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WIND SPEED PREDICTION USING LINEAR PREDICTION METHODS

SUMMARY

Short-term forecasting of wind speed is of great importance to wind turbine
operation and efficient energy harvesting. In this thesis, one-step ahead wind speed
forecasting is performed. Six approaches based on linear prediction methods are
employed for this purpose. The first approach features the autoregressive process
(AR) with the model order eight. Model order selection criterias, Akaike information
criteria (AIC) and Bayesian information criteria (BIC), are used for optimal model
order selection. These information criterias selected the same autoregressive model
with an order of eight, which is shown as AR(8). Second approach employs the
autoregressive moving average process (ARMA). In this case, AIC and BIC selected
the autoregressive moving average model with different order. First model is defined
as autoregressive moving average model with an autoregressive order of four and
moving average order of three which can be shown as ARMA(4,3) and second model
is defined as ARMA(14,13). Third approach features the autoregressive integrated
moving average process (ARIMA). In this case, AIC and BIC pointed different
model orders once again. In addition the notation of ARMA, an integration process
with an order of one is added and shown as ARIMA (30,1,29) and ARIMA(3,1,2).
Two different models are performed in this case. On the other hand fourth, fifth and
sixth approaches involve employing an exogenous input to the first three approaches.
In first case, autoregressive model with an exogenous input, which is denoted as
ARX is featured. Depending on the model selection criterias, the order of
autoregressive model with an exogenous input is selected as one, which is shown as
ARX(1). In the next case, the criterias for model order selection pointed the same
model order. Autoregressive order of two and moving average order of one with an
exogenous input model, which denoted as ARMAX(2,1) is performed. In third case,
AIC and BIC selected the first order integrated autoregressive order of eight and
moving average order of seven with an exogenous input which is shown as
ARIMAX(8,1,7). By employing these six approaches, one step ahead wind speed
forecasting is performed. Wind speed data observed in Bursa-Gemlik location with a
time interval of ten minutes. The results are compared using mean absolute error
(MAE) and root mean square error (RMSE) as a measure for forecasting quality. The
goodness of fit is checked by calculating r-square R? statistics. It is found that the
AR, ARX, ARMA and ARIMA model is better at predicting the wind speed
corresponding the R? statistics. MAE, RMSE and R? statistics also show that ARX
model is the best for forecasting one step ahead wind speed. Moreover, ARMAX
model is also good at forecasting wind speed whereas it’s lower than AR, ARX,
ARMA and ARIMA . Results also show that ARIMAX (8,1,7) model is the worse
for forecasting one step ahead wind speed. In order to check the success of criterias
for model order selection, various ARIMAX models are analyzed. It can be seen
from the results that other ARIMAX models are better than ARIMAX(8,1,7). In
other words AIC and BIC is not withstanding selecting the model order of
autoregressive integrated moving average models with an exogenous input.
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LINEER ONGORU METODLARI iLE RUZGAR HIZI ONGORUSU

OZET

Riizgar hizinin ve yOniiniin degiskenligi ve buna bagli olarak riizgar enerji
santralinden elde edilen enerjinin degiskenligi ve kontrol edilememesi, yiiksek
miktarda riizgar enerjisine dayali elektrigin bagl oldugu sebekelerde gii¢ kalitesi,
iretim/tiiketim dengesi, bakim onarim planlamasi ve gii¢ sisteminin giivenilirligi
acisindan sorunlara yol agmaktadir. Tiirkiye’nin mevcut riizgar potansiyeli ve 2023
yil1 sonunda elde edilmesi hedeflenen 20 GW kurulu riizgar giicii diislintildiigiinde,
sebekeye entegre edilen riizgar enerjisinde yasanacak artigla birlikte yukarida
bahsedilen sorunlarin ilerleyen yillarda 6neminin artacagini sdyleyebilriz. Yiiksek
dogruluga sahip ve uygulamasi kolay riizgar hizi 6ngorii yontemleri bu sorunlari en
aza indirmek ig¢in kullanilacak en etkin ¢6ziimdiir. Bu amagla bu tez kapsaminda
boyle bir ¢alisma gerceklestirilmistir.

Bu calismada gerceklestirilecek riizgar hizi 6ngoriisii i¢in lineer dngdrii metodlar
otoregresif modeli (AR), otoregresif hareketli ortalamalar modeli (ARMA),
otoregresif biitiinlesik hareketli ortalamalar modeli (ARIMA), dissal degiskenli
otoregresif modeli (ARX), dissal degiskenli otoregresif hareketli ortalamalar modeli
(ARMAX), digsal degiskenli otoregresif biitiinlesik hareketli ortalamalar modeli
(ARIMAX) kullanilmistir. Ongorii, bir degiskenin belirli varsayimlar altinda
gelecekte alabilecegi degerlerin Onceden yaklasik olarak belirlenmesi olarak
tanimlanir. Zaman serisi analizi ile 6ngorii, incelenen bir degiskenin simdiki ve
geemis donemdeki gozlem degerlerini kullanarak ve birtakim varsayimlar altinda
ongorii degerlerinin hangi siirlar arasinda gerceklesebilecegini ortaya koymak i¢in
yapilan ugraslardir. Lineer ongorii metotlar1 seriye en iyi uyan, en az parametre
iceren dogrusal modeli belirleyerek 6ngoriide bulunur.

Ongoriide kullamlacak riizgar hiz1 dlgiim verileri, meteoroloji genel miidiirliigii’niin
Gemlik’te bulunan otomatik gozlem istasyonundan alinmistir. Riizgar hizi 6lgiim
degerleri 10 dakikalik araliklarla, kap anemometre ile 10 m yiikseklikte kaydedilmis
4320 (1 aylik) veriden olusmaktadir.

AR, ARMA, ARIMA, ARX, ARMAX ve ARIMAX modelleri sirastyla riizgar hizi
Olgtim veri serisinin tamamina uygulandi. Model mertebeleri 1°den 75’e kadar
degistirilerek her bir model mertebesi veri serisine uygulanip, optimal model
mertebesi se¢me i¢in kullanilan Akaike enformasyon kriteri ve Bayesian
enformasyon kriteri hesaplandi, bunlarin grafikleri ¢izdirildi Figure (3.4, 3.5, 3.6,
3.7, 3.8, 3.9). Table 3.1. de goruldigii tizere en diisiik enformasyon kriter degerinin
yakalndig1 mertebeler modeller i¢in en uygun model mertebesi segildi.

AR modeli i¢in, AIC ve BIC model mertebesi olarak sekizi gosterdi. AR(8)
modeline en biiyiik olabilirlik kestirimi yontemi kullanilarak model katsayilar
hesaplandi. Hesaplanan bu degerler kullanilarak bir-adim ileri 6ngoriide bulunuldu
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ve gercek 6lciim degerleri ile karsilastirildi. Ongériiniin basarimini dlgmek i¢in kalan
degerler hesaplandi. Kalan degerlerden ortalama mutlak hata ve karesel ortalama
hata hesaplamas1 yapildi. Ortiisme diizeyinin basarisini 6l¢gmek icin ise R? istatistigi
hesaplandi. Yapilan ongoriiler sonunda elde edilen kalanlarin grafigi ¢izdirildi.
Kalanlarin rastgele dagilip dagilmadigini gozlemlemek i¢in dagilim grafigi cizdirildi.
Bunlara ek olarak ongorii edilen ve gercek gézlem degerleri ayni grafikte gosterildi,
Ongoriinlin gercek degerlerin degisimine nasil tepki verdiginin daha net gorebilmek
igin 2000. veri ile 2100. veri aras1 ayr1 olarak ¢izdirildi. yine Daha sonra bu islemler
sirastyla ARMA, ARIMA, ARX, ARMAX ve ARIMAX modellerinde tekrarlandi.
AIC ve BIC metodlar1 ARMA ve ARIMA modelleme tiirleri igin ikiser farkli
mertebeyi isaret etti. ARMA ve ARIMA modellemeleri i¢in ikiser farkli mertebede
model belirlendi

ARMA modeli i¢in AIC model mertebesi ARMA (14,13)’ii BIC ise model mertebesi
ARMA(4,3)’ii isaret etti. Ortiisme diizeyinin basarisina baktigimizda R? istatistigi
ARMA (14,13) de daha yiiksek ¢iktigin1 ve ARMA (4,3)’e gore daha iyi bir ortiisme
gosterdigini goriilyoruz. Hata terimlerine baktigimizda yine ARMA(14,13)’iin
ARMA(4,3)’e gore daha diislik 6ngorii hatasi verdigi gézlemlendi.

