<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ ENERJİ ENSTİTÜSÜ</u>

DİJİTAL RADYOGRAFİDE ÖLÇÜM SİSTEMLERİ ANALİZİ

> YÜKSEK LİSANS TEZİ Alper İLERLER

Enerji Bilim ve Teknoloji Anabilim Dalı

Enerji Bilim ve Teknoloji Programı

Ocak 2015

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ ENERJİ ENSTİTÜSÜ</u>

DİJİTAL RADYOGRAFİDE ÖLÇÜM SİSTEMLERİ ANALİZİ

YÜKSEK LİSANS TEZİ

Alper İLERLER 301081001

Enerji Bilim ve Teknoloji Anabilim Dalı

Enerji Bilim ve Teknoloji Programı

Tez Danışmanı: Prof. Dr. Nesrin ALTINSOY

Ocak 2015

İTÜ, Enerji Enstitüsü'nün 301081001 numaralı Yüksek Lisans Öğrencisi Alper İLERLER, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "DİJİTAL RADYOGRAFİDE ÖLÇÜM SİSTEMLERİ ANALİZİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Prof. Dr. Nesrin ALTINSOY İstanbul Teknik Üniversitesi	
Jüri Üyeleri :	Prof. Dr. A.Beril TUĞRUL İstanbul Teknik Üniversitesi	
	Yrd. Doç. Dr. Zuhal ER İstanbul Teknik Üniversitesi	

Teslim Tarihi :10 Aralık 2014Savunma Tarihi :19 Ocak 2015

Işıklar içinde yat baba,

ÖNSÖZ

Bu Yüksek Lisans tez çalışmasında dijital radyografi sistemiyle elde edilen çeşitli ölçüm sonuçları ışığında ölçüm yeterlilik analizleri gerçekleştirilmiştir. Yapılan çalışmanın tüm dijital radyografi sistemi kullanıcılarına yardımcı olacağını umarım. Çalışmanın her evresinde hem zamanını hem de bilgi ve tecrübesini bana aktararak çalışmanın tamamlanmasında biricil faktör olan danışman Hocam Sayın Prof. Dr. Nesrin Altınsoy'a şükranlarımı sunarım. Ayrıca ölçümler sırasında desteğini esirgemeyen, tecrübesini paylaşan, çalışma için yardımcı olan sevgili dostum meslektaşım Celal Zeren'e teşekkür ederim.

Hayatımın her safasında hep yanımda olan annem E.Bedia İlerler, rahmetli babam Aydın İlerler'e ömrüm boyunca verdikleri destek için ve Zeynep Gökçe Bayram'a sabrı ve yardımları için sonsuz teşekkür ederim.

Aralık 2014

Alper İLERLER

(Elektrik Mühendisi)

viii

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	. vii
ICINDEKILER	ix
KISALTMALAR	xi
CIZELGE LISTESI	xiii
ŚEKIL LISTESI	. xv
ÖZET	xvii
SUMMARY	xix
1. GİRİŞ	1
2. RADYOGRAFİ ve TEMEL KAVRAMLAR	5
2.1 Endüstriyel Radyografide Kullanılan İşınlar	5
2.1.1 X-ışınları	7
2.1.2 Gama ışınları	8
2.2 X ve Gama Işınları Kaynakları ve Karşılaştırılması	8
2.3 Elektromanyetik Radyasyonun Madde ile Etkileşmesi	. 10
2.3.1 Fotoelektrik olay	.11
2.3.2 Compton saçılması	. 11
2.3.3 Çift oluşumu	. 12
2.4 Radyografi Yöntemleri	. 12
2.4.1 Film radyografi	. 13
2.4.2 Dijital radyografi	. 13
2.4.2.1 Film dijitalleştirme	. 14
2.4.2.2 Bilgisayarlı radyografi (CR)	. 16
2.4.2.3 Direkt radyografi (DR)	. 17
2.5 Film radyografi, CR, DR karşılaştırması	. 19
3. ÖLÇÜM SİSTEMLERİ ANALİZİ	. 23
3.1 Ölçüm Kalitesi	. 24
3.2 Ölçüm Sisteminde Hatalar	. 25
3.2.1 Lokasyon değişkenlikleri	. 26
3.2.2 Yayılım değişkenliği	. 29
3.3 Gage R&R	. 31
3.3.1 Gage R&R metotları	. 31
3.3.2 Kriterler	. 34
3.4 Ölçüm Cihazı Kapabilitesi, Cg ve Cgk	. 35
4. DENEYSEL ÇALIŞMALAR	. 39
4.1 Dijital Radyografi Sisteminin Tanıtılması	. 39
4.2 Deneyde Kullanılan Numuneler	.41
4.3 Minitab	. 45
4.3.1 Minitab MSA (Gage R&R) uygulaması	. 46
4.3.2 Minitab sonuç verileri ve anlamları	. 50
4.4 Minitab Cg ve Cgk Uygulaması	. 53
5. DENEY SONUÇLARI	. 57
5.1 Olçüm Algoritması	. 57

5.2 Ölçümler ve Sonuç Değerleri	58
5.2.1 Plastik numune ölçümleri ve sonuç değerleri	58
5.2.2 Metal numune ölçümleri ve sonuç değerleri	62
5.3 Gage R&R ve Cg Çalışması Sonuçları	65
5.3.1 Plastik parça istatistiki veriler, Gage R&R, Cg ve Cgk sonuç değerleri	65
5.3.2 Metal parça istatistiki veriler, Gage R&R, Cg ve Cgk sonuç değerleri	68
. SONUÇLAR ve TARTIŞMA	73
XAYNAKLAR	77
KLER	82
DZGEÇMİŞ	85

KISALTMALAR

ABS	: Akrinonitril Butadiyen Stiren (Acrylonitrile Butadiene Styrene)	
ADC	: Analog Dijital Dönüştürme (Analog Digial Conversion)	
AIAG	: Otomotive Endüstrisi Aksiyon Grubu (Automotive Industry Action	
	Group)	
ANOVA	: Değişkenler Analizi (Analysis of Variances)	
a-Si	: Amorf Silikon (Amorphous Silicon)	
AV	: Ölçümcü Varyasyonu (Appraiser Variation)	
CCD	: Yüklenme İliştirilmiş Araç (Charge Coupled Device)	
CMOS	: Bütünleyici Metal Oksit Yarı İletken (Complementary Metal Oxide	
	Semiconductor)	
CR	: Bilgisayarlı Radyografi (Computer Radiography)	
DF	: Serbestlik Derecesi (Degree of Freedom)	
DR	: Direkt Radyografi (Direct Radiography)	
DQE	: Dedeksiyon Kuantum Etkinliği (Detective Quantum Efficiency)	
EV	: Ekipman Varyasyonu (Equipment Variation)	
FPD	: Düzlem Panel Dedektör (Flat Panel Detector)	
GE	: General Electric	
GRR	: Gage R&R	
IAEA	: Uluslararası Atom Enerjisi Ajansı (International Atomic Energy	
	Agency)	
IP	: Görüntü Plakası (Imaging Plate)	
IQI	: Görüntü Kalite Göstergesi (Image Quality Indicator)	
ISO	: Uluslar Arası Standartlar Teşkilatı	
MeV	: Milyon Elektron Volt	
MTF	: Modülasyon Transfer Fonksiyonu (Modulation Transfer Function)	
MS	: Kareler Ortalaması (Mean Squares)	
MSA	: Olçüm Sistemleri Analizi (Measurement System Analysis)	
ndc	: Ayrık Kategori Sayısı (Number of Distinct Categories)	
NDT	: Tahribatsız Muayene Metodu (Non-Destructive Test)	
PCB	: Baskılı Devre Plakası (Printed Cicuit Board)	
PV	: Parça Varyasyonu (Part Variation)	
RCF	: Hızlı Film (Rapid Cycle Film)	
R&R	: Tekrarlanabilirlik & Yeniden Uretilebilirlik	
	(Repeatability&Reproducability)	
SD	: Standart Deviasyon (Standard Deviation)	
55 SV	: Kareler Toplami (Sum of Squares)	
SV	: Çalışma Varyansı (Study Variance)	
	: Ince Film Transistoru (Thin Film Transistor)	
TS	: Turk Standarti	
TV	: Toplam Varyasyon (Total Variation)	

xii

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 2.1 : X ve gama ışınları karşılaştırması	9
Çizelge 2.2 : Film dijitalleştirme yöntemleri	15
Çizelge 2.3 : Film, CR ve DR karşılaştırması	21
Çizelge 3.1 : Bias, stabilite ve lineerlik değerlerini etkileyen faktörler	28
Çizelge 3.2 : Düşük tekrarlanabilirlik ve düşük yeniden üretilebilirlik nedenleri	30
Çizelge 3.3 : Gage R&R için ölçüm sisteminin uygunluk kriterleri	34
Çizelge 3.4 : Ndc için kontrol ve analiz süreçleri	35
Çizelge 4.1 : Cihazın teknik özellikleri	41
Çizelge 4.2 : Zamak5 fiziksel, mekanik ve kimyasal özellikleri	42
Çizelge 4.3 : ABS malzeme özellikleri	44
Çizelge 5.1 : Gage R&R ölçüm algoritması tablosu	58
Çizelge 5.2 : Cg ölçüm algoritması tablosu	58
Çizelge 5.3 : Plastik parça Gage R&R çalışması ölçüm sonuçları	60
Çizelge 5.4 : Plastik parça Cg çalışması ölçüm sonuçları	61
Çizelge 5.5 : Metal parça Gage R&R çalışması ölçüm sonuçları	63
Çizelge 5.6 : Metal parça Cg çalışması ölçüm sonuçları	64

xiv

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 2.1 : Elektromanyetik spektrum	6
Şekil 2.2 : Karakteristik ve frenleme radyasyonları oluşumu	7
Şekil 2.3 : X-ışını jeneratörü ve tüpü	8
Sekil 2.4 : Fotoelektrik olay	11
Sekil 2.5 : Compton saçılması	12
Sekil 2.6 : Çift oluşumu	12
Şekil 2.7 : Film radyografi yöntemi	13
Şekil 2.8 : Dijital radyografi türleri	14
Şekil 2.9 : Nokta nokta dijitalleştirme	15
Şekil 2.10 : Çizgi çizgi dijitaleştirme	. 15
Şekil 2.11 : Dizi dijitaleştirme	. 15
Şekil 2.12 : IP'de görüntü oluşumu adımları	. 16
Şekil 2.13 : IP çevrimi	. 17
Şekil 2.14 : Dijital radyografi sistemleri	. 18
Şekil 2.15 : Düzlem panel dedektör	. 19
Şekil 2.16 : Film radyografi, CR, DR karşılaştırması	20
Şekil 3.1 : Kesinlik ve doğruluk	25
Şekil 3.2 : Varyasyonlar	25
Şekil 3.3 : Lokasyon ve yayılım varyasyonu	26
Şekil 3.4 : Doğruluğun içinde barındırdığı değişkenler	
Şekil 3.5 : Bias	27
Şekil 3.6 : Stabilite	27
Şekil 3.7 : Lineerlik	28
Şekil 3.8 : Kesinliğin içinde barındırdığı değişkenler	29
Şekil 3.9 : Tekrarlanabilirlik ve yeniden üretilebilirlik	30
Şekil 3.10 : Genel varyasyon ve alt kategorileri	. 31
Şekil 3.11 : Ortalama ve aralık metodu ile ANOVA metodu arasındaki fark	32
Şekil 4.1 : Yxlon Cheetah dijital radyografi cihazı	. 39
Şekil 4.2 : Numune yükleme ve çekim bölgesi	. 40
Şekil 4.3 : Cihaz bilgisayarı ve kullanıcı arayüzü	. 40
Şekil 4.4 : Metal parça numunesi temsili	41
Şekil 4.5 : Metal parça numunesi	42
Şekil 4.6 : Metal parça ölçüsü	43
Şekil 4.7 : Plastik parça numunesi temsili	43
Şekil 4.8 : Plastik parça numunesi	. 44
Şekil 4.9 : ABS monomerleri bağ yapısı	. 44
Şekil 4.10 : Plastik parça ölçüsü	45
Şekil 4.11 : Minitab temel istatistik değerler	. 46
Şekil 4.12 : Minitab temel istatistik değerler verileri	. 46
Şekil 4.13 : Minitab bias ve lineerlik	. 47
Şekil 4.14 : Minitab bias ve lineerlik, veri seçimi	. 47

Şekil 4.15 : Minitab bias ve lineerlik, sonuç	
Şekil 4.16 : Minitab Gage R&R (crossed)	
Şekil 4.17 : Minitab Gage R&R (crossed), veri seçimi	
Şekil 4.18 : Minitab Gage R&R (crossed), grafikler	
Şekil 4.19 : Session menüsünde hesaplanan istatistik veriler bütünü	
Şekil 4.20 : Minitab Cg ve Cgk, menü seçimi	
Şekil 4.21 : Minitab Cg ve Cgk, veri girişi	
Şekil 4.22 : Minitab Cg ve Cgk, sonuç grafiği	
Şekil 5.1 : Plastik numune için çekim parametreleri	
Şekil 5.2 : Plastik parça numune seti	
Şekil 5.3 : Plastik parça numunesi çekim sırasında	
Şekil 5.4 : Plastik parça numunesi ölçüm sırasında	
Şekil 5.5 : Plastik parça radyografik görüntüsü ve ölçüm	61
Şekil 5.6 : Metal numune için çekim parametreleri	
Şekil 5.7 : Metal parça numune seti	
Şekil 5.8 : Metal parça numunesi çekim sırasında	
Şekil 5.9 : Metal parça numunesi ölçüm sırasında	
Şekil 5.10 : Metal parça radyografik görüntüsü ve ölçüm	
Şekil 5.11 : Plastik parça için genel istatistiki sonuçlar	
Şekil 5.12 : Plastik parça lineerlik ve bias çalışması sonuçları	
Şekil 5.13 : Plastik parça Gage R&R (crossed) çalışması sonuç grafikler	ri 66
Şekil 5.14 : Plastik parça Cg,Cgk genel istatistiki sonuçlar	
Şekil 5.15 : Plastik parça Cg,Cgk sonuçları	
Şekil 5.16 : Metal parça için genel istatistiki sonuçlar	
Şekil 5.17 : Metal parça lineerlik ve bias çalışması sonuçları	
Şekil 5.18 : Metal parça Gage R&R (crossed) çalışması sonuç grafikleri	69
Şekil 5.19 : Metal parça Cg,Cgk genel istatistiki sonuçlar	
Şekil 5.20 : Metal parça Cg,Cgk sonuçları	

DİJİTAL RADYOGRAFİDE ÖLÇÜM SİSTEMLERİ ANALİZİ

ÖZET

Kalite kontrolü amaçlı olarak kullanılan Tahribatsız Muayene Metodları arasında radyografi önde gelen yöntemlerdendir. Radyografi yöntemlerinden film radyografi yerine son yıllarda teknolojideki gelişmelerle dijital radyografi sistemleri ön plana çıkmıştır. Film radyografide ışınlama bir film üzerine yapılmakta daha sonra bu film banyo islemlerine tabi tutulmakta, tüm bunların tamamlanmasının ardından radyografta görüntü incelenebilir hale gelmektedir. Dijital radyografik yöntemlerde ise yapılan çekim, anlık olarak bilgisayara aktarılmakta ve ekrandaki çekim görüntüsü üzerinden ölçüm ve analizler yapılabilmektedir. Alınan görüntünün üzerinden yapılan ölçümler oldukça fazla çeşitlilik gösteren üretim ve kontrol safhalarında sonuç tayini amaçlı kullanılmaktadır. Görüntüden elde edilecek ölçüm sonucunun kalitesini ölçmek ve standartlara göre uygunluk/uygunsuzluk değerlerini istatistiki metotlar kullanarak saptamak ölçüm sisteminin doğruluk ve kabul edilebilirliğini tespit etmek için oldukça önemlidir. Ölçüm sistemi analizi çalışmasının amacı böyle bir dijital radyografi cihazı ile gerçekleştirilecek ölçüm sisteminin normatif kriterlere uygunluğunu sınamaktır. ISO/TS16949 otomotiv endüstrisi kalite yönetim sistemi standardı ölçüm sistemleri analizi çalışmalarını gereklilik haline getirmiştir.

Bu Yüksek Lisans Tez çalışmasında, bir dijital X-ışını radyografi cihazı ile farklı malzemelerden imal edilen parçalarla yapılan radyografik çekimler üzerinde ölçüm çalışmaları yaparak ilgili ölçüm sisteminin yeterliliğinin ve kapabilitesinin Ölçüm Sistemleri Analizi metodu ile değerlendirilmesi hedeflenmiştir. Ölçüm sistemleri analizi çalışmaları Sistemin değerlendirilmesi için çeşitli bilgisayar programları da kullanılmıştır.

Çekimlerde metal (zamak5) ve plastik ABS (acrylonitrile butadiene styrene) olmak üzere iki tip malzeme kullanılmıştır. Birbirinden farklı yoğunluk seviyelerinde olan bu iki malzemenin seçilmesinin nedeni X-ışını giriciliği limitleri nedeniyle görüntünün olumsuz yönde etkilenmesi halinde ölçümcülerin, ölçümlerin ve buna bağlı olarak istatistik analiz sonuçlarının ne şekilde etkileneceğini gözlemlemektir. Bu malzemelerin farklı ölçüleri, ilgili dijital radyografi cihazı ile alınmıştır. Elde edilen çekim görüntülerinin işlenmesi ve ölçümler, cihazın sistem bilgisayarı bulunan kendi yazılımı ile yapılmıştır. Ölcüm sonuclarının üzerinde değerlendirilmesi ve Ölçüm Sistemleri Analizi amaçlı olarak Gage R&R metodu ve Cg analizi, Minitab programı yardımı ile yürütülmüştür.

Çalışmada 10'ar adet metal ve plastik parça numunesi iki yetkin ölçümcü tarafından ölçüme tabi tutulmuştur. Farklı yoğunluk değerlerine sahip iki numune tipi için belirlenen uygun akım ve gerilim değerleri ile yapılan çekimler sonucu, ölçüm sisteminin Cg ve Gage R&R değerleri hesaplanarak ölçüm kapabilitesi ve ölçüm sistemleri analiz değerleri deneysel sonuçlardan yola çıkılarak hesaplamalı olarak ortaya konmuştur.

MEASUREMENT SYSTEM ANAYLSIS FOR A DIGITAL RADIOGRAPHY DEVICE

SUMMARY

Radiography is the leading method in non-destructive tests that are used for quality control purposes. Due to advances in technology, in stead of conventional film radiography, digital radiography systems are stood out. In conventional film radiography technique, irradiation is applied towards radiographic films whilst sample material is inbetween source and film. Afterwards by using chemicals and baths film developing operations should be performed in order to get the visible image on the film. Those additional film developing stages make film radiography technique slower. Besides radiographic films are disposable. In digital radiographic systems, it is possible to upload the images acquired by the device to computer instantly. As image receptor, IPs or FPDs are used and several hundred thoushand shots are possible in digital radiographic techniques. Another disadvantage of conventional film radiography is, it generates the media on the film which, one can examine the image by having the aid of illuminators. As explained, digital radiographic images are directly created on the computer which gives the user insant evaluation and soft image storing capability, easy and fast measurement opportunity and image enhancement possibility. Image enhancement possiblities include image sharpening, contrast adjustments, create histograms, region selecting so on and also zoom in and zoom out for region of interest is possible in order to see the details.

Digital radiography device used during the study has x-ray radiation source. Mainly there are gamma and x-ray sourced devices can be found in the market. There are some advantages of using x-ray. X-ray devices generates the x-rays in a x-ray tube and needed energy is only electricity. There is no need to have the radioactive element like at gamma sourced radiographic systems. It only generates x-rays while the tube is on and in operation. Penetration can be controlled by voltage controller and radiation intensity can be controlled by amperage controller and the control operation is easy. Control is mainly done on software by just increasing decreasing the value on the soft system. On the other hand x-ray tubes need either gasous or liquid type cooling system to remove the heat generated in the tube.

As a result of having the image directly on computer software by digital radiographic systems, one can make analysis and measurements on the images. Measurements results that are taken on those images are widely used in production and control studies in order to make decision. Using the measurement results that are achieved from the images in statistical studies in order to evaluate the measurement system's quality and compliance to standards is important in terms of defining the measurement system's sensitivity and acceptability. Internal standard ISO/TS16949 which is for qaulity management system at automotive industry made measurement system analysis studies obligatory.

Within the study, measurement system analysis was done by Gage R&R ANOVA method. Type I Gage Study was conducted for calculating Cg and Cgk and also Gage

Linearity and Bias study was done. All the statistical studies and calculations were done by using Minitab which is a software for various statistical purposes.

Those statistical studies could provide, acceptance criterias for a new measurement device, comparison of a measurement device with another one, assess a measurement device which is thought to be defected, comparison of the condition of measurement device before and after maintenence and gives results to be compared with standards in order to check the compliance.

The aim of this study is to calculate and evaluate the capability values and Measurement System Analysis results of a digital x-ray inspection device by having the measurement results on the radiographic images of sample groups.

Two different sample groups were used during the radiographic shots, metal part samples made of zamak5 (an alloy includes zink, aluminum, magnesium and copper) produced by casting process and plastic part samples made of ABS (acrylonitrile butadiene styrene) produced by plastic injection process. One dimension of each of those samples were measured on the x-ray inspection device. For image processing and enhancing, software was used which is loaded on the device that also controls and operates to whole radiography machine. 10 different sample parts made of plastic and metal each was measured by the digital radiography device by two compentent appraisers. Reference measurement results of those parts were in the hand before the digital radiography studies were done.

Density is one of the most important factors effecting the x-ray absorbtion. Radiographic images are derived from the x-ray absorbtion changes caused by the sample material thickness and density. The samples selected has wide difference in density values. The reason behind is to evaluate the performance of the digital radiography device at this sample density scale also.

Study was done on plastic sample set at first. Appropriate voltage and amperage conditions were caught at 33 kV and 20 μ A level. Appraiser one made one radiographic shot for each of ten samples and measured the charateristic which was previously defined afterwards appraiser two made one shot for each of ten samples and measured the same characteristic with appraiser one, this sequence was done twice. At the end fourty radiographic images and measurement results of them had been achieved. For this fourty pieces measurement result, Gage Linearity and Bias study and Gage R&R study was conducted.

Bias examines the difference between the observed average measurement and reference values. Linearity indicates whether the gage has the same accuracy across all measurements. Gage Linearity and Bias study was done to get the bias and linearity values of the measurement results for those fourty pieces measurement result. Minitab also gives a graph showing reference value to bias also identifying regression line and confidence intervals. Graph and also regression analysis was checked for linearity part of the study and bias results checked for bias part of the study.

