
 

    Energy Science and Technology Division  

 

    Energy Science and Technology Program 

 

 
 

 

 

 

 

 
 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISTANBUL TECHNICAL UNIVERSITY  ENERGY INSTITUTE 

M.Sc. THESIS 

MAY 2015 

 

WIND SPEED PREDICTION USING LINEAR PREDICTION METHODS 

 

Zafer CANAL 



 

  



 

Energy Science and Technology Division  

 

 Energy Science and Technology Program 

 

 

 

Anabilim Dalı : Herhangi Mühendislik, Bilim 

Programı : Herhangi Program 

 

Thesis Advisor: Assist. Prof. Dr. Burak BARUTÇU 

    

MAY 2015 

ISTANBUL TECHNICAL UNIVERSITY  ENERGY INSTITUTE 

WIND SPEED PREDICTION USING LINEAR PREDICTION METHODS 

 

 

M.Sc. THESIS 

Zafer CANAL 

 



 

  



 

    

MAYIS 2015 

İSTANBUL TEKNİK ÜNİVERSİTESİ  ENERJİ ENSTİTÜSÜ 

LİNEER ÖNGÖRÜ METODLARI İLE RÜZGAR HIZI ÖNGÖRÜSÜ 

 

YÜKSEK LİSANS TEZİ 

Zafer CANAL 

(301111028) 

 

Enerji Bilim ve Teknoloji Anabilim Dalı  

 

Enerji Bilim ve Teknoloji Programı 

 

 

 

Anabilim Dalı : Herhangi Mühendislik, Bilim 

Programı : Herhangi Program 

 

Tez Danışmanı: Yar. Doç. Dr. Burak BARUTÇU 



 

 

 



v 

 

  

Thesis Advisor :  Assist. Prof. Dr. Burak  BARUTÇU .............................. 

 İstanbul Technical University  

Jury Members :  Prof. Dr. Sibel MENTEŞ                   ............................. 

 İstanbul Technical University  

 

Assist. Prof. Dr. Deniz YILDIRIM   .............................. 

 İstanbul Technical University  

 

Zafer Canal is a M.Sc. student of ITU Energy Institute student ID 301111028, 

successfully defended the thesis entitled “WIND SPEED PREDICTION USING 

LINEAR PREDICTION METHODS ”, which he prepared after fulfilling the 

requirements specified in the associated legislations, before the jury whose signatures 

are below. 

 

 

Date of Submission : 04 May 2015 

Date of Defense :  26 May 2015 
 



vi 

 

  



vii 

 

 

 

 

To my family, 

 

 

 

  



viii 

 



ix 

 

FOREWORD 

Initially, I would like to thank my academic advisor Assist. Prof. Dr. Burak  

BARUTÇU. This thesis would not have been possible without his inspiration and 

effort. I appreciate for his advice, encouragement and support throughout the sudy 

and writing this thesis. 

 

I am deeply thankful to my family for their love, support, and endless trust during my 

life. Finally, I want to thank my wife Cansu DENİZ for her help, support, patience, 

encouragement and invaluable advices at hard times. 
 

 

 

May 2015 

 

Zafer CANAL 

Mechanical Engineer 

 

 

 

 

 

 

 

 

 

 

  



x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

TABLE OF CONTENTS 

Page 

FOREWORD ............................................................................................................. ix 
TABLE OF CONTENTS .......................................................................................... xi 
ABBREVIATIONS ................................................................................................. xiii 

LIST OF TABLES ................................................................................................... xv 
LIST OF FIGURES ............................................................................................... xvii 
SUMMARY ............................................................................................................. xix 

ÖZET ........................................................................................................................ xxi 
1. INTRODUCTION .................................................................................................. 1 

1.1 Purpose of Thesis .............................................................................................. 2 
1.2 Methodology ..................................................................................................... 2 

2. LINEAR PREDICTION METHODS .................................................................. 5 
2.1 General Formulation .......................................................................................... 5 
2.2 Autoregressive Processes (AR) ......................................................................... 5 

2.3 Moving Average (MA) and Autoregressive Moving Average (ARMA) 

Processes ............................................................................................................... 6 
2.4 Autoregressive Integrated Moving Average (ARIMA) Processes .................... 8 

     2.4.1 The role of the constant term in ARMA and ARIMA .............................. 8 

     2.4.2 Characteristics of ARIMA processes ........................................................ 9 
2.5 Autoregressive Models with Exogenous Input (ARX) ................................... 10 
2.6 Autoregressive Moving Average Models with Exogenous Input (ARMAX) 

and Autoregressive Integrated Moving Average Models with Exogenous Input 

(ARIMAX) .......................................................................................................... 11 
2.7 Parameter Estimation ...................................................................................... 12 

     2.7.1 Yule-Walker method ............................................................................... 12 
     2.7.2 Levinson-Durbin algorithm ..................................................................... 13 

     2.7.3 Burg algorithm ........................................................................................ 14 
     2.7.4 Maximum likelihood estimation ............................................................. 16 
2.8 Methods and Criterias for Optimal Model Order Selection ............................ 18 

     2.8.1 Akaike information criterion (AIC) ........................................................ 19 
     2.8.2 Bayesian information criterion (BIC) ...................................................... 20 
     2.8.3 Final prediction error (FPE) .................................................................... 21 

3. MODEL  IDENTIFICATION ............................................................................ 23 
3.1 Data Specification ........................................................................................... 23 
3.2 Autocorrelation Function (ACF) and Partial Autocorrelation (PACF) tests ... 24 
3.3 AIC and BIC analysis ...................................................................................... 25 

4. RESULTS ............................................................................................................. 29 
4.1 AR Results ....................................................................................................... 29 
     4.1.1 AR(8) ....................................................................................................... 29 
4.2 ARMA Results ................................................................................................ 31 



xii 

 

     4.2.1 ARMA(4,3) ............................................................................................. 31 

     4.2.2 ARMA(14,13) ......................................................................................... 33 
4.3 ARIMA Result ................................................................................................. 34 
     4.3.1 ARIMA (3,1,2) ........................................................................................ 34 

     4.3.2 ARIMA (30,1,29) .................................................................................... 36 
4.4 ARX Results .................................................................................................... 38 
     4.4.1 ARX(1) .................................................................................................... 38 
4.5 ARMAX Result ............................................................................................... 40 
     4.5.1 ARMAX(2,1) ........................................................................................... 40 

4.6 ARIMAX Result .............................................................................................. 41 
     4.6.1 ARIMAX(8,1,7) ...................................................................................... 41 
4.7 Comparison of the Results ............................................................................... 43 

5. CONCLUSION ..................................................................................................... 45 

REFERENCES ......................................................................................................... 47 
 

 

 

 

 

 

 

 



xiii 

 

 

ABBREVIATIONS 

ACF : Autocorrelation Function 

AIC : Akaike Informatıon Criteria 

AR : Autoregressive 

ARIMA : Autoregressive Integrated Moving Average 

ARIMAX : Autoregressive Integrated Moving Average with exogenous input  

ARMA : Autoregressive Moving Average 

ARMAX : Autoregressive Moving Average with exogenous input 

ARX : Autoregressive with exogenous input 

BIC : Bayesian Informatıon Criteria 

f-ARIMA : Fractional Autoregressive Integrated Moving Average 

FIR : Finite Impulse Response 

FPE : Final Prediction Eror  

IIR : Infinite Impulse Response 

MA : Moving Average 

MSE : Mean Squared Error 

NN : Neural Network 

PACF : Partial Autocorrelation Function 

s-ARIMA : Seasonal Autoregressive Integrated Moving Average 

UC : Unit Commitment 

WPF : Wind Power Forecasting 

WSS : Wide Sense Stationary 

 

 

 

 



xiv 

 

 

 

 

 

 

 

 

 



xv 

 

 

LIST OF TABLES 

Page 

Table 3.1: AIC and BIC optimal model order results. .............................................. 28 
Table 4.1: Different ARIMAX model results. .......................................................... 43 

Table 4.2: Comparison of the results. ....................................................................... 44 

 

  



xvi 

 

 

 

 

 

 

 

 

 



xvii 

 

 

LIST OF FIGURES 

Page 

Figure 1.1: Scheme for the study of forecasting wind speed. ..................................... 3 
Figure 2.1: (a) AR, (b) MA, and (c) ARMA processes. ............................................. 7 

Figure 2.2: ARX Process. ......................................................................................... 11 

Figure 3.1: Gemlik meteorological station wind speed measurements on April 2013.

 ............................................................................................................... 23 

Figure 3.2: Location of the Automatic Meteorological Observation Station. .......... 24 
Figure 3.3: ACF and PACF plot of the data series. .................................................. 25 

Figure 3.4: AIC and BIC results of AR models from AR(1) to AR(75)................... 26 

Figure 3.5: AIC and BIC results of ARMA models from ARMA(2,1) to 

ARMA(75,74). ........................................................................................ 26 
Figure 3.6: AIC and BIC results of ARIMA models from ARIMA(2,1,1) to 

ARIMA(75,1,74). .................................................................................... 27 
Figure 3.7: AIC and BIC results of ARX models from ARX(1) to ARX(75). ......... 27 

Figure 3.8: AIC and BIC results of ARMAX models from ARMAX(2,1) to  

ARMAX(75,74). ..................................................................................... 28 
Figure 3.9: AIC and BIC results of ARIMAX model from ARIMAX(2,1,1) to     

ARIMAX(75,1,74) .................................................................................. 28 

Figure 4.1: AR(8) Observed and Forecasted Datas from 9 to 4320. ........................ 29 

Figure 4.2: AR(8) Observed and Forecasted Datas from 2000 to 2100. .................. 30 
Figure 4.3: AR(8) Residuals. .................................................................................... 30 

Figure 4.4: AR(8) Plot and Normality Plot of Standart Residuals............................ 31 
Figure 4.5: ARMA(4,3) Observed and Forecasted Datas from 5 to 4320. ............... 31 
Figure 4.6: ARMA(4,3) Observed and Forecasted Datas from 2000 to 2100. ......... 32 

Figure 4.7: ARMA(4,3) Residuals. ........................................................................... 32 
Figure 4.8: ARMA(4,3) Q-Q Plot and Normality Plot of Standart Residuals. ......... 32 

Figure 4.9: ARMA(14,13) Observed and Forecasted Datas from 15 to 4320. ......... 33 
Figure 4.10: ARMA(14,13) Observed and Forecasted Datas from 2000 to 2100. ... 33 
Figure 4.11: ARMA(14,13) Residuals. ..................................................................... 34 

Figure 4.12: ARMA(14,13) Q-Q Plot and Normality Plot of Standart Residuals. ... 34 
Figure 4.13: ARIMA(3,1,2) Observed and Forecasted Datas from 5 to 4320. ......... 35 
Figure 4.14: ARIMA(3,1,2) Observed and Forecasted Datas from 2000 to 2100. ... 35 
Figure 4.15: ARIMA(3,1,2) Residuals...................................................................... 36 

Figure 4.16: ARIMA(3,1,2) Q-Q Plot and Normality Plot of Standart Residuals. ... 36 
Figure 4.17: ARIMA(30,1,29) Observed and Forecasted Datas from 32 to 4320. ... 37 
Figure 4.18: ARIMA(30,1,29) Observed and Forecasted Datas from 2000 to 2100.