ARIMA modeli i¢in AIC model mertebesi ARIMA (30,1,29)’u BIC ise model
mertebesi ARIMA(3,1,2)’yi isaret etti. Ortiisme diizeyinin basarisina baktigimizda
R? istatistigi ARIMA (30,1,29) de daha yiiksek ¢iktigin1 ve ARIMA (3,1,2)’e gore
daha iyi bir Ortiisme goOsterdigini goriiyoruz. Hata terimlerine baktigimizda yine
ARIMA(30,1,29)’un ARIMA(3,1,2)’c gore daha diisiik ©Ongorii hatasi verdigi
gozlemlendi. Bu iki farkli modelleme tiirii i¢in yapilan analiz sonuglar incelendiginde
AIC ve BIC metodlarinin farkli deger gosterdigi iki model mertebesinde AIC’in
isaret ettigi modelin daha basarili oldugu gozlenmektedir.

Eksojen girisli otoregresif modeller i¢in bu islemler tekrarlandiginda: ARX modeli
icin AIC ve BIC model mertebesi ARX(1)’i ARMAX i¢in model mertebesi
ARMAX(2,1)’i ve ARIMAX ig¢in model mertebesi ARIMAX(8,1,7) ‘yi isaret
etmekte. Bunlarmn icinde ARX(1) modelinin &rtiisme diizeyi basarist R? istatistigi
degerine bakildunda, diger modellere kiyasla en yiiksek degeri verdigini goriiyoruz.
Hata terimlerine baktigimizda da diger modellemelere gore en diisiik hatayi yine
ARX(1) modelinde yakaladigimizi gérmekteyiz.

ARMAX(2,1) modelinin ortiisme diizeyinin basarisina baktigimizda R? istatistigi
degerleri otoregresif modellere ve ARX(1) modeline gore biraz diisiik oldugunu
sOylenebilir. Hata terimlerine baktigimizda ARMAX(2,1)’in AR, ARMA, ARIMA
ve ARX modellerine gore daha ytliksek 6ngorii hatas1 verdigi gozlemlendi.

ARIMAX modeli i¢in ise AIC ve BIC, model mertebesi olarak ARIMAX(8,1,7)’i
isaret etmistir. ARIMAX(8,1,7)’nin drtiisme diizeyinin basarisina baktigimizda R?
istatistigi degerinin diger modellere gore ¢ok diisiik oldugu goriilmektedir. . Hata
terimlerine baktigimizda da en yiiksek hatayr yine ARIMAX(8,1,7) modelinde
oldugunu gormekteyiz. Bu sonuglar ARIMAX(8,1,7) modelinin 6ngdriide bulunmak
icin uygun bir model olmadigin1 géstermektedir.

ARIMAX modelinde yakalanan bu basarisiz sonuclar iizerine ek bir ¢calisma olarak
farkli model mertebelerine sahip ARIMAX modelleri veri serisinin Ongdriisiinde
kullanildi. Bu c¢alismada ARIMAX(1,1,0), ARIMAX(2,1,1), ARIMAX(20,1,19),
ARIMAX(9,1,8) ve ARIMAX(7,1,6) modelleri 6ngoriide kullanilmak tizere segilerek
ARIMAX modellerinin basarimu ile ilgili bir yorumla getirildi. Denenen ARIMAX
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modellerinin ARIMAX(8,1,7) modeline gére Ortiisme diizeylerinin ¢ok daha iyi
durumda oldugunu ve hata terimlerinin daha kiiciik seviyelerde oldugu goriildii.
Burdan yola ¢ikarak AIC ve BIC metotlarinin ARIMAX modelleri i¢in optimal
model mertebesini segmede kullanilmasinin yanlis sonuclar dogurabilecegi gozlendi.

Yapilan analiz sonuglarina gére mevcut veri serisinin analizinde kullanilmaya en
uygun model ARX(1) modelidir.
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1. INTRODUCTION

Wind energy is considered one of the most rapidly growing energy resources all over
the world. It is expected that about 20% of the Canada total electricity demand to be
supplied from wind energy resources by 2025. About 17% of the European Union
electricity needs are expected to be supplied from wind energy, by the year 2020
[Url-1, Url-2]. Turkey has a global target of reaching 30% renewable energy based
electricity production share and 20 GW wind power production capacity in markets
by 2023 [Url-3]. Due to this expected high penetration rates of wind energy
generation, wind farms are required to operate as controllable power plants. This
increase the necessity for more accurate and reliable techniques for wind farms
output power prediction. Wind power forecasting (WPF) approaches are also
essential process for wind farms units’ maintenance, optimal power flow between
conventional units and wind farms, electricity marketing bidding, power system
generators scheduling and energy reserves and storages planning and scheduling [1].
Reliable forecasting techniques lead to reliable power system by achieving the best
schedule between the plants for day ahead and even on the short term for economical
dispatch problem. In liberal electricity markets, having an accurate WPF models will
considerably reduce the penalties imposed on such deviations in scheduling of power

share of wind farms [2].

Considering the time scales of WPF, there are three classifications; very short term,
short term and medium term WPF. Very short term is in the range of few seconds to
30 minutes ahead that helps in economical dispatch purpose. Short-term forecasting
concerns from 30 minutes to 6 hours which is interesting in trading in day-ahead
markets and UC (unit commitment). Medium term forecasting is in the range of 6
hours to a day that is very helpful in maintenance scheduling for conventional and

wind plants and long term forecasting from a day to a week [3].

Since the issue of WPF arises, many researchers tried to get the state of the art of

WPF techniques. There are two forecasting approaches, physical based approach and



statistical approach [4-5]. Statistical models that are the subject of this thesis uses
only historical wind speed data recorded at the site.

The statistical approach is based on training with measurement data and uses
difference between the forecasted and the observed wind speeds in immediate past to
tune model parameters. It is easy to model, inexpensive and provides timely
prediction. It is not based on any predefined mathematical model and rather it is
based on patterns. Errors are minimized if patterns are met with historical ones. Sub-
classification of this approach is: Time-series based models, and neural network
(NN) based methods [6].

Auto regressive integrated moving average (ARIMA) also known as Box and Jenkins
methods are the most popular type in time-series based approach to predict future
values of wind speed or power. It can be used as autoregressive model (AR), moving
average (MA), autoregressive moving average (ARMA). Several variations are
seasonal ARIMA (s-ARIMA), and fractional ARIMA (f-ARIMA), AR with
exogenous input (ARX), ARMA with exogenous input (ARMAX), and ARIMA with
exogenous inpt (ARIMAX). Few other time—series models are grey predictors, linear

predictors, exponential smoothing, etc. [7].

