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FOREWORD 

Condensation prevention is highly crucial to keep materials sustainable, to conserve 

them from corrosion and other environmental effects and to supply visual aesthetics 

in building envelopes. Energy efficiency in buildings has also significant role to 

decrease environmental pollution as well as for the minimization of initial cost and 

operating cost together.Moreover, high energy efficiency without condensation risk 

in building envelopes is highly essential to supply thermal comfort conditions at 

indoor environment with lower cost. On the other hand, the application of double 

skin façades under Turkey conditions is quite untouched topic. Therefore, there were 

supposed to be done a  scientific study in this field to show decision makers probable 

risks and advantageous.   

The purpose of thesis is to propose an approppriate configuration of a new generation 

closed-cavity façade which  has maximum thermal performance without 

condensation risk. 

I am grateful to Assoc. Prof. Dr. Hatice Sözer for her valuable assistance, continuous 

advice and well guidance in this study. 

Special thanks to METAL YAPI for providing the licensed Solidworks Flow 

Simulation CFD program, supplying all the materials related to glass and frame, 

configuring experiment mock-up, providing sufficient time for this scientific study  

as employer and encouraging me to finalize master thesis.  

Special thanks to FTI (Façade Testing Institute) for supplying experiment filters 

from a company in France and permitting me to use all measuring devices and 

charging staff to arrange experiment chambers for this scientific study.     
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façade respirante, CFD for double skin façade, solidworks flow simulation, August-

Roche Magnus formula, filter modelling of closed cavity façade, Bisco, Vitrage 

Decision, cooling load, heating load, thermal transmittance 
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IDENTIFICATION OF CLOSED CAVITY FAÇADES IN TERMS OF 

CONDENSATION’S RISK AND ENERGY PERFORMANCE 

SUMMARY 

The condensation risk and energy performance of closed cavity façade, so called 

Façade Respirante was analysed in this thesis. The research is composed of three 

different parts whiâch are condensation risk assessment based on computational fluid 

dynamics (CFD) modelling, testing condensation risk in Lab environment and energy 

performance analysis of tested closed cavity façade.  

Condensation risk assessment on CFD is based on the methodology and the data 

obtained from CSTB (Centre Scientifique et Technique du Bâtiment) test with CLC 

12-260039255 code. The methodology and the result of this test is used in order to 

validate the outputs  of three different filter modelling which are “Model with porous 

media”, “Model without porous media” and “Linear channel” approach. These 

approaches are modelled separately as 3 different CFD models. The values obtained 

from interior cavity match up with each 3 models in quite high level in terms of 

relative humidity, temperature and velocity.  Dew point values at “model with linear 

channel” is lower with respect to other models. The reason is having higher 

velocities leads to lower dew points. Higher velocities with ignorable level are 

observed at the model with linear channel. The dew points which are obtained with 

August-Roches Magnus approach in the middle of cavity between venetian blind and  

exterior glass are considerably lower than temperature on glass surface with same 

height. Therefore, there is no condensation in all specified CFD models with 

indicated conditions.  There is also analysis with respect to filter distance change to 

exterior side. When filter gets closer to interior side, relative humidity next outer 

glass becomes higher. Filter position influences more bottom part of cavity from 

temperature, velocity and relative humidity aspect. As a result, Façade Respirante 

model is developed without any condensation under specified conditions by 

considering comprehensive CFD results. 

Closed cavity façade (Façade Respirante) experiment module is configured based on 

comprehensive CFD results. Configured closed cavity façade is tested at FTI (Façade 

Testing Institute) Labs in Istanbul Turkey. 

Experiment results indicates that there is high tendency to condensation formation at 

venetian blinds vertically positioned case. On the other hand, when the blinds are 

removed, there is less probability to form condensation on outer glass surface  

Moreover, as long as number of filter decrease, there is higher condensation risk. 

There is no condensation formation on glass surfaces, if there is at least 5 filters at 

bottom side of configured façade respirante system. 

Energy performance analysis is composed of two parts which are façade’s thermal 

and energy performance analyses.The simulation for thermal analyses on specified 

aluminium surfaces of Façade Respirante shows that there is no condensation. Final 

Uw value of closed cavity façade module is determined as 1.56 W/m
2
K and 0.39 

solar factor with respect to specified standards. The comparison with reference 



 xxii 

window which has 2.40 W/m
2
K and 0.42 solar heat gain coefficient based on TS 825 

standard are made to evaluate the heat transfer due to temperature difference and 

solar radiation intensity. Consequently, there is monthly up to 6.4 W/m
2
 and annually 

up to 17.8 W/m
2
 saving in cooling load by applying cloesd cavity façade (CCF) 

system. Besides, there is monthly up to 23.6 W/m
2
 and annually up to 130.5 W/m

2
 

saving in heating load by applying CCF system. There is up to 130.5  W/m
2 

heat 

transfer rate difference in Turkey. It means, it can be up to 339.3 kWh annual saving 

for each m
2
 of window. Configured CCF system with 339.3 kWh for each m

2
 energy 

saving potential, decrease 234 kg CO2 emission in a year which corresponds to 6 

trees CO2 emission toleration. 
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KAPALI BOŞLUKLU-ÇİFT CİDARLI CEPHELERİN YOĞUŞMA RİSKİ VE 

ENERJİ PERFORMANSI ANALİZLERİ 

ÖZET 

Bu tez kapsamında çift cidarlı cephe sistemlerinden ara boşlukları kısmi olarak 

havalandırılan kapalı boşluklu-çift cidarlı cephelerin yoğuşma riski ve enerji 

performansı açılarından değerlendirilmesi ele alınmıştır. Tez, daha önce Fransa’da 

yapılmış benzer bir cephe sisteminin deney verileri kullanılarak  sistemin 

hesaplamalı akışkanlar dinamiği (CFD) aracılığıyla modellenmesi, kapsamlı CFD 

sonuçları ile oluşturulan yeni cephe modülünün FTI (Façade Testing Institute) 

laboratuarlarında yoğuşma riski açısından test edilmesi ve yeni oluşturulan cephe 

modülünün enerji performansının analiz edilmesi olmak üzere üç farklı aşamadan 

oluşmaktadır. 

Façade Respirante (Nefes alabilir cephe) kapalı boşluklu bir çift cidarlı cephe 

türüdür. Cephede camlar arası alt bölgeye hava filtreleri yerleştirilerek dış cam iç 

yüzeydeki yoğuşma oluşumunun engellenmesi amaçlanmaktadır. Façade Respirante 

sisteminde hiç yoğuşma olmadan maksimum ısıl performansa ulaşmak ana 

hedeflerden bir tanesidir. Sistem, camlar arası bölgede üst taraftan ve yan taraflardan 

tamamen kapatılmış, alt taraftan ise filtreler aracılığı ile kısmi olarak hava girişi 

sağlanmaktadır. Yoğuşma oluşumu filtrelerin ağ yapısı ve filtre sayısı ile oynanarak 

kontrol edilmektedir. Filtre sayısının azalması ve filtre ağlarının küçülmesi camlar 

arası boşluk bölgesinde taşınım (convection) ile ısı geçişini minimize etmekte; toz, 

kir ve uçucu bileşenlerin içeri girişini azaltarak hijyen sağlanmasına yardımcı 

olmaktadır. Ancak, bu durumda yetersiz hava hareketi yoğuşmaya sebep olmaktadır. 

İdeal filtre sayısı yapılan testler ile yoğuşmanın olmadığı en düşük filtre sayısı olarak 

belirlenmektedir. Filtre sayısı ve filtre ağ yapısı sistem boyutları, sistemin 

uygulanacağı bölge ve sistem bileşenlerinin higroskobik (nem-tutma) özelliklerine 

göre değişkenlik göstermektedir.   

CSTB'nin (Centre Scientifique et Technique du Batiment) yaptığı Façade Respirante 

yoğuşma deneyi test metodolojisinde başlangıç ve sınır koşulları olarak iç ortam 

sıcaklığı 20°C'de ve %50 bağıl nemde sabit tutulur ve yine iç ortama 50 Pa pozitif 

basınç verilir. Dış ortamda ise başlangıç koşulu olarak sıcaklık 20°C'ye ve bağıl nem 

%80'e şartlanır. Sıcaklık her 20 dakika'da bir 1 °C düşürülerek 400. dakikanın 

sonunda 0°C'ye ulaştırılır. Higrometre ve ısıl çiftler (thermocouple) ile iç ortam, ara 

boşluk ve dış ortamda sıcaklık ve nem değişiminin takibi yapılır. Sonuç olarak, 

ölçülen camlar arası boşluk kısmi buhar basıncı değeri, dış camın iç yüzeyinde 

okunan sıcaklık değerine karşılık gelen doygun buhar basıncı değerinden küçük ise 

yoğuşma olmamaktadır denir. 

CSTB’nin yaptığı CLC 12-260039255 kodlu deney kapsamlı fiziksel sonuçlara 

ulaşabilmek ve üç farklı filtre modelleme yöntemini teyit etmek amacıyla bir CFD 

programı olan Solidworks Flow Simulation programında modellenmiştir. Modelleme 

sırasında toplam ağ sayısını azaltmak ve programın çalışma (işlem) süresini 

düşürebilmek amacıyla camlar, filtreler ve jaluzi modellenirken bazı basitleştirmeler 
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yapılmıştır. Deneyde kullanılan iç cam kombinasyonu aynı ısıl iletkenlik değerine 

sahip tek katı olarak modellenmiş, jaluziler ise 0,30’luk gözeneklilik değerine sahip 

gözenekli ortam (porous media) olarak modellenmiştir. Filtreler ise “gözenekli 

ortamsız model”(model without porous media), “gözenekli ortamlı model” (model 

with porous media) ve “çizgisel kanal” (linear channel) olmak üzere üç farklı yöntem 

ile modellenmiş, sonuçlar bu yaklaşımlara göre karşılaştırılmıştır. Bu üç modelde 

hava geçiş alanın tam olarak aynı olması sağlanmıştır.  Filtreler,“Model without 

porous media”da 775,5 mm
2
 yüzey alanına sahip yüzey ile, “Model with porous 

media” de 1250,7 mm
2
 alan ve % 63’lük geçirgenliğe sahip bir yüzey ile “çizgisel 

kanal”’da ise yatay kesit boyunca 4.5 mm genişliğindeki çizgisel bir kanal olarak 

modellenmiştir. İç ortam ve dış ortam şartları CSTB’de yapılan deneyin 400. 

dakikasının şartları referans alınarak atanmıştır. Modellerdeki ağ sayıları 370000 ile 

550000 arasında değişmektedir. CFD modeli sürekli halde (steady state) olarak 

çalıştırılmıştır.  

CFD sonuçları hız, sıcaklık ve bağıl nem olmak üzere üç ana değişkenin değişimleri 

üzerinden yorumlanmıştır. CFD model sonuçları, deney sonuçları ile önemli oranda 

örtüşmektedir: Dış camın iç yüzeyinden, dış cam ile jaluzinin ortasından ve jaluzi ile 

iç camın ortasından üçer adet referans nokta seçilmiş; bu referans noktalar üç farklı 

model için ayrı ayrı karşılaştırılmıştır. CFD modelinden alınan sonuçlara göre cam 

yüzeyinde ve ara boşlukta yükseklik arttıkça sıcaklık artmakta, bağıl nem oranı ve 

akışkan hızı düşmektedir. Hız verileri jaluzi ile iç cam arasında üç farklı modelde 

önemli oranda örtüşmektedir. Üç farklı model sıcaklık dağılımı açısından önemli 

oranda örtüşmektedir. Ara boşluktaki sıcaklıklık dağılımının şekillenmesindeki en 

önemli etken baca etkisidir. Baca etkisi havanın kaldırma kuvveti sebebiyle oluşur. 

Havanın kaldırma kuvvetinin şiddeti ise hava yoğunluk farkına sebep olan sıcaklık 

farkı ve nem farkı nedeniyle oluşur. Ara boşluktaki hava hareketinde en temel etken 

doğal taşınım ile ısı transferidir. Hem doğal taşınım hem tek taraflı kısmi hava 

beslemesi yapılması tüm boşluktaki ortalama hız değerlerinin 0,1 m/s’nin altında 

kalmasına sebep olmuştur. “Çizgisel kanal” modelinde dar kanal etkisi ile görece 

yüksek hızlar, bağıl nemin ve yoğuşma noktasının görece düşük olmasına sebep 

olmuştur. August-Roche Magnus yöntemi sıcaklık ve bağıl nem değerleri 

kullanılarak ilgili noktanın yoğuşma noktasını bulmayı sağlayan bir yaklaşımdır. Bu 

yaklaşıma göre dış cam ile jaluzi arasındaki referans noktaların bağıl nem ve sıcaklık 

değerleri kullanılarak bulunmuş yoğuşma noktaları aynı hizadaki cam yüzeyindeki 

sıcaklık değerlerinden küçük olduğu için yoğuşma yoktur denir. Filtre pozisyonun 

etkisi, filtrenin dış cama 25 mm, 38 mm ve 56 mm uzaklıkta olduğu model sonuçları 

ile karşılaştırılarak analiz edilmiştir. Filtreler dış camdan uzaklaştıkça dış cam 

civarındaki bağıl nem değerleri artmaktadır. Filtrenin dış cama olan mesafesi ara 

boşluk alt bölümündeki sıcaklık, bağıl nem ve hız dağılımlarını daha çok 

etkilemektedir. CFD sonuçlarına göre ara boşlukta ve cam yüzeyinde yoğuşma riski 

bulunmamaktadır. Sonuç olarak, filtre modelleme yaklaşımları ısı transferini ve akış 

davranışını modellemek için iyi bir alternatif olabilir.    

Kapsamlı CFD analizi ile ulaşılan sonuçlar kullanılarak yeni bir Façade Respirante 

cephe modülü oluşturulmuştur. Oluşturulan modül, CSTB’de geliştirilmiş yoğuşma 

testi metodolojisi temel alınarak oluşturulan bir metodoloji kullanılarak FTI (Façade 

Testing Institute) laboratuarlarında deneysel olarak analiz edilmiştir. İlk aşamada 

Jaluziler kaldırılmış, jaluziler tamamen kapatılmış ve jaluziler açılmış olarak üç adet 

deney yapılmıştır. Daha sonra kritik durum olan jaluzilerin indirilmiş ve kapatılmış 

olduğu durumda ayrı ayrı bir adet ve iki adet filtreyi de kapatarak iki adet daha deney 

yapılmıştır. Toplamda beş farklı varyasyona göre beş farklı deney yapılmıştır. Bu 
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sayede Façade Respirante modülü ara boşluk içerisindeki havanın davranışına ve dış 

cam iç yüzey üzerindeki yoğuşma oluşumuna jaluzi ve filtrenin etkisini görmek 

amaçlanmıştır. Oluşturulan Façade Respirante modülü iç cam kombinasyonu 

6/16/44.2 (6 mm cam + 16 mm hava boşluğu + 2 adet birbirlerine lamine edilmiş 

4’er mm lik iç cam) dır. Yani cam boşluğu 16mm’dir ve iç camında laminasyon 

yapılmıştır. Ara boşlık mesafesi İç cam kombinasyonu ve dış cam dış yüzeyleri 

arasında 80.6 mm dir. Dış cam ise 6 mm kalınlıktadır.(Figure 7.9) Deney 

numunesinde kullanılacak cephe modülü 1260 mm x 2100 mm boyutlarındadır. Ara 

boşlukta dış cama 25 mm mesafede lamel genişliği 25 mm olan Hella marka Jaluzi 

yerleştirilmiştir. Alt kısma yoğuşma engelleme amaçlı hava girişini sağlamak 

amacıyla 500 µm lik ağ yapısına sahip 6 adet Sofabin marka filtre yerleştirilmiştir. 

Deneyde ortamı koşullandırmak amacıyla hava nemlendirme, nem alma, 

iklimlendirme ve basınçlandırma cihazı, nem ve sıcaklık ölçümü amacıyla ısıl çiftler 

ve nem ölçerler ve ölçümleri değerlendirebilmek amacıyla veri kaydediciler 

kullanılmıştır. Alt yatay profile 200 mm, 400 mm, 1400 mm ve 1800 mm  yükseklik 

mesafelerinde dış cam iç  yüzeye dört adet, dış cam ve jaluzi arasına 4 adet jaluzi ve 

iç cam arasına dört adet  olmak üzere ara boşluğa toplam 12 adet ısılçift 

yerleştirilmiştir. Jaluzi ile dış cam arasındaki bölgeye alt yatay profile 200 mm ve 

1000 mm yükseklik mesafesinde sıcaklık ve nem ölçme yeteneğine sahip nem 

ölçerler yerleştirilmiştir. Ara boşluğa yerleştirilmiş nem ölçerler %0,8 belirsizlik 

oranı ile ısıl çiftler ise ±0,2 °C belirsizlik değeleri ile kalibre edilmişlerdir.  

Ölçüm sonuçlarında jaluziler kapalı, jaluziler açık ve jaluziler kaldırılmış durumları 

arasındaki yoğuşma riski açısından en kritik durumun jaluziler kapalı iken 

gerçekleştiği görülmüştür. En kritik durum olan jaluzilerin kapatıldığı durumda iken 

önce bir filtre kapatılmış, daha sonra iki filtre kapatılmıştır. Yoğuşmanın ilk kez iki 

filtrenin de kapatıldığı durumda başladığı görülmüştür.  

 Enerji performans analizi kapsamında önce oluşturulan Façade Respirante 

modülünün bütünsel ısıl geçirgenlik katsayısı (Uwindow) ve profiller üzerindeki 

yoğuşma durumu bulunmuş sonrasında ise TS 825’e göre oluşturulmuş sınırdaki 

pencerenin iletim ve taşınım ile gerçekleşen ısı kaybı ve güneş enerjisi kazançları 

göz önünde bulundurularak aylık ve yıllık bazda sağlayacağı toplam tasarruf ve 

karbon ayak izi tespit edilmiştir.  

EN 10077 standardına göre Bisco 2D sürekli hal (steady state) ısı transfer analizi 

programı aracılığıyla yapılan yoğuşma analizi sonucunda profiller üzerinde yoğuşma 

olmadığı sonucuna varılmıştır. “Vitrage Decision” programı ile yapılan model 

sonucu oluşturulmuş Façade Respirante modülü cam kombinasyonu ısıl geçirgenlik 

katsayısı (Ug) değeri 0,79 W/m
2
K, güneş enerjisi geçirme faktörü 0,39 (SHGC) 

olarak bulunmuştur. EN 10077-2 standardına göre ise tüm aluminyum çerçeve 

profillerinin ısıl iletkenlik hesap değeri bulunmuştur. EN 10077-1 standardında 

tanımlanan “Component Assessment Method” a göre oluşturulmuş Façade 

Respirante cephe modülünün ısıl geçirgenlik değeri (Uwindow) 1,56 W/m
2
K olarak 

bulunmuştur. Bu değer TS 825 standardına göre sınır değer olan 2,40 W/m
2
K 

değerine göre oldukça iyidir. TS 825’te tanımlanmış 2,40 W/m
2
K değerine sahip cam 

kombinasyonunun solar faktör değeri “Guardian Glass Performance Calculator” 

programında yapılan modelde EN 410 standardına göre 0,418 olarak bulunmuştur. 

