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CHAOTIC ANALYSIS OF WIND REGIME 

SUMMARY 

The usage of  Wind is the fastest growing energy source among renewable energy 

sources. Usage of wind energy is getting wider withs its competitive cost of 

production compared with other traditional means. Wind energy highly depends on 

wind speed. Wind speed is the most important parameter in the design  of wind 

energy systems. According to the algorithm, which is used to calculate the power 

obtained from wind; the power is proportional to the cube of wind speed. Therefore, 

the analysis of wind speed is very  important not only for better designing more 

effective and efficient wind power plants, but also for better understanding the 

underlying dynamical mechanisms. For this aim, it is crucial to investigate the inner 

dynamical structure of wind speed time series . 

At current implementations, variability of wind is the major challenge of integrating 

wind power into electric systems. Understanding the dynamics of geophysical 

phenomena such as wind speed is a subject that has attracted scientific interest due to 

many technological applications as well as due to its impact in human life. Therefore, 

analyzing the chaotic characteristics of the wind speed time series can reveal the 

internal mechanism of wind speed changes in nature, but also can help to understand 

the action mechanism of the wind speed. 

This study covers implementations of methods to investigate the chaotic 

characteristic  of wind speed data. As the first step of chaotic analysis,  phase space 

system parameters; delay time (T) and embedding dimension (m) were determined to 

reconstruct the phase space. Delay time (T) was calculated by using Average Mutual 

Information (AMI) function which is a nonlinear form of autocorrelation function. 

Embedding dimension (m) was calculated by using False Nearest Neighbor (FNN) 

algorithm. After the reconstruction of phase space, the dimension of the attractor 

occurred on the phase was calculated by using Correlation Dimension algorithm. The 

package program TISEAN 3.0.1 (Time Series Analysis) was used. The program 

which was written by Hegger et. al. (1999), is the most popular program in literature. 

The results signify the chaotic behavior of the observed system that all of the data set 

have fractal dimensions.  

Lyapunov exponents method is another reliable criteria to determine the chaotic 

behavior. Rosenstein et. al. (1993) algorithm was used for calculating Lyapunov 

exponents. Although the exponents have a very small amount (less than 1), a positive 

exponent is considered to be enough to determine the chaotic character (Khatibi, 

2012). Thus, the data sets in the study were proven to exhibit the chaotic behavior. In 

the last part of the case study, Local Approximation Method  were examined to 

predict the data. The method based on the chaotic dynamics of the systems.  
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The successful results obtained from the study have convinced us that the chaotic 

analysis is very useful to determine main characteristics of the Wind . It also 

provides a better understanding and  modeling of the underlying dynamics of the 

natural systems. After all, it is believed this study will be a novel approach for further 

studies. 
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RÜZGAR REJİMİNİN KAOTİK ANALİZİ 

ÖZET 

Rüzgar enerjisi yenilenebilir enerji kaynaklar içinde kullanımı en hızlı artan enerji 

kaynaklarındandır. Rüzgar santrallarının enerji üretim maliyetlerinin de diğer enerji 

üretim metotlarıyla boyölçüşebilir düzeylere düşmesiyle bu artış son yıllarda 

hızlanmıştır. Kinetik enerji ifadelerine bakıldığı zaman rüzgardan üretilebilecek 

enerjinin, rüzgarın geçtiği kesit alanı (rüzgar türbinlerinde: rotor süpürme alanı) ve 

havanın yoğunluğuyla doğru orantılı olmasının yanında rüzgar hızının küpüyle doğru 

orantılı olduğu görülmektedir. Dolayısıyla rüzgar hızı rüzgardan enerji üretimi 

açısından en önemli parametredir. Bir bölgede ortalama rüzgar hızı, rüzgar hızının 

değişkenliği gibi parametrelerin yanında rüzgar hızı öngörüsünde ulaşılabilen 

doğruluk da rüzgar enerjisi açısından çok büyük önem taşımaktadır. Rüzgardan 

üretilebilecek enerji miktarının arttırılması, rüzgar santralleri tarafından üretilen 

elektriğin şebekeye verilmesi sırasında enerji kalitesinin korunması, rüzgar 

türbinlerinde daha yüksek verim sağlayacak işletim algoritmalarının oluşturulması 

gibi faydalarının yanında atmosferik davranışların daha iyi anlaşılması açısından da 

rüzgar hız serilerinin iç dinamiklerinin incelenmesi hayati önem taşımaktadır. 

Günümüz rüzgar teknolojisi açısından bakıldığında, rüzgar enerjisi santrallerinde 

rüzgar hızının değişkenliği rüzgar türbinleri tarafından üretilen elektrik enerjisinin 

şebekeye arzı açısından en önemli problemi oluşturmaktadır. Elektrik enerjisinin 

kalitesinde en önemli parametrelerden bir olan frekansın sabit kalması için şebekede 

enerji arz ve talebinin dengeli olması gerekir. Eğer şebekeye, talep edilen enerjiden 

daha fazlası verilirse frekans yükselir. Aksi durumda yani şebekeye verilen enerji 

talebin altındaysa frekans düşer. Rüzgar santrallerinin enerji üretimi rüzgar hızına 

bağlıdır. Rüzgar hızı çok değişken olduğu için özellikle kısa dönemli rüzgar hızı 

öngörüsü şebekede enerji arz-talep dengesinin korunabilmesi için büyük önem 

taşımaktadır. Dolayısıyla rüzgar santrallerinden şebekeye verilecek enerji miktarı ve 

zamanının yüksek doğrulukla tahmini şebeke işletimi açısından hayati bir önem 

taşımaktadır. Rüzgar hızı tahmini başarımının artması elektrik şebekesinde rüzgar 

santrallerinin payının da artmasını sağlayacağından gerek rüzgar enerjisi sektörü 

gerekse yenilenebilir ve temiz enerji kaynaklarının enerji üretiminde kullanım 

payının artması açısından önemli bir katkı sağlamanın yanısıra şebeke işletiminde 

yaşanan en önemli problemlerden biri olan enerji kalitesinin korunmasına da 

yardımcı olacaktır. 

Rüzgar hızı serileri incelendiğinde rastlantısal karakterin yanında kaotik karakter de 

taşımakta olduları görülür. Dolayısıyla rüzgar hızının öngörüsünde sadece lineer 

olmayan öngörü metotlarının kullanılması yeterli değildir. Rüzgar hızının daha 

yüksek doğrulukla öngörülmesi için kaotik öngörü metotlarının kullanılması 

gereklidir. 

Bu tez çalışmasında rüzgar hız değişiminin kaotik karakteristikleri incelenmiş ve 

örnek bir öngörü çalışması yapılmıştır. Çalışmada TAV İstanbul Atatürk 

Havalimanı’nda bulunan Otomatik Hava Gözlem İstasyonu (AWOS: Automatic 
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Weather Observation Station) tarafından yerden 10 m yükseklikte, 1 dakika 

örnekleme peryoduyla örneklenmiş rüzgar hızı işareti kullanılmıştır. Örneklenmiş 

işaretler örnekleme işlemi nedeniyle gürültü içeriği fazla işaretlerdir. Ele alınan 

sistemin faz uzayının yeniden oluşturulması sırasında bu gürültü bileşeni sorun 

oluşturur. Kaotik sistemlerde işaret içindeki enformasyon da arka-plan gürültüsü de 

geniş bantlı bileşenler olacağından gürültü, işaretten klasik metotlarla (Fourier 

Analizi vb) ayrılamaz.  

Kaotik analizin ilk aşaması olarak faz uzayının yeniden oluşturulabilmesi için, faz 

uzayının parametreleri olan Gecikme Zamanı (T: Delay Time) 45 dakika ve Gömme 

Boyutu (m: Embedding Dimension) 20 olarak belirlenmiştir. Gecikme zamanının 

belirlenmesi için Öz-ilişki fonksiyonunun (Auto-correlation Function) lineer 

olmayan bir formu olan Ortalama Müşterek Bilgi Fonksiyonu (Average Mutual 

Information Function) kullanılmıştır. Gömme boyutu, Yanlış En Yakın Komşular 

algoritması (False Nearest Neighbor (FNN) Algorithm) kullanılarak belirlenmiştir. 

Çekicinin (Attractor) gürültüden arındırılması için yersel sabit yaklaşımlı (Locally 

Constant Approximation) non-lineer gürültü azaltma yaklaşımı uygulanarak gerekli 

şartları sağlayan çekici elde edilmiştir. Faz uzayının (Phase Space) yeniden 

oluşturulmasından sonra İlişki Boyutu Algoritması (Correlation Dimension 

Algorithm) kullanılarak çekici boyutu hasaplanmıştır. Örneklenmiş işaretin fraktal 

boyutlara sahip olması kaotik karakter taşıdığının bir göstergesidir. 

Tez çalışması sırasında kullanılan algoritmaların uygulanması için TISEAN 3.0.1 

(Non-Linear Time Series Analysis: Non-Lineer Zaman Serisi Analizi) paketinden 

yararlanılmıştır. Hegger ve diğ. (1999) tarafından, zaman serilerinin, Non-Lineer 

Deterministik Dinamik Sistem Teorisi veya diğer bir isimle Kaos Teorisi üzerine 

kurulu metotlarla analizi için geliştirilmiş bir yazılım projesi olan TISEAN paket 

programı literatürde kaotik analiz için kullanılan en popüler programdır. 