Gage R&R study (crossed) in Minitab with ANOVA method includes part to part variation, operator variation, operator to part variation and equipment variation (under repeatability definition) and gives the GRR, ndc results with statistical calculation results in the session menu and six graphs. In the session menu repeatability and reproducibility, part to part variation and so on was checked. Achieved six graphs show components of variation, parts by results, R bar chart, results by operators box

plot, X bar chart and operator to part interaction graphs respectively. Those graphs are for visualization of the study results, those were also evaluated.

When only variation coming from measuring equipment is needed to be assessed Cg and Cgk study should be done. In order to make the Cg and Cgk study, twentyfive consecutive radiographic shots of one sample was taken by appraiser one only. By this sampling and measuring method part to part variation, operator variation and operator to part variation is out of scope. Measurement results of those twentyfive image were used in Type I Gage study to find Cg and Cgk values. Cg metric is calculated to compare the study variation (the spread of the gage's measurements) with percentage of the tolerance. Cgk is calculated only when the reference value is known. Cgk compares the study variation to tolerance, but it also considers whether the measurement are on target. Cg and Cgk values are the capability index values of the measurement device itself. Minitab also gives a graph for the measurement results, including minimum and maximum tolerances and reference values. The graph and Cg, Cgk results were evaluated.

Same study was done for the metal sample set. Appropriate voltage and amperage conditions were caugth at 80 kV and 40 μ A level. For Gage Linearity and Bias study and Gage R&R study fourty radiographic images and measurement results were taken. For Type I Gage study twentyfive measurement results were used in order to find Cg and Cgk values.

Limiting values for Gage R&R study are stated in Measurement System Analysis Reference Manual. GRR value should be lower than %10 and ndc value should be higher than 5 to have appropriate measurement results. Comparison was done for the achieved results of GRR and ndc with those limiting values. Results were achieved as acceptable and in compliance with limit GRR and ndc limit for both plastic parts and metal parts sample set.

Limiting values for Cg and Cgk studies are considered as higher or equal to 1,33 for both Cg and Cgk value. Comparison was done for the achieved results of Cg and Cgk with those limiting values. Results were achieved as acceptable and in compliance with limit Cg and Cgk limit for both plastic parts and metal parts sample set.

At the end one hundred and thirty radiographic images with measurement results were collected and all of them stored digitally. Statistical studies conducted with Minitab for Display Decriptive Statistics, Gage Bias and Linearity study, Gage R&R (crossed) study with ANOVA method for metal and plastic sample set was stored. Also Minitab studies for Type I Gage study for each sample set was stored seperately.

No significant difference has been observed between plastic part and metal part sample set in terms of statistical analysis.

All measurement devices could loose it's accuracy and precision due to several different reasons like wear off, breakdown and so on. Measurement system analysis studies and capability studies are important in order to assess the adequateness and capability of the device and operators. Along with the standards' requirements it is also necessary and recommended to repeat the analysis frequently for the measurement systems.

xxii

1. GİRİŞ

Gelişen teknolojiyle, malzemelerin niteliğini belirleyen tekniklere olan ihtiyaç her geçen gün artmaktadır. Özellikle endüstriyel proses ve kalite kontrolde ekonomik, pratik ve duyarlı kontrol ve üretim sistemleri araştırılmakta ve uygun olanları tercih edilmektedir. Bu amaçla tahribatsız muayene yöntemleri geliştirilmiş bulunmaktadır (Şahin, 2003).

Tahribatsız malzeme muayene metotları ile; malzemeye ve bütünlüğüne herhangi bir zarar vermeksizin ve malzemenin muayene sonrası görevini yerine getirmesi üzerinde herhangi bir etkide bulunmaksızın, malzeme yüzeyindeki ve içindeki düzensizlikler ve yapısal durumu hakkında detaylı bilgi alınabilmektedir. Tahribatsız malzeme muayene teknikleri numunelendirme bazında bireysel testler yanı sıra seri üretimde parçaların %100 kontrolü maksatlı da kullanılabilmektedir (Willcox ve Downes, 2003).

Tahribatlı testler, sadece birkaç numuneye ve dolayısıyla toplam ürünün çok küçük bir yüzdesine uygulanabilirken, tahribatsız yöntemler üretilen her parçaya veya her malzemeye uygulanabilirler. Fazla olarak, tahribatsız muayene yöntemleri üretimin her aşamasında kullanılabilirler. Bir başka deyişle, bu yöntemlerin gerektiğinde hammadde ya da yarı işlenmiş mamullerde kullanılabilmesi, önemli bir avantaj teşkil etmektedir. Bu durum, üründeki hataların erken farkına varılmasını sağlayarak, karmaşık sistemlerde hayli yüksek olan servis ve işletim masraflarının azalmasına yol açar. Tahribatsız muayene yöntemleri ile, üretimin ilk aşamasındaki vakitsiz ve rastgele süreksizlikler rahatlıkla tespit edilebilir. Bütün bunların yanı sıra yaygın olarak kullanılan ve maliyeti genellikle daha fazla olan mekanik testlere oranla çoğu kez daha hassas ve doğru sonuç verirler. Fazla olarak, tahribatsız muayene yöntemleri, üretimde belli bir kalite düzeyini temin ederek, olası kazaların önlenmesi ve ürünlerin güvenilirliğini de sağlarlar (Şişman, 1992).

Tahribatsız malzeme muayene yöntemlerini kendi içinde farklı yönlerden sınıflandırmak mümkündür. Genel bir sınıflandırma, malzemeden bilgi alınabilme durumuna göre yapılan sınıflandırmadır. Buna göre tahribatsız muayene metotları;

yüzeysel yöntemler (sıvı penetrant, manyetik parçacık, girdap akımları), hacimsel yöntemler (radyografi, ultrasonik, termografik), birleşik yöntemler (kaçak testi, akustik emisyon) olarak üç ana grupta toplanabilir (Duman, 2000).

Malzemeleri test etmek üzere kullanılmakta olan tahribatsız malzeme muayene yöntemlerin sayısı, teknolojideki gelişmelerle ve mevcut yöntemlerin iyileştirilmesi ile artmakta ve genişleşmektedir. Kullanılan teknikler arasında altı yöntem en fazla tercih edilen yöntemlerdir. Bunlar; görsel ve optik yöntemler, sıvı penetrant, manyetik parçacık, girdap akımları, radyografi ve utrasonik tekniklerdir (IAEA, 2005). Bunlar dışında nötron radyografisi, akustik emisyon, termal ve kızılötesi teknikleri, mikrodalga teknikleri, kaçak testi ve halografi gibi yöntemler de mevcuttur (IAEA, 2012).

Tahribatsız malzeme muayene metotları kalınlık ölçümleri, malzemelerin sınıflandırılması, kimyasal kompozisyonun tayini, yüzey karakteristiklerinin değerlendirilmesi, stres konstantrasyonu yüksek alanların belirlenmesi, malzeme davranışının kestirimi gibi uygulamalarda kullanılabilir (Zahirian, 2011). Her tahribatsız malzeme muayene metodunun kullanımının uygulamaya, hata tipine ve malzemeye bağlı olarak avantajları ve dezavantajları olacaktır (Valle, 2011). Kullanılacak tahribatsız malzeme muayene metodunun seçimi, uygulanabilirlik, ulaşılabilirlik ve amaca uygunluk faktörlerine bağlıdır (Raj ve diğ, 1995).

Uygulamada, incelenmesi gereken malzemenin ve aranan hatanın cinsine uygun olan yöntem veya yöntemler belirlenerek kullanılabilir. Her yöntemin diğerlerine göre üstün olduğu durumlar mevcuttur. Bu yüzden kullanılacak yöntemin dikkatle seçilmesi gerekir (Şişman, 1992).

Radyografi çok yönlü ve geniş bir kullanım alanına sahip olması nedeniyle tahribatsız malzeme muayene metotları arasında en yaygın kabul gören yöntemdir (Hayes, 1997). Radyografi; yüksek giriciliğe sahip X ve gama ışınlarının kullanılması ile malzemeye zarar vermeksizin, malzemenin iç koşullarının ve kriterlere uygunluğunun değerlendirilmesini verdiği kalıcı radyografik görüntüler yardımı ile mümkün kılar (Quinn ve Sigl, 1980).

Teknolojide yaşanan gelişmelerle klasik radyografi yanı sıra dijital radyografi kullanımı da yaygınlaşmıştır. Giderek daha fazla klasik radyografi uygulaması dijital hale gelmektedir (Kiesel, 2006). Dijital sistemlerin radyografide kullanımı hız

2

kazandıkça kullanıcılar görüntüleme sisteminin performansını ve stabilitesini kontrol etmek durumunda kalmışlardır (Mango, 2011). Görüntü kalitesi ve sistem özelliklerinin periyodik olarak kontrolü, dijital görüntüleme sisteminin iyi sonuç verdiğini garanti altına almak için yapılması zorunlu bir işlem haline gelmiştir (Kong, 2008).

Bu Yüksek Lisans Tez çalışmasında, Yxlon Cheetah dijital radyografi sistemi kullanılarak yapılan çekimler üzerinden alınan ölçüm sonuçları ışığında Gage R&R metodu kullanılarak ölçüm sistemleri analizi ve Cg, Cgk çalışmasının bilgisayar tabanlı istatistik yazılım ile gerçekleştirilmesi ve sonuçların belirlenerek değerlendirilmesi hedeflenmiştir.

2. RADYOGRAFİ ve TEMEL KAVRAMLAR

1895 yılında W.C. Roentgen'in X-Işınını, 1896 yılında ise Becquerel'in radyoaktiviteyi keşfi ve onlardan sonra gelenlerin malzeme muayene konusunda yapmış oldukları uygulamalar endüstriyel radyografiye gelişme ve ilerleme için bir başlangıç noktası sağlamıştır. Bu teknik günümüzde malzeme iç yapısındaki porozite ve boşlukların algılanması için kullanılan en yaygın tahribatsız malzeme muayene tekniğidir. Uygun yönlendirme ile yüzey hataları dahi radyografi yöntemi ile tespit edilebilmektedir. Ayrıca malzeme yapısı, kalınlık ölçümü ve istenmeyen ya da hatalı parçaların montaj sonrası tespiti mümkündür. İyonize olabilen radyasyonu tahribatsız muayenede kullanmanın temel avantajları, çok küçük şekil ve ebattan çok büyük şekil ve ebatlara kadar test yapılabilmesi ve değişik malzeme türleri için bu testin kullanılabilmesidir. Ayrıca numune yüzeyi hazırlanması diğer tahribatsız muayene yöntemlerinden farklı olarak gereksizdir. Bu yöntemin dezavantajı ise, çalışanlar üzerinde radyasyona bağlı tehlikelerin bulunması ve vücut dokularında biyolojik tahribat yapabilmesidir (Raj ve diğ, 2002).

Tahribatsız test yöntemlerinde görüntüleme genel olarak üç teknikle yapılabilir. Bunlar; radyografi, tomografi ve üç boyutlu görüntüleme olarak sayılabilir. Radyografide görüntü, bir düzleme ani bir şekilde radyasyon uygulanması ile alınır. Tomografide, objenin bir kesitinin görüntüsü oldukça detaylı olarak elde edilir. Üç boyutlu görüntülemede ise, objenin üç boyutlu şekli görüntüleme işlemi ile elde edilir. Tahribatsız malzeme muayene yöntemleri arasında, radyografi yöntemi radyasyon bazlı olan teknolojiler arasında en çok kullanılanıdır (Hussein, 2003). Bu tez dahilinde radyografik görüntüleme üzerine çalışılmıştır.

2.1 Endüstriyel Radyografide Kullanılan Işınlar

Gözle, şeffaf olmayan malzemelerin ancak yüzeylerini muayene edebilir. Eğer bir metal veya plastik içerisinde saklı hataların tetkiki istenirse görünür ışıktan daha fazla nüfuz eden bir enerji şekli kullanılması gerekmektedir (LeGrand, 1966). Bu durumda istenilen nüfuziyeti sağlayan yüksek enerjili ışınlar olarak X ve Gama Işını kullanan sistemler geliştirilmiştir.

X ve Gama Işınlarının her ikisi de temel olarak elektromanyetik radyasyonlardır. X ve Gama Işınlarının tayf üzerindeki yeri Şekil 2.1'de verilmiştir.

Şekil 2.1 : Elektromanyetik spektrum (Url-1).

Girici elektromanyetik radyasyonun özellikleri genel olarak şu şekilde sıralanabilir (Şahin, 2003);

- Işık hızında $(3x10^8 \text{ m/s ile})$ hareket ederler.
- Doğrusal yayılırlar, (bir malzeme ile etkileşip ikincil veya saçılma fotonları oluşturmadıkça) ortamda yol alırken yönlerini değiştirmezler.
- Nokta kaynaktan yayınlanan X-ışınlarının şiddeti ters kare kanuna uygun olarak, mesafenin karesi ile ters orantılı olarak azılır.
- Madde ile etkileşirler.
- Malzeme atomlarını iyonlaştıracak yeterli enerjiye sahiptirler.
- İnsan dokusu veya herhangi bir tip canlı doku ile etkileştikleri zaman biyolojik ve kimyasal değişimlere neden olurlar.
- Kaynaktan izotropik olarak yayılırlar.
- Enerjitiktirler ve enerjileri ile dalga boylarının çarpımı sabittir.

2.1.1 X-ışınları

X-ışınları elektromanyetik radyasyon ailesinin bir üyesidir, oluşum farkı nedeniyle iki gruba ayrılırlar. Bunlar karakteristik X-ışınları ve frenleme tipi X-ışınlarıdır (Bulubay, 1995). Yeterli minimum kinetik enerjiye sahip bir elektron, hedef atomun iç yörüngesindeki (örneğin K veya L yörüngesi) bir elektron ile etkileşime girdiğinde bu elektronu yörüngesinden çıkarabilir ve koparabilir. Bu durumda atom stabilitesini kaybeder, iyonize olmuş olur. Tekrar kararlı duruma geçmek üzere dış yörüngelerden, bir başka deyişle daha yüksek enerji seviyesinden, bir elektron bu iç yörüngeye geçer. Bu fazla enerji "Karakteristik X-ışınları" olarak yayılır. Karakteristik X-ışını olarak adlandırılmasının nedeni yayılan enerjinin atoma özgü olmasından dolayıdır (Selman, 2000). Karakteristik X-ışınlarının oluşumunun şematik gösterimi Şekil 2.2'de verilmiştir.

İkinci tip X-Işınları, hızlandırılmış elektronların ani olarak durdurulması sonucu meydana gelirler. Şöyle ki, hızlandırılmış elektronlar bir hedef elemana çaptırıldığında, hedef elemanın atomları ile etkileşecek ve atomun elektron atmosferinde frenleme tesiriyle karşılaşacaktır. Bu sırada, elektron enerjisini kaybedecek ve bu enerji X-Işını olarak açığa çıkacaktır. İşte bu tip X-Işınlarına "Beyaz Radyasyon" veya "Frenleme Radyasyonu" veya (yabancı literatürde daha çok rastlanan adıyla) "Bremsstrahlung" denir (Bilge ve Tuğrul, 1990). Endüstriyel sistemlerde kullanılan cihazlar bu tipte radyasyon üretir. Şekil 2.2'de Frenleme radyasyonlarının oluşumu verilmiştir.

Şekil 2.2 : Karakteristik ve frenleme radyasyonları oluşumu (Siebert, 2004).

2.1.2 Gama ışınları

Gama Işınları, X-Işınları gibi elektromanyetik radyasyonlardır. X-ışınları atom uzayından oluşurken, gama ışınları çekirdekte oluşur.

Aynı proton sayısına yani atom numarasına sahip ancak nükleonlarının toplam sayısı farklı olan çekirdeklere elementin izotopları denir. Bazı izotoplar dengeli iken bazıları dengesiz konumdadır. Dengesiz olanlara radyoizotop denir ve radyasyon yayarak dengeli hale geçmeye çalışırlar.

Kararlı olan izotoplar, nötronlarla ışınlanarak yapay radyoizotoplar oluşturulur. Bu radyoizotoplar bozunum türüne göre, Alfa (α), Beta (β) ya da Gama (γ) ışınları yayarlar. Gama Işınlarının özellikleri yayıldıkları izotopa bağlıdır. Endüstriyel radyografide gama ışını yayan radyoizotoplardan faydalanılır (Bilge ve Tuğrul,1990).

2.2 X ve Gama Işınları Kaynakları ve Karşılaştırılması

X-ışınlarının üretilebilmesi içi kullanılan X-ışını tüpleri termoiyonik bir vakumlu tüptür. Isıtılan bir flaman termoiyonik eminsyon yolu ile elektron yayar. Bu flamanın ısıtılması işlemi ayrı bir flaman akımı (A) gerçekleştirilir. Eğer bir gerilim (kV) uygulanmaz ise elde edilen bu elektronlar flamanın yakınında bir elektron bulut olarak kalır. Flamanla hedef arasına, flaman negatif yüklü katot ve hedef pozitif yüklü anot olacak şekilde gerilim uygulandığında ise elektronlar yüksek bir potansiyle fark dolayısıyla anota yönlenir ve hedefe çarparlar. Burada gerilim değerinin arttırılması ile elektronların maksimum ve ortalama hızları değiştirilir (Selman, 2000). Şekil 2.3'te X-ışını üretimi için jeneratör ve tübün şeması verilmiştir.

Şekil 2.3 : X-ışını jeneratörü ve tüpü (Siebert, 2004).

Gama ışınlarının üretilmesi için radyoizotoplar kullanılır. Bu izotoplar bir zırh içine yerleştirilir ve ışınıma ihtiyaç duyulduğunda kapağın açılması veya kaynağın döndürülmesi ile test objesine yönlendirilir. Projeksiyon tipi kaynaklar da mevcuttur. Bu tip kaynaklarda işlem sırasında uzaktan kontrol ile radyoizotop zırh içerisinden çıkarılır.

X-Işını tüpleri nominal voltajlarının altındaki değerlere ayarlanabilir ve böylelikle muhtelif kalınlıktaki malzemeler test edilebilir. Ancak Gama Işını kaynaklarında, ışınım kullanılan radyoizotopa bağlı olduğu için farklı kalınlıklarda iyi görüntü elde etmek üzere farklı enerjilerde radyoizotopların kullanılması gereği ortaya çıkar. Detaylı bir karşılaştırma Çizelge 2.1'de verilmektedir.

<u>Karakteristik</u>	<u>X-lşınları</u>	Gama Işınları
Besleme	Elektrik akımına ihtiyaç vardır. Radyografi çekimi esnasında cihazın kontrol altında tutulması gerekir.	lşınım kendiliğinden meydana gelir. Radyografi çekimi esnasında kaynağın kontrolü gerekli değilidir.
Boyutlar ve Manipulasyon	Cihazın boyutları büyüktür. Bazı hallerde cihazın yerleştirilmesi bir problem olarak ortaya çıkar.	lşının kaynağının ebadı çok küçüktür. Yerleştirme kolaydır, en gayrimüsait yerlerde bile kullanılabilir.
Nakliye	Cihazın nakli bir problem arz etmez.	Muhafazasının ağırlığına ve büyüklüğüne rağmen bir müşkülat arzetmez. Kırılacak parça yoktur.
İşınıma Karşı Korunma	Sadece cihazın çalıştırıldığı anlarda gereklidir.	lşınım devamlı olduğundan her an gereklidir.
lşınların Dalga Boyu	Cihazın maksimum geriliminin bir fonksiyonudur.	Kullanılan radyoaktif elementin cinsine tabidir. Normal cihazların neşrettiği X-Işınlarınınkinden daha küçüktür.
Odak Noktası	Normal monoblok cihazlarda 2x2 ial 4x4 mm.dir. Büyük verili cihazlarda 6x6 mm.ye kadar çıkar.	Normal kaynaklar için 2x2 ila 4x4 mm.dir. Yüksek şiddetli kaynaklarda bu ölçüler 10x10 mm.ye kadar çıkar.
lşınım	Normal tüplerde ışınım zayıf açılı bir koni şeklindedir, oyuk anotlu tüplerde ışınım daha geniş bir sahayı kaplar.	Bütün doğrultularda aynı şiddettedir.
lşınım Şiddeti ve Gerekli Poz Süresi	Şiddetli bir ışınım ve kısa süresli poz süresine ihtiyaç gösterir.	lşınım şiddeti düşük ve uzun bir poz süresi (bazı hallerde saatlerce)
Radyografinin Kalitesi	Gerilimin uygun seçilmesi ile iyi bir kontrast elde edilir.	Daha zayıf bir kontrast elde edilir. Arzu edilen yoğunluğa erişilemediği hallerde filmin okunması zorlaşır.

Çizelge 2.1 : X ve gama ışınları karşılaştırması (Anık ve Tülbentçi, 1969).

Bu tez dahilinde kullanılacak ekipman bir X-Işını kaynağıdır.

2.3 Elektromanyetik Radyasyonun Madde ile Etkileşmesi

Madde içine nüfuz edebilen radyasyonun madde ile olan etkileşimi zayıflama veya soğurulma olarak anılır ve elektromanyetik radyasyonların, yüklü parçacıkların ve nötronların madde ile etkileşimi farklılıklar gösterir (Becker, 1990). Bu tezin konusu olan dijital radyografi sisteminde üretilen X-Işınları daha önce de belirtildiği gibi elektromanyetik radyasyon grubuna girmektedir. Bu sebeple bu tip detaylı olarak açıklanacaktır.

Bir foton elektromanyetik radyasyon formunda bir enerji paketidir ve ışık hızında hareket eder. Bir fotonun enerjisi E, hv'ye eşittir. Burada h Planck Sabiti ve v de elektromanyetik dalganın frekansıdır. Burada ilgilenilen nokta, fotonların madde içerisine nüfuz edebilecek ve ondan etkilenecek kadar yüksek enerjili olması sayesinde NDT (Non Destrucitve Testing, Tahribatsız Muayene Metodu) teknikleri için kullanışlı sinyaller sağlayabilmesidir. Bu X ve Gama Işınlarını içerir (Hussein, 2003).

Radyasyon kaynağından çıkan X-ışınları veya gama radyasyonu malzemenin üstüne düştüğü zaman bir kısmı cisimden geçer, diğer kısmı da çeşitli yönlerde saçılır. Gama veya X-ışınları malzemeden geçerken şiddetlerini kaybederler. Bu olaya gama veya X-ışınlarının malzeme içinde soğurulması denir (Çobanoğlu, 2011).