TS 825’te tanımlanan değerler kullanılarak soğutma yükü, ısıtma yükü yıllık ve aylık 

bazda TS 825’te tanımlanan tüm iklim bölgeleri ve tüm yönler için hesaplanmıştır.  

Yapılan analize göre soğutma yükünden en büyük tasarruf birinci iklim bölgesinde 

doğu-batı cephelerinde en düşük tasarruf ise dördüncü bölgede kuzey cephede 

olmuştur. Isıtma yükünden yapılan en büyük tasarruf değerine ise dördüncü bölgede 
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doğu ve batıya bakan cephelerde yapılan uygulamalarda ulaşılmıştır. Enerji 

performans analizi göstermektedir ki; oluşturulan cephe sistemi ile soğutma yükünde 

aylık 6,4 W/m
2 

ye kadar yıllık 17,8 W/m
2
’ye kadar; ısıtma yükünde aylık 23,6 

W/m
2
’ye kadar ve yıllık 130,5 W/m

2
’ye kadar tasarruf yapılması mümkündür. 

Günlük 10 saat ve haftalık 5 gün ısıtma ve iklimlendirme cihazlarının çalıştığı 

varsayılırsa yıllık toplam her bir m
2
’lik pencere için 339.3 kWh’a kadar enerji 

tasarrufu imkanı sağlanmaktadır. 339.3 kWh’lik tasarruf sayesinde bu miktar enerji 

üretiminde ortaya çıkan 234 kg CO2 doğaya hiç salınmamış olacaktır. Bu sayede, 6 

tane ağacın on yıllık yaşamı boyunca tolere edebileceği miktardaki CO2 doğaya hiç 

salınmamış olacaktır. 
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1.  INTRODUCTION 

Physical separators which separates conditioned environment and unconditioned 

environment is defined as building envelope. One of the most important task for 

energy performance of building envelope is minimizing air, light and sound 

transmission to inside and blocking water permeance to inside [1-3]. Façade is the 

most important element of building envelope. There are double skin façade 

applications in some high rise buildings in order to improve expected performance 

from façades. 

As it is mentioned in the presentation of H.Blecker CTBUH 2012 , there are 

basically four different types of double skin façade systems in the literature [4]. 

These are; 

Active Façade:   The cavity is ventilated through HVAC equipment in this façade 

type. (Figure 1.1) 

 

Figure 1.1 : Active façade [4]. 

Naturally Ventilated Façade: The cavity between façades is ventilated with natural 

convective flow of air in this façade type. (Figure 1.2) 

 

Figure 1.2 : Naturally ventilated façade [4]. 

 



 2 

Interactive Façade:  The cavity between façades is ventilated both natural 

ventilation and mechanical (forced) ventilation in this façade type. (Figure 1.3) 

 

Figure 1.3 : Interactive façade [4]. 

Closed Cavity Façade:  It is the double skin façade which does not allow air 

passage to inside of cavity in order to have better thermal performance. (Figure 1.4) 

 Closed Cavity Façade with minimal air supply: This is another variation of 

Closed Cavity Façade, which allows minimal air passage to inside in order to 

prevent condensation by means of partial vapour pressure balance with 

outdoor. Façade Respirante systems belong to this class.  

 

Figure 1.4 : Closed cavity façades [4]. 

The design parameters that has direct effect on Closed Cavity Façade performance 

are indicated below. 

 Radiation performance (heat transfer via radiation) (specifically critical 

parameter for glazed buildings) 

 Thermal performance 

 Day lighting 

 Condensation 

 Maintenance and cleaning 

 Earthquake resistance  

 Ease of installation    [4] 
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1.1 Purpose of Thesis 

High energy efficiency without condensation risk in building envelopes is highly 

essential to supply thermal comfort conditions at indoor environment with lower 

cost. On the other hand, the application of double skin façades in Turkey conditions 

is quite untouched topic. There were supposed to be done a scientific study in this 

field to show decision makers probable risks and advantageous.   

The purpose of thesis is configuration of new generation closed cavity façade which 

has maximum thermal performance without condensation risk. 
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2.  FAÇADE RESPIRANTE 

Façade Respirante is also called closed cavity façade (CCF) as it is mentioned in the 

first section. The main purpose of using the façade is to allow minimum air entrance 

to prevent condensation risk. Components of Façade Respirante is shown in Figure 

2.1.  

The main target of Façade Respirante system is achieving minimum heat transfer 

without condensation risk. The system is completely sealed from top and lateral 

sides, and it is ventilated by filters at bottom part of the frame system. The most 

important feature of the system is to minimize heat transfer without any condensation 

risk. Heat transfer through the system occurs by three different ways which are 

conduction, convection and radiation [5].  Reduction of the number of filters and 

filter mesh sizes minimize heat leakage by means of convection; helps to ensure 

hygiene by means of decrement of dust, dirt and volatile organic compounds (VOC) 

passage to cavity. However, insufficient air movement leads to condensation. 

Optimal number of filters is determined by the lowest filter number without 

condensation through condensation risk assessment experiments. The number of 

filters and filter mesh sizes varies with system sizes, project region where system is 

applied, hygroscopic features of system components.  

Application of the façade mostly depends on the geographical and climatic 

conditions. That's why Façade Respirante is mostly applied at middle Europe zone 

countries like Germany, France, Belgium and Bulgaria where humid, mild climate 

without harsh winter conditions exist.  
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Figure 2.1 : Façade Respirante.    

2.1 Literature Review 

Various Façade Respirante details from several façade firms at different countries 

have been researched for Façade Respirante application based on appropriate climate 

conditions. Some façade companies like Schueco, Wicona, Rinalde, Goyeri Oustalu, 

Gartner GMBH, Reynaers are reviewed for this research. The specific details of 

Sopharma from Reynaers in Bulgaria, Hilti Inovation Center in Liechtenstein, Roche 

Diagnostics International AG in Rotkreuz, Leo in Frankfurt projects are identified in 

terms of thermal performance and condensation risk. 

Innovations and energy efficiency in contemporary office buildings shows that 

closed cavity façade in Sopharma Towers reduced cycles of cavity cleaning, and 

constituted condense free façade under the local climatic conditions. 2,5 years after 

the façade has been installed, there was no dust at all compared to slightly ventilated 

façades. Energy efficiency is also increasing by means of slat angle and blind mode 

control [6]. 

Even though, façade of Sopharma and Litex towers are one of  the most expensive 

façade built in Bulgaria, there is 30% cost cut from HVAC installed power , 40% less 

heating requirement by using sun energy in more efficient way and 20% potential 

savings in total [6]. 

 “Double Skin Façades a Literature Review” is surveyed in order to see scope of 

double skin façade with all analysis criteria and all technical parameters [7]. This 
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report covers modelling issues in double skin façades in terms of thermal simulation 

and air flow. The buildings where double skin façade is applied are also presented 

with various technical features.  

“M-Free S Closed Cavity Façade” [4] is presented by H. Blecker at CTBUH 

(Council on Tall Buildings and Urban Habitat) 2012. Conference proceeding of this 

presentation includes general review of double skin façade and evaluation of closed 

cavity façades in terms of energy, thermal comfort and acoustic aspect by modelling 

and testing. 

“Condensation in a closed cavity double skin façade: A model for risk assessment” 

discusses the risk of condensation between the panes of façade in closed cavity 

façades. There are some assumptions regarding thermal, hygric and air flow 

behaviour. This paper claims that constituted model can be used for condensation 

risk modelling [8]. 

One of the objectives of this work is to take advantage of the other experimental 

works by use of the test results from highly reputable and independent test centres in 

order to provide reliable data. Therefore, Façade Respirante specimen with CLC 12-

260039255 code from CSTB (Centre Scientifique et Technique du Bâtiment) data is 

used to have general idea about system behaviour in terms of thermal and 

condensation in this work. Condensation risk assessment methodology is based on 

1°C temperature decrement in each 20 minutes with 80% relative humidity and 20°C 

initial condition at outdoor with total 400 minutes when the conditions of indoor 

being kept constant at 20°C and 50% relative humidity. The temperature and relative 

humidity values are followed at indoor, cavity and outdoor of test mock-up. If partial 

vapour pressure at cavity is lower than saturated vapour pressure at cavity at all 

records which are obtained in each 20 minutes, it is assessed that there is no 

condensation with respect to this methodology [9].  

There are some researches related with this work. Before, CFD model is created, 

"Air Flow and Heat Transfer" is examined to simulate CFD model, compare and 

validate CFD results with experiment results. This paper illustrate the importance of 

the position of blinds and slat angles. Energy performance of double façade varies 

considerably with respect to position of blinds and angle of slat tilt. It also affects 

velocity distribution at cavity and total surface heat transmission coefficient. 
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Influence of blind position (outer, middle and inner) is higher compared to variation 

of slat angles (θ=0°, 45°, 90°) to distribution of temperature, velocity and SHTC's. 

“Air flow and heat transfer in double skin façades” also illustrates that there is 3°C 

difference at outer cavity, 1°C – 1.5 °C difference at  inner cavity and around 1°C 

difference on inner glass surface between CFD results and experiment results [10]. 

"Modelling Ventilation in naturally ventilated double-skin façade with a venetian 

blind" is examined in order to simplify blinds reliably. This paper proposes 

modelling venetian blinds as porous media instead of explicit slat model in order to 

decrease number of mesh and computing time as well as getting higher accuracy in 

CFD Model. All the results have been validated with performed field experiments 

[11].  

"Double Skin Façade effects on heat loss of office buildings in Istanbul", " A new 

type of double-skin façade configuration for the hot and humid climate" and other 

similar articles which are at same field are examined to understand how to process 

data on CFD and how to validate CFD results with experiment results. "Double Skin 

Façade effects on heat loss of office buildings in Istanbul" shows that double skin 

façade decrease energy loss significantly minimize heat loss and improve U value 

compared to single skin façade in winter period. Cavity between façade acts like 

buffer zone in winter and glasses re-radiate solar radiation two times which decrease 

cooling load at summer [12].  

August-Roche Magnus equations which calculate dew points by use of relative 

humidity and temperature data. This approach is used to determine dew points of 

specified points. This is another validation approach to investigate occurrence of 

condensation on glass surface [13].  

All the documents above are used to inspire during preparation phase of this paper. 

The equations which are used by Computational Fluid Dynamics simulation 

programs is stated at the lecture notes of The University of Iowa Mechanics of Fluids 

and Transport Processes by Stanley C. These equations which are computed at 

background are indicated in Equation 2.1 – 2.7. [14]. 

Navier Stokes Equation: (3D in Cartesian coordinates)  
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Continuity equation;  
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             (2.4) 

Newton's Second Law of Motion; 

                                             maF                  (2.5) 

Equation of state; 

                        RTp                 (2.6) 

Rayleigh Equation; 
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                      (2.7) 

André Bakker states in “Applied Computational Fluid Dynamics” Lecture-7 Meshing 

by Fluent Inc. that design quality of grid is highly significant. Grid has great 

influence on convergence, solution sensivity and required CPU time [15]. 

Accordingly, CFD model is created based on condensation risk test methodology 

from CSTB CLC 12-260039255 with taking result of 400th minute in order to have 

more comprehensive results than experiment results such as velocity, temperature, 

relative humidity and other related parameters throughout model.  

 “Air Pressure and the building envelope” states that the air pressure difference 

between interior and exterior of building envelope and between upper and lower 

levels of buildings. It also emphasize to stack effect which mostly occurs by air 

buoyancy. Intensity of air buoyancy is depended air density difference which varies 

with temperature difference and moisture difference [16]. 
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TS 825 “Thermal Insulation Requirements in Buildings” is the Turkish standard 

which defines thermal comfort conditions, how to calculate solar heat gain for three 

different direction, calculation of heating and cooling load for specified 4 different 

regions and calculation of condensation situation [17]. 

EN ISO 10077 is mutual standard of “Euro Norm” and “International Standard 

Organization” which defines thermal performance of windows and the assessment of 

condensation risks. EN 10077-1 defines calculation of global thermal transmittance 

values (Ucw) for window modules. EN 10077-2 defines thermal performance 

calculation method for frames in windows [18,19].  
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3.  CONFIGURATION METHODS OF FR TEST MOCK-UP 

The methodology of this experimental work is developed based on characteristics of 

the façade. Accordingly, evaluation of CFD analysis method was decided.  

3.1 Determination of Appropriate Façade Respirante Profile Detail  

The most important parameters for designing façade respirante: 

• Geometry of the cavity 

• Opening principles of the cavity  

• Type of glazing, shading and lighting devices 

• Material choice for the panes and the shading devices 

• Positioning of shading devices   

• Number of filters 

• Distance between inner pane and outer pane  [7] 

CSTB (Centre Scientifique et Technique du Bâtiment) condensation risk assessment 

experiment for the specified Façade Respirante (CLC 12-260039255) detail were 

used as the basis at the end of literature review. The data obtained by this experiment 

for the specified Façade Respirante model is used as reference values of CFD 

analysis. 

3.2 Constitution of Façade Respirante Profile  

Specified Façade Respirante model at experimental level is evaluated on CFD 

analysis with the results of experiment carried out by CSTB which is indicated in this 

research comperatively. As a result of this evaluation, the new Façade Respirante has 

been designed and its details are illustrated in Figures 3.1 and 3.2. 
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3.3 Test Model Constitution of Designed Façade Respirante Details  

The design of the Façade Respirante is represented below.  

Specific details of mock-up system is given in Figure 3.1. 

 

Figure 3.1 : General view of “Constituted Façade Respirante” test mock-up. 
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The filters which are used at experiment are illustrated in Figure 3.2.  

 

Figure 3.2 : Longitudinal section and cross section view of filters.  
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4.  ANALYSIS METHODS 

4.1 Analysis of FR in Laboratory Environment 

Boundary conditions and initial conditions of condensation risk assessment test 

which is constituted by CSTB for Façade Respirante systems test methodology are 

presented in Section 4.1.1 

Condensation test of Configured Façade Respirante is conducted in FTI (Façade 

Testing  Institute) Labs based on the methodology of CSTB. This test is explained 

comprehensively in Section 6.  

4.1.1 Setting the boundary conditions   

The defined boundary conditions based on CSTB parameters are given below as 

indoor and outdoor conditions  (Table 4.1). 

Indoor Conditions: Temperature is kept at 20°C and relative humidity is kept at 

50% and indoor is pressurized with an additional pressure of +50 Pa relatively. 

Outdoor Conditions: Outdoor is conditioned to 20°C temperature and 80% relative 

humidity as an initial condition. Final temperature is 0°C at end of 400th minute 

thereby 1°C temperature reduction in each 20 minutes,  

Humidity and temperature change at indoor, cavity and outdoor is tracked by means 

of hygrometers and thermocouples. The temperature value at interior side of exterior 

glass is measured. Corresponding saturation vapour pressure to related temperature 

(PsOe) is identified from thermodynamic table. If vapour pressure at cavity is lower 

than corresponding saturation pressure to the temperature value  at interior side of 

exterior glass, It is determined that there is no condensation. 
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Table 4.1 : Initial conditions and final situations data table. 

Initial Conditions 

  Temperature (°C) Humidity (%) Pressure (Pa) 

Indoor 20 50 50 

Outdoor 20 80 0 

1°C temperature reduction in each 20 minutes at outdoor.  

    Final Situation (At the end of 400
th 

minute) 

  Temperature (°C) Humidity (%) Pressure (Pa) 

Indoor 20 50 50 

Outdoor 0 - 0 

 

Figure 4.1 : The section view of experiment prototype based on Façade Respirante  

(CLC 12-260039255) detail from CSTB. 

Figure 4.1 and Figure 4.2 illustrates experiment prototype and some experiment 

equipments in CLC 12-260039255 coded CSTB experiment.  Table 4.2 shows the 

results of specified condensation risk assessment experiments with respect to time. 

There is no condensation at specified detail according to given results. 
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Figure 4.2 : Experimental Mock-up View of Façade Respirante [20] 

4.1.2 Setting the boundary conditions of configured façade respirante 

         condensation test 

Condensation test of configured façade respirante based on comprehensive CFD 

results is carried out in FTI (Façade Testing Institute) Labs. Boundary conditions of 

this test is the same with methodology CSTB condensation test.  

4.2 Analysis of FR with CFD Model 

The conditions at the end of 400
th

 minute CSTB test which is shown with red 

rectengul in Table 4.2 is modelled with CFD in order to have comprehensive results 

in various points of model. CFD results are validated with experimental results given 

in Table 4.2, as well. CFD results are the base for the configuration of façade 

respirante module. 

4.2.1 Setting boundary conditions of CFD Model 

The conditions at the end of 400
th

 minute which is shown with red rectangle in Table 

4.2 are used for CFD analysis. According to August-Roche Magnus method which is 

indicated in Section 5.3.5 “Validation with August-Roche Magnus Approach”,

Controlling 

devices to 

program indoor 

condition 

Controlling 

device to 

program outdoor 

condition 

Maximum Dimensions 

for Experiment: 

 H x L = 3,6 m 3,4 m 
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Table 4.2 : Results of condensation risk assessment experiment results at the  specified Façade Respirante system [9]. 