 .............................................................................................................. 37 
Figure 4.19: ARIMA(30,1,29) Residuals.................................................................. 37 
Figure 4.20: ARIMA(30,1,29) Q-Q Plot and Normality Plot of Standart Residuals.

 .............................................................................................................. 38 



xviii 

 

Figure 4.21: ARX(1) Observed and Forecasted Datas from 2 to 4320. .................... 38 

Figure 4.22: ARX(1) Observed and Forecasted Datas from 2000 to 2100. .............. 39 
Figure 4.23: ARX(1) Residuals. ................................................................................ 39 
Figure 4.24: ARX(1) Q-Q Plot and Normality Plot of Standart Residuals. .............. 39 

Figure 4.25: ARMAX(2,1) Observed and Forecasted Datas from 3 to 4320. .......... 40 
Figure 4.26: ARMAX(2,1) Observed and Forecasted Datas from 2000 to 2100. .... 40 
Figure 4.27: ARMAX(2,1)  Residuals. ..................................................................... 41 
Figure 4.28: ARMAX(2,1) Q-Q Plot and Normality Plot of Standart Residuals. .... 41 
Figure 4.29: ARIMAX(8,1,7) Observed and Forecasted Datas from 3 to 4320. ...... 42 

Figure 4.30: ARIMAX(8,1,7) Observed and Forecasted Datas from 2000 to 2100. 42 
Figure 4.31: ARIMAX(8,1,7) Residuals. .................................................................. 42 
Figure 4.32: ARIMAX(8,1,7) Q-Q Plot and Normality Plot of Standart Residuals. 43 

  

 

 

 

 

 

 

 

 

 

 



xix 

 

WIND SPEED PREDICTION USING LINEAR PREDICTION METHODS 

SUMMARY 

Short-term forecasting of wind speed is of great importance to wind turbine 

operation and efficient energy harvesting. In this thesis, one-step ahead wind speed 

forecasting is performed. Six approaches based on linear prediction methods are 

employed for this purpose. The first approach features the autoregressive process 

(AR) with the model order eight. Model order selection criterias, Akaike information 

criteria (AIC) and Bayesian information criteria (BIC), are used for optimal model 

order selection. These information criterias selected the same autoregressive model 

with an order of eight, which is shown as AR(8). Second approach employs the 

autoregressive moving average process (ARMA). In this case, AIC and BIC selected 

the autoregressive moving average model with different order. First model is defined 

as autoregressive moving average model with an autoregressive order of four and 

moving average order of three which can be shown as ARMA(4,3) and second model 

is defined as ARMA(14,13). Third approach features the autoregressive integrated 

moving average process (ARIMA). In this case, AIC and BIC pointed different 

model orders once again. In addition the notation of ARMA, an integration process 

with an order of one is added and shown as ARIMA (30,1,29) and ARIMA(3,1,2). 

Two different models are performed in this case. On the other hand fourth, fifth and 

sixth approaches involve employing an exogenous input to the first three approaches. 

In first case, autoregressive model with an exogenous input, which is denoted as 

ARX is featured. Depending on the model selection criterias, the order of 

autoregressive model with an exogenous input is selected as one, which is shown as 

ARX(1). In the next case, the criterias for model order selection pointed the same 

model order. Autoregressive order of two and moving average order of one with an 

exogenous input model, which denoted as ARMAX(2,1) is performed. In third case, 

AIC and BIC selected the first order integrated autoregressive order of eight and 

moving average order of seven with an exogenous input which is shown as 

ARIMAX(8,1,7). By employing these six approaches, one step ahead wind speed 

forecasting is performed. Wind speed data observed in Bursa-Gemlik location with a 

time interval of ten minutes. The results are compared using mean absolute error 

(MAE) and root mean square error (RMSE) as a measure for forecasting quality. The 

goodness of fit is checked by calculating r-square 𝑅2 statistics. It is found that the 

AR, ARX, ARMA and ARIMA model is better at predicting the wind speed 

corresponding the 𝑅2 statistics. MAE, RMSE and 𝑅2 statistics also show that ARX 

model is the best for forecasting one step ahead wind speed. Moreover, ARMAX 

model is also good at forecasting wind speed whereas it’s lower than AR, ARX, 

ARMA and ARIMA . Results also show that ARIMAX (8,1,7)  model is the worse 

for forecasting one step ahead wind speed. In order to check the success of criterias 

for model order selection, various ARIMAX models are analyzed. It can be seen 

from the results that other ARIMAX models are better than ARIMAX(8,1,7). In 

other words AIC and BIC is not withstanding selecting the model order of 

autoregressive integrated moving average models with an exogenous input. 
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LİNEER ÖNGÖRÜ METODLARI İLE RÜZGAR HIZI ÖNGÖRÜSÜ 

ÖZET 

Rüzgar hızının ve yönünün değişkenliği ve buna bağlı olarak rüzgar enerji 

santralinden elde edilen enerjinin değişkenliği ve kontrol edilememesi, yüksek 

miktarda rüzgar enerjisine dayalı elektriğin bağlı olduğu şebekelerde güç kalitesi, 

üretim/tüketim dengesi, bakım onarım planlaması ve güç sisteminin güvenilirliği 

açısından sorunlara yol açmaktadır. Türkiye’nin mevcut rüzgar potansiyeli ve 2023 

yılı sonunda elde edilmesi hedeflenen 20 GW kurulu rüzgar gücü düşünüldüğünde, 

şebekeye entegre edilen rüzgar enerjisinde yaşanacak artışla birlikte yukarıda 

bahsedilen sorunların ilerleyen yıllarda öneminin artacağını söyleyebilriz. Yüksek 

doğruluğa sahip ve uygulaması kolay rüzgar hızı öngörü yöntemleri bu sorunları en 

aza indirmek için kullanılacak en etkin çözümdür. Bu amaçla bu tez kapsamında 

böyle bir çalışma gerçekleştirilmiştir. 

Bu çalışmada gerçekleştirilecek rüzgar hızı öngörüsü için lineer öngörü metodları 

otoregresif modeli (AR), otoregresif hareketli ortalamalar modeli (ARMA), 

otoregresif bütünleşik hareketli ortalamalar modeli (ARIMA), dışsal değişkenli 

otoregresif modeli (ARX), dışsal değişkenli otoregresif hareketli ortalamalar modeli 

(ARMAX), dışsal değişkenli otoregresif bütünleşik hareketli ortalamalar modeli 

(ARIMAX) kullanılmıştır. Öngörü, bir değişkenin belirli varsayımlar altında 

gelecekte alabileceği değerlerin önceden yaklaşık olarak belirlenmesi olarak 

tanımlanır. Zaman serisi analizi ile öngörü, incelenen bir değişkenin şimdiki ve 

geçmiş dönemdeki gözlem değerlerini kullanarak ve birtakım varsayımlar altında 

öngörü değerlerinin hangi sınırlar arasında gerçekleşebileceğini ortaya koymak için 

yapılan uğraşlardır. Lineer öngörü metotları seriye en iyi uyan, en az parametre 

içeren doğrusal modeli belirleyerek öngörüde bulunur. 

Öngörüde kullanılacak rüzgar hızı ölçüm verileri, meteoroloji genel müdürlüğü’nün 

Gemlik’te bulunan otomatik gözlem istasyonundan alınmıştır. Rüzgar hızı ölçüm 

değerleri 10 dakikalık aralıklarla, kap anemometre ile 10 m yükseklikte kaydedilmiş 

4320 (1 aylık) veriden  oluşmaktadır.  

 AR, ARMA, ARIMA, ARX, ARMAX ve ARIMAX modelleri sırasıyla rüzgar hızı 

ölçüm veri serisinin tamamına uygulandı. Model mertebeleri 1’den 75’e kadar 

değiştirilerek her bir model mertebesi veri serisine uygulanıp, optimal model 

mertebesi seçme için kullanılan Akaike enformasyon kriteri ve Bayesian 

enformasyon  kriteri hesaplandı, bunların grafikleri çizdirildi Figure (3.4, 3.5, 3.6, 

3.7, 3.8, 3.9). Table 3.1. de görüldüğü üzere en düşük enformasyon kriter değerinin 

yakalndığı mertebeler modeller için en uygun model mertebesi seçildi.  

AR modeli için, AIC ve BIC model mertebesi olarak sekizi gösterdi. AR(8)  

modeline en büyük olabilirlik kestirimi yöntemi kullanılarak model katsayıları 

hesaplandı. Hesaplanan bu değerler kullanılarak bir-adım ileri öngörüde bulunuldu
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ve gerçek ölçüm değerleri ile karşılaştırıldı. Öngörünün başarımını ölçmek için kalan 

değerler hesaplandı. Kalan değerlerden ortalama mutlak hata ve karesel ortalama 

hata hesaplaması yapıldı. Örtüşme düzeyinin başarısını ölçmek için ise 𝑅2 istatistiği 

hesaplandı. Yapılan öngörüler sonunda elde edilen kalanların grafiği çizdirildi. 

Kalanların rastgele dağılıp dağılmadığını gözlemlemek için dağılım grafiği çizdirildi. 

Bunlara ek olarak öngörü edilen ve gerçek gözlem değerleri aynı grafikte gösterildi, 

öngörünün gerçek değerlerin değişimine nasıl tepki verdiğinin daha net görebilmek 

için 2000. veri ile 2100. veri arası ayrı olarak çizdirildi. yine Daha sonra bu işlemler 

sırasıyla ARMA, ARIMA, ARX, ARMAX ve ARIMAX modellerinde tekrarlandı. 

AIC ve BIC metodları ARMA ve ARIMA modelleme türleri için ikişer farklı 

mertebeyi işaret etti. ARMA ve ARIMA modellemeleri için ikişer farklı mertebede 

model belirlendi 

ARMA modeli için AIC model mertebesi ARMA (14,13)’ü BIC ise model mertebesi 

ARMA(4,3)’ü işaret etti. Örtüşme düzeyinin başarısına baktığımızda 𝑅2 istatistiği 

ARMA (14,13) de daha yüksek çıktığını ve ARMA (4,3)’e göre daha iyi bir örtüşme 

gösterdiğini görüyoruz. Hata terimlerine baktığımızda yine ARMA(14,13)’ün 

ARMA(4,3)’e göre daha düşük öngörü hatası verdiği gözlemlendi. 

ARIMA modeli için AIC model mertebesi ARIMA (30,1,29)’u BIC ise model 

mertebesi ARIMA(3,1,2)’yi işaret etti. Örtüşme düzeyinin başarısına baktığımızda 

𝑅2 istatistiği ARIMA (30,1,29) de daha yüksek çıktığını ve ARIMA (3,1,2)’e göre 

daha iyi bir örtüşme gösterdiğini görüyoruz. Hata terimlerine baktığımızda yine 

ARIMA(30,1,29)’un ARIMA(3,1,2)’e göre daha düşük öngörü hatası verdiği 

gözlemlendi. Bu iki farklı modelleme türü için yapılan analiz sonuçlar incelendiğinde 

AIC ve BIC metodlarının farklı değer gösterdiği iki model mertebesinde AIC’in 

işaret ettiği modelin daha başarılı olduğu gözlenmektedir. 