Kaotik davranışın belirlenmesinde bir diğer önemli kriter olan Lyapunov Üstelleri 

(Lyapunov Exponents) metodu da işaretin kaotik karakter taşıdığının gösterilmesi 

için kullanılmıştır. Lyapunov Üstellerinin hesaplanması için Rosenstein et. al. (1993) 

algoritması kullanılmıştır. Hesaplanan Lyapunov Üstelinin değeri çok küçük bile 

olsa (< 1) pozitif olması kaotik karakterin olduğunu göstermek için yeterli kabul 

edilmektedir (Khatibi, 2012). 

Lyapunov üstellerinin yanısıra dinamik sistemin faz uzayındaki davranışını 

(periyodik, yarı-periyodik, kaotik vs) belirlemek için Poincaré kesitlerinden 

(Poincaré Section, Poincaré Map) de yaralanılabilir. Bu amaçla tez çalışmasında ele 

alınan rüzgar işaretinin yeniden oluşturulan faz uzayında seçilen bir düzlem üzerinde 

Poincaré kesiti de bulunmuştur. 

Gerek pozitif Lyapunov üsteline sahip olması gerekse Poincaré kesitinin dağınık 

yapısı, tez çalışmasında ele alınan rüzgar hızı serisinin kaotik karakter taşıdığını 

göstermektedir. 

Serinin kaotik karakter taşıdığı gösterildikten sonra öngörüde kaotik bir öngörü 

metodunun kullanılmasının önemini göstermek için son olarak da bir adım ileri 

öngörü yapmak için dinamik sistemlerin kaotik davranışları üzerine kurulmuş bir 

öngörü metodu olan Yersel Kestirim Metodu (Local Approximation Method) 

uygulanmıştır. 

Tez çalışmasında ele alınan rüzgar işareti üzerinde uygulanan öngörü çalışması 

sonucunda yapılan öngörünün Karesel Ortalama Hatası (Root Mean Square Error) 
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RMSE = 0.1670 m/s ve Determinasyon Katsayısı R
2 

= 0.9986 olarak bulunmuştur. 

Açıkça görüldüğü gibi her iki kriter de öngörü başarımın yüksek olduğunu 

göstermektedir. Bu da rüzgar hızı öngörüsünde sistemin kaotik davranışını gözönüne 

alan bir öngörü metodunun kullanılmasının önemine işaret etmektedir. 

Çalışma sırasında elde edilen başarılı sonuçlar rüzgarın karakteristiğinin 

incelenmesinde ve rüzgar hızı öngörüsü yapılmasında kaotik analiz metotlarının 

kullanımının büyük yararlar sağlayacağını göstermektedir. Yine kaotik yaklaşımların 

kullanımı meteorolojik olayların altında yatan dinamiklerin daha iyi anlaşılmasında 

ve hava sistemininin modellenmesinde büyük gelecek vaad etmektedir. Rüzgar hız 

serilerinde her zaman rastlantısal görünen karakterin altında kaotik bir karakterin 

varlığı gözönüne alınmalıdır. Salt rastlantısal karakter üzerine kurulu istatistiksel 

metotlar rüzgar serilerinin modellenmesinde ve öngörüsünde yetersiz kalacaktır. Bu 

tez çalışması sırasında varılan sonuçlar nedeniyle bu alandaki çalışmalara yeni bir 

bakış açısı getirdiğimizi ummaktayız. 
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1. INTRODUCTION 

1.1 The Potential of Wind Energy 

Full use of renewable energy is an effective solution for the energy crisis and push 

for environmental protection at present. Wind power is one of the most potential and 

popular renewable resources. Over the past few years, capital costs of wind power 

have declined, primarily through competition, while technological advances—

including taller towers, longer blades, and smaller generators in low wind speed 

areas—have increased capacity factors. 

 

Figure 1.1:Wind power total world capacity, 2000-2013[1]. 

These developments have lowered the costs of windgenerated electricity, improving 

its cost competitiveness relative to fossil fuels. Onshore wind-generated power is 

now cost competitive, or nearly so, on a per kWh basis with new coal- or gas-fired 

plants, even without compensatory support schemes, in several markets (including 

Australia, Brazil, Chile, Mexico, New Zealand, South Africa, Turkey, much of the 

EU, and some locations in India and the United States). By one estimate, global 

levelised costs per MWh of onshore wind fell about 15% between 2009 and early 

2014[1]. 

Wind power generation has greatly promoted the development of the wind energy 

industry as shown (in the Figure1.1) above. In the majority of cases we have access 

only to several measurable quantities which depend on the underlying and usually 
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unknown dynamics of (geophysical phenomena such as wind, rainful etc) the 

physical system. 

During the previous decades theories for the dynamical systems and the advent of 

chaos theory have significantly influenced the way geophysical phenomena are 

treated. Complex phenomena such as the geophysical ones (wind speed, temperature, 

presure, rainfall etc) may result from relatively simple systems which however 

present nonlinear behavior with sensitivity to initial conditions. Such systems are 

generally known as ‘deterministic chaotic systems’ and the corresponding theory as 

‘chaos theory’. 

1.2 Introduction to Chaos Theory 

Chaos theory is mathematical fields of study, which states that non-linear dynamical 

systems that are seemingly random are actually deterministic from much simpler 

equations. Chaos is apparently noisy aperiodic long -term behavior in a deterministic 

system that exhibits sensitive dependence on initial conditions [2]. 

The phenomenon of chaos theory was introduced to the modern world by Lorenz 

E.N.1963: ’Deterministic non-periodic flow’. As the chaos theory was developed by 

various inputs of mathematicians and scientists, it found applications in large number 

of scientific field. 

Behavior of weather, behavior of airplane in flight, behavior of car in clustering on 

an expressway, cardiac arrhythmias, behavior traffic flow pattern, behavior of urban 

development decay, behavior of oil flowing in an underground pipe, epidemics and 

the behavior of people in group: Any idea what holds all of these systems together? 

The only systems that could be understood in the past were those that could be 

believed to be linear, that’s, the system that follow patterns and arrangements like 

linear equations, linear functions, linear algebra, linear programming etc.But there 

were some systems that couldn’t be explained like weather patterns, ocean currents, 

or the actions of a cells. The answer to the above posed question is chaos!  

Nature is highly complex, and the only prediction you can make is that she is 

unpredictable. The amazing unpredictability of nature is what Chaos Theory looks at. 

Why? Because instead of being boring and translucent, nature is marvelous and 

mysterious. Chaos Theory has managed to somewhat capture the beauty of the 
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unpredictable and display it in the most awesome patterns. Nature, when looked 

upon with the right kind of eyes, presents herself as one of the most fabulous works 

of art ever wrought [3]. 

To chaos researchers, mathematics has become an experimental science, with 

computer replacing laboratories full of test tubes and microscopes. Traditional time 

series and trajectories in phase space are two ways of displaying and gaining a 

picture of a system’s long-term behavior. 

Now seeing the work done by his predecessors, one might infer that Lorenz did not 

do anything of any particular great importance, But Lorenz can be claimed to have 

“discovered chaos” because he put all the elements together being sensitive 

dependence on initial conditions with strange (fractal) attractors, and the resulting 

erratic dynamics and he saw them all together. He is the one who derived the 

mathematical understanding of chaos so as it becomes easy for others to study after 

him. 

1.2.1 How chaos theory was born and why? 

It all started to dawn on people when in 1960 a man named Edward Lorenz created a 

weather-model on his computer at the Massachusetts Institute of Technology. 

Lorenz' weather model consisted of an extensive array of complex formulas that 

kicked numbers around like an old pigskin. Clouds rose and winds blew, heat 

scourged or cold came creeping up the breeches [3]. 

Colleagues and students marveled over the machine because it never seemed to 

repeat a sequence; it was really quite like the real weather. Some even hoped that 

Lorenz had built the ultimate weather-predictor and if the input parameters were 

chosen identical to those of the real weather howling outside the Maclaurin Building, 

it could mimic earth's atmosphere and be turned into a precise prophet.But then one 

day Lorenz decided to cheat a little bit. A while earlier he had let the program run on 

certain parameters to generate a certain weather pattern and he wanted to take a 

better look at the outcome. But instead of letting the program run from the initial 

settings and calculate the outcome, Lorenz decided to start half way down the 

sequence by inputting the values that the computer had come up with during the 

earlier run. 
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Figure 1.2: Lorenz’s first experimental graph. 

The computer that Lorenz was working with calculated the various parameters with 

an accuracy of six decimals. But the printout gave these numbers with a three 

decimal accuracy. So in stead of inputting certain numbers (like wind, temperature 

and stuff like that) as accurate as the computer had them, Lorenz settled for 

approximations; 5.123456 became 5.123 (for instance), that puny little inaccuracy 

appeared to amplify and cause the entire system to swing out of whack [3]. 