1.1 Purpose of Thesis

In this thesis, wind speed measurements time series data which recorded in Bursa-
Gemlik weather measurement station during the April 2013 is analyzed and linear
prediction methods AR, ARMA, ARIMA, ARX, ARMAX, and ARIMAX methods
are used to forecast one step ahead forecasting. Corresponding the goodness of fit
criterias, results are compared. Depending on the comparison results it’s aimed to see

the best fit linear prediction model for the wind speed measurements.

1.2 Methodology

In this study, wind speed forecasting was done by using following procedure. Firstly,
data series analyzed and checked for stationarity. The set of model was identified.
After that, model parameter was estimated and checked for goodness of fit using
information criteria AIC and BIC. Finally, optimal model was used for forecasting.

These steps are shown as the scheme in Figure 1.1.



Data series analyzed checked for stationarity

A set of model is identified for the observed data.

Model parameter estimated and checked for the
goodness of fit using information criteria AIC and BIC

The optimal model is used for forecasting one step
ahead and checked for the goodness of forecasting.

Figure 1.1: Scheme for the study of forecasting wind speed.






2. LINEAR PREDICTION METHODS

2.1 General Formulation

Let x(n) be a stationary random process. The value of the sample x(n) can be
predicted using a linear combination of N most recent past samples. The estimate can

be shown
2hm) = = 3N, ap; x(n — i) 2.1)

Here N is the prediction order. The superscript * shows that ay; is optimum

predictor with a prediction order N. The superscript f on the left is a reminder that we

are discussing the ‘‘forward’’ predictor. The estimation error has the form

en(n) = x(n) — 24 (n)) (22)
that is,
e (n) = x(n) + X, ajy ; x(n — i) (2.3)

So we define “mean squared error (MSE)” as s,C.

e = Ellef ()] (2.4)

When we think wide sense stationary (WSS) process, MSE is independent of time.

The optimum predictor with the optimum set of coefficients minimizes this MSE [8].

2.2 Autoregressive Processes (AR)

Linear predictive coding of a random process reveals a model for the process, called
the autoregressive (AR) model. This model is very useful both conceptually and for

approximating the process with a simple model.

If a WSS random process w(n) can be generated by using recursive difference

equation it can be defined as autoregressive (AR) and its formulation is:



wn)= -V, df o(n—1i)+ e(n) (2.5)
Here there are two assumptions
e ¢e(n) is a zero-mean white noise, and

e All zeros of the polynomial D(z) = 1+ YN, d; z~* are inside the unit

circle.

If dy # 0, the process is AR(N), that is AR of order N. Because e(n)has zero mean,

the AR process has zero mean according to the above definition.

Given a WSS process x(n), let us assume that we have Nth-order optimal predictor
polynomial Ay(z). We know, we can then represent the process as the output of an

infinite impulse response (1IR) filter as shown in formula:

x|y | —edm (2.6)

IR inverse filter
The input to this filter is the prediction error e,{;(n). In the time domain, we can write
x(n) = —YN ay; x(n—1i) + ef(n) 2.7)
If the error stalls, that is, g{; does not decrease anymore as m increases beyond some

value N, then e,{l(n) is white (assuming x(n) has zero mean). Thus, the stalling

phenomenon iplies that x(n) is AR(N).

Summarizing, suppose the optimal predictors of various orders for a zero-mean

process x(n) are such that the minimized mean square errors satisfy
el >l >l =l | m>N (2.8)

Then, x(n) is AR(N).

2.3 Moving Average (MA) and Autoregressive Moving Average (ARMA)

Processes
We know that a WSS random process x(n) is said to be AR if it satisfies a recursive
(IIR) difference equation of the form

x(m) = — 3N, di x(n—10) + e(n), (2.9)

where e(n) is a zero-mean white WSS process, and the polynomial D(z) =1+



YN . d; z7! has all zeros inside the unit circle. We say that a WSS process x(n) is a
moving average (MA) process if it satisfies a nonrecursive (FIR) difference equation

of the form
x(n) = TNy p; e(n—1i) (2.10)

where e(n) is a zero-mean white WSS process. Finally, we say that a WSS process

x(n) is an ARMA process if

x(n) = —¥N,df x(m -1+ TNop; e(n—1) (2.11)
where e(n) is a zero-mean white WSS process. Defining the polynomials

D(z) =1+ ¥N,diztand P(z) = XN, p; z7° (2.12)

we see that the above processes can be represented as in Figure. 2.1.

(a) e(n) —p ]/D(:) —— x(11) AR process

white

IR allpole filter

(b) e(n) —»  P(z) ——p x(1n7) MA process

white
FIR filter
(c) e(n) —p p(_-)/D(_-) p x(n) ARMA process
white

IIR pole-zero filter

Figure 2.1: (a) AR, (b) MA, and (c) ARMA processes.

In each of the three cases, x(n) is the output of a rational discrete time filter, driven
by zero-mean white noise. For the AR process, the filter is an all-pole filter. For the

MA process, the filter is FIR. For the ARMA process, the filter is IR with both poles

and zeros [8].



2.4 Autoregressive Integrated Moving Average (ARIMA) Processes

ARIMA models are extensions of ARMA class in order to include more realistic
dynamics, in particular, respectively, non-stationarity in mean. In practice, many
time series are nonstationary in mean and they can be modelled only by removing the

nonstationary source of variation. Often this is done by differencing the series.

Suppose X; is nonstationary in mean, the idea is to build an ARMA model on the
series wy, defnible as the result of the operation of differencing the series d times (in

general d = 1): w, = A%X,.

Hence, ARIMA models (where | stays for integrated) are the ARMA models defined
on the d-th diference of the original process:

@ (B)AYX, = 6(B)a, (2.13)

where @(B)A? is called generalized autoregressive operator and A%X, is a quantity
made stationary through the differentiation and can be modelled with an ARMA.
For example:
e ARIMA (0,1,1) is AX; = a; —6,a,_, — the first difference of X, is
modelled as MA(1).
e ARIMA (1,1,0) is (1 —®,B)AX, = a; — the first difference of X, is
modelled as AR(1).

Note that in this case:

(1-®,B)(1-B)X, = a, (2.14)
(1-B—®,B+®,B2)X, =a, (2.15)
[1-(1+®)B+®B2]=a, (2.16)

The last equation shows that ARIMA(1,1,0) is like an AR(2) where ¢, = —¢, and
&, + @, = 1. This reveals that, as we knew in advance, the stationary constraint
does not hold [9].

2.4.1 The role of the constant term in ARMA and ARIMA

Suppose that a constant term is included in the ARMA model:

®(B)X, = 0, + 0(B)a, (2.17)



Taking the expected value on both sides (note that E (X;) = u due to stationarity of
the process):

D(B)u = 6, (2.18)
Hence;
Op=p(l—®, ——d) (2.19)

that represents the relationship between the constant term and the expected value of

the process. From this, we can make two conclusions:

e If X, is MA (the AR component does not exist), the possible constant present
in the model coincides with the mean of the process X; itself (u = 6,).

e If X;is only AR, then the aforementioned relationship holds. It is interesting
to observe that for AR(1) in case @; — 1 (in general when the autoregressive
process tends to nonstationarity) the constant tends to disappear.

o If X;is ARIMA, by including 6, term:

®(B)AX; = 6, + 6(B)a; (2.20)
This is called ARIMA model with drift. The simplest case is the Random Walk plus
drift process:
AX; =6y + a; (2.21)

By taking the first diference of X; one obtains a quantity AX, whose mean is not
zero: a drift 8, adjusts for this. The idea is that the constant 6, was originally the
slope of a deterministic trend, that after diferencing d = 1 times, disappears leaving
only a level (6,) around which AX, moves with stationary oscillations. The random
walk with drift is characterized by both stochastic and deterministic trend. Every
time a diference is taken, a trend is removed whose nature (stochastic or
deterministic) is clear only by checking whether the differences uctuate around zero
(stochastic trend) or not (deterministic trend, whose slope remains in the form of the
constant) [9].

2.4.2 Characteristics of ARIMA processes

e d = 0 stationary process
e d = 1 nonstationary process: the level changes in time, but the increase is
constant — level is nonstationary, but its increments are

e d = 2 nonstationary process: both level and increments are stationary



When Xt is nonstationary, its theorethical ACF is not defined (only the empirical
ACF is). However, by observing the behaviour of processes that are nearly stationary

we can put in evidence the following regularities:

e The ACF decreases extremely slowly to zero, the decrease is not expo-
nential by linear.

e The PACF takes value 1 for k = 1 and zero elsewhere.

These characteristics of ACF and PACF are motivated by the dominance of the trend
on the other dynamics in the series. Unless the trend is removed, nothing else (e.g.
other MA or AR components) can be recognized from ACF and PACF [9].

2.5 Autoregressive Models with Exogenous Input (ARX)

Probably the most simple input-output relationship is obtained by describing it as a

linear difference equation:
y@®) +ay(t—1)+-+ anay(t —ng) =
biu(t — 1) + -+ by, u(t — ny) + e(t) (2.22)
Since the white-noise term e(t) here enters as a direct error in the difference

equation, the model (2.22) is often called an equation error model (structure). The

adjustable parameters are in this case

6 = [ayay -~ an by - by,] (2.23)
If we introduce
AlQ =14+ a1g7 + -+ ay,q ™ (2.24)
and
B(q) = biq + -+ by, q™™ (2.25)

We see that (2.22) corresponds to (2.13) with

G(q,0) =22 (2.26)
H(q,0) = 5 (2.27)
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Remark: It may seem annoying to use g as an argument of A(q). Being a polynomial
in g~1. The reason for this is, however, simply to be consistent with the conventional
definition of the z-transform.

We shall also call the model (2.22) an ARX model, where AR refers to the
autoregressive part A(q)y(t) and X to the estra input B(q)u(t) (called the
exogenous variable in econometrics). ARX model structure is shown in Figure 2.2.
In the special case where n, = 0, y(t) is modeled as a finite impulse response (FIR).

Such model sets are particularly common in signal-processing applications [10].

The signal flow can be depicted as in Figure From that picture we see that the model
(2.22) is perhaps not the most natural one from a physical point of view: the white
noise is assumed to go through the denominator dynamics of the system before being
added to the output. Nevertheless, the equation error model set has a very important
property that makes it a prime choice in many applications: The predictor defines a

linear regression.

l/e
1
A

u B l,
—]—O—

}.’

Figure 2.2: ARX Process.

2.6 Autoregressive Moving Average Models with Exogenous Input (ARMAX)
and Autoregressive Integrated Moving Average Models with Exogenous Input
(ARIMAX)

The basic disadvantage with the simple model (2.22) is the lack of adequate freedom
in describing the properties of the disturbance term. We could add flexibility to that
by describing the equation error as a moving average of white noise. This gives the

model;

11



y@®) +yE -1+ +apy(t—ny) =bult—-1)+-
+bp,u(t —np) +e(t) + cre(t—1) + -+ cye(t —ne) (2.28)
with
C(@)=1+ciq"+ - +cyq™ (2.29)
It can be rewritten

A(Q)y(t) = B(g@u(t) + C(q)e(t) (2.30)

And clearly corresponds to (2.13) with

G(q,0) = % (2.31)
H(q.0) =55 (2.32)

where now
6 = [ay - an,by - bn,c1 - Cn] (2.33)

In the view of the moving averae (MA) part C(q)e(t), the model (4.28) will be
called ARMAX. The ARMAX model has become a standard tool in control and
econometrics for both system description and control design. A version with an
enforced integration in the noise description is the ARIMA(X) model (I for
integration with or without the X-variable u) which is useful to describe systems
with slow disturbances [10]. It is obtained by replacing y(t) and u(t) in (2.30) by
their differences Ay(t) = y(t) — y(t — 1) and is further discussed.

2.7 Parameter Estimation

2.7.1 Yule-Walker method

Depending on the orthogonality principle the optimum value of ay ; can be defined

when the error ek (n) is orthogonal to x(n — i), that is,
Elek(mx*(n—1)] =0, 1<i<N (2.34)

There are N equations occurs and all can be shown in a special form, because of the

condition.
[Rlim = E[x(n—1-1x*(n—1-m)], 0<im<N-1 (2.35)

12



The autocorrelation sequence of WSS process x(n)can be defined as R(k),
R(k) = E[x(n)x*(n — k)] (2.36)

Using the fact R(k) = R*(—k), we can simplfy Eq. (2.34) to obtain:

R(0) R(1) .. R(N—=1)]ranz R*(1)
R'(D) R(0) - RON- 2)‘ [am‘ lR*(Z)\ (2.37)
RIN-1) R(N-2) .. R(O) R* (N)
RN
For example, with N=3, we get
R(0) R(1) R(2) 3,1 R*(1)
R*(1) R(0) R(1) a3 2] =—|R*'(2)]. (2.38)
R*(2) R*(1) R(0) [La33 R*(3)

R3

These are called Yule-Walker equations, normal equations and Wiener-Hopf
equations in literature [11]. Assuming that the n X n symmetric matrix R is
invertible, the coefficient ay; are estimated by ay; = R™r. Once the coefficients
are estimated, the linear prediction model can be applied to predict future samples,
with x, = YN, a;x,_; . This technique is easy to implement, it is not adapted for

nonlinear systems [12].

2.7.2 Levinson-Durbin algorithm

The method is recursive in nature and makes particular use of the Toeplitz structure
having constant entries along diagonals of the correlation matrix of the tap inputs of
the filter. It is known as the Levinson-Durbin algorithm, so named in recognition of
its use first by Levinson (1947) and then its independent reformulation at a later date
by Durbin (1960) [13]. The property of a forward prediction error filter operating on
a stationary discrete time stochastic process is intimately relate to the autoregressive
(AR) modelling of the process. The prediction error filter is an all zero filter with an
impulse response of finite duration. On the other hand, the inverse of prediction error
yields the AR model that is an all zero filter with an impulse response if infinite
duration. From this relation the levinson durbin algorithm is adopted to compute the

estimate AR coefficients which is:

Initialize the algorithm by setting;
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a0 = 1 (2.39)

P, =r(0) (2.40)
Hence, compute form = 1,2,3, ... ... ....., M:
Kpn=—/Pp_1). Zicim-17({ —mM)apm_1; (2.41)
Am; =1 fori=1

Ami = Am-1; + Kna*m_1;-1 fori=12,..,m-1
Ami = K fori=m (2.42)
Py = m—1(1 - |Km|2) (2-43)

where apy g, k =1,2,...,M denotes the estimated AR coefficients. K,, is the

reflection coefficient. B,, is the prediction error power [14].

As the order m of the prediction error filter increases, the corresponding value of the
prediction error power normally decreases or else remains the same. In addition to

this, P,, can never be negative. Hence,
0<P,<P,, m=>1 (2.44)
For the elementary case of a prediction-error filter of order zero,
P, =1(0) (2.45)
where r(0) is the autocorrelation function of the input process for lag.

Starting with m = 0 and increasing the filter order by 1 at a time, repetition of
equation occurs. Moreover, the prediction error power for a prediction error filter of

final order M equals [13].:
Py =Py %:1(1 - |Km|2) (2.46)
2.7.3 Burg algorithm

The Yule-Walker coefficients ¢3p1, ---,(ﬁpp are precisely the coefficients of the best
linear predictor of X, in terms of {Xp,..., X1} under the assumption that the ACF
of {Xt } coincides with the sample ACF at lags 1,...,p. Burg’s algorithm estimates
the PACF {¢11, 22, ...} by successively minimizing sums of squares of forward and
backward one-step prediction errors with respect to the coefficients ¢;; . Given

observations {x,,...,x,} of a stationary zero-mean time series {Xt} we define
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u; (t),t=1i+1,...,n,0 < i < n, to be the difference between x,,,,,;_, and the
best linear estimate of x,,, ;. terms of the preceding i observations. Similarly, we
define v; (t), t=i+1,...,n, 0 < i < n, to be the difference between x,,_;
and the best linear estimate of x,,,;_, in terms of the subsequent i observations. Then
it can be shown that the forward and backward prediction errors {u; (t)} and {v; (t)}

satisfy the recursions;

Uy () = v (t) = xp41-¢ (2.47)
u; () =uj—q (t—1) — ¢;v;-1(0) (2.48)

and
v; = v 1(t) — pyiu_1(t — 1) (2.49)

Burg’s estimate g2 0f ¢, is found by minimizing

of = 5o Zizaluf () + vE(D)] (2.50)

with respect to ¢,;. This gives corresponding numerical values for u, (t) and
v,(t) and o that can then be substituted into together with i = 2. Then we

minimize;

03 = —— 31 ,[ud(t) + v3(t)] (2.51)

= 21 &t=3

with respect to ¢, to obtain the Burg estimate ¢>§§) of ¢,, and corresponding values

of u, (t), v, (t), and a2 . This process can clearly be continued to obtain estimates

(B)

%) and corresponding minimum values, o=

» » p < n — 1 Estimates of the

coefficients ¢,,;, 1 < j < p — 1, inthe best linear predictor
Ppo+1 = ¢p1Xp + -+ ¢pr1 (252)

are then found by substituting the estimates ¢>i(i3) ,i=1,...,p, for ¢; in the
recursions . The resulting estimates of ¢,;, j =1,...,p, are the coefficient

estimates of the Burg AR(p) model for the data {x;,...,x,}. The Burg estimate of

the white noise variance is the minimum value > found in the determination of
,(,f,) . The calculation of the estimates of ¢,, and ag described above is equivalent

to solving the following recursions:
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Burg’s Algorithm:

d(1) = ¥, [ug(t — 1) + v§(0)], (2.53)
i(iB) = %i) t=i+1 Vie1 (D1 (£ — 1), (2.54)

di+1) = (1-¢P)d@) - v2(+1) - ud(n),  (2.55)

22

o =[(1-9?)d®] /12(n - 1)) (2.56)
The large-sample distribution of the estimated coefficients for the Burg estimators of
the coefficients of an AR(p) process is the same as for the Yule-Walker estimators,
namely, N(¢,n o2l 1). Approximate large-sample confidence intervals for the

coefficients can be found by substituting estimated values for o and I}, [15].

2.7.4 Maximum likelihood estimation

Suppose that X; is a Gaussian time series with mean zero and autocovariance
function x(i, j) = E(X;X;). Let X, = (X, X,)" and let X, = (Xy, -+, %y)', where
X; =0 and X; = E(X{|Xy, -+, Xj-1) = P_;X; , j = 2. Let I, denote the covariance

matrix I, = E(X,X},), and assume that [}, is nonsingular.

The likelihood of |X,, is
L(T,) = (2m) V2(detl,) 2exp (— %x;x;lxn) (2.57)

As we shall now show, the direct calculation of detl, and ;! can be avoided by
expressing this in terms of the one-step prediction errors X; — )A(,- and their variances
Vj_1, j=1,--,n, both of which are easily calculated recursively from the

innovations algorithm.

Let 6;;, j=1,---,i ; i=1.2,-, denote the coefficients obtained when the

innovations algorithm is applied to the autocovariance function k of {X,}, and let C,,

be the n x n lower triangular matrix. From above equation, we have the identity
Xn = Co(Xn — Xp) (2.58)
We also know components of X, — X, are uncorrelated. Consequently, by the
definition of v; , X, — X,, has the diagonal covariance matrix
D,, = diag{vy,**,Vn_1} (2.59)
16



we conclude that
r, = C,D,Cl, (2.60)
we see that
X X7 Xy = (X — ) D7t (X — 80) = 30 (X, — %) /vy (261)
and
detT}, = (detC,)?*(detD,) = vyvy *** Up_q (2.62)

The likelihood of the vector X,, therefore reduces to

1 1 5\2

If I, expressible in terms of a finite number of unknown parameters Sy, ..., B, (as is
the case when {Xt } is an ARMA(p, q) process), the maximum likelihood estimators
of the parameters are those values that maximize L for the given data set. When
X, X,,..., X, are iid, it is known, under mild assumptions and for n large, that
maximum likelihood estimators are approximately normally distributed with
variances that are at least as small as those of other asymptotically normally

distributed estimators.

Even if {Xt } is not Gaussian, it still makes sense to regard as a measure of goodness
of fit of the model to the data, and to choose the parameters S, ..., B, in such away
as to maximize (5.2.6).We shall always refer to the estimators f;,..., 8, so obtained
as “maximum likelihood” estimators, even when {Xt } is not Gaussian. Regardless of
the joint distribution of Xj,..., X,,, we shall refer to .. and its algebraic equivalent ..
as the “likelihood” (or “Gaussian likelihood”) of X3,..., X,,. A justification for using
maximum Gaussian likelihood estimators of ARMA coefficients is that the large-
sample distribution of the estimators is the same for {Zt} ~ IID (0, 02), regardless

of whether or not {Zt } is Gaussian.

The likelihood for data from an ARMA(p, q) process is easily computed from the
innovations form of the likelihood by evaluating the one-step predictors X;..; and the

corresponding mean squared errors v;. These can be found from the recursions;

0, (Xps1ei — Xne1ei), 1<n<m,
_{ j=1 n}( n+1-j n+1 J) (2.64)

1 - ~
w P Xp + o+ ¢an+1—p + Z?=1 enj(Xn+1—j - Xn+1—j)’ nz=m,
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~ 2 ~ 2
E(Xni1 = Xnt1)" = 0PE(Wny1 = Wnya)” = o?ny, (2.65)
where 6,,; and 7, are determined by the innovations algorithm with k¥ and m =

max(p, q). Substituting in the general expression, we obtain the following:

The Gaussian Likelihood for an ARMA Process:

2) = ! _yn 05X
L(¢,9,a)—mexp{ Zo D=1 } (2.66)

Differentiating In L(¢,6,0?) partially with respect to ¢ and noting that X; and
ryare independent of ¢* we find that the maximum likelihood estimators

@, 0 and 67 satisfy the following equations:
Maximum Likelihood Estimators:
o2 =n"15(¢,0), (2.67)

where

~ A ~\2
S($,6) =311 (X~ X;)" /751, (2.68)
and ¢, 8 are the values of ¢, 8 that minimize
1(¢,0) = In(n"1S(¢,0)) +n~* X In 7. (2.69)

Minimization of [(¢, 8) must be done numerically. Initial values for ¢ and 8 can be
obtained from ITSM. The program then searches systematically for the values of ¢
and 6 that minimize the reduced likelihood and computes the corresponding

maximum likelihood estimate of o2 [15].

