thickness of the variance peak decreases when confinement and
degeneracy increases. So even for a little deviation from the idealized Fermi line, the
contribution of that state to the entropy and heat capacity almost vanishes for strongly

confined and degenerate Fermi gases.

Although Fermi shell starts to contain more and more states when N or A increases,
the contributions does not increase since FWHM of variance decreases also. Thereby,

despite the oscillations, entropy and heat capacity goes to zero when N — oo or o — oo.
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Figure 4.11: Dimensionless heat capacity per particle varying with number of particles
for 2D Fermi gas with o = 3, op = 3 and o3 = 40.

4.3 Oscillatory Quantum Size Effects in 2D Entropy and Heat Capacity

In previous chapter, we’ve seen for the 1D case that entropy and heat capacity change
smoothly when its first direction, which is the only allowed direction, is changed.
However, for 2D case the situation is entirely different. In 2D case, there are two

directions, the first and the second, are allowed.

4.3.1 Anisotropic Size Dependence

Unlike 1D domains, there are two ways for confinement of 2D domain; anisotropic
and isotropic confinements. In both cases, effect of confinement on particle number
and internal energy is the same and trivial, see Fig. (4.12). However, for entropy and

heat capacity, behaviors are quite different.
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Figure 4.12: Number of particles (left subfigure) and dimensionless internal energy
per particle (right subfigure) changing with confinement parameter in the
first direction ;.

In anisometric size confinement case, in Fig. (4.13), quasi-irregular, non-periodic
oscillations in entropy and heat capacity is obtained when confinement changed only
in one direction, . Oscillatory behavior is the result of the discrete nature of Fermi
line. When domain size changes anisotropically, distributions of states in Fermi shell

as well as their contributions also change and cause oscillations.
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Figure 4.13: Dimensionless entropy per particle (left subfigure) and specific heat
(right subfigure) changing with confinement parameter in the first
direction o .

4.3.2 Isotropic Size Dependence

On the other hand, when two allowed directions of 2D domain change isotropically
(at once), sharp oscillations disappear yield themselves to very slowly varying smooth
changes, see Fig. (4.14). The reason of the relatively smooth change in isotropic case
is that the distances of integer momentum states to the idealized Fermi line (where
the contribution is maximum), does not change while the sharpness of the variance

function changes for all states in Fermi shell.
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Figure 4.14: Dimensionless entropy per particle (left subfigure) and specific heat

(right subfigure) changing with confinement parameter of first and
second directions Q, 0.
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5. 3D FERMI GAS CONFINED IN AN ISOMETRIC DOMAIN

Although confined structures behave as lower-dimensional for some certain
chemical potential intervals, in the end, all structures in our universe are actually
three-dimensional. In this chapter, we discuss an isometric 3D domain with relatively
weakly confined in all directions like in Fig. (5.1). Confinement parameters are chosen

for this kind of domain as a; = ap = o3 = 3.

3D Fermi Gas

Figure 5.1: A prototype of an isometric 3D domain with o = 3, o = 3 and a3 = 3.

5.1 3D Thermodynamic Quantities with Quasi-irregular Stepwise Behavior

In 3D case, behaviors of thermodynamic quantities are very similar to 2D one. Due to

the degeneracy of energy levels, patterns are quasi-irregular just like in the 2D case.

Without any restriction in the range of A this time, number of particles can be written

as

Lmax Q2max P3max 1

M= ilzl izzl i;l el(onin)?+(oni2)*+(asi3)>~A] 4 &b
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By using the first two terms of PSF, we can obtain number of particles approximately

as

aA3?2 A/ 1 1 1
N3p —( )

N —— — + +
60 00 0tz 8 \ajon oz a0
(5.2)

+T

VAT 11 1
(041 (0%) (04] 8
where the first term represents the bulk (3D) contribution and second, third and fourth

terms represent the surface, line and corner contributions respectively.