1.2.2 Chaos theory before and after Lorenz 

Chaos theory before Lorenz: 

While Lorenz discovery has achieved wide spread attention that it didn’t initially 

receive upon initial publication a well – deserved outcome largely being initially read 

by Meteorologists and Climatologists who didn’t fully appreciate its broader 

mathematical implications. Henri Poincaré 1890 comes with non-periodic orbits 

while studying about three body problems.  

In 1927, Van der Pol observed chaos in radio circuit. In 1960, Lorenz come with 

butterfly effect later, He lay the foundation of chaos theory in his paper Deterministic 

non-periodic flow [4]. 

Chaos theory after Lorenz: 

In 1971, David Ruelle and Floris Takens described the phenomenon they called a 

strange attractor (today called chaotic attractor). In 1974-5 Jim Yorke an applied 

mathematician coined the term ‘chaos’ at University of Maryland . 
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Another major contributor to chaos theory is Mitchell Feigenbaum. A physicist at the 

theoretical division of the Los Alamos National Laboratory starting in 1974, 

Feigenbaum dedicated much of his time researching chaos and trying to build 

mathematical formulas that might be used to explain the phenomenon[5].  

Logistic map studied by Robert May (1976) after his famous work on developing 

model that addressed how insect birthrate varied with food supply in 1970’s. Benoit 

Mandlebrot (1982) found the piece of the chaos puzzle that put all things together, 

published a book ‘Fractal geometry of Nature’ [6]. 

 In addition, the mathematical aspect of chaos and dynamical systems, several studies 

has been conducted including Eckmann & Ruelle (1985) and Devaney (1989). 

Numerical implementations are discussed in Parker & Chua (1989). Chaos has 

attracted attention of the statistical community including Nychka et al. (1997), Smith 

(1992), and Casdagli (1992)[7]. 

By the mid-1980s, chaos was a buzzword for the fast-growing movement reshaping 

scientific establishments, and conferences and journals on the subject were on the 

rise. Universities sought chaos "specialists" for high-level positions. A Center for 

Nonlinear Studies was established at Los Alamos, as were other institutes devoted to 

the study of nonlinear dynamics and complex systems. A new language consisting of 

terms such as fractals, bifurcations, and smooth noodle maps was born[5].  

1.2.3 The foundatıon of chaos theory 

Chaos theory is the study of complex, non-linear dynamics systems. It deals with the 

systems that appear to be orderly but in fact harbor chaotic behavior, it also deals 

with the systems that appear to be chaotic but in fact have underlying order. 

Chaos theory studies the behavior of dynamical systems that are highly sensitive to 

initial conditions, an effect that popularly referred as BUTTERFLY EFFECT. Small 

difference in initial conditions ( such as those due to rounding errors in numerical 

computations) yield widely diverging outcomes for chaotic systems rendering long-

term prediction impossible in general. Chaos theory is most commonly attributed to 

the work of Edward Lorenz. He laid the foundation of chaos theory in his famous 

paper Deterministic non-periodic flow [4].   

http://www.referenceforbusiness.com/knowledge/Mitchell_Feigenbaum.html
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Technically, chaos models are based on "state space," improved versions of the 

Cartesian graphs used in calculus. In calculus, speed and distance can be represented 

on a Cartesian graph as x and y. Chaos models allow the plotting of many more 

variables in an imaginary space, producing more complex imaginary shapes. Even 

this model assumes, however, that all variables can be graphed, and may not be able 

to account for situations in the real world where the number of variables changes 

from moment to moment [5].               

1.3 Scientific Application of Chaos Theory 

The mechanical engineer may be concerned with the regular oscillation of an out of 

balance drive shaft; the civil engineer with the potentially disastrous structural 

vibrations induced by vortex shedding on a bridge deck; the electrical engineer with 

the oscillatory output from nonlinear circuits; the chemist/chemical engineer with the 

regular cycling of a chemical reaction; the geologist/geophysicist with earthquake 

tremors; the biologist with the cycles of growth and decay in animal populations; the 

cardiovascular surgeon with the regular. Beating of the human heart; the economist 

with the boom—bust cycles of the stock market; the physicist with the oscillatory 

motion of a driven pendulum; the astronomer with the cyclical motion of celestial 

bodies; and so on [8]. (The list is extensive and diverse!) 

In addition, only nonlinear systems are capable of a most fascinating behaviour 

known as chaotic motion, or simply chaos, whereby even simple nonlinear systems 

can, under certain operating conditions, behave in a seemingly unpredictable manner. 

1.4 Literature Review 

The systematic study of chaos is of recent date, originating in the 1960s. One 

important reason for this is that linear techniques, so long dominant within applied 

mathematics and the natural sciences, are inadequate when considering chaotic 

phenomena. Furthermore, computers are a necessary tool for studying such systems. 

As a result, the amazingly irregular behaviour of some non-linear deterministic 

systems was not appreciated and when such behaviour was manifest in observations, 

it was typically explained as stochastic. Chaos has been identified in simple 

experiments such as a water-dripping faucet, simple electric circuits, and in situations 
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involving near turbulent flow such as the Couette-Taylor experiment. Outside the 

laboratory, chaotic behaviour has been claimed in climatic time series, astrophysics 

[9,10], hydrodynamics [4,11,12,13], economics [7], medicine [14] and several other 

fields. 

The recently interesting review about the detection of chaos in geophysical 

phenomena includes, Chaotic analysis on river discharge times series [15], SVR-

based prediction of evaporation combined with chaotic approach[9], investigating 

chaos in river stage and discharge time series [16],detection low-dimensional 

deterministic chaos in wind time series[17] and Identification of chaos in rainfall 

temporal disaggregation[18]. 

Research on chaotic behavior of the wind speed time series can be of great help to 

understand the mechanisms and characteristics, moreover provides useful clues for 

the inner structure of wind speed data. 

Work concerning wind velocity time series is relatively restricted as many work 

focuses on Forecasting [19-23] and modelling [24-26] of wind energy and speed, 

where other focuses on wind speed persistence [27-29]. 

In 1988, The first study on presence of chaos in wind velocity was conducted by 

Tsonis and Elsner, who studied 10 s averages of vertical wind velocity recorded 10 m 

above the ground at the National Oceanic and Atmospheric Administration (NOOA) 

in Boulder, USA. Using the correlation dimension method by Grassberger and 

Procaccia [48], they reported on the presence of chaos in wind speed data. 

In the year 2008, Karakasidis and Charakopoulos reported on the existence of low-

dimensional deterministic chaos in wind time series measured from the New 

Anchialos (Greece) Air Base measurement station. The surrogate data test and the 

corresponding results provided significant evidence for the existence of low-

dimensional chaotic dynamics underlying the wind time series [17]. 

Wind data observed at three wind farms experiencing different climatic conditions 

from 2006 to 2008 in Taiwan, where wind speed distribution can be properly 

classified to high wind season from October to March and low wind season from 

April to September. The variations of fractal dimensions among different wind farms 

are analyzed from the viewpoint of climatic conditions. The results show that the 

wind speeds studied are characterized by medium to high values of fractal 

http://www.sciencedirect.com/science/article/pii/S0960077908003202#bib3
http://www.sciencedirect.com/science/article/pii/S0960077908003202#bib4
http://www.sciencedirect.com/science/article/pii/S0960077908003202
http://www.sciencedirect.com/science/article/pii/S0960077908003202
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dimension; the annual dimension values lie between 1.61 and 1.66. This was reported 

in the paper published in 2011 named by Fractal dimension in wind speed times 

series at Elsevier[30]. 

The saturated correlation dimension algorithm with the surrogate data method (an 

indirect identification method) proposed to analyze the chaotic characteristics of the 

near-surface wind speed time series. The results published 2012 in IEEE conference 

publication concluded for the existance of chaotic characteristics in wind speeed 

time’s series [31]. 

Surrogate data method and spectral analysis were utilized to detect the nonlinearity 

and aperiodicity of the time series of wind waves  in southern, central and northern 

regions of the Caspian Sea[32]. The false nearest neighbor analysis along with the 

correlation dimension estimation indicate the presence of high dimensional chaotic 

behavior with dimensions of the chaotic attractors at the range of 5.91, 6.30 and 7.55 

for the significant wave height series and 6.59, 7.64 and 7.87 for the wave period for 

the southern, central and northern parts of the Sea. Positive Lyapunov exponents 

obtained for all 9 data series prove the exponential divergence of the trajectories 

which support the presence of chaos in the wind-wave characteristics. The results 

were published in March 2015 at Elsevier. 

In this study we analyse the behavior of wind speed time series obtained at the 

Ataturk International Airport located in Istanbul, Turkey. In an attempt for seeking 

chaotic behavior in wind speed data as reported by several researchers, an important 

step is determining the presence of chaotic behavior in times series data.  In order to 

identify such a behavior it is necessary to employ appropriate methods based on the 

theory of dynamical systems and chaos.  