Time 

T 

indoor 

(°C) 

RH of 

indoor 

(%) 

T cavity 

(°C) 

RH of 

Cavity 

(%) 

Text glass 

(°C) 
Text (°C) 

RH of 

outdoor 

(%) 

Indoor 

Vapour 

Pressure 

(mmHg) 

Cavity Vapour 

Pressure 

(mmHg) 

Correspondin

g VP to T int 

side of ext 

glass (mmHg) 

Outdoor 

Vapour 

Pressure 

(mmHg) 

0 20.7 50.5 19.9 82.1 19.8 20.2 80.8 9.222 13.553 17.313 14.313 

0 h 20 min 20.5 50.8 19.5 82 19.1 19.2 81.8 9.197 13.238 16.576 13.637 

0 h 40 min 20.5 51 18.8 81.1 18.1 18.2 81.3 9.241 12.624 15.57 12.758 

1 h 00 min 20.5 50.8 17.9 80.2 17.1 17.2 81.2 9.199 11.747 14.619 11.949 

1 h 20 min 20.6 50.9 17 79.2 16.2 16.2 80.9 9.233 10.996 13.806 11.182 

1 h 40 min 20.6 50.7 16.1 78.6 15.1 15.2 81 9.215 10.302 12.867 10.515 

2 h 00 min 20.5 50.6 15.1 78 14.2 14.2 81.1 9.168 9.599 12.141 9.865 

2 h 20 min 20.6 50.7 14.2 77.4 13.2 13.3 80.3 9.238 8.972 11.376 9.214 

2 h 40 min 20.5 50.9 13.2 76.9 12.2 12.3 80.5 9.218 8.361 10.654 8.619 

3 h 00 min 20.5 50.8 12.3 76.4 11.3 11.3 80.4 9.198 7.829 10.039 8.052 

3 h 20 min 20.5 50.8 11.4 75.7 10.4 10.3 80 9.196 7.317 9.455 7.494 

3 h 40 min 20.6 50.8 10.4 75.2 9.3 9.2 80.5 9.249 6.789 8.783 7.009 

4 h 00 min 20.5 50.7 9.3 79 7.9 7.9 86.9 9.181 6.385 7.988 6.915 

4 h 20 min 20.5 50.8 8.5 82.3 7.4 7.3 90.5 9.203 6.44 7.72 6.918 

4 h 40 min 20.5 50.7 7.4 84.3 6.3 6.1 90.1 9.17 6.037 7.157 6.369 

5 h 00 min 20.6 50.6 6.5 85.2 5.3 5.2 91 9.216 5.675 6.678 6.049 

5 h 20 min 20.5 50.9 5.5 85.3 4.4 4.2 90.4 9.194 5.268 6.271 5.602 

5 h 40 min 20.5 50.7 4.5 85.4 3.4 3.2 91 9.178 4.9 5.844 5.231 

6 h 00 min 20.6 50.8 3.6 85 2.4 2.1 91.2 9.192 4.582 5.444 4.871 

6 h 20 min 20.5 50.8 2.6 84.3 1.3 1.2 91.8 9.198 4.263 5.031 4.589 

6 h 40 min 20.5 50.7 1.6 83.8 0.3 0.2 91.7 9.181 3.943 4.68 4.271 
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dew point of the specified condition at 400
th

 minute is -0.8°C for cavity and -1.0°C  

for exterior side. These are the values when condensation start under indicated 

temperature and vapor pressure values as it is shown in Table 4.3. 

Table 4.3 : Dew points of experimental values. 

Point 
Temperature 

(Fluid) [°C] 

Relative Humidity 

[%] 
Dew Points (°C) 

Cavity 1.6 83.8 -0.8 

Exterior Side 0.2 91.7 -1.0 

4.3 Analysis of FR in terms of Energy Performance 

Energy performance analysis is composed of condensation risk analysis of frames, 

thermal transmittance of window and energy performance analysis based on heat 

transfer due to temperature difference and solar radiation intensity from different 

directions aspect. 

4.3.1 Setting boundary conditions of energy performance analysis 

Boundary conditions and initial conditions of energy performance analysis section 

are given in terms of condensation, thermal transmittance and energy performance 

separately. 

4.3.2 Condensation risk analysis of frames 

Boundary conditions in condensation risk analysis is given below. These values are 

based on the specified standarts which are given section 7.1.1. 

Glass Combination     : 6/80.6/6/10/16/44.2 (Fig. 6.2)      

Outdoor temperature     :  -3 C  

Indoor temperature     : 20 C 

Relative humidity (RH)    : 50 %   

Dew point      : 9.3°C (Table 7.2) 

U value of the inner glass combination (Ug) : 1.1 W/m²K 

Thermal conductivity of inner glass air gap (λ) : 0.022 W/m
2
K (Table 7.3) 

[18,19,21-25] 
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4.3.3 Thermal transmittance analysis of frames 

Boundary conditions in thermal transmittance analysis is given below. These values 

are based on the specified standards which are given section 7.1.1. 

Dimensions      : 1260mm x 2100mm 

Glass Combination     : 6/80.6/6/10/16/44.2 (Fig. 6.2)      

Indoor temperature     : 20 C 

Temperature Difference for Uf Calculation : 20 C [19,21]] 

Thermal Conductivity of the insulation panel(λ) :0,035 W/m
2
K 

Thermal Conductivity of the Spacer (λ)   :0.11W/mK “Aluminum spacer” 

EN 10077-2 defines that to glass part of the profiles has to replace with insulation 

panel to determine thermal transmittance value. 

4.3.4 Energy performance 

Energy performance analysis based on below boundary conditions. All the values are 

specified at TS 825 (Thermal Insulation Requirements in Buildings). 

Indoor: Temperature:   19°C (Heating season assumption) [17] 

     23°C (Cooling season assumption) [26] 

Outdoor Temperature:   Obtained from Table 4.4 

Thermal Transmittance of CCF: 1.56 W/m
2
K (section 7.1.6.5) 

Solar Radiation Intensity:   Obtained from Table 4.5 

Solar factor (SHGC):  0.39 (CCF) 

     0.42 (RW) 

Shading Factor:   0.5 
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Table 4.4 : Monthly average ambient air temperatures [17]. 

  

1. Region 

(°C) 

2. Region 

(°C) 

3. Region 

(°C) 

4. Region 

(°C) 

January 8.4 2.9 -0.3 -5.4 

February 9.0 4.4 0.1 -4.7 

March 11.6 7.3 4.1 0.3 

April 15.8 12.8 10.1 7.9 

May 21.2 18.0 14.4 12.8 

June 26.3 22.5 18.5 17.3 

July 28.7 24.9 21.7 21.4 

August 27.6 24.3 21.2 21.1 

September 23.5 19.9 17.2 16.5 

October 18.5 14.1 11.6 10.3 

November 13.0 8.5 5.6 3.1 

December 9.3 3.8 1.3 -2.8 

23°C indoor temperature complies ASHRAE Standard 55-2013 with 25°C mean 

radiant temperature, 0.1 m/s air speed, 50% humidity, 1.1 metabolic rate and 0.5 

clothing level. [26] 

The assumption of heating and air conditioning hours for daily office occupancy is 

10 hours and the office is occupied 5 days in a week. There is 52 weeks in total. 

Corresponding monthly working time is 216.7 hour. 

Table 4.5 : Solar radiation values from different directions [17]. 

  

Solar 

Radiation 

(South) 

(W/m
2
) 

Solar 

Radiation 

(North) 

(W/m
2
) 

Solar 

Radiation 

(West-

East) 

(W/m
2
) 

January 72.0 26.0 43.0 

February 84.0 37.0 57.0 

March 87.0 52.0 77.0 

April 90.0 66.0 90.0 

May 92.0 79.0 114.0 

June 95.0 83.0 122.0 

July 93.0 81.0 118.0 

August 93.0 73.0 106.0 

September 89.0 57.0 81.0 

October 82.0 40.0 59.0 

November 67.0 27.0 41.0 

December 64.0 22.0 37.0 
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5.  DETERMINATION OF FR MODELLING BY CFD (COMPUTATIONAL 

FLUID DYNAMICS)  

5.1 General Features of CFD Model 

Experimental model is simulated by the aid of Solidworks Flow Simulation a CFD 

(Computational Fluid Dynamics) program in order to support experiment results 

through computer simulation [14,27,28]. 

5.1.1 Specific system definitions for CFD model 

CFD model was developed based on Laboratory Test Mock-up which is described at 

section 4.1 and section 4.2 . 

5.1.1.1 Glass combination 

Exterior glass is 6 mm thickness single glass and interior glass combination is 

4/16/55.2. 4/16/55.2 means 4 mm glass, 16 mm gap and two laminated glass which 

has 5 mm thickness from outer to inner side. Height of glass is 2757 mm and 

horizontal axis of glass is 1400 mm. 160mm /1400mm horizontal axis length of glass 

is modeled in order to simulate  one filter air flow behavior. Ug value of interior glass 

is 1.1 W/m
2
K. 

5.1.1.2 Support of specimen 

Support, which has 200 mm thickness, is placed to bottom and top of the experiment 

specimen to simulate airflow in a realistic way. Insulation panel is chosen as support 

material in order to minimize effect of heat transfer.   

5.1.1.3 Filters 

The most important purpose of the experiments is determining the number of filters 

in order to control the amount of air entering to FR. In the beginning, the number of 

filters has been chosen as 8 filters in total. All of these filters are placed with 46 mm 
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intervals. Surface area of each filters are 1250.7 mm
2 

and air passage area on filter 

surface is 775.45 mm
2
. (Figure 3.2) 

5.1.1.4 Venetian blinds 

The width of each venetian blind piece is 25 mm. Venetian blinds are modeled with 

porous media approach at open position with an angle of  45° to vertical axis and at 

closed position. The position of venetian blinds can change in order to increase 

energy performance with respect to summer and winter conditions [10]. 

5.1.2 Simplifications 

When the number of mesh increase, running time of CFD analysis might take days, 

maybe weeks. CFD model should be as simple as possible in order to reduce running 

time to reasonable amount of time. Therefore, there is glass simplification, filter 

simplification and blind simplification at CFD model in this study.   

5.1.2.1 Glass simplifications 

4/16/55.2 glass combination which has Ug=1.1 W/m
2
K value is modeled as the glass 

with λ=0.021 W/mK  thermal conductivity  and 15.52 mm thickness in order to 

decrease mesh crowd due to modeling silicone, aluminum spacer, argon in glass 

combination. Simplification approach is indicated below. 
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5.1.2.2 Filter simplification  

There are various filter simplifications in order to reduce total time of CFD run.  

Filter  Area=1250.73 mm
2
 

Filter surface area where allows air passage: 775.45 mm
2 
 

Porous Media: Function which arranges fluid permeability ratio of a region with 

respect to various directions. 
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Isotropic Porous Media: Independency of permeability from direction of airflow.  

Filters are modelled with three different simplification approach 

 Identifying filter as isotropic porous media with 0.63 permeability ratio at CFD 

model. 

 Identifying filter model as large as surface area of filter where air passes.  

 Identifying filter model as linear channel with the assumption of total filter 

surface area distributed uniformly, continuously all horizontal section long.   

5.1.2.3 Blind simplification 

To be able to simplify the blind for the best possible results, four different details 

were compared based on accuracy of results. The CFD models which are simulated 

in a correct simplified way leads to reach more accurate results with less running 

time. 

Blinds are modelled with 4 different method. Modelling methods are indicated 

below: 

 Modelling blinds as vertical continuous solid 

 Modelling blinds as vertical discrete solid (Figure 5.1) 

 Modelling blinds as a solid which consists horizontal pieces. 

 Modelling as porous media with 0.30 permeability ratio. [11] 

0.30 corresponds to porosity ratio of blinds which is 45° angle to vertical axis.  

5.2 General Settings of CFD Models 

5.2.1 Determination of the initial conditions 

Gravity is defined to (-y) direction with 9.81 m/s
2
. Heat transfer and fluid distribution 

is simulated without radiation effect for both transient and steady state separately.   
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5.2.2 Boundary conditions 

5.2.2.1 Indoor conditions 

Measured relative humidity and temperature values of indoor at CSTB experiment 

are entered exactly the same with 0.1 precision to CFD model.  (Table 4.2) 

5.2.2.2 Outdoor conditions 

Measured relative humidity and temperature values of outdoor at CSTB experiment 

are entered exactly the same with 0.1 precision to CFD model. (Table 4.2)   

 

 

Figure 5.1 : 3D view of CFD model with discrete blinds. 

5.2.2.3 Turbulence model 

Flow is modelled both laminar and turbulent. Turbulent model is modelled with 2% 

turbulent intensity and 1.7 mm turbulent length. Standard k-ε turbulence model is 

applied to model. Turbulence model is set based on indoor and outdoor conditions as 

it is mentioned above.  

5.2.2.4 Other settings 

Wind 

There is no defined wind as boundary condition.  
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Window 

Aluminum frame profiles around glass is simplified at the first models and they are 

removed due to being lead to meaningless results at CFD model.  

Distance 

Distance between glasses can be various lengths in terms of convenience to climate 

condition. The distance between glasses is 75 mm.  

5.2.3 Mesh settings 

Meshing strategy identifies where to solve flow. Mesh has considerable influence on 

convergence rate, accuracy of solution and needed running time. Mesh distribution 

and mesh numbers of all CFD model in this paper is illustrated in Table 5.1 and 

Figure 5.2 [15]. 

 

Figure 5.2 : Mesh distribution of CFD model (from left to right Y-Z axis view, filter  

                     mesh, X-Z axis view,  X-Y view). 
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Table 5.1 : Total iteration number and total mesh number.  

  
CFD Model without 

Porous Media 

CFD Model with 

Porous Media 

CFD Model with 

Linear Channel 

Iteration 1362 1250 5426 

Cells 370820 452032 551404 

Fluid Cells 263486 296016 360082 

Solid Cells 14262 42112 59770 

Partial Cells 93072 113904 131552 

5.3 Results 

The results of the research are focused the effect of three major variations. These are 

velocity, temperature, and relative humidity. According to August-Roche Magnus 

method which is indicated at section 5.3.5 “Validation with August-Roche Magnus 

Approach”, dew point of the specified conditions at 400 th minute is -0.8 °C for 

cavity and -1.0 °C  for exterior side in experimental results and dew point in 

specified conditions at Ca.1is  0.24°C (Model without porous media), 0.24°C (model 

with porous media), -0.24°C (model with linear channel) in CFD analysis and dew 

point in specified conditions at Ca.2 is  0.10°C (Model without porous media), 

0.22°C (model with porous media), -0.47°C (model with linear channel) in CFD 

analysis . These are the values when condensation start. 

Results are based on specified boundary conditions. Indoor is 20 °C and 50% relative 

humidity, outdoor is 0°C.  
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5.3.1 Specified points                                                                                                                                                                                      

 

Figure 5.3 : Specified points. 
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Table 5.2 :  Explanation of specified points. 

Point Explanation 

G - 1.1 Interior surface bottom point of exterior glass 

G - 1.2 Interior surface mid point of exterior glass 

G - 1.3 Interior surface top point of exterior glass 

Ca 1.1 
Bottom part middle point between exterior glass and 

blind 

Ca 2.1 Bottom part middle point between blind and interior glass 

Ca 1.2 Mid part middle point between exterior glass and blind 

Ca 2.2 Mid part middle point between blind and interior glass 

Ca 1.3 Top part middle point between exterior glass and blind 

Ca 2.3 Mid part middle point between blind and interior glass 

5.3.2 Velocity, temperature and RH values from specified points 

All measurements are taken from specific points which are indicated with respect to 

velocity, temperature and RH levels based on three different modeling approach. 

These parameters are from cavity and glass surfaces of points which are shown on 

from Table 5.3 until Table 5.8.    

Various results of “Model without Porous Media” from specified points in cavity and 

on exterior glass interior surface are indicated in Table 5.3 and Table 5.4.    

Table 5.3 :  “Model without Porous Media” results from specified points in cavity. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Ca 1.1 0.08 -2.70 0.08 0.039 0.98 94.46 

Ca 2.1 0.08 -2.70 0.03 0.037 0.86 92.85 

Ca 1.2 0.08 -1.35 0.08 0.011 4.97 71.53 

Ca 2.2 0.08 -1.35 0.03 0.028 11.95 44.35 

Ca 1.3 0.08 -0.20 0.08 0.025 6.32 65.26 

Ca 2.3 0.08 -0.20 0.03 0.001 15.81 34.73 
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Table 5.4 : “Model without Porous Media” results from specified points on exterior  

                    glass surface. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

G - 1.1 0.08 -2.70 0.09 0.00 0.46 98.01 

G - 1.2 0.08 -1.35 0.09 0.00 1.47 91.43 

G - 1.3 0.08 -0.20 0.09 0.00 2.52 84.93 

Various results of “Model with Porous Media” from specified points in cavity and on 

exterior glass interior surface are indicated in Table 5.5 and Table 5.6.    

Table 5.5 :  “Model with Porous Media” results from specified points in cavity. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Ca 1.1 0.08 -2.70 0.08 0.052 0.96 94.70 

Ca 2.1 0.08 -2.70 0.03 0.050 1.05 93.90 

Ca 1.2 0.08 -1.35 0.08 0.008 4.36 74.60 

Ca 2.2 0.08 -1.35 0.03 0.028 11.84 44.77 

Ca 1.3 0.08 -0.20 0.08 0.048 4.17 75.69 

Ca 2.3 0.08 -0.20 0.03 0.001 15.51 35.38 

Table 5.6 : “Model with Porous Media” results from specified points on exterior 

                         glass surface. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

G - 1.1 0.08 -2.70 0.09 0.00 0.48 97.95 

G - 1.2 0.08 -1.35 0.09 0.00 1.55 90.85 

G - 1.3 0.08 -0.20 0.09 0.00 1.60 90.60 

Various results of “Model with linear channel” from specified points in cavity and on 

exterior glass interior surface are indicated in Table 5.7 and Table 5.8.     
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Table 5.7 :  “Model with linear channel” results from specified points in cavity. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Ca 1.1 0.08 -2.70 0.08 0.047 0.90 91.19 

Ca 2.1 0.08 -2.70 0.03 0.053 0.74 89.16 

Ca 1.2 0.08 -1.35 0.08 0.043 3.74 75.29 

Ca 2.2 0.08 -1.35 0.03 0.030 11.70 43.32 

Ca 1.3 0.08 -0.20 0.08 0.031 6.45 62.77 

Ca 2.3 0.08 -0.20 0.03 0.004 15.94 33.25 

Table 5.8 : “Model with linear channel” results from specified points on exterior 

                         glass surface. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

G - 1.1 0.08 -2.70 0.09 0.00 0.37 95.02 

G - 1.2 0.08 -1.35 0.09 0.00 1.68 86.99 

G - 1.3 0.08 -0.20 0.09 0.00 2.01 85.47 

The tables above indicates that the fluid temperature in cavity and on glass surface 

gets higher as long as the height of measured points gets higher in three different 

model. Relative humidity values in cavity and on glass surface gets lower as long as 

the height of measured points gets higher in three different model. Velocity values in 

cavity between blind and interior glass gets lower as long as the height of points gets 

higher. These tables illustrate how chimney effect reacts in the cavity in three 

different models. 

5.3.3 Value comparison charts between three different models  

CFD results from specified points are arranged as charts in order to compare the 

values in terms of relative humidity, temperature and velocity as it is shown at Figure 

5.4, Figure 5.5 and Figure 5.6. 
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Figure 5.4 : Relative humidity values at glass surface (above), cavity between  

             exterior glass and blind (bottom left), cavity between blind and 

             interior glass (bottom right). 

The values obtained from interior cavity match up with each others in quite high 

level in terms of relative humidity, temperature and velocity.  

Specified tables and charts in “5.3 Result” section indicates that there is no 

condensation at measured points. It is also illustrated in specified table and charts 

that there is highly convenience with experimental results.  

  

Glass Surface 

Exterior Cavity Interior Cavity 
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Figure 5.5 : Temperature values at glass surface (above), cavity between  

                                exterior glass and blind (bottom left), cavity between blind and 

                                interior glass (bottom right). 

 

 

 

         

Figure 5.6 : Velocity values at glass surface (above), cavity between exterior  

                           glass and blind (bottom left), cavity between blind and interior glass 

                           (bottom right). 