Quasi-irregular stepwise behavior is seen in the relationship of particle number and
chemical potential in Fig. (5.2), where blue and red curves represent Egs. (5.1) and

(5.2) respectively. Likewise, red dots show the A values correspond to integer N.

g0l Py

260 280 300 320 340
A

Figure 5.2: Variation of number of particles with dimensionless chemical potential for
a 3D domain with ¢¢; = 3, otp = 3 and a3 = 3.

From the first two terms of PSF, internal energy can be approximated as

G TN w1 Lo,
3D 100 0 03 16 (0410%) (05X0%] (04%0%]

+A3/2 1 N 1 N 1 1
12 (04] o (04] 8

where again like in Eq. (5.2), dimensional contributions are represented by the relevant

(5.3)

terms in the Eq. (5.3).
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In Fig. (5.3), blue curve is obtained by dividing exact 3D internal energy sum to exact
3D number of particles sum and red curve is the result of Eq. (5.3) divided by Eq.
(5.2). Red dots indicates the integer number of particles in internal energy-chemical
potential functional space. Due to degeneracy of energy levels, behaviors of particle

number and internal energy are not regular.

(_.-—7"".—'
210 o
T
200} ,’;
Ef 190 rd .
. L .
—
180f e
L :_I
ol £
4
¢ . . . .
260 280 300 320 340
A

Figure 5.3: Variation of dimensionless internal energy per particle with dimensionless
chemical potential for a 3D domain with a; = 3, ap = 3 and a3 = 3.

5.2 3D Thermodynamic Quantities with Quasi-irregular Peakwise Behavior

Like in 2D case, entropy has quasi-irregular peakwise behavior in confined 3D nano
structures contain Fermi gas. In Fig. (5.4), peaks in entropy when it is changing with
chemical potential is shown. Peakwise nature turns into a camber behavior in Fig.

(5.5) where entropy is changing with particle number.
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Figure 5.4: Dimensionless entropy per particle varying with dimensionless chemical
potential for a 3D domain with o; = 3, o, = 3 and oz = 3.
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Figure 5.5: Dimensionless entropy per particle varying with particle number for a 3D
domain with a; =3, ap = 3 and o3 = 3.

Peakwise nature in the variation of specific heat with chemical potential and particle

number of 3D Fermi gases is shown in Figs. (5.6) and (5.7) respectively. Reason

of these peaks is similar to the 2D case. This time, they are the consequence of the

discreteness of Fermi surface in confined 3D Fermi gases.
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Figure 5.6: Dimensionless heat capacity per particle varying with dimensionless
chemical potential for a 3D domain with a; =3, ap = 3 and a3 = 3.
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Figure 5.7: Dimensionless heat capacity per particle varying with particle number for
a 3D domain with a; = 3, ap = 3 and o3 = 3.

5.2.1 Discrete Fermi Surface

In 3D Fermi gases, contribution to entropy and heat capacity comes from the integer
momentum states on the Fermi surface. Entropy and heat capacity contributions are
the consequence of the peaks of FD variance function. If there is a peak in the variation
of variance with energy or chemical potential, then contribution is large and vice versa.

Since peaks of the variance correspond to the discrete Fermi surface within Fermi shell,
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it is enough to sum the momentum states on discrete Fermi surface. Then instead of
summing from 1 to oo, we can make summations between the following values of

momentum states,

[min = 1 (5'4)
. VA" 1
Umax = o + 5 (58.5)

A — [ (i + 1)) = o (5 + 1))
i2minzceﬂing \/ [ l(ll 2(22} [ 3<l3 2)} _% (5'6)

VA e i+ 3)) [ (i3 + )

- (04 (8.7)
/A" — To (i + VTP = Tas (i + )12
+larctan cot \/ o (i1 +3)]" = a5 (i3 +5)] + X (5.8
T o 5
A — Tan (i — 1% — Ton(ia — D17 §
i2max = Floor VA= [ = 1)) = [on(ia— )] 41 (5.9)
(0%) 2
. 2 , 5
_ \/A//— [o (i1 — %)} — [os (i3 — %)} 510
10%)
T/ AN — o .1 2—06 ,_12
+larctan cot \/ o (i1 —3)]" = [oa(i3 — 3)] +E (5.11)
T % 5
Bmin = 1 (5.12)
A// 1
B3max = \{13_—%5 (513)