1.5 Characterization of Chaos 

The traditional methods for chaos identification can be divided into two types: direct 

methods and indirect methods.The direct methods can also be divided into the 

qualitative methods [33] and quantitative methods [34]. The classic qualitative 

methods is the technique of phase diagram and the power spectrum which can be 

used to distinguish roughly whether the test signals have chaotic properties by 

comparing the experimental signals with the stable signals and periodic signals 
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respectively. Note that those qualitative methods are concise and intuitive 

techniques. The limitation of qualitative methods is that they cannot distinguish 

between large periodic motion and chaotic motion. Usually, the quantitative methods 

calculate the characteristic values of strange attractor (e.g.,Lyapunov exponent, 

saturated correlation dimension and Kolmogorov entropy) and determine chaos 

according to the corresponding results of the characteristic value[31]. 

In determining the largest Lyapunov exponent [35], commonly we have method 

proposed by Rosenstein [36] and Sato[37]. The Grassberger-Procaccia algorithm 

(GPA) [38] appears to be the most popular method used to quantify chaos. This is 

probably due to the simplicity of the algorithm and the fact that same intermediate 

calculations are used to estimate both dimension and entropy. 

However, the GPA is sensitive to variations in its parameters, e.g., number of data 

points, embedding dimension, reconstruction delay, and it is usually unreliable 

except for long, noise-free time series.Hence,the practical significance of the GPA is 

questionable, and the Lyapunov exponents may provide a more useful 

characterization of chaotic systems. The algorithms due to Kantz [39] and due to 

Rosenstein et al. [36] allow one to establish a difference between periodic and 

chaotic motion, presenting no noise sensitivity. Hence, this study considers these 

algorithms in order to estimate Lyapunov exponents. 

Phase space reconstruction (PSR) is an important aspect in visualizing trajectories 

complexities. Prior to phase space reconstruction based on Embedding Theorem 

[40], embedding parameters such as embedding dimension and time delay should be 

determined from the time series [41].  

In literature, there are various methods such as Grassberger–Procaccia (GP)[38] and 

False Nearest Neighbour (FNN)  algorithm to find the embedding dimension. 

Although these methods give similar results, application of the FNN is more practical 

when compared the other methods in finding embedding dimension.  

Many researchers have addressed the problem of the selection of an appropriate 

delay time and proposed various methods. Well known among these are the 

Autocorrelation function method, ACF, the mutual information method, MIF and the 

correlation integral method, CI. The autocorrelation function method measures the 

linear dependence between successive points and, thus, may not be appropriate for 
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nonlinear dynamics. They suggested the use of the local minimum of the mutual 

information, which measures the general dependence between successive points. The 

mutual information method is a more comprehensive method of determining proper 

delay time values that is why MIF was used in this study [13]. 

Poincaré section as the powerful tool for the verification of dynamics complexities in 

particular to identify chaotic patterns in times series [42, 43] were also applied,as our 

goal is to gain insight into the geometrical structure of the attractor drawn. Two-

dimensional Poincaré maps are the maps of minimum dimension, which are capable 

to explain the dynamics of three-dimensional attractors properly. Occurrence of one-

dimensional Poincaré map is a rare phenomenon as it may be obtained by a very 

special choice of Poincaré section [10]. In fact, one-dimensional Poincaré map [44, 

45] is unable to explain the proper chaotic dynamics of the three dimensional 

attractor in most of the cases. 
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2. THEORETICAL INFORMATION ABOUT CHAOS THEORY 

2.1 Dynamic Systems 

A dynamic system is a simplified model for time-varying behavior of an actual 

system. These systems are described using differential equations specifying the rates 

of change for each variable. 

2.1.1 A deterministic system 

A deterministic system is the system in which no randomness is involved in the 

development of future states of the system. Its said to be chaotic whenever its 

evolution sensitively depends on the initial conditions.This property implies that, two 

trajectories emerging from two close-by initial conditions separate exponentially in 

the course of time. 

2.1.1 A deterministic system 

A deterministic system is the system in which no randomness is involved in the 

development of future states of the system. Its said to be chaotic whenever its 

evolution sensitively depends on the initial conditions.This property implies that, two 

trajectories emerging from two close-by initial conditions separate exponentially in 

the course of time. 

2.1.2 A linear system  

A linear system is a system in which all of the dependence of the current state on 

previous states can be expressed in terms of a linear combination. 

2.1.3 A nonlinear system 

A nonlinear system is a system in which the dependence of the current state on 

previous states cannot be expressed entirely as a linear combination; even if some of 

the dependence can be captured in a linear combination of the previous states, 

something extra is required to capture all of the dependence.  
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2.1.4 Complex systems 

Complex systems are systems that contain so much motion (so many elements that 

move) that computers are required to calculate all the various possibilities. That is 

why Chaos Theory could not have emerged before the second half of the 20th 

century. 

Another reason that Chaos Theory was born so recently, and that is the Quantum 

Mechanical Revolution and how it ended the deterministic era! Complex systems 

often seek to settle in one specific situation. This situation may be static (Attractor) 

or dynamic (Strange Attractor). 

2.2 Attractors 

Attractor is a set of points to which a dynamic system evolves after a long enough 

time .The attractor is stable, and non-periodic. It could never intersect itself, because 

if it did returning to a point already visited, from then on the motion would repeat 

itself in a periodic loop. 

2.2.1 Types of attractors. 

 There is a taxonomy of motion within dynamic systems which Schaffer and Kott 

(1985) have suggested can be understood in terms of different types of attractors. 

Chaos theorists have identified four fundamental types of attractors which describe 

the functioning of all systems: 

2.2.1.1 Point attractor 

This describes a system structured to move toward a single point, place or 

outcome.Crutchfield, Farmer, Packard, and Shaw (1986) define a point attractor as 

representing all systems that come to rest with the passage of time.  

The typical physical representation of such a system is a basin, sinks in which objects 

or fluids move, flow toward the bottom, or plug hole. Psychologically this is a 

description of driven thinking and behavior. 

2.2.1.2 Limit cycle or Periodic attractor  

This describes a system, which functions by regular swings between two points, 

places or outcomes. The typical physical representation of such a system is a 

http://www.sciencedirect.com/science/article/pii/S0001879107000553#bib82
http://www.sciencedirect.com/science/article/pii/S0001879107000553#bib82
http://www.sciencedirect.com/science/article/pii/S0001879107000553#bib23
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pendulum moving from one pole to the other pole of the swing passing through a 

vertical point in the process. 

2.2.1.3 Torus attractor 

This describes a system, which functions in a complex and predictable way. Such a 

system repeats itself either exactly or approximately over time. The typical physical 

representation of such a system is the maze in which there is only one way through 

and which leads eventually back to its beginning to start again. Once the solution is 

found each new time through the maze repeats previous routes to complete the task. 

This is an example of the attractor exactly repeating. The self-similar variant is akin 

to a long piece of wire being wrapped around a donut. As the wire circles around the 

dough, it describes a characteristic loop, which varies only it that each successive 

loop is a wire’s width further around the donut. For most intents and purposes, the 

Torus Attractor can be thought of as exactly repeating for the minor differences are 

of little practical consequence in this system.  

2.2.1.4 Strange attractor 

This describes a system, which functions in complex but inherently unpredictable 

ways but which at the same self-organize into emergent order. It does so by 

establishing a pattern of functioning, which is bounded, self-similar but never exactly 

repeating. The typical (and historical) physical exemplar of such a system is the 

weather. Due to the multitude of interacting factors combining complexly the precise 

prediction of the weather beyond about a week in most parts of globe, is unreliable 

[46]. 

 

Figure 2.2: Types of attractors [47]. 
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2.3 Lorenz Attractors 

2.3.1 Theory 

Edward Lorenz's first weather model exhibited chaotic behavior, but it involved a set 

of 12 nonlinear differential equations. Lorenz decided to look for complex behavior 

in an even simpler set of equations, and was led to the phenomenon of rolling fluid 

convection. The physical model is simple: place a gas in a solid rectangular box with 

a heat source on the bottom. 

2.3.2 Application 

Lorenz simplified a few fluid dynamics equations (called the Navier-Stokes 

equations) and ended up with a set of three nonlinear equations: 

                                                   

Bzxy
dt

dz

yzRx
dt

dy

xyP
dt

dx

                                                (2.1) 

where P is the Prandtl number representing the ratio of the fluid viscosity to its 

thermal conductivity, R represents the difference in temperature between the top and 

bottom of the system, and B is the ratio of the width to height of the box used to hold 

the system. The values Lorenz used are P = 10, R = 28, B = 8/3 [4]. 

On the surface, these three equations seem simple to solve. However, they represent 

an extremely complicated dynamical system.  

If one plots the results in three dimensions the following figures, called the Lorenz 

attractor is going to be seen, Figure 2.3 
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(a) 

 

                                                                  (b) 

 

(c) 

Figure 2.3: Projection of Lorenz attractors (a) Projection in  three dimensions, (b) 

Projection on Y-Z plane, (c) Projection on X-Z plane.        
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2.4  Strange Attractors 

2.4.1 Theory 

Attractor is strange if it has non integer dimension. Act strangely once the system is 

on the attractor,the near by states diverges from each other exponentially fast. 

Strange attractor was coined by David Ruelle and Floris Takens[40,48]. 

The Lorenz attractor is an example of a strange attractor. Strange attractors are 

unique from other phase-space attractors in that one does not know exactly where on 

the attractor the system will be. Two points on the attractor that are near each other at 

one time will be arbitrarily far apart at later times. The only restriction is that the 

state of system remains on the attractor.  