  

Glass Surface 

Exterior Cavity Interior Cavity 

Exterior Cavity Interior Cavity 



35 

 

5.3.4 Cut plots from the middle of right plane 

Cut plots from middle of right plane is taken in order to compare all of models in 

terms of velocity, temperature and relative humidity in Figure 5.7, Figure 5.8 and 

Figure 5.9. 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 : Model without porous Media (left), model with porous media (middle),  

        model with linear channel (right) velocity distributions. 
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Figure 5.8 : Model without porous Media (left), model with porous  

                     media (middle),model with linear channel (right) temperature 

                     distribution. 
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Figure 5.9 : Model without porous media (left), Model with porous media (middle), 

        model with linear channel (right) relative humidity distributions.  
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CSTB condensation assessment risk test results at 400
th

 minute is given below.(Table 

5.9) (Comprehensive test results are given in Table 4.2) 

Table 5.9 : Experiment results at 400
th 

minute. 

Region Temperature (°C) Relative Humidity (%) 

Cavity 1.6 83.8 

Exterior Glass Interior Surface 0.3 n/a 

Even though there are some mismatches in velocity cut plots between three different 

models (Figure 5.7), trend of velocity distribution is highly matched with each 

other’s.   Similarity ratio decreases as long as height increase. 

There is high similarity between three different models in terms of temperature 

distribution. Temperature values obtained from test are also validate CFD output as it 

is clearly shown with Table 4.2 and Figure 5.8. 

On the ground of observing higher velocities due to narrow channel effect of linear 

channel, relative humidity values are relatively lower with respect to other models 

which is shown at Figure 5.9. 

“Air flow and heat transfer in double skin façades” illustrates that there is 3°C 

difference at outer cavity, 1°C – 1.5 °C difference at  inner cavity and around 1°C 

difference on inner glass surface  in 20°C and 30°C interval between CFD results and 

experiment results. As it is obviously seen from Table 5.9 and Figure 5.8 and Figure 

5.9, there is significantly less difference between model results and experimental 

results. 

5.3.5 Validation with August-Roche Magnus Approach 

Table 5.10 indicates corresponded dew points with respect to relative humidity and 

temperature values according to August-Roche Magnus approach. If temperature of 

any surface which contact with indoor is lower than dew point of indoor 

environment, there is condensation occurrence at specified surface. Minimum 

temperature on surface is mostly seen on aluminium profile surface or glass surface.  

August-Roche Magnus Formula; 

The Magnus-Tetens formula for the vapour pressure is given by [13]   
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                                                                 (5.2) 

with      a=17.27    

b=237.7  °C 

and Td is in °C.   

 

The relative humidity and vapour saturation pressure has direct relation with the 

vapor pressure by 

                                                                                                 (5.3) 

Saturated air means the air which has 100% relative humidity and the temperature 

equals to dew point temperature 

                                       (5.4) 

where 

                                                                              (5.5) 

[13]. 
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Table 5.10 : Dew point value changes with respect to relative humidity and 

                              temperature. 

INDOOR 

TEMP. 

°C 

RELATIVE HUMIDITY (RH. %) 

30 35 40 45 50 55 60 65 70 75 80 85 90 95 

30.0 10.5 12.8 14.9 16.8 18.4 20.0 21.4 22.7 23.9 25.1 26.2 27.2 28.2 29.1 

29.0 9.7 12.0 14.0 15.8 17.5 19.0 20.4 21.7 23.0 24.1 25.2 26.2 27.2 28.1 

28.0 8.8 11.1 13.1 14.9 16.6 18.1 19.5 20.8 22.0 23.1 24.2 25.2 26.2 27.1 

27.0 7.9 10.2 12.2 14.0 15.7 17.2 18.6 19.8 21.0 22.2 23.2 24.3 25.2 26.1 

26.0 7.1 9.3 11.3 13.1 14.8 16.2 17.6 18.9 20.1 21.2 22.3 23.3 24.2 25.1 

25.0 6.2 8.5 10.5 12.2 13.8 15.3 16.7 18.0 19.1 20.3 21.3 22.3 23.2 24.1 

24.0 5.3 7.6 9.6 11.3 12.9 14.4 15.7 17.0 18.2 19.3 20.3 21.3 22.3 23.1 

23.0 4.5 6.7 8.7 10.4 12.0 13.5 14.8 16.1 17.2 18.3 19.4 20.3 21.3 22.2 

22.0 3.6 5.8 7.8 9.5 11.1 12.5 13.9 15.1 16.3 17.4 18.4 19.4 20.3 21.2 

21.0 2.8 4.9 6.9 8.6 10.2 11.6 12.9 14.2 15.3 16.4 17.4 18.4 19.3 20.2 

20.0 1.9 4.1 6.0 7.7 9.3 10.7 12.0 13.2 14.4 15.4 16.4 17.4 18.3 19.2 

19.0 1.0 3.2 5.1 6.8 8.3 9.7 11.1 12.3 13.4 14.5 15.5 16.4 17.3 18.2 

18.0 0.2 2.3 4.2 5.9 7.4 8.8 10.1 11.3 12.4 13.5 14.5 15.4 16.3 17.2 

17.0 -0.7 1.4 3.3 5.0 6.5 7.9 9.2 10.4 11.5 12.5 13.5 14.5 15.3 16.2 

16.0 -1.6 0.5 2.4 4.1 5.6 7.0 8.2 9.4 10.5 11.6 12.5 13.5 14.4 15.2 

15.0 -2.4 -0.3 1.5 3.2 4.7 6.0 7.3 8.5 9.6 10.6 11.6 12.5 13.4 14.2 

14.0 -3.3 -1.2 0.6 2.3 3.7 5.1 6.4 7.5 8.6 9.6 10.6 11.5 12.4 13.2 

13.0 -4.2 -2.1 -0.3 1.3 2.8 4.2 5.4 6.6 7.7 8.7 9.6 10.5 11.4 12.2 

12.0 -5.0 -3.0 -1.2 0.4 1.9 3.2 4.5 5.6 6.7 7.7 8.7 9.6 10.4 11.2 

11.0 -5.9 -3.9 -2.1 -0.5 1.0 2.3 3.5 4.7 5.7 6.7 7.7 8.6 9.4 10.2 

10.0 -6.8 -4.8 -3.0 -1.4 0.1 1.4 2.6 3.7 4.8 5.8 6.7 7.6 8.4 9.2 

Condensation risk on exterior glass interior surface is assessed at Table 5.11, Table 

5.12 and Table 5.13 with respect to dew points of cavity temperature and cavity 

relative humidity from same height according to August-Roche Magnus formula 

with on specified points, which are indicated at 5.3.1 specified points section. (G and 

Ca 1 points)  

Table 5.11 : Condensation risk assessment in “Model without porous media”. 

Point 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Dew 

Points 

(°C) 

γ Point 
Temperature 

(Fluid) [°C] 

Condensation 

Sit. 

Ca 1.1 0.039 0.98 94.46 0.19 0.014 G - 1.1 0.46 
No 

Condensation 

Ca 1.2 0.011 4.97 71.53 0.26 0.019 G - 1.2 1,47 
No 

Condensation 

Ca 1.3 0.025 6.32 65.26 0.28 0.020 G - 1.3 2,52 
No 

Condensation 
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Table 5.12 :  Condensation risk assessment in “Model with porous media”. 

Point 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Dew 

Points 

(°C) 

γ Point 
Temperature 

(Fluid) [°C] 

Condensation 

Sit. 

Ca 1.1 0.052 0.96 94.70 0.20 0.015 G - 1.1 0,48 
No 

Condensation 

Ca 1.2 0.008 4,36 74.60 0.24 0.018 G - 1.2 1,55 
No 

Condensation 

Ca 1.3 0.048 4,17 75.69 0.26 0.019 G - 1.3 1,60 
No 

Condensation 

Table 5.13 :  Condensation risk assessment in “Model with linear channel”. 

Point 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Dew 

Points 

(°C) 

γ Point 
Temperature 

(Fluid) [°C] 

Condensation 

Sit. 

Ca 1.1 0.047 0.90 91.19 -0.37 -0.027 
G - 

1.1 
0,37 

No 

Condensation 

Ca 1.2 0.043 3,74 75.29 -0.23 -0.016 
G - 

1.2 
1,68 

No 
Condensation 

Ca 1.3 0.031 6,45 62.77 -0.13 -0.010 
G - 

1.3 
2,01 

No 

Condensation 

The dew points in the middle of cavity between blind and exterior glass are 

considerably lower than temperature on glass surface with same height. Therefore, 

there is no condensation.   

5.3.6 Effect of different filter distance to exterior glass 

This part evaluates effects of the filter distance to exterior glass in “Model without 

porous media”. 

Table 5.14 :  Effect of “25 mm distance to exterior glass” in cavity. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Ca 1.1 0.08 -2.70 0.08 0.039 0.98 94.46 

Ca 2.1 0.08 -2.70 0.03 0.037 0.86 92.85 

Ca 1.2 0.08 -1.35 0.08 0.011 4.97 71.53 

Ca 2.2 0.08 -1.35 0.03 0.028 11.95 44.35 

Ca 1.3 0.08 -0.20 0.08 0.025 6.32 65.26 

Ca 2.3 0.08 -0.20 0.03 0.001 15.81 34.73 
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Table 5.15 : Effect of “25 mm distance to exterior glass” on exterior glass surface. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

G - 1.1 0.08 -2.70 0.09 0.00 0.46 98.01 

G - 1.2 0.08 -1.35 0.09 0.00 1.47 91.43 

G - 1.3 0.08 -0.20 0.09 0.00 2.52 84.93 

Table 5.16 : Effect of “38 mm distance to exterior glass” in cavity. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Ca 1.1 0.08 -2.70 0.08 0.040 0.97 94.54 

Ca 2.1 0.08 -2.70 0.03 0.039 0.86 93.69 

Ca 1.2 0.08 -1.35 0.08 0.012 4.98 71.49 

Ca 2.2 0.08 -1.35 0.03 0.028 11.98 44.33 

Ca 1.3 0.08 -0.20 0.08 0.035 4.98 71.53 

Ca 2.3 0.08 -0.20 0.03 0.001 15.99 34.30 

Table 5.17 : Effect of “38 mm distance to exterior glass” on exterior glass surface. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

G - 1.1 0.08 -2.70 0.09 0.00 0.46 98.03 

G - 1.2 0.08 -1.35 0.09 0.00 1.42 91.70 

G - 1.3 0.08 -0.20 0.09 0.00 2.05 87.78 

Table 5.18 : Effect of “56 mm distance to exterior glass” in cavity. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

Ca 1.1 0.08 -2.70 0.08 0.040 1.03 94.31 

Ca 2.1 0.08 -2.70 0.03 0.042 0.93 94.38 

Ca 1.2 0.08 -1.35 0.08 0.012 4.48 74.01 

Ca 2.2 0.08 -1.35 0.03 0.028 11.98 44.42 

Ca 1.3 0.08 -0.20 0.08 0.010 5.40 69.45 

Ca 2.3 0.08 -0.20 0.03 0.001 15.68 35.02 
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Table 5.19 : Effect of “56 mm distance to exterior glass” on exterior glass surface. 

Point x [m] y [m] z [m] 
Velocity 

[m/s] 

Temperature 

(Fluid) [°C] 

Relative 

Humidity 

[%] 

G - 1.1 0.08 -2.70 0.09 0.00 0.46 98.23 

G - 1.2 0.08 -1.35 0.09 0.00 1.41 91.86 

G - 1.3 0.08 -0.20 0.09 0.00 1.95 88.40 

All the above data taken from the models with different filter positions shows the 

outputs indicated below.   

When filter gets closer to interior side, relative humidity next outer glass becomes 

higher. 

The filter position has no considerable effect on to velocity distribution.  

Filter position influence more below part of cavity from temperature, velocity and 

relative humidity aspect. 

5.4 Next Step 

The report based on CLC 12-260039255 numbered  lab experiment by CSTB is 

modeled and simulated at Solidworks Flow Simulation CFD program in order to 

have comprehensive results in this work. Façade Respirante is constituted by using 

comprehensive results of CFD analysis which is validated with CSTB lab report. 

Accordingly, a new Façade Respirante mock-up was developed. There will be new 

experiment with currently developed Façade Respirante. The lab results of this 

experiment will be also compared with validated CFD model which is revised with 

respect to dimensions of currently constituted model in order to reach Façade 

Respirante which has maximum thermal performance without condensation. 

Moreover, the Façade Respirante configuration will be developed under different 

climatic conditions, as well.  This study will be also presented as master thesis at 

Istanbul Technical University Energy Institute.  
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6.  TESTING THE FR FOR CONDENSATION RISK  

This chapter includes condensation risk assessment of previously constituted closed 

cavity façade at FTI (Façade Testing Institute) Labs in İstanbul Çatalca district. 

The purpose is to assess the risk of condensation on exterior glazing surface and 

aluminum surface which contact with cavity air. Hygrometers and thermocouples, 

which are placed to critical points, also help us to determine by tracking relative 

humidity and temperature variations inside of the cavity.    

Thermocouples (Thermal sensors) and hygrometers are placed to various zones in 

order to measure temperature values with 0.1 °C and 0.1% precision and from 0.5% 

to 1.6% uncertainty for hygrometer and 0.1°C temperature uncertainty for 

thermocouples.   

All the measurements are collected by means of data logger. Thermal and hygric 

measurements are recorded with 30 seconds intervals. Experiment is carried out 

between 06 -15 May 2015 dates. Experiment is carried out according to five different 

variation. 

Please see below mock-up variation with respect to blind and filter situation for each 

day respectively. 

 Venetian blind is removed 

 Adjusting venetian blind with vertically positioned (closed) 

 Adjusting venetian blind with 90° vertical angle (open)  

When blinds are vertically positioned which is the most critical among the others: 

 Sealing one filter out of six filters 

 Sealing two filters on right and left side out of six filters 
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6.1 Methodology of Experiment 

Boundary conditions and initial conditions of condensation risk assessment 

experiment which is constituted by CSTB for Façade Respirante systems test 

methodology is indicated below. [9] 

6.1.1 Setting the boundary conditions   

The defined boundary conditions based on CSTB parameters are given below as 

indoor and outdoor conditions (Table 6.1). 

Indoor Conditions: Temperature is kept at 20°C and relative humidity is kept at 

50% and indoor is pressurized with an additional pressure of +50 Pa relatively. 

Outdoor Conditions: Outdoor is conditioned to 20°C temperature and 80% relative 

humidity as an initial condition. Final temperature is 0°C at end of 400th minute 

thereby 1°C temperature reduction in each 20 minutes. 

Humidity and temperature change at indoor, cavity and outdoor is tracked by means 

of hygrometers and thermocouples. The temperature value at interior side of exterior 

glass is measured. Corresponding saturation vapour pressure to related temperature is 

identified from thermodynamic table. If vapour pressure at cavity is lower than 

corresponding saturation pressure to the temperature value at interior side of exterior 

glass, It is determined that there is no condensation.  

Table 6.1 : Initial conditions and final situations data table. 

Initial Conditions 

  Temperature (°C) Humidity (%) Pressure (Pa) 

Indoor 20 50 50 

Outdoor 20 80 0 

1°C temperature reduction in each 20 minutes at outdoor.  

    Final Situation (At the end of 400
th 

minute) 

  Temperature (°C) Humidity (%) Pressure (Pa) 

Indoor 20 50 50 

Outdoor 0 - 0 

 



47 

 

6.2 Description of Mock-Up 

Components of test mock-up is explained in terms of technical features in this 

section. 

 

Figure 6.1 : Section view of experiment stand. 

6.2.1 General features of glazing combination 

Glass combination of mock up is shown below. 

Dimensions: 1260 mm x 2100 mm 

Glazing Combination: Clear Float Glass 6 mm + 81 mm Respired Cavity Gap 

including blind) + Clear Float Glass 6 mm + Sun-Guard HS Superneutral 70 (low-e 

layer) + 16 mm Cavity (90% Argon)  + Clear Laminated Glass 8mm 44.2 8  

Total volume of cavity between inner glass combination and outer glass is 0.18 m
3
. 

6.2.1.1 Inner glass combination 

Inner glazing combination is calculated through Guardian Glass Performance 

Calculator program. The output of the program is illustrated below. 

6.2.1.2 Outer glass 

Clear Float Glass with 6 mm thickness is used as outer glass. 
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Figure 6.2 : Glazing combinations of Façade Respirante. 

6.2.2 Venetian blinds 

The Venetian blinds which are used in this experiment is the product of Hella. Blinds 

is made of aluminum and It is electrically controlled. Slat width of the blind is 25 

mm. 
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Figure 6.3 : Technical features of inner glass combination [Guardian Glass 

                              Configurator]. 

 

Figure 6.4 : Hella blind [29]. 
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6.2.3 Filters 

There are 6 pieces filters to supply slightly ventilation in order to prevent 

condensation.  The number of filter can be decreased in accordance with 

condensation situation.  SOFABIN FILTRE04 500G model (Figure 6.5) is used in 

this experiment.  Filter mesh size is 500 micron. Mesh size directly affect air passage 

behaviour inside to cavity, as well as dust and dirt accumulation.  Some feature of 

specified filter is shown below. 

Filter Dimension:  Φ19mm x 111.5 mm 

Filter Surface area:   1250.73 mm
2
 

Mesh Size:   500µm 

Air Passage area:   800.47 mm
2
 

Number of Filter:  6 

Total Filter Surface Area: 75.1 cm
2
 

Total Air Passage Area: 48.0 cm 

Section and plan view of specified filter is illustrated in Figure 6.5. 

 

 

Figure 6.5 : Plan and section and view of filters [30]. 
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6.2.4 General views of façade respirante details 

The design of the Façade Respirante is represented below.  

1) Specific detailing of mock-up system is given in Figure 6.6. 

 

Figure 6.6 : General view of constituted façade respirante test mock-up after  

                            analysis. 
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2.)Frame details of closed cavity façade system is shown in Figure 6.7, Figure 6.8 

and Figure 6.9.  

 

Figure 6.7 : Horizontal frame-1 (Bottom). 

 

Figure 6.8 : Horizontal frame-2 (Top). 

 

Figure 6.9 : Vertical frame 
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6.3 Selection of Experiment Equipments 

Various equipments are used for the purpose of measuring easy, sensible and 

reliable. Used equipments are hygrometers, data logger, thermal sensor 

(thermocouple), humidifier, dehumidifier and air conditioner (Figure 6.10). 

 

Figure 6.10 : Experimental mock-up view of Façade Respirante [20]. 

6.3.1 Identification of experiment equipments 

The positions of experiment equipments are identified in Figure 6.11. 

6.3.1.1 Thermocouple (Thermal Sensor) 

Thermal Sensors (Thermocouple) are used in order to measure temperature values 

sensitively in various zones. Used thermocouples used in this experiment are T type 

product of Omega brand. Measurement sensibility of the product is 0,1 °C . The 

product is made of copper-constantan. It is suited for measurements in the −200 to 

350 °C range. T thermocouples have a sensitivity of about 43 µV/°C. It has ±0,5 °C 

tolerance between −40 °C - 125 °C. 