Elektromanyetik radyasyonların madde içerisindeki absorbsiyonu:

$$I = I_0 \cdot e^{-\mu \chi} \tag{2.1}$$

Şeklinde formüle edilir (Duman, 2000). Burada;

 I_0 : Malzeme üzerine düşen radyasyon şiddeti

- I : Malzemeden geçen radyasyon şiddeti
- H: Absorbsiyon katsayısı
- *x* : Absorblayıcı malzeme kalınlığıdır.

μ absorbsiyon katsayısı; absorblayıcı malzemenin atom ağırlığına, yoğunluğuna ve kullanılan radyasyonun dalga boyuna bağlıdır ve belli bir malzemenin birim kalınlığındaki absorbsiyon miktarının kantitatif ölçüsünü verir. Absorbsiyonu etkileyen üç temel faktör vardır. Bunlardan biri kullanılan radyasyonun karakteristikleridir. Absorbsiyon, malzeme içerisinden geçen radyasyon şiddetindeki azalma olduğuna göre, radyasyonun hem kalitesine hem de kantitesine bağlıdır. Diğer iki faktör ise absorblayıcı madde ile ilgilidir. Bunlar söz konusu malzemenin atom numarası ve yoğunluğudur. Yoğunluk, absorbsiyonu etkileyen en önemli faktörlerden biridir. Radyografik görüntü, malzeme yoğunluğundaki ve kalınlığındaki değişimin absorbsiyon farklılıklarına yol açması sonucu oluşur. Burada, radyasyonun enerjisi ile malzemenin atom numarası, radyasyonun madde ile etkileşiminde etkileşim tipini belirleyen başlıca etmenlerdir. Radyasyonun madde içinde absorbsiyonu başlıca üç tip etkileşim sonucu oluşur. Bunlar fotoelektrik olay, compton saçılması ve çift oluşumudur (Şişman, 1992).

2.3.1 Fotoelektrik olay

Görece olarak düşük enerjili X-Işınları bir madde içerisinden geçerken bir foton, bu maddenin atomlarından birine çarparsa, bu fotonun toplam enerjisi atomdan elektron koparmak için kullanabilir (GE, 2007). Foton tüm enerjisini vererek kaybolur. Elektron, eşik enerjisi üzerinde enerji aldığından kendi yörüngesinden kopar, bu kopan elektrona "fotoelektron" adı verilir. Bu olayın ardından dış yörüngeden diğer bir elektron, boşluk bulunan yörüngeye geçiş yapar, bu geçişte karakteristik Xışınları yayınlanır. Genelde bu olayın meydana gelme olasılığı düşük enerjili X ve gama ışınları için yüksektir (Çobanoğlu, 2011). Şekil 2.4'te fotoelektrik olayın oluşum şekli gösterilmektedir.

Şekil 2.4 : Fotoelektrik olay (Url-2).

2.3.2 Compton saçılması

Daha yüksek X-ışını enerji seviyelerinde, fotonların atomun dış yörüngesinde bulunan serbest ya da zayıf bağlı elektronlarla etkileşmesi sonucu, fotonun enerjisinin bir kısmı daha sonra kopacak olan elektrona verilir. Aynı zamanda foton gelme açısı değişerek daha düşük enerjili bir radyasyon olarak saçılır. Bu saçılma her yöne olur. (GE, 2007). Şekil 2.5'te Compton Saçılması oluşumu görülmektedir.

Şekil 2.5 : Compton saçılması (Url-2).

2.3.3 Çift oluşumu

Enerjisi 1,02 MeV üstünde olan gama fotonu atom çekirdeğinin yanından geçerse, foton kuvvetli elektrik alanında yok edilir (anhilasyon). Elektron ve pozitron çifti oluşur. Elektron ve pozitronun toplam kütlelerinin eşdeğer enerjisi 1,02 MeV olduğundan, parçacık çiftini oluşturmak için gerekli minimum enerjinin 1,02 MeV olması gerekir. Gama foton enerjisi 1,02 MeV'nin üstünde olduğu zaman bu enerji genellikle elektron ve pozitronun kinetik enerjisi olarak görünür, az bir kısmı da atom çekirdeğine transfer edilir. Gama foton enerjisinin artmasıyla fotoelektrik ve compton olayları azalır ve çift oluşum olasılığı artar. Fotoelektrik olayında olduğu gibi çift oluşumunda da gama fotonunun soğurulması ile sonuçlanır. Oluşan bazı elektron ve pozitronlar birbirlerini nötralize ederler ve anhilasyon radyasyonu verirler (Bilge ve Tuğrul, 1990). Şekil 2.6'da çift oluşumu görülmektedir.

Şekil 2.6 : Çift oluşumu (Url-2).

Fotoelektrik olay, compton saçılması ve çift oluşumu yanı sıra bazı özel koşullar altında oluşan ve ihmal edilebilir olan Thompson saçılması ve ışıl parçalanım olayları da mevcuttur.

2.4 Radyografi Yöntemleri

Radyografik görüntü oluşturabilmek üzere temel olarak üç yöntem kullanılır. Bunlar; Film Radyografi, Radyoskopi ve Dijital Radyografi olarak verilebilir.
2.4.1 Film radyografi

Endüstriyel radyografide kullanılan konvansiyonel yöntemdir. Film radyografi yöntemi ile görüntüsü alınacak malzeme radyasyon kaynağının önüne ve film de bu malzemenin arkasına yerleştirilir. Radyasyon kaynağından çıkan ışınlar malzemeyi kat ederek şiddeti değişimiş olarak filme ulaşıp onu karartırlar. Söz konusu bu radyasyon şiddeti değişimi, malzeme üzerine gelen radyasyonun malzemeyi kat ederken malzeme içerisinde bulunan birçok bölgenin kalınlığına ve yoğunluğuna bağlı olarak zayıflaması nedeniyle oluşmaktadır. Radyasyon şiddetinin değişimine bağlı olarak film üzerinde değişik ton farklarına sahip siyah-beyaz renklerde bir görüntü oluşur. Başlangıçta film üzerine gizli olarak kaydedilmiş halde bulunan bu görüntü (gizli görüntü), uygun banyo işlemlerinden sonra gözle görülebilir hale gelir (Bulubay, 1995). Film radyografi yöntemi Şekil 2.7'de verilmiştir.

Şekil 2.7 : Film radyografi yöntemi (Bilge, 1991).

Malzeme boyunca geçen girici radyasyonlar tarafından film üzerinde oluşturulan fotografik kayıt, radyograf olarak adlandırılmaktadır. Bu bağlamda, radyografik film, kalıcı kayıt sağlamaktadır (Şahin, 2003).

2.4.2 Dijital radyografi

100 yıldan fazla süredir, endüstriyel radyografi X-Işını filmi üzerine kuruluydu (Zscherpel ve diğ, 2007). Son teknolojik gelişmelerle birlikte günümüzde radyografi seçenekleri yalnızca film teknolojisi ile sınırlı değildir, artık uygun maliyetli ve

güvenilir dijital çözümler geniş bir yelpazede tahribatsız malzeme muayene uygulamalarının ihtiyaçlarını karşılayabilmektedir (Patel, 2005).

Dijital radyografi sistemleri konvansiyonel bir röntgen cihazı, film yerine kullanılan bir algılayıcı ve uygun yazılımı olan bir bilgisayar ve yüksek çözünürlükte bir monitörden oluşmaktadır (Ünal ve diğ, 2004). Dijital radyografik sistemler dijital bir görüntü, bir başka deyişle niceleyici değerlerden oluşan bir harita verir. Bu değerler göreceli olarak fiziksel değerler olarak yorumlanabilmektedir (Rebuffel ve Dinten, 2007).

Tahribatsız muayene uygulamalarında üç tür dijital radyografi kullanılmaktadır. Bunlar film dijitalleştirme, bilgisayarlı radyografi (CR) ve direkt radyografi (DR)'dir (Patel, 2005). Şekil 2.8'de dijital radyografi türleri şematik olarak gösterilmiştir.

Şekil 2.8 : Dijital radyografi türleri (Çobanoğlu, 2011).

2.4.2.1 Film dijitalleştirme

Son yıllarda, radyolojik çalışmalarda film dijitalleştiren ekipmanların kullanımı oldukça artmıştır. Temel olarak bir film dijitalleştiricisi radyografik görüntüde bulunan optik yoğunluk bilgisini, bilgisayar tarafından dijital görüntüyü oluşturmak üzere yorumlanan piksel değerine, yoğunluk ve kontrast değerlerine çevirir (Chitra ve diğ, 2011). Bu yolla film üzerindeki görüntü dijital bir görüntüye çevrilmiş olur.

Film dijitaleştirme genel olarak üç ana sınıfta verilebilir. Çizelge 2.2'de bu sınıflar verilmektedir:

Prensip	Tarayıcı Sınıfı
Nokta Nokta Dijitalleştirme	Lazer Tarayıcı
Çizgi Çizgi Dijitalleştirme	CCD Çizgi Tarayıcı
Dizi Dijitalleştirme	CCD Kamera

Çizelge 2.2 : Film dijitalleştirme yöntemleri (Zscherpel, 2000).

Uygulama şemaları, nokta nokta dijitalleştirme için Şekil 2.9'da, çizgi çizgi dijitalleştirme için Şekil 2.10'da ve dizi dijitalleştirme için Şekil 2.11'de verilmiştir.

Şekil 2.9: Nokta nokta dijitalleştirme (Zscherpel, 2000).

Şekil 2.10 : Çizgi çizgi dijitaleştirme (Zscherpel, 2000).

Şekil 2.11 : Dizi dijitaleştirme (Zscherpel, 2000).

2.4.2.2 Bilgisayarlı radyografi (CR)

Fosforlu görüntü plakalarının (IP) kullanıldığı bilgisayarlı radyografi sistemlerinden endüstriyel uygulamalarda yararlanılmaktadır. Bilgisayarlı radyografi, filmli radyografi ve direk dijital radyografi arasında bir teknolojidir. X-ışını yayınımı sırasında herhangi bir geliştirme işlemi yapılmaksızın direk olarak lazer tarayıcı tarafından algılanmakta ve dijital görüntüye dönüştürülmektedir. Elde edilen dijital görüntü bilgisayar ortamında arşivlenebilmektedir. Görüntü alındıktan sonra plakalar (IP) silinmekte ve defalarca kullanılabilmektedir (Mahmutyazıcıoğlu, 2008).

CR sistemlerinde; algılayıcı katmanı fotostimul kristallerden oluşan ve bromür, klor veya iyot içeren IP'ler kullanır. Işınlama sırasında, bu kristallerdeki elektronların yüksek enerji seviyelerine çıkması ile X-ışını enerjisi absorbe edilir ve geçici olarak depolanır. Bu yolla X-Işını enerjisi, bu fosfor kristallerinin fiziksel özelliklerine bağlı olarak birkaç saat kadar depolanabilir. Ancak okuma prosesi ışınlamadan hemen sonra başlatılmalıdır çünkü depolanan enerji zaman ile azalmaktadır. Okuma prosesi ışınlamayı takip eden ayrı bir adımdır. Algılayıcı katman, yüksek enerjili ve özel bir dalga boyunda bir lazer ışını ile piksel piksel tarandığında, depolanan bu enerji lazer ışınındaki dalga boyundan farklı bir dalga boyunda yayılan ışık şeklinde serbest kalır. Bu ışık fotodiyotlar tarafından toplanır ve dijital görüntüye çevrilir (Körner, 2007). Şekil 2.12'de IP'de görüntü oluşumu adımları verilmiştir.

Şekil 2.12 : IP'de görüntü oluşumu adımları (Körner, 2007).

IP kullanan CR sistemleri için çevrim Şekil 2.13'te verilmiştir.

Şekil 2.13 : IP çevrimi (Ewert, 2002).

IP teknolojilerinin avantajları:

- Yüksek lineerlik
- Yüksek dinamik erim $>10^5$
- Yüksek duyarlılık
- 1000 çevrim yeniden kullanılabilir
- Karanlık oda prosesi gerekli değil
- Görüntü işleme mümkün

Dezavantajları ise:

- Limitli uzaysal çözünürlük
- Düşük enerji seviyesinde yüksek duyarlılık
- Saçılan radyasyona karşı duyarlılık

olarak sıralanabilir (Ewert, 2002).

2.4.2.3 Direkt radyografi (DR)

Bu yöntem uygulandığında görüntü direkt olarak düzlem panel dedektörler vasıtasıyla bilgisayarda oluşturulur. Görüntünün alınması için ara adımlara veya ek

proseslere ihtiyaç yoktur. Proses, panelden görüntüleme istasyonuna direk görüntü beslemesi sağlar (Patel, 2005).

Direkt radyografi sistemleri doğrudan ve dolaylı dönüştürme sistemleri olmak üzere ikiye ayrılır. Doğrudan dönüştürme sisteminde X-ışını, fototiletken bir madde aracılığıyla doğrudan yük değişimi oluşturmakta bu da düzlem panel dedektörleri ve yük çifti dedektörlerle yapılmaktadır. Dolaylı dönüştürme sisteminde ise iki basamaklı bir işlem gerçekleşmektedir. X-ışınları, önce sintilatörlerle (görünür bölge ışınlarına çevirme özellikli) etkileşmekte ve görünür ışığa dönüşmektedir. Daha sonra görünür ışık bir yük değişimi meydana getirmektedir. Her iki sistemde de yük değişimi sonrası ortaya çıkan elektrik akımı elektronik okuma düzenekleri tarafından algılanmakta ve ardından analog-dijital dönüştürme (ADC) işlemi ile dijital veriye çevrilmektedir (Çobanoğlu, 2011). Şekil 2.14'te dolaylı ve doğrudan dönüştürme şekilleri verilmiştir.

Şekil 2.14 : Dijital radyografi sistemleri (Kotter ve Langer, 2002).

Günümüzde iki tip düzlem panel dedektör de uygulama alanı bulmaktadır. İlk dizayn Şekil 2.15'te verilmiştir. Bu dizayn ince film transistörlere (TFT) bağlı fotodiyot matris üzerine kuruludur. Bu komponentler amorf silikondan imal edilmiş olup yüksek enerjili radyasyona karşı dayanıklıdır. Fotodiyotlar, gelen X-Işınlarını dönüştüren sintilatör tarafından yaratılan ışıkla yüklenirler. Bu sintilatör, ışık saçılması ile ilave uzaysal çözünürlük veren çok kristalli bir sistem veya düşük ışık saçılması ile düşük uzaysal çözünürlük veren ve düz ayna gibi davranış gösteren yönlendirilmiş kristaller olabilirler. Yeni nesil düzlem paneller, yine TFT'ler tarafından okunan, çoklu mikro elektrot plakası üzerinde amorf selenyum veya CdTe fotokondüktörlerden oluşmaktadır. Bu nesil en yüksek keskinlik sağlamakta ve film radyografi sistemleri ile yarışabilmektedir. Direk çeviren fotodiyotlar da yüksek bir keskinlik sağlayabilmektedirler (Ewert ve diğ, 2002).

Şekil 2.15 : Düzlem panel dedektör (Ewert ve diğ, 2002).

Düzlem panel dedektörler için en önemli özellikler şunlardır; dedektör boyutu ve ağırlığı, piksel boyutu ve uzaysal çözünürlük, doluluk oranı, dedektörün verimi, ek gürültü ve dijital görüntü dosyasının büyüklüğü (Kotter ve Langer, 2002).

2.5 Film radyografi, CR, DR karşılaştırması

Görüntüleme için hangi tekniğin kullanılacağı öncelikle görüntü kalitesi gereksinimlerine bağlıdır. Radyografik prosesin ve görüntü kalitesinin kontrol edilmesi için klasik film radyografide kullanılan IQI'lar CR ve DR metotları için de kullanılmıştır. Üç yöntemin karşılaştırılması için kullanılan ana parametreler şunlardır; hız (görüntüyü yaratmak için gerekli doz) ve görüntü kalitesi (gürültü, çözünürlük, kontrast). Şekil 2.16 grafik olarak D Tipi Filmlerin, RCF Filmin, CR ve DR tekniklerinin görüntü kalitesini göstermektedir.

Şekil 2.16 : Film radyografi, CR, DR karşılaştırması (GE, 2007).

Şekil 2.16, CR plakalarının en iyi görüntü kalitesinin (en iyi IQI görünürlüğü), ortaince tane arası (A ve B noktalarının karşılaştırılması) filmle elde edilebildiğini göstermektedir, bunun yanı sıra 5 kat daha hızlıdır. C noktasında kalite iri taneli filmle elde edilebilecekten azdır ancak B noktası ile karşılaştırıldığında 10 kat hızlıdır. RCF filmleri (D-7 filmlerine göre 5-10 kat daha hızlı), CR plakaları ile aynı bölgede konumlanmıştır. DR panelleri için olan eğri, düzlem panel dedektörlerle değişik piksel sayılarında (25-400 mikron) elde edilen sonuçlar baz alınarak oluşturulmuştur. DR panelleri ile elde edilebilen en iyi kalite, ince taneli D3'e yakındır (D ve E noktalarının karşılaştırılması) (GE, 2007).

Dijital görüntüleme sistemlerinin avantajları:

- 1- Üstün gri skala rezolüsyonu: Algılama, esas olarak kontrast farklılıklarına dayalı olduğundan, bu avantaj önemlidir. Ayrıca, ilave radyasyon gerekmeksizin densite ve kontrast değişiklikleri yapılabilmesi de önemlidir.
- 2- Radyasyon dozunun azalması: Sensörün filme oranla daha duyarlı olması nedeniyle, daha az radyasyon gerektirir.
- 3- Görüntü oluşumu hızının artması: Anında değerlendirme olanağı sağlar.
- 4- Ekipman ve film giderlerinin azalması: Banyo cihazı, banyo solüsyonları, konvansiyonel film giderlerini ortadan kaldırır. Karanlık oda gerektirmez.

Buna bağlı çevre kirliliği de azalır, çünkü kimyasal solüsyon ve kurşun folyolar kullanılmayacaktır. Ayrıca karanlık oda - banyo işlemlerine bağlı hatalar da elimine edilmiş olur.

- 5- Büyütme, yakınlaştırma, renklendirme gibi özellikleri kullanıcıya önemli kolaylıklar sağlar.
- 6- Randıman artışı: Dijital görüntüler, elektronik kayıtlar içine konur, gerekirse yazdırılır, elektronik olarak transfer edilebilir. Zaman kaybına yol açmaz.

Dijital görüntüleme sistemlerinin dezavantajları:

- Başlangıçta dijital görüntüleme düzeneği kurmak pahalıdır. Bunda, seçilen marka, bilgisayarın özellikleri ve aksesuar eklemelerinin de rolü vardır. Ayrıca servis ve bakım ücretleri de göz önünde tutulmalıdır.
- Dijitize edilmiş görüntüler analog konvansiyonel görüntülere oranla daha az bilgi içerirler (Url-3).

Film, CR ve DR sistemlerinin genel bir karşılaştırılması Çizelge 2.3'te verilmiştir:

Özellikler	Pb'li veya Pb'siz Kuvvetlendiricili Film	Pb'li veya Pb'siz Sert ya da Yumuşak Kasetli CR	DR – CCD, CMOS, a-Si		
Hız	Yavaş	Orta	Hızlı		
Uzamsal Çözünürlük	10 - 50 mikron	50 - 250 mikron	50 - 400 mikron		
SNR	50 - 250	100 - 250	250 - 2000		
Dinamik Erim	256:1, ancak çoklu filmlerle	>4000:1	>4000:1		
Yatırım Maliyeti İşletme Maliyeti	Yüksek Düşük	Orta Orta	Orta Yüsek arası Düşük		
Radyasyon Sağlamlığı	Çok İyi	Çok İyi	Uygulama ve Sisteme Bağlı		
Mekanik sağlamlık ve çevresel tolerans	Çok İyi	Çok İyi	Uygulamaya Bağlı		
Obje Hakkında Ortam Oluşturma Yeteneği	Var	Var	Yok		
Taşınabilir Ekipman	Yüksek	Yüksek	Orta		
Kalınlık	Çok İnce	Çok İnce - İnce Arası	İyileşiyor		
Tekrar Kullanım	1	1.000 - 10.000	10.000- 1.000.000		
Girişe Kapalı Alan Büyüklüğü - Eşzamanlı Olan Proseslere Etkisi	Büyük Güvenlik Alanı	Orta Güvenlik Alanı	Düşük Güvenlik Alanı		
Ebat	Çeşitli Ebatlarda Film	Çeşitli Ebatlarda IP	Çeşitli Ebatlarda Dedektör		
Saçılan Radyasyona Hassasiyet	Düşük	Orta	Orta		

Cizelge 2.3 : Film, CR ve DR karşılaştırması (Boiy, 2006).

3. ÖLÇÜM SİSTEMLERİ ANALİZİ

Ölçüm sistemi yeterliliğinin belirlenmesi proses ve kalite iyileştirme amaçlı çalışmalar için oldukça önemlidir. Ölçüm içeren her türlü aktivitede, ölçülen birimlerden ve ölçüm sisteminden kaynaklı hatalar olması kaçınılmazdır (Louka ve Besseris, 2010). Üretim süreçlerinde kullanılan bir ölçüm cihazının ölçüm hassasiyeti konusunun işlendiği ilk makalelerden biri, 1948 yılında Frank Grubbs tarafından yazılan Ürün Değişkenliği ve Ölçüm Cihazlarının Hassasiyetinin Kestirimi'dir. Grubbs'un tanımına göre, bir ölçüm değeri, ölçülen karakteristiğin mutlak değeri ve ölçümden gelen hatanın birleşiminden oluşmaktadır (Stamm, 2013). Ölçüm sistemleri ile alınan ölçüm sonuçlarındaki hatayı değerlendirmek ve yönetmek için kullanılan yöntem genel olarak Ölçüm Sistemleri Analizi (MSA: Measurement System Analysis) olarak tanımlanır (Kooshan, 2012). ISO/TS16949, Kalite yönetim sistemleri – otomotiv sanayi ve ilgili servis parça organizasyonları için ISO9001:2008 özel uygulamaları standardı ölçüm sistemleri analizi çalışmalarını gereklilik haline getirmiştir. Ayrıca ISO17025 test ve kalibrasyon laboratuarları yeterliliği için genel gereklilikler standardı, ölçüm ekipmanlarının kalibrasyonu ve ölçüm belirsizliğinin tespitini gerekli kılmaktadır (Stamm, 2013). Ölçüm sistemi analizinin amacı, çalışma yapılan ölçüm sisteminin belirsizliğinin ortaya konması ve ilgili parametrenin veya karakteristiğin bu ölçüm sistemi ile ölçülüp ölçülemeyeceğine karar vermektir (Vago, 2011).

Bir ölçüm sistemini değerlendirirken şu üç konu ele alınmalıdır (MSA, 2002):

- 1. Ölçüm sistemi yeterli hassasiyeti göstermelidir.
- 2. Ölçüm sisteminden alınan sonuç stabil olmalıdır.