2.4.2 Applications 

The equations used are the same as those in (2.9). These equations are called the 

Lorenz Equations,and were derived from simplied equations of convection rolls 

rising in the atmosphere. On the surface these three equations seem simple to solve. 

However, they represent an extremely complicated dynamical system. 

Where, P=a=10, B=b=8/3 and R=r=25, n =500000, dt = 0.0001; P, r, n and b are all 

constants (P represents the Prandtl number, r is the ratio of Rayleigh number to the 

critical Rayleigh number, number of points and B is ratio of width to height of the 

box), and x, y and z are all functions of time [4]. Then, The equations were used 

numerically [49] and Matlab were used to look at trajectories. 

 

Figure 2.4: The strange attractor. 
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These plots above are famous, and that buttery-looking picture is known as a 

“strange attractor or the Lorenz attractor." Strange attractors appear in phase spaces 

of chaotic dynamical systems.The “Buttery effect" was coined and described after 

studying the numerical solutions of these very equations.  

The idea is that chaotic systems have a sensitive dependence on initial conditions if 

you were to play around with the initial conditions for x(t), y(t) and z(t) in these 

equations and plot phase space portraits for each solution set, you'd  find that even 

the tiniest changes in initial conditions can lead to a crazy huge difference in position 

in phase space at some later time. 

Strange attractors are also unique in that they never close on themselves — the 

motion of the system never repeats (non-periodic), in that way it demonstrates chaos. 

The motion we are describing on these strange attractors is what we mean by chaotic 

behavior. The Lorenz attractor was the first strange attractor, but there are many 

systems of equations that give rise to chaotic dynamics. There are several types of 

strange attractors including; 

Chua systems in electric circuits, Duffing systems in non linear oscillators,Ikeda 

systems in the turbulence of trails of smoke,Lorenz systems in the atmospheric 

convection and Rossler systems in the chemical kinetics[50]. 

2.4.1 The concept of butterfly effect 

Butterfly effect is the way of describing how, unless all factors can be counted for, 

large systems like weather remain impossible to predict with total accuracy because 

there are too many variables to track. It is also called a sensitive dependence on 

initial conditions .Lorenz coined the term and put forward the idea of “Butterfly 

effect” In his paper titled as “Predictability; Does the flap of butterfly’s  wing in 

Brazil set off a Tornado in Texas? 

What does it mean, Simply it can be explained as The butterfly does not cause the 

Tornado .The flap of the wing is the part of initial conditions: one set of conditions 

lead to a typhoon while the other set of conditions does not. The flapping  wings 

represents  a small change in initial condition of the system, which cause a chain of 

events leading to a large-scale alterations of events[6]. 
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A better analogy of Butterfly effect is an avalanche .It can be provoked with a small 

input (a loud noise, some burst of the wind), it’s mostly unpredictable, and  the 

resulting energy is huge. 

Butterfly effect is a symbol of chaos. It’s a simple and entertaining way of describing 

one component of the chaos theory, that’s “Sensitive dependence on initial 

conditions”. Essentially, the Butterfly effect explains how small changes at one point  

of non linear system can results into a larger differences to a  later  state.  

Chaos theory itself is a much larger system of theorems and formulas for predicting 

and understanding the behaviors of complex, nonlinear system. Therefore, Chaos 

theory and Butterfly effect are not the same. 

Because of the Butterfly effect, now is well understood that weather forecasts can be 

accurate only in short-term, and that long-term forecasts even made with the most 

sophisticated computers methods will always be no better  than  a guessing. 

2.5 The Hénon Map 

2.5.1 Theory 

The Hénon map is a discrete-time dynamical system. It is one of the most studied 

examples of dynamical systems that exhibit chaotic behavior. The Hénon map takes 

a point (xn, yn) in the plane and maps it to a new point. 

                                              
nn

nn
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1 1
                                              

(2.2) 

The equations (2.2) were used , and the following plot or map(Figure 2.5) were 

obtained,  

 

http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Chaos_theory
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Figure 2.5: Classical  Hénon attractor. 

The map depends on two parameters, a and b, which for the classical Hénon 

map have values of a = 1.4 and b = 0.3. For the classical values the Hénon map is 

chaotic. For other values of a and b the map may be chaotic, intermittent, or 

converge to a periodic orbit. An overview of the type of behavior of the map at 

different parameter values may be obtained from its orbit diagram.So that,it yields 

irregular solutions for many choices of a and b, for example, when a = 1.4 and b = 

0.3, a typical sequence of x, will not be periodic but chaotic [43]. 

The map was introduced by Michel Hénon as a simplified model of the Poincaré 

section of the Lorenz model. For the classical map, an initial point of the plane will 

either approach a set of points known as the Hénon strange attractor, or diverge to 

infinity [51]. 

2.5.2 Applications 

Hénon investigated a two-dimensional difference equation which was motivated by a 

hydrodynamical system of Lorenz. Numerically solving this equation indicated for 

certain parameter values the existence of a “strange attractor”, i.e., a region in the 

plane which attracts bounded solutions and in which solutions wander erratically 

Hénon investigated a two-dimensional difference equation which was motivated by a 

hydrodynamical system of Lorenz. Numerically solving this equation indicated for 

certain parameter values the existence of a “strange attractor”, i.e., a region in the 

plane which attracts bounded solutions and in which solutions wander erratically. 
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Figure 2.6: The Hénon map. 

http://en.wikipedia.org/wiki/Intermittency
http://en.wikipedia.org/wiki/Periodic_orbit
http://en.wikipedia.org/wiki/Orbit_diagram
http://en.wikipedia.org/wiki/Michel_H%C3%A9non
http://en.wikipedia.org/wiki/Poincar%C3%A9_map
http://en.wikipedia.org/wiki/Poincar%C3%A9_map
http://en.wikipedia.org/wiki/Lorenz_attractor
http://en.wikipedia.org/wiki/Attractor#Strange_attractor
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100000 points were used to draw the Hénon attractor with initial conditions 

x(1)=y(1)=0. The points within an attractor do not flow continuosly, but jumps from 

one point to another on a microscopic scale. The Hénon structure shows a great deal 

of fine structure with an infinite amount to be exact. For the clarity,several 

magnification steps were carried out and the following  Figure 2.7 were obtained : 
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Figure 2.7: The Hénon map’s magnifications: (a)-Magnified view of the Hénon 

map’s upper arm,(b)-The thickest line yields other three lines, (c)-Third 
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magnifications, (d)-The Fourth magnifications, (e)-The Fifth 

magnification and  (f)-The Sixth magnifications. 

Taking a snapshop and  magnified view of the upper arm of the Hénon structure, 

(figure 2.6).Three lines are seen(figure (a)) ,the upper line appear to be thickest 

followed by two embedded lines and one line at the bottom.  

On another magnifications(figure (b)), the thickest line yields other three lines in the 

order of thickness from top to the bottom.If we can do a third magnifications we 

notes the upper line is made up of three lines, a second line made up of two lines and 

a single line at the bottom(see figure (c) and (d)).  

The same phenomenon seen on the fourth magnifications,that, the upper line seems 

made of three lines, followed by two line at the middle and single line at the 

bottom.The clearity of the Hénon map is diminishes,(Figure (e) and figure (f)), due 

to finite number of points we took in our simulation.If we could have infinite number 

of points, we would have infinite number of sub structures or line-patterns in our 

Hénon maps. 

These experiments illustrates that the structures within a Hénon maps repeats 

identically at each observation scale, so it has FRACTAL dimension,despite the flow 

of points being irregular and Chaotic. 

2.6 Logistic equation.    

2.6.1 Theory 

 One could think that chaotic systems need complicated formulae, but there are very 

simple functions which can lead not only chaos, but how this develops from 

“ordered” behaviour. The logistic function, used in population dynamics, is one of 

these functions, which we will describe in this section. 

2.6.2 Applications 

Biologists had been studying the variability in populations of various species and 

they found an equation that predicted animal populations reasonably well. This 

equation was a simple quadratic equation called the logistic difference equation. On 

the surface, one would not expect this equation to provide the fantastically complex 

and chaotic behavior that it exhibits. 
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The logistic difference equation is given by 

                                          nnn XrXX 11                                                       (2.3) 

 where r is the so-called driving parameter. 

The equation (2.3) is used in the following manner. Start with a fixed value of the 

driving parameter, r, and an initial value of x0. One then runs the equation 

recursively, obtaining x1, x2, . . .xn. For low values of r, xn (as n goes to infinity) 

eventually converges to a single number.In biology,this number (xn as n approaches 

infinity) represents the population of the species. 

The logistic difference  equation (2.3) were used and the Logistic map (Figure 2.8) 

were obtained as, 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X(n)

X
(n

+
1)

LOGISTIC EQUATION : X(n+1)=lambda*Xn*(1-X(n))

 

Figure 2.8: The cobweb diagram for logistic equation. 

The equation were used in its simplified form, such that, Driving parameter            

r = lambda=3.9=Fertility coefficient,Number of iterations=niter=500.The cobweb 

diagram[52,53]  of the logistic map above were produced,showing Chaotic behavior 

for r=3.9.  A chaotic orbit would show a 'filled out' area, indicating an infinite 

number of non-repeating values. 