Discrete Fermi surface, idealized Fermi surface and its +-1/2 neighborhoods are shown
in Fig. (5.8) by rainbow, orange and light blue colored surfaces respectively. States
outside the Fermi shell, have almost no contribution to entropy and heat capacity of

the 3D Fermi gas.
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Figure 5.8: Idealized and discrete Fermi surface and Fermi shell surfaces for 3D Fermi
gas with oy =3, 0p =3, 03 = 3.

5.3 Oscillatory Quantum Size Effects in 3D Entropy and Heat Capacity

As we’ve seen in the 2D case, number of particles and internal energy do not show
any special or unexpected behavior when the confinement changes. On the other
hand, size dependencies in the entropy and heat capacity of confined 3D Fermi gases
are extremely strong. As it is seen in Figs. (5.9) and (5.10), there are oscillatory
behaviors in the variations of entropy and heat capacity with confinement parameter of

the domain in the first direction.
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Figure 5.9: Oscillations in dimensionless entropy per particle varying with confine-
ment parameter in the first direction for N = 50, ap = 3 and o3 = 3.
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Figure 5.10: Oscillations in dimensionless heat capacity per particle varying with
confinement parameter in the first direction for N = 50, op = 3 and
o3 = 3.

When two of the three directions are subjected to change, oscillatory behavior can still
be observed, see Fig. (5.11). However, when all three directions are changed at once,
in Fig. (5.12), oscillations almost disappear and functions exhibits smooth changes

with confinement parameters.
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Figure 5.11: Dimensionless entropy per particle (left subfigure) and dimensionless
heat capacity per particle (right subfigure) changing with isometric
confinement in first and second directions while third one is constant
(03 = 3) for N = 50.
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Figure 5.12: Dimensionless entropy per particle (left subfigure) and dimensionless
heat capacity per particle (right subfigure) changing with isometric
confinement in all directions.

As we see, entropy and heat capacity are affected severely by confinement.
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6. EXCESS THERMAL ENERGY STORAGE AT NANO SCALE

Perhaps the best way to verify the results in this thesis is trying to measure the heat
capacity of relatively weakly confined 3D Fermi gas. Confinement rates are easily
obtainable in today’s experimental capabilities. Since oscillations in heat capacity is
a direct consequence of the discrete nature, experimental verification of heat capacity

oscillations means also the verification of the discrete nature of thermodynamics.

In this study so far, only electronic contributions to heat capacity are discussed. In the
heat capacity of metals, there are also lattice contributions and total heat capacity of

metals is written as

cf =c+c)f) =%+ 1’ (6.1)

where 7, and Y, are proportionality constants and (7), (e) and (L) superscripts denote
total, electronic and lattice contributions respectively. From Eq. (6.1), one can infer
that in low temperatures electronic contributions, whereas in high temperatures lattice
contributions are dominant. Also note that, decreasing temperature increases the
confinement parameter & which is the case in this study. So it is consistent to expect
the dominant contributions to degenerate and confined ideal Fermi gases come from

the electronic one. That’s why lattice contributions are neglected.

Let’s consider a 3D isometric InSb nano structure with sizes L; = L, = L3 = 10nm and
conduction electron density around 9.35x10% m~3 at 5K [28]. Changing the size of
the domain in the first direction from 10 nm to 12 nm will result to the oscillations in

the electronic heat capacity of the substance as in Fig. (6.1).
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Figure 6.1:
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Dimensionless specific heat varying with domain size in the 1st direction
for T = 5K.