3. Ölçüm sonuçlarının istatistiksel özellikleri istenen aralıkta tutarlı ve amaç için uygun olmalıdır.

Çoğunlukla ölçüm sonuçlarının kesin ve doğru olduğu düşünülür. Bu değerler, analizlerde ve sonuç değerlendirmelerinde kullanılır. Ancak, ölçüm sistemindeki değişkenliğin ölçüm sonucuna etkisi göz önünde bulundurulmayarak sonucu değiştirebilecek bu etki göz ardı edilebilir. Ölçüm sistemlerindeki hata beş kategoriye ayrılabilir; bias, tekrarlanabilirlik, yeniden üretilebilirlik, stabilite ve lineerlik. Ölçüm sistemleri analizi çalışmalarının bir hedefi de ölçüm sisteminin kendi faktörleri ile etkileşime girdiğinde oluşacak değişkenlik tipleri ve miktarı hakkında bilgi sahibi olmaktır. Ölçüm sistemleri analizi uygulaması aşağıdakileri kapsar (MSA, 2010):

- 1. Ölçüm cihazının kabul kriterlerinin belirlenmesini
- 2. Ölçüm cihazının bir diğeri ile karşılaştırılmasını
- 3. Bozuk olduğu düşünülen bir cihazın değerlendirilmesini
- 4. Ölçüm cihazının tamir öncesi ve sonrası durumunun karşılaştırılmasını
- 5. Proses değişkenliğini ve üretim prosesinin kabul edilebilirlik seviyesini tespit etmeyi.

Bu bölümde önce ölçüm kalitesini etkileyen faktörler ve ölçüm sistemindeki hata tiplerine değinildikten sonra ölçüm sistemleri analizi (Gage R&R) kısaca tanıtılacaktır.

3.1 Ölçüm Kalitesi

Ölçüm sonucunun kalitesi, doğruluk ve kesinlik olmak üzere iki ana faktöre bağlıdır. Doğruluk gerçek değerin tam şekilde ölçülebilme yeteneği olarak tanımlanırken kesinlik ölçüm sonuçlarının birbirlerine yakınlıkları ile tanımlanır (Pandiripalli, 2010). Şekil 3.1'de doğruluk ve kesinlik şematik olarak açıklanmaktadır. Bu şekilde her çarpı bir ölçüm sonucunu temsil etmektedir. Merkezdeki sarı bölge ise gerçek değerin olduğu bölgedir. Buna göre ölçüm sonuçları saçınık olmayacak şekilde merkezde toplandığında bu durum doğru ve kesin bir ölçüme işaret ederken saçınık ve merkezden uzak olması durumu her iki parametrenin de olumsuz değerlerde bulunduğunu göstermektedir.

Şekil 3.1 : Kesinlik ve doğruluk (Taylor, 1996).

3.2 Ölçüm Sisteminde Hatalar

Bir ölçüm cihazı kullanılarak alınmış bir grup ölçüm değerinde proses veya ölçüm sistemi veya her ikisinden kaynaklı varyasyonlar (değişkenlikler) bulunur. Bu durum Denklem 3.1 ile ifade edilebilir (Breyfogle, 2003).

$$\sigma_T^2 = \sigma_p^2 + \sigma_m^2 \tag{3.1}$$

Formülde σ_T^2 toplam varyansı, σ_p^2 proses varyansını, σ_m^2 ölçüm varyansını ifade eder ve matematiksel olarak ölçüm sistemleri analizi bu ölçüm sistem varyansını algılamak ve değerlendirmeyi içerir (Şekil 3.2).

Şekil 3.2 : Varyasyonlar (Url-4).

Tüm bu ölçüm değişkenliğini karakterize edebilmek üzere bir dizi tanımdan bahsedilmesi gereklidir. Ölçüm sistemi lokasyon ve yayılım değerleri ile karakterize edilebilir. Lokasyon hataları doğruluk, bias, stabilite ve lineerlik olarak sayılabilir. Yayılım hataları ise kesinlik, tekrarlanabilirlik ve yeniden üretilebilirlik değerlerine göre karakterize edilir (Pandiripalli, 2010). Genel olarak lokasyon ve yayılım varyasyonları Şekil 3.3'de görülmektedir.

Şekil 3.3 : Lokasyon ve yayılım varyasyonu (MSA, 2010).

3.2.1 Lokasyon değişkenlikleri

Lokasyon ile ilgili yukarıda da belirtildiği üzere doğruluk, bias, stabilite ve lineerlik konuları ele alınacaktır, bu tanımlar MSA Referans Kitabı'nda verildiği şekilde anlatılacaktır (MSA, 2010).

Doğruluk, ölçüm değerinin gerçek değere veya kabul edilen bir referans değere yakınlığıdır. Lokasyon hatalarını tarfileyen doğruluk; bias, stabilite ve lineerlik kavramlarını içerir. Bu ilişki Şekil 3.4'te verilmiştir.

Şekil 3.4 : Doğruluğun içinde barındırdığı değişkenler (Amar, 2010).

Bias; gözlemlenen ortalama ölçüm değeri ile aynı ölçü için referans değer arasındaki farktır (Şekil 3.5). Bu ölçüm sisteminin sistematik hatasını verir.

Şekil 3.5 : Bias (MSA, 2010).

Mühendislik İstatistik El Kitabı'nda, doğruluk ölçüm ile referans değer arasındaki durumun nitel, bias ise nicel olarak farkı şeklinde tariflenmiştir (Url-5).

Gerçek Değer; bir ürün/parçanın bir ölçüsünün mutlak değeridir. Kesin olarak bilinmesi mümkün değildir.

Referans Değer; bir ürün/parçanın bir ölçüsünün kabul edilen referans değeridir. Operasyonel tanımlama gerektirir. Gerçek değerin yerine kullanılır (MSA, 2010).

Stabilite, belirli bir süre boyunca bir veya birden çok parçanın aynı ölçüsünün alınması ile elde edilen dataların toplam varyasyonudur. Şekil 3.6'da görüldüğü üzere, biasın zaman ile değişimi olduğu anlamına gelir (Wang, 2004).

Şekil 3.6 : Stabilite (MSA, 2010).

Şekil 3.7'de görüleceği üzere Lineerlik, biasın, ölçüm cihazının normal çalışma aralığında değişimidir (Stamm, 2009). Örneğin bir ölçüm sistemi küçük parçaları ölçmek konusunda daha hassas iken büyük parçaları ölçerken daha az hassas olabilir. Bu biasın büyüklük ile değişimi olarak alınabilir ve biasın büyüklük ile değişimi lineerlik olarak tanımlanır (Wang, 2004).

Şekil 3.7 : Lineerlik (MSA, 2010).

Bias, stabilite ve lineerlik değerlerinin istenen seviyelerde olmamasının nedenleri için Çizelge 3.1 detaylı bilgi içermektedir.

Bias Değer Aşımlarının Nedenleri	Stabiliteyi Bozan Nedenler	Lineerlik Hatasına Neden Olan Faktöler
Cihaz kalibre edilmelidir	Cihazın kalibre edilmesi gerekli, kalibrasyon süresi kısaltılmalı	Cihazın kalibre edilmesi gerekli, kalibrasyon süresi kısaltılmalı
Cihaz , ekipman veya fikstürün hasarlı olması	Cihaz , ekipman veya fikstürün hasarlı olması	Cihaz , ekipman veya fikstürün hasarlı olması
Yenmiş veya hasarlı mastar, mastarda hata	Normal yaşlanma veya eskime	Yetersiz bakım - hava, enerji, hidrolik, filtreler, korozyon, pas, temizlik
Uygun olmayan kalibrasyon veya uygun olmayan ayar mastarı kullanımı	Yetersiz bakım - hava, enerji, hidrolik, filtreler, korozyon, pas, temizlik	Yenmiş veya hasarlı mastar(lar), mastarlar)da hata min-max
Düşük kalite cihaz - dizayn veya uyumluluk	Yenmiş veya hasarlı mastar, mastarda hata	Uygun olmayan kalibrasyon (çalışma aralığını kapsamayan) veya uygun olmayan ayar mastar(lar)ının kullanımı
Lineerlik hatası	Uygun olmayan kalibrasyon veya uygun olmayan ayar mastarı kullanımı	Düşük kalite cihaz - dizayn veya uyumluluk
Uygulama için yanlış ölçüm cihazı kullanımı	Düşük kalite cihaz - dizayn veya uyumluluk	Cihaz tasarımı veya metot yeterli sağlamlıkta değil
Farklı ölçüm metodu - ayar, yükleme, sabitleme teknikleri	Cihaz tasarımı veya metot yeterli sağlamlıkta değil	Uygulama için yanlış cihaz kullanımı
Yanlış karakteristiğin ölçülmei	Farklı ölçüm metodu - ayar, yükleme, sabitleme teknikleri	Farklı ölçüm metodu - ayar, yükleme, sabitleme teknikleri
Tahrif (ölçüm cihazı veya parça)	Tahrif (ölçüm cihazı veya parça)	Tahrif (ölçüm cihazı veya parça), parça ebatıyla değişiklik
Çevresel faktörler - sıcaklık, nem, vibrasyon, temizlik	Çevresel faktör farklılaşması - sıcaklık, nem, vibrasyon, temizlik	Çevresel faktörler - sıcaklık, nem, vibrasyon, temizlik
Kabullerin ihlali, uygulanan sabitte hata	Kabullerin ihlali, uygulanan sabitte hata	Kabullerin ihlali, uygulanan sabitte hata
Uygulama - parça ebatı, pozisyonu, operatör yeteneği, yorgunluk, okuma hatası (okunabilirlik, paralaks)	Uygulama - parça ebatı, pozisyonu, operatör yeteneği, yorgunluk, okuma hatası (okunabilirlik, paralaks)	Uygulama - parça ebatı, pozisyonu, operatör yeteneği, yorgunluk, okuma hatası (okunabilirlik, paralaks)

Çizelge 3.1 : Bias, stabilite ve lineerlik değerlerini etkileyen faktörler (MSA, 2010).

3.2.2 Yayılım değişkenliği

Yayılım değişkenliklerini tarifleyen kesinlik; tekrarlanabilirlik ve yeniden üretilebilirlik kavramlarını içerir.

Kesinlik (precision); ayırt edilebilirlik, hassasiyet ve tekrarlanabilirliğin belirli bir çalışma aralığındaki (büyüklük, aralık veya zaman) net etkisini tanımlar. Kesinlik ölçüm metotları veya cihazlarının bir karakteristiğidir. Bir ölçüm sistemindeki kesinlik varyasyonları gözden geçirerek değerlendirilebilir. Varyasyon, ölçümlerin aynı operatör tarafından aynı ölçüm cihazı ile aynı ölçüm metodu ile ve aynı parça üzerinde yapılması ile gözlemlenebilir. Eğer ölçüm sonucu belirgin bir değişim göstermiyorsa, ölçüm sistemi oldukça keskindir (Singpal, 2009). Kesinliğin içinde barındırdığı değişkenler Şekil 3.8'de verilmiştir.

Şekil 3.8 : Kesinliğin içinde barındırdığı değişkenler (Amar, 2010).

Tekrarlanabilirlik, ölçüm cihazının temel ve doğal kesinliğidir. Bir ölçüm cihazı ile, aynı ölçüde aynı operator ile ardışık ölçümler alındığında, ölçüm sonuçları arasındaki varyasyondur. Genel olarak ekipman varyasyonu olarak bilinir (George, ve diğ, 2005). Tekrarlanabilirlik zaman zaman statik ve dinamik tekrarlanabilirlik olarak ayrılmaktadır. Statik tekrarlanabilirlik, parçanın ölçüm fikstüründen hiç kaldırılmadan defaten ölçülmesi sonucunda elde edilir (Hammett ve diğ, 2003).

Yeniden Üretilebilirlik, birbirinden bağımsız ölçümlerin aynı ölçüm yöntemi ile farklı operatörler ve aynı cihaz kullanılarak alınması ile elde edilen kesinlik varyasyonudur (Benbow ve Broome, 2008). Başka bir deyişle, aynı ölçüm cihazı ile aynı karakteristiğin farklı operatörler tarafından yapılan ölçümlerindeki ortalama varyasyondur. Hata; operatör, çevre/zaman veya metottan kaynaklı olabilir (Kooshan, 2012). Şekil 3.9'da tekrarlanabilirlik ve yeniden üretilebilirlik verilmiştir.

Şekil 3.9 : Tekrarlanabilirlik ve yeniden üretilebilirlik (MSA, 2002).

Tekrarlanabilirlik ve yeniden üretilebilirlik değerlerinin istenen seviyelerde olmamasının nedenleri Çizelge 3.2'de verilmiştir.

Çizelge 3.2 : Düşük tekrarlanabilirlik ve düşük yeniden üretilebilirlik nedenleri (MSA, 2010).

Düşük Tekrarlanabilirlik Nedenleri	Düşük Yeniden Üretilebilirlik Nedenleri
Parça nedeniyle: form, pozisyon, yüzey, konik, numune tutarlılığı	Numuneler arası: A,B,C, vb parça tiplerini aynı cihaz, operatör ve metot kullanarak ölçerken ortlama fark
Ölçüm cihazı nedeniyle: bakım, tamir, ekipman veya fikstür hatası, düşük kalite veya bakım	Cihazlar arası: A,B,C,vb cihazlarını aynı parçaları aynı operatörle aynı koşullarda ölçerken oluşan ortalama fark
Standart sebeiyle: kalite, sınıf, yenme	Standartlar arası: Ölçüm prosesinde farklı standartların ortalama etkisi
Metot sebebiyle: kurulumda varyasyon, teknik, sıfırlama, tutma ve kavrama	Metotlar arası: Sıfırlama, tutuma, kavrama, otomatik, manuel gibi nedenlerle oluşan ortalama fark
Ölçümcü sebebiyle: teknik, poziasyon, tecrübe yetersizliği, yorgunluk, manipulasyon	Ölçümcüler arası: A,B,C, vb ölçümcüleri arasında eğitimden, teknikten, yetenekten, tecrbüden kaynaklanan ortalama fark
Çevresel nedenlerle: sıcaklıkta kısa çevrim dalgalanmaları, nem, titreşim, aydınlık, temizlik	Çevreler arası: Zaman 1,2,3, vb süresince çevresel nedenlerle oluşan ortalama farktır
Kabulun ihlali - stabil, uygun operasyon	Çalışmda kabulün ihlali
Cihaz dizyanı veya metodunun sağlamlık ve uniformluk yetersizliği	Cihaz dizyanı veya metodunun sağlamlık yetersizliği
Uygulama için yanlış cihaz	Ölçümcü eğitim etkinliği
Tahrif (cihaz veya parça), rijitlik eksikliği	Uygulama - parça ebatı, pozisyonu, gözlem hatası (okunabilik, paralaks)
Uygulama - parça ebatı, pozisyonu, gözlem hatası (okunabilik, paralaks)	

3.3 Gage R&R

Ölçüm sistemleri analizinin amacı varyasyon bileşenlerini değerlendirmek ve varyasyonun ne kadarının ölçüm sisteminden ileri geldiğini belirlemektir. Ölçüm sistemleri analizi genel olarak Gage R&R olarak bilinir (Amar, 2010). Buradaki Gage kelimesi, ölçüm alabilmek üzere kullanılan cihazı tarif eder (Barrentine, 2002). R&R ise tekrarlanabilirlik ve yeniden üretilebilirlik kelimelerinin İngilizce baş harfleridir (**R**epeatability & **R**eproducabiliy). Gage R&R günümüz kalite kontrol prosesleri için, ürün ve prosesteki varyasyonu azaltabilmek adına çok önemli bir rol oynar. Sistemler arası ve sistem içindeki varyasyonların toplam değerini verir (Wang, 2004). Şekil 3.10'da ölçüm sistemi varyasyonu ve alt başlıkları ile ilişkisi verilmiştir.

Şekil 3.10 : Genel varyasyon ve alt kategorileri (Kooshan, 2013).

3.3.1 Gage R&R metotları

Gage çalışması birkaç farklı teknik kullanılarak yapılabilir. Genel olarak üç metot mevcuttur. Bunlar; Aralık Metodu, Ortalama ve Aralık Metodu ve ANOVA metodudur (ANOVA, Analysis of Variances, Değişkenler Analizi). Aralık metodu dışında, bu metotlar kullanılarak çalışılan veriler birbirine çok benzemektedir. ANOVA metodu operatör-parça (operator to part variation) ilişkili cihaz hatasını verdiği için daha sık tercih edilir, diğer iki tip bunu içermez (MSA, 2010). Aralık metodu, ölçüm sisteminin sadece genel bir resmini verdiğinden dolayı üzerinde durulmayacaktır.

Ortalama ve Aralık metodu, tekrarlanabilirlik ve yeniden üretilebilirlikten kaynaklanan değişiklikler üzerinde matematiksel kestirimler veren bir metottur (Wang, 2004). Aralık metodundan farklı olarak bu yöntem ölçüm sistemi varyasyonunu tekrarlanabilirlik ve yeniden üretilebilirlik olarak iki parça halinde verir. Ancak operatör ve parça/cihaz ilişkisi bu analizde dikkate alınmaz (MSA, 2010).

ANOVA metodu ölçüm hatası ve değişkenlik kaynaklarını analiz edebilmek üzere kullanılan standart bir tekniktir. Bu teknikte değişkenlik dört parçaya ayrılabilir. Bunlar, parça, operatör, operatör ve parça arasındaki etkileşim ve cihazdan kaynaklanan tekrarlama hatası. Ortalama ve aralık metoduna göre avantajları vardır. Bu metotla her türlü deneysel çalışma yapılabilir, değişkenlikleri daha kesin bir şekilde kestirir, deneysel verilerden -parçalar ve ölçümcüler arasındaki ilişki gibidaha detaylı sonuçlar çıkarır (Wang, 2004).

Ortalama ve aralık metodu operatörlerin parçayı nasıl ölçtüğü konusundaki etkileşimi vermezken ANOVA bunu göstermektedir. İki metot arasındaki fark Şekil 3.11'de tariflenmiştir. Kırmızı dikdörtgen ortalama ve aralık metodunu temsil ederken sarı dikdörtgen ANOVA metodunu temsil etmektedir.

Şekil 3.11 : Ortalama ve aralık metodu ile ANOVA metodu arasındaki fark (Singpal, 2009).

Ekipman varyasyonu (EV), ölçüm işlemlerinin yapılması ile alınan sonuçların ölçüm ekipmanından kaynaklanan varyasyonudur. Bu, tekrarlanabilirliğin ekipman veya ölçüm cihazı ile bir kestirimidir ve Denklem 3.2 ile verilir (Pandiripalli,2003).

$$EV = \bar{R} * k_1 \tag{3.2}$$

Burada, \overline{R} ortalama aralık ve $k_1 = 1/d_2$ 'dir. k_1 çalışmada yapılan ölçüm denemesi sayısına bağlı olan bir sabittir ve d_2 'nin tersidir. d_2 parça sayısına ve aralığa bağlı bir sabittir. Bu değer için Ekler bölümünde Ek A'ya bakınız.

Ölçümcü varyasyonu (AV) ise aşağıdaki Denklem 3.3 ile hesaplanır (Stamm, 2013).

$$AV = \sqrt{(\bar{X}_{DIFF} * K_2)^2 - \frac{(EV)^2}{nr}}$$
(3.3)

Burada \overline{X}_{DIFF} ortalama maksimum operatör farkıdır. K_2 ise kullanılan ölçümcü sayısına bağlı bir sabit olup d_2 'nin tersidir ve Ekler bölümünde verilen Ek A'daki tablodan seçilir. d_2 operatör sayısına bağlıdır (m) ve tek bir aralık hesaplaması olduğundan g=1'dir. n ölçülen parça sayısı ve r ise yapılan ölçüm sayısıdır.

Genel Gage R&R formülü ise Denklem 3.4'te verilmiştir (Kooshan, 2013).

$$GRR = \sqrt{(EV)^2 + (AV)^2} \tag{3.4}$$

Parça varyasyonu (PV) Denklem 3.5'te verilmiştir (Stamm, 2013).

$$PV = R_P * K_3 \tag{3.5}$$

Burada, R_P parça ölçüm sonuç değerlerinin ortalama aralığı iken K_3 ölçüm yapılan parça sayısına bağlı bir sabit ve Ekler bölümünde verilen Ek A'daki tablodan bulunur.

Toplam varyasyonun (TV) hesaplamasında Denklem 3.6'dan yararlanılır (Louka ve Besseris, 2010).

$$TV = \sqrt{(GRR)^2 + (PV)^2}$$
 (3.6)

Her faktör için değişkenlik ölçüm sistemleri analizi ile hesaplandıktan sonra, her biri için toplam varyasyon olan TV ile karşılaştırma yapılabilir. Bunun için Denklem 3.7-3.9 kullanılır (Pandiripalli, 2010).

$$\% AV = 100 \left[\frac{AV}{TV}\right] \tag{3.7}$$

$$\% GRR = 100 \left[\frac{GRR}{TV} \right] \tag{3.8}$$

$$\% PV = 100 \left[\frac{PV}{TV}\right] \tag{3.9}$$

Bu nümerik çalışmanın son faktörü ise ndc (**n**umber of **d**istinct **c**atergories, ayrık kategori sayısı) değeridir. Kimi zaman ekonomik ve fiziki koşullardan dolayı tüm bir üretim süreci proses dağılımında, farklı ve ayrık ölçüm karakteristikleri olan parçaların ölçümlerinin alınması mümkün olamamaktadır. Eğer ölçüm sistemi ayrıştırabilmek konusunda problem yaşıyorsa proses varyasyonunu tanımlayacak veya tekil olarak parça karakteristiklerini belirleyebilecek yetenekte olmayacaktır. Burada ayrıştırma bir ölçüm cihazının çözünürlüğünü ifade etmektedir. Buna karşın ölçülen değerler veri kategorilerinde gruplanabilmektedir. Bu durumda Denklem 3.10 yardımıyla ndc hesaplaması yapılarak başka bir ölçüm tekniği kullanılmalıdır (MSA, 2010).

$$ndc = 1.41(\frac{PV}{GRR}) \tag{3.10}$$

3.3.2 Kriterler

İlgili ölçüm sistemleri analizi çalışması tamamlandıktan sonra değerlendirmesini yapabilmek üzere AIAG (Automotive Industry Action Group, Otomotiv Endüstrisi Aksiyon Grubu) tarafından Gage R&R ve ndc değeri limitlenmektedir.

Gage R&R için ölçüm sisteminin uygunluğu konusunda Çizelge 3.3 kullanılır.

Çizelge 3.3 : Gage R&R için	ölçüm sisteminin	uygunluk kriterleri	(Pandiripalli,
2010).			