 

Controlling 

devices to 

program indoor 

condition 

Controlling 

device to program 

outdoor condition 
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Figure 6.11 : Section detail (left) and plan detail (right) placement of thermocouples 

                        and hygrometers. 

 

 

 

 

 

 

  

Figure 6.12 : Omega T type thermocouple. 

Locating thermal sensors (Thermocouple)  

There are four thermocouples on glazing surface with various heights, four 

thermocouples in between blind and exterior glass and four thermocouples in 

between blind and interior glass. There are additionally 2 more thermal sensors at 
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indoor and outdoor. Overall, 14 thermal sensors are used for this experiment. 

Positions and heights of thermocouples are identified as it is illustrated in Table 6.2.  

Table 6.2 : The zones where thermal sensors (Thermocouple) are located and height  

        of them . 

Symbol Name Position 
Height 

(mm) 

T-1 Thermocouple-1 Exterior Glass Interior Surface 100 

T-2 Thermocouple-2 Exterior Glass Interior Surface 400 

T-3 Thermocouple-3 Exterior Glass Interior Surface 1400 

T-4 Thermocouple-4 Exterior Glass Interior Surface 1800 

T-5 Thermocouple-5 Cavity Between Exterior Glass and Blind 100 

T-6 Thermocouple-6 Cavity Between Exterior Glass and Blind 400 

T-7 Thermocouple-7 Cavity Between Exterior Glass and Blind 1400 

T-8 Thermocouple-8 Cavity Between Exterior Glass and Blind 1800 

T-9 Thermocouple-9 Cavity Between Interior Glass and Blind 100 

T-10 Thermocouple-10 Cavity Between Interior Glass and Blind 400 

T-11 Thermocouple-11 Cavity Between Interior Glass and Blind 1400 

T-12 Thermocouple-12 Cavity Between Interior Glass and Blind 1800 

6.3.1.2 Hygrometers (Humidity Sensors) 

Hygrometer (Humidity Sensor) is the instrument which measures moisture content in 

air. There are various types of hygrometers which are based on three different 

technology such as resistive sensors, capacitive sensors and thermal conductivity 

sensing technology. Resistive sensors can be used  for remote locations, capacity 

sensors are able to indicate wide RH range and thermal conductivity sensors are 

highly resistant against corrosive conditions at high temperatures. [31]     

Two different type of hygrometers are used in this experiment. These are Dixell 

XH20P (Figure 6.13)  and OMET T3111P (Figure 6.14). Dixell XH20P can cover 

from 0% to 99% relative humidity range with 1,7% uncertainty in accordance with 

the calibration indicated 6.3.2.1 section. Omet T3111P product can measure 

humidity from 0%to 100% relative humidity with maximum 0.7% uncertainty with 

the calibration indicated 6.3.2.1 section.  
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Figure 6.13 : Dixell XH20P hygrometer [32]. 

 

 

 

Figure 6.14 : OMET T3111P hygrometer [33]. 

Locating hygrometers in experiment 

Hygrometers in cavity are also capable of measuring temperature values. The 

humidity probe locations will give the temperature values of the specified points. 

Position of hygrometers are illustrated in Table 6.3. 
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Table 6.3 : Hygrometer positions in experiment. 

Symbol Name Position 
Height 

(mm) 

H-1 Hygrometer-1 Cavity Between Exterior Glass and Blind 200 

H-2 Hygrometer-2 Cavity Between Exterior Glass and Blind 1000 

H-3 Hygrometer-3 Indoor 1050 

H-4 Hygrometer-4 Outdoor 1050 

6.3.1.3 Data logger 

Data logger is the device which records measured data obtained by sensors according 

to time intervals. The data logger which is used in this experiment is HP Agilent data 

logger 34972A model. The data logger is located interior side in this experiment. The 

image of the product is given in Figure 15. 

 

Figure 6.15 : HP Agilent 34972A data logger [34]. 

6.3.1.4 Humidity control 

Humidity control is supposed to be exist in order to keep indoor in 50% relative 

humidity and to start outdoor in 80% relative humidity.  

Humidifier: Sinbo Ultrasonic Humidifier is used to humidify indoor and outdoor in 

this experiment. 

Dehumidifier: Olefini OLE-12 NA (Figure 6.16) is used to dehumidify excessive 

humidity from indoor.  
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Figure 6.16 : Olefini-12 NA dehumidifier [35]. 

6.3.2 Calibration 

Experiment instruments such as COMET T3111P, COMET T3111, DIXELL XH20P 

Omega T Type thermocouples are calibrated in “Penta Otomasyon” labs which is 

accredited by Turkish Accreditation Agency. 

6.3.2.1   Hygric sensors 

COMET T3111P, COMET T3111 and DIXELL XH20P are calibrated in terms of 

hygric measurements. There is 0.1% precision and from 0.5% to 1.6% uncertainty 

depending on measurement instrument. Hygric calibration details are illustrated in 

Table 6.4.  

Table 6.4 : Hygric calibrations. 

  
Reference 

Humidity 

(%) 

Error 

(%) 
  

Reference 

Humidity 

(%) 

Error 

(%) 
  

Reference 

Humidity 

(%) 

Error 

(%) 

COMET 

T3111P 

21.6 0.7 

COMET 

T3111 

21.6 -0.8 

DIXELL 

XH20P 

22.3 -1.4 

52.9 0.5 52.9 -0.7 49.8 -1.6 

83.4 0.7 83.4 -0.8 82.6 -1.7 

6.3.2.2 Thermal sensors 

COMET T3111P, COMET T3111 and all thermocouples are calibrated in terms of 

thermal measurements. There is 0.01°C precision and from 0.5% to 1.6% uncertainty 

(Table 6.5) depending on measurement instrument. 
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Table 6.5 : Thermal calibrations. 

COMET T3111 COMET T3111P Thermocouple 

Reference 

Temperature 

(°C) 

Error 

(%) 

Reference 

Temperature 

(°C) 

Error 

(%) 

Reference 

Temperature 

(°C) 

Meas. 

Uncertainty 

(°C) 

-5.2 -0.1 -5.2 -0.2 -10.0 ±0.2 

5.4 -0.2 5.6 0.2 0.0 ±0.2 

20.3 -0.2 20.5 0.2 10.0 ±0.2 

        20.0 ±0.2 

6.4 Set Cases 

All the measurements are collected by means of data logger. Thermal and hygric 

measurements are recorded with 30 seconds intervals. 

Experiment is carried out between 06
th

 May - 15
th

 May 2015 dates in order to 

confirm measurement accuracy. Experiment is carried out according to five different 

variation. 

Please see below mock-up variation with respect to blind and filter situation for each 

day respectively. 

 Venetian blind is removed 

 Adjusting venetian blind with vertically positioned (closed) 

 Adjusting venetian blind with 90° vertical angle (open)  

When blinds are vertically positioned which is the most critical among the others 

 Sealing one filter out of six filters 

 Sealing two filters on right and left side out of six filters 
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Figure 6.17 : General view of experiment stand. 

6.5 Results 

Experiment results are evaluated with respect to 3 different criteria which are 

indicated below. 

 Effect of blind onto temperature and relative humidity variation 

 Effect of slat angle onto temperature and relative humidity variation 

 Effect of the number of filter decrement temperature and relative humidity 

variation 

Tindoor Indoor Temperature 

 RHindoor Indoor Relative Humidity 

 Text glass Inner side temperature of exterior glass 

Touter cavity Temperature of the cavity between outer glass and blind  

Tinner cavity Temperature of the cavity between blind and inner glass 

RHcavity Cavity Relative Humidity 

 Text Outdoor temperature 

 RHoutdoor Outdoor relative humidity 

 Pivp Indoor Vapour Pressure 

 Pcvp Cavity Vapour Pressure 

 
Psvp 

Corresponded Saturated Vapour Pressure to inner side temperature of 

exterior glass 

Povp Outdoor Vapour Pressure 
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6.5.1 Venetian blind with vertically positioned (Slats are closed) 

Experiment result table and experiment result chart of venetian blind with vertically 

position is presented at Table 6.6 and Figure 6.18 respectively.  

Partial vapour pressure of cavity is lower than corresponded saturated partial vapour 

pressure to Texterior glass throughout experiment. Therefore, there is no condensation. 

The mean pressure difference value between Pcvp and Psvp is 13 Pa in last 100 minute.    
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Table 6.6 : Condensation risk experiment result table of venetian blind with vertically positioned. 

Time 
T(indoor) 

(°C) 

RHindoor 

(%) 

T ext 

glass 

(°C) 

Touter cavity 

(°C)  

T inner cavity 

(°C) 

RHcavity 

(%) 

Text 

(°C) 

RH 

outdoor 

(%) 

Pivp 

(kPa) 

Pcvp 

(kPa) 
Psvp 

(kPa) 
Povp 

(kPa) 

Psvp - Pcvp   

(ΔP)) 

(Pa) 

0 22.6 50.2 21.0 21.4 21.7 61.6 20.1 78.0 1.374 1.570 2.474 1.827 904 

0 h 20 min 22.6 50.2 20.5 21.0 21.4 61.3 19.2 74.8 1.374 1.524 2.407 1.656 882 

0 h 40 min 22.6 50.0 19.9 20.6 21.1 61.2 18.2 72.4 1.368 1.480 2.316 1.506 837 

1 h 00 min 22.6 50.0 19.1 19.9 20.5 62.1 17.1 70.7 1.368 1.436 2.211 1.371 774 

1 h 20 min 22.6 50.0 18.3 19.1 20.0 63.6 15.8 69.4 1.368 1.407 2.101 1.247 694 

1 h 40 min 22.6 50.0 17.6 18.5 19.4 65.3 15.0 69.4 1.368 1.390 2.011 1.184 621 

2 h 00 min 22.6 50.0 16.9 17.9 18.8 67.4 14.1 69.0 1.368 1.375 1.916 1.110 541 

2 h 20 min 22.6 50.0 16.1 17.2 18.2 69.7 13.2 68.8 1.368 1.361 1.828 1.043 467 

2 h 40 min 22.5 50.0 15.1 16.3 17.5 72.8 12.0 69.0 1.360 1.346 1.717 0.967 372 

3 h 00 min 22.5 50.0 14.4 15.6 16.9 75.5 11.1 69.7 1.359 1.336 1.634 0.919 298 

3 h 20 min 22.4 50.0 13.4 14.7 16.0 79.2 9.9 70.5 1.350 1.319 1.529 0.859 211 

3 h 40 min 22.3 50.2 12.5 13.9 15.3 82.5 9.0 71.2 1.349 1.306 1.451 0.816 146 

4 h 00 min 22.2 50.5 11.6 13.0 14.6 85.4 8.0 72.2 1.346 1.280 1.363 0.774 83 

4 h 20 min 22.0 50.7 10.7 12.2 13.8 86.5 7.1 73.3 1.335 1.227 1.283 0.739 56 

4 h 40 min 21.9 50.9 9.9 11.4 13.1 86.8 6.2 74.2 1.333 1.172 1.216 0.702 44 

5 h 00 min 21.7 50.9 8.9 10.5 12.2 87.0 5.1 74.8 1.317 1.102 1.137 0.656 34 

5 h 20 min 21.4 50.0 7.9 9.6 11.4 87.1 4.1 76.1 1.271 1.039 1.062 0.622 23 

5 h 40 min 21.2 50.9 6.9 8.7 10.6 87.2 3.1 77.0 1.277 0.977 0.996 0.586 19 

6 h 00 min 21.0 50.2 6.1 7.9 9.8 87.3 2.3 78.7 1.246 0.928 0.941 0.566 13 

6 h 20 min 20.5 50.0 4.8 6.9 8.8 87.9 1.7 80.9 1.202 0.872 0.875 0.559 3 

6 h 40 min 20.3 49.6 4.2 6.6 8.5 88.0 1.0 80.2 1.178 0.855 0.861 0.528 6 
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Figure 6.18 : Condensation risk experiment result chart of venetian blind with vertically positioned
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6.5.2 Venetian blind with horizontally positined (Slats are open) 

Experiment result table and experiment result chart of venetian blind with vertically 

position is presented at Table 6.7 and Figure 6.19 respectively.  

Partial vapour pressure of cavity is lower than corresponded saturated partial vapour 

pressure to Texterior glass throughout experiment. Therefore, there is no condensation. 

The mean pressure difference value between Pcvp and Psvp is 17 Pa in last 100 minute.    
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Table 6.7 : Condensation risk experiment result table of venetian blind with horizontally positioned (slats are opened). 

Time 
T(indoor) 

(°C) 

RHindoor 

(%) 

T ext glass 

(°C) 

Touter cavity 

(°C)  

T inner 

cavity (°C) 

RHcavity 

(%) 

Text 

(°C) 

RH outdoor 

(%) 
Pivp (kPa) 

Pcvp 

(kPa) 
Psvp (kPa) Povp (kPa) 

Psvp - Pcvp   

(ΔP) 

(Pa) 

0 20.4 50.0 19.6 20.0 19.9 66.9 19.9 80.6 1.195 1.556 2.282 1.863 726 

0 h 20 min 20.4 50.0 19.4 19.8 19.8 65.5 19.0 80.0 1.195 1.507 2.244 1.748 738 

0 h 40 min 20.4 50.0 19.1 19.5 19.6 64.0 17.9 80.4 1.195 1.446 2.201 1.649 755 

1 h 00 min 20.4 50.0 18.5 19.1 19.3 63.4 17.0 78.9 1.195 1.394 2.120 1.529 726 

1 h 20 min 20.5 50.0 18.0 18.6 18.8 63.6 16.0 77.0 1.202 1.356 2.054 1.399 697 

1 h 40 min 20.5 50.0 17.3 18.0 18.4 64.5 15.1 75.9 1.202 1.332 1.973 1.302 641 

2 h 00 min 20.5 50.2 16.7 17.5 17.9 65.8 14.2 75.5 1.207 1.311 1.899 1.221 587 

2 h 20 min 20.5 50.4 16.1 16.9 17.4 67.3 13.4 75.3 1.213 1.296 1.829 1.156 533 

2 h 40 min 20.4 50.7 15.2 16.1 16.6 70.0 12.2 74.8 1.210 1.275 1.719 1.061 444 

3 h 00 min 20.4 50.9 14.2 15.2 15.8 72.9 11.0 74.8 1.215 1.257 1.619 0.980 362 

3 h 20 min 20.3 50.0 13.5 14.5 15.2 75.4 10.2 75.3 1.188 1.246 1.545 0.935 299 

3 h 40 min 20.3 50.4 13.0 14.1 14.9 76.6 9.6 75.5 1.198 1.230 1.498 0.901 268 

4 h 00 min 20.3 50.4 11.8 12.9 13.7 81.0 8.2 76.4 1.198 1.202 1.378 0.829 176 

4 h 20 min 20.2 50.2 10.9 12.1 12.9 84.1 7.3 77.2 1.185 1.184 1.298 0.788 114 

4 h 40 min 20.1 50.7 9.9 11.2 12.2 87.1 6.3 78.1 1.188 1.158 1.221 0.743 63 

5 h 00 min 20.0 50.2 8.8 10.2 11.3 88.2 5.1 79.2 1.171 1.098 1.134 0.694 37 

5 h 20 min 20.0 50.7 8.1 9.5 10.6 88.4 4.3 79.6 1.181 1.051 1.082 0.659 30 

5 h 40 min 20.0 50.2 7.0 8.5 9.5 88.5 3.1 80.7 1.171 0.978 1.002 0.614 24 

6 h 00 min 20.0 50.9 6.2 7.7 8.9 88.6 2.4 80.0 1.186 0.931 0.949 0.579 18 

6 h 20 min 20.0 49.6 5.5 7.0 8.2 88.9 1.6 81.3 1.156 0.890 0.902 0.556 12 

6 h 40 min 20.0 50.9 4.8 6.3 7.6 89.6 0.8 80.7 1.186 0.857 0.861 0.521 4 
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Figure 6.19 : Condensation risk experiment result chart of venetian blind with horizontally positioned (slats are opened).
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6.5.3 Venetian blinds are removed 

Experiment result table and experiment result chart of the venetian blinds are 

removed case is presented at Table 6.8 and Figure 6.20 respectively.  

Partial vapour pressure of cavity is lower than corresponded saturated partial vapour 

pressure to Texterior glass throughout experiment. Therefore, there is no condensation. 

The mean pressure difference value between Pcvp and Psvp is 18 Pa in last 100 minute. 
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Table 6.8 : Venetian blinds are removed. 

Time 
T(indoor) 

(°C) 

RHindoor 

(%) 

T ext glass 

(°C) 

Touter cavity 

(°C)  

T inner cavity 

(°C) 

RHcavity 

(%) 

Text 

(°C) 

RH outdoor 

(%) 
Pivp (kPa) 

Pcvp 

(kPa) 
Psvp (kPa) 

Povp 

(kPa) 

Psvp - Pcvp   

(ΔP) 

(Pa) 

0 20.0 50.7 19.2 19.4 19.2 80.6 19.9 80.0 1.181 1.817 2.226 1.849 409 

0 h 20 min 20.1 50.9 19.2 19.5 19.4 75.1 19.1 79.8 1.193 1.697 2.213 1.754 516 

0 h 40 min 20.1 50.9 18.9 19.3 19.3 71.5 18.2 79.1 1.193 1.597 2.174 1.654 577 

1 h 00 min 20.1 50.7 18.4 18.9 19.0 69.1 17.1 80.2 1.188 1.508 2.109 1.563 601 

1 h 20 min 20.1 50.7 18.1 18.6 18.7 68.5 16.4 79.4 1.188 1.466 2.067 1.479 601 

1 h 40 min 20.1 50.4 17.1 17.9 18.0 68.9 15.0 77.0 1.183 1.405 1.949 1.313 544 

2 h 00 min 20.1 50.2 16.6 17.4 17.6 69.5 14.1 75.9 1.178 1.376 1.890 1.221 514 

2 h 20 min 20.1 50.2 16.0 16.8 17.1 70.2 13.3 75.7 1.178 1.338 1.811 1.154 473 

2 h 40 min 20.1 50.0 15.0 15.9 16.3 71.7 12.0 75.3 1.173 1.294 1.705 1.054 410 

3 h 00 min 20.1 50.0 14.5 15.4 15.8 72.9 11.3 75.3 1.173 1.272 1.643 1.006 371 

3 h 20 min 20.0 50.0 13.4 14.5 14.9 75.2 10.1 75.3 1.166 1.236 1.538 0.929 303 

3 h 40 min 20.0 50.0 13.0 14.0 14.5 76.6 9.5 75.7 1.166 1.221 1.491 0.897 270 

4 h 00 min 20.0 50.0 11.9 13.0 13.7 79.7 8.3 77.2 1.166 1.191 1.389 0.843 198 

4 h 20 min 20.0 50.0 11.4 12.5 13.1 81.3 7.8 77.4 1.167 1.179 1.345 0.817 165 

4 h 40 min 20.0 50.0 10.2 11.5 12.2 84.9 6.5 78.5 1.166 1.153 1.246 0.758 93 

5 h 00 min 20.1 50.0 9.1 10.4 11.1 87.8 5.2 79.6 1.173 1.104 1.154 0.702 50 

5 h 20 min 20.0 50.0 8.1 9.5 10.2 88.5 4.2 80.5 1.166 1.046 1.078 0.661 32 

5 h 40 min 20.0 50.0 7.4 8.8 9.7 88.7 3.4 79.2 1.167 1.004 1.026 0.615 22 

6 h 00 min 20.0 50.0 6.3 7.8 8.7 89.0 2.3 79.6 1.166 0.939 0.954 0.572 15 

6 h 20 min 20.0 50.0 6.0 7.5 8.5 89.0 1.9 80.5 1.167 0.922 0.937 0.562 15 

6 h 40 min 20.0 50.0 5.2 6.7 7.7 89.6 0.9 80.9 1.166 0.878 0.882 0.527 4 
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Figure 6.20 : Venetian blinds are removed
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The result of three different case indicates that the most critical case is venetian 

blinds with vertically positioned  (slats are closed) among the others.  