Eksojen girişli otoregresif modeller için bu işlemler tekrarlandığında: ARX modeli 

için AIC ve BIC model mertebesi ARX(1)’i ARMAX için model mertebesi 

ARMAX(2,1)’i ve ARIMAX için model mertebesi ARIMAX(8,1,7) ‘yi işaret 

etmekte. Bunların içinde ARX(1) modelinin örtüşme düzeyi başarısı  𝑅2 istatistiği 

değerine bakıldıında, diğer modellere kıyasla en yüksek değeri verdiğini görüyoruz. 

Hata terimlerine baktığımızda da diğer modellemelere göre en düşük hatayı yine 

ARX(1) modelinde yakaladığımızı görmekteyiz.  

ARMAX(2,1) modelinin örtüşme düzeyinin başarısına baktığımızda 𝑅2 istatistiği 

değerleri otoregresif modellere ve ARX(1) modeline göre biraz düşük olduğunu 

söylenebilir. Hata terimlerine baktığımızda ARMAX(2,1)’in AR, ARMA, ARIMA 

ve ARX modellerine göre daha yüksek öngörü hatası verdiği gözlemlendi. 

ARIMAX modeli için ise AIC ve BIC, model mertebesi olarak ARIMAX(8,1,7)’i 

işaret etmiştir. ARIMAX(8,1,7)’nin örtüşme düzeyinin başarısına baktığımızda 𝑅2 

istatistiği değerinin diğer modellere göre çok düşük olduğu görülmektedir. . Hata 

terimlerine baktığımızda da en yüksek hatayı yine ARIMAX(8,1,7) modelinde 

olduğunu görmekteyiz. Bu sonuçlar ARIMAX(8,1,7) modelinin öngörüde bulunmak 

için uygun bir model olmadığını göstermektedir. 

ARIMAX modelinde yakalanan bu başarısız sonuçlar üzerine ek bir çalışma olarak 

farklı model mertebelerine sahip ARIMAX modelleri veri serisinin öngörüsünde 

kullanıldı. Bu çalışmada ARIMAX(1,1,0), ARIMAX(2,1,1), ARIMAX(20,1,19), 

ARIMAX(9,1,8) ve ARIMAX(7,1,6) modelleri öngörüde kullanılmak üzere seçilerek 

ARIMAX modellerinin başarımı ile ilgili bir yorumla getirildi. Denenen ARIMAX 
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modellerinin ARIMAX(8,1,7) modeline göre örtüşme düzeylerinin çok daha iyi 

durumda olduğunu ve hata terimlerinin daha küçük seviyelerde olduğu görüldü. 

Burdan yola çıkarak AIC ve BIC metotlarının ARIMAX modelleri için optimal 

model mertebesini seçmede kullanılmasının yanlış sonuçlar doğurabileceği gözlendi. 

Yapılan analiz sonuçlarına göre mevcut veri serisinin analizinde kullanılmaya en 

uygun model ARX(1) modelidir.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xxiv 

 

 

 



1 

 

1.  INTRODUCTION 

Wind energy is considered one of the most rapidly growing energy resources all over 

the world. It is expected that about 20% of the Canada total electricity demand to be 

supplied from wind energy resources by 2025. About 17% of the European Union 

electricity needs are expected to be supplied from wind energy, by the year 2020 

[Url-1, Url-2]. Turkey has a global target of reaching 30% renewable energy based 

electricity production share and 20 GW wind power production capacity in markets 

by 2023 [Url-3]. Due to this expected high penetration rates of wind energy 

generation, wind farms are required to operate as controllable power plants. This 

increase the necessity for more accurate and reliable techniques for wind farms 

output power prediction. Wind power forecasting (WPF) approaches are also 

essential process for wind farms units’ maintenance, optimal power flow between 

conventional units and wind farms, electricity marketing bidding, power system 

generators scheduling and energy reserves and storages planning and scheduling [1]. 

Reliable forecasting techniques lead to reliable power system by achieving the best 

schedule between the plants for day ahead and even on the short term for economical 

dispatch problem. In liberal electricity markets, having an accurate WPF models will 

considerably reduce the penalties imposed on such deviations in scheduling of power 

share of wind farms [2].  

Considering the time scales of WPF, there are three classifications; very short term, 

short term and medium term WPF. Very short term is in the range of few seconds to 

30 minutes ahead that helps in economical dispatch purpose. Short-term forecasting 

concerns from 30 minutes to 6 hours which is interesting in trading in day-ahead 

markets and UC (unit commitment). Medium term forecasting is in the range of 6 

hours to a day that is very helpful in maintenance scheduling for conventional and 

wind plants and long term forecasting from a day to a week [3]. 

Since the issue of WPF arises, many researchers tried to get the state of the art of 

WPF techniques. There are two forecasting approaches, physical based approach and 
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statistical approach [4-5]. Statistical models that are the subject of this thesis uses 

only historical wind speed data recorded at the site.  

The statistical approach is based on training with measurement data and uses 

difference between the forecasted and the observed wind speeds in immediate past to 

tune model parameters. It is easy to model, inexpensive and provides timely 

prediction. It is not based on any predefined mathematical model  and rather it is 

based on patterns. Errors are minimized if patterns are met with historical ones. Sub-

classification of this approach is: Time-series based models, and neural network 

(NN) based methods [6]. 

Auto regressive integrated moving average (ARIMA) also known as Box and Jenkins 

methods are the most popular type in time-series based approach to predict future 

values of wind speed or power. It can be used as autoregressive model (AR), moving 

average (MA), autoregressive moving average (ARMA). Several variations are 

seasonal ARIMA (s-ARIMA), and fractional ARIMA (f-ARIMA), AR with 

exogenous input (ARX), ARMA with exogenous input (ARMAX), and ARIMA with 

exogenous inpt (ARIMAX). Few other time–series models are grey predictors, linear 

predictors, exponential smoothing, etc. [7].  

1.1 Purpose of Thesis 

In this thesis, wind speed measurements time series data which recorded in Bursa-

Gemlik weather measurement station during the April 2013 is analyzed and linear 

prediction methods AR, ARMA, ARIMA, ARX, ARMAX, and ARIMAX methods 

are used to forecast one step ahead forecasting. Corresponding the goodness of fit 

criterias, results are compared. Depending on the comparison results it’s aimed to see 

the best fit linear prediction model for the wind speed measurements.  

1.2 Methodology 

In this study, wind speed forecasting was done by using following procedure. Firstly, 

data series analyzed and checked for stationarity. The set of model was identified. 

After that, model parameter was estimated and checked for goodness of fit using 

information criteria AIC and BIC. Finally, optimal model was used for forecasting. 

These steps are shown as the scheme in Figure 1.1.  
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Figure 1.1: Scheme for the study of forecasting wind speed. 

  

Data series analyzed checked for stationarity  

A set of model is identified for the observed data. 

Model parameter estimated and checked for the 
goodness of fit using information criteria AIC and BIC 

The optimal model is used for forecasting one step 
ahead  and checked for the goodness of forecasting. 
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2.  LINEAR PREDICTION METHODS 

2.1 General Formulation 

Let x(n) be a stationary random process. The value of the sample x(n) can be 

predicted using a linear combination of N most recent past samples. The estimate can 

be shown  

𝑥̂𝑁
𝑓(𝑛) = −∑ 𝛼𝑁,𝑖

∗𝑁
𝑖=1 𝑥(𝑛 − 𝑖)                          (2.1)                         

Here N is the prediction order. The superscript * shows that 𝛼𝑁,𝑖
∗  is optimum 

predictor with a prediction order N. The superscript f on the left is a reminder that we 

are discussing the ‘‘forward’’ predictor. The estimation error has the form 

𝑒𝑁
𝑓(𝑛) = 𝑥(𝑛) − 𝑥̂𝑁

𝑓
(𝑛) )                                  (2.2)             

that is, 

𝑒𝑁
𝑓(𝑛) = 𝑥(𝑛) + ∑ 𝑎𝑁,𝑖

∗𝑁
𝑖=1 𝑥(𝑛 − 𝑖)                        (2.3)             

So we define “mean squared error (MSE)” as 𝜀𝑁
𝑓
. 

𝜀𝑁
𝑓
≜ 𝐸[|𝑒𝑁

𝑓(𝑛)|
2
]                                         (2.4)               

When we think wide sense stationary (WSS) process, MSE is independent of time. 

The optimum predictor with the optimum set of coefficients minimizes this MSE [8].  

2.2 Autoregressive Processes (AR) 

Linear predictive coding of a random process reveals a model for the process, called 

the autoregressive (AR) model. This model is very useful both conceptually and for 

approximating the process with a simple model.  

If a WSS random process 𝜔(𝑛) can be generated by using recursive difference 

equation it can be defined as autoregressive (AR) and its formulation is: 
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                                                   𝜔(𝑛) =  −∑ 𝑑𝑖
∗𝑁

𝑖=1  𝜔(𝑛 − 𝑖) +  𝑒(𝑛)                 (2.5)                                                                

Here there are two assumptions 

 𝑒(𝑛) is a zero-mean white noise, and 

 All zeros of the polynomial 𝐷(𝑧) = 1 + ∑ 𝑑𝑖
∗𝑁

𝑖=1  𝑧−𝑖 are inside the unit 

circle. 

If 𝑑𝑁 ≠ 0, the process is AR(N), that is AR of order N. Because 𝑒(𝑛)has zero mean, 

the AR process has zero mean according to the above definition. 

Given a WSS process 𝑥(𝑛), let us assume that we have Nth-order optimal predictor 

polynomial 𝐴𝑁(𝑧). We know, we can then represent the process as the output of an 

infinite impulse response (IIR) filter as shown in formula:  

                                         𝑒𝑁
𝑓(𝑛) →     1 𝐴𝑁(𝑧)

⁄         → 𝑒𝑁
𝑓
(𝑛)                             (2.6)                 

IIR inverse filter 

The input to this filter is the prediction error 𝑒𝑁
𝑓
(𝑛). In the time domain, we can write 

                                             𝑥(𝑛) =  −∑ 𝑎𝑁,𝑖
∗𝑁

𝑖=1  𝑥(𝑛 − 𝑖) + 𝑒𝑁
𝑓(𝑛)                    (2.7)                

If the error stalls, that is, 𝜀𝑚
𝑓
  does not decrease anymore as 𝑚 increases beyond some 

value 𝑁, then 𝑒𝑚
𝑓
(𝑛) is white (assuming 𝑥(𝑛) has zero mean). Thus, the stalling 

phenomenon iplies that 𝑥(𝑛) is 𝐴𝑅(𝑁). 

Summarizing, suppose the optimal predictors of various orders for a zero-mean 

process 𝑥(𝑛) are such that the minimized mean square errors satisfy 

                                              𝜀𝑚
𝑓
≥ 𝜀𝑚

𝑓
≥ ⋯ ≥ 𝜀𝑚

𝑓
= 𝜀𝑚

𝑓
  ,         𝑚 > 𝑁           (2.8) 

Then, 𝑥(𝑛) is 𝐴𝑅(𝑁). 