The logistic difference equation (2.3) show how a small interval, under repeated 

application of the logistic map  grows to cover the entire interval from 0 to 1, 

providing a graphical understanding of sensitive dependence on initial conditions 

under a chaotic map. 

http://en.wikipedia.org/wiki/Chaos_theory
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2.6.3 Logistic map-bifurcations diagram 
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Figure 2.9: Bifurcation diagram for logistic map. 

Where, a= Fertility coefficient ; 2.9<=a<=4.This plot obtained in the following way : 

For each value of r=a (recall  equation 2.3 ), the logistic difference equation is 

iterated for n steps (starting from a random initial number) to attain stable behaviour 

(if there is any). Then a further m iteration steps are performed and Xn is plotted at 

the resulting time points n < t < n+m. 

In the bifurcation diagram for logistic map, at a= 3.45( see Figure 2.9),the first 

bifurcation (period doubling) as the solution begins to oscillate between two values 

for this value of “a“.As “a“ increases further there are further period 

doublings.Eventually, for even larger values of “ a “ the logistic differential equation 

shows chaotic behaviour, which means that the population behaviour cannot be 

predicted accurately for longer periods of time. Two trajectories starting from nearly 

identical values will diverge further and further away from each other.In this case, 

the routine to CHAOS starts with period doubling as seen in the above diagram. 
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2.7 Determinatıon of Chaos 

2.7.1 Lyapunov  exponent theory 

A number of researchers have developed methods which can be divided into two 

distinct approaches, direct methods and tangent space methods. Direct methods 

consist of searching the time series for neighbors at any given point and calculating 

expansion rates through comparison to these neighboring points. The first such 

method was that of Wolf[54].He developed a methodology in which one can 

calculate the largest positive Lyapunov exponent from a data set by following the 

long term evolution of one principal axis, a ‘fiducial trajectory’, progressively 

reorthonormalized maintaining phase space orientation.The method is highly 

sensitive to inputs, however, and can easily lead to an erroneous result [54]. 

In the early 1990’s two separate research groups produced a new method. The 

approach eliminates Wolf requirements,imposes upon maintaining phase-space 

orientation stating it is unnecessary for calculating the largest Lyapunov exponent 

[36]. Additionally, rather than following one trajectory, the full data set is used, and 

in essence a trajectory for every pair of nearest neighbors is calculated.  

Both methods are substantively similar. The Kantz algorithm (and similarly the 

Rosenstein algorithm) calculates the largest Lyapunov exponent by searching for all 

neighbors within a neighborhood of the reference trajectory and computes the 

average distance between neighbors and the reference trajectory as a function of time 

(or relative time scaled by the sampling rate of the data) [36]. 

System stability is better quantified using stability diffusion analysis or maximum 

Lyapunov exponents. In both of these methods trajectories are followed for a finite 

time and the stability of the system determined by averaging the results over the time 

series[14]. 

Consider the following  illustration for Lyapunov exponent method, 
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 (a)  

(b)  

 
    (c)  

Figure 2.10: Trajectories are followed for a finite time (a) The attractor (b)The orbit 

involved, (c) Lyapunov exponent graph[14]. 

Detecting the presence of chaos in a dynamical system is an important problem that 

is solved by measuring the largest Lyapunov exponent (as shown in figure 2.10(c)). 

Lyapunov exponents quantify the exponential divergence of initially close state-

space trajectories and estimate the amount of chaos in a system [35]. 

The signs of Lypunov exponents demonstrate qualitative picture of a system’s   

dynamics, as it was illustrated (Figure 2.10). One dimensional maps are 
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characterized by a single Lyapunov exponents which is positive for chaos, zero for 

marginally stable orbit and negative for periodic orbit. 

2.7.2 Poincaré map 

 Theory 

Let (R, M, φ) be a global dynamical system, with R the real numbers, M the phase 

space and φ the evolution function. Let γ be a periodic orbit through a 

point p and S be a local differentiable and transversal section of φ through p, 

called Poincaré section through p,as seen in Figure 2.11 below, 

 

Figure 2.11: Poincaré map P projects point x onto point P(x)[56]. 

Given an open and connected neighborhood U of p, a function,  is 

called Poincaré map for orbit γ on the Poincaré section S through point p if 

 P(p) = p 

 P(U) is a neighborhood of p and P:U → P(U) is a diffeomorphism 

 for every point x in U, the positive semi-orbit of x intersects S for the first 

time at P(x) 

In order to gain insight into the geometrical structure of the attractors, we use the 

Poincaré section technique. In Poincaré section all qualitatively interesting 

trajectories actually intersect the plane transversely [55]. 

Poincaré sections describe the intersection of phase space with a lower-dimensional 

plane or hyper plane. Often chaotic properties are easier analyzed on a lower-

dimensional Poincaré section than on the original phase space. For example the 

property that an attractor is indeed a chaotic one is determined much easier with 

Poincaré sections.As I see it, the goal of a Poincaré section is to detect some sort of 

structure in the attractor[56] 

http://en.wikipedia.org/wiki/Global_dynamical_system
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Evolution_function
http://en.wikipedia.org/wiki/Periodic_orbit
http://en.wikipedia.org/wiki/Neighborhood_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Diffeomorphism
http://en.wikipedia.org/wiki/Positive_semi-orbit
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The dynamical systems we study are of the form 

txF
dt

txd
,



 

(2.4) 

Systems of such equations describe a flow in phase space.The solution is often 

studied by considering the trajectories of such flows.But the phase trajectory is itself 

often difficult to determine, if for no other reason than that the dimensionality of the 

phase space is too large. Thus we seek a geometric depiction of the trajectories in a 

lower-dimensional space—in essence, a view of phase space without all the detail 

[14]. 

Consider the following mapping. 

P : Σ → Σ 

Σ is called a Poincar´e surface of section. 

P is called a Poincar´e first return map. It generates a new dynamical system 

with discrete time,as shown in Figure 2.12 

 
 (a)  

 
(b) 

Figure 2.12: (a) Poincaré mapping, (b) The section of torus. 
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(c) 

Figure 2.12 :(Continued) (c) Surface of section by Mathematica. 

A quick way to look right at the surface of section plane (c)  is by plotting the orbit 

but with a very restricted range in Mathematica: PlotRange->{-0.001, 0.001}[57]. 

We can simple say, Poincaré section, takes an attractor and an arbitrary plane, which 

cuts the attractor into two pieces. The orbits which comprise the attractor cross the 

plane many times. Plot the intersections of the orbits and the Poincaré plane, 

although only plot the intersections which occur in one direction (crossing from the 

"bottom" side to the "top" side for example). This is the Poincaré section, which can 

reveal structure of the attractor. 

2.7.3  Dynamic and geometric measure of chaos 

Dynamic measure chaos 

This is time dependence which includes Lyapunov exponent,λ and Kolmogorov 

entropy. 

Lyapuvov exponents measure divergence of nearby trajectories. For chaotic system, 

divergence is exponential in time and it can simply represented as  
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N

x
N

n 1  

(2.5) 

If , λ is zero system’s trajectory is periodic, negative infers the system’s trajectory  to 

be stable periodic and positive the system’s trajectory is chaotic.    

Entropy, as a measure of the time rate of creation of information as a chaotic orbit 

evolves.  

Shannon entropy(s) gives the amount of uncertainty concerning the outcome of the 

phenomenon, 

p
pS

i

i

i

1
ln

1

 

(2.6) 

0≤S≤lnr, where r is the number of events. 

Kolmogorov-Sinai entropy rate nK  gives the rate of change of entropy as the system 

evolves , 

nn

n
SS

K
1

1
 

(2.7) 

Geometric measure of chaos 

Focuses on the geometrical aspects of attractors. Dimensionality of an attractor gives 

the actual degrees of freedom for the system. 

Fractal dimension, 

Dimensionality is the minimum number of variables needed to describe the state of 

the system. Chaotic system are of non integer dimension i.e Fractal dimension. 

Measured by box counting method. 

Boxes of side length “R” to  cover the space occupied by the  object. Counting the 

minimum number of boxes ,N(R) needed to contain all the points of the geometric  

object. Then 

Box counting dimension,  
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bD

R KRRN 0lim  
(2.8) 

K-Constant. 

R

RN
D Rb

log

log
lim 0  

(2.9) 

For a point in 2D space, =0 , For a line segment of length L, =1 and For a 

surface of length L, =1 

Correlation dimension, 

A simpler approach to the determination of dimension using correlation sum. It uses 

trajectory points directly. 

Number of trajectory points lying within the distance, R of point i  then the 

relative number of points will be, 

1N

RN
RP i

i  

(2.10) 

Then Correlation dimension ( ) 

Correlation, 

RPN
RC

i

1
 

(2.11) 

Thus,C(R)= 0 No chaos, C(R)= 1 Absolute chaos. 
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3. WIND SPEED DATA 

3.1 The Data Sets 

The data sets available for the 5-year period from 1 January 2005 to 31 December 

2009 with a sampling rate of 1 min at international aerodrome standards, were taken 

from an automatic weather observation station (AWOS) installed at a height of 10 m 

at Atatürk International Airport. 
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Figure 3.1: Wind speed time series. 