GRR (%R&R)	Karar
<%10	Ölçüm sistemi uygundur.
%10 <grr<%30< td=""><td>Ölçüm sistemi bazı uygulamalar için uygun olabilir</td></grr<%30<>	Ölçüm sistemi bazı uygulamalar için uygun olabilir
>%30	Ölçüm sistemi uygun değildir

Ndc için kontrol ve analiz süreçleri Çizelge 3.4'te verilmektedir.

Kategori Saysı	Kontrol	Analiz
	Ancak şu şartlar altında kontrol amaçlı kullanılabilir:	* Proses parametrelerinin kestirimi için kabul edilemez
\wedge	* Proses varyasyonu Spesifikasyona göre küçükse	* Sadece proses uygun veya uygun olmayan parça
	* Kayıp fonksiyonu beklenen proses varyasyonu boyunca	ürettiğini gösterebilir
<u> </u>	düzse	
	* Varyasyonun ana kaynağı ortalama kaymasına neden	
1 veri kategorisi	oluyorsa	
2 - 4 veri kategorisi	* Proses dağılımına baz alınan yarı değişken kontrol teknikleri ile kullanılabilir * Hassas olmayan değişken kontrol grafikleri verebilir	* Kaba bir kestirim yapabildiği için proses parametresi tayini için genellikle kullanılmaz
5 veya daha fazla veri kategorisi	* Değişken kontrol grafikleri ile kullanılabilir	* Önerilendir

Çizelge 3.4 : ndc için kontrol ve analiz süreçleri (Breyfogle, 2003).

3.4 Ölçüm Cihazı Kapabilitesi, Cg ve Cgk

Kapabilite çalışması üretim metrolojisinde kalite kontrol amaçlı ve önleyici proses olarak kullanılır. Bu çalışmanın amacı, muhtelif ölçüm cihazlarında ve test yöntemlerinde, ölçüm cihazının kalite karakteristiklerini ortaya koymak, ölçüm cihazında var olan varyasyonları hesaplamak ve doğru ölçüm cihazını seçmek veya optimal sistem ayarını yakalamaktır (Nulong, 2007).

Gage R&R metodları, Şekil 3.11.'de de görülebileceği gibi ekipman, ölçümcü, parça kaynaklı varyasyonları içermektedir. Sadece ekipmandan kaynaklanan varyasyonun tespiti için Type 1 Gage Study (Tip 1 Gage Çalışması) yürütülmelidir. Bu çalışma tipi spesifik olarak bias ve tekrarlanabilirliğin ölçüm değerleri üzerindeki etkilerini değerlendirmek için kullanılır (Minitab). Nesnelerin ölçüm değerlerinde varyasyon olması doğal bir durumdur ancak iyi bir ölçüm sistemi aynı karakteristiğin defaten ölçüldüğü durumda birbirine yakın sonuçlar verebilmelidir. Tip 1 Gage Çalışması yürütebilmek üzere bir operatör, tek bir parçanın tek bir karakteristiğini defaten ölçer ve sonuçlarını alır (Stacey, Rolls-Royce). Tekrarlanabilirlik ölçüm cihazının aynı parça üzerinde istikrarlı ölçümler yapabilme yeteneğidir. Yeterli bir cihazda bile bir miktar varyasyon olacaktır ancak bu varyasyon parçanın ilgili karakteristiğine ait

tolerans değeri ile karşılaştırılırlığında çok büyükse, ölçüm cihazı bu ölçüm için uygun değildir. Minitab, ölçüm cihazı (Gage) tekrarlanabilirliğinin değerlendirilmesi ve ölçü toleransının bir yüzdesi ile çalışma varyasyonun karşılaştırılabilmesi için ölçüm cihazı kapabilitesi diye adlandırılan Cg metriğini hesaplar. Bunun yanı sıra, ölçüm cihazının ortalama ölçüm değeri ile referans değer arasındaki fark olan bias da değerlendirilir.

Cgk değeri tekrarlanabilirlik ve biasın bir arada değerlendirilmesi için hesaplanır. Cgk hesaplamasında, çalışma varyasyonunu toleransla karşılaştırır ve buna ilave olarak ölçümlerin hedef değerde olup olmadığını konusu da hesaba katılır. Merkeze göre ölçüm cihazı kapabilitesi olarak adlandırılan Cgk değeri, ölçümlerin ortalama değeri ile referans değer arasındaki fark arttıkça azalır (Minitab).

Cg ve Cgk değerleri Denklem 3.11 ve 3.12'den hesaplanır (Minitab).

$$C_g = \frac{\frac{K}{100} * Tolerans}{L * s}$$
(3.11)

Burada;

Cg: Ölçüm cihazı kapabilitesi

K: Toleransın yüzdesi (20 olarak kabul edilir)

s: Ölçümlerin standart sapması

L: Tüm proses saçınıklığını temsil eden standart sapma sayısı (6 kabul edilir) (Url-6).

$$C_{gk} = \frac{\frac{K}{200} * Tolerans - |\overline{X_g} - X_m|}{L * s}$$
(3.12)

Cgk: Merkeze göre ölçüm cihazı kapabilitesi

K: Toleransın yüzdesi (20 olarak kabul edilir)

 $\overline{X_q}$: Tüm ölçümlerin ortalaması

X_m: Referans değer

s: Ölçümlerin standart sapması

L: Proses saçınıklığının yarısını temsil eden standart sapma sayısı (3 kabul edilir) (Url-6).

Xm'in bilinmediği durumlarda Cgk değerlendirmelere katılmaz (Czarski, 2009). Cg≥1,33 ve Cgk≥1,33 olduğu durumda ölçüm cihazı kullanım için uygundur denir (Muckenhirn, 2012).

4. DENEYSEL ÇALIŞMALAR

Bu yüksek lisans tez çalışmasında Yxlon Cheetah marka ve model dijital X-ışını radyografi cihazı kullanılmıştır. İlgili değerlerin ölçümleri cihazın bilgisayarında var olan Feinfocus yazılımı ile elde edilmiştir ve istatistik çalışmalar Minitab programı ile yapılmıştır. Elde edilen tüm sonuçlar dijital ortamda saklanmıştır.

4.1 Dijital Radyografi Sisteminin Tanıtılması

Çalışmada, marka ve modeli Yxlon Cheetah olan dijital X-ışınlı radyografi cihazı kullanılmıştır. Cihazın görüntüsü Şekil 4.1'de verilmiştir.

Şekil 4.1 : Yxlon Cheetah dijital radyografi cihazı.

Mikro ve nano odaklamalı bu X-ışını dijital radyografi ölçüm cihazı en iyi görüntüyü en kısa sürede almayı hedeflemektedir. Cihaz kalibre edilmiş olup uzun ömürlü panel dedektöre ve bir manipulatöre sahiptir. Cihaz iki ve üç boyutlu görüntü verebilme özelliğine sahiptir. Alınan görüntü cihaz üzerinde yer alan bilgisayara aktarılmaktadır. Şekil 4.2'de numune yükleme bölümü ve çekim bölgesi, Şekil 4.3'te ise cihazın bilgisayarı ve kullanıcı arayüzü görülmektedir.

Şekil 4.2 : Numune yükleme ve çekim bölgesi.

Şekil 4.3 : Cihaz bilgisayarı ve kullanıcı arayüzü.

Bilgisayar üzerinde Feinfocus kullanıcı grafik arayüzü mevcuttur ve bu arayüz yardımı ile cihazın kontrolü ve ölçümler sağlanabilmektedir. Cihaz; PCB'ler, elektronik ve mekanik parçalar, elektromekanik kompontentler, yarı iletkenler,

mikrosistemler, sensörler, hareketlendiriciler gibi birçok parçanın muayenesinde kullanılabilmektedir. Cihazın teknik özellikleri Çizelge 4.1'de verilmiştir.

Genel Özellikler		X-ray tüpü				
ilk görüntü süresi	~ 10 s	tüp tipi	açık X-ray tübü			
tekrar konfigürasyon süresi	< 60 s	hedef	aktarıcı			
μCt tarama zamanı (min.)	>7 s	hedef malzeme	tungsten			
μCt tekrar oluşturma zamanı (min.)	~ 60 s	voltaj aralığı	25 –160 kV			
mikro3D tarama zamanı (min.)	~ 20 s	akım aralığı	0.01–1.0 mA			
mikro 3D tekrar oluşturma süresi (min.)	~ 20 s	maks. tüp gücü	64 W			
numune yükleme bölgesi [mm]	(690 x 650 mm)	maks. hedef gücü	15 W			
cihaz penceresi	(520 x 370 mm)	detay yakalama	<1 µm			
monitör	24" (ayarlanabilir)	X-ray şiddeti kontrolü	TXI			
yakınlaştırma	mümkün	Fiziksel ölçüler				
powerdrive	mümkün	en/boy/yükseklik [mm]	~ 1,650/1,400/1,850			
güç arttırma faktörü	33x	ağırlık	~2,200 kg			
Manipulatör		Görüntü zinciri				
manipulatör kontrolü	mouse/joystick ile	geometrik büyütme (maks.)	3,000x			
ölçüm bölgesi (maks.)	460 mm x 410 mm	toplam büyütme (maks.)	25,500x			
numune ebatı (maks.)	800 mm x 500 mm					
eksenler	Х, Ү]				
eğimli görüş açısı	+/-70° (140°)]				
CNC	mevcut]				

Çizelge 4.1 : Cihazın teknik özellikleri (Url-7).

4.2 Deneyde Kullanılan Numuneler

Ölçümler için iki tip malzeme kullanılmıştır. Bunlardan ilki Zamak5 hammaddeden döküm yöntemi ile yapılmış ve boyama işlemine tabi tutulmuş metal bir malzemedir. Metal malzemenin temsili resmi Şekil 4.4'de, orijinal resmi ise Şekil 4.5'de verilmiştir.

Şekil 4.4 : Metal parça numunesi temsili.

Şekil 4.5 : Metal parça numunesi.

Metal numune, bir çinko alaşımı olan zamak5 hammaddeden üretilmiştir. Bu hammaddenin fiziksel, mekanik ve kimyasal özellikleri Çizelge 4.2'de verilmiştir.

Fiziksel ve Mekanik Özellikler										
Döküm sıcaklığı	°C	405-425	20 °C'de elektriksel iletkenlik	%age IACS	26					
Donma aralığı	-	6,7								
Özgül ısı	J/gk	0,4187	Yoğunluk	Kg/m³	6700					
Katılaşma çekmesi Cm/m 1,17 20 °C'de gerilme dayanımı					328-270					
Döküm firesi	Mm/mm	0,006	20 °C'de uzama	% in 2 in	Tem.13					
18 °C'de ısıl geçirgenlik	W/m°C	108,9	20 °C'de darbe dayanımı	J	54-65					
°C başınalineer ısıl genleşme	-	28x10^6	Sertlik	BHN	92-80					
		Komp	ozisyon							
Alaşım Kompo	zisyonu		Kirlilik							
	min.	maks.		min.	maks.					
Aluminyum	3,80%	4,20%	Demir	-	0,020%					
Bakır	0,70%	1,10%	Kurşun	-	0,003%					
Magnezyum	0,04%	0,06%	Kadmiyum	-	0,003%					
Çinko	geri kal	an kısım	Kalay	-	0,001%					
			Nikel	-	0,001%					
			Silikon	-	0,020%					

Çizelge 4.2 : Zamak	fiziksel,	mekanik ve	kimyasal	özellikleri	(Url-8).
---------------------	-----------	------------	----------	-------------	----------

İlgili metal parçada ölçümlerin gerçekleştirildiği uzunluk değeri ise 18±0,2 mm. olup teknik resmi Şekil 4.6'da verilmiştir.

Şekil 4.6 : Metal parça ölçüsü.

Çalışmamızda kullanılan plastik parça ise ABS (acrylonitrile butadiebe styrene) malzemeden plastik enjeksiyon yöntemi ile üretilmiş bir malzemedir. Parçanın temsili resmi Şekil 4.7'de ve orijinal resmi Şekil 4.8'de verilmiştir.

Şekil 4.7 : Plastik parça numunesi temsili.

Şekil 4.8 : Plastik parça numunesi.

ABS malzemeyi oluşturan monomerlerin bağ yapısı Şekil 4.9'da verilmiştir.

Şekil 4.9 : ABS monomerleri bağ yapısı (Url-9).

ABS haline gelmiş hammaddenin kimyasal formülü $(C_8H_8 \bullet C_4H_6 \bullet C_3H_3N)_n$ 'dir (Url-9). ABS malzemenin özellikleri Çizelge 4.3'te verilmiştir.

Fiziksel Özel	likler		Elektriksel Özellikler					
Yoğunluk	1,04	g/cc	Ark direnci	120	sec			
Erime akışı	18-23	g/10 min	Karşılaştırmalı takip indeksi	600	V			
Mekanik Öze	llikler		Sıcak tel ateşlemesi	15	sec			
Sertlik	103-112 R Yüksek Amp ark ateşlemesi			120	arcs			
Çekme direnci	42,5-44,8	MPa	Yüksek voltaj ark - takip oranı	25	mm/min			
Kırılma uzaması	23-25	%	Termal Özellikler					
Bükülme modülü	2,25-2,28	GPa	Maksimum kullanım sıcaklığı	88-89	°C			
Izod çarpma	2,46-2,94	J/cm	Defleksiyon sıcaklığı 1,8 MPA	88-89	°C			
			Vicat yumuşama noktası	100	°C			

Çizelge 4.3 : ABS malzeme özellikleri (Url-10).

İlgili plastik parçada ölçümlerin gerçekleştirilmiş olduğu karakteristik ise 17 +0,3/-0,1 mm. ölçüsü olup teknik resmi Şekil 4.10'da verilmiştir.

Şekil 4.10 : Plastik parça ölçüsü.

Bu tez çalışması dahilinde iki farklı malzemeden üretilen parçanın test edilmesinin nedeni, cihazın X-ray giriciliğinden dolayı alınan görüntü üzerinden ölçüm yapabilmeye uygun derecede kontrast farkının cihaz tarafından yaratılıp yaratılamayacağını da gözlemlemektedir ve bunun ölçüm sistemleri analizinde gösterebileceği etkiyi ortaya koymaktır. Bu nedenle seçilen numune tiplerinin yoğunluk değerleri plastik için 1,04 g/cm³ ve metal için 6,7 g/cm³ olarak düşük ve yüksek değerlerden seçilmiştir.

4.3 Minitab

Bu tez dahilinde yapılan istatistiksel incelemelerde Minitab yazılımı kullanılmıştır. Progam, 1972 yılında Pensilvanya Üniversitesi'nde Barbara F. Ryan, Thomas A. Ryan ve Brain L. Joiner tarafından geliştirilmiştir (Url-11). Kapsamlı bir istatistik ve grafik analiz yazılımıdır ve uzun yıllardır hizmet vermektedir. Dünya çapında GE, Ford Motor Company, vb. gibi binlerce şirket ve altı sigma danışmaları tarafından kullanılmaktadır (Wang, 2004). Program yeterlilik analizleri, ölçüm sistemleri analizi, regresyon analizi, korelasyon analizi, değişkenlik analizi, deney tasarımı vb. gibi bir çok modül barındırmakta ve gerekli istatistik çalışmaları yapmada kullanıcıya kolaylık sağlamaktadır. Bu tez dahilinde ilgili programın "Gage Study" ("Gage Çalışması") modülü kullanılarak sonuçlar alınacak ve değerlendirmeler için çalışma sonucu elde edilen grafiklerden ve istatistiki verilerden yararlanılacaktır.

4.3.1 Minitab MSA (Gage R&R) uygulaması

Minitab programında MSA uygulaması için Gage R&R metodu adımları Şekil 4.11-4.19'da verilmiştir. Öncelikle Basic Statistics menüsünden Display Descriptive Statistics seçilir.

	Image: Second second							• U M	$ f_{\aleph} = \frac{\pi}{2}$	-246	31	0							
C Sessi Welcor Desc																			
Varial Sonuc Varial Sonuc	ble N 90 ble Maxi 4,5	N* Ti 0 : Ia mum <u>N</u> 330 <u>E</u> C	me <u>S</u> eries ibles onparametr)A ower and Sa	ics +	1P 1 P_{fc} 2P 2 P_{fc} $s^{1}p$ 1-Sa $s^{2}p$ 2-Sa σ^{2} 1 Var $\sigma^{4}_{\sigma^{2}_{0}}$ 2 V <u>a</u> r	portion portions mple Poisson mple Poisson ianc <u>e</u> iance	n Rate n Rate												-
Worl	ksheet 1 ***					riance													1 23
÷	C1	C2	C3	C4		nality Test			C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	(^
	Parca	Olcumcu	Sonuc	Referans	V ² Goo	Iness-of-Fit	Test for Poiss	20											-
1	1	1	4,454	4,45	<mark>//</mark> 000	mess or Lie	Telefort on a		1										
2	2	1	4,533	4,53		_	_		_										
3	3	1	4,495	4,49		_	_												
4	4	1	4,469	4,46			_												
5	5	1	4,493	4,49		_	_		_										
6	6	1	4,524	4,51															
	7	1	4,505	4,50			_												
7	8	1	4,515	4,51								-							
7 8		1	4,502	4,50															÷
7 8 9	9																		
7 8 9 •	9																		

Şekil 4.11 : Minitab temel istatistik değerler.

Ardından açılan pencerede ölçüm değerleri seçilir ve ölçüm değerlerinin ortalama, standart sapma vb. temel istatistik sonuçları Session menüsünden alınır.

Eile E	dit D <u>a</u> ta	Calc Stat	Graph Ed	itor <u>T</u> ools	Window H	Help Assist	tant	S *	12.0	ला स्व		11 1 0					
			k // -	l∎≉. Ibda-			, ∰ ∰ () 7 X 0				"* "# "# MI MI	10° 10°					
C Serr	ion			Second 11		-		v]1 · ~									57
(<u></u>)es	ion																
Welco	me to Min	itab, pres	s F1 for	help.													
Dece	rintivo St	atistics: 6	0.00						Di	play Descriptive	Statistics						
Desc	inpuve su	ausucs. 3	onuc						10	1 Deser	Variables						
Varia	ble N 1	N* Mean	SE Mear	n StDev I	Minimum	Q1 N	Median	Q3		2 Olcumcu	Sonuc						
Sonuc	90	0 4,492/	0,00278	5 0,0264	4,4500	4,4690 4	1,4965 4,	5130		3 Sonuc 4 Referans							
Varia	ble Maxim	mum										*					
Sonuc	4,0	330									By variables (optio	nai):					
												*					
																	+
•											Į						1 iii
Wor	ksheet 1 ***	5															
÷	C1	C2	C3	C4	C5	C6	C7	C8	C				C15	C16	C17	C18	(^
	Parca	Olcumcu	Sonuc	Referans						Select	Statistics	Graphe					
1	1	1	4,454	4,45								grapiis					
2	2	1	4,533	4,53						Help	QK	Cancel					
3	3	1	4,495	4,49													
4	4	1	4,469	4,46					-			-	-				
5	5	1	4,493	4,49													
6	6	1	4,524	4,51													
7	7	1	4,505	4,50													
8	8	1	4,515	4,51													
9	9	1	4,502	4,50													÷
1			1.150														• at
(
E Proi		23															

Şekil 4.12 : Minitab temel istatistik değerler verileri.

<u>File</u>	dit D <u>a</u> ta	Calc Stat	<u>G</u> raph E <u>d</u>	itor <u>T</u> ools	Window	v <u>H</u> elp As	sista <u>n</u> t													
) 🖨 日	8 %		asic Statistic	s 🕨	8 6	8	£ 🖥 🕤 🛈	2010日	•		圖] f.×	- Bygg	雪晶扇	10 14	0					
		B	egression NOVA	· · ·			X C	\ \ T □ 0	o∧ ·											
C Sessi	on	D	OE	į,																53
		<u>c</u>	ontrol Chart	s 🕨	-														()	-
Welco	ne to Min	itab, 🔍	uality Tools	•	Mur	n Chart														
Desc	riptive St	atist Re	eliability/Sur	vival 🕨	🖌 Par	eto Chart														
Varia	ole N I	N* T	ultivariate		→ Cau	use-and-Effe	t													
Sonuc	90	0 4 Ta	me <u>s</u> eries ables		😚 Ind	ividual Distril	oution Identifica	ition												
Varia	ole Maxim	num N	onparametr	ics 🕨	🔀 Įoh	nson Transfo	rmation													
Sonuc	4,5	330 <u>E</u> [DA A	•	Cap	bability Analy	515													
		P	ower and Sa	mple Size 🔸	Cap	papility Sixba	.к													
		-			A Tol	era <u>n</u> ce Interv	als													÷
					<u>G</u> ag	ge Study			<u></u> 7	Ту	pe 1 Gage !	Study								E a
Wor	(sheet 1 ***				Cre	ate Attribute	Ag <mark>reement</mark> Ana	alysis Worksheet	5	<u>≣</u> <u>C</u> ri	eate Gage <mark>(</mark>	R&R Stu	udy Worksh	eet						
÷	C1	C2	C3	C4	× Att	rib <u>u</u> te Agreer	nent Analysis		R.	Ga	ge <u>R</u> un Ch	art			C14	C15	C16	C17	C18	(^
	Parca	Olcumcu	Sonuc	Referans	🔊 Acc	ceptance San	pling by Attrib	utes	R	Ga B	ge Linearit	y and B	lias Study		_					
1	1	1	4,454	4,45	Acc	Attrib <u>u</u> te Agreement Analysis] Acceptance Sampling by A <u>t</u> tributes Acceptance Sampling by ⊻ariables			• [- R-	R Ca	ge Kock Sti	udy (Cro	ossed)		-					
2	2	1	4,533	4,53	A Mu	Qause-and-Effect Individual Distribution Identification Johnson Transformation Capability Spacek Capability Spacek Tolerance Intervals Cragte Attribute Agreement Analysis Attribute Agreement Analysis Acceptance Sampling by Attributes Acceptance Sampling by Qariables Multi-Vari Chart Symmetry Plot	R	R Ga	an PRIP CH	udy (Ne	nanded)									
4	4	1	4,455	4,45	🛃 Syn	nmetry Plot			1	1 00	gs non on	ady (con	punded)							
5	5	1	4,493	4,49					,	io Att	ribute Gag	e Study	y (Analytic I	Method)						
6	6	1	4,524	4,51																
7	7	1	4,505	4,50																
8	8	1	4,515	4,51																
9	9	1	4,502	4,50																ų.
1	••	•	• • • • • • • • • •																	F at
Proi	69 6	52															_			
Perform a	age linearity	and accurac	v studies																Editable	-
	- <u>,</u>	a a conde							-											

Ardından ölçüm verilerinin bias ve lineerlik değerlerine bakılır.