2.3 Moving Average (MA) and Autoregressive Moving Average (ARMA) 

Processes 

We know that a WSS random process 𝑥(𝑛) is said to be AR if it satisfies a recursive 

(IIR) difference equation of the form 

                              x(n) =  −∑ 𝑑𝑖
∗N

i=1  x(n − i) +  e(n),                                        (2.9)               

where e(n) is a zero-mean white WSS process, and the polynomial  D(z) = 1 +
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∑ di
∗N

i=1 z−i has all zeros inside the unit circle. We say that a WSS process 𝑥(𝑛) is a 

moving average (MA) process if it satisfies a nonrecursive (FIR) difference equation 

of the form 

                                       x(n) =  ∑ 𝜌𝑖
∗N

i=0  𝑒(n − i)                                               (2.10) 

where e(n) is a zero-mean white WSS process. Finally, we say that a WSS process 

𝑥(𝑛) is an ARMA process if 

                    x(n) =  −∑ 𝑑𝑖
∗N

i=1  x(n − i) +  ∑ 𝜌𝑖
∗N

i=0  𝑒(n − i)                             (2.11) 

where e(n) is a zero-mean white WSS process. Defining the polynomials 

                     D(z) = 1 + ∑ 𝑑𝑖
∗N

i=1 z−𝑖 and P(z) = ∑ 𝜌𝑖
∗N

i=0 z−𝑖                             (2.12) 

we see that the above processes can be represented as in Figure. 2.1. 

 

 

Figure 2.1: (a) AR, (b) MA, and (c) ARMA processes. 

In each of the three cases, x(n) is the output of a rational discrete time filter, driven 

by zero-mean white noise. For the AR process, the filter is an all-pole filter. For the 

MA process, the filter is FIR. For the ARMA process, the filter is IIR with both poles 

and zeros [8]. 
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2.4 Autoregressive Integrated Moving Average (ARIMA) Processes 

ARIMA models are extensions of ARMA class in order to include more realistic 

dynamics, in particular, respectively, non-stationarity in mean. In practice, many 

time series are nonstationary in mean and they can be modelled only by removing the 

nonstationary source of variation. Often this is done by differencing the series.  

Suppose 𝑋𝑡 is nonstationary in mean, the idea is to build an ARMA model on the 

series 𝑤𝑡, defnible as the result of the operation of differencing the series d times (in 

general d = 1): 𝑤𝑡 = ∆
𝑑𝑋𝑡. 

Hence, ARIMA models (where I stays for integrated) are the ARMA models defined 

on the d-th diference of the original process: 

                                                  𝛷(𝐵)∆𝑑𝑋𝑡 = 𝜃(𝐵)𝑎𝑡                                          (2.13) 

where 𝛷(𝐵)∆𝑑 is called generalized autoregressive operator and ∆𝑑𝑋𝑡  is a quantity 

made stationary through the differentiation and can be modelled with an ARMA. 

For example: 

 ARIMA (0,1,1) is ∆𝑋𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1   → the first difference of  𝑋𝑡 is 

modelled as MA(1). 

 ARIMA (1,1,0) is (1 − 𝛷1𝐵)∆𝑋𝑡 = 𝑎𝑡   → the first difference of  𝑋𝑡 is 

modelled as AR(1). 

Note that in this case: 

                                     (1 − 𝛷1𝐵)(1 − 𝐵)𝑋𝑡 = 𝑎𝑡                                              (2.14) 

                                   (1 − 𝐵 −𝛷1𝐵 + 𝛷1𝐵
2 )𝑋𝑡 = 𝑎𝑡                                       (2.15) 

                                      [1 − (1 + 𝛷)𝐵 + 𝛷𝐵2 ] = 𝑎𝑡                                         (2.16) 

The last equation shows that ARIMA(1,1,0) is like an AR(2) where 𝛷2 = −𝛷1 and 

𝛷2 + 𝛷1 = 1. This reveals that, as we knew in advance, the stationary constraint 

does not hold [9]. 

2.4.1 The role of the constant term in ARMA and ARIMA 

Suppose that a constant term is included in the ARMA model: 

                                             𝛷(𝐵)𝑋𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡                                           (2.17) 
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Taking the expected value on both sides (note that 𝐸(𝑋𝑡) = 𝜇 due to stationarity of 

the process): 

                                                      𝛷(𝐵)𝜇 = 𝜃0                                                    (2.18) 

Hence; 

                                        𝜃0 = 𝜇(1 − 𝛷1 −⋯−𝛷𝑝)                                           (2.19) 

that represents the relationship between the constant term and the expected value of 

the process. From this, we can make two conclusions: 

 If 𝑋𝑡 is MA (the AR component does not exist), the possible constant present 

in the model coincides with the mean of the process 𝑋𝑡 itself (𝜇 = 𝜃0). 

 If 𝑋𝑡 is only AR, then the aforementioned relationship holds. It is interesting 

to observe that for AR(1) in case 𝛷1 → 1 (in general when the autoregressive 

process tends to nonstationarity) the constant tends to disappear. 

 If 𝑋𝑡 is ARIMA, by including 𝜃0 term: 

                                               𝛷(𝐵)∆𝑋𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡                                      (2.20) 

This is called ARIMA model with drift. The simplest case is the Random Walk plus 

drift process: 

                                                    ∆𝑋𝑡 = 𝜃0 + 𝑎𝑡                                                  (2.21) 

By taking the first diference of 𝑋𝑡 one obtains a quantity ∆𝑋𝑡 whose mean is not 

zero: a drift 𝜃0 adjusts for this. The idea is that the constant 𝜃0 was originally the 

slope of a deterministic trend, that after diferencing d = 1 times, disappears leaving 

only a level (𝜃0) around which ∆𝑋𝑡 moves with stationary oscillations. The random 

walk with drift is characterized by both stochastic and deterministic trend. Every 

time a diference is taken, a trend is removed whose nature (stochastic or 

deterministic) is clear only by checking whether the differences uctuate around zero 

(stochastic trend) or not (deterministic trend, whose slope remains in the form of the 

constant) [9]. 

2.4.2 Characteristics of ARIMA processes 

 𝑑 =  0 stationary process 

 𝑑 =  1 nonstationary process: the level changes in time, but the increase is 

constant → level is nonstationary, but its increments are 

 𝑑 =  2 nonstationary process: both level and increments are stationary 



10 

 

When Xt is nonstationary, its theorethical ACF is not defined (only the empirical 

ACF is). However, by observing the behaviour of processes that are nearly stationary 

we can put in evidence the following regularities: 

 The ACF decreases extremely slowly to zero, the decrease is not expo- 

nential by linear. 

 The PACF takes value 1 for 𝑘 =  1 and zero elsewhere. 

These characteristics of ACF and PACF are motivated by the dominance of the trend 

on the other dynamics in the series. Unless the trend is removed, nothing else (e.g. 

other MA or AR components) can be recognized from ACF and PACF [9]. 

2.5 Autoregressive Models with Exogenous Input (ARX) 

Probably the most simple input-output relationship is obtained by describing it as a 

linear difference equation: 

                        𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎) = 

                                         𝑏1𝑢(𝑡 − 1) + ⋯+ 𝑏𝑛𝑏𝑢(𝑡 − 𝑛𝑏) + 𝑒(𝑡)                    (2.22) 

Since the white-noise term 𝑒(𝑡) here enters as a direct error in the difference 

equation, the model (2.22) is often called an equation error model (structure). The 

adjustable parameters are in this case 

                                           𝜃 = [𝑎1𝑎2⋯𝑎𝑛𝑎𝑏1⋯𝑏𝑛𝑏]
𝑇
                              (2.23) 

If we introduce 

                                      𝐴(𝑞) = 1 + 𝑎1𝑞
−1 +⋯+ 𝑎𝑛𝑎𝑞

−𝑛𝑎                         (2.24) 

and 

                                       𝐵(𝑞) = 𝑏1𝑞 +⋯+ 𝑏𝑛𝑏𝑞
−𝑛𝑏                                 (2.25) 

We see that (2.22) corresponds to (2.13) with 

                                                         𝐺(𝑞, 𝜃) =
𝐵(𝑞)

𝐴(𝑞)
                                            (2.26) 

                                                   𝐻(𝑞, 𝜃) =
1

𝐴(𝑞)
                                                   (2.27) 
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Remark: It may seem annoying to use 𝑞 as an argument of 𝐴(𝑞). Being a polynomial 

in 𝑞−1. The reason for this is, however, simply to be consistent with the conventional 

definition of the z-transform. 

We shall also call the model (2.22) an ARX model, where AR refers to the 

autoregressive part 𝐴(𝑞)𝑦(𝑡) and X to the estra input 𝐵(𝑞)𝑢(𝑡) (called the 

exogenous variable in econometrics). ARX model structure is shown in Figure 2.2. 

In the special case where 𝑛𝑎 = 0, 𝑦(𝑡) is modeled as a finite impulse response (FIR). 

Such model sets are particularly common in signal-processing applications [10]. 

The signal flow can be depicted as in Figure From that picture we see that the model 

(2.22) is perhaps not the most natural one from a physical point of view: the white 

noise is assumed to go through the denominator dynamics of the system before being 

added to the output. Nevertheless, the equation error model set has a very important 

property that makes it a prime choice in many applications: The predictor defines a 

linear regression. 

 

Figure 2.2: ARX Process. 

2.6 Autoregressive Moving Average Models with Exogenous Input (ARMAX) 

and Autoregressive Integrated Moving Average Models with Exogenous Input 

(ARIMAX) 

The basic disadvantage with the simple model (2.22) is the lack of adequate freedom 

in describing the properties of the disturbance term. We could add flexibility to that 

by describing the equation error as a moving average of white noise. This gives the 

model; 
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𝑦(𝑡) + 𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎)  = 𝑏1𝑢(𝑡 − 1) + ⋯ 

                      +𝑏𝑛𝑏𝑢(𝑡 − 𝑛𝑏) + 𝑒(𝑡) +  𝑐1𝑒(𝑡 − 1) + ⋯+ 𝑐𝑛𝑐𝑒(𝑡 − 𝑛𝑐)        (2.28)                 

with 

                                 𝐶(𝑞) = 1 + 𝑐1𝑞
1 +⋯+ 𝑐𝑛𝑐𝑞

𝑛𝑐                                  (2.29) 

It can be rewritten  

                                𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐶(𝑞)𝑒(𝑡)                              (2.30) 

And clearly corresponds to (2.13) with  

                                                     𝐺(𝑞, 𝜃) =
𝐵(𝑞)

𝐴(𝑞)
                                          (2.31)  

                                                     𝐻(𝑞, 𝜃) =
𝐶(𝑞)

𝐴(𝑞)
                                                 (2.32) 

where now 

                                    𝜃 = [𝑎1⋯𝑎𝑛𝑎𝑏1⋯𝑏𝑛𝑏𝑐1⋯𝑐𝑛𝑐]
𝑇
                       (2.33) 

In the view of the moving averae (MA) part 𝐶(𝑞)𝑒(𝑡), the model (4.28) will be 

called ARMAX. The ARMAX model has become a standard tool in control and 

econometrics for both system description and control design. A version with an 

enforced integration in the noise description is the ARIMA(X) model (I for 

integration with or without the X-variable 𝑢) which is useful to describe systems 

with slow disturbances [10]. It is obtained by replacing 𝑦(𝑡) and 𝑢(𝑡) in (2.30) by 

their differences ∆𝑦(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 − 1) and is further discussed.  