Table 6.9 : Mean pressure difference value between Pcvp and Psvp in last 100 minute. 

Cases 
(ΔP) in T300-400 

(Pa) 

Slats are closed 13 

Slats are open 17 

Venetian blinds are removed 18 

6.5.4 One filter is sealed 

The venetian blind inside of Façade Respirante system is arranged as vertically 

positioned  which is the most critical case in terms of condensation risk. (Table 6.9)  

After one filter is sealed, the experiment is started. 

Experiment result table and experiment result chart of  sealing one filter case is 

presented at Table 6.10 and Figure 6.21 respectively.  

Partial vapour pressure of cavity is lower than corresponded saturated partial vapour 

pressure to Texterior glass throughout experiment. Therefore, there is no condensation. 

The mean pressure difference value between Pcvp and Psvp is 10 Pa in last 100 minute.  
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Table 6.10 : One filter is sealed. 

Time 
T(indoor) 

(°C) 

RHindoor 

(%) 

T ext glass 

(°C) 

Touter cavity 

(°C)  

T inner 

cavity (°C) 

RHcavity 

(%) 

Text 

(°C) 

RH outdoor 

(%) 
Pivp (kPa) 

Pcvp 

(kPa) 
Psvp (kPa) Povp (kPa) 

Psvp - Pcvp   

(ΔP) 

(Pa) 

0 20.1 49.8 19.5 19.8 19.6 61.3 20.0 79.3 1.168 1.410 2.261 1.849 851 

0 h 20 min 20.1 49.8 19.4 19.7 19.7 61.7 19.2 79.6 1.168 1.412 2.241 1.762 829 

0 h 40 min 20.2 50.0 18.9 19.4 19.5 62.1 18.1 78.7 1.180 1.395 2.184 1.634 789 

1 h 00 min 20.2 49.8 18.5 19.1 19.3 61.9 17.4 76.8 1.175 1.363 2.130 1.518 766 

1 h 20 min 20.2 50.0 17.9 18.6 18.9 62.1 16.3 73.3 1.180 1.325 2.048 1.351 724 

1 h 40 min 20.3 49.8 17.2 17.9 18.3 63.1 15.2 70.9 1.182 1.288 1.953 1.219 665 

2 h 00 min 20.3 50.0 16.7 17.6 18.2 63.8 14.6 70.1 1.188 1.277 1.902 1.165 625 

2 h 20 min 20.3 50.2 16.1 17.0 17.7 65.4 13.8 69.2 1.193 1.261 1.826 1.086 565 

2 h 40 min 20.3 49.8 15.4 16.4 17.3 67.0 12.9 68.8 1.182 1.248 1.751 1.024 503 

3 h 00 min 20.3 50.0 14.5 15.6 16.5 69.9 11.8 68.4 1.187 1.236 1.649 0.946 413 

3 h 20 min 20.3 50.2 13.4 14.5 15.6 73.7 10.4 68.4 1.193 1.218 1.530 0.862 312 

3 h 40 min 20.3 50.0 12.9 14.1 15.2 75.5 9.9 68.6 1.188 1.209 1.483 0.836 274 

4 h 00 min 20.2 50.0 12.0 13.3 14.5 78.5 8.9 68.8 1.180 1.198 1.403 0.784 205 

4 h 20 min 20.2 50.0 11.2 12.6 13.8 81.6 8.1 69.4 1.180 1.185 1.330 0.749 144 

4 h 40 min 20.1 50.0 10.7 12.1 13.4 83.7 7.5 69.9 1.173 1.176 1.282 0.724 106 

5 h 00 min 20.1 50.0 10.1 11.5 12.9 86.0 6.8 70.5 1.173 1.165 1.231 0.696 66 

5 h 20 min 20.0 50.0 9.1 10.6 12.0 88.3 5.8 71.2 1.166 1.127 1.153 0.656 25 

5 h 40 min 20.0 50.2 8.2 9.8 11.4 88.8 4.9 72.0 1.171 1.076 1.089 0.623 13 

6 h 00 min 20.0 50.4 7.3 8.9 10.5 88.9 3.8 72.7 1.176 1.011 1.018 0.582 8 

6 h 20 min 20.0 50.7 6.1 7.8 9.5 88.8 2.6 74.4 1.181 0.940 0.942 0.548 2 

6 h 40 min 20.0 50.9 5.5 7.3 9.0 88.7 1.9 75.1 1.186 0.903 0.904 0.526 1 
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Figure 6.21 : One filter is sealed. 
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6.5.5 Two filters are sealed  

The venetian blind inside of Façade Respirante system is arranged as vertically 

positioned  which is the most critical case in terms of condensation risk. (Table 6.9)  

After one filter is sealed, the experiment is started. 

Experiment result table and experiment result chart of  sealing two filters case is 

presented at Table 6.11 and Figure 6.22 respectively.  

Partial vapour pressure of cavity is higher than corresponded saturated partial vapour 

pressure to Texterior glass in some moments. Therefore, this case leads to condensation 

formation on interior surface of exterior glass. 

The mean pressure difference value between Pcvp and Psvp is -5 Pa in last 100 minute.    
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Table 6.11 : Two filters are sealed. 

Time 
T(indoor) 

(°C) 

RHindoor 

(%) 

T ext glass 

(°C) 

Touter cavity 

(°C)  

T inner 

cavity (°C) 

RHcavity 

(%) 

Text 

(°C) 

RH outdoor 

(%) 
Pivp (kPa) 

Pcvp 

(kPa) 
Psvp (kPa) Povp (kPa) 

Psvp - Pcvp   

(ΔP) 

(Pa) 

0 22.8 49.8 19.8 20.3 20.7 79.9 19.9 84.7 1.377 1.902 2.306 1.962 404 

0 h 20 min 23.0 49.4 19.8 20.3 20.6 76.0 19.1 81.1 1.382 1.803 2.301 1.785 497 

0 h 40 min 23.0 49.2 19.4 20.0 20.5 74.5 18.2 78.1 1.376 1.740 2.248 1.624 508 

1 h 00 min 23.1 51.1 19.0 19.7 20.2 73.7 17.5 75.5 1.439 1.689 2.192 1.502 503 

1 h 20 min 23.1 50.4 18.6 19.4 20.1 73.4 16.7 72.9 1.421 1.651 2.140 1.379 489 

1 h 40 min 23.2 50.4 17.8 18.7 19.5 73.7 15.4 70.1 1.429 1.587 2.030 1.219 444 

2 h 00 min 23.2 50.2 16.9 18.0 18.9 75.3 14.2 68.3 1.423 1.549 1.925 1.101 376 

2 h 20 min 23.2 50.9 16.3 17.4 18.5 76.9 13.5 67.5 1.441 1.528 1.852 1.039 323 

2 h 40 min 23.2 50.4 15.2 16.5 17.6 79.9 12.1 67.3 1.429 1.495 1.728 0.950 233 

3 h 00 min 23.1 50.9 14.3 15.7 16.9 83.0 11.0 67.5 1.433 1.475 1.631 0.887 155 

3 h 20 min 23.0 49.4 13.8 15.2 16.5 84.7 10.5 67.7 1.384 1.458 1.575 0.861 117 

3 h 40 min 23.0 50.2 13.1 14.6 16.0 86.6 9.7 68.1 1.406 1.435 1.508 0.820 72 

4 h 00 min 22.9 50.4 12.3 13.8 15.3 88.2 8.8 68.8 1.403 1.391 1.428 0.780 38 

4 h 20 min 22.7 50.4 11.2 12.8 14.3 88.9 7.7 69.2 1.387 1.309 1.326 0.728 17 

4 h 40 min 22.6 50.7 10.6 12.1 13.7 88.9 6.9 69.7 1.384 1.256 1.273 0.693 17 

5 h 00 min 22.3 50.7 9.7 11.3 13.0 89.0 6.0 70.7 1.359 1.192 1.199 0.661 7 

5 h 20 min 22.1 51.0 9.0 10.7 12.4 89.0 5.4 72.0 1.351 1.143 1.147 0.646 4 

5 h 40 min 22.0 50.4 8.4 10.2 11.9 89.0 4.8 71.6 1.329 1.106 1.103 0.615 -3 

6 h 00 min 21.7 50.4 7.4 9.2 11.0 88.8 3.6 73.1 1.305 1.031 1.025 0.578 -6 

6 h 20 min 21.4 51.5 6.5 8.3 10.2 88.8 2.7 74.6 1.308 0.972 0.965 0.554 -7 

6 h 40 min 21.0 49.8 5.2 7.1 8.9 88.9 1.6 77.4 1.234 0.893 0.881 0.529 -12 

 



75 

 

 

Figure 6.22 : Two filters are sealed. 
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As it is illustrated at Figure 6.21, Figure 6.22 and indicated at Table 6.10 and Table 

6.11 that there is no condensation, if one filter is sealed and there is condensation 

formation on interior surface of exterior glass, if two filters are sealed. 

Table 6.12 : Mean pressure difference value between Pcvp and Psvp in last 100 

                            minute. 

Cases 
(ΔP) in T300-400 

(Pa) 

One filter is sealed 10 

Two filters are sealed -5 

Experiment results indicates that there is high tendency to condensation formation at 

venetian blinds vertically positioned case. On the other hand, when the blinds are 

removed, there is less probability to form condensation on outer glass surface.   

Moreover, as long as number of filter decrease, there is higher condensation risk. 

There is no condensation on glass surfaces, if there is at least 5 filters at below side 

of configured façade respirante system. 
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7.  ANALYZING THE FR BASED ON ITS ENERGY PERFORMANCE 

Energy performance analysis section determines thermal transmission value for 

windows (Uwindow) and its effect on heating load and cooling load with respect to the 

reference window which is defined in TS 825 (Thermal Insulation Requirements for 

Buildings)  

7.1 Thermal Analysis 

Thermal Analysis section presents condensation risk assessment and U Value 

analysis of closed cavity façade (Façade Respirante) frame details. 

7.1.1 Referenced standards and norms 

Condensation risk assessment and U Value analysis of constituted closed cavity 

façade system is based on the standards, which are given below. 

EN ISO 10077-1  Thermal Performance of Windows 

EN ISO 10077-2  Thermal Performance of Windows 

Method   Component assessment method 

EN 12631   Thermal Performance of Curtain Walling 

EN 12524   Building Materials and Products 

EN 10456   Building Materials and Products 

EN ISO 6946    Building Components and Building Elements 

TS 2164    Principles for the preparation of the projects of the 

central heating system 
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7.1.2 Technical features in terms of building physics 

Thermal conductivity values of the frame components are presented below according 

to EN 10077 standard.  

Table 7. 1 Thermal conductivity values of various materials [18,19]. 

Materials Thermal Conductivity (W/mK) 

Aluminum 160 

EPDM Gasket 0.25 

Silicone 0.35 

Backing Rod 0.035 

Glass Soda Lime 1.00 

Polyamide Reinf. 0.30 

Butyl Hot Melt 0.24 

PVB 0.20 

PVC 0.17 

Insulation 0.035 

7.1.3 Boundary conditions and initial conditions 

Boundary conditions and initial conditions of the condensation risk assessment and U 

value analysis is indicated below.  

Dimensions      : 1260mm x 2100mm 

Glass Combination     : 6/80.6/6/10/16/44.2 (Figure 6.2)      

Outdoor temperature     :  -3 C [25] 

Indoor temperature     : +20 C 

Relative humidity (RH)    : 50 %   

Dew point      : 9.3°C (Table 7.2) 

U value of the inner glass combination (Ug) : 1,1 W/m²K 

Thermal conductivity of inner glass air gap (λ) : 0,022 W/m
2
K (Table 7.3) 

Temperature Difference for Uf Calculation : 20 C [18,19] 

Thermal Conductivity of the insulation panel (λ) :0,035 W/m
2
K 

Thermal Conductivity of the Spacer (λ)   :0.11W/mK “Aluminum spacer” 
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Table 7.2 indicates corresponded dew points with respect to relative humidity and 

temperature values according to August-Magnus approach (Section 5.3.5). If 

temperature of any surface which contact with indoor is lower than dew point of 

indoor environment, there is condensation occurrence at specified surface. Minimum 

temperature on surface is mostly seen on aluminium profile surface or glass surface.  

Table 7. 2 Dew point table respect to RH vs. indoor temperature. 

 

INDOOR 

TEMP. 

°C 

RELATIVE HUMIDITY (RH. %) 

30 35 40 45 50 55 60 65 70 75 80 85 90 95 

30.0 10.5 12.8 14.9 16.8 18.4 20.0 21.4 22.7 23.9 25.1 26.2 27.2 28.2 29.1 

29.0 9.7 12.0 14.0 15.8 17.5 19.0 20.4 21.7 23.0 24.1 25.2 26.2 27.2 28.1 

28.0 8.8 11.1 13.1 14.9 16.6 18.1 19.5 20.8 22.0 23.1 24.2 25.2 26.2 27.1 

27.0 7.9 10.2 12.2 14.0 15.7 17.2 18.6 19.8 21.0 22.2 23.2 24.3 25.2 26.1 

26.0 7.1 9.3 11.3 13.1 14.8 16.2 17.6 18.9 20.1 21.2 22.3 23.3 24.2 25.1 

25.0 6.2 8.5 10.5 12.2 13.8 15.3 16.7 18.0 19.1 20.3 21.3 22.3 23.2 24.1 

24.0 5.3 7.6 9.6 11.3 12.9 14.4 15.7 17.0 18.2 19.3 20.3 21.3 22.3 23.1 

23.0 4.5 6.7 8.7 10.4 12.0 13.5 14.8 16.1 17.2 18.3 19.4 20.3 21.3 22.2 

22.0 3.6 5.8 7.8 9.5 11.1 12.5 13.9 15.1 16.3 17.4 18.4 19.4 20.3 21.2 

21.0 2.8 4.9 6.9 8.6 10.2 11.6 12.9 14.2 15.3 16.4 17.4 18.4 19.3 20.2 

20.0 1.9 4.1 6.0 7.7 9.3 10.7 12.0 13.2 14.4 15.4 16.4 17.4 18.3 19.2 

19.0 1.0 3.2 5.1 6.8 8.3 9.7 11.1 12.3 13.4 14.5 15.5 16.4 17.3 18.2 

18.0 0.2 2.3 4.2 5.9 7.4 8.8 10.1 11.3 12.4 13.5 14.5 15.4 16.3 17.2 

17.0 -0.7 1.4 3.3 5.0 6.5 7.9 9.2 10.4 11.5 12.5 13.5 14.5 15.3 16.2 

16.0 -1.6 0.5 2.4 4.1 5.6 7.0 8.2 9.4 10.5 11.6 12.5 13.5 14.4 15.2 

15.0 -2.4 -0.3 1.5 3.2 4.7 6.0 7.3 8.5 9.6 10.6 11.6 12.5 13.4 14.2 

14.0 -3.3 -1.2 0.6 2.3 3.7 5.1 6.4 7.5 8.6 9.6 10.6 11.5 12.4 13.2 

13.0 -4.2 -2.1 -0.3 1.3 2.8 4.2 5.4 6.6 7.7 8.7 9.6 10.5 11.4 12.2 

12.0 -5.0 -3.0 -1.2 0.4 1.9 3.2 4.5 5.6 6.7 7.7 8.7 9.6 10.4 11.2 

11.0 -5.9 -3.9 -2.1 -0.5 1.0 2.3 3.5 4.7 5.7 6.7 7.7 8.6 9.4 10.2 

10.0 -6.8 -4.8 -3.0 -1.4 0.1 1.4 2.6 3.7 4.8 5.8 6.7 7.6 8.4 9.2 

Overlapped zone of both red rectangular at Table 7.2 represents frequently used dew-

points in condensation risk analysis. There is dew point value change according to 

various temperature and various relative humidity as it is shown at Table 7.2. 

 

Figure 7. 1 The change of  dew point value according air temperature vs. dew point 

                    temperature.  



 

 

 

80 

7.1.4 General views of constituted closed cavity façade details 

The design of the closed cavity façade (façade respirante) is illustrated at below from 

Figure 7.2 to Figure 7.5. 

1.) Specific detailing of mock-up system is given in Figure 7.2.  

 

Figure 7. 2 General view of “Constituted Façade Respirante” test mock-up after 

              CFD analysis. 
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2.) Frame Details of closed cavity façade system is shown in Figure 7.3, Figure 7.4 

and Figure 7.5.  

 

Figure 7. 3 Horizontal frame-1 (Bottom). 

 

Figure 7. 4 Horizontal frame-2 (Top). 



 

 

 

82 

 

Figure 7. 5 Vertical frame. 

7.1.5 Condensation risk assessment 

Condensation risk assessment of the closed cavity façade frames are modelled in 

Bisco 2D steady state heat transfer analysis program. 

7.1.5.1 Determination of interıor glass air gap thermal conductivity 

Determination to glass air gap conductivity is shown below in this façade system.  

Table 7. 3 Calculation of thermal conductivity of glass air gap 

Double  glass air gap properties     

Glass U value 1.1 W/m²K 6 / 16 / 4.4.2   

Resistance 0.909 m²K/W 

 

  

Elements Number d (mm) lambda(W/mK) R 

Exterior glass 1 6 1 0.006 

Interior glass 2 4 1 0.008 

Pvb 2 0.38 0.2 0.0038 

  

  

Resistance Ri 0.13 

  

  

Resistance Rd 0.04 

  

  

Total R = 0.1878 

Air gap thickness (mm)     16 

- R) = 0.022 

Thermal conductivity of inner glass air gap is determined as 0.022 W/mK as it is 

shown above. 
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7.1.5.2 Horizontal profile -1 (Bottom) 

 

Figure 7. 6 Temperature distribution on the detail with isothermal lines (Red). 