(6.2) and (6.3), blue curve represents the exact

equation of heat capacity (Eq. 2.38) divided by exact number of

particles (Eq. 5.1) and red line represents the specific heat capacity under continuum

approximation from Eq. (2.78) that is Cy /N = % /2A. The same experimental setup

but in different temperature, say 7K will change the oscillation pattern as in Fig. (6.2).

Figure 6.2:
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Dimensionless specific heat varying with domain size in the Ist direction
for T =7K.

Due to several natural reasons there might be errors in the experiments and

experimental results may not exactly the same with the Figs. (6.1) or (6.2). However,
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we can divide two results to each other and get a relative result of the heat capacity of
structure. In this case, even if there is an experimental error, if the experiment is done
properly, the proportional result of heat capacities of two cases (5K and 7K) should
be the same as in Fig. (6.3). As it is seen from Figs. (6.1), (6.2) and (6.3), there
are experimentally recognizable rise and falls in the specific heat while domain size

changes.
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Figure 6.3: Ratio of the Cy vs L; results for 7 = 5K and T = 7K.

One can also experimentally verify the results by measuring the Fermi surface and

observing its discreteness [29].

Thermal energy storage is directly related to the heat capacity. The higher heat capacity
means the more thermal energy storage. According to the heat capacity equation (Eq.
2.38), heat capacity of nano structures are lower than the macro ones. However, when

oscillations and peaks that we observed are considered, the situation may change.

Finely tuning confinement to the values where heat capacity of the nano structure
makes its peak and gathering many of them may lead to a macroscopic substance
with a pretty larger specific heat capacity than the ordinary one. Making a nano device
based on heat capacity oscillations, will be the manifestation of excess thermal energy

storage at nano scale by quantum size effects.

Apart from the industrial potential, discreteness of thermodynamics broadens our

perspective on nature and intuitively show us even the most well-established concepts
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like continuity of thermodynamic quantities can be considered as an asymptotic
approximation of more general concepts. Almost every breakthrough in science
corroborates the importance of thinking phenomena in opposite limits of conventional
cases. Considering this point of view in fundamental areas like thermodynamics may

take us closer to the reality of nature.
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APPENDIX A: MATHEMATICAL SUPPLEMENT

1.1 Derivation of Boltzmann Entropy Formula

Entropy is fundamentally defined as a measure for the number of microscopic
configurations (denoted by €2) in a system of objects. In physical processes, this
measure governs a purely physical quantity that is called heat. There is a direct
proportionality between heat and entropy change in a system with a factor called
temperature,

dQ
ds > == (A.1)

It is apparent from the equation above that, since heat is an extensive (additive)
quantity, entropy also have to be. Hence, we cannot directly calculate entropy by
measuring how many microscopic configurations a system has, since as a statistical
fact, combining two systems into one system will result to the multiplication of
the number of microscopic configurations of two systems (£2; x Qy = € »), which
is a non-additive operation. For consistency with the physical definition, entropy
would be calculated as an extensive quantity, so that multiplication of probabilities or
configurations of systems corresponds to the addition of their entropies (51 +S2 = S ),
see Fig. (A.1).

° ° ° ° ° ° ° °
° + ° — ° °
° ° L4 ° ° ° ° °
S IO S 12

Figure A.1: Entropy have to be additive while multiplicity is not.

So, we want a function that satisfies,

flxy) = f(x)+ f(y) (A.2)

Suppose f is a differentiable and continuous function. Taking the derivative of above
equation with respect to x and y gives respectively,

W)= 16— fl) =L (A%
o () = 1'0) — fl) =T (A3b)
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SO,

Py =T - (A4)
arranging and equating them to a constant &,
xf'(x) = yf'(y) =k (A.5)
which can be written as
k k
f'(x) =~ and f(y) == (A.6)
X Yy
integrating them with respect to x and y respectively,
d d
/ F(x)dx =k / % and / F(y)dy =k / &y (A7)
X Yy
that proves f(x) and f(y) are nothing but the logarithm function,
f(x) =klogx+c and f(y) =klogy+c (A.8)
As it is seen, only differentiable and continuous function that satisfies the condition is
logarithm function. Statistically, inverse of the number of microstates correspond to a
macrostate gives the probability of a microstate (1/Q; = p;). If all possible microstates

are not equally likely, taking the average of the logarithm of number of configurations
will give entropy and it is written in its general form as!

S =—) pilogp; (A9)
i

where p; is the probability of ith state. When all states are equally probable and
naturally }; p; = 1, above formula reduces to the Boltzmann’s entropy formula,

S =logQ (A.10)

where temperature scale constant kp is taken as unity (kg = 1) for brevity.

'In fact even this is not the most general form, but a close and thermodynamically sufficient one.
The most general form of entropy is known as Von Neumann entropy in quantum statistical mechanics,
and written as S = Tr(p logp) where Tr is trace and p is the density matrix.
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1.2 Derivation of Poisson Summation Formula

Poisson summation formula is stated as

Y i)=Y Fs) A1)

j=—o00 §=—00

where ]?is the Fourier transform of f. Then from the definition of Fourier transform,

Z / i)e 2*sigi (A.12)
§—=—00

l_—DO

where [ is imaginary unit. From Euler’s identity we can write this as

Y i)=Y / F(i)[cos(27si) — I'sin(27wsi)|di (A.13)

[=—o0 §=—00

For even functions, summation and integral on the right hand side can take the form
below:

fO=r—) = ¥ f)=2Y {2 / ) cos(znsi)dz} 42 / T F)di (A4)
[=—o0 s=1 0 0
It is possible to express the summation as
Z f(0) Z f(0)+1(0) (A.15)
[=—o0 i=1

Then,

i Z 1) ) (A.16)

i=1 z—foo

Writing Eq. (A.14) into Eq. (A.16) gives PSF for even functions,

Z,f(i) = /0°°f( +22/ )cos(2msi)di (A.17)

1.3 Useful Integrals

Evaluations of some common integrals that are used in quantum statistics are given
below:

ai)?—A 4 1 b= ?TLi(nH)/Z(;eA) (A.18)

oo (O”-)ne(ai)zfA o 1 a1\ N
/0 (e(oti)zl\il)zah_$ 4o r 2 Liy—1)2(Fe”) (A.19)
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- . Cl(n+1)/2
/O ()" In 1+ A0 i = ;Wu(m) (et (A.20)

Integrals above are true except the points where Gamma function goes to infinity.

1.4 Polylogarithm Functions and Their Series Expansions

Polylogarithm Functions are special functions defined as

Zk
n

(A.21)

b

Liy(z) = i
k=1

where n is order and z is the argument of the function. It has a beautiful property
that it responses to integration or differentiation with increase or decrease in order
respectively. This property makes it practical in such operations.

A" m*n(n—1
A>> 1= Lig(—eM) = — { n(n

) 4
+0(n A.22
[n+1] } (") ( )
where I' indicates the Gamma function and O denotes the order of unwritten terms of
the expansion. Most encountered polylogarithm functions in Fermi-Dirac statistics are
given below with their series expansions

_ 8AY/2 572

Lisjp(—e™) = — N [1 + 8A2] (A.23)
A2 2

Liy(—e™) = - {1 + 37} (A.24)

' 4A3/2 7.[2
Ll3/2(—e ) = — 3\/% |:1 + 8A2:| (A.25)
Lij(—eM) = —A (A.26)

. 2A1/2 7:2
Lijjp(—et) = — ¥ [1 -3 4A2} (A.27)
Lig(—e™) = —1 (A.28)

_ 1 2
Ll_l/z(—eA) = —m |:1 + W‘| (A.29)

Even for A = 10, errors of above equations are under 2x10~* and drastically decrease
with increasing A.
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For the integrals encountered in BE statistics below formula can be used,

A 0= Lin(eA) — F(l —n)(—/\)nil + i <_A)kl§’(l’l—k)

k=0

(A.30)

where { is the Riemann zeta function. Even for A = —0.1, errors of above equation
are under 3x107> and again decrease rapidly with increasing A.

1.5 First Order Temperature Corrections To Chemical Potential

1.5.1 Derivation in 3D
From Eq. (2.46), we can write number of particles for 3D by expanding polylogarithms

to zeroth order correction we have,

V 4A3/2
Ny=———
23 3VE

We want to find the temperature correction to chemical potential, but we don’t know it
yet. So let’s assume chemical potential differs with a small term of &3,

(A.31)

p=pp(l+8) (A.32)

or equivalently,

A:AF(I -|-53) (A.33)

Now the aim is to find the value of &;. Inserting the above relation to the first order
temperature correction of number of particles equation in Eq. (2.46) gives,

N3

_ V4Ar(1+&)P? {1 n’ } (A.34)

RN 8IAF(1+ &)

Dividing the one with first order correction Eq. (A.34) to zeroth order one Eq. (A.31)
gives,

2
_ 3/2 T
1= (1+8) (1+—8A;(1+53)2) (A.35)

We may neglect the correction term in the denominator and use the approximation of
(14+x)" ~ 1+ nx which gives

B 383 >
1= (1—1—7) (14—@) (A.36)

Neglecting the fourth order term coming from the multiplication above leads,

353 71'2
l=1+—+—5
T2 Teaz
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Then temperature correction to chemical potential in 3D domians, 83 becomes,

2
6 = “oA2 (A.38)
and we write for 3D domains,
2
A= Afr (l — m) (A.39)
or equivalently,
u=pr (1~ ”f’;igz) (A40)

This is A very useful result that by using this it is possible to obtain entropy and heat
capacity for continuous 3D domains.

1.5.2 Derivation in 2D

First order correction of number of particles in 2D does not contain temperature
correction, so it = Ur for 2D case. Entropy and heat capacity in 2D can be derived
by using the first order temperature corrections of other relevant thermodynamic
quantities. See (2.2.4).

1.5.3 Derivation in 1D

In the same manner we do in 3D case, zeroth order and first order corrections for
number of particles in 1D are written respectively as

2C
Ny =7 V2my /i (A.41)

2C 2
N1:7\/2m\//l1(1+51) (1—241-[7) (A42)
F

Dividing Eq. (A.42) to Eq. (A.41) and making relevant approximations leads,

51 71'2
I=14+—— A43
2 24A% (A4
Then temperature correction of chemical potential for 1D domains,
2
T
0= — A4

Then the chemical potential in 1D continuous domains can be written along with its
temperature correction as

2k2T2
T Xz ) (A.45)

= 1
g ”F( T
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APPENDIX B: THERMODYNAMIC SUPPLEMENT

2.1 Glossary of Thermodynamics

e Energy: A property that changes at least one of the state variables of the system.

e Entropy: An extensive measure of the number of microscopic configurations that
an equilibrium thermodynamic system can be found. It can be interpreted as the
quantity of "unknown" or the magnitude of "disorder”. So entropy is a property of
macrostate, not of the microstate.

e Heat: A form of energy that spontaneously transfers itself from higher temperature
object to the lower one to balance the entropy difference in between objects.

e Work: A form of energy that can be used in mechanical forms.

e Microstate: An instant state of particles in a system that corresponds to their
degrees of freedom (like positions and momentums) and quantum numbers (like
spins, angular momentums) of individual particles.

e Macrostate: An instant state of a system that corresponds to the macroscopic
properties (like pressure, temperature and volume) of particles.  Different
microstates can lead to the same macrostate.

e Thermal equilibrium: A condition that two systems in contact reach to the same
constant temperature.

e Statistical ensemble: A bunch of systems that represents a specific probability
distribution.

e Microcanonical ensemble: An isolated system with fixed total energy and number
of particles.

e Canonical ensemble: A closed system with fixed temperature and number of
particles.

e Grand canonical ensemble: An open system with neither energy nor number of
particles is fixed.

e Maxwell-Boltzmann statistics: An equilibrium statistical concept that particles
are assumed to be non-interacting and system is in its high temperature and/or low
density limit.

e Fermi-Dirac statistics: An equilibrium statistical concept for non-interacting
particles which obey the Pauli exclusion principle.
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¢ Bose-Einstein statistics: An equilibrium statistical concept for non-interacting
particles which have tendency to condensate into the same energy state.

e Partition function: An abstract statistical concept introduced for describing
the statistical properties of a system in thermodynamic equilibrium. Useful for
simplifying and manipulating thermodynamic functions.

e Chemical potential: A form of potential energy that causes to the movement of
particles in a system.

e Temperature: A measure of infinitesimal change in entropy with respect to
infinitesimal change in energy.
1 [d§
T \oU)yy

e Helmholtz free energy: A form of potential energy that can be converted to work.

e Pressure: A force per unit area due to kinetic energies of particles (energetic
pressure) and their tendency to evolve into a more probable configuration (entropic
pressure).

e Heat capacity: Heat energy required to change the temperature of an object by a
given amount.

e Thermal fluctuations: Quasi-random deviations of a system from its equilibrium
state. Disappear at absolute zero temperature.

e Degeneracy: A condition of a system with extremely high density or
low temperatures so that quantum mechanical effects determine the physical
characteristics of the system.

e Multiplicity: Number of momentum state configurations which correspond to the
same energy level. In other words, the degeneracy of energy levels.

2.2 Glossary of Related Quantum Mechanical Concepts

¢ Quantum state: Quantum mechanical state (like position, spin or momentum) of a
system denoted by quantum numbers.

e Momentum state: A quantum state of particles that characterize their energies.

e Wave function: A function that describes the statistical probabilities of a quantum
state. According to the standard interpretation of quantum mechanics, it contains
all the information about its quantum state.

e Spin: An intrinsic quantum state of elementary particles. It specifies the statistical
behavior of particles as stated by spin-statistics theorem. For example, particles
having half-integer spin exhibits the nature of FD statistics, whereas particles
having integer spin displays the character of BE statistics.
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e Thermal de Broglie wavelength: A quantity defined in the calculation of partition
function and related with the de Broglie wavelength of particles.

e Most probable de Broglie wavelength: Wavelength of particles which makes
distribution function maximum.

e Pauli exclusion principle: A principle states that two or more identical fermions
cannot occupy the same quantum state simultaneously.

e Quantum confinement: When domain size is smaller than the most probable de
Broglie wavelength of particles, they’re said to be quantum mechanically confined
in the domain.

e Quantum fluctuations: Random and temporary change in the amount of energy in
a region of spacetime due to creation and annihilation of particle-antiparticle pairs
allowed by energy-time uncertainty principle.

h
AEAt ~ —
27

2.3 Laws of Thermodynamics

e (Oth law of thermodynamics: If a system A is in thermal equilibrium with systems
B and C, then B and C are also in thermal equilibrium with each other. It represents
the associative property of the heat. Mathematically,

A=B and B=C — A=C

e 1th law of thermodynamics: Heat is a form of energy and energy is conserved for
closed systems.! Then change in the internal energy of a closed system corresponds
to a change in heat and/or work.

dU = dQ +dW

e 2th law of thermodynamics: Entropy of an isolated system cannot decrease.”

dS>0

e 3th law of thermodynamics: Entropy of a system with temperature at absolute
zero Kelvin is zero and it is not possible to reach absolute zero with finite number
of processes. Quantum mechanically, this is the consequence of the existence of a
lowest energy state for any particle.

T—0 = S(T)=0

'Quantum fluctuations are neglected.

2 At least within a given time on the order of human observation. On the other hand, since entropy
in fact is a purely statistical notion, fluctuations always happen and according to Poincaré recurrence
theorem, even for an isolated system, if there is sufficiently long (i mean really long) time, entropy will
eventually decrease and system returns to a state very close to its initial state [].
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