2.7 Parameter Estimation  

2.7.1 Yule-Walker method 

Depending on the orthogonality principle the optimum value of 𝛼𝑁,𝑖 can be defined 

when the error eN
f (n) is orthogonal to x(n − i), that is, 

                                           E[eN
f (n)x∗(n − i)] = 0, 1 ≤ i ≤ N                           (2.34) 

There are N equations occurs and all can be shown in a special form, because of the 

condition. 

            [R]im = E[x(n − 1 − i)x
∗(n − 1 −m)],     0 ≤ i,m ≤ N − 1                 (2.35) 
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The autocorrelation sequence of WSS process x(n)can be defined as R(k), 

                                        R(k) = E[x(n)x∗(n − k)]                                             (2.36) 

Using the fact R(k) = R∗(−k), we can simplfy Eq. (2.34) to obtain: 

      [

R(0) R(1)          … R(N − 1)

R∗(1) R(0)         … R(N − 2)
⋮

R∗(N − 1)
⋮  

R∗(N − 2)
⋱           ⋮
… R(0)

]

⏟                              
RN

[

aN,1
aN,2
⋮
aN,N

]=−[

R∗(1)
R∗(2)
⋮

R∗(N)

]

⏟      
−r

               (2.37) 

For example, with N=3, we get 

                       [

R(0) R(1)  R(2)     

R∗(1) R(0) R(1)  
R∗(2) R∗(1) R(0)

]

⏟                
R3

 [

a3,1
a3,2
a3,3

] = −[

R∗(1)

R∗(2)
R∗(3)

] .                           (2.38) 

These are called Yule-Walker equations, normal equations and Wiener-Hopf 

equations in literature [11]. Assuming that the n × n symmetric matrix R is 

invertible, the coefficient aN,i are estimated by aN,1 = R
−1r. Once the coefficients 

are estimated, the linear prediction model can be applied to predict future samples, 

with xk = ∑ aixk−i
N
i=1  . This technique is easy to implement, it is not adapted for 

nonlinear systems [12]. 

2.7.2 Levinson-Durbin algorithm 

The method is recursive in nature and makes particular use of the Toeplitz structure 

having constant entries along diagonals of the correlation matrix of the tap inputs of 

the filter. It is known as the Levinson-Durbin algorithm, so named in recognition of 

its use first by Levinson (1947) and then its independent reformulation at a later date 

by Durbin (1960) [13]. The property of a forward prediction error filter operating on 

a stationary discrete time stochastic process is intimately relate to the autoregressive 

(AR) modelling of the process. The prediction error filter is an all zero filter with an 

impulse response of finite duration. On the other hand, the inverse of prediction error 

yields the AR model that is an all zero filter with an impulse response if infinite 

duration. From this relation the levinson durbin algorithm is adopted to compute the 

estimate AR coefficients which is: 

Initialize the algorithm by setting; 
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                                                 𝑎0,0 = 1                                                                (2.39) 

                                                 𝑃0 = 𝑟(0)                                                             (2.40) 

Hence, compute for 𝑚 = 1,2,3, ……… . . , 𝑀: 

                        𝐾𝑚 = −(1 𝑃𝑚−1⁄ ). ∑ 𝑟(𝑖 − 𝑚)𝑎𝑚−1,𝑖𝑖=1,𝑚−1                                (2.41) 

                                                  𝑎𝑚,𝑖 = 1                                           𝑓𝑜𝑟 𝑖 = 1     

                                     𝑎𝑚,𝑖 = 𝑎 𝑚−1,𝑖 + 𝐾𝑚𝑎
∗
𝑚−1,𝑖−1      𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑚 − 1                                                                            

                                                 𝑎𝑚,𝑖 = 𝐾𝑚                                       𝑓𝑜𝑟 𝑖 = 𝑚         (2.42) 

                                        𝑃𝑚 = 𝑃𝑚−1(1 − |𝐾𝑚|
2)                                                (2.43) 

where 𝑎𝑀,𝑘, 𝑘 = 1,2, … . ,𝑀 denotes the estimated AR coefficients. 𝐾𝑚 is the 

reflection coefficient. 𝑃𝑚 is the prediction error power [14].  

As the order m of the prediction error filter increases, the corresponding value of the 

prediction error power normally decreases or else remains the same. In addition to 

this, 𝑃𝑚 can never be negative. Hence,  

                                        0 ≤ 𝑃𝑚 ≤ 𝑃𝑚−1      𝑚 ≥ 1                                             (2.44) 

For the elementary case of a prediction-error filter of order zero, 

                                                    𝑃0 = 𝑟(0)                                                          (2.45) 

where 𝑟(0) is the autocorrelation function of the input process for lag. 

Starting with 𝑚 = 0 and increasing the filter order by 1 at a time, repetition of 

equation occurs. Moreover, the prediction error power for a prediction error filter of 

final order M equals [13].:  

                                        𝑃𝑀 = 𝑃0∏ (1 − |𝐾𝑚|
2)𝑀

𝑚=1                                            (2.46) 

2.7.3 Burg algorithm 

The Yule–Walker coefficients 𝜙̂𝑝1, ⋯ , 𝜙̂𝑝𝑝 are precisely the coefficients of the best 

linear predictor of 𝑋𝑝+1 in terms of {𝑋𝑝, . . . , 𝑋1} under the assumption that the ACF 

of {𝑋𝑡 } coincides with the sample ACF at lags 1, . . . , 𝑝. Burg’s algorithm estimates 

the PACF {𝜙11, 𝜙22, . . . } by successively minimizing sums of squares of forward and 

backward one-step prediction errors with respect to the coefficients 𝜙𝑖𝑖 . Given 

observations {𝑥1, . . . , 𝑥𝑛} of a stationary zero-mean time series {𝑋𝑡 } we define 
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𝑢𝑖  (𝑡 ), 𝑡 =  𝑖 + 1, . . . , 𝑛, 0 ≤  𝑖 <  𝑛, to be the difference between 𝑥𝑛+1+𝑖−𝑡 and the 

best linear estimate of 𝑥𝑛+1+𝑖−𝑡 terms of the preceding 𝑖 observations. Similarly, we 

define 𝑣𝑖  (𝑡 ), 𝑡 =  𝑖 + 1, . . . , 𝑛, 0 ≤  𝑖 <  𝑛, to be the difference between 𝑥𝑛+1−𝑡 

and the best linear estimate of 𝑥𝑛+1−𝑡 in terms of the subsequent i observations. Then 

it can be shown that the forward and backward prediction errors {𝑢𝑖  (𝑡)} and {𝑣𝑖 (𝑡)} 

satisfy the recursions; 

                                                 𝑢0 (𝑡) = 𝑣0 (𝑡) = 𝑥𝑛+1−𝑡                     (2.47) 

                                       𝑢𝑖  (𝑡) = 𝑢𝑖−1 (𝑡 − 1) − 𝜙𝑖𝑖𝑣𝑖−1(𝑡)                              (2.48) 

and 

                                                𝑣𝑖 = 𝑣𝑖−1(𝑡) − 𝜙𝑖𝑖𝑢𝑖−1(𝑡 − 1)                             (2.49) 

Burg’s estimate ϕ11
(B)

of  ϕ11is found by minimizing 

                                    𝜎1
2 =

1

2(𝑛−1)
∑ [𝑢1

2(𝑡) + 𝑣1
2(𝑡)]𝑛

𝑡=2                                (2.50) 

with respect to 𝜙11. This gives corresponding numerical values for 𝑢1 (𝑡) and 

𝑣1(𝑡) and 𝜎1
2 that can then be substituted into together with 𝑖 =  2. Then we 

minimize; 

                                         𝜎2
2 =

1

2(𝑛−1)
∑ [𝑢2

2(𝑡) + 𝑣2
2(𝑡)]𝑛

𝑡=3                                (2.51) 

with respect to 𝜙22 to obtain the Burg estimate 𝜙22
(𝐵)

 of 𝜙22 and corresponding values 

of 𝑢2 (𝑡), 𝑣2 (𝑡), and 𝜎2
2 . This process can clearly be continued to obtain estimates 

𝜙𝑝𝑝
(𝐵)

 and corresponding minimum values, 𝜎𝑝
(𝐵)2

, 𝑝 ≤  𝑛 −  1. Estimates of the 

coefficients 𝜙𝑝𝑗 , 1 ≤  𝑗 ≤  𝑝 −  1, in the best linear predictor 

                                             𝑃𝑝𝑋𝑝+1 = 𝜙𝑝1𝑋𝑝 +⋯+ 𝜙𝑝𝑝𝑋1                              (2.52) 

are then found by substituting the estimates 𝜙𝑖𝑖
(𝐵)

 , 𝑖 = 1, . . . , 𝑝, for 𝜙𝑖𝑖 in the 

recursions . The resulting estimates of 𝜙𝑝𝑗,  𝑗 = 1, . . . , 𝑝, are the coefficient 

estimates of the Burg 𝐴𝑅(𝑝) model for the data {𝑥1, . . . , 𝑥𝑛}. The Burg estimate of 

the white noise variance is the minimum value 𝜙𝑝
(𝐵)2

   found in the determination of 

𝜙𝑝𝑝
(𝐵)

 . The calculation of the estimates of  𝜙𝑝𝑝 and 𝜎𝑝
2 described above is equivalent 

to solving the following recursions: 
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Burg’s Algorithm: 

                                        𝑑(1) = ∑ [𝑢0
2(𝑡 − 1) + 𝑣0

2(𝑡)],𝑛
𝑡=2                                 (2.53) 

                                       𝜙𝑖𝑖
(𝐵) =

1

𝑑(𝑖)
∑ 𝑣𝑖−1(𝑡)𝑢𝑖−1(𝑡 − 1),
𝑛
𝑡=𝑖+1                          (2.54) 

                                𝑑(𝑖 + 1) = (1 − 𝜙𝑖𝑖
(𝐵)2)𝑑(𝑖) − 𝑣𝑖

2(𝑖 + 1) − 𝑢𝑖
2(𝑛),          (2.55) 

                                     𝜎𝑖
(𝐵)2

= [(1 − 𝜙𝑖𝑖
(𝐵)2)𝑑(𝑖)] /[2(𝑛 − 𝑖)]                          (2.56) 

The large-sample distribution of the estimated coefficients for the Burg estimators of 

the coefficients of an 𝐴𝑅(𝑝) process is the same as for the Yule–Walker estimators, 

namely, 𝑁(𝜙, 𝑛−1𝜎2𝛤𝑝
−1). Approximate large-sample confidence intervals for the 

coefficients can be found by substituting estimated values for 𝜎2 and 𝛤𝑝 [15]. 