Şekil 4.13 : Minitab bias ve lineerlik.

Bunun için parça, ölçüm operatörü ve ölçüm sonuçları dataları açılan pencereden seçilir.

Elle Edit Data Calc Stat Graph Editor Tools Window Help Assistant	
DD · Nort * A Parter *	
	B X
	-
Welcome to Minitab, press Fi for help,	
Descriptive statistics: sonuc	
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3	
Sonuc 90 0 4,4927 0,00278 0,0264 4,4500 4,499 4,496 4,5130	
Variable Maximum Gage Linearity and Bias Study	
Sonuc 4, 5330 Part numbers: Parca Gage Info	
Reference values: Referans Options	
Measurement data: Sonur	-
d Proceevariation: [a acced (ontional)	 K ist
(study variation from Gape RR)	-
	E 23
+ C1 CZ C3 C4 C3 Select (6*historical standard deviation) 3 C14 C13 C16 C17 C18	
1 1 1 4 4 5 4 4 5	
2 2 1 4 553 4 53 Help Cancel	
3 3 1 4495 449	
4 4 1 4,469 4,46	
5 5 1 4,493 4,49	
6 6 1 4,524 4,51	
7 7 1 4,505 4,50	
8 8 1 4,515 4,51	
9 9 1 4.502 4.50	÷
	F at

Şekil 4.14 : Minitab bias ve lineerlik, veri seçimi.

Sonuç verileri bir grafik olarak Şekil 4.15'te program tarafından verilir.

<u>File</u>	dit D <u>a</u> ta	<u>C</u> alc <u>S</u> tat	<u>G</u> raph E <u>d</u>	litor <u>T</u> ools <u>V</u>	indow <u>H</u> elp /	Assista <u>n</u> t	7.5					
i 🚅 🖬	6 %		~ F	TIMA	0 ? 💋	- C 🖬 🖸 🖻 🛢 ท 🖬 🖸 🛅 🔢	😹 🖅 - 🖫 -	「山谷」ダ 水 ()				
	1,000 1,000	•	k d -	- P #	1	JXQ TDONOL	10					
C Sess	ion											83
Desc	riptive St	atistics: S	onuc		🕂 Gage Linear	ity and Bias for Sonuc						*
Varia Sonuc Varia Sonuc Gage	ble N 90 ble Maxi 4,5 Linearity	N* Mean 0 4,4927 mum 330	SE Meaa 0,0027i	n StDev M 3 0,0264	Gage Lin Gage name: Date of study 0.02-	nearity and Bias Study for Son	UC Reported by: Tolerance: Misc: Represion Represion Represion	Gage Li Predictor Coef Constant 1,4296 Slope -0,31872 S 0,0208530 Linearity 0,0053162 Gane Bio	nearity SE Coef P 0,4161 0,001 0,09256 0,001 R-Sq 11,9% %Linearity 31,9			•
Wor	ksheet 1 ***			-				Reference Bias	%Bias P		- 0	23
+	C1	C2	C3	C4	-0,02 -	~		Average -0,0033000 4 45 0 0015556	19,8 0,000	C17	C18	(^
	Parca	Olcumcu	Sonuc	Referans	Bia			4,46 0,0093333	56,0 0,000	-		
1	1	1	4,454	4,45				4,49 0,0021111	12,7 0,000			
2	2	1	4,533	4,53	-0,04			4,5 0,001///8	45.6 0.000			
3	3	1	4,495	4,49				4,52 -0,0682222	409,0 0,000			
4	4	1	4,469	4,46	-0.06 -			4,53 0,0013333	8,0 0,005			
5	5	1	4,493	4,49		•		Percent of I	Process Variation			
6	6	1	4,524	4,51		•		30	Toccas Variation			
7	7	1	4,505	4,50	-0.08-			të				
8	8	1	4,515	4,51	4,44	4 4,46 4,48 4,50 4,52 4,54		15 15 15 15 1				
9	9	1	4,502	4,50		Reference Value		0 Linearity	Rias			-
< 📋				1.50				NJ				•
-	2000 B									10		
Proj	. 0	23										
Current W	orksheet: W	orksheet 1										

Şekil 4.15 : Minitab bias ve lineerlik sonuç verileri.

Bu verilerin alınmasının ardından Gage R&R çalışması yapılır. Bunun için Stats menüsünden sırasıyla Quality Tools, Gage Study ve Gage R&R Study (crossed) seçilir.

		b 🖬 📴	sic Statistic	s →	1	0.200	-	D 🛛 🗐 🕈	a Fille	F	1 🕵 fa		10					
	1 - 1 - 00	<u>R</u> e	egression	•	-							an in that turn 1	*!-					
		AI	NOVA	•			과 이야 한 이야	26] 17 J		N								
💽 Sess	ion	<u>D</u> (OE	•														23
Desc	riptive Sta	tist <u>C</u> e	ontrol Chart	ts 🔸														^
		Q	uality Tools	ł	1	🗄 Run Chart												
Sonuc	ble N N 90	* Re	eliability/Su	rvival 🕨	6	Pareto Chart												
		M	ultivariate	,	X	<u>Cause-and-Effect</u>												
Varia Sonuc	ble Maxim 4,53	130 Ti	me <u>S</u> eries	*	12	🕅 Individual Distributi	ion Identifi	cation										
		<u>1</u> a	ables		5	🗧 Johnson Transform	ation											
Gage	Linearity	and .	onparametr	ics 🕨		Capability <u>A</u> nalysis												
-		EL	A	•		Capability Sixpack												
k.		<u>– P</u> ¢	ower and Sa	mple Size 🕨		Tolerance Intervals.												
					1					TI	* ** *	(.	-					
						Gage Study			-	ň.	Type I Gage Stu	idy						
Wor	ksheet 1 ***				H	Create Attribute Ag	reement A	nalysis Work	sheet	Gage	Create Gage R&	R Study Worksheet						2
+	C1	C2	C3	C4	ľ,	× Attrib <u>u</u> te Agreemer	nt Analysis.			□ La	Gage Run Chart		C14	C15	C16	C17	C18	(^
	Parca	Olcumcu	Sonuc	Referans		Acceptance Sampli	ng by A <u>t</u> tril	butes		14	Gage Linearity a	ind Bias Study						
1	1	1	4,454	4,45		Acceptance Sampli	ng by <u>V</u> aria	ables			Gage R&R Stud	y (Crossed)	_					
2	2	1	4,533	4,53		Multi-Vari Chart				1	Gage R&R Stud	y (Nested)						
3	3	1	4,495	4,49	Ľ	Summetry Plot				1	Gage R&R Stud	y (Expanded)						
4	4	1	4,469	4,46	2	Symmetry Plot		-		60/ NO	Attribute Gage !	Study (Analytic Method).						_
5	5	1	4,493	4,49				_		_								
6	6	1	4,524	4,51				-		_			-					
7	1	1	4,505	4,50					_	_	_		_					
8	8	1	4,515	4,51						-			_	-				
9	9	1	4,502	4,50									_				-	
٠ _																		 F []

Şekil 4.16 : Minitab Gage R&R (crossed).

Açılan pencereden parça, ölçüm operatörü ve ölçüm değerleri seçimleri yapılır.
<u>File</u>	dit D <u>a</u> ta	<u>C</u> alc <u>S</u> tat	<u>G</u> raph Ed	<u>i</u> itor <u>T</u> ools	Window	<u>H</u> elp As	sista <u>n</u> t										
i 🖉	6 8	市 信 の	○ []]	1 I M	80	2 🚮	1 6 6 0) 2 圓 10 阳		1-1-1-6	d .	0					
	t	* @ ¹	kd-			2.12	T X C										
I Sessi	on			1 1				<u></u>									1 22
Desc	intive St	atistics: S	onuc													Lange Lange	*
Dese	ipure of		ondo														
Varia Sonuc	ole N I 90	I* Mean 0 4,4927	SE Mean 0.00271	n StDev 8 0.0264	Minimum 4,4500	Q1	Median 4.4965 4.	Q3 .5130									
					3		3										
Sonuc	4,5	830															
						Ga	ge R&R Study	(Crossed)		<u></u>							
Gage	Linearity	and Bias	for Sonu	JC		L.F.		Dart oumbere	Dever								
								Partifulities	Parca	- Gage Info							
								Operators:	Olcumcu	Options							2
•								Measurement	data: Sonuc	Conf Int							•
						-		Method of An	alveic	Storage		-					
Worl	isheet 1 ***							(ANOVA									1 23
+	C1 Deces	C2	C3	C4	C5	_	Select	C Xbar and I	2	-	1	C14	C15	C16	C17	C18	(^
1	Parca	Olcumcu	Sonuc	Referans		-				OK		-					
2	2	1	4 533	4,43			Help			Cancel					_		
3	3	1	4,495	4,49							_						
4	4	1	4,469	4,46													
5	5	1	4,493	4,49													
6	6	1	4,524	4,51													
7	7	1	4,505	4,50													
8	8	1	4,515	4,51						-							
9	9	1	4,502	4,50													.
1 · 🗋			1.150														• at
Proi.		123							🔂 Gag 🗐								
erform a	age R&R stu	dies with cro	ssed design	15												Editable	

Şekil 4.17 : Minitab Gage R&R (crossed), veri seçimi.

Tüm seçimler tamamlanıp program çalıştırıldığında bir grafik ve Session menüsünde istatistik veriler ile çalışma sonuçları alınır.

Şekil 4.18 : Minitab Gage R&R (crossed), grafikler.

Session menüsünde hesaplanan istatistik veriler bütünü Şekil 4.19'da verilmektedir.

Two-Way ANOVA Table With Interaction DF Source SS MS F P 9 0,0617362 0,0068596 10705,7 0,000 Parca Olcumcu 2 0,0000385 0,0000192 30,0 0,000 Parca * Olcumcu 18 0,0000115 0,0000006 0,9 0,531 Repeatability 60 0,0000407 0,0000007 Total 89 0,0618269 Alpha to remove interaction term = 0,25 Two-Way ANOVA Table Without Interaction Source DF SS MS F P 9 0,0617362 0,0068596 10249,9 0,000 Parca 2 0,0000385 0,0000192 28,7 0,000 Olcumcu 0,0000007 Repeatability 78 0,0000522 89 0,0618269 Total Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R 0,0000013 0,17 Repeatability 0,0000007 0,09 Reproducibility 0,0000006 0,08 Olcumcu 0,0000006 0,08 Part-To-Part 0,0007621 99,83 Total Variation 0,0007634 100,00 Study Var (6 * SD) %Study Var StdDev (SD) (%SV) Source 0,0011349 0,006809 Total Gage R&R 4,11 0,0008181 0,004908 Repeatability 2,96 0,004720 0,0007866 Reproducibility 2,85 0,004720 0,0007866 Olcumcu 2,85 Part-To-Part 0,165637 0,0276062 99,92 Total Variation 0,0276295 0,165777 100,00 Number of Distinct Categories = 34

Şekil 4.19 : Session menüsünde hesaplanan istatistik veriler bütünü.

4.3.2 Minitab sonuç verileri ve anlamları

Session penceresinde verilen istatistik veriler ile ilgili ilk tabloda bulunan SS (Sum of Squares, Kareler Toplamı) verisidir.

SS parça (part) verisi Denklem 4.1 ile hesaplanır.

$$bn\sum(\overline{x_{i..}} - \overline{x_{...}})^2 \tag{4.1}$$

Burada;

b: operatör sayısı

n: tekrarlama sayısı

 $\overline{x_{i..}}$: her parçanın ortalaması

 $\overline{\mathbf{x}_{...}}$: genel ortalamadır.

SS (operatör) ölçüm operatörü verisi ise Denklem 4.2 ile hesaplanır.

$$an \sum (\overline{x_{.j.}} - \overline{x_{...}})^2 \tag{4.2}$$

Burada;

a: parça sayısı

n: tekrarlama sayısı

 $\overline{x_{.i.}}$: her operatörün ortalaması

 $\overline{x_{...}}$: genel ortalamadır.

SS Part*Operator= SS Total – (SS Part + SS Operator + SS Repeatability) (4.3)

SS Repeatability=
$$\sum \sum \sum (\overline{x_{ijk}} - \overline{x_{...}})^2$$
 (4.4)

Burada;

 $\overline{x_{ijk}}$ her gözlem ve $\overline{x_{...}}$ genel ortalamadır.

DF (degree of freedom), serbestlik derecesi değeridir ve her SS değeri ile ilişkilidir. DF genel olarak, her SS'i hesaplamak için ne kadar bağımsız değişken olduğunu tanımlar.

DF (part) parça=
$$a-1$$
 (4.5)

a: parça sayısı

DF (operator) operat
$$\ddot{o}r=b-1$$
 (4.6)

b: operatör sayısı

DF Part*Operator=
$$(a-1)*(b-1)$$
 (4.7)

DF Repeatability= $ab^*(n-1)$ (4.8)

n: tekrarlama sayısı

$$DF Total = abn-1$$
(4.9)

MS (Mean squares), ortalama karelerdir. SS farklı kaynaklardan dolayı verideki değişkenliği ölçümlerken, MS bunların yanı sıra, farklı kaynakların farklı dereceleri ve muhtemel değerleri olduğunu hesaba katar.

$$MS Part = SS Part/DF Part$$
(4.10)

MS Part*Operator= SS Part*Operator/DF Part*Operator (4.12)

MS Repeatability= SS Repeatability/DF Repeatability (4.13)

F değeri Operator, Part veya Operator*Part değerlerinin etkileri, ölçüm üzerinde ciddi bir değişime neden oluyormu ve değeri nedir sorularına yanıt arar.

F Part= MS Part/MS Part*Operator (4.14)

P değeri ise F ile ilişkilidir. P Part, örnekle açıklanacak olursa, tüm parçaların aynı ortalamayı paylaştığı kabulu ile, F istatistiğinin hesaplanandan yüksek çıkması ihtimalidir. Bu durumda F arttıkça P azalır.

VarComp, her kaynak tarafından varyasyona eklenen komponenttir. ANOVA modelinde Operator*Part ilişkisi olduğunda varyansların hesap yöntemi şu şekildedir:

$$Operator = (MS \ Operator - MS \ Operator * Part)/a*n$$
(4.18)

a: parça sayısı

n: tekrarlama sayısı

Part-To-Part= (MS Part – MS Operator*Part)/
$$b*n$$
 (4.20)

B: ölçümcü (operatör) sayısı

Total Gage R&R= VarComp Repeatability + VarComp Reproducibility (4.22)

ANOVA metoduna Operator*Part ilişkisi katılmadığında varyasyon komponentleri şu şekilde hesaplanır.

$$Operator = (MS \ Operator - MS \ Repeatability)/a*n$$
(4.25)

$$Part-To-Part = (MS Part - MS Repeatability)/b*n$$
(4.26)

Reproduciblity= VarComp Operator için						
Total Gage R&R= Repeatability ve Reproducibility değerlerinin						
VarComp değerli toplamı	(4.28)					
Total Variation= Total Gage R&R ve Part-To-Part değerlerinin						
VarComp değerleri toplamı	(4.29)					

% Contribution (%100 Katkı), Her vasryasyon komponenti tarafından, tüm varyasyona yapılan katkının yüzdesidir. Bu her varyasyon komponentinin toplam varyasyona bölünmesi ve 100 ile çarpılması ile bulunur. %Contribution kolonunun toplamı 100 değerini verir.

StdDev (SD) standard sapma değeridir. Her varyasyon komponenti için SD, VarComp değerinin karekökü olarak hesaplanır.

Study Var, SD değerinin 6 ile çarpılması ile elde edilir. Bu 6 rakamı program üzerinden istenilen sayı ile değiştirilebilir. Otomatik olarak 6 gelmesinin nedeni, proses ölçümlerinin %99,73 kapsamak üzere 6 standart sapma değeri gerekir. % Study Var ise her komponent için yüzde Study Variation değeridir. Bu her komponentin standart sapma değerinin toplam sapma değerine bölümü şeklinde hesaplanır. İlgili kolondaki verilerin toplamı 100'ü verir.

ndc (number of distinct categories) ayrık kategori sayısı değeridir. Ürün varyasyonu aralığını tarayacak, üst üste binmeyen güven aralığı sayısını ifade eder. Bu aynı zamanda proses dataları içinde ölçüm sisteminin ayırt edebileceği grup sayısını belirtir. Formülasyonu:

$$ndc = \frac{Standard Deviation for Parts}{Standard Deviation for Gauge} * 1,41$$
(4.30)

olarak verilir.

Gage R&R sonuç grafikleri ile ilgili açıklamalar, laboratuar çalışmasının değerlendirilmesi ve sonuçların alınması kısmı ile birlikte sonuç bölçümünde yapılacaktır.

4.4 Minitab Cg ve Cgk Uygulaması

Minitab programında Bölüm 3.3'de detayları tariflenen Cg ve Cgk, ölçüm cihazı kapabilitesi çalışmasının gerçekleştirilmesi Şekil 4.20-4.22'de verilmektedir.

Öncelikle Stats menüsünden Quality Tools, Gage Studt ve Type 1 Gage Study seçilir.

Eile Eo	File Edit Data Calc Stat Graph Editor Iools Window Help Assistant Basic Statistics Basic Statistics Basic Statistics Begression Begression Statistics ANOVA X Q I K T C									. 101 •	f * -	-I -I ₁ , j	3 I A	0					
C Sessio	on	D	OE	•															23
	the second second	<u>c</u>	ontrol Chart	s 🕨					-										*
Welcom	09.10 . we to Minital	2 _0 R №	uality Tools eliability/Su Jultivariate	rvival +	₩ <u>R</u> un <u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> </u>	Chart to Chart :e-and-Effect.													
Time Series I ables Nonparametrics EDA <u>P</u> ower and Sample Siz				ics + mple Size +	Indiv Indiv Iohn Capa Capa Capa Capa Capa Capa	Individual Distribution Identification Ionson Transformation Capability Analysis Capability Sixpack Tolerance Intervals													
-					Gage	: Study			Þ	권 Type	Gage Stud	ły		-1					
Work	sheet 1 ***			_	Create Attribute Agreement Analysis Worksheet				et	Create Gage R&R Study Worksheet									
+	C1	C2	C3	C4	✓ _× Attri	b <u>u</u> te Agreeme	ent Analysis			RUH Gage Run Chart			C14	C15	C16	C17	C18	(^	
					Acce	ptance Samp	ling by A <u>t</u> trib	outes											
1	10,25				Acce	ptance Samp	ling by <u>V</u> ariat	bles	•	Gage	R&R Study	(Crossed)		1					
2	10,24				A Mult	i-Vari Chart				Gage	R&R Study	(Nested)		_					
3	10,25				Sym	metry Plot				Gage	R&R Study	(Expanded)						1	_
4	10,25				- *	10000 * 0/07070	-			₀₀∕ Attrib	ute Gage St	udy (Analytic	Method)						
6	10,25													2					
7	10.25						-												
8	10.25						-				-		-						
9	10,25																		
							1	1 1					k.						
					_				_	_	_								·
Proj		3																	
rform ty	pe 1 gage study	to estim	nate bias and	repeatabilit	v														

Şekil 4.20 : Minitab Cg ve Cgk, menü seçimi.

Bunun ardından, aynı ölçümcü ve aynı cihaz ile yapılan ölçüm değerlerinin girilmiş olduğu C1 kolonu ölçüm datası olarak seçilir. Var ise referans değer girilir. Eğer bu değer mevcut değil ise yapılan çalışmada hesaplanan Cgk değeri analizde değerlendirilmez. Ardından ilgili ölçüye ait tolerans değerleri açılan pencereye girilir.

<u>Eile</u>	dit D <u>a</u> ta g	<u>C</u> alc <u>S</u> tat	<u>G</u> raph E <u>c</u>	litor <u>T</u> ools	<u>W</u> indow	Help Assist	a <u>n</u> t												
) 😂 🖬	6 1	6 R .		1 + M		? 🗊 🛛 + 🖸	66(D 🖻 🗟 🕇	- H (C)		f _* -	1 -12 	120	0					
		- 6	h	+ 🛱 🖬			- X	Q N I		· - 1212									
Sessi	ion																		1 23
	09.	10.2014	10:37:21					_											*
Welcom	me to Mini	tab, pre	ss F1 for	help.		Type 1 Gag	e Study						X)					
								Measurem	ent data:	C1	1	Gag	e Info						
								Reference		10,25	-	Og	tions						
								Tolerance	spec - lower :	pec: 0,3		-							
•								C Lower	spec only:										F al
Worl	ksheet 1 ***				_			C Upper	spec only:										53
+	C1	C2	C3	C4	C5	1	i.							C14	C15	C16	C17	C18	(^
1	10,25					S	slect						~ 1	-					
2	10,24					1	=1						QK						
3	10,25					Help							ancei						
4	10,25						_												
5	10,25													-					
6	10,26																		
7	10,25		-	1		-			_										
8	10,25								_										
9	10,25			1		-		_											
•																			▶ al
Proj.		23																	
Perform ty	pe 1 gage st	udy to estir	mate bias an	d repeatabili	ty														_

Şekil 4.21 : Minitab Cg ve Cgk, veri girişi.

Bu işlemlerin ardından Şekil 4.22'de verilen sonuç hesaplamaları ve grafiği elde edilir. Yukarıdaki bölümlerde tarif edilenler haricinde bu grafik ve hesaplama Cg ve Cgk değerlerinin elde edilmesini sağlar. Bu değerlerin değerlendirilmesi ise Bölüm 3.3'te tariflendiği şekilde yapılır.

Şekil 4.22 : Minitab Cg ve Cgk, sonuç grafiği.

5. DENEY SONUÇLARI

Bu tez çalışması dahilinde iki tip farklı numune grubu kullanılarak deneysel ölçümler alınmış ve bu ölçümler dahilinde sonuca ulaşabilmek üzere istatistik analizler gerçekleştirilmiştir. Yapılan istatistik çalışma genel olarak iki tiptir. Bunlardan ilki Gage R&R çalışmasıdır. Bu çalışmadaki amaç alınan ölçümler sonucunda ölçüm sisteminin tekrarlanabilirlik ve yeniden üretilebilirlik değerlerinin tespitine yöneliktir. Bu kapsamda parçalar arası varyasyon, ölçümcüler arası varyasyon ve ölçüm cihazından kaynaklı varyasyon hesaplanmaktadır. İkinci tip çalışma ise Cg analizidir. Cg analizi 3 bölümde de bahsedildiği üzere ölçüm sisteminin kapabilitesini ve yeterliliğini tespit etmek amaçlı yapılan bir istatistik çalışmadır. Gage R&R çalışmasında iki numune tipinden 10'ar adet numune konusunda yetkin iki ölçümcü tarafından 2'şer kez ölçülmüştür ve toplamda her iki numune tipinden 40'ar adet ölçüm sonucuna ulaşılmıştır. Cg çalışmasında ise her iki numune tipinden 1'er adet numune ard arda aynı bir yetkin ölçümcü tarafından 25'er kez ölçülmüştür.