2.8 Methods and Criterias for Optimal Model Order Selection

Model selection is an important part of any statistical analysis and is central to the
pursuit of science in general. Moreover, in statistical modeling, choosing a suitable
model from among a collection of viable candidates bring problem for an
investigator [16]. The visual inspection of autocorrelation function (ACF) and partial
autocorrelation function (PACF) provides a useful way to construct an ARMA(p,q)
model. However, the more objective way to chose the orders of p and q of an
ARMA(p,q) process is to use objectively defined criterions such as AIC, BIC and

FPE. These information criterions are statistical model fit measures. They quantify
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the relative goodness of fit of various previously derived statistical models, given a
sample of data. Each of these criterions has their own merits and demerits [17].
Therefore, in this study, the decision of choosing model has been made after

carefully examining all these criterions.

2.8.1 Akaike information criterion (AIC)

The Akaike information criterion, AIC, was introduced by Hirotogu Akaike who was
former Director General of the Institute of Statistical Mathematics and a Kyoto
PrizeWinner in 1973 with paper named as “Information Theory and an Extension of
the Maximum Likelihood Principle” [18]. AIC was the first model selection criterion
to attract widespread notice in statistical community. AIC continues to be the most
widely used model selection tool among practitioners. The traditional maximum
likelihood paradigm provides a mechanism for estimating the unknown parameters
of a model having a specified dimension and structure. Akaike developed this
paradigm by considering a framework in which the model dimension is also
unknown, and must be determined from the data. In this way, Akaike proposed a
framework wherein both model predicting and selection could be simultaneously
achieved [19].

The information criterion | (f0:f1) that measures the deviation of a model specified

by the probability distribution f1 from the true distribution f0 is defined by formula

I(fo: f1) = Ef,.logfo — Es,. logfy (2.70)

It is known that I(fy:f;) =0 with equality if f, = f;. Therefore the smaller
I(fo: f1), the better model is f; as an estimator for f,. However, since Ef.logf, is
constant for all estimators f;, the larger Ef,.logf;, the better is model f;. Since f; is
unknown, if we have a random sample x1,.....xn, Er.logf; is estimated by the

moment estimator,

% j=1logfi(x;, 0) (2.71)

where 6 is the vector of parameters of the model under f;. However, 6 may be

unknown, so another estimator is needed, namely

% ?:1109f1(xj, 0) (2.72)
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where 8 is the maximum likelihood estimator for 6. It is clear that this estimator is
the average of the maximum log-likelihood under f;. Therefore, it seems
“reasonable” to say that the larger the maximum-log-likelihood, the better is the
model [20].

To have an asymptotically unbiased estimator for the negative of twice the expected
likelihood, the maximum likelihood estimates of the parameters that give the

minimum of Akaike information criteria defined by Akaike
AIC (8) = —2.log(maximum likelihood) + 2.k (2.73)

where k is the number of independently adjusted parameters to get 8. Hence the
smaller the AIC, the better is the model [24].

2.8.2 Bayesian information criterion (BIC)

The Bayesian information criterion, was introduced by Schwarz (1978) as a
competitor to the Akaike (1973, 1974) information criterion. An extension of the
maximum likelihood principle is suggested by Akaike[21] for the slightly more
general problem of choosing among different models with different numbers of
parameters [23]. BIC is one of the most widely known and widespread used tools in
statistical model selection. The computational simplicity and effective performance
in many modelling frameworks including Bayesian applications where prior
distributions may be elusive, bring its popularity. In Bayesian applications, pairwise
comparisons between models are often based on Bayes factors. Assuming two
candidate models are regarded as equally probable a priori, a Bayes factor represents
the ratio of the posterior probabilities of the models. The model which is a posteriori
most probable is determined by whether the Bayes factor is less than or greater than
one [16]. The Bayesian information criterion is often called the Schwarz information

criterion. Bayesian information criterion is defined as the formula:
BIC == —2.log(maximum likelihood) + k.log (n) (2.74)

maximum likelihood is the fitted model n is the number of observations and k
denotes the dimension of selected model. AIC and BIC share the same goodness-of-
fit term, but the penalty term of BIC k.log (n) is potentially much more stringent
than the penalty term of AIC (2k). Thus, BIC tends to choose fitted models that are

more parsimonious than those favored by AIC [23].
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2.8.3 Final prediction error (FPE)

The use of autoregressive representation of a stationary time series in the analysis of
time series has been attracting attentions of many research workers. It is expected
that this time domain approach will give answers to many problems. The main

difficulty in fitting an autoregressive model;
X(n)=YX"_ apx(n—m) + ay + e(n) (2.75)

X(n) is the process being observed and &(n) is its innovation that is not correlated
with X(I) and is forming a white noise, lies in the decision of the order M. the mutual
independence and strict stationary of &(n) is assumed. To surmount this problem,
the decision theoretic approach where a figure of merit is defined for each model
being fitted is adopted and the one with the best figure is chosen as predictor. This
figure of merit that is called as the final prediction error (FPE) is defined as the
expected variance of the prediction error when an autoregressive model fitted to the
present series of X(n). It is applied to another independent realization of X(n), or to
the process with one and the same covariance characteristic as that of X(n) and to
make a one-step prediction, it is independent of the present X(n). The study over
final prediction error was investigated by Akaike. The estimation of FPE of each
autoregressive model within a prescribed sufficiently wide range of possible orders
was computed and the one that gives the minimum of the estimates was chosen.
Akaike called this procedure as FPE scheme. The definition of final prediction error

(FPE) of the autoregressive model of order M is given by the relation;
M+1
FPE = (1 + T+) Ty (2.76)

where 7y, is the minimum of E(X(n) — XM_, af,’f’) X(n—m) — a(()M))2 with respect
to {a,(jl"); m=20,1,.... M} Obviously ry, is equal to the variance of the innovation

e(n) when X(n) is generated from &(n) by a finite auto regression of order equal to
or less than M. FPE tends to be large when unnecessarily large value of M is
adopted. When M is less than the true order of the process, r,, and its estimate
include, beside the contribution of the innovation variance, the contribution of the
inevitable bias of the model. Therefore it tends to be significantly large when a too

small value of M is adopted [24].
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3. MODEL IDENTIFICATION

3.1 Data Specification

Wind speed datas are taken from the Turkish State Meteorological Service, Data
Control and Statistical Division. Measurements are recorded during the April 2013
by Gemlik automatic meteorological observation station as shown Figure 3.1. The
file has a 4320 data for 30 days and 10 minutes time interval. The station is on the
location of 40.4401 latitute and 29.1504 longtitude that can be seen as a red star in
Figure 3.2.

Gemlik Apnl 2013 wind speed measurements

(=

Wind speed [m/s]
S

Figure 3.1: Gemlik meteorological station wind speed measurements on April 2013.

Automatic meteorological observation station has various sensors for different
purpose. Wind speed measurement sensor is located at the top of the 10 m height bar
and used for measuring the wind speed. The sensor is cup anemometer, wind rotates
the anemometer and magnitude is measured by the number of rotation per unit time
[Url-4].
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Figure 3.2: Location of the Automatic Meteorological Observation Station.
3.2 Autocorrelation Function (ACF) and Partial Autocorrelation (PACF) tests

In time series analysis, observed value at one point can be compared with observed
value at one or more time points earlier. Such prior values are known as lagged
values.The correlation between the original time series values and the corresponding
k-lagged values is called autocorrelation of order k. The ACF provides the
correlation between the serial correlation coefficients for consecutive lags. Figure 3.3
displays graphically the ACF and PACF. Autocorrelations for consecutive lags are
formally dependent. If the first element is closely related to second, and the second to
third, then the first element must also be somewhat related to the third one, etc. The
serial dependencies can change considerably after removing the first order
autocorrelation. By removing serial dependency, we can identify the hidden nature of
seasonal dependencies in the time series and we can make the series stationary which
is necessary for ARIMA and other techniques. Serial dependency for a particular lag
of k can be removed by differencing the series, that is converting each element I of
the series into its difference from the element i-k. Another useful method to examine
serial dependencies is to examine the Partial Autocorrelation Function (PACF), an
extension of autocorrelation where the dependence on the immediate elements (those
with in the lag) is removed. For time series data, ACF and PACF measure the degree
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of relationship between observations k time periods, or lags, apart. These plots

provide valuable information to help you identify an appropriate ARIMA model.