2.7.4 Maximum likelihood estimation 

Suppose that Xt is a Gaussian time series with mean zero and autocovariance 

function κ(i, j) = E(XiXj). Let Xn = (X1,⋯ , Xn)
′ and let X̂n = (X̂1, ⋯ , X̂n)

′
, where 

X̂1 = 0 and X̂j = E(Xj|X1,⋯ , Xj−1) = Pj−1Xj , j ≥ 2. Let Γn denote the covariance 

matrix Γn = E(XnXn
′ ), and assume that Γn is nonsingular. 

The likelihood of |Xn is 

                            L(Γn) = (2π)
−n

2⁄ (detΓn)
−1

2⁄ exp (−
1

2
Xn
′ Xn

−1Xn)                   (2.57) 

As we shall now show, the direct calculation of detΓn and Γn
−1 can be avoided by 

expressing this in terms of the one-step prediction errors Xj − X̂j and their variances 

υj−1, j = 1,⋯ , n, both of which are easily calculated recursively from the 

innovations algorithm. 

Let θi,j, j = 1,⋯ , i ; i = 1,2,⋯, denote the coefficients obtained when the 

innovations algorithm is applied to the autocovariance function κ of {X𝑡}, and let 𝐶𝑛 

be the 𝑛 × 𝑛 lower triangular matrix. From above equation, we have the identity 

                                           𝑋𝑛 = 𝐶𝑛(𝑋𝑛 − 𝑋̂𝑛)
′
                                 (2.58) 

We also know components of 𝑋𝑛 − 𝑋̂𝑛 are uncorrelated. Consequently, by the 

definition of 𝜐𝑗 , 𝑋𝑛 − 𝑋̂𝑛 has the diagonal covariance matrix 

                                                    𝐷𝑛 = 𝑑𝑖𝑎𝑔{𝜐0, ⋯ , 𝜐𝑛−1}                                   (2.59) 
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we conclude that 

                                                        Γn = 𝐶𝑛𝐷𝑛𝐶𝑛
′                                                  (2.60) 

we see that 

                 𝑋𝑛
′𝑋𝑛

−1𝑋𝑛 = (𝑋𝑛 − 𝑋̂𝑛)
′
𝐷𝑛
−1(𝑋𝑛 − 𝑋̂𝑛) = ∑ (𝑋𝑗 − 𝑋̂𝑗)

2
/𝑛

𝑗=1 𝜐𝑗−1      (2.61) 

and 

                                  𝑑𝑒𝑡Γn = (𝑑𝑒𝑡𝐶𝑛)
2(𝑑𝑒𝑡𝐷𝑛) = 𝜐0𝜐1⋯𝜐𝑛−1                        (2.62) 

The likelihood of the vector 𝑋𝑛 therefore reduces to 

                 𝐿(Γ𝑛) =
1

√(2𝜋)𝑛𝜐0⋯𝜐𝑛−1
𝑒𝑥𝑝 {−

1

2
∑ (𝑋𝑗 − 𝑋̂𝑗)

2
/𝜐𝑗−1

𝑛
𝑗=1 }                      (2.63) 

If Γn expressible in terms of a finite number of unknown parameters 𝛽1, . . . , 𝛽𝑟 (as is 

the case when {𝑋𝑡 } is an ARMA(p, q) process), the maximum likelihood estimators 

of the parameters are those values that maximize 𝐿 for the given data set. When 

𝑋1, 𝑋2, . . . , 𝑋𝑛 are iid, it is known, under mild assumptions and for n large, that 

maximum likelihood estimators are approximately normally distributed with 

variances that are at least as small as those of other asymptotically normally 

distributed estimators. 

Even if {𝑋𝑡 } is not Gaussian, it still makes sense to regard as a measure of goodness 

of fit of the model to the data, and to choose the parameters 𝛽1, . . . , 𝛽𝑟 in such away 

as to maximize (5.2.6).We shall always refer to the estimators 𝛽̂1, . . . , 𝛽̂𝑟 so obtained 

as “maximum likelihood” estimators, even when {𝑋𝑡 } is not Gaussian. Regardless of 

the joint distribution of 𝑋1, . . . , 𝑋𝑛, we shall refer to .. and its algebraic equivalent .. 

as the “likelihood” (or “Gaussian likelihood”) of 𝑋1, . . . , 𝑋𝑛. A justification for using 

maximum Gaussian likelihood estimators of ARMA coefficients is that the large-

sample distribution of the estimators is the same for {Zt}  ∼  IID  (0, σ2), regardless 

of whether or not {Zt } is Gaussian. 

The likelihood for data from an ARMA(p, q) process is easily computed from the 

innovations form of the likelihood by evaluating the one-step predictors 𝑋̂𝑖+1 and the 

corresponding mean squared errors 𝜐𝑖. These can be found from the recursions;  

𝑋̂𝑛+1 = {
∑ 𝜃𝑛𝑗(𝑋𝑛+1−𝑗 − 𝑋̂𝑛+1−𝑗),
𝑛
𝑗=1                                                   1 ≤ 𝑛 ≤ 𝑚,

𝜙1𝑋𝑛 +⋯+ 𝜙𝑝𝑋𝑛+1−𝑝 + ∑ 𝜃𝑛𝑗(𝑋𝑛+1−𝑗 − 𝑋̂𝑛+1−𝑗),
𝑞
𝑗=1   𝑛 ≥ 𝑚,   

 (2.64) 
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               𝐸(𝑋𝑛+1 − 𝑋̂𝑛+1)
2
= 𝜎2𝐸(𝑊𝑛+1 − 𝑊̂𝑛+1)

2
= 𝜎2𝑟𝑛                      (2.65) 

where 𝜃𝑛𝑗  and 𝑟𝑛 are determined by the innovations algorithm with 𝜅  and 𝑚 =

𝑚𝑎𝑥(𝑝, 𝑞). Substituting in the general expression, we obtain the following: 

The Gaussian Likelihood for an ARMA Process: 

                  𝐿(𝜙, 𝜃, 𝜎2) =
1

√(2𝜋𝜎2)𝑛𝑟0⋯𝑟𝑛−1
𝑒𝑥𝑝 {−

1

2𝜎2
∑

(𝑋𝒋−𝑋̂𝒋)
𝟐

𝑟𝑗−1

𝑛
𝑗=1 }                    (2.66)           

Differentiating ln 𝐿(𝜙, 𝜃, 𝜎2) partially with respect to 𝜎2 and noting that 𝑋̂𝒋 and 

𝑟𝑗  are independent of 𝜎2, we find that the maximum likelihood estimators 

𝜙̂, 𝜃 𝑎𝑛𝑑 𝜎̂2 satisfy the following equations: 

Maximum Likelihood Estimators: 

                                                                    𝜎2 = 𝑛−1𝑆(𝜙̂, 𝜃),                          (2.67) 

where 

                                                  𝑆(𝜙̂, 𝜃) = ∑ (𝑋𝒋 − 𝑋̂𝒋)
𝟐
/𝑛

𝑗=1 𝑟𝑗−1,                        (2.68) 

and 𝜙̂, 𝜃 are the values of 𝜙, 𝜃 that minimize 

                                       𝑙(𝜙, 𝜃) = 𝑙𝑛(𝑛−1𝑆(𝜙, 𝜃)) + 𝑛−1∑ 𝑙𝑛 𝑟𝑗−1
𝑛
𝑗=1 .          (2.69) 

Minimization of 𝑙(𝜙, 𝜃) must be done numerically. Initial values for 𝜙 and 𝜃 can be 

obtained from ITSM. The program then searches systematically for the values of 𝜙 

and 𝜃 that minimize the reduced likelihood and computes the corresponding 

maximum likelihood estimate of 𝜎2 [15]. 

2.8 Methods and Criterias for Optimal Model Order Selection 

Model selection is an important part of any statistical analysis and is central to the 

pursuit of science in general. Moreover, in statistical modeling, choosing a suitable 

model from among a collection of viable candidates bring problem for an 

investigator [16]. The visual inspection of autocorrelation function (ACF) and partial 

autocorrelation function (PACF) provides a useful way to construct an ARMA(p,q) 

model. However, the more objective way to chose the orders of p and q of an 

ARMA(p,q) process is to use objectively defined criterions such as AIC, BIC and 

FPE. These information criterions are statistical model fit measures. They quantify 
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the relative goodness of fit of various previously derived statistical models, given a 

sample of data. Each of these criterions has their own merits and demerits [17]. 

Therefore, in this study, the decision of choosing model has been made after 

carefully examining all these criterions.  

2.8.1 Akaike information criterion (AIC) 

The Akaike information criterion, AIC, was introduced by Hirotogu Akaike who was 

former Director General of the Institute of Statistical Mathematics and a Kyoto 

PrizeWinner in 1973 with paper named as “Information Theory and an Extension of 

the Maximum Likelihood Principle” [18]. AIC was the first model selection criterion 

to attract widespread notice in statistical community. AIC continues to be the most 

widely used model selection tool among practitioners. The traditional maximum 

likelihood paradigm provides a mechanism for estimating the unknown parameters 

of a model having a specified dimension and structure. Akaike developed this 

paradigm by considering a framework in which the model dimension is also 

unknown, and must be determined from the data. In this way, Akaike proposed a 

framework wherein both model predicting and selection could be simultaneously 

achieved [19]. 

The information criterion I (f0:f1) that measures the deviation of a model specified 

by the probability distribution f1 from the true distribution f0 is defined by formula  

                                    𝐼(𝑓0: 𝑓1) = 𝐸𝑓0 . 𝑙𝑜𝑔𝑓0 − 𝐸𝑓0 . 𝑙𝑜𝑔𝑓1                            (2.70) 

It is known that 𝐼(𝑓0: 𝑓1) ≥ 0  with equality if 𝑓0 = 𝑓1. Therefore the smaller 

𝐼(𝑓0: 𝑓1), the better model is 𝑓1 as an estimator for 𝑓0. However, since 𝐸𝑓0 . 𝑙𝑜𝑔𝑓0 is 

constant for all estimators 𝑓1, the larger 𝐸𝑓0 . 𝑙𝑜𝑔𝑓1, the better is model 𝑓1. Since 𝑓1 is 

unknown, if we have a random sample x1,….,xn, 𝐸𝑓0 . 𝑙𝑜𝑔𝑓1 is estimated by the 

moment estimator, 

                                                    
1

𝑛
∑ 𝑙𝑜𝑔𝑓1(𝑥𝑗, 𝜃)
𝑛
𝑗=1                                    (2.71) 

where 𝜃 is the vector of parameters of the model under 𝑓1. However, 𝜃 may be 

unknown, so another estimator is needed, namely 

                                                    
1

𝑛
∑ 𝑙𝑜𝑔𝑓1(𝑥𝑗, 𝜃)
𝑛
𝑗=1                                    (2.72) 
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where 𝜃 is the maximum likelihood estimator for 𝜃. It is clear that this estimator is 

the average of the maximum log-likelihood under 𝑓1. Therefore, it seems 

“reasonable” to say that the larger the maximum-log-likelihood, the better is the 

model [20]. 