5.1 Ölçüm Algoritması

Gage R&R çalışması için yapılan ölçümlerde her bir numune tipinden 10'ar adet parça kullanılmış ve bunlara numaralar verilmiştir. Her bir parça her bir yetkin ölçümcü tarafından 2'şer kez ölçülmüştür ve değerler ölçüm algoritması tablosuna girilmiştir. Kullanılan Gage R&R ve Cg ölçüm algoritması tabloları sırasıyla Çizelge 5.1 ve 5.2'de verilmektedir. Cg çalışmasında ise her bir numune tipinden 1'er adet numune aynı yetkin ölçümcü tarafından 25'er kez ard arda ölçülmüştür.

	Metal Parça 18 ±0,2 mm Ölçüsü									
1. Deneme	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü										
2. Ölçümcü										
2. Deneme	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü										
2. Ölçümcü										
		-	Plast	tik Parça 17	+0,3/-0,1	nm Ölçüsü	i	-	-	
1. Deneme	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü										
2. Ölçümcü										
2. Deneme	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü										
2. Ölçümcü										

Çizelge 5.1 : Gage R&R ölçüm algoritması tablosu.

Çizelge 5.2 : Cg ölçüm algoritması tablosu.

Ölçüm	Metal Parça	Plastik Parça
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

5.2 Ölçümler ve Sonuç Değerleri

Plastik ve metal malzemelerin radyografik görüntüleri ile gerçekleştirilen ölçüm çalışmaları ve elde edilen sonuçlar bu bölümde verilmiştir.

5.2.1 Plastik numune ölçümleri ve sonuç değerleri

Plastik parçalarda, Bölüm 4.2'de bahsedildiği üzere 17 +0,3/-0,1mm. ölçüsü üzerine çalışma yapılmıştır. Ölçüm yapabilmek üzere uygun radyografik görüntü alabilmek

için öncelikle denemeler yapılmış olup uygun çekim parametreleri 33 kV ve 20µA olarak tespit edilmiştir. Şekil 5.1'de plastik malzeme için kullanılan çekim parametreleri verilmiştir.

Şekil 5.1 : Plastik numune için çekim parametreleri.

Bunun ardından öncelikle Gage R&R çalışması yürütülmüştür. Bu çalışma için kullanılan 10 adet numune Şekil 5.2'da verilmiştir.

Şekil 5.2 : Plastik parça numune seti.

Yapılan ölçüm çalışmasında 10 adet numunenin her biri 2 ölçümcü tarafından 2'şer kez ölçülmüştür. Çalışma sırasında, ölçümün yapılışı ve kullanıcı arayüzü sırasıyla Şekil 5.3 ve Şekil 5.4'te verilmiştir.

Şekil 5.3 : Plastik parça numunesi çekim sırasında.

Şekil 5.4 : Plastik parça numunesi ölçüm sırasında.

Tüm ölçümler sonrası alınan değerler Çizelge 5.3'e girilmiştir.

	Plastik Parça 17 +0,3/-0,1 mm Ölçüsü									
<u>1. Deneme</u>	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü	17,094	17,072	17,101	17,102	17,103	17,051	17,152	17,057	17,152	17,000
2. Ölçümcü	17,097	17,075	17,101	17,102	17,103	17,051	17,152	17,058	17,152	17,003
2. Deneme	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü	17,097	17,072	17,101	17,101	17,103	17,051	17,154	17,057	17,152	17,001
2. Ölçümcü	17,097	17,075	17,101	17,101	17,103	17,051	17,154	17,057	17,152	17,003

Çizelge 5.3 : Plastik parça Gage R&R çalışması ölçüm sonuçları.

Daha sonra Cg çalışmasına geçilmiştir. Bunun için tek bir numuneden tek ölçümcü ile 25 adet ard arda ölçüm alınmış ve sonuç değerleri Çizelge 5.4'e girilmiştir. Bu ölçümler de yine 33 kV ve 22 µA koşulları altında gerçekleştirilmiştir.

Ölçüm	Plastik Parça
1	17,095
2	17,094
3	17,095
4	17,095
5	17,095
6	17,095
7	17,097
8	17,097
9	17,097
10	17,097
11	17,097
12	17,097
13	17,097
14	17,097
15	17,097
16	17,097
17	17,095
18	17,095
19	17,097
20	17,097
21	17,097
22	17,097
23	17,097
24	17,095
25	17,097

Çizelge 5.4 : Plastik parça Cg çalışması ölçüm sonuçları.

Örnek ölçüm görüntüsü ve ölçümün alınış şekli Şekil 5.5'te verilmiştir. Tüm ölçümler ve bunlara ait radyografik görüntüler dijital ortamda saklanmıştır.

Şekil 5.5 : Plastik parça radyografik görüntüsü ve ölçüm.

5.2.2 Metal numune ölçümleri ve sonuç değerleri

Metal parçalarda, Bölüm 4.2'de bahsedildiği üzere 18 $\pm 0,2$ mm. ölçüsü üzerine çalışma yapılmıştır. Ölçüm yapabilmek üzere uygun radyografik görüntü alabilmek için öncelikle denemeler yapılmış olup uygun çekim parametreleri 80 kV ve 40µA olarak tespit edilmiştir. Şekil 5.6'da metal numune için çekim parametreleri verilmiştir.

X-Ray	Microfocus	TXI		X-Ra	IY ON
		Voltage	80 📕 kV	ON	OFF
		Current	40.0 🔤 µA		

Şekil 5.6 : Metal numune için çekim parametreleri.

Metal numune için de öncelikle Gage R&R çalışması yürütülmüştür. Bu çalışma için kullanılan 10 adet numune Şekil 5.7'de verilmiştir.

Şekil 5.7 : Metal parça numune seti.

Yapılan ölçüm çalışmasında 10 adet numunenin her biri 2 ölçümcü tarafından 2'şer kez ölçülmüştür. Çalışma sırasında, ölçümün yapılışı ve kullanıcı arayüzü sırasıyla Şekil 5.8 ve Şekil 5.9'da verilmiştir.

Şekil 5.8 : Metal parça numunesi çekim sırasında.

Şekil 5.9 : Metal parça numunesi ölçüm sırasında.

Tüm ölçümler sonrası alınan değerler Çizelge 5.5'e girilmiştir.

	Metal Parça 18 ±0,2 mm Ölçüsü									
<u>1. Deneme</u>	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü	18,003	18,011	18,105	18,001	17,950	17,903	18,055	17,955	17,902	18,001
2. Ölçümcü	18,001	18,012	18,104	18,002	17,951	17,901	18,053	17,953	17,901	18,000
2. Deneme	1. Parça	2. Parça	3. Parça	4. Parça	5. Parça	6. Parça	7. Parça	8. Parça	9. Parça	10. Parça
1. Ölçümcü	18,003	18,011	18,105	18,001	17,950	17,903	18,055	17,955	17,903	18,001
2. Ölçümcü	18,001	18,012	18,104	18,002	17,951	17,901	18,055	17,953	17,899	18,001

Çizelge 5.5	: Metal	parça	Gage R&R	çalışması	ölçüm	sonuçları.
3 0		1 5	0	, ,	5	5

Bunun ardından Cg çalışması için tek bir numuneden tek ölçümcü ile 25 adet ard arda ölçüm alınmış ve sonuç değerleri Çizelge 5.6'ya girilmiştir. Bu ölçümler de yine 80 kV ve 40 µA koşulları alında gerçekleştirilmiştir.

Ölçüm	Metal Parça
1	18,000
2	18,004
3	18,001
4	18,004
5	18,000
6	18,003
7	18,002
8	18,001
9	18,000
10	18,000
11	18,003
12	18,002
13	18,003
14	18,001
15	18,001
16	18,002
17	18,004
18	18,004
19	18,001
20	18,002
21	18,000
22	18,000
23	18,001
24	18,002
25	18,001

Çizelge 5.6 : Metal parça Cg çalışması ölçüm sonuçları.

Metal parça için örnek ölçüm görüntüsü şekli Şekil 5.10'da verilmiştir. Tüm ölçümler ve bunlara ait radyografik görüntüler dijital ortamda saklanmıştır.

Şekil 5.10 : Metal parça radyografik görüntüsü.

5.3 Gage R&R ve Cg Çalışması Sonuçları

Bu bölümde Minitab programı yardımı ile yapılan istatistiki Gage R&R çalışmaları hem metal hem de plastik parça için sonuçları ile birlikte verilmiştir.

5.3.1 Plastik parça istatistiki veriler, Gage R&R, Cg ve Cgk sonuç değerleri

Bölüm 5.2.1'de verilen plastik parça numune seti Gage R&R ölçüm sonuçları için öncelikle Bölüm 4.3'de tanıtılan Minitab programında "Display Descriptive Statisics" hesaplaması ile ölçüm datalarına ait genel istatistiki sonuçlar bulunmuştur. Sonuçlar Şekil 5.11'de verilmiştir.

Descript	ive	Stat	istics: C	3						
Variable	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
C3	40	0	17,089	0,00697	0,0441	17,000	17,057	17,099	17,103	17,154

Şekil 5.11 : Plastik parça için genel istatistiki sonuçlar.

Bunun ardından "Gage Linearity and Bias Study" çalışması yürütülmüştür ve Şekil 5.12'de verilen sonuçlara ulaşılmıştır.

Şekil 5.12 : Plastik parça lineerlik ve bias çalışması sonuçları.

Gage R&R çalışması için alınan sonuç verilerinin genel istatistiki değerlendirmesini ve tanıtımı yapabilmek üzere gerçekleştirilen bu adımlardan sonra Gage R&R (crossed) çalışması yürütülmüş ve sonuçlar sonuç grafikleri ile birlikte Şekil 5.13'te verilmiştir.

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	P
C2	9	0,0756747	0,0084083	6241,21	0,000
C1	1	0,000056	0,000056	4,18	0,071
C2 * C1	9	0,0000121	0,000013	2,57	0,038
Repeatability	20	0,0000105	0,000005		
Total	39	0,0757030			

 α to remove interaction term = 0,05

Gage R&R

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0,000012	0,05
Repeatability	0,000005	0,02
Reproducibility	0,000006	0,03
C1	0,000002	0,01
C1*C2	0,000004	0,02
Part-To-Part	0,0021017	99,95
Total Variation	0,0021029	100,00

		Study Var	%Study Var
Source	StdDev (SD)	(6 × SD)	(%SV)
Total Gage R&R	0,0010724	0,006434	2,34
Repeatability	0,0007246	0,004347	1,58
Reproducibility	0,0007906	0,004743	1,72
C1	0,0004625	0,002775	1,01
C1*C2	0,0006412	0,003847	1,40
Part-To-Part	0,0458447	0,275068	99,97
Total Variation	0,0458573	0,275144	100,00

Number of Distinct Categories = 60

Şekil 5.13 : Plastik parça Gage R&R (crossed) çalışması sonuç grafikleri.

Şekil 5.13'te verilen Gage R&R sonuçlarından "Total Gage R&R" değerine bakıldığında %2,34 olduğu görülmektedir. Bölüm 3.2.2'de verilen kabul kriterlerine göre bu değerin %10'un altında olması nedeniyle kabul için uygun seviyede olduğu görülmektedir. ndc değeri için yine Bölüm 3.2.2'de verilen kritere göre 5'ten büyük bir değer olması gerekirken hesaplama sonucunda bu değer 60 bulunmuştur ve yine kabul için uygun seviyede olduğu gözlemlenmektedir.

Bu çalışmanın ardından, aynı numune üzerinde aynı ölçümcü ile ard arda yapılan 25 ölçüm sonucu için öncelikle genel istatistiki sonuçlar alınmış Şekil 5.14'te verilmiştir. Ardından yapılan Cg, Cgk hesaplaması sonuçları Şekil 5.15'te verilmiştir.

Şekil 5.14 : Plastik parça Cg,Cgk genel istatistiki sonuçlar.

Şekil 5.15 : Plastik parça Cg,Cgk sonuçları.

Bölüm 3.3'de verildiği üzere kabul için, hesaplanan Cg ve Cgk değerlerinin 1,33'ün üzerinde olması beklenmektedir. Bu çalışmada hesaplanan Cg 12,67, Cgk ise 11,48

çıkmıştır ki bu kabul için beklenen limit değerini karşılamakta ve üzerine çıkmaktadır.

5.3.2 Metal parça istatistiki veriler, Gage R&R, Cg ve Cgk sonuç değerleri

Bölüm 5.2.2'de verilen metal parça numune seti Gage R&R çalışması ölçüm sonuçları için öncelikle Bölüm 4.3'te tanıtılan Minitab programında "Display Descriptive Statisics" hesaplaması ile ölçüm datalarına ait genel istatistiki sonuçlar bulunmuştur. Sonuçlar Şekil 5.16'da verilmiştir.

Şekil 5.16 : Metal parça için genel istatistiki sonuçlar.

Bunun ardından "Gage Linearity and Bias Study" çalışması yürütülmüştür ve Şekil 5.17'de verilen sonuçlara ulaşılmıştır.

Şekil 5.17 : Metal parça lineerlik ve bias çalışması sonuçları.

Gage R&R çalışması için alınan sonuç verilerinin genel istatistiki değerlendirmesini ve tanıtımı yapabilmek üzere gerçekleştirilen bu adımlardan sonra Gage R&R (crossed) çalışması yürütülmüş ve sonuçlar sonuç grafikleri ile birlikte Şekil 5.18'de verilmiştir.

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	P
C2	9	0,146283	0,0162537	8554,56	0,000
C1	1	0,000006	0,000064	3,37	0,100
C2 * C1	9	0,000017	0,0000019	7,60	0,000
Repeatability	20	0,000005	0,000002		
Total	39	0,146312			

 α to remove interaction term = 0,05

Gage R&R

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0,000013	0,03
Repeatability	0,000002	0,01
Reproducibility	0,000011	0,03
C1	0,000002	0,01
C1*C2	0,000008	0,02
Part-To-Part	0,0040629	99,97
Total Variation	0,0040642	100,00

		Study Var	%Study Var
Source	StdDev (SD)	(6 × SD)	(%SV)
Total Gage R&R	0,0011402	0,006841	1,79
Repeatability	0,0005000	0,003000	0,78
Reproducibility	0,0010247	0,006148	1,61
C1	0,0004743	0,002846	0,74
C1*C2	0,0009083	0,005450	1,42
Part-To-Part	0,0637412	0,382447	99,98
Total Variation	0,0637514	0,382508	100,00

Şekil 5.18 : Metal parça Gage R&R (crossed) çalışması sonuç grafikleri.

Şekil 5.18'de verilen Gage R&R sonuçlarından "Total Gage R&R" değerine bakıldığında %1,79 olduğu görülmektedir. Bölüm 3.2.2'de verilen kabul kriterlerine göre bu değerin %10'un altında olması nedeniyle kabul için uygun seviyededir. Bunun yanı sıra ndc değeri için yine Bölüm 3.2.2'de verilen kritere göre 5'ten büyük bir değer olması gerekirken hesaplama sonucunda bu değer 78 bulunmuştur ve yine kabul için uygun seviyede olduğu gözlemlenmektedir.

Bu çalışmanın ardından, aynı numune üzerinde aynı ölçümcü ile ard arda yapılan 25 ölçüm sonucu için öncelikle genel istatistiki sonuçlar alınmış Şekil 5.19'da verilmiştir. Ardından yapılan Cg, Cgk hesaplaması sonuçları Şekil 5.20'de verilmiştir.

Şekil 5.19 : Metal parça Cg,Cgk genel istatistiki sonuçlar.

Şekil 5.20 : Metal parça Cg,Cgk sonuçları.

Bölüm 3.3'de verildiği üzere kabul için, hesaplanan Cg ve Cgk değerlerinin 1,33'ün üzerinde olması beklenmektedir. Bu çalışmada hesaplanan Cg 9,48, Cgk ise 9,09

çıkmıştır ki bu kabul için beklenen limit değerini karşılamakta ve üzerine çıkmaktadır.

6. SONUÇLAR ve TARTIŞMA

Bu yüksek lisans tez çalışmasında Yxlon Cheetah marka ve model bir dijital radyografi cihazıyla alınan ölçüm değerleri için ölçüm sistemleri analizi ve yeterlilik analizi çalışmaları gerçekleştirilmiştir. Ölçüm sistemi analizi çalışmasının amacı böyle bir dijital radyografi cihazı ile gerçekleştirilecek ölçüm sisteminin normatif kriterlere uygunluğunu sınamaktır. ISO/TS16949 kalite yönetim sistemi otomotiv sanayi ve ilgili yedek parça organizasyonları için ISO9001:2008 özel uygulamaları standardı ölçüm sistemleri analizi çalışmalarını gereklilik haline getirmiştir. Ölçüm ekipmanları kullanımla ve zamanla yıpranma, arızalar ve benzeri nedenlerle hassasiyetlerini yitirebilirler. Ölçüm sistemleri analizi çalışması, cihazların yeterliliğini ve ölçümcülerin yetkinlerini değerlendirmesi açısından bakıldığında önem arz etmekte ve dönemsel olarak çalışmanın tekrarlanması ölçüm sonuçlarının güvenilirliği açısından etkin bir değerlendirme sunmaktadır.

Gerçekleştirilen ölçüm sistemleri analizi çalışması ölçüm cihazından, ölçüm operatörlerinden ve parçadan kaynaklanan varyasyonları dikkate almaktadır. Bunun yanı sıra, ölçüm cihazı yeterlilik çalışması sadece cihazdan kaynaklanan varyasyon göz önüne alınarak yürütülmüştür.

Çalışma dahilinde iki adet numune tipi kullanılmıştır. Bunlar ABS malzemeden plastik enjeksiyon metodu ile imal edilmiş plastik parça ve Zamak5 malzemeden döküm yöntemi ile imal edilmiş metal parçadır. Her bir numune tipinden 10'ar adet numune temin edilmiş ve radyografik görüntüleme ve ölçümler bu parçalarla yetkin iki ölçümcü tarafından gerçekleştirilmiştir. Seçilen numune tiplerinin yoğunluk değerleri plastik için 1,04 g/cm³ ve metal için 6,7 g/cm³'dir. Böyle farklı iki numune tipi seçilmesinin nedeni cihazın X-ışını giriciliği limitleri nedeniyle görüntünün olumsuz yönde etkilenmesi halinde ölçümlerin ve buna bağlı olarak istatistik analiz sonuçlarının ne şekilde etkileneceğini de gözlemlemektir. Zira cihazda ölçüm yapılabilecek uygun görüntü, plastik parça için Şekil 5.1'de de verildiği gibi 33 kV, 20 μA; metal parça içinse Şekil 5.6'da da verildiği gibi 80 kV, 40 μA değerlerinde alınmış ve tüm ölçümler bu değerler değiştirilmeden gerçekleştirilmiştir. İstatistik analizlerin Bölüm 5.3.1 ve Bölüm 5.3.2'de belirtildiği üzere kriterler dahilinde oluşu bu aralıkta yoğunluk değerlerine sahip parçalar için olumlu sonuçlar alınabileceği yönünde bir göstergedir. Tüm çalışmalarda Minitab programı hesapların gerçekleştirilmesi ve grafiksel yorumların alınabilmesi amacıyla kullanılmıştır.

Plastik numune setinde Gage R&R çalışması için 10 adet numune yetkin iki ölçümcü tarafından 2'şer kez ölçülmüş ve toplamda 40 adet radyografik görüntü elde edilmiştir. Bu görüntülerden alınan ölçüm sonuçları Çizelge 5.3'te verilmiş ve bu sonuçlar aynı zamanda Minitab programına da girilmiştir. Bu çalışma sonucunda, Bölüm 5.3.1'de de görüleceği üzere Total Gage R&R değeri %2,34 olarak hesaplanmıştır ki bu değer kabul limiti olan 0-%10 aralığında kalmaktadır. Ayrıca tekrarlanabilirlik 1,58 ve yeniden üretilebilirlik 1,72 olarak elde edilmiştir. Aynı ölçümcüyle ardışık ölçümler alındığında sonuçlar arasındaki varyasyonu veren tekrarlanabilirlik değerinin bu denli iyi olması ekipman varyasyonunun oldukça düşük olduğuna işaret etmektedir. Aynı ölçüm cihazı ile aynı karakteristiğin farklı operatörler tarafından yapılan ölçümlerindeki ortalama varyasyonunu temsil eden yeniden üretilebilirlik değerinin bu denli iyi olması ise ölçüm operatörlerinin uygun şekilde ölçüm yapabildiğine işaret etmektedir. Bir diğer kriter olan ndc değeri 60 olarak hesaplanmıştır. Elde edilen değer, limit değer olan 5'in oldukça üzerindedir. Bu değerin uygun çıkması, ölçüm sisteminin ayrıştırma konusunda bir sorun yaşamadığını, ölçüm tekniğinin uygun olduğunu ve numunelerin tolerans aralığını temsil edecek şekilde uygun olarak seçildiğini gösterir. Plastik parça numune setinden seçilen bir adet numunenin aynı ölçümcü tarafından 25 kez ard arda ölçülmesi sonucu alınan verilerle Cg ve Cgk çalışması gerçekleştirilmiştir. Ölçüm sonuçları Çizelge 5.4'te verilmiştir. Bu çalışma, operatör ve parça kaynaklı varyasonu elimine ederek salt cihaz varyasyonunu ortaya koyma suretiyle ölçüm yeterliliği değerlerini verir. Hesaplamalar sonucu Cg 12,67, Cgk ise 11,48 çıkmıştır ki bu kabul için beklenen limit değerini karşılamakta ve üzerine çıkmaktadır. Plastik parça için toplamda 65 adet radyografik görüntüleme ve ölçüm gerçekleştirilmiştir.

Metal numune setinde Gage R&R çalışması için 10 adet numune 2 ölçümcü tarafından 2'şer kez ölçülmüş ve toplamda 40 adet radyografik görüntü elde edilmiştir. Bu radyografik görüntülerden alınan ölçüm sonuçları Çizelge 5.5'de verilmiş ve bu sonuçlar aynı zamanda Minitab programına da girilmiştir. Bu çalışma sonucunda, Bölüm 5.3.2'de de görüleceği üzere Total Gage R&R değeri %1,79 olarak hesaplanmıştır ki bu değer kabul limit olan 0-%10 aralığında kalmaktadır.