If there is 20°C and 50% relative humidity at indoor conditions, corresponded dew 

point is 9,3 °C according to August Magnus approach which is shown at section 

5.3.5. Minimum temperature on aluminium surface is 9.8°C which is greater than 

9.3°C. Therefore, there is no condensation on aluminium surface (Figure 7.6). 

If there is 20°C and 50% relative humidity at indoor conditions, corresponded dew 

point is 9,3 °C. Minimum temperature on glass surface is 10.3 °C which is greater 

than 9.3°C (dew point). Therefore, there is no condensation on glass surface (Figure 

7.6). 

  

Minimum Temperature on Aluminum 

Surface 

9.8C >  9.3 C    No Condensation 

Indoor: 20 °C Outdoor: -3 °C 

Minimum Temperature on Glass Surface 

10.3  C >  9.3 C    No condensation 
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7.1.5.3 Horizontal profile -2 (Top) 

 

Figure 7. 7 Temperature distribution on the detail with isothermal lines (Red). 

If there is 20°C and 50% relative humidity at indoor conditions, corresponded dew 

point is 9,3 °C according to August Magnus approach which is shown at section 

5.3.5. Minimum temperature on aluminium surface is 10.1°C which is greater than 

9.3°C. Therefore, there is no condensation on aluminium surface. (Figure 7.7) 

If there is 20°C and 50% relative humidity at indoor conditions, corresponded dew 

point is 9,3 °C. Minimum temperature on glass surface is 10.2 °C which is greater 

than 9.3°C (dew point). Therefore, there is no condensation on glass surface. (Figure 

7.7) 

  

Minimum Temperature on 

Aluminum Surface 

10.1C >  9.3 C    No Condensation 

Indoor: 20 °C Outdoor: -3 °C 

Minimum Temperature on Glass 

Surface 

10.2  C >  9.3 C    No condensation 
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7.1.5.4 Vertical profile 

 

Figure 7. 8 Temperature distribution on the detail with isothermal lines (Red). 

If there is 20°C and 50% relative humidity at indoor conditions, corresponded dew 

point is 9,3 °C according to August Magnus approach which is shown at section 

5.3.5. Minimum temperature on aluminum surface is 10.1°C which is greater than 

9.3°C. Therefore, there is no condensation on aluminum surface. (Figure 7.8) 

If there is 20°C and 50% relative humidity at indoor conditions, corresponded dew 

point is 9,3 °C. Minimum temperature on glass surface is 10.3 °C which is greater 

than 9.3°C (dew point). Therefore, there is no condensation on glass surface. (Figure 

7.8) 

  

Minimum Temperature on Aluminum 

Surface 

10.1C >  9.3 C    No Condensation 

Indoor: 20 °C 

Outdoor: -3 °C 

Minimum Temperature on Glass 

Surface 

10.3  C >  9.3 C    No condensation 
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7.1.6 Determination of Uw value 

This section presents global thermal transmission calculation (Uwindow) through 

façade. 

The equations below shows how to calculate thermal transmission values (U values) 

basically in brief. 

                                                                                                                  (7.1) 

                                                                                                    (7.2)                                                                                                           

                                            (7.3) 

R: Thermal Resistance (m
2
.K/W), 

d: Thickness of frame component (m), 

λh: Thermal conductivity (W/m.K) 

1/U: Total thermal resistance (m
2
.K/W),  

Ri: Thermal resistance of interior surface (m
2.

K/W),  

Re: Thermal resistance of exterior surface (m
2
.K/W) 

U: Thermal transmittance (W/m
2
.K)’dır [17]. 

7.1.6.1 Ug of glazing combination 

Ug value of glazing combination is determined by means of Vitrage Decision 

program. Input data and output data are demonstrated in  Figure 7.9. 

Dimensions:    1260 mm x 2100 mm 

Glazing Combination:  Clear Float Glass 6 mm + 81 mm Respired Cavity Gap 

including blind) + Clear Float Glass 6 mm + Sun-Guard HS Superneutral 70 (low-e 

layer) + 16 mm Cavity (90% Argon)  + Clear Laminated Glass 8mm 44.2 8  
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Figure 7. 9 Glazing combinations of Façade Respirante. 

Technical features of glazing combinations is illustrated at Figure 7.10.  

Final U value of glazing combination was found as 0.79 W/m
2
K and final solar 

factor of glazing combination is found as 0.39 according to EN 410:2011. 
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Figure 7. 10 Technical features of glazing combinations. 
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7.1.6.2 Horizontal profile-1 (Bottom) 

 

Figure 7. 11 Temperature distribution on detail with isothermal lines (Red). 

BISCO Calculation Results 
 
BISCO data file: MY FR alt detay U Value v2 .bsc 

 

Number of nodes    = 44998 
Heat flow divergence for total object  = 7.38516e-005 

Heat flow divergence for worst node  = 0.0255748 

 
Col.       Type           Name                 Tmin      Tmax     Ta     flow in  flow out 

                                                             [°C]      [°C]      [°C]    [W/m]     [W/m] 

 28  MATERIAL  insulation                0.18     19.25 
 44  MATERIAL  polyamid reinf.       1.06     11.63 

 60  MATERIAL  EPDM                     0.89     14.31 

 62  MATERIAL  silicone                   1.75     11.49 
 63  MATERIAL  Backing Rod           0.53     11.41 

170  BC_SIMPL  exterior                    0.18      3.08                0.00      9.77 

174  BC_SIMPL  interior (norma       13.52     19.25                4.70      0.00 
182  BC_SIMPL  interior (reduc        11.82     18.46                5.06      0.00 

192  EQUIMAT                                   2.70      8.10 

 
Thermal transmittance of frame (EN ISO 10077-2) 

Uf  = (Q/(Ti-Te) - Up1*wp1 - Up2*wp2) / wf = 3.543 W/(m².K) 

  Q  = 9.768 W/m 
  ti  = 20.00°C 

  te  = 0.00°C 

  Up1  = 0.283 W/(m².K) (top edge of bitmap) 
  wp1  = 0.1726 m  (distance no. 2) 

  Up2  = 0.000 W/(m².K) 

  wp2  = 0.0000 m 
  wf  = 0.1240 m (distance no. 1) 

Result:      
 

       
      )/wf = 3.54 W/(m².K)                        (7.4)
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7.1.6.3 Horizontal profile-2 (Top) 

 

Figure 7. 12 Temperature distribution on detail with isothermal lines (Red) 

BISCO Calculation Results 

 
BISCO data file: Transom 2 U Value .bsc 

 
Number of nodes    = 42761 

Heat flow divergence for total object  = 1.82972e-005 

Heat flow divergence for worst node  = 0.0274799 
 

Col. Type                  Name                 Tmin      Tmax       Ta     flow in  flow out 

                                             [°C]         [°C]      [°C]     [W/m]     [W/m] 
  8  MATERIAL  aluminium                3.15     15.34 

 12  MATERIAL  hardwood               14.87     16.08 

 28  MATERIAL  insulation                0.19     19.25 
 44  MATERIAL  polyamid reinf.       3.39     12.23 

 60  MATERIAL  EPDM                     2.07     15.14 

 62  MATERIAL  silicone                   1.86     14.93 
 63  MATERIAL  Backer Rod            0.50     14.93 

170  BC_SIMPL  exterior                   0.19      3.31                       0.00      7.35 

174  BC_SIMPL  interior (norma      15.31     19.25                     2.63      0.00 
182  BC_SIMPL  interior (reduc        12.41     18.48                    4.72      0.00 

192  EQUIMAT                                   3.02     14.44 

 
Thermal transmittance of frame (EN ISO 10077-2) 

Uf  = (Q/(Ti-Te) - Up1*wp1 - Up2*wp2) / wf = = 3.976 W/(m².K) 

  Q  = 7.352 W/m 
  ti  = 20.00°C 

  te  = 0.00°C 

  Up1  = 0.284 W/(m².K) (bottom edge of bitmap) 
  wp1  = 0.1895 m  (distance no. 2) 

  Up2  = 0.000 W/(m².K) 

  wp2  = 0.0000 m 
  wf  = 0.0789 m (distance no. 1) 

 

Result:      
 

       
      )/wf = 3.98  W/(m².K) 
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7.1.6.4 Vertical profile       

 

Figure 7. 13 Temperature distribution on detail with isothermal lines (Red). 

BISCO Calculation Results 
 

BISCO data file: Mullion U Value r1 .bsc 
 

Number of nodes    = 41869 

Heat flow divergence for total object  = 9.52415e-007 
Heat flow divergence for worst node  = 0.0570153 

 

Col. Type      Name                   Tmin      Tmax     Ta   flow in  flow out 
                                       [°C]      [°C]       [°C]  [W/m]     [W/m] 

  8  MATERIAL  aluminium         3.16     15.44 

 12  MATERIAL  hardwood         14.97     16.23 
 28  MATERIAL  insulation          0.19     19.25 

 44  MATERIAL  polyamid r.        3.40     12.26 

 60  MATERIAL  EPDM              2.46     15.24 
 62  MATERIAL  silicone             1.87     15.04 

 63  MATERIAL  Backer Rod       0.50     15.04 

170  BC_SIMPL  exterior              0.19      3.32                0.00      7.27 
174  BC_SIMPL  interior (norma      14.17     19.25             2.64      0.00 

182  BC_SIMPL  interior (reduc      12.44     18.49              4.63      0.00 

192  EQUIMAT                         14.53     16.19 
 

Thermal transmittance of frame (EN ISO 10077-2) 

Uf = (Q/(Ti-Te) - Up1*wp1 - Up2*wp2) / wf = = 3.939 W/(m².K) 
  Q = 7.268 W/m 

  ti  = 20.00°C 

  te = 0.00°C 
  Up1  = 0.284 W/(m².K)  (left edge of bitmap) 

  wp1  = 0.1845 m (distance no. 2) 
  Up2  = 0.000 W/(m².K) 

  wp2  = 0.0000 m 

  wf  = 0.0789 m (distance no. 1) 

 

Result:      
 

       
      )/wf = 3.94  W/(m².K) 

 

Temperature distribution of all details are shown in Figure 7.11, Figure 7.12 and 

Figure 7.13. 
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7.1.6.5 Global Uw value 

General view of closed cavity mock up is demonstrated below including all frames. 

Global Uw value is determined in accordance with EN 10077-1 Component 

Assessment Method. 

 

Figure 7. 14 Closed Cavity Façade mock-up distribution of system components.  
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The component assessment method is based on below formula.  

                                        

g g f f s s

w

U A U A U A L
U

A

  


                                           (7.5) 

Uw:         Thermal transmittance of the window modulus, in (W/m
2
K) 

Ug:          Thermal transmittance of the glazing section, in (W/m
2
K) 

Ag:          Area of glazing (m
2
) 

Uf:           Thermal transmittance of the frame section, in (W/m
2
K) 

Af:           Area of frame (m
2
) 

Us:           Thermal transmittance of the spandrel section, in (W/m
2
K) 

As:           Area of spandrel zone (m
2
) 

Ψ:            Linear thermal transmittance W/(m.K) 

A:            Area (m
2
) [20]. 

Determination of U value of closed cavity façade: 

U value of closed cavity facade     

Width 1,260 m 

  

  

Height 2,100 m 

  

  

A total 2,646 m² 

  

  

Frames           

Uf1 = 3,543 W/m²K Af1 = 0,128 m² 

Uf2 = 3,976 W/m²K Af2 = 0,068 m² 

Uf3 = 3,939 W/m²K Af3 = 0,252 m² 

       Uf Af = 1,717 W/K 

Glass           

Ug1 =  0,79 W/m²K Ag1 = 2,198 m² 

      Ug Ag = 1,736 W/K 

Spandrel           

Us1 =  0,00 W/m²K As1 = 0 m² 

      Us As = 0,000 W/K 

Spacer Aluminium       

L =  6,136 m  = 0,11 W/mK 

Uwindow value         

Uw = 1,56 W/m²K       

Global thermal transmittance value (Uwindow) of configured façade is determined as 

1.56 W/m
2
K. 
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7.2 Energy Performance 

According to TS 825, maximum U value in all regions in Turkey is supposed to be 

not more than 2.40 W/m
2
K.[27] Global thermal transmittance value (Uwindow) is 

determined as 1.56 W/m
2
K which is shown section 7.1.6.5 previous section Energy 

performance of constituted closed cavity façade is compared with this U value 2,4 

W/m
2
K in all specified regions by considering solar radiation. The calculation is 

based on unit window area. 

The calculation below covers thermal transmittance through windows by means of 

solar radiation and temperature difference with respect to all directions in cooling 

season and heating season.  

7.2.1 Thermal transmittance through conduction and convection 

Initial conditions and boundary conditions are defined in accordance with TS 825 

standard. There are four different regions in Turkey in terms of temperature variation 

throughout a year. Indoor temperature is assumed as 19 °C for heating load 

calculations. [17] Indoor temperature is assumed as 23 °C for cooling load 

calculations. [26] Heat flow through window is calculated by using temperature 

difference and U value of both system as shown below.  

                                                          q=U. (θi – θe)                                                 (7.6) 

q: heat flow rate (W/m
2
)  

U: Thermal Transmittance value 

θi  : Indoor temperature  

θe : Outdoor temperature  

First comparison study is done without considering solar radiation. Monthly average 

ambient air temperatures [17] shows in average temperature of each month with 

respect to different regions in Turkey from average temperature variation aspect.  

Table 7.4  
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Table 7. 4 Monthly average ambient air temperatures [17]. 

  

1. Region 

(°C) 

2. Region 

(°C) 

3. Region 

(°C) 

4. Region 

(°C) 

January 8.4 2.9 -0.3 -5.4 

February 9.0 4.4 0.1 -4.7 

March 11.6 7.3 4.1 0.3 

April 15.8 12.8 10.1 7.9 

May 21.2 18.0 14.4 12.8 

June 26.3 22.5 18.5 17.3 

July 28.7 24.9 21.7 21.4 

August 27.6 24.3 21.2 21.1 

September 23.5 19.9 17.2 16.5 

October 18.5 14.1 11.6 10.3 

November 13.0 8.5 5.6 3.1 

December 9.3 3.8 1.3 -2.8 

Heat transfer (W/m
2
) through constituted closed cavity façade and reference window 

with respect to months in all regions is shown in Table 7.5 and Table 7.6. Indoor set 

temperature is assumed as 19 °C in heating period and 23 °C in cooling period. Heat 

flow rate is not considered when outdoor temperature is between 19 °C and 23 °C in 

this calculation.   

Table 7. 5 Heat flow through closed cavity façade (W/m
2
). 

  

1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

January 16.5 25.1 30.1 38.1 

February 15.6 22.8 29.5 37.0 

March 11.5 18.3 23.2 29.2 

April 5.0 9.7 13.9 17.3 

May - 1.6 7.2 9.7 

June 5.1 - 0.8 2.7 

July 8.9 3.0 - - 

August 7.2 2.0 - - 

September 0.8 - 2.8 3.9 

October 0.8 7.6 11.5 13.6 

November 9.4 16.4 20.9 24.8 

December 15.1 23.7 27.6 34.0 
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Table 7. 6 Heat flow through reference window (W/m
2
). 

  

1. 

Region 

(W/m
2
)   

2. Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. Region 

(W/m
2
)   

January 25.4 38.6 46.3 58.6 

February 24.0 35.0 45.4 56.9 

March 17.8 28.1 35.8 44.9 

April 7.7 14.9 21.4 26.6 

May - 2.4 11.0 14.9 

June 7.9 - 1.2 4.1 

July 13.7 4.6 - - 

August 11.0 3.1 - - 

September 1.2 - 4.3 6.0 

October 1.2 11.8 17.8 20.9 

November 14.4 25.2 32.2 38.2 

December 23.3 36.5 42.5 52.3 

Highest heat transfer rate difference is 4.8 W/m
2
 in cooling season and 20.5 W/m

2 
 in 

heating season respectively. Highest difference in density of cooling energy 

consumption is calculated as 1.040 (kWh/m
2
) in first region in July and highest 

difference in density of cooling energy consumption is calculated as 4.442 (kWh/m
2
) 

in fourth region in January with 50 hours weekly occupancy in office environment 

assumption. 

7.2.2 Solar heat gain calculation 

Monthly average solar heat gain is calculated with equation 7.7 according to TS 825 

standard. 

(φs,month) = Σ ri,month x gi,month x Ii,month x Ai                                                                (7.7) 

ri,month: monthly average shading factor of transparent surfaces in “i” direction  

gi,month: monthly average solar factor (SHGC) of transparent surfaces in “i” direction 

Ii,month: monthly average solar radiation intensity of vertical surfaces in “i” direction 

(W/m
2
) 

Ai: Total window area in “i” direction (m
2
)  

Area of the window is taken into account as unit area (1 m
2
). 
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Monthly average shading factor of transparent surface (ri,month) value is taken into 

account as 0.5 which is defined for the environment of 10 or higher storey buildings 

for closed cavity façade and reference window calculation. 

Monthly average solar factor (SHGC) value of closed cavity façade is calculated by 

means of “Vitrage Decision” program which is shown at section 7.1.6.1. Glass 

combination of reference window is taken from section A.4 of TS 825. It is the 

features of the combination which has 2.4 W/m
2
K U value. Monthly average solar 

factor (SHGC) value for reference window is calculated by means of Guardian Glass 

Configurator program. Program output is illustrated at Figure 7.15.    

Monthly average solar radiation intensity (Ii,month) values are obtained from 

Appendix C in TS 825 for all climatic regions which is shown at Table 7.7.  

Monthly average solar heat gain is calculated by considering all directions separately 

in Table 7.8. 

 

 

Figure 7. 15 Thermal and light characteristics of reference window. 
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Table 7. 7 Solar Radiation values from different directions [17]. 

  

Solar 

Radiation 

(South) 

(W/m
2
) 

Solar 

Radiation 

(North) 

(W/m
2
) 

Solar 

Radiation 

(West-

East) 

(W/m
2
) 

January 72.0 26.0 43.0 

February 84.0 37.0 57.0 

March 87.0 52.0 77.0 

April 90.0 66.0 90.0 

May 92.0 79.0 114.0 

June 95.0 83.0 122.0 

July 93.0 81.0 118.0 

August 93.0 73.0 106.0 

September 89.0 57.0 81.0 

October 82.0 40.0 59.0 

November 67.0 27.0 41.0 

December 64.0 22.0 37.0 

Table 7. 8 Solar Radiation values for CCF and Reference window with respect to  

                     solar directions. 