To have an asymptotically unbiased estimator for the negative of twice the expected 

likelihood, the maximum likelihood estimates of the parameters that give the 

minimum of Akaike information criteria defined by Akaike 

                          𝐴𝐼𝐶 (𝜃) = −2. 𝑙𝑜𝑔(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2. 𝑘              (2.73) 

where k is the number of independently adjusted parameters to get 𝜃. Hence the 

smaller the AIC, the better is the model [24]. 

2.8.2 Bayesian information criterion (BIC) 

The Bayesian information criterion, was introduced by Schwarz (1978) as a 

competitor to the Akaike (1973, 1974) information criterion. An extension of the 

maximum likelihood principle is suggested by Akaike[21] for the slightly more 

general problem of choosing among different models with different numbers of 

parameters [23]. BIC is one of the most widely known and widespread used tools in 

statistical model selection. The computational simplicity and effective performance 

in many modelling frameworks including Bayesian applications where prior 

distributions may be elusive, bring its popularity. In Bayesian applications, pairwise 

comparisons between models are often based on Bayes factors. Assuming two 

candidate models are regarded as equally probable a priori, a Bayes factor represents 

the ratio of the posterior probabilities of the models. The model which is a posteriori 

most probable is determined by whether the Bayes factor is less than or greater than 

one [16]. The Bayesian information criterion is often called the Schwarz information 

criterion. Bayesian information criterion is defined as the formula: 

𝐵𝐼𝐶 == −2. 𝑙𝑜𝑔(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 𝑘. log  (𝑛)            (2.74) 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 is the fitted model n is the number of observations and 𝑘 

denotes the dimension of selected model. AIC and BIC share the same goodness-of-

fit term, but the penalty term of BIC 𝑘. log  (𝑛) is potentially much more stringent 

than the penalty term of AIC (2k). Thus, BIC tends to choose fitted models that are 

more parsimonious than those favored by AIC [23]. 
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2.8.3 Final prediction error (FPE)  

The use of autoregressive representation of a stationary time series in the analysis of 

time series has been attracting attentions of many research workers. It is expected 

that this time domain approach will give answers to many problems. The main 

difficulty in fitting an autoregressive model; 

                               𝑋(𝑛) = ∑ 𝑎𝑚𝑥(𝑛 − 𝑚) + 𝑎0 + 𝜀(𝑛)
𝑀
𝑚=1                               (2.75) 

X(n) is the process being observed and 𝜀(𝑛) is its innovation that is not correlated 

with X(l) and is forming a white noise, lies in the decision of the order M. the mutual 

independence and strict stationary of  𝜀(𝑛) is assumed. To surmount this problem, 

the decision theoretic approach where a figure of merit is defined for each model 

being fitted is adopted and the one with the best figure is chosen as predictor. This 

figure of merit that is called as the final prediction error (FPE) is defined as the 

expected variance of the prediction error when an autoregressive model fitted to the 

present series of X(n). It is applied to another independent realization of X(n), or to 

the process with one and the same covariance characteristic as that of X(n) and to 

make a one-step prediction, it is independent of the present X(n). The study over 

final prediction error was investigated by Akaike. The estimation of FPE of each 

autoregressive model within a prescribed sufficiently wide range of possible orders 

was computed and the one that gives the minimum of the estimates was chosen. 

Akaike called this procedure as FPE scheme. The definition of final prediction error 

(FPE) of the autoregressive model of order M is given by the relation; 

                                                      𝐹𝑃𝐸 = (1 +
𝑀+1

𝑁
) . 𝑟𝑀                                    (2.76) 

where 𝑟𝑀 is the minimum of 𝐸(𝑋(𝑛) − ∑ 𝑎𝑚
(𝑀)𝑀

𝑚=1 𝑋(𝑛 −𝑚) − 𝑎0
(𝑀))2 with respect 

to {𝑎𝑚
(𝑀); 𝑚 = 0,1, …… . ,𝑀}. Obviously 𝑟𝑀 is equal to the variance of the innovation 

𝜀(𝑛) when X(n) is generated from 𝜀(𝑛) by a finite auto regression of order equal to 

or less than M. FPE tends to be large when unnecessarily large value of M is 

adopted. When M is less than the true order of the process, 𝑟𝑀 and its estimate 

include, beside the contribution of the innovation variance, the contribution of the 

inevitable bias of the model. Therefore it tends to be significantly large when a too 

small value of M is adopted [24].  
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3.  MODEL  IDENTIFICATION 

3.1 Data Specification 

Wind speed datas are taken from the Turkish State Meteorological Service, Data 

Control and Statistical Division. Measurements are recorded during the April 2013 

by Gemlik automatic meteorological observation station as shown Figure 3.1. The 

file has a 4320 data for 30 days and 10 minutes time interval. The station is on the 

location of 40.4401 latitute and 29.1504 longtitude that can be seen as a red star in 

Figure 3.2. 

 

Figure 3.1: Gemlik meteorological station wind speed measurements on April 2013. 

Automatic meteorological observation station has various sensors for different 

purpose. Wind speed measurement sensor is located at the top of the 10 m height bar 

and used for measuring the wind speed. The sensor is cup anemometer, wind rotates 

the anemometer and magnitude is measured by the number of rotation per unit time 

[Url-4].   
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Figure 3.2: Location of the Automatic Meteorological Observation Station. 

3.2 Autocorrelation Function (ACF) and Partial Autocorrelation (PACF) tests 

In time series analysis, observed value at one point can be compared with observed 

value at one or more time points earlier. Such prior values are known as lagged 

values.The correlation between the original time series values and the corresponding 

k-lagged values is called autocorrelation of order k. The ACF provides the 

correlation between the serial correlation coefficients for consecutive lags. Figure 3.3 

displays graphically the ACF and PACF. Autocorrelations for consecutive lags are 

formally dependent. If the first element is closely related to second, and the second to 

third, then the first element must also be somewhat related to the third one, etc. The 

serial dependencies can change considerably after removing the first order 

autocorrelation. By removing serial dependency, we can identify the hidden nature of 

seasonal dependencies in the time series and we can make the series stationary which 

is necessary for ARIMA and other techniques. Serial dependency for a particular lag 

of k can be removed by differencing the series, that is converting each element I of 

the series into its difference from the element i-k. Another useful method to examine 

serial dependencies is to examine the Partial Autocorrelation Function (PACF), an 

extension of autocorrelation where the dependence on the immediate elements (those 

with in the lag) is removed. For time series data, ACF and PACF measure the degree 
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of relationship between observations k time periods, or lags, apart. These plots 

provide valuable information to help you identify an appropriate ARIMA model. 

In a sense, the partial autocorrelation provides a cleaner picture of serial 

dependencies for individual lags [25]. 

 

Figure 3.3: ACF and PACF plot of the data series. 

In this wind speed measurements, time series data can be seen from Figure 3.3 that 

each observation is most similar (closest) to the adjacent observation (lag=1), also 

series do not follow any recurring seasonal pattern.  

The PACF graph shows a large partial autocorrelations at lags 1. 

3.3 AIC and BIC analysis  

There are various criterion has been developed in order to select the optimal model 

order of linear prediction models. Commonly used Akaike information criteria, 

Bayesian information criteria and final prediction error are explained in Chapter 2. In 

order to see the best-fitted model to data series, AIC and BIC criterions are used for 

this study. FPE is not used in because FPE points the same order with AIC most of 

the time. In another word FPE value is nearly equal to the logarithm of AIC value.  

In order to calculate AIC and BIC values of AR, ARMA, ARIMA, ARX, ARMAX 

and ARIMAX MATLAB
®
  2013b with Econometrics Toolbox used and syntax 

aicbic is run. Here the results are given in Figure 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 
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respectively in the model order range of 1 to 75. As mentioned in the Section 2.8, 

optimal model order is selected where the Akaike and Bayesian information criterias 

take the minimum value. 

 

Figure 3.4: AIC and BIC results of AR models from AR(1) to AR(75). 

The optimal model results can be seen in Table 3.1 . Optimal models will be fitted to 

the data and corresponding results are presented in the Section 4 . Some of the 

information criteria values could not calculated beacuse of being noninvertible. 

These missing values can be seen in Figure 3.5, 3.6, 3.8 and 3.9. 

 

Figure 3.5: AIC and BIC results of ARMA models from ARMA(2,1) to 

ARMA(75,74). 
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Figure 3.6: AIC and BIC results of ARIMA models from ARIMA(2,1,1) to 

ARIMA(75,1,74). 

 

Figure 3.7: AIC and BIC results of ARX models from ARX(1) to ARX(75). 
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Figure 3.8: AIC and BIC results of ARMAX models from ARMAX(2,1) to  

ARMAX(75,74). 

 

Figure 3.9: AIC and BIC results of ARIMAX model from ARIMAX(2,1,1) to     

ARIMAX(75,1,74) 

Table 3.1: AIC and BIC optimal model order results. 

 
AR ARMA ARIMA ARX ARMAX ARIMAX 

       

AIC AR(8) ARMA(14,13) ARIMA(30,1,29) ARX(1) ARMAX(2,1) ARIMAX(8,1,7) 

BIC AR(8) ARMA(4,3) ARIMA(3,1,2) ARX(1) ARMAX(2,1) ARIMAX(8,1,7) 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(6
,0

,5
)

(1
1

,0
,1

0
)

(1
6

,0
,1

5
)

(2
1

,0
,2

0
)

(2
6

,0
,2

5
)

(3
1

,0
,3

0
)

(3
6

,0
,3

5
)

(4
1

,0
,4

0
)

(4
6

,0
,4

5
)

(5
1

,0
,5

0
)

(5
6

,0
,5

5
)

(6
1

,0
,6

0
)

(6
6

,0
,6

5
)

(7
1

,0
,7

0
)

In
fo

rm
at

io
n

 C
ri

te
ri

a 
V

al
u

e
 

Model Order 

ARMAX(p,q) aic

ARMAX(p,q) bic

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(6
,0

,5
)

(1
1

,0
,1

0
)

(1
6

,0
,1

5
)

(2
1

,0
,2

0
)

(2
6

,0
,2

5
)

(3
1

,0
,3

0
)

(3
6

,0
,3

5
)

(4
1

,0
,4

0
)

(4
6

,0
,4

5
)

(5
1

,0
,5

0
)

(5
6

,0
,5

5
)

(6
1

,0
,6

0
)

(6
6

,0
,6

5
)

(7
1

,0
,7

0
)

In
fo

rm
at

io
n

 C
ri

te
ri

a 
V

al
u

e
 

Model Order 

ARMAX(p,q) aic

ARMAX(p,q) bic



29 

 

4.  RESULTS 

4.1 AR Results 

4.1.1 AR(8) 

In this section, results of the one step ahead forecasting using the models that is 

selected by the optimal model order selection criterias in the previous section are 

plotted. Firts of all, autoregressive model with an order of eight AR(8) is performed 

for forecasting and goodness of forecasting can be seen in Figure 4.1 and Figure 4.2. 

In order to see the model fit better , data interval between 2000 and 2100 is plotted 

seperately. The red line represents the observed data and the black line represents the 

forecasted data.  

 

Figure 4.1: AR(8) Observed and Forecasted Datas from 9 to 4320. 
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Figure 4.2: AR(8) Observed and Forecasted Datas from 2000 to 2100. 