3.2 The Concept of Time Series 

One definition of time series is that of a collection of quantitative observations that 

are evenly spaced in time and measured successively.  Examples of time series 

include the continuous monitoring of a person’s heart rate, hourly readings of air 

temperature, daily closing price of a company stock, monthly rainfall data, and 

yearly sales figures.  

Time series analysis is generally used when there are 50 or more data points in a 

series.  If the time series exhibits seasonality, there should be 4 to 5 cycles of 

observations in order to fit a seasonal model to the data. 

Time series (as seen in figure 3.1) are analyzed in order to understand the underlying 

structure and function that produce the observations. Understanding the mechanism 
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of a time series allows a mathematical model to be developed that explains the data 

in such a way that predictions, monitoring, or control can occur. Examples include 

prediction/forecasting, which is widely used in economics and business. Monitoring 

of ambient conditions,or of an input or an output,is common in science and industry. 

Quality control is used in computer science, communications and industry.      

Discrete time series means that observations are recorded in discrete times – it says 

nothing about the nature of the observed variable. The time intervals can be annually, 

quarterly, monthly, weekly, daily, and hourly. 

Continuous time series means that observations are recorded continuously -e.g. 

temperature and/or humidity in some laboratory. Again, time series can be 

continuous regardless of the nature of the observed variable. The most important 

feature of time series data is their intrinsic order and Time plot is extremely 

important.  

3.3 Nonlinear Time Series 

The time variability of many natural and social phenomena is not well described by 

standard methods of data analysis. However, nonlinear time series analysis uses 

chaos theory and nonlinear dynamics to understand seemingly unpredictable 

behavior. The results are applied to real data from physics, biology, medicine, and 

engineering in this volume. Researchers from all experimental disciplines, including 

physics, the life sciences, and the economy, will find the work helpful in the analysis 

of real world systems [43]. 

3.4 The Predictability of a Time Series 

The predictability of a time series using phase space techniques can be considered as 

a test for the deterministic nature of the system. These prediction techniques have 

been based on the fact that nearby trajectories, either converge or do not diverge fast 

enough for small sample steps in the phase space. 



33 

4. DEMONSTRATION OF CHAOTIC CHARACTER IN WIND SPEED 

SERIES AND PREDICTION 

4.1 Determination of Lyapunov Exponents From Experimental Data 

A large volume of work has been dedicated to the problem of calculating Lyapunov 

exponents from experimental time series. Detecting the presence of chaos in a 

dynamical system is an important problem that is solved by measuring the largest 

Lyapunov exponent.  

The method of Lyapunov characteristic exponents serves as a useful tool to quantify 

chaos. Specifically, Lyapunov exponents measure the rates of convergence or 

divergence of nearby trajectories. Negative Lyapunov exponents indicate 

convergence, while positive Lyapunov exponents demonstrate divergence and chaos. 

The magnitude of the Lyapunov exponent is an indicator of the time scale on which 

chaotic behavior can be predicted or transients decay for the positive and negative 

exponent cases respectively [54]. 

Lyapunov exponents are important because they provide a well defined signature for 

the existence of chaos within a time series. If the largest Lyapunov exponent in a 

time series is positive and the area of its attractor is bounded, then nearby trajectories 

diverge at an exponential rate and thus the system exhibits sensitive dependence on 

initial conditions. 

4.1.1 Largest lyapunov exponents     

If we have time series from a real dynamical system, which may contain noise, then 

it is more difficult to differentiate between the broadband components associated 

with noise and those associated with chaotic behavior. Thus, the frequency spectra 

are generally not enough to confirm the presence of chaos in an experimental signal 

which will inevitably contain an element of background noise. 

Therefore, we require techniques which can differentiate between those times series 

which are random (noisy) and those which are Chaotic. This can be done either by 
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investigating its fracal structure or by measuring the exponential divergence of 

nearby trajectories on the attractor [8]. 

For a dynamical system, sensitivity to initial conditions is quantified by the 

Lyapunov exponents.For example; consider two trajectories with nearby initial 

conditions on an attracting manifold (figure 4). When the attractor is chaotic, the 

trajectories diverge, on average, at an exponential rate characterized by the largest 

Lyapunov exponent [58]. 

Lyapunov exponent’s determination furnishes important indications with respect to 

chaotic patterns of dynamic systems. Lyapunov exponents describe the mean 

exponential increase or decrease of small perturbations on an attractor and are 

invariant with respect to diffeomorphic changes of the coordinate system [59]. 

On a practical framework to test chaotic dynamics,one may consider two points in a 

state space:   and ( ) as shown in figure 4 , each of which will generate an 

orbit in that space using some equation or system of equations. These orbits can be 

thought as parametric functions of a variable, which is related to time [7]. 

 If we use one of the orbits as reference orbit, then the separation between the two 

orbits will also be a function of time. This separation is also a function of the location 

of the initial value and has the form  ( ,t). The perturbation created initially 

between  and  , generates perturbed and unperturbed trajectories, 

 

Figure 4: Two trajectories for Lyapunov exponent method derivation. 

According to Saida [7] on his paper , “Using the Lyapunov exponent as a practical 

test for noisy chaos “, In a more comprehensive form(from equation (2.5)) the 

difference between these two trajectories after “ t “ time steps is measured by: 

x

tXx

tt

,
ln

1
lim

0

 
(4.1) 

 Where   is called The Lyapunov exponent. 
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4.1.2 Classfications of  Lyapunov exponents 

The Lyapunov exponent,   measures the average exponential divergence (positive 

exponent) or convergence (negative exponent) rate between nearby trajectories 

within a time horizon that differ in initial conditions only by an infinitesimally small 

amount.Here, 3 cases of   λ can be explained as: 

  < 0;  

 The orbit attracts to a stable fixed point or stable periodic orbit.  Such systems 

exhibit asymptotic stability; the more negative the exponent, the greater the stability.  

Super-stable fixed points and super-stable periodic points have a Lyapunov exponent 

of     = - . 

 = 0; 

The orbit is a neutral fixed point (or an eventually fixed point). A Lyapunov 

exponent of zero indicates that the system is in some sort of steady state mode. Such 

systems exhibit Lyapunov stability. A system with a zero Lyapunov exponent is near 

the “transition to chaos”. 

 > 0; 

The orbit is unstable and chaotic. Nearby points, no matter how close, will 

diverge to any arbitrary separation. 

We estimated the largest Lyapunov exponent λ, as a function of the embedding 

dimension and the results are summarized (in Figure 4.1) below. We obtain an 

estimated value around  λ = 2.85 ± 0.01. This positive value indicates the existence 

of chaotic behavior. 
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Figure 4.1: Largest Lyapunov exponent graph for wind speed data. 

4.2 Phase Space Reconstruction 

The analysis of nonlinear dynamical systems from time series involves state space 

reconstruction. There are two different methods for this aim: derivative coordinates 

and delay coordinates. The method of delay coordinates has proven to be a powerful 

tool to analyze chaotic behavior of dynamical system. Ruelle [48], Packard [60] and 

Takens [40] introduced the basic idea of this method and the main problem arising is 

the determination of the embedding parameters. 

Prior to phase space reconstruction based on Embedding Theorem (Takens,1981) 

embedding parameters such as embedding dimension and time delay should be 

determined from the time series[41]. 

The time evolution of a phenomenon can be given by its trajectories in the phase 

space. Coordinates of this space are spanned by the variables, which are necessary to 

specify the time evolution of the system. Every point in a phase space shows a state 

of the system and every trajectory represents the time evolution of the system 
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corresponding to different initial conditions. Points or a set of points in a phase space 

compose a  pattern which attract trajectories onto itself. 

PSR is necessary in order to estimate the attractor’s complexity of the system 

quantitatively and determine whether dynamic behaviours observed are complex or 

not [9]. 

By considering a time series of a single variable, it is assumed that the time series is 

generated from a chaotic dynamical system [40]. In addition, it is generated by a 

nonlinear dynamic system with d degrees of freedom.  Therefore to have a better 

view, it is necessary to construct an appropriate series of state vectors X
 d 

(t) with 

delay coordinates in the d-dimensional phase space as  equation (4.2) 

TdtXTtXtXX d 1,....,[  (4.2) 

where, T is the delay time and, d is the the embedding dimension. 

Phase Space Reconstruction is at the core of nonlinear time series analysis. In such 

reconstructed spaces, the deterministic features of systems can be identified and 

studied, such as empirical invariant measures, attractor dimensions, entropies, 

Lyapunov exponents, equations of motion, and short-term forecasts can be made. 

For a scalar time series  Xt, where t = 1, 2,3,…, the phase space can be reconstructed 

using the method of delays. The basic idea in the method of delays is that the 

evolution of any single variable of a system is determined by the other variables with 

which it interacts. Information about the relevant variables is thus implicitly 

contained in the history of any single variable. On the basis of this, an “equivalent” 

phase space can be reconstructed by assigning an element of the time series Xt and its 

successive delays as coordinates of a new vector time series [9, 41]. 