In a sense, the partial autocorrelation provides a cleaner picture of serial

dependencies for individual lags [25].

Sample partial autocorrelation funetion
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Figure 3.3: ACF and PACF plot of the data series.

In this wind speed measurements, time series data can be seen from Figure 3.3 that
each observation is most similar (closest) to the adjacent observation (lag=1), also

series do not follow any recurring seasonal pattern.

The PACF graph shows a large partial autocorrelations at lags 1.

3.3 AIC and BIC analysis

There are various criterion has been developed in order to select the optimal model
order of linear prediction models. Commonly used Akaike information criteria,
Bayesian information criteria and final prediction error are explained in Chapter 2. In
order to see the best-fitted model to data series, AIC and BIC criterions are used for
this study. FPE is not used in because FPE points the same order with AIC most of
the time. In another word FPE value is nearly equal to the logarithm of AIC value.
In order to calculate AIC and BIC values of AR, ARMA, ARIMA, ARX, ARMAX
and ARIMAX MATLAB® 2013b with Econometrics Toolbox used and syntax
aicbic is run. Here the results are given in Figure 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9
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respectively in the model order range of 1 to 75. As mentioned in the Section 2.8,
optimal model order is selected where the Akaike and Bayesian information criterias

take the minimum value.
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Figure 3.4: AIC and BIC results of AR models from AR(1) to AR(75).

The optimal model results can be seen in Table 3.1 . Optimal models will be fitted to
the data and corresponding results are presented in the Section 4 . Some of the
information criteria values could not calculated beacuse of being noninvertible.

These missing values can be seen in Figure 3.5, 3.6, 3.8 and 3.9.
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Figure 3.5: AIC and BIC results of ARMA models from ARMA(2,1) to
ARMA(75,74).
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Figure 3.6: AIC and BIC results of ARIMA models from ARIMA(2,1,1) to
ARIMA(75,1,74).
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Figure 3.7: AIC and BIC results of ARX models from ARX(1) to ARX(75).
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Figure 3.8: AIC and BIC results of ARMAX models from ARMAX(2,1) to

ARMAX(75,74).
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Figure 3.9: AIC and BIC results of ARIMAX model from ARIMAX(2,1,1) to
ARIMAX(75,1,74)

Table 3.1: AIC and BIC optimal model order results.

AR ARMA ARIMA ARX ARMAX ARIMAX

AIC AR() ARMA(14,13) ARIMA(30,1,29) ARX(1)  ARMAX(2.1) ARIMAX(8,1,7)
BIC AR®B) ARMA®4,3) ARIMAB3,12)  ARX(1)  ARMAX(2,1) ARIMAX(8,1,7)

28



4. RESULTS

4.1 AR Results

4.1.1 AR(8)

In this section, results of the one step ahead forecasting using the models that is
selected by the optimal model order selection criterias in the previous section are
plotted. Firts of all, autoregressive model with an order of eight AR(8) is performed
for forecasting and goodness of forecasting can be seen in Figure 4.1 and Figure 4.2.
In order to see the model fit better , data interval between 2000 and 2100 is plotted
seperately. The red line represents the observed data and the black line represents the

forecasted data.

One step ahead forecast

— Observed

s Forecast

Wind speed [m/s]

0 500 1000 1500 2000 2500 3000 3500 4000
Figure 4.1: AR(8) Observed and Forecasted Datas from 9 to 4320.

29



One step ahead forecast
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Figure 4.2: AR(8) Observed and Forecasted Datas from 2000 to 2100.

Residuals which mean the difference between forecasted value and actual value are
calculated . In order to assess model fit by examining residuals, Figure4.3 and Figure

4.4 are plotted. Smooth residuals graph means a good model fit.

Residuals

} | | |

500 1000 1500 2000 2500 3000 3500 4000

Figure 4.3: AR(8) Residuals.
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Figure 4.4: AR(8) Plot and Normality Plot of Standart Residuals.

4.2 ARMA Results

4.2.1 ARMA(4,3)

In another case, ARMA(4,3) and ARMA(14,13) are performed. Depending on the

results, actual data versus forecasted data graphs are plotted. Goodness of forecasting

can be seen in Figure 4.5 and Figure 4.9 respectively. More detailed graph also

created. They can be seen in Figure 4.6 and Figure 4.10 respectively.
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Wind speed [m/s]
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Figure 4.5: ARMA(4,3) Observed and Forecasted Datas from 5 to 4320.

31



(o N |

Wind speed [m/s]

One step ahead forecast

T T T T ==
=== Observed |1
Forecast '

1

2000

2010 2020 2030 20:10 2050 2060 2070 2080 2090 2160

Figure 4.6: ARMA(4,3) Observed and Forecasted Datas from 2000 to 2100.
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Figure 4.7: ARMA(4,3) Residuals.
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Figure 4.8: ARMA(4,3) Q-Q Plot and Normality Plot of Standart Residuals.
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4.2.2 ARMA(14,13)
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Figure 4.9: ARMA(14,13) Observed and Forecasted Datas from 15 to 4320.
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Figure 4.10: ARMA(14,13) Observed and Forecasted Datas from 2000 to 2100.
Goodness of forceasting graph for ARMA(4,3) and ARMA (14,13) seem identical.
Moreover, residuals analysis appear similar. In this stiuation, numerical results of
comparison parameters which are presented in the Section 4.7 have to be compared

to see the performance of forecasting of a model with respect to the others.
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Figure 4.11: ARMA(14,13) Residuals.
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Figure 4.12: ARMA(14,13) Q-Q Plot and Normality Plot of Standart Residuals.

4.3 ARIMA Result

4.3.1 ARIMA (3,1,2)

As presented in the Section 3.3, two different autoregressive integrated moving
average model are presented as an optimal model depending on the model order
selection criterias. These models are ARIMA (3,1,2) and ARIMA (30,1,29).

Depending on the results, actual data versus forecasted data graphs are plotted.
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Goodness of forecasting can be seen in Figure 4.13 and Figure 4.17 respectively.
More detailed graph also created. They can be seen in Figure 4.14 and Figure 4.18

respectively.
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Figure 4.13: ARIMA(3,1,2) Observed and Forecasted Datas from 5 to 4320.
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Figure 4.14: ARIMA(3,1,2) Observed and Forecasted Datas from 2000 to 2100.
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Figure 4.15: ARIMA(3,1,2) Residuals.
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Figure 4.16: ARIMA(3,1,2) Q-Q Plot and Normality Plot of Standart Residuals.