Residuals which mean the difference between  forecasted  value and actual value are 

calculated . In order to assess model fit by examining residuals, Figure4.3 and Figure 

4.4 are plotted. Smooth  residuals graph means a good model fit. 

   

Figure 4.3: AR(8) Residuals. 
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Figure 4.4: AR(8) Plot and Normality Plot of Standart Residuals. 

4.2 ARMA Results 

4.2.1 ARMA(4,3) 

In another case, ARMA(4,3) and ARMA(14,13) are performed. Depending on the 

results, actual data versus forecasted data graphs are plotted. Goodness of forecasting 

can be seen in Figure 4.5 and Figure 4.9 respectively. More detailed graph also 

created. They can be seen in Figure 4.6 and Figure 4.10 respectively. 

 

Figure 4.5: ARMA(4,3) Observed and Forecasted Datas from 5 to 4320. 
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Figure 4.6: ARMA(4,3) Observed and Forecasted Datas from 2000 to 2100. 

 

Figure 4.7: ARMA(4,3) Residuals. 

 

Figure 4.8: ARMA(4,3) Q-Q Plot and Normality Plot of Standart Residuals. 
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4.2.2 ARMA(14,13)  

 

Figure 4.9: ARMA(14,13) Observed and Forecasted Datas from 15 to 4320. 

 

Figure 4.10: ARMA(14,13) Observed and Forecasted Datas from 2000 to 2100. 

Goodness of forceasting graph for ARMA(4,3) and ARMA (14,13) seem identical. 

Moreover, residuals analysis appear similar. In this stiuation, numerical results of  

comparison parameters which are presented in the Section 4.7 have to be compared 

to see the performance of forecasting of a model with respect to the others. 
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Figure 4.11: ARMA(14,13) Residuals. 

 

 

Figure 4.12: ARMA(14,13) Q-Q Plot and Normality Plot of Standart Residuals. 

4.3 ARIMA Result 

4.3.1 ARIMA (3,1,2) 

As presented in the Section 3.3, two different autoregressive integrated moving 

average model are presented as an optimal model depending on the model order 

selection criterias. These models are ARIMA (3,1,2) and ARIMA (30,1,29). 

Depending on the results, actual data versus forecasted data graphs are plotted. 
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Goodness of forecasting can be seen in Figure 4.13 and Figure 4.17 respectively. 

More detailed graph also created. They can be seen in Figure 4.14 and Figure 4.18 

respectively.  

 

Figure 4.13: ARIMA(3,1,2) Observed and Forecasted Datas from 5 to 4320. 

 

Figure 4.14: ARIMA(3,1,2) Observed and Forecasted Datas from 2000 to 2100. 
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Figure 4.15: ARIMA(3,1,2) Residuals. 

 

Figure 4.16: ARIMA(3,1,2) Q-Q Plot and Normality Plot of Standart Residuals. 

4.3.2 ARIMA (30,1,29) 

In addiditon to previous case ARMA, residuals analysis appear similar for ARIMA 

CASE too. Numerical results in the Section 4.7 have to be compared to see the 

performance of forecasting of an ARIMA model in itself and with respect to the 

other models. Residulas graph for ARIMA models are presented in Figure 4.15, 4.16, 

4.19 and Figure 4.20. 



37 

 

Figure 4.17: ARIMA(30,1,29) Observed and Forecasted Datas from 32 to 4320. 

 

Figure 4.18: ARIMA(30,1,29) Observed and Forecasted Datas from 2000 to 2100. 

 

Figure 4.19: ARIMA(30,1,29) Residuals. 
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Figure 4.20: ARIMA(30,1,29) Q-Q Plot and Normality Plot of Standart Residuals. 

4.4 ARX Results 

4.4.1 ARX(1) 

One step ahead forecasting performance of autoregressive with exogenous input 

model presented in Figure 4.21, 4.22, 4.23 and 4.24 . Success of ARX(1) model fit 

corresponding to the other models can be seen clearly by examining the goodness of 

fit graph which is presented in Figure 4.21 and Figure 4.22 . Black line follows red 

line quite good. Residuals also seem more smother, quantile and density graphs are 

almost in an ideal shape. 

 

Figure 4.21: ARX(1) Observed and Forecasted Datas from 2 to 4320. 



39 

 

Figure 4.22: ARX(1) Observed and Forecasted Datas from 2000 to 2100. 

 

Figure 4.23: ARX(1) Residuals. 

 

Figure 4.24: ARX(1) Q-Q Plot and Normality Plot of Standart Residuals. 
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4.5 ARMAX Result 

4.5.1 ARMAX(2,1) 

In the autoregressive moving average with exogenous input model case, one step 

ahead forecasting performance which are presented in Figure 4.25, 4.26, 4.27 and 

4.28 is less success comparing the AR, ARMA ARIMA and ARX model results. 

ARMAX (2,1) model fit can be examined in the goodness of fit graph which is 

presented in Figure 4.21 and Figure 4.22 . Red is more apparent in the big picture. 

Residuals also prove the failure of this model. 

 

Figure 4.25: ARMAX(2,1) Observed and Forecasted Datas from 3 to 4320. 

 

Figure 4.26: ARMAX(2,1) Observed and Forecasted Datas from 2000 to 2100. 
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Figure 4.27: ARMAX(2,1)  Residuals. 

 

Figure 4.28: ARMAX(2,1) Q-Q Plot and Normality Plot of Standart Residuals. 

4.6 ARIMAX Result 

4.6.1 ARIMAX(8,1,7) 

In the last case, one step ahead forecasting performance of ARIMAX (8,1,7)  is 

unexpected. Model fit can be examined in the goodness of fit graph which is 

presented in Figure 4.29 and Figure 4.30. Black line is represents the forecasted 

values. Black line is far away from following red line and it is simply fluctuating. 

Residuals also prove the failure of this model. These results prove the failure of 

ARIMAX (8,1,7) model. 
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Figure 4.29: ARIMAX(8,1,7) Observed and Forecasted Datas from 3 to 4320. 

 

Figure 4.30: ARIMAX(8,1,7) Observed and Forecasted Datas from 2000 to 2100. 

 

Figure 4.31: ARIMAX(8,1,7) Residuals. 
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Figure 4.32: ARIMAX(8,1,7) Q-Q Plot and Normality Plot of Standart Residuals. 

4.7 Comparison of the Results 

Forecasting performance of the selected ARIMA/ARIMAX model have been 

evaluated on the basis of one-step ahead forecasts against the parameters MAE 

(mean absolute error), RMSE (root mean square error). In each case, Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) have selected 

optimal model see Table 4.1.  For the Autoregressive (AR) model, criterions have 

selected the AR(8). The MAE and RMSE values are 0.413804 and 0.587939 

respectively. R2statistic is 0.973441 see Table 4.2.  

Table 4.1: Different ARIMAX model results. 

 

 

 

 

 

 

 

 

 

 

 

 

Model R2 (𝑅2) MAE RMSE 

ARIMAX(1,1,0) 0.974308 0.411985 0.590469 

ARIMAX(2,1,1) 0.973341 0.420488 0.599816 

ARIMAX(20,1,19) 0.943843 0.663519 0.887354 

ARIMAX(9,1,8) 0.954528 0.637523 0.799486 

ARIMAX(7,1,6) 0.933439 0.755664 0.980566 



44 

Table 4.2: Comparison of the results. 

Model R2 (𝑅2) MAE RMSE 

ARIMA(30,1,29) 0.973356 0.413699 0.58868 

ARIMA(3,1,2) 0.973277 0.414104 0.589653 

ARMA(14,13) 0.973712 0.41337 0.585437 

ARMA(4,3) 0.973356 0.413699 0.58868 

AR(8) 0.973441 0.413804 0.587939 

ARIMAX(8,1,7) 0.163349 6.577232 8.143865 

ARMAX(2,0,1) 0.956163 0.576348 0.728387 

ARX(1) 0.993089 0.209998 0.30246 

For autoregressive moving average (ARMA) case AIC and BIC pointed the different 

models, Akaike information criteria has selected the model ARMA(14,13) and  

Bayesian information criteria has selected the model ARMA(4,3). For 

ARMA(14,13), the MAE and RMSE values are 0.41337 and 0.585437 respectively. 

R2statistic is 0.973712. In case of ARMA (4,3)  MAE and RMSE values which are 

0.413699 and 0.58868 a few higher. R2statistic is 0.973356 and lower than higher 

order model statistics value. In ARIMA case AIC and BIC values have also selected 

the different models. AIC has selected the higher order ARIMA(30,1,29) again and 

BIC selected the lower order ARIMA(3,1,2). MAE and RMSE values for the 

ARIMA(30,1,29) are 0.413699 and 0.58868. On the other hand ARIMA(3,1,2) 

results are higher that is 0.414104 and 0.589653 respectively. R2statistic for the 

ARIMA(3,1,2) is 0.973277 and for ARIMA(30,1,29), it is 0.973356.  

In cases of model with exogenous input, AIC and BIC have selected the same model 

orders. For ARX, criterions have selected ARX (1). The MAE and RMSE values are 

0.209998 and 0.30246 respectively. R2statistic is 0.993089. These are the lowest values. 

For ARMAX, criterions have selected ARMAX (2,0,1). The MAE and RMSE values 

are 0,576348 and 0,728387respectively. R2statistic is 0.956163 . For ARIMAX, 

criterions have selected ARMAX (8,1,7). The MAE and RMSE values are 6.576565 

and 8.143116 respectively. R2statistic is 0.163309.  
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5.  CONCLUSION 

The present thesis has successfully applied AR, ARMA, ARIMA, ARX, ARMAX 

and ARIMAX modelling procedure on wind speed measurements and found 

satisfactory  results. Two of the information-criterions (AIC and BIC ) are evaluated 

to choose correct orders of AR(p), ARMA(p,q), ARIMA(p,d,q), ARX(p), 

ARMAX(p,q) and ARIMAX(p,d,q) models. By examining Figure 4.10 to Figure 

4.41 and Table 4.1 , it can be seen that regarding to the wind speed, the AR, ARMA 

and ARIMA models have almost identical forecasting performance. Their MAE and 

MAPE values are very close. On the other hand,  ARMAX models have almost 

identical forecasting performance but it is worse comparing AR, ARMA and 

ARIMA results. ARX model performs the best. It has the lowest mean absolute error 

MAE and  root mean square error RMSE values and highest goodness of fit statistics. 

ARIMAX model forecasting performance is  the worst. Various ARIMAX models 

forecasting performans can be seen in Table 4.1. Other ARIMAX model performs 

quite better than ARIMAX(8,1,7), It can be seen that second best model is 

ARIMAX(1,1,0) at this point that proves AIC or BIC are not sufficient selecting the 

optimal model order of autoregressive integrated moving average with exogenous 

input (ARIMAX). As a result ARX(1) and ARIMAX(1,1,0)  procedures in the 

present thesis has worked quite good in forecasting wind measurements and can be 

effectively utilized for the electricity production of a wind power plant or achieving 

the best maintain schedule etc. In addition to this, these models can be used for 

longer-term wind speed forecasting and checked the goodness of fit. 
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