4.2.1 False nearest neighbour 

The false nearest neigbours procedure is a method to obtain the optimum embedding 

dimension for phase space reconstruction. By checking the neighbourhood of points 

embedded in projection manifolds of increasing dimension, the algorithm eliminates 

'false neighbours': This means that points apparently lying close together due to 

projection are separated in higher embedding dimensions. The key idea is that as we 

enlarge the dimension of our vector, we tend to eliminate step by step the 
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intersections of orbits on the system attractor arising from our projection during the 

measurement process. 

The implimentations of FNN algorithm were carried out by using TISEAN package 

[61], as shown (from figure 4.2), percentage of FNN takes its minimum at d= 20. 

 

Figure 4.2: False nearest neighbours for wind speed data. 

4.2.2 Mutual information function 

MIF measures how much one random variables tells us about another. High mutual 

information indicates a large reduction in uncertainty; low mutual information 

indicates a small reduction; and zero mutual information between two random 

variables means the variables are independent. These algorithms have been 

implemented by using TISEAN [61]. 

Time delay can be taken as Ʈ=45 because it corresponds to the first minimum of the 

mutual information function as shown in Figure. 4.3 
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Figure 4.3:  Mutual information for wind speed data. 

4.3 The Attractor in the Reconstracted Phase Space 

The wind speed data exhibit chaos, here the attractor were produced from the vector 

space obtained, as shown in the Figure 4.4 below, 

 

              Figure 4.4: The attractor in the  RPS for wind speed data. 
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4.4 The Denoised Attractor in the Reconstracted Phase Space 

Later the data were denoised so as to provide clear sense that, lines are not 

intersected in the attactors,as shown in the Figure 4.5 below, 

 

Figure 4.5: The denoised attractor in the RPS for wind speed data. 

4.5 The Poincaré Section of RPS. 

The Poincar´e section computation has been based on the work of Merkwirth [42] 

and Kantz [43] which proposes the section extracted directly from an embedded time 

series. The result is a set of (n-1)-dimensional vector points, used to perform an 

orthogonal projection. 

When the plane cuts through the RPS, Figure 4.5, it plots the points where they 

intersect on the plane’s surface as shown in the figure 4.6. The algorithms have been 

implemented by using TISEAN package [61]. 
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Figure 4.6: The Poincaré section  of RPS. 

4.6 Local Prediction Method 

A correct PSR in a dimension m facilities an interpretation of  the underlying 

dynamics in the form of a m -dimensional map fT. According to Eq (4.3)  

jTTj YfY  (4.3) 

where Yj  and Yj+T  are vectors of dimension m, describing the state of the system at 

times j and j+T   where they are current and future state respectively. Local 

approximation entails the subdivision of the fT domain into many subsets 

(neighborhoods), in order to determine a proper value for fT. In other words, the 

dynamics of the system is described step by step locally in the phase space. Before 

applying reconstruction procedure, it is necessary to have some information such as, 

embedding dimension and delay time. One of the independent coordinates mentioned 

above is taken as the time series itself. The remaining coordinates are formed by its 

(m+1) lagged time series shifted by (m+1) multiples of the correlation time T, at 

which correlation between coordinates become zero. It is assumed that the time 

series data are generated from a chaotic dynamical system in the ν- dimensional 

space (  is the dimension of attractor). In this m-dimensional space, prediction is 

performed by estimating the change of Xi with time. Considering the relation 
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between the points Xt   and  X (t+T) at time T  later on the attractor is approximated by 

function F  as in Eq (4.4); 

tTt XFX  (4.4) 

In this prediction method, the change of Xt with time on the attractor is assumed to be 

the same as those of nearby points, (XT , h:1,2,...,n). Herein, X (t +T) is determined by 

the d
th

 order polynomial F(Xt) in Eq (4.5-4.10)[62]; 
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In order to obtain a stable solution, the number of rows in the Jacobian matrix A 

must satisfy the relation in Eq(4.11): 

!!dm
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n  

(4.11)
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As stated by Porporato and Ridolfi even though in the case F are first degree 

polynomials, the prediction is nonlinear, because during the prediction procedure 

every point X(t) belongs to a different neighborhood and is therefore defined by 

different expressions for f [12], 

4.7 Goodness of Fit 

4.7.1 Root mean square error (RMSE) 

The Root Mean Square Error (RMSE) is a frequently used measure of the difference 

between values predicted by a model and the values actually observed from the 

environment that is being modeled. These individual differences are also called 

residuals, and the RMSE serves to aggregate them into a single measure of predictive 

power. The RMSE of a model prediction with respect to the estimated variable Xmodel 

is defined as the square root of the mean squared error [41]. 

n

XX
RSME

n

i iMODELiOBSERVED1

2

,,
 

(4.12) 

As shown in Equation above, n is the number of point in the attractor, Xobs is observed 

values and Xmodel is modelled values at time/place i.  The root-mean-square error 

(RMSE) statistics calculate the variance of the residual. The RMSE is always 

positive; the best value is zero; the higher the value, the poor the model performance. 

4.7.2 Determination Coefficient (R
2
) 

The quantity (R
2
), called the linear correlation coefficient, measures the strength and 

the direction of a linear relationship between two variables. The value of R
2
 takes the 

value between the -1 < R
2
 < +1 and correlation greater than 0.8 is generally described 

as strong, whereas a correlation less than 0.5 is generally described as weak.  

4.7.3 Results for local approximations  

Taking into considerations the chaotic characteristic shown in figure 4.1, figure 4.4 and 

figure 4.5 then,local approximation method is applied to observe the prediction 

accuracy.The scatterplots of real and predicted value were plotted,figure 4.7 and the graph 

for the points distribution in predictions were drawn, figure 4.8.The results are as shown 
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        Figure 4.7: The scatterplots of real and predicted values. 
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5.  RESULTS AND DISCUSSION 

We implement phase diagram analysis in order to reconstruct an attractor. Firstly, the 

delay time and embedding dimension of the wind speed time series is calculated 

using the TISEAN [10] and results were T=45 and  d=20 respectively.Then the 

Attractor without noise filtering(Figure 4.3)  and denoised attractor (Figure 4.4) of 

the wind speed time series were obtained, in which three phase space components for  

x,y and z are T, T+t  and T+2t  respectively.So the three-dimensional phase diagrams 

of the wind speed time series were drawn. 

The dimensions of the attractor were reduced to two dimensions by Poincaré sections 

technique, and the results are as shown. Poincaré map is neither a finite set of points 

(means periodic) nor a closed orbit (means quasi-periodic), which implies that the 

motion is chaotic.The wind speed time series is not a periodic sequence but a 

complex nonlinear time series. 

Lyapunov exponent’s method used to evaluate exponential divergence of nearby 

orbits and the positive exponent value obtained as in Figure 4.1. Positive Lyapunov 

exponents characterise the exponential divergence of nearby trajectories. This 

positive value, λ = 2.85 ± 0.01 indicates the existence of chaotic behavior.  The fact 

that trajectories diverge directly implies a loss of information about their future 

position. 

The local prediction model was also applied to evaluate its predictability 

performance. In this prediction model, the dynamics of the system are described 

systematically locally in the phase space. . In this prediction model, the dynamics of 

the system are described step by step locally in the phase space.The local predictor 

chooses a set of nearest neighbors, which evolves similarly in the reconstructed 

chaotic attractor. 

The graph helps us to observe the prediction accuracy.It is a measure that allows us 

to determine how certain one can be in making predictions from a certain 

model/graph 
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The predicted values(Figure 4.7and Figure 4.8) are in good agreement with the 

observations by having high values of determination coefficient,R
2 

=0.9986 and 

RMSE as 0.1670. The predictability of a time series using phase space techniques 

can be considered as a test for the deterministic nature of the system. 
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6. CONCLUSIONS 

This study describes a series of analytic techniques for discerning and investigating 

chaotic behaviors in the wind speed times series data. The results obtained, Phase 

space reconstuction, Poincaré sections and Positive Lyapunov exponent for wind 

speed data shows that, there is exist a chaotic behavior in the wind speed data. Based 

on the above analysis, we can say that the wind speed time series has the chaotic 

evolution characteristics. Results give us enough confidence on our methodologies.  

Certain deterministic non-linear systems may show chaotic behavior.Times series 

derived from such system seem stochastic when analysed with linear techniques, 

However uncovering the deterministic structure is important because it allows for 

construction of more realistic and better model and thus improve predictive 

capabilities[63]. 

This study demonstrated key Chaotic features that wind times series have such as 

positive Lyapunov exponent and Chaotic Poincaré section.The emphasis kept on 

state space reconstruction techniques that used to estimate these properties and 

displaying the chaotic behavior. Based on the above analysis, we can say that the 

wind speed time series has the chaotic evolution characteristics. 

Also , it is worthwhile to note that many types of non linear equations may give rise 

to the chaotic behavior. Chaotic time’s series data are observed routinely in 

experiments on physical systems and in observations in the field. Thus, if one is 

interested in non-linear system but not chaos per’ se, the model or the system under 

study may still be chaotic in some parts (classical values) of parameter space [43].To 

diagnose and understand or prevent such situations, knowledge of chaos is necessary. 
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