4.3.2 ARIMA (30,1,29)

In addiditon to previous case ARMA, residuals analysis appear similar for ARIMA
CASE too. Numerical results in the Section 4.7 have to be compared to see the
performance of forecasting of an ARIMA model in itself and with respect to the
other models. Residulas graph for ARIMA models are presented in Figure 4.15, 4.16,
4.19 and Figure 4.20.
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Figure 4.17: ARIMA(30,1,29) Observed and Forecasted Datas from 32 to 4320.
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Figure 4.18: ARIMA(30,1,29) Observed and Forecasted Datas from 2000 to 2100.
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Figure 4.19: ARIMA(30,1,29) Residuals.
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Figure 4.20: ARIMA(30,1,29) Q-Q Plot and Normality Plot of Standart Residuals.
4.4 ARX Results

4.4.1 ARX(1)

One step ahead forecasting performance of autoregressive with exogenous input
model presented in Figure 4.21, 4.22, 4.23 and 4.24 . Success of ARX(1) model fit
corresponding to the other models can be seen clearly by examining the goodness of
fit graph which is presented in Figure 4.21 and Figure 4.22 . Black line follows red
line quite good. Residuals also seem more smother, quantile and density graphs are

almost in an ideal shape.
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Figure 4.21: ARX(1) Observed and Forecasted Datas from 2 to 4320.
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Figure 4.22: ARX(1) Observed and Forecasted Datas from 2000 to 2100.
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Figure 4.23: ARX(1) Residuals.
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Figure 4.24: ARX(1) Q-Q Plot and Normality Plot of Standart Residuals.
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4.5 ARMAX Result

4.5.1 ARMAX(2,1)

In the autoregressive moving average with exogenous input model case, one step
ahead forecasting performance which are presented in Figure 4.25, 4.26, 4.27 and
4.28 is less success comparing the AR, ARMA ARIMA and ARX model results.
ARMAX (2,1) model fit can be examined in the goodness of fit graph which is
presented in Figure 4.21 and Figure 4.22 . Red is more apparent in the big picture.
Residuals also prove the failure of this model.
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Figure 4.25: ARMAX(2,1) Observed and Forecasted Datas from 3 to 4320.
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Figure 4.26: ARMAX(2,1) Observed and Forecasted Datas from 2000 to 2100.
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Figure 4.27: ARMAX(2,1) Residuals.
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Figure 4.28: ARMAX(2,1) Q-Q Plot and Normality Plot of Standart Residuals.

4.6 ARIMAX Result

4.6.1 ARIMAX(8,1,7)

In the last case, one step ahead forecasting performance of ARIMAX (8,1,7) is
unexpected. Model fit can be examined in the goodness of fit graph which is
presented in Figure 4.29 and Figure 4.30. Black line is represents the forecasted
values. Black line is far away from following red line and it is simply fluctuating.
Residuals also prove the failure of this model. These results prove the failure of
ARIMAX (8,1,7) model.
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Figure 4.29: ARIMAX(8,1,7) Observed and Forecasted Datas from 3 to 4320.
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Figure 4.30: ARIMAX(8,1,7) Observed and Forecasted Datas from 2000 to 2100.
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Figure 4.31: ARIMAX(8,1,7) Residuals.
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Figure 4.32: ARIMAX(8,1,7) Q-Q Plot and Normality Plot of Standart Residuals.
4.7 Comparison of the Results

Forecasting performance of the selected ARIMA/ARIMAX model have been
evaluated on the basis of one-step ahead forecasts against the parameters MAE
(mean absolute error), RMSE (root mean square error). In each case, Akaike
information criterion (AIC) and Bayesian information criterion (BIC) have selected
optimal model see Table 4.1. For the Autoregressive (AR) model, criterions have
selected the AR(8). The MAE and RMSE values are 0.413804 and 0.587939
respectively. R2statistic is 0.973441 see Table 4.2.

Table 4.1: Different ARIMAX model results.

Model R2 (R?) MAE RMSE

ARIMAX(1,1,0)  0.974308 0.411985 0.590469
ARIMAX(2,1,1)  0.973341  0.420488 0.599816
ARIMAX(20,1,19) 0.943843  0.663519 0.887354
ARIMAX(9,1,8)  0.954528  0.637523 0.799486

ARIMAX(7,1,6)  0.933439  0.755664 0.980566
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Table 4.2: Comparison of the results.

Model R2 (R?) MAE RMSE
ARIMA(30,1,29)  0.973356  0.413699 0.58868
ARIMA(3,1,2) 0973277  0.414104 0.589653
ARMA(14,13) 0973712  0.41337 0.585437
ARMA(4,3) 0973356  0.413699 0.58868
AR(8) 0973441  0.413804 0.587939
ARIMAX(8,1,7)  0.163349  6.577232 8.143865
ARMAX(2,0,1) 0.956163  0.576348 0.728387
ARX(1) 0.993089  0.209998 0.30246

For autoregressive moving average (ARMA) case AIC and BIC pointed the different
models, Akaike information criteria has selected the model ARMA(14,13) and
Bayesian information criteria has selected the model ARMA(4,3). For
ARMA(14,13), the MAE and RMSE values are 0.41337 and 0.585437 respectively.
RZstatistic is 0.973712. In case of ARMA (4,3) MAE and RMSE values which are
0.413699 and 0.58868 a few higher. R?statistic is 0.973356 and lower than higher
order model statistics value. In ARIMA case AIC and BIC values have also selected
the different models. AIC has selected the higher order ARIMA(30,1,29) again and
BIC selected the lower order ARIMA(3,1,2). MAE and RMSE values for the
ARIMA(30,1,29) are 0.413699 and 0.58868. On the other hand ARIMA(3,1,2)
results are higher that is 0.414104 and 0.589653 respectively. R2statistic for the
ARIMA(3,1,2) is 0.973277 and for ARIMA(30,1,29), it is 0.973356.

In cases of model with exogenous input, AIC and BIC have selected the same model
orders. For ARX, criterions have selected ARX (1). The MAE and RMSE values are
0.209998 and 0.30246 respectively. R?statistic is 0.993089. These are the lowest values.
For ARMAX, criterions have selected ARMAX (2,0,1). The MAE and RMSE values
are 0,576348 and 0,728387respectively. RZstatistic is 0.956163 . For ARIMAX,
criterions have selected ARMAX (8,1,7). The MAE and RMSE values are 6.576565
and 8.143116 respectively. R?statistic is 0.163309.

44



5. CONCLUSION

The present thesis has successfully applied AR, ARMA, ARIMA, ARX, ARMAX
and ARIMAX modelling procedure on wind speed measurements and found
satisfactory results. Two of the information-criterions (AIC and BIC ) are evaluated
to choose correct orders of AR(p), ARMA(p,q), ARIMA(p,d,q), ARX(p),
ARMAX(p,q) and ARIMAX(p,d,q) models. By examining Figure 4.10 to Figure
4.41 and Table 4.1 , it can be seen that regarding to the wind speed, the AR, ARMA
and ARIMA models have almost identical forecasting performance. Their MAE and
MAPE values are very close. On the other hand, ARMAX models have almost
identical forecasting performance but it is worse comparing AR, ARMA and
ARIMA results. ARX model performs the best. It has the lowest mean absolute error
MAE and root mean square error RMSE values and highest goodness of fit statistics.
ARIMAX model forecasting performance is the worst. Various ARIMAX models
forecasting performans can be seen in Table 4.1. Other ARIMAX model performs
quite better than ARIMAX(8,1,7), It can be seen that second best model is
ARIMAX(1,1,0) at this point that proves AIC or BIC are not sufficient selecting the
optimal model order of autoregressive integrated moving average with exogenous
input (ARIMAX). As a result ARX(1) and ARIMAX(1,1,0) procedures in the
present thesis has worked quite good in forecasting wind measurements and can be
effectively utilized for the electricity production of a wind power plant or achieving
the best maintain schedule etc. In addition to this, these models can be used for

longer-term wind speed forecasting and checked the goodness of fit.
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