  

SOUTH NORTH WEST-EAST 

I (CCF) 

(W/m
2
) 

I (RW) 

(W/m
2
) 

I (CCF) 

(W/m
2
) 

I (RW) 

(W/m
2
) 

I (CCF) 

(W/m
2
) 

I (RW) 

(W/m
2
) 

January 14.0 15.0 5.1 5.4 8.4 5.6 

February 16.4 17.6 7.2 7.7 11.1 7.4 

March 17.0 18.2 10.1 10.9 15.0 10.0 

April 17.6 18.8 12.9 13.8 17.6 11.7 

May 17.9 19.2 15.4 16.5 22.2 14.8 

June 18.5 19.9 16.2 17.3 23.8 15.9 

July 18.1 19.4 15.8 16.9 23.0 15.3 

August 18.1 19.4 14.2 15.3 20.7 13.8 

September 17.4 18.6 11.1 11.9 15.8 10.5 

October 16.0 17.1 7.8 8.4 11.5 7.7 

November 13.1 14.0 5.3 5.6 8.0 5.3 

December 12.5 13.4 4.3 4.6 7.2 4.8 
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7.2.3 Cooling load comparison considering solar radiation  

Heat flow to indoor and solar heat gain through window is considered for the 

calculation of cooling load in cooling season with respect to climatic regions in 

Turkey for all directions. If monthly mean temperature value is higher than assumed 

indoor temperature (23°C), specified months are defined as cooling season in this 

section.  

7.2.3.1 South direction 

Total heat flow to indoor and solar heat gain from south direction through constituted 

closed cavity façade and reference window in cooling season is indicated in Table 

7.9 and Table 7.10 separately. 

Table 7. 9 Total heat flow and solar heat gain from south through closed cavity 

                        façade. 

  

1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

April   
   

May 
    

June 23.7 
   

July 27.0 21.1 
  

August 25.3 20.2 
  

September 18.1 
   

October   
   

Total 94.1 41.3 - - 

The highest monthly heat transfer rate difference between closed cavity façade 

(CCF) and reference window (RW) in cooling season is 6.1 W/m
2
 in first region in 

July. Highest difference in density of monthly cooling energy consumption between 

closed cavity façade (CCF) and reference window (RW) is 1.321 kWh/m
2
 in first 

region in July. Annual difference is highest in first region with total 17 W/m
2
 heat 

transfer rate and with total 14.7 kWh/m
2 

saving amount with 50 hours weekly 

occupancy assumption in office environment in specified months. 
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Table 7. 10  Total heat flow and solar heat gain from south through reference  

                            window. 

  

1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

April   
   

May 
    

June 27.8 
   

July 33.1 24.0 
  

August 30.5 22.6 
  

September 19.8 
   

October         

Total 111.2 46.6 - - 

7.2.3.2 North direction 

Total heat flow to indoor and solar heat gain from north direction through constituted 

closed cavity façade and reference window in cooling season is indicated in Table 

7.11 and Table 7.12 separately. 

Table 7. 11 Total heat flow and solar heat gain from north through closed cavity  

                        façade. 

  

1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

April   
   

May 
    

June 21.3 
   

July 24.7 18.8 
  

August 21.4 16.3 
  

September 11.9 
   

October   
   

Total 79.3 35.0 - - 

The highest monthly heat flow difference between closed cavity façade (CCF) and 

reference window (RW) in cooling season is 5.9 W/m
2
 in first region in July. Highest 

difference in density of monthly cooling energy consumption between closed cavity 

façade (CCF) and reference window (RW) is 1.279 kWh/m
2
 in first region in July. 

Annual difference is highest in first region with total 16 W/m
2
 heat flow difference 

and with total 13.869 kWh/m
2 

saving amount with 50 hours weekly occupancy 

assumption in office environment in specified months. 
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Table 7. 12 Total heat flow and solar heat gain from north through reference  

                            window. 

  

1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

April   
   

May - 
   

June 25.3 - 
  

July 30.6 21.5 - - 

August 26.3 18.4 - - 

September 13.1 - 
  

October   
   

Total 95.3 39.9 - - 

 

7.2.3.3 West / East direction  

Total heat flow to indoor and solar heat gain from east and west direction through 

constituted closed cavity façade and reference window in cooling season is indicated 

in Table 7.13 and Table 7.14 separately. 

Table 7. 13 Total heat flow and solar heat gain from east and west through closed 

                        cavity façade. 

  

1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

April   
   

May - 
   

June 28.9 - 
  

July 31.9 26.0 - - 

August 27.8 22.7 - - 

September 16.6 - 
  

October   
   

Total 105.3 48.7 - - 
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Table 7. 14 Total heat flow and solar heat gain from east and west through reference 

                     window. 

  

1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

April   
   

May 
    

June 33.4 
   

July 38.3 29.2 
  

August 33.2 25.3 
  

September 18.1 
   

October   
   

Total 190.6 54.5 - - 

The highest monthly heat flow difference between closed cavity façade (CCF) and 

reference window (RW) in cooling season is 6.4 W/m
2
 in first region in July. Highest 

difference in density of monthly cooling energy consumption between closed cavity 

façade (CCF) and reference window (RW) is 1.387 kWh/m
2
 in first region in July. 

Annual difference is highest in first region with total 17.8 W/m
2
 heat flow difference 

and with total 13.429 kWh/m
2 

saving amount with 50 hours weekly occupancy 

assumption in office environment in specified months. 

Cooling load section indicates that highest saving is possible application of this kind 

of façade to first region on east or west direction.  

7.2.4 Heating load considering solar radiation 

Heat flow to outdoor and solar heat gain through window is considered together for 

the calculation of heating load in heating season with respect to climatic regions in 

Turkey for all directions. If monthly mean temperature value is lower than assumed 

indoor temperature, specified months are defined as heating season in this section. If 

total heat flow and solar heat gain together is less than zero in total, related month is 

not assigned as heating month.     

7.2.4.1 South direction 

Total heat flow to outdoor and solar heat gain from south direction through 

constituted closed cavity façade and reference window in heating season is indicated 

in Table 7.15 and Table 7.16 separately. 
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Table 7. 15 Total heat flow and solar heat gain from south through closed cavity  

                        façade. 

  

1. Region 

(W/m
2
)   

2. Region 

(W/m
2
)   

3. Region 

(W/m
2
)   

4. Region 

(W/m
2
)   

January 2.5 11.1 16.1 24.0 

February 
 

6.4 13.1 20.6 

March 
 

1.3 6.3 12.2 

April 
    

May   
   

June   
   

July   
   

August   
   

September   
   

October 
    

November 
 

3.3 7.8 11.7 

December 2.7 11.2 15.1 21.5 

Table 7. 16 Total heat flow and solar heat gain from south through reference 

                            window. 

  

1. Region 

(W/m
2
)   

2. Region 

(W/m
2
)   

3. Region 

(W/m
2
)   

4. Region 

(W/m
2
)   

January 10.4 23.6 31.3 43.5 

February 6.4 17.5 27.8 39.3 

March 
 

9.9 17.6 26.7 

April 
  

2.6 7.8 

May 
    

June 
    

July 
    

August 
    

September 
    

October 
  

0.6 3.7 

November 0.4 11.2 18.2 24.2 

December 9.9 23.1 29.1 38.9 

The highest monthly heat transfer difference between closed cavity façade (CCF) and 

reference window (RW) in heating season is 19.5 W/m
2
 in fourth region in January. 

Highest difference in density of monthly heating energy consumption between closed 

cavity façade (CCF) and reference window (RW) is 4.226 kWh/m
2
 in fourth region 

in January. Annual difference is highest in fourth region with total 94.1 W/m
2
 heat 
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transfer difference and with total 142.740 kWh/m
2 

saving amount with 50 hours 

weekly occupancy assumption in office environment in specified months. 

Annual difference is lowest in first region with total 22,0 W/m
2
  heat transfer 

difference and with 19.070 kWh/m
2
 saving amount. 

7.2.4.2 North direction 

Total heat flow to outdoor and solar heat gain from north direction through 

constituted closed cavity façade and reference window in heating season is indicated 

in Table 7.17 and Table 7.18 separately. 

Table 7. 17 Total heat flow and solar heat gain from north through closed cavity 

                        façade. 

  

1. Region 

(W/m
2
)   

2. Region 

(W/m
2
)   

3. Region 

(W/m
2
)   

4. Region 

(W/m
2
)   

January 11.5 20.0 25.0 33.0 

February 8.4 15.6 22.3 29.8 

March 1.4 8.1 13.1 19.0 

April 
  

1.0 4.4 

May   
   

June   
   

July   
   

August   
   

September   
   

October 
  

3.7 5.8 

November 4.1 11.1 15.6 19.5 

December 10.8 19.4 23.3 29.7 

The highest monthly heat transfer difference between closed cavity façade (CCF) and 

reference window (RW) in heating season is 20.1 W/m
2
 in fourth region in January. 

Highest difference in density of monthly heating energy consumption between closed 

cavity façade (CCF) and reference window (RW) is 4.356 kWh/m
2
 in fourth region 

in January. Annual difference is highest in fourth region with total 100.6 W/m
2
 heat 

transfer rate difference and with total 152.600 kWh/m
2 

saving amount with 50 hours 

weekly occupancy assumption in office environment in specified months. 

Annual difference is lowest in first region with total 34.4 W/m
2
 heat transfer rate 

difference and with 37.272 kWh/m
2
 saving amount. 
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Table 7. 18 Total heat flow and solar heat gain from south through reference  

                           window. 

  

1. Region 

(W/m
2
)   

2. Region 

(W/m
2
)   

3. Region 

(W/m
2
)   

4. Region 

(W/m
2
)   

January 20.0 33.2 40.9 53.1 

February 16.3 27.3 37.6 49.1 

March 6.9 17.2 24.9 34.0 

April 
 

1.1 7.6 12.8 

May   
 

  

June   
 

  

July   
 

  

August   
 

  

September   
 

  

October 
 

3.4 9.4 12.5 

November 8.8 19.6 26.5 32.5 

December 18.7 31.9 37.9 47.7 

7.2.4.3 West/east direction 

Total heat flow to outdoor and solar heat gain from east and west direction through 

constituted closed cavity façade and reference window in heating season is indicated 

in Table 7.19 and Table 7.20 separately. 

Table 7. 19 Total heat flow and solar heat gain from east and west through closed  

                       cavity façade. 

  

1. Region 

(W/m
2
)   

2. Region 

(W/m
2
)   

3. Region 

(W/m
2
)   

4. Region 

(W/m
2
)   

January 8.2 16.7 21.7 29.7 

February 4.5 11.7 18.4 25.9 

March  3.2 8.2 14.2 

April     

May      

June   
 

  

July   
 

  

August   
 

  

September   
 

  

October 
  

 2.1 

November 1.4 8.4 12.9 16.8 

December 7.9 16.5 20.4 26.8 

The highest monthly heat transfer rate difference between closed cavity façade 

(CCF) and reference window (RW) in heating season is 23.6 W/m
2
 in fourth region 
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in February. The highest difference in density of monthly heating energy 

consumption between closed cavity façade (CCF) and reference window (RW) is 

5.114 kWh/m
2
 in fourth region in February. Annual difference is highest in fourth 

region with total 130.5 W/m
2
 heat transfer rate difference and with total 226.130 

kWh/m
2 

saving amount with 50 hours weekly occupancy assumption in office 

environment in specified months. 

Annual difference is lowest in first region with total 49.8 W/m
2
 heat transfer rate 

difference and with 53.933 kWh/m
2
 saving amount. 

Table 7. 20 Total heat flow and solar heat gain from south through reference  

                           window. 

  

1. Region 

(W/m
2
)   

2. Region 

(W/m
2
)   

3. Region 

(W/m
2
)   

4. Region 

(W/m
2
)   

January 19.9 33.1 40.7 53.0 

February 16.6 27.6 38.0 49.5 

March 7.8 18.1 25.8 34.9 

April  3.2 9.7 14.9 

May  
 

 0.1 

June  
 

  

July  
 

  

August  
 

  

September  
 

  

October  4.1 10.1 13.2 

November 9.1 19.9 26.8 32.8 

December 18.5 31.7 37.7 47.5 

Heating load section indicates that highest saving is possible with the application of 

CCF to fourth region on east or west direction.  

7.2.5 Carbon footprint 

Total heating and cooling loads of east and west direction are highest for all regions. 

Annual total heating and cooling loads of east and west direction are found at Table 

7.21. The table indicates that there is up to 130.5 W/m
2
 heat transfer rate difference 

and 339.352 kWh/m
2
 potential saving by using CCF instead of RW.    
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Table 7. 21 Annual total heating and cooling load togeher just because of heat flow 

                      and solar radiation. 

  
1. 

Region 

(W/m
2
)   

2. 

Region 

(W/m
2
)   

3. 

Region 

(W/m
2
)   

4. 

Region 

(W/m
2
)   

CCF 127.2 105.2 81.7 115.4 

RW 194.8 192.1 188.7 245.9 

Saving 67.6 86.9 107.0 130.5 

The assumption of heating and air conditioning hours for daily office occupancy is 

10 hours and the office is occupied 5 days in a week. There is 52 weeks in total. 

There is up to 339.3 kWh/m
2
 saving from heating and air conditioning in fourth 

climatic region in Turkey.  It means that highest saving can be determined at fourth 

region in Turkey. 

Annual savings with respect to regions; 

Table 7. 22 Annual savings with respect to regions. 

  
1. Region 

(kWh/m
2
)   

2. Region 

(kWh/m
2
)   

3. Region 

(kWh/m
2
)    

4. Region 

(kWh/m
2
)   

Annual 

Saving 
175.8 225.9 278.2 339.3 

339.3 kWh annual saving for only 1 m
2
 corresponds to 333.7 kg CO2 emission by 

lignite burning coal to generate power. [36] It also corresponds to 234 kg CO2 

emission in average of different kind of power generation. This amount of carbon 

can be sequestered by 6 tree seedlings grown for 10 years. [37] The number for 

whole building can be obtained by multiplying specified numbers with total window 

area of applicable buildings. 

7.3 Result 

Expected Ucw value of the closed cavity façade system module is supposed to be less 

than 2.40 W/m²K according to TS 825 (Turkish Standard). Final Ucw value of closed 

cavity façade system is 1.56 W/m²K, which is quite lower than expected value.  

Condensation risk assessment indicates that minimum temperatures on aluminium 

and glass of horizontal and vertical details are considerably higher than limited value 

for condensation risk.  
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Therefore. this constituted closed cavity façade is highly convenient with respect to 

TS 825. EN 10077-1. EN 10077-2 from thermal performance aspect in terms of 

condensation risk and U value. 

There is monthly up to 1.387 kWh/m
2
 and annually up to 13.429 kWh/m

2
 saving in 

density of cooling energy consumption by applying CCF system in office building.  

There is monthly up to 5.114 kWh/m
2
 and annually up to 226.130 kWh/m

2
 saving in 

density of heating energy consumption by applying CCF system in office building. 
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8.  CONCLUSION 

This study is evaluated in 3 different aspects which are CFD results. lab results and 

energy performance analysis. 

8.1 Evaluation of CFD Results 

CFD results are based on tested closed cavity façade (Façade Respirante) (CLC 12-

260039255) coded model in CSTB in France.  

Ca.1 and Ca.2 dew point values in CFD analysis from 0.4°C to 1.0°C higher than 

dew points in experimental data. This is actually proof to be stayed on safe side. 

Dew point values at “Model with linear channel” is lower with respect to other 

models. The reason is having higher velocities leads to lower dew points.   

There is no considerable temperature difference between 3 different filter modeling 

which is obviously seen at Figure 5.8.  As it is seen from Figure 5.8. major effect to 

temperature distribution at cavity is stack effect.  Stack effect mostly occurs by air 

buoyancy. Intensity of air buoyancy is depended air density difference (1.21 kg/m
3
 - 

1.29 kg/m
3
) which varies with temperature difference (0.5 °C - 18.5 °C) and moisture 

difference (Mass Fraction of Steam 0.0035 - 0.0038). [16] 

Velocity distribution which is driven by natural convection is mostly low. As it is 

indicated at Figure 5.7, velocity distribution is quite low which is under 0.1 m/s at all 

around cavity. The reason why velocity inside of cavity is lower relatively that the 

cavity fed only by one air flow inlet. 

The probable disadvantage of modeling filter with linear channel is funnel effect due 

to narrow channel. As it is seen at Figure 5.7 and Figure 5.9, relatively higher 

velocities at below side leads to shift red zone to the right side compared to other 

ones. This is indicator of lower relative humidity distribution. This case might be 

neglected due to the similar relative humidity distribution with other model charts.   
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As it is demonstrated at Figure 5.7, Figure 5.8 and Figure 5.9, the points between 

blind and interior glass has high convenience for temperature, velocity and relative 

humidity values between each other’s.  

Higher velocities with ignorable level is observed at the model with linear channel. 

(Figure 5.7) 

As it is obviously seen from Table 4.2 and Figure 5.9, there is significantly less 

difference between model results and experimental results with respect to “Air Flow 

and Heat Transfer in double skin façade”. This issue is explained at chapter 5.3.4.  

CFD results indicates that there is no condensation under specified conditions at 

modeled cavity. According to the result of CFD model condensation will start at -

0.8°C. These results are verified by experimental data, as well.  

Consequently, measured data from CFD models indicates that filter modeling 

approaches can be alternative to simulate heat transfer and fluid behavior.   

8.2 Evaluation of Lab Results 

Closed cavity façade (Façade Respirante) experiment module is configured based on 

comprehensive CFD results.   

Experiment results indicates that there is high tendency to condensation formation at 

venetian blinds vertically positioned case. On the other hand. when the blinds are 

removed. there is less probability to form condensation on outer glass surface  

Moreover. as long as number of filter decrease. there is higher condensation risk. 

There is no condensation on glass surfaces. if there is at least 5 filters at bottom side 

of configured façade Respirante system. 

Consequently, Configured Façade Respirante system is convenient in terms of 

condensation risk to CSTB Façade Respirante test methodology. 

8.3 Evaluation of Energy Performance Analysis 

Energy performance analysis is based on configured CCF module. Thermal analysis 

indicates that thermal transmittance value of window module (Uw=1.56 W/m
2
K) is 

considerably better than expected thermal transmittance value (Uw=2.40 W/m
2
K) 

according to TS 825.  
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There is also no condensation on neither on aluminum surface nor on glass surface 

under specified conditions with respect to EN 10077 standard. 

Both situation means that maximum thermal performance is achieved without 

condensation occurrence. 

There is monthly up to 6.4 W/m
2
 in cooling and up to 23.6 W/m

2
 in heating load 

saving and annually up to 17.8 W/m
2
 saving  in cooling load and 130.5 W/m

2
 saving 

in heating load potential by applying CCF system under Turkey conditions.  

There is up to 130.5  W/m
2
 heat transfer rate difference in Turkey. It means, it can be 

up to 339.3 kWh annual saving for each m
2
 of window. Configured CCF system with 

339.3 kWh for each m
2
 energy saving potential, decrease 234 kg CO2 emission in a 

year which corresponds to 6 trees CO2 emission toleration. 
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