Ayrıca tekrarlanabilirlik 0,78 ve yeniden üretilebilirlik 1,61 olarak elde edilmiştir. NDC değeri ise 78 olarak hesaplanmıştır. Elde edilen değer, limit değer olan 5'in oldukça üzerindedir. Metal parça numune setinden seçilen bir adet numunenin aynı ölçümcü tarafından 25 kez ard arda ölçülmesi sonucu alınan verilerle Cg ve Cgk çalışması gerçekleştirilmiştir. Ölçüm sonuçları Çizelge 5.6'da verilmiştir. Bu çalışma operatör ve parça kaynaklı varyasonu elimine ederek salt cihaz varyasyonunu ortaya koyma suretiyle ölçüm yeterliliği değerlerini verir. Hesaplamalar sonucu Cg 9,48, Cgk ise 9,09 çıkmıştır ki bu kabul için beklenen limit değerini karşılamakta ve üzerine çıkmaktadır. Metal parça için toplamda 65 adet radyografik görüntüleme ve ölçüm gerçekleşirilmiştir.

Toplamda yapılan 130 adet rayografik görüntüleme ve ölçümler dijital ortamda saklanmıştır. Ayrıca Minitab programı ile yapılan hesaplama sonuçları da yine dijital ortamda kaydedilmiştir.

Alınan bu değerler ışığında ölçüm sisteminin hem Gage R&R bazında hem Cg ve Cgk değerleri bazında, farklı yoğunluklara sahip bu iki tip numune grubunun ilgili ölçüsünde, gereklilikler olan ve Bölüm 3.3.2'de verilen kriterlere uygun olduğu ve kararlı halde çalışabildiği gözlemlenmiştir.

KAYNAKLAR

- Amar, S., (2010). Six Sigma Qaulity: Concepts & Cases Volume I Statistical Tools In Six Sigma DMAIC Process With Minitab Applications.
- Anık, S., Tülbentçi, K., (1969). Endüstriyel Radyografi El Kitabı, İTÜ Türk Teknik Haberleşme Merkezi, Türkiye.
- Barrentine, L. B., (2002). Concepts for R&R Studies, ASQ Quality Press, Wisconsin, USA.
- Becker, G. L., (1990). Radiographic NDT, DuPont Systems E.I. du Pont de Nemours&Co., Inc., USA.
- Benbow, D. W., Broome, H. W., (2008). The Certified Reliability Engineer, ASQ Quality Press, Wisconsin, USA.
- **Bilge, A. N.,** (1991). Endüstride Nükleer Teknikler, İTÜ Rektörlük Ofset Atölyesi, Türkiye.
- **Bilge, A. N., Tuğrul, B.,** (1990). Endüstriyel Radyografinin Esasları, İTÜ Rektörlük Ofset Atölyesi, Türkiye.
- **Boiy, L.,** (2006). Successful Conversion to Digital X-Ray Detectors, GE Inspection Technologies, Berchem, Belgium.
- Breyfogle, W. F., (2003). Implementing Six Sigma Smarter Solutions Using Statistical Method, John Wiley & Sons, Inc.
- Bulubay, Ü., (1995). Co-60 ile Çelik Parçaların Radyografi İçin Oluşturulan Tek ve Çift Ön Ekranların Ağırlıklı Ortalama Yöntemiyle Değerlendirilmesi, İTÜ Nükleer Enerji Enstitüsü, Doktora Tezi, Türkiye.
- Chitra, P., Rani, B. S., Venkatraman, B., Raj, B., (2011). Evaluation of the Signal to Noise in Different Radiographic Methods and in Standard Digitizer, Indian Journal of Computer Science and Engineering (IJCSE), India.
- Czarski, A., (2009). Comparative Analysis of Methods of Hardness Assessment.
- **Çobanoğlu, M.,** (2011). Dijital Radyografi Kullanılarak Teğet Tekniği ile Çelik Borularda Cidar Kalınlığı Tayini, İTÜ, Türkiye.
- **Duman, M.,** (2000). Radyografi ile Kaynak Dikiş Kontrolü, İTÜ, Nük.En.Ens., İstanbul, Türkiye.
- Ewert, U., (2002). Upheaval In Industrial Radiology, 8th ECNDT, Barcelona, Spain.
- **Ewert, U., Zscherpel, U., Willems, P.,** (2002). Recent Trends In Digital Industrial Radiology, National Seminar Of ISNT Chennai, India.

GE - General Electric, (2007). Industrial Radiography Image Forming Techniques.

- George, M. L., Maxey, J., Price, M., Rowlands, D. (2005). The lean six sigma pocket toolbook. New York, NY: McGraw-Hill.
- Hammett, P. C., Frescoln, K. D., Guzman, L. G., (2003). Chaning Automotive Body Measuremet System Paradigms With 3D Non-Contact Measurement Systems, University of Michigan Transportation Research Institute (UMTRI).
- Hayes, C., (1997). The ABC's of Nondestructive Weld Examination, Published by the The American Welding Society, USA.
- Hussein, M. A., (2003). Handbook on Radiation Probing, Gauging, Imaging and Analysis Volume I: Basics and Techniques, Kulwer Academic Publishers, The Netherlands.
- IAEA, (2005). International Atomic Energy Agency, Non-Destructive Testing for Plant Life Assessment, Training Course Series 26, Vienna, Austria.
- IAEA, (2012). International Atomic Energy Agency, Training Guidelines in Non-Destructive Testing Techniques: Leakage Testing at Level 2, Training Course Series 52, Vienna, Austria.
- **Kiesel, D.**, (2006). Radiography Radioscopy ...a technology comparison, Asia-Pacific Conference on NDT, 5th – 10th, Auckland, New Zealand.
- Kong, F., (2008). Quality Evaluation for the Digital Radiography Inspection Based on Imaging Parameters, 17th World Conference on Nondestructive Testing, Shanghai, China.
- Kooshan, F., (2012). Implementation of Measurement System Analysis (MSA): In the PistonRing Company "Case Study", Department of Research & Development.
- Kotter, E., Langer, M., (2002). Digital Radiography With Large-Area Flat-Panel Dedectors, Department of Diagnostic Radiology, Freiburg University, Germany.
- Körner, M., (2007). Advances in Digital Radiography: Physical Principles and System Overview, From the Department of Clinical Radiology, University Hospital Munich, Nussbaumstr Munich, Germany.
- **LeGrand, R.,** (1966). Tahribatsız Muayene Usülleri, Çeviri: Prof.Dr. Doğan Gücer, İTÜ Türk Teknik Haberleşme Merkezi, Türkiye.
- Louka, G. A., Besseris, G. J., (2010). Gauge R&R for An Optical Micrometer Industrial Type Machine, Kingston University Faculty of Engineering.
- Mango, S. A., (2011). Automated and Quantitative Method For Quality Assurance of Digital Radiography Imaging Systems, International Workshop

Smart Materials, Structures&NDT in Aerospace, Conference NDT in Canada 2011, Montreal, Quebec, Canada.

- Mahmutyazıcıoğlu, N., (2008). Dijital Radyografi-Radyoskopi Bilgisayarlı Radyografi-CR (TS EN 14784-1, TS EN 14784-2), Türkiye, İstanbul.
- Measurement Systems Analysis (MSA) Reference Manual, 4th Edition, (2010). Chrysler Group LLC, Ford Motor Company, General Motors Corporation, AIAG.
- Measurement Systems Analysis (MSA) Reference Manual, 3rd Edition, (2002). Chrysler Group LLC, Ford Motor Company, General Motors Corporation, AIAG.

Minitab, Minitab Statistical Software Help Menu.

- Muckenhirn, S., (2012). Basis of Measuring Equipment Suitability in Quality Control.
- Nulong, N., (2007). Investigation Of Roundness Tester's Accuracy And Compensation Algorithm.
- **Pandiripalli, B.,** (2010). Repeatability and Reproducibility studies: A comparison of techniques, Chaitanya Bharathi Institute of Technology.
- Patel, R. J., (2005). Digital Applications of Radiography, 3rd MENDT Middle East Nondestructive Testing Conference & Exhibition, Bahrain, Manama.
- Quinn, R. A., Sigl, C. C. (1980). Radiography in Modern Industry, Fourth Edition, Eastman Kodak Company, Rochester New York, USA.
- Raj, B., Jayakumar, T., Thavasimuthu, M., (2002). Practical Non-Destructive Testing Second Edition, Woodhead Publishing Limited, India.
- Raj., B., Jayakumar, T., Rao, B. P. C., (1995). Non-Destrucitve Testing and Evaluation for Structural Integrity, Divison for PIE&NDT Development, Indira Gandhi Centre for Atomic Research, Kalpakkam, India.
- **Rebuffel, V., Dinten, J. M.,** (2007). Digital Radiology: An Opportunity for Quantitative Measurement, International Symposium on Digital industrial Radiology and Computed Tomography, Lyon, France.
- Selman, J., (2000). The Fundamentals of Imaginig Physics and Radiobiology, Ninth Edition, Charles C. Thomas Publisher Ltd., Illinois, USA.
- Singpal, B., (2009). Measurement System Analysis for Quality Improvement Using Gage R&R Study at Company XYZ, University of Wisconsin-Stout.
- Stacey, J., Mathematics of Measurement Systems Analysis, Measurements Engineer (Rolls-Royce plc.).
- **Stamm, S.** (2013). A Comparison of Gauge Repeatability and Reproducibility Methods, Indiana Stat University College of Technoloogy.

- Şahin, N., (2003). X-Işını Radyografi Tekniğine İlişkin Görüntü Kalite Değerlendirmesi, İTÜ, Nük.En.Ens, İstanbul, Türkiye.
- Şişman, F. Ç., (1992). Radyografik Performans ve Görüntü Rezolüsyonu Tayini, İTÜ, Nük.En.Ens., İstanbul, Türkiye.
- **Taylor, J. R.**, (1996). Introduction to Error Analysis, The Study of Uncertainties In Physical Measurements, University Science Books.
- **Ünal, G. Ç., Aydın, Ü., Orhan, H.,** (2004). Visualix Dijital Radyografi Sisteminde Farklı Görüntü İşleme Özelliklerinin Kanal Eğelerinin Uçlarının İzlenme Netliği Üzerine Etkisi.
- Vago, E., (2011). Analysis of attribute measurement systems Budapest University Of Technology And Economics, Faculty Of Chemical And Bioengineering, Department of Chemical and Environmental Process Engineering, Hungary.
- Valle, J. F. H., (2011). Pulsed-Electromagnet EMAT for High Temperature Application, PhD Thesis, University of Warwick, Department of Physics, UK.
- Wang, J., (2004). Assessing Measurement System Acceptability For Process Control And Analysis Using Gage R&R Study.
- Willcox, M., Downes, G., (2003). A Breif Description of NDT Techniques, Insight NDT Equipment Ltd, UK.
- Zahirian,S., (2011). Evaluating Non-Destructive Testing (NDT) Methods Uased for the Inspection of Flowlines on Offshore Production Facilities, University of Stavanger, Faculty of Science and Technology, Master's Thesis, Norway.
- **Zscherpel, U.,** (2000). Film digitisation systems for DIR : Standards, Requirements, Archiving and Printing, Germany.
- **Zscherpel, U., Ewert, U., Bavendick, K.,** (2007). Possibilities and Limit Of Digital Industrial Radiology: - The New High Contrast Sensitivity Technique-Examples and System Theoretical Analysis, International Symposium on Digital Industrial Radiology and Computed Tomography, Lyon, France.
- Url-1<http://en.wikipedia.org/wiki/File:EM_Spectrum_Properties_edit.svg> alındığı tarih: 06.09.2014.
- Url-2<http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/ Physics/attenuation.htm> alındığı tarih: 05.02.2012.
- Url-3<www.dentistry.ankara.edu.tr/ders-odr/odr-cp-03.doc> alındığı tarih: 28.02.2012.
- Url-4<http://www.bexcellence.org/Continuous-data.html> alındığı tarih: 09.07.2014.

- Url-5<http://www.itl.nist.gov/div898/handbook/mpc/section1/mpc113.htm> alındığı tarih: 09.07.2014.
- Url-6<http://support.minitab.com/en-us/minitab/17/topic-library/quality- tools /measurement-system-analysis/other-gage-studies-and-measures/type-1-gage-study/> alındığı tarih: 15.01.2015.
- Url-7<http://www.yxlon.com/Products/X-ray-systems/Y-Cheetah> alındığı tarih: 28.11.2014.
- Url-8<http://issuu.com/jigsawmc/docs/diecasting-zinc-alloy-specifications-turkish> alındığı tarih: 28.11.2014.
- Url-9<http://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene> alındığı tarih: 28.11.2014.
- Url-10<http://teststandard.com/data_sheet/ABS_Data_sheet.pdf> alındığı tarih: 28.11.2014.
- Url-11<http:en.m.wikipedia.org/wiki/Minitab> alındığı tarih: 20.01.2015.

EKLER

EK A: d₂ değerleri

									Sub	group Siz	(m) 30								
	7	£	+	40	9	7	8	6	10	н	11	13	11	15	91	11	18	19	20
-	1.0	2.0	2.9	3.8	4.7	5.5	6.3	072	1.7	83	0.6	9.6	102	10.8	11.3	6 11	12.4	12.9	13.4
	1.41421	1.91155	2.238.87	2.48124	2.67253	2.82981	2.96288	3.07794	3.17905	3.26909	3,35016	3.42378	3.49116	3 55333	3.61071	3,66422	3.71424	3.76118	3.80537
1	1.9701	3.8	5.7	7.5	2.60438	2.76779	030000	300446	1.5.1	16.5	8.71	1 38017	14407	21.387	1 57156	23.5	24.5	3.725.5	3 77013
5	2.8	5.1	8.4	ITI	13.6	16.0	183	20.5	22.6	24.6	26.5	28.4	30.1	319	335	35.1	36.7	38.2	39.7
10 	1.23105	1.76858	2.12049	2.37883	2.58127	2.74681	2.88.628	3.00643	3.11173	3.2052.6	3.28931	3.36550	3.43512	3.49927	3.55842	3,61351	3.66495	3.71319	3.75857
4	3.7	25	11.2	14.7	18.1	21.3	244	57.3	301	327	158	2.7.2	401	42.4	44.6	46.7	48.8	50.8	\$2.8
	1.20621	1.7.1989	2,10522	2.36571	2.56964	2.73626	2.87.656	2.99737	3.10321	3.19720	3.28163	3.35815	3.42.80.5	3.49246	3.55183	3,60712	3.65875	3.70715	3.75268
¥1	4.6	9.3	13.9	18.4	22.6	26.6	30.4	34.0	37.5	40.8	44.0	47.1	20.1	52.9	55.7	58.4	61.0	63.5	63.9
	1.19105	1.73857	2.09601	2.35781	2.56265	16671.7	28/071	7616672	3.09808	3, 19255	3.27/01	5.35372	3.42.38.1	3.48850	3.54787	3,6032.8	5.65502	3.70352	3.74914
•	5.5	1.11	7.0000	22.0	27.0	31.8	36.4	40.8	45,0	49.0	52.8	56.5	1.000	1 40561	3 64671	70.0	73.1	76.1 3.70100	1.61
I	1 10000	North I	COM017	1 20 200	2 14 CK/ CC 7	100717	19 60 0000	AT CONT	10HM	1 1601 1	24212.42	11000 5	1 MAN	100044	WORK C	2100012	100/00	00.0	010410
	1.17348	1.72555	2.08543	2.34875	2.55460	2.72263	2.86401	2.98568	3.09222	3.18679	3.27172	3.34866	3.41.894	3 48368	3.54333	3.5988.8	3.65075	00.0 3.69936	3.74509
80 (5	7.2	14.8	27.1	292	36.0	42.4	48.5	543	599	65.2	70,3	75.2	80.0	84.6	89.0	93.3	116	101.4	105.3
() s	1.16794	1.72147	2.08212	2,34591	2.55208	2.72036	286192	2,98373	3,090.39	3,18506	3.27006	3.34708	3.41742	3.48221	3.54192	3.59751	3.64941	3,69806	3.74382
đ	8.1	16.6	24.9	32.9	404	47.7	54.5	61.1	673	133	1.97	84.6	0.00	95.1	1.00.1	104.9	1 09.5	114.1	5811
10.1	1.16361	1.71828	2.07953	2.34370	2.55013	2.71858	2.86028	2.98221	3.08896	3.18370	3.26878	3,34585	3.41.62.4	3.48107	3.54081	3.59644	3.64838	3.69705	3.74284
i di c	9 9.0	18.4	27.6	36.5	614	52.9	90.0	67.8	24.8	\$1.5	87.9	0'1-6	666	1.05.6	2.111	116.5	1.21.7	126.7	131.6
IU	1.16014	L71573	2.07746	2,34192	2.54856	2.71717	2.85898	2.98100	3.087.81	3,18262	3.26775	3.34486	3.41529	3.48016	3.53993	3.59559	3.64755	3,69625	3.74205
s J	6.6	20.2	30.4	40.1	49.4	58.2	66.6	74.6	822	9.68	96.6	103.4	6 601	1162	122.3	128.1	133.8	139.4	7 441
6 0 1	17/21/1	1.71303	2.075/1	2.34048	7.54728	2.716.00	782791	2,5480.00	3.086.88	3.18174	3.2009U	5.34406	3.4145.2	3.4.7441	176557	3.59489	3.04087	3506015	5.7414.1
-i Ið (10.7	22.0	30.1	13.7	8.65	63.5	72.0	81.3	89.7	126	105.4	12.7	119.9	126.7	E.0E1	139.8	146.0	152.0	157.9
1 (00	TTTTTT	1./1169	00410.7	176007	170407	40 CT / 7	70/ 007	116167	01000.0	3.10100	07007.5	10010	10011-0	10/10/	1090000	0.0940.0	0.0040.0	CU060/C	1004/10
m	1 1 1 1 2 2 200	1 71041	30.8	115	28.3	08.7	18.0	7 07947	2 //2 //	105.8	1.4.1	1.12	2 41 72 2	2.47876	144.4	3 50281	1.861	3.60457	3 74041
ľ	207011	25.7	20.6	61.0	8.09	74.0	817	010	104.6	112.0	0.001	121 5	120.9	117.8	146.4	162.0	1 70.3	122.2	184.0
	1.15115	1.70914	207213	2.33737	2.54452	2.71351	2.85 562	2.97787	3.084.87	3.17984	3.26510	3.34233	3.41286	3.47781	3.53766	3.59339	3.64541	3.69417	3.74002
F	5 13.4	21.5	41.3	54.0	67.2	5.67	1.02	101.6	1.12.1	1.22,1	131.7	6'0+1	149.8	158.3	100.0	174.6	182.4	0.021	6.721
	1.14965	1.70804	2.07125	2.33661	2.54385	2.71290	2.85506	2.97735	3.08438	3,17938	3,26465	3.34191	3.41.245	3,47742	3.53728	3.59302	3.64505	3.69382	3,73969
Ħ.	6 143	293	14	582	17	5 78	967	108.4	119.5	130.7	1404	1 50 2	1 651	1689	1177	1863	9 101	202.6	210.4
f	1.148.55	31 1 VU/US	2.0.704/	AL 60 2	075952	2.114.51	2.6545/	219/089	3,05325	3,118/1	179-02-5	5.34154 1 40 6	3,41210	1101 1201	2/2050.5	107.0	t/tto'5	315.0	3,733.6
•	1 14717	1 70623	2.0697K	2 46535	2 54274	2,71190	2.85413	2,47644	3 08 3 58	3. 17 Nh	E (01 97 E	1 34121	3 41178	3,47677	1.53666	3 59242	3.64447	3.69325	EIDELE
=	8 16.0	32.9	49.5	65.5	80.6	95.1	108.8	121.9	134.4	146.4	157.9	0.69.1	179.7	190.0	199.9	209.5	218.8	227.9	236.7
	1.14613	1.70547	2.06017	2.33483	2.54228	2.71148	2.85375	2.97613	3.08324	3.17829	3.26362	3.34092	3.41150	3.47650	3.53640	3.59216	3.64422	3.69301	3.73890
=	6'91 6	34.7	52.3	1.69	1'58	0001	114.8	128.7	141.9	154.5	166.7	1.78.4	9'681	200.5	211.0	221.1	231.0	240.5	249.8
1	1.14520	1.70480	2,06862	2,33436	2.54187	2.7 II II	2.85341	2.97581	3.08294	3.17801	3.26333	3.34066	3,41125	3.47626	3.33617	3.39194	3.64400	3.69280	3.73869
ra	0 17.8 1.14437	36.5 1.70419	55.0 2.06813	2.33394	89.6 2.54149	105.6 2.71077	120.9	135.4	149.3 3.08267	3.17775	3.26311	3.34042	3.41103	3.47605	3.53596	232.8 3.59174	3.64380	2532 3.69260	263.0 3.73850
dh.	1.12838	1.69257	2.05875	2.32.593	2.53441	2.70436	2.8472	2.97003	3.07751	3.17287	3.25846	3.33598	3.40676	3.47193	3.53198	3.58788	3.64006	3.68896	3.735
cq	0.876	1.815	2.7378	3.623	4.4658	52673	6.0305	6.7582	7.4539	8.1207	8.7602	9.3751	9.9679	10.5396	11.0913	11.6259	12.144	12.6468	13.13.62
1	11. 11	11 P P	he and the de-			C. T. L. L. V.	100 IL												

 $v\left(\overline{R}/a_{1}^{*}\right)^{2}/\sigma^{12}$ is distributed approximately as a χ^{2} distribution with v degrees of freedom where \overline{R} is the average range of g subgroups of size m

Note: The notation used in this table follows that of Acheson Duncen, Quality Control and Industrial Statistics, 5t edition, McGraw-Hill, 1986.

Values associated with the Distribution of the Average Range

Çizelge A.1 : d_2 değerleri (MSA., 2010) Table C 1: d_2^* Table
ÖZGEÇMİŞ

Ad Soyad	: Alper İLERLER

Doğum Yeri ve Tarihi : İstanbul, 1985

E-Posta : alper.ilerler@gmail.com

ÖĞRENİM DURUMU:

- Lisans : 2007, Yıldız Teknik Üniversitesi, Elektrik-Elektronik Fakültesi, Elektrik Mühendisliği Bölümü
- Yükseklisans :

MESLEKİ DENEYİM VE ÖDÜLLER:

TEZDEN TÜRETİLEN YAYINLAR, SUNUMLAR VE PATENTLER:

• İlerler, A., Altınsoy, N., "Measurement System Analysis for a Digital Radiography Device", 5th International Advances in Applied Physics and Material Science and Congress and Exhibition (APMAS 2015) 16-19 April 2015 Ölüdeniz Turkey (Kabul Edildi)

DİĞER YAYINLAR, SUNUMLAR VE PATENTLER: