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A STUDY OF THE DEPENDENCE OF SOURCE EFFICIENCY ON DESIGN
PARAMERTERS IN SOURCE-DRIVEN SUBCRITICAL NUCLEAR
SYSTEMS

SUMMARY

ADS, which is first proposed by Carlo Rubbia, is an operationally safe alternative for
inceration, transmutation since it has a sub critical core and with a fast neutron
Unified with a power production perspective, source efficiency presents a paramount
importance. The major energy input in an ADS design, is the accelerator power.
With increased source efficiency, it is possible to minimize this energy and maximize
productivity.

In this thesis, first a brief introduction to ADS is provided. In some, detail the
transmutation concept, accelerators, spallation targets, fuel elements and coolant are
discussed.

Following that the theory of source multiplication, subcritical multiplication factor
and source efficiency are presented, since these concepts are crucial to ADS design.
Four benchmark analytical solutions in spherical coordinates were presented as:
“One Group One Region Flat Source”, “One Group One Region Dirac Source”,
“One Group Two Region System with Flat Source in the Inner Region”, “Two Group
One Region Dirac Source”.

The behaviors of key parameters were studied for the four benchmark solutions
through Mathematica modelled graphs.

Then, using finite difference multi group diffusion code DIFSP, the analytical results
and numerical result are compared for the four benchmark solutions and the
calculated nuclear parameters associated error margins are presented.

Concluding the authenticity of solutions, the variations of source efficiency with
respect to ADS parameters is assessed. Tables and figures for target radius and
source efficiency, blanket radius and source efficiency are presented and their
relations are discussed.

Also parameters for an alternative fuel option of ADS, americium and plutonium
mix, are calculated and discussed for different ratios, acting as a benchmark for
minor Actinide fuels.

Lastly, a brief summary of the results and inferences for ADS are presented.
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KAYNAKLA SURULEN ALT KRIiTiK SISTEMLERDE KAYNAK
VERIMLILIGININ DiZAYN PARAMETRELERINE BAGIMLILIGININ
INCELENMESI

OZET

Temelde klasik niikleer iiretim stireglerinde, fisil ¢ekirdegin parcalanmasi ile ortaya
¢ikan fisyon {irlinleri ve ndtron ilgili ¢ekirdek tarafindan yutuldugu zaman olusan
transuranyum malzemeler, saniyeler mertebesinden yiiz bin yillara uzanan yari
omiirlii aktif ¢ekirdeklerin olusmasina yol agarlar.

Niikleer endiistrinin, atik yakitlardan plutonyum ve uranyumu ayristirmak icin
kullandigt PUREX siiregleri olsa da, bunun disinda mindr aktinidlere dair bir
sliregleri olmamasi sebebi ile, geri kalan atik igin takip edilen yontem, uzun zamanli
gomme yontemidir.

Hem yiiksek seviyeli radyasyon kirliligi hem de yar1 dmiirlenme zamanlarinin ciddi
sekilde uzun olmasi, bu metod iizerinde giivenlik ve finansal anlamda baski
yaratmaktadir.

Bu aktif ¢ekirdeklerin bir ¢ogu i¢in daha nétron yutma yolu ile daha stabil bir
cekirdek haline doniistiiriilmesi veya fisyona ugratilmasi miimkiindiir. Ozellikle
uranyum Otesi malzemelerin fisyona ugramasi ile zaman baskisinin ciddi sekilde
azaltilabilecegi degerlendirilmistir

Bu bakis ag¢isinda hareketle Carlo Rubbia, kaynak tahrikli alt kritik sistem fikrini 6ne
stirmiigtiir. Temelde, plutonyum ve minér aktinidlerin yiiksek fisyon tesir kesitinden
hareketle, hizli reaktor olarak tasarlanmis bu sistem, operasyonun giivenligine binaen
de, alt kritik bir dizayna, yani 6z sistemin bir ndtron basina birden az ndtron iirettigi
bir igerige sahiptir. Sistemin sonmemesi ve reaksiyonun devami ig¢in, disaridan
proton hizlandiric1 tarafindan doviilen bir kaynaktan (6r: kursun) tiireyen kaynak
notronlari, sisteme aktarilir. Tasarim, bu yol ile, hem yar1 émrii ¢ok uzun olan
atiklarin, daha kabul edilebilir yar1 Omiirlii ¢ekirdeklere doniismesini, hem de enerji
tiretimini hedeflemektedir.

Ancak ilgili dizaynin verimli bir sekilde ¢alismasi,temelde hizlandiricinin harcadig
enerjinin minimize edilmesi ve bu paralelde enerji liretimin maksimize edilmesi ile
miimkiindiir. Temelde iiretilen kaynak ndtronu bagina iiretilen enerjinin maksimize
edilmesi gerekmektedir. Kaynak verimliligi bu anlamda, tezin temel konusudur ve
dizaynin ana parametresidir.

Her seyden once kaynak tahrikli alt kritik sistemler ile ilgili temel bilgiler ifade
edilmistir. Bir ADS’nin, temel bilesenleri olarak; yakit, hedef, hizlandirici ve
sogutucu bu tez kapsaminda incelenmistir.

Yakitlar i¢in oksit, metal ve nitrid bazli alternatifler degerlendirilmis, malzemelerin
kimyasal ve fiziksel stabilitesi, erime, kaynama ve buna bagli operasyon sicakliklar
verilmis ve alternatifler buna bagl olarak degerlendirilmistir.

Hizlandiricilar i¢in ana iki ayrim olan siklotron ve ¢izgisel hizlandiricilar
degerlendirilmistir.
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Sogutucular i¢in ise kursun-kursun bismut, tuz ve gaz seg¢enekleri degerlendirilmis ve
1s1 iletim Ozellikleri, faz degistirme sicakliklari ve digre parametreleri uygunluklarina
gore ifade edilmistir.

Hedef icin de, kabul goérmiis en uygun alternatif kursun ile ilgili bilgi verilmis ve
operasyon kapsaminda gerekli bilgiler ifade edilmistir

Takiple kaynak tahrikli alt kritik sistemler tasarimi igin kritik olan g¢ogaltma
katsayisi, alt kritik ¢ogaltma katyayisi ve kaynak verimliligi kavarmlarinin teorik
arka planmi aktarilmis ve aciklanmistir. Kaynak verimliliginin analitik sekilde elde
edilmesi, geride takip eden gogaltma Kkatsayisi ve alt kritik ¢ogaltma Kkatyayisi
kavarmlarina ciddi sekilde baghdir. Bu yiizden tezin takip eden her analitik ¢oziim
igeriginde bu parametreler de hesaplanmis be sunulmustur.

Dort adet kiiresel koordinatta analitik ¢oziimii elde edilmis problem
degerlendirilmistir:

“Tek grup tek bolge sabit kaynak™, tek enerji gruplu tek boyutlu sistemin tiimiinde
bulunan bir kaynak igin alt kritik sistemin analitik olarak ¢ogaltma katsayis1 ve alt
kritik ¢ogaltma katyayis1 ve kaynak verimliligi ¢oziimlerini vermektedir.

“Tek Grup Tek Bolge lokalize kaynak”, tek enerji gruplu tek boyutlu bir sistemde
lokaliza bir kaynagin sistem igerisinde herhangi bir konumu i¢in alt kritik sistemin
analitik olarak ¢ogaltma katsayis1 ve alt kritik ¢ogaltma katyayis1 ve kaynak
verimliligi ¢oziimlerini vermektedir.

“Birinci bolgede sabit kaynak olmak {izere tek grup iki bolge”, tek enerji gruplu tek
boyutlu ancak iki bdlgeden, bir tanesi kaynak yarigapi ve bir tanesi yakit bdlgesi
olmak {izere, olusan alt kritik sistemin degisen kaynak yaricapina ve sistem
yarigapina gore analitik olarak ¢ogaltma katsayisi ve alt kritik ¢ogaltma katyayis1 ve
kaynak verimliligi ¢6zlimlerini vermektedir

“lki Grup Tek Bolge nokta kaynak”. Iki enerji gruplu tek boyutlu bir sistemde
noktasal bir kaynagin sistem igerisinde herhangi bir konumu igin alt kritik sistemin
analitik olarak kaynak c¢arpan, alt kritik ¢arpan ve kaynak verimliligi ¢ozlimlerini
vermektedir.

Bu dort incelemeyi takiple, elde edilne denklem setleri MATHEMATICA yardimi ile
modellenmis, sistem boyutu, kaynak konumu veya boyutuna gore ¢ogaltma katsayisi
ve alt kritik ¢cogaltma katyayis1 ve kaynak verimliliginin degisimleri gézlemlenmis,
elde edilen sonuglar, beklenen sonuglar ile karsilastirmali olarak incelenmistir. Buna
bagli yorumlar ifade edilmistir.

Elde edilen analitik ¢dziimlerin dogrulugunun teyidi igin, ¢ok gruplu sonlu fark
difiizyon kodu DIFSP yardimi ile, analitik sonuglar ve numerik ¢ozlimler
karsilastirilmistir. Gerek Mathematica’da gerekse difiizyon kodunda kullanilan tiim
niikleer parametreler verilmis ve ortaya ¢ikan kaynak carpan, alt kritik ¢arpan ve
kaynak verimliliginin karsilagtirmalar1 yapilmig ve hata oranlar1 paylasilmistir.
Hakeza difiizyon kodunda 1zgara igin kullanilan nokta sayilari ve varsa lokalize
kaynagin bulundugu noktalar ifade edilmistir.

Analitik ¢oziimlerin dogrulugu teyit edildikten sonra, kaynak verimliligi konsepti
kaynak tahrikli alt kritik sistemlere dair parametrelerle karsilastirmali sekilde
incelenmistir.

Hedef bolgesi boyutlari ile kaynak verimliligi iligkisi incelenmis, sonuglari tablo ve
grafikler yardimu ile ayrintili olarak paylasilmis ve ¢iktilar tartigilmstir.

Yakit bolgesi boyutlar1 ve kaynak verimliligi ilsikisi incelenmis sonuglar1 grafik
olarak paylasilmis ve ¢iktilar tartigilmastir.

Ilgili hesaplardan ve incelemelerden sonra, kaynak tahrikli alt kritik sistem icin bir
yakit alternatifi olarak amerisyum ve plutonyum karisimi Onerilmistir. Ilgili
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malzemeler i¢in fisyon tesir kesitleri ve diger niikleer sabitler sunulmus, yakit igin
temel parametreler 6rnek olarak hesaplanmastir.

Daha sonra, ilgili karisimin degisen malzeme yiizdelerine gore yakitin davranisi
incelenmis ve temel parametre ve sonuglar tablo olarak sunulmustur. Yine grafikle
bu degisim ifade edilmis ve ¢iktilar1 tartigiimistir.

Son olarak, tiim sonuglarin kisa bir 6zeti ve buradan yapilan ¢ikarim sunulmustur.
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1. INTRODUCTION

Accelerator Driven Systems (ADS) are fission reactors, which are designed
especially for the safe burnup of minor actinides, which constitute an important part

of high level nuclear waste produced during the operation of nuclear power reactors.

Assuming that the uranium and the plutonium have been separated, high level
nuclear waste consists of fission products and minor actinides. The majority of
fission products have short enough half-lives so that they decay almost totally in a
few centuries. Hence the fission products do not constitute a waste problem in the
long run. On the other hand, minor actinides, namely neptunium, americium and
curium, continue to contribute strongly to the radiotoxicity of the nuclear waste
during thewhole first millennium. If minor actinides are separated (partitioned) from
the spent fuel and then transformed to nuclei with short half-lives (transmuted), it
would be a major step towards the solution of high level nuclear waste problem. This
process is called partitioning and transmutation (P&T) and is the subject of active
research and development in almost all developed countries involved in nuclear
power production. Minor actinides can be transmuted by fissioning to fission
products in classical nuclear reactors, which are critical systems. They can also be
transmuted by fissioning into fission products in subcritical nuclear systems in which
steady-state operation can only be maintained through the introduction of external
neutron sources. Such systems are called source-driven subcritical reactors. If the
external neutron source is supplied by operating a charged particle accelerator (a
proton accelerator in practice), the source-driven subcritical reactor is called an
accelerator driven system or ADS (Ozgener, 2009).

Certain safety issues arise when minor actinides are introduced into the nuclear fuel
in critical nuclear reactors. These issues stem from the degradation of certain

reactivity coefficients when minor actinide containing fuels are used. The use of



source-driven subcritical systems is proposed to overcome these safety issues (Carlo
Rubbia, 1996).

Critical nuclear reactors are of two types: thermal reactors and fast reactors. In
thermal reactors with low enriched (U, Pu) O2 fuel, the Doppler broadening of the
resonances with increasing fuel temperature creates negative reactivity feedback and
constitutes the major inherent safety also in fast reactors. Doppler broadening
provides less negative feedback in fast reactors since neutrons are less affected from
the major resonances, which lie at lower energies. Minor actinides can also be most
efficiently incinerated in fast systems since an important part of the neutron energy
spectrum is above the fission threshold of minor actinides. When minor actinides are
introduced into the fast reactor fuel, the negative Doppler feedback is lost to a great
extent and safety problems may ensue in fast critical systems (Marcus Eriksson,
2005). Thus, the incineration of minor actinides in fast but subcritical systems turns
out to be a viable alternative. But subcritical systems need external neutron sources
to render steady-state operation possible. By the bombardment of certain nuclei like
lead by accelerated proton beams, it is possible to cause neutron producing spallation
reactions in the target. These spallation neutrons constitute an adequate external
neutron source for subcritical systems. Thus accelerator driven fast subcritical
nuclear reactors seem to be a good choice for incinerating minor actinides without
causing any safety problems.In most accelerators driven reactor designs liquid lead is
proposed also as the coolant. But liquid lead results in a positive void coefficient in a
fast neutron spectrum. Thus there is a definite need for sub criticality in fast systems

used for incineration of minor actinides.

The criticality level of sourceless nuclear systems is expressed most conveniently by

the effective multiplication factor, keff. It turns out that the criticality level of
subcritical systems which maintain steady-state operation with the aid of an external
neutron source is more adequately expressed by a different quantity, namely the
subcritical multiplication factor, ks (Kobayashi, K., and Nishihara, K.,2000).

In Chapter 2, the major components of accelerator driven systems will be briefly
reviewed. We will introduce and the concepts of the subcritical multiplication factor,
source multiplication and neutron source efficiency in Chapter 3. Chapter 4 involves
the derivation of analytical solutions for neutron flux and ks for subcritical system

models with localized and extended external sources in one and two group neutron



diffusion theories. For model problems spherically symmetric systems will be
utilized. The variation of the subcritical multiplication factor, source multiplication
and neutron source efficiency with respect to source location and system dimensions
will be studied with the objective of determining the conditions leading to maximum
source efficiency. Chapter 5is about the utilization of the multigroup diffusion finite
difference program DIFSP (Ozgener, 2012) for the solution of more realistic model
problems for which analytical solutions do not exist. The variation of the source
efficiency with respect to target and blanket dimensions will be investigated. The
dependence ofthe source efficiency on the americium to plutonium ratio in the ADS
blanket will be studied. The thesis commences with Chapter VI which contains the

conclusions and recommendations for further study.






2. ABRIEF REVIEW OF THE BASICS OF ACCELERATOR DRIVEN
SYSTEMS

2.1 Transmutation of Actinides for Solution of the Nuclear Waste Problem

Most of the fuel material discharged from a nuclear reactor still consists of the
original uranium (95%), while about 4% has been converted to fission products and
about 1% to transuranic elements (Seltborg, 2005). As seen in Figure 1 radiotoxic
inventory stemming from fission products is reduced to the level of natural uranium
in a few hundred years. In later times, the radiotoxic inventory is almost wholly
dominated by the transuranic. If plutonium is separated by reprocessing and
reutilized as fuel in nuclear reactors, the major source of radiotoxicity is the minor
actinides. Thus, partitioning and transmutation of the minor actinides is one of the
major challenges to be met if the solution of the nuclear waste problem is to be found

and the sustainability of the nuclear power is to be proved.
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Figure 2.1 : Variation of Radiotoxic Inventory Respect to Time in Discharged Fuel.

The domination of radiotoxicity by the actinides stems from their long half-lives
compared to the fission products. A review of Figure 2 reveals this fact.
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Figure 2.2 : Half-lives of Actinides and Fission Products.

Majority of these major (plutonium and uranium isotopes) and minor (americium,
curium, neptunium isotopes) actinides can fissioned and transmuted into fission
products in a fast reactor environment. This means minor actinides can be incinerated

and at the same time the fission energy can be unleashed.

2.2 Components of Accelerator Driven Systems

A typical ADS, as depicted in figure 3, consists of Proton accelerator, Spallation

target, Fuel elements, Coolant.

Proton accelerator

Coolant /

(liquid metal or gas)

Fuel elements — |

Spallation target

Figure 2.3 : Components of an ADS.
2.2.1 Proton accelerator

Proton accelerator can be of two types, linear accelerator or cyclotron accelerator



2.2.1.1 Linear accelerators

The basic principle of a linear accelerator, commonly called LINAC, is that the
charged particles are accelerated, either by electrostatic fields or oscillating radio-
frequency (RF) fields, along a straight line. The particles travel through a series of
hollow “drift tubes”, alternately connected to the opposite poles of an AC voltage
source. The energy transfer to the particles occurs in the electric field between the
tubes, whereas the inside of the tubes are field-free (hence the name, “drift tube”).
The polarity of the voltage is reversed while the particles are travelling inside the
tubes and the lengths of the tubes are chosen so that the particles reach the gap
between the tubes at the moment when the electric field is accelerating. As the
velocity of the particles increases, the length of the tubes must also increase,
approaching a constant value as the particles become relativistic. In order to reach
high energies, since the final energy of the particles is equal to the sum of the
voltages to which they have been exposed, either the number of tube segments or the
voltage of the RF-source may be increased. As the velocity of the particles quickly
becomes high, it is desirable that the RF-frequency is high in order to keep the tube
lengths reasonably short (Per Seltborg, 2005).

2.2.1.2 Cyclotron accelerators

A cyclotron is a circular accelerator consisting of two large dipole magnets and two
semi-circular metal chambers, called “dees” because of their shape, in which the
particles orbit the dees, which are connected to an oscillating voltage, generating an
alternating electric field in the gap between the two dees. When they are inside the
dees, however, they sense no electric field and follow a circular path until they reach
the gap and are accelerated again. In this way, the particles that are emitted at the
center of the device follow a spiral path, gaining a certain amount of energy each
cycle, until they become energetic enough to leave the accelerator (Per Seltborg,
2005).

2.2.2 Spallation target

Nuclear spallation is one of the processes by which a particle accelerator may be
used to produce a beam of neutrons. Mercury, tantalum, lead or other heavy metal,
liquid or solid, target can be used, and 20 to 30 neutrons are expelled after each

impact. Although this is a far more expensive way of producing neutron beams than



by a chain reaction of nuclear fission in a nuclear reactor, it has the advantage that
the beam can be pulsed with relative ease. The main advantages of liquid metals are
the superior heat removal capabilities and the significant reduction of the radiation

damage to the target (Paul Scherrer Institut, 2006).

Traditional spallation target at the time for ADS is solid lead. Among the studied
heavy liquid metals however LBE (Lead Bismutheutectic) have emerged as a
primary candidate. LBE has the clear advantage of having a low melting temperature
(123.5 °C) and a boiling temperature of 1,670 °C, which would simplify the heating
of the system before operation, as well as reducing the risk of target solidification in
case of beam interruption or reactor shutdown. If LBE is chosen as core coolant
material, full compatibility between the target loop and the core coolant primary loop
could also be achieved (Handbook on Lead-bismuth Eutectic Alloy and Lead
Properties, 2007).

2.2.3 Fuel elements

Fuel element options for ADS, which consists of minor actinides, plutonium, and if
possible no uranium, need to be irradiated to high burn up to reach high levels of
transmutation. This naturally implies that this area is still subject to investigation
since while there is extensive knowledge of uranium based fuels, there is little
knowledge of minor actinides and plutonium based fuels. Several different options of
advanced fuels are being investigated; oxides, nitrides and possibly metal fuels being

the most promising (R. J. M. Konings, 2001).

2.2.3.1 Oxide fuels

With respect to other fuel choices, MOX fuel operation and fabrication is thoroughly
investigated by industry. Still, since this knowledge is derived from studies of
uranium based fuels, there are many aspects that need further study for the
assessment of minor actinides containing oxide fuels (R. J. M. Konings, 2001).
Among the negative consequences of going from a uranium-based fuel to fuels
containing high fractions of plutonium and MA are lower melting point (decreases
with increasing atomic number, from UO, (3113 K) to AmO, (2448 K)), lower
thermal conductivity and poorer chemical stability. Moreover, a general problem for
all fuel forms with high MA content is the helium gas production, leading to



intolerable swelling of the fuel. Another major drawback of oxide fuels is the low
thermal conductivity, leading to high operating temperatures (Per Seltborg, 2005).

Even with respect to these drawbacks however, oxide fuels have high chemical

stability, which makes both fabricationand safety requirements simpler

2.2.3.2 Nitride fuels

Nitride fuels have five times higher thermal conductivity than uranium based oxide
fuels but similar melting temperatures. Thus, lower operating temperatures are
possible for nitride fuels. Various actinide nitrides show good mutual miscibility and
it is therefore expected that the solid solution (Np, Pu, Am, Cm) can exist over a
wide range of compositions. Actinide nitrides are also compatible with the PUREX
method. It also possesses chemical compatibility with water, air and stainless steel
cladding materials (Per Seltborg, 2005).

Nitride fuels are poor in terms of chemical and thermal stability, which proves to be
a problem in terms of safety and fabrication.

Further, the addition of an inert matrix, ZrN for example, is expected to improve the
thermal stability of nitride fuels. Another disadvantage of nitride fuels is the
production of **C from N. This may require the enrichment of >N (J. Wallenius
and S. Pillon, 2001).

2.2.3.3 Metal fuels

Metallic fuels have high thermal conductivity and high melting temperature (1620 K)
for uranium based alloys. However, with the addition of plutonium and minor
actinides, these favorable properties drop drastically and hence the addition of an
inert matrix is required, of which the most promising candidate is zirconium with a
melting point of 2128 K. Another disadvantage of metallic fuels is their
incompatibility with LBE (Per Seltborg, 2005).

2.2.4 Coolant

Since ADS by the nature of its design is a fast reactor, the first element to be
recognized is, water as a coolant will not serve this purpose due to its highly
moderating properties. Hence, with respect to fast neutron spectrum, the preferences

are reduced to liquid metals and gas. But to cool the core with a gas coolant, high



pressure must be applied. However on the contrary to gas option, liquid metal has

positive void worth and opacity (J. Wallenius, 2003).

2.2.4.1 Lead or lead-bismuth eutectic

Since lead or lead bismuth eutectic can be same as spallation target, the necessity for
separation of spallation target and reactor can be avoided. Lead bismuth has a boiling
temperature of 1670 °C, which is an advantage for the core cooling problems hence
an accident due to coolant loss is unlikely. Also, while lead melts at 327.5 °C, which
derives problems at refueling and shutdown due to solidification of coolant and high
operating temperatures (400-600 °C) that cause corrosion, with lead-bismuth T is
only 123.5 °C and therefore has a relatively low operating temperature of 200 °C
(Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, 2007).

Bismuth as a coolant (or spallation target) on the other hand, produces ?°Po, which
emits alpha particles and has a half-life of 138 days. Therefore a confinement for

coolant must be administered for Lead-Bismuth Eutectic.

Table 2.1 : Physical properties of the main liquid metal coolant options (Per
Seltborg, 2005).

Material 6[g/cm3] T et Thoil k Cop
(~400 °C) [°C] [°C] [W/m K] [J/kg K]
Pb 11.07 327.5 1749 16 150
LBE 10.24 123.5 1670 12.9 147
Na 0.857 97.7 883 71.6 1300
2.2.4.2 Sodium

Sodium has been used for fast critical reactors and therefore there is extensive
knowledge about its operational properties. Since Sodium has very good thermal
property such as high thermal conductivity, it is a reliable coolant and a core cooling
problem is unlikely. However a high positive void worth and reactivity with air and

water are constant problems for the sodium coolants (J. Wallenius, 2003).

2.2.4.3 Gas

With the gas option (He or COy), it is possible to get a hard neutron energy spectrum

and gas has almost zeropositive void worth, since gases are transparent to neutrons.
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In the case of helium, it is a noble gas and does not interact therefore chemical
setbacks with structural materials are eluded easily. However, to serve as a coolant,
gas needs to be pressurized at a value of 50-70 bars. This would put heat removal at
risk in an emergency scenario since it is easy to lose coolant and bring a necessity to

physically separate coolant from reactor core (Per Seltborg, 2005).
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3. SOURCE MULTIPLICATION , SUBCRITICAL MULTIPLICATION
FACTOR AND SOURCE EFFICIENCY

3.1 Neutron Importance Function

The multigroup diffusion equations for a subcritical, source-driven system at steady

state can be expressed in matricial form as:

L = x93, ®+s (3.1)
Where

I[— VD, V+ Y, (l 1|

I ~Yeco Sses — VDg U+ Yool
o7 = [@,0, ...0¢] (3.3)
x=xixu - xgl (3.4)
9% = [9%ad% e - 9%¢c) (35)
sT = [s;S;; o S¢] (3.6)

where G is the number of groups.

On the other hand, an adjoint problem can be defined as (Jeffery Lewins, 1965)

LTOT =93 x "0t + 9Y (3.7)
Premultiplying Eq. (3.1) by ¢*"and integrating over the system volume, we obtain:
(0" LO) = (0% x93 0) + (0" s) (3:8)
where (...) denotes integration over the system volume.

Similarly premultiplying Eq.(3.7) by@”and again intrgrating over the system volume:
(@TLT@*) = (BT9Xx @) + (B79%s) (3.9)

Since LTis the adjoint operator of L and 9Yx” is the adjoint operator of Y93
(Duderstadt and Hamilton, 1976):

@+ Lo) = (@TLT @) (3.10)

13



(@ Y93 B) = (879X ex "0 ) (3.11)

Subtracting (3.9) from (3.8) and employing (3.10) and (3.11):

(@+s) = (879%) (3.12)

Since @79Y}is a scalar quantity:
(9% @) = (9" s) (3.13)

That is, the fission neutron production rate, (93 @) can be calculated for any
external source vector provided we know @*. Thus if we solve the adjoint problem
(3.7) once, we can determine the fission neutron production rate caused by any

external source by (3.13) without solving (1) for @ .

To understand the physical meaning of @*, consider a system in which the only
external source is placed is a unit point source at p emitting only group-h neutrons.
Then only the h th element of s would be nonzero and that element would be a Dirac

delta function. That is:

Sg =67 —P)bgn (3.14)
where &, is the Kroenecker delta. If we place (3.14) on the right hand side of (3.13)
and use the integration property of the Dirac delta function we obtain:

(9% 0) = 07 () (3.15)

That is @7 (p) is equal to the fission neutron emission rate caused by an external
neutron source placed at the point p emitting one group h neutron per unit time. If
@3 (p) is large, then the fission neutron emission rate is also large. That is, @7 (p) is
a measure of the importance of point p and group h in producing fission neutrons in
the system. Thus @7 (7) is called the group g neutron importance function and is

dimensionless.

3.2 Source Multiplication and Reactor Power

Source multiplication, Mg, is defined as:

M. = 950) (3.16)
S (uTs) '

Here u is a G dimensional column matrix whose all elements equal one.
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Thus M is equal to the ratio of fission neutron emission rate to the external neutron
source emission rate. Thus it may be interpreted as the number of fission neutrons
emitted per source neutron introduced. In another way, source multiplication
characterizes the fission causing capacity of the external neutron source introduced.

Using (3.13) in (3.16), we can also write:

T
M, =29 (3.17)

ST (uTs)

From (3.17) it is obvious that the source multiplication, M, is simply a measure of

the importance of the external source placed into the system in causing fission.
Consider an accelerator-driven subcritical reactor and let

Py.am: The beam power (power required by the proton accelerator)

&, Energy consumed for production of a source (spallation) neutron

Thus, Py.am/€n gives simply the number of source neutrons produced per unit time.
Thus:

(uTS) = Tbeam (3.18)

&n

If we use (3.18) in (3.16) and reaarange, we obtain:
(0% 0) = M, ~een (3.19)
Now let
9: The average number of neutrons emitted per fission in the reactor
g¢: Energy released per fission
P: The reactor (thermal) power
then:
P =L Prcan (3.20)

To get the maximum reactor power per unit beam power, Mg or the source
multiplication must be obviously maximized. Since the placement and energy of the
external source determines M., the source selection becomes an optimization
problem. In this work, we will try to determine the selection of source parameters so

that the source multiplication is reasonably well maximized.
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3.3 Subcritical Multiplication Factor

Many authors in the literature prefer to characterize subcritical, source-driven
systems by ks, the subcritical multiplication factor. ks is defined verbally in anology

to the ke OF sourceless systems as:

Fission Neutron Production Rate

(3.21)

S 7 Neutron Loss (absorption+leakage rate)

Since the neutron loss rate must be equal to the neutron prodction rate for steady

state operation, we can also write:

Fission Neutron Production Rate
ks = (3.22)

" Fission Neutron Production Rate+External Source Neutron Production Rate

Mathematically this could be stated as:

(9% 0)
S (0% 0)+(uTS) (3.23)

Dividing both the numerator and the denominator of (3.23) by(u”S)and using the
definition of source multiplication in (3.16), it readily follows:

kg = —= (3.24)

ST Mg+1

If we solve (3.24) for M, , we obtain:

Ks
1-ks

(3.25)

Since 0 < kg < 1, we have 0 < Mg < oo and the maximization of M; is equivalent

to the maximization of k.

Using (3.25) in (3.20) we can also write:

p==L % p (3.26)

- 9e, 1—Ks beam

3.4 Source Efficiency

Some researchers prefer to use the concept of source efficiency,¢* instead of source
multiplication, M. To understand the concept of source efficiency, we must consider

the k. srproblem of the sourceless system (the criticality problem)

16



Lo, = 1” X9 0, (3.27)

—
and the adjoint criticality problem

o == o%a"o." (3.28)

@, *is interpreted as the neutron importance function of the sourceless system (Bell
and Glasstone, 1970)

Premultiplying (3.28) by@”and integrating over the system volume,

(0718.") = (@"9%x" 0. ") (3.29)
which yields:
1 (eTLe.") (3.30)

kerp  (@T9%exTocH)
which can also be written as:

1 (@1

= 3.31
kerf (0t x9%(0) (3.31)
Premultiplying (3.1) by @.*" and integrating,
+T +T T +T

(D" LO)=(D." x9%¢ @) +(D." s) (3.32)
which can be reaaranged as

0. 10) @)
— =14+ —— 3.33
@ x9%70) 0 x93 0) (3.3
Using (3.31) in (3.33),

R I (3.34)
Kerf @t 295 0) '

Multiplying and dividing the numerator of the second term by (u”S) and multiplying

and dividing the denominator of the same term by (9% @)

+T
((Dc S) ( T )
1 _ (uTS) u's
PP T ST (3.35)
eff (D¢ X% ¢ @) (‘SZf ®)
o3¢ 0)

By (3.16), (3.35) becomes
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T
@t s

1 T 1
=1+—F—— (3.36)
Keff O xo5T0) Ms
)

By (3.25), (3.36) becomes

T
. @t s)
1- eff (uTS) 1-ks
=— (3.37)
Kerr @ xo%l o) ks
o o)

The first term on the right hand side is defined as the source efficiency, ¢*

T
@ct )
T
@ = (;f—s> (3.38)
@ x95T o)
o3¢ o)

With this definition, the source efficiency is the ratio of average importance of

source neutrons to the average importance of fission neutrons.Now we can write:

1‘keff
(p* — kerf (339)

T—ks
ks

By (3.39) maximizing ks is also equivalent to maximizing the source efficiency.
Combining (3.26) and (3.39):

ke "
P = g_fiq) Pyeam (3.40)
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4. BENCHMARK ANALYTICAL SOLUTIONS

To provide exact results for the assessment of the dependence of source
multiplication and related quantities on design parameters, four cases of analytical
solutions will be provided in spherical coordinates. Spherical geometry is chosen
since it is the only physically realizable one dimensional geometry and is more
amenable to analytical solutions.

4.1 One Group One Region Flat Source

Since the governing differential equation:

—-D r%% [TZ d@;:T')] + ZaQ)g(T) — ﬁzf@g(r) =q, (41)

IS inhomogeneous, the general solution can be written as the sum of homogenous

solution and a particular solution.
Pg(r) =0(r) + D, (4.2)
An analytical approach for a nuclear system is as follows

First homogenous solution for the equation has to be obtained and therefore equating
0o=0

D 5[ E0] + 3.0() - 9%,0(r) = 0 (4.3)

r2dr
For function @(r) a proposition is made
0(r) = 22 (4.4)

We apply the proposition

1d 2 a W(r) w(r) w(r) _
—Dr—Zdr - +>. - 192f =0 (4.5)
First derivative for the left hand first term
=D =2 [—r 2w () + w(r) T + T 12 — 9y, M = 0 (4.6)
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Second Derivative for the left hand first term

—D S [-w(r) + w(r)'T] + T T2 — 0y, 0 = (47)
=D [-w(@) +w(r) +w(r) ] + T 12— 9y, = 0 (4.8)
Hence
Zw(r)"] + T 22— 93,20 = (4.9)
w(r)" + (2L - Zowr) = 0 (4.10)
1? = > (4.11)
w(r)” + (G Z“Zf ~L9w(r) =0 (4.12)
w(r)" + (ﬁzf Dw(r) =0 (4.13)
93
Koo z_f (4.14)
w(r)" + = (koo — Dw(r) = 0 (4.15)
Value of B, being
By == (4.16)
w(@)" + B, w() =0 (4.17)

This equation is a Helmholtz equation, to which a set of solution may be proposed.
However for the sake of practicality, the transformation will be applied now

w(r) =0(r).r

w@) =06@).r+o(r)

w@)" =o(@)".r+20(r)’

Applying these values

r2@(r)" + 2rd(r)’ + r2B,20(r) = 0 (4.18)

This is a denigrated form of spherical Bessel equation which is
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d2
r2 B(r)
d?r

+2r B0 4 [r2k% — 11+ D]O() = 0 (4.19)

Therefore | is obtained as 1=0. For an analytical spherical Bessel equation a solution

may be proposed that consists of two parts

ji@) = ()t [R4] " (4.20)
(@) = (=)t [L4]" <0 (4.21)
Since =0 (4.22)
jolr) = =82 (4.23)
yo(r) = - =8 (4.24)

r

By applying boundary conditions an analytical solution can obtained
Forr -0 @(r) # oo

Therefore the y part of the solution is cancelled

Forr - Ry 0(r) = 0;k? = B,,?

sin(kr)

O(r) =jo(kr)=A

sin(B,,R
L SinBnRY) _
Ro
For sin function to be equal to 0, it must be in the form of an integer multiplied by n

Bn,Ry = nm

Taking n=1, the radius for criticality is obtained

R_TT

Hence analytical solution for @(r) is

(r) = A2CmD) (4.25)

T
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For particular solution, since solution is constant the derivative part cancels

Dp(Xa —I9%r) = qo (4.26)

qo
—0.B.%2=22

o
B,,°D

0, =—

Therefore solution

_ 28in(Bmr)  qo
y(r) = A== (4.27)

Bm?2D

This equation has to satisfy the boundary condition

Forr - Ry @(r) =0

Therefore
in(BmR 0
0y (Ry) = AZCR) e (4.28)
sin(BmRo) _ 9o
A =5 % (4.29)
A=—20 4o (4.30)

sin(BmRo) Bm?2D

To obtain the general solution

_ Ro qo Sin(Bpyr) _ _Y
By(r) = sin(BmRo) Bm?D T Bm?2D (4.31)
q Ry sin(B,,r
0, = ‘; 02 (Bm1) _ ]
B, “D L7 sin(B,R,)

To simplify denotations

0,(r) = qo [BmRO sin(B,,1) 1]

DB, 2| B,,r sin(ByR,)

y = B,1;x = BpRo; DBp% = (koo — 1)Y4

By(x,y) = (o2 — 1) 2 (4.32)

y sinx (ko—1)Ya
whereO<x<m and 0<y<x

Since the general solution is obtained, ks which is the alternative multiplication

constant of the system can be obtained
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k_S
ST S40

Where S is the total number of fission neutrons and Q is total number of source

neutrons.
0 =2 5.() = 0,00

_ 0% [X0 04 (r) 4xr2ar
(192f ffo Bg(r) 47mr2dr+qq f:o 47rr2dr)

N

1

k. =
$ q0 ffo r2dr
! R
90135 fo 0r2¢pg(rydr
1
k. =
s , qoRo°>
! R
390155 o Or2g(madr

For the remaining integration

Ro Ro [Rysin(B,,1)
2 _ 2 0 m _
fo repg(r)dr —J;) T [—rsin(BmRo) 1] dr

_ fRO Rorsin(B,,) g — fRorzdr
o Sin(BnRo) 0

3

Ro Ro Ry
Sin(BmRo)jO rsin(B,,r) dr 3

To solve the integration, integration by parts must be applied

judv=uv—]vdu

cos(B,r
u=r;dv= Sin(BmT') dr;du=dr;v = — é—m)
m
Ro Ry cos(B,,R Ro cos(B.,1
f rsin(er)dr:_M_Ff (B )dr
0 B, 0 B,
_ Sin(BmRO) RO COS(BmRO)
B’ B,
Therefore
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(4.35)



sm(B RO) Rocos(BnRy)] Ry’
(B Ro) By 3

Ro
J- r2@g(r)dr =
0

[ Rosin(B,Ry)  Ro®cos(B,Ry)] Ry’
B,,*sin(Bp,Ry)  Bmsin(ByRy) 3

Ry Ry*cot(B,Ry)] Ry®
_Bm2 Bm

Ro
= F 1- BmRO COt(BmRO) -
m

(BmRO)Z
=]

Therefore kg
1
ks = (4.36)

14 q0(BmRo)?
' 2
319(2)12f(1—BmR0 cot(BmRO)—%)

To simplify,

(BmRo)?
1 — ByRy cot(BpRo) — "5 g

1

fes = do
1+ 319@12/‘ f(BmRO)

9o

0, =
" pB,?

- 1 ~ 1
s 2
DB, L?B
L+ 355 (B Ry 1+ 3,;” f(BnRo)

2 _ko—1 By DPlho—1) (ke —1)

Bm 12 7 ke Lk, ke

ks =

141 f(B Ry)

X = BmRO

.XZ

f(BnRo) = f(x) = 2

1 — x cot(x) — %
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1

ks = 4 (koy — 1)x2
ko (3 — 3x cot(x) — x?)

K = ko (3 — 3x cot(x) — x?)

S ke (3 — 3x cot(x) — x2) + (koo — 1)x2
K = 3 — 3x cot(x) — x?

S 2, (ko = 1) ,

3 —3xcot(x) —x L
—1+ x cot(x) + x2/3

k —

Ty x cot(x) + x2/3k

2
1-x cot(x)—*"/4

s = 1—xc0t(x)—xz/3kc>O (4.37)
_ (BmRO)Zkoo
Keff = ko)t (kep-Dy? (4.38)
ks
M. =
Sl —k,
o1 kess
(p keff N

4.2 One Group One Region Dirac Source

To obtain a solution for a localized source, the equation must solved for two
multiplying regions that are divided by a Dirac delta source, which will be calculated

through boundary condition;

Which

1d ap(r
D 5= E0] 4+ 3,0() - 95,0(1) = 6( - 0)a, (4.39)
For both the first and second region which are multiplying and without a source

1d

—D 5= [r2E0] + 3,0(r) - 9%,6(r) = 0 (4.40)

The solution can be obtained as
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0,(r) = A sin(B,,1) LB cos(B,,1)
r r
in(B B
0,(r) = C sm(rmr) 4D cos(r )

Forr - 0Q,(r) # o

Therefore

0,(r) = A2EmT) (4.41)

r

Forr - Ry@,(r) =0

sin(B,,Ro) D cos(B,Ry) _

0
Ro R

(DgII(RO) =C

For that to be possible

Csin(B,Ry) + Dcos(B,Ry) =0

_ sin(B,,Ry)
cos(B,Ry)
_ Csin(Bmr) cos(BmRg)—sin(By,Ro)cos(Bm,T)
Ou(r) = r cos(BmRg) (4.42)
__C
G= /cos(BmRO)
@1[ (T) -G sin(Bjp,Ro—BmT) (4.43)
Two regions have boundary conditions with respect to their intersection point
le(ro) = @gn(?”o)
_D dQ)gI(TO) +q,=-D dwgll(rO)
dr © dr
For the first boundary condition
¢ sin(B,Ry — Bim1o) — 4 sin(By,1p)
To To
G = AM (4 44)

sin(BjmRo—BmTo)

For the second boundary condition
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d@ g (1) 4 (Bm cos(Bmr) sin(er)) _ _Asin(Bn1) (1= B, cot(B,1))

dr T 72 2

dPgn(r) c ( sin(B,,Ry — B,,r) B, cos(B,R, — er)>

dr r? r
d@ g (r G
fi+() =-= (sin(B;,Ry — Byy7) + 1By, cos(B,Rg — Bi1))

Asin(B,,1y)

— (1 — ryB,, cot(B,,15))
0

_ Asin(Byro) (sin(By Ry — Bi1y) + 19Bm c0s(B Ry — BmTo))  qo
12 sin(B,,Ry — BinTo) D

A(sin(Bp,1y) — 1B cos(Bp, 1))

2
qoTo

D
A(sinBg#g)» + 19 By, sin(B,,1y) cot(By, Ry — Byn1o) =SBy + 19 By, cos(B, 1))

_ Qoroz
D

= A(sin(Bp,1y) + 19By, sin(B, 1) cot(By Ry — Bip1p)) —

AryB,,
sin(B,,Ry — By 1y)

(sin(By,1y) cos(B,,Ryg — Bi1y)

CIoro2
D

+ sin(By, Ry — By1o) cos(B,1p)) =

ArOBm QOTOZ
in(B,,R,) =
Sin(B, Ry — Borg) S M(Bmfo) = =5

Therefore A is obtained as

qoToSin(BmRo—BmTo)
DBy, sin(BjRy)

A=

(4.45)

Therefore G is

sin(B,,19)

G = doTosin@Emro) (4.46)

" DBy, sin(BmRyo)

Hence Solutions are obtained as

__ qo7oSin(B;mRo—BmTo) Sin(By1)
®,(r) = DBy, sin(BmRo) r (4.47)
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__ qoTosSin(Bp,Tg) sin(BmRo—BmT)
B (r) = DBy, sin(BmRo) T (4.48)

S

ks=S+Q

Where S is the total number of fission neutrons and Q is total number of source
neutrons. Since the problem is consisted of two regions the boundaries and variables

of integral changes

ks
0% (I 0gi () 4mr2dr + [0 31 (1) 42
(ﬂzf (foro Bgi(r) 4mr2dr + f::o Dy () 4mr? dT) + frzoj; 6(r — ro)qo47zr2dr)
ks = —— (4.49)

» fro—ﬁ S(r—ro):grzdr
—
937(J5 0 0g1(ry r2dr+[; 0 0411 (r) v2ar)

To solve the first integration, integration by parts must be applied

radr

To 5 "o qrosin(By, Ry — By 1) sin(B,1)
f @y (r) redr = f -
0 0 DB, sin(B,,Ry) r

_quSin(BmRO_erO) o
~ DBpsin(BnRy) J,

fudvzuv—fvdu

sin(B,,r) rdr

f O(Z)g,(r) r2dr
0

cos(By,r
u=r;dv =sin(B,r)dr;du =dr;v = — %
m

o 79 €oS(By,1 "o cos(B,, T
f rsin(B,,r) dr = — M-l_f Mdr

0 B 0 B,
Jr(,@ () r2dr = qoqToSin(BmRo = Bmo) (sin(Bmro) 1o cos(BmTo)

el DB,, sin(B,R,) B2 B,

_ qorOSin(BmRO - ero)
DB,,> sin(B,,R,)

(Sin(BmTO) - erO COS(erO))

To solve the second integration, integration by parts must be applied

Ro Ro qorosin(Byry) sin(BymRy — Byt)

24
DB, sin(B,R,) T rar

By (1) rdr = |

To To
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Ro rosin(B.. 1
J- @g”(r) r2dr = QoTo ( m 0)
T

Ro
= in(B,,Ry — By7)r d
] DB, sin(B,,R,) J;O sin(BmRo = Bnr)r dr

Applying integration by parts

J.udvzuv—fvdu

cos(B,Ry — By,
u:r;dv:sin(BmRo—er) dridu =dr;v = (m 0 m)

B

Rg
J. rsin(B,,Ry — By,1r) dr
To

dr

_ Rycos(0) 1ycos(BpnRy — BpTo) N JRO cos(BjRg — By1)
By, B, n By,

0

R 19 cos(B,,Ry — BT 1
_fo_ T (BmRo mT0) +— [sin(0) — sin(B,,Ry — Biy1o)]
B, B By,

R, 1ycos(BRy— ByTy) 1
== mB UL, 52 [sin(B,,Ry — B;,1o)]
m m m

RyBy, — 19By, cos(By Ry — By 1) — sin(By, Ry — B 1)
B’

Ro
f @y (r) ridr

0
— qorOSin(erO)
DB,,* sin(B,,R,)

—sin(ByRy — Biy1o))

(ROBm - TOBm COS(BmRO - ero)

Since S

To Ry
S =192fj Q)gl(r) TZdT+192fj Qg”(r) Tzd’r
0 T

0

S = 192 C107'0~5‘i7'l(BmRO - ero)
"\ DB,?sin(B,R,)

Qo"0 sin (ero)
DB,?sin(B,,R,)

(sin(B,,1y) — Byt cos(By, 1))

(ROBm - rOBm COS(BmRO - ero)

—sin(B Ry — ero))>
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—(qoTo .
S§=9 B, .1y (sin(B,,Ry — B,,15) cos(B,, T,
Zf(DBm?,Sin(BmRO)( m 0( ( mio m O) ( m 0)

+ cos(B,Rg — Bm1o)sin(By, 1)) — B Ro sin(erO))>

9o70 . .
S=9 B..R, sin(B,,1y) — B,,,1y(sin(B,,R
Zf <DBm3sin(BmR0)( mfo ( m 0) m 0( ( m 0)))

S = 19LZ)£qo3ro (B,,R sin(B,,1o) csc(ByRo) — BimTo) (4.50)

Solving the third integral for Q
Let;

x = B,Ro;y = Bu1o

2

o)
Q=[5 8(r = 1o)qor?dr = qore® = 4o 5 (4.51)

Since the third integral is obtained, the coefficient can be found

koo — 1
2 _ Moo
By = 2
_ kooclo mTo
= W (BimRo sin(By,1g) csc(ByRy) — BinTo)
S = U{:"j% (x sin(y) csc(x) —y) (4.52)
Therefore
keq,y . _
m(xsm(y) csc(x) —y)
s7 koo(;oy . yz
—— 0= (xsin(y)csc(x) —y)+q -
e —1) Bmz( W) y)t4q, B2
keq,y
.~ )(xsm(y) csc(x) —y)
Tk

(kwq" N (xsin(y) csc(x) —y) + q,y?

koq,(xsin(y)csc(x) —y)
kooqo(x sin(y)cscx) —y) + (k_, — 1)qoy

__ koo (y—xsin(y)csc(x))
ks - y—Kkeox sin(y) csc(x) (4.53)
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Now that k, is obtained it is also possible to find M, where as

ks

M. =

ST1—k,
T (1—-ky)y 1y —kex sin(y) csc(x)

Sy —koxsin(y)esc(x)'1—ky (1—ko)y

M. = ko (y — x sin(y) csc(x)) 3—kxsin-eseter

T y—kersinQesel) (1—ko)y

_ koo (xsin(y)csc(x)-y)

Ms = G y (4.54)

To obtain efficiency

1—-k

(p* — - eff i
eff
Where k¢

= ko, x?
T ™ x2 4 (ko — D2

Hence

X%+ (ko = D? = koox? (koo — D (w? — x?)
x% + (koo — 1)m? X2+ (ke — D2

1_keff =

1—kerr (koo — (% — x?) 82 ALhe—D)72
keff T a2 — 2 kooxz

1- keff _ (koo - 1)(7'[2 - xz)
keff B kooxz

. ee—D@ —x?) ke (xsin(y)csc(x) —y)

ksx? e y
. (@ —x*)(xsin(y) csc(x) — y)
= peze
« _ (@*=(BmRo)?)(BmRo Sin(Bm1o) csc(BmRo)—BmTo) (4.55)
- (BmR0)?BmTo '
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4.3 One Group Two Region System with Flat Source in the Inner Region

To obtain a solution for a unit source, the equation must solved for two regions that
are consisted of non-multiplying region with Dirac delta source and a multiplying
region without source

For the first region, there must be a homogeneus solution and a particular solution

1 d

DL [2ED) 4 3.0 = g, (4.56)

For General Solution

—D 5= [r? L0 + 3,0(r) = 0 (4.57)
Since
D
I? = —
Ya
1d dg(r)1 1
|2 i =
r2dr [r dr ] L? o(r) =0

Applying the transformation

w(r)

r

o(r) =

1

w(r)" — Z w(r)=0
Since the sign is minus at k constant, the solution

T r
w(r) = Asinh(z) + Bcosh(z)
Therefore the general solution
o(r) = 2sinh(®) + 2 cosh ¢ (4.58)

r) = —sinh(;) + —cosh(;) :

For particular solution, since solution is constant the derivative part cancels

Dpia = o (4.59)

4

Qp—z
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Applying the boundary condition for central neutron flux
o) = A B r 4 B L r
r)=—sin (L) — cos (L)
Forr — 0 @(r) # o Therefore B =0
0(r) = 2 sinh(-
r)=—sin (L)

_A . r do
(Z)gl(”f') = ;smh (z) + ﬂ (460)
For the second region which is multiplying and without source

D= [r2 0| + 300 - 95,0() = 0 (4.61)

The solution had been obtained as

sin(B,,r cos(B,,r
() | p <o5CEn)

o) =C

Forr - Ry@(r) =0

sin(B,,R cos(B,,R
(mO)+D (mO):

(Dgll (Ro) =C Ry R,

0

For that to be possible
Csin(B,Ry) + Dcos(B,Ry) =0 (4.62)

Ctan(By,Ry) = —D

Dgn(r) = %(Csin(er) — Ctan(By,Ry)cos(By1r)) =0

Do (r) = (sin(By,r)cos(B,Ry) — sin(B,Ry)cos(Byr)) =0

rcos(By,Ry)

C sin(BpRg — Byp1)

Dgur(r) = r  cos(ByRy)

G = C/cos(ByRy)

sin(BmRo—BmT)

Pgu(r) =G (4.63)

Two regions have boundary conditions with respect to their intersection point

@gl(ro) = Q)gu(ro) (4.64)
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—DI d@zfro) — —DII d@g;;(ro) (4.65)

Applying the first boundary condition and equating them for value of r,

A To do Sin(BmRO B ero)
—sinh|—)+5=6G
(L) Za To

To
Applying the second boundary condition

ngl(T) _ DIAT'_Z

r r
(rcosh(z) - Lsinh(z))

oar L
d@gu(r
1 ill;‘ ) = —Dy;Gr~?(sin(ByRy — By1) + Byrcos(By Ry — Byr))

Equating them for value of r,

—Dy;Gr5=2(sin(ByRy — By1o) + Bi1oc0s(BpnRo — BiTo))

_ DjAw—2
L

(rocosh(%) - Lsinh(rL—O))

sin(B,,Ry — B, 1,
Dy, m( (BrRo mTo) + rycos(By Ry — er0)>

- Dz_A (L sinh (2—0) - rocosh(rL—O))

L (To) o
_ & A(L smh(L> rocosh(L))
D i —
m
. 7'0 i TOq
Asinh (f) = Gsin(B,,Ry — B1p) — Zao

Asinh (T_o) D, 4 (L sinh (2—0) - rocosh(%)> sin(B,Ry — Bm1o) 7ol

"B (sm(Bm};Om B, 10) + 1ycos(B,, Ry — er0)> Ya
) T, T .
o D, A (L sinh (TO) — 15 cosh (TO)) sin(B,Ry — BiTo) _ Tod,
Asinh (—) ==
L Ya

- : —
L (sm(Bm}g, BinTo) + rgcos(BpRy — er0)>
m
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/ D, A (L sinh (2—0) — 1 cosh (2—0)) sin(B,,Ry — B,,15) \

Al 1-—
D i —
\ "LB,, (sm(BmIi?m BinTo) + rgcos(BypRy — er0)> sinh (TL—O)

o4,

sinh (TL_o) Ya

N Dy (L — 19 coth (%)) _ Toqo

D n (1o
"B, (% + 1ycot(B,Ry — er0)> / sinh (L ) Za

Therefore A is obtained

S ) N (469

DII(1+ToBmCOt(BmR0 ero))
Following G can be obtained as well

. T T
_D Asinh (To) (1 - To/L coth(ro))
Dy; sin(ByRy — Bito) (1 + 19Bicot(Br Ry — BinTo))

Dy (1-"/,coth ;D))
C = Todo Dri(14+r9Bmcot(BmRo—BmT0)) (4 67)
Za Sil’l(BmRo—erO) Dy (1_r0/LC0th(TTO)) l
DH(1+T()BmC0t(BmRO _ero))

Since
9o
r) = smh
Bgi(r) = (5)+ o
sin(B,,R, — B,,,r
qu(r) =G ( mito m )
Therefore
10490 . r 0
Do(r) = sinh +
7 (1—r°/Lcoth(r—°)) (L) Ya

Smh( )Za DII (1 + 19Bmcot(By Ry — mTO)) )

Simplifying further
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. r
roSinh |+
0g1(r) = 4o 1+ (L)

a k D, 1-— rO/L coth (2—0)

Dy \ 1+ 1yB,,,cot(ByRg — Bio)

|
1 Jramn ()

Let
_To To
. D, 1-"%/; coth ( T )
DII 1 + roBmCOt(BmRO - ero)

Hence

_ 4 rosinh(g)
Q)gl () = Ya <1 + (E—1)rsinh(%°) (4.68)
Likewise
Q)gII (r)

T, T,
P (1=70/; coth())
70q0 Dy (1 + ryBpcot(BRy — ero)) sin(B,Ry — B1)
= . — r r
sin(B,,Ry — By,1o) Za& (1 _ O/L coth(To)) B r
Dy (1 + ryBjucot(ByRo — Biuto))

Using E

_ 9 E_ 1oSin(BpmRo—BmT)
By (r) = Y ¢ E—1rsin(BpmRo—BmTo) (4.69)

Where S is the total number of fission neutrons and Q is total number of source
neutrons. Since the problem is consisted of two regions the boundaries and variables
of integral changes;

I = bV
S 9oV + a0V

_ 192f¢II(R03 - 7”03)
192f¢11(R03 —10%) + o103

1

C107"03
1+
192f¢II(R03 —15°)

S

ks =
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TZ

R
L Bgu() ridr fRO 3q, E  7ysin(BnRy — Byr)
1 Vi v (Ro® =134 E — 1rsin(BnRy — Brro)

0

_ 34,70
Sin(BmRO - ero) (R03 - r03)2a E

E Ro
b — 1f rsin(B,,Ry — By,r) dr
To

Applying integration by parts

fudvzuv—fvdu

cos(B,,Ry, — B,,r

B

Ry
f rsin(B,,Ry — By,7) dr
To

dr

Ry cos(0) 14cos(BRy — BTo) N fRO cos(BpRy — Bpy1) p
= — r
T

Bm Bm B

0

R 1o cos(B,,Rg — By, 1
_Ho _To (BmRo — BmTo) +—— [sin(0) — sin(BpRo — Bpro)]
B, B By,

R, 1ocos(B,Ry— Bnty) 1
. m m - B > [Sln(BmRo - ero)]

Bm Bm m
_ (RoBy, — 1By c0s(B Ry — Byy1p) — sin(By Ry — By1p))
= Bmz
_ 3q0r0(R0Bm - ToBm COS(BmRO - ero) - Sln(BmRo - ero)) E
" By sin(ByRo — BTo) (Ro> —10%) %4 E—1
Therefore
ks
_ 1
L+ ( ( e D E
3q,%5(RoB;, — 19By cos(B,,Rg — By19) — sin(B,,,Rg — By 1o E 3
192 0 m -m m m m m 3)
4 Bm2 Sln(BmRO - BmTO){RGi_':’CGi)Za E-1
I = 1
S CIorOZ

1+

Bm2 Sin(BmRO - ero) Za
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1
k. = 4.70
S 14 doT0%(E-1)Bm? sin(BmRo—Bm70)Za ( )
9%£3q0(RoBm—70Bm cos(BmRo—Bm70)—sin(BmRo—Bmro))E

ks
M. =
ST 1k,
. L —kegy
(p = —-
kepp

4.4 Two Group One Region Dirac Source

For the two group solution, there are two equations for criticality
—D V2@, (r) + Xa18,(r) = 9% 10,(r) + 9% 1,8, (1) (4.71)

—D,V20,,(r) + X020 (1) = X528, (r) (4.72)

Since two equations harbor neutron flux for first and second energy groups, they can

be rewritten in one equation

For the first equation

D, 2
R —— V|
Zal - 192)‘1 !

9Y 1 =Y, 9
V20, (r) + %@(ﬂ = - gfz @y (r)
1 1
2 1 _ 192f2

vee,(r) + M_IZQ)I(T) =" p, @ (r) (4.73)
For the second equation
D, 5

=M
Yaz
Vep,(r) — z]:)azz () =— %522 @,(r)
V20, (r) = 5z Ou () = —220,(r) (4.74)

To obtain a solution for @, in the form of @;;

0,(r) = — 22 V20, (r) — —— 0,y (1)
I 5 11 Muz 1
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D, .
0/(r) = V0, () + ;jzi;

@ (r)

0,(r) = =22 V28, (r) + 228, (1) (4.75)

Constructing the elements of first equation

V20,0 = - 210,00 + P E20,()
1 Zaz
—0,(r) = Vg, (r) + —=—0,()
M M, zsz My
Rewriting for the first equation
1
V2@, (r) + _ZQI(r) = Zfz @y (r)
M;
Therefore
D Zaz D Zaz Z
— 240, (r) + V2220, (r) — —— V20 (r)+ 0, (r) ——=L20,(r)
ZSZ 11 ZSZ 11 1 Zgz 11 1 252 11 11
=0
Yaz2sz Brls Yaz2isz
Vi) ~ VS O () F V() e ()
192]“2252 _
+ D.D, @(r)=0
a 1 a S
V4@11(T) — V2 Z 2 (Z)II(T) + VZQ)II(T) - Zaz Q)u( )+ ——— Zsz 2 @y (r)=0
MI D DZ
1 192/‘2252
4 _ — =
V4@, (r) — V20, (r) <M” M2 ) @ (r )(MIZMIIZ D,D, )=20
For
k = ﬁZfZZSZ
Zaz (Zal - 192]“1)
ﬁZszsz _ 192}“2 252 k

DD, ZaZMIIZ MIZ(Zal - 192f1) M12M112

Hence
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1 1
VA0, (r) + V20, (r) <W - M2 ) @II(r)(MI M”z)
4 _ g2 Lt _ 1
0y (V* = V2 (= 5z) = Grag)) = 0
Therefore
@, (r)(VH = 22V2 + 42V2 — u22?) = 0
Q)H(T)(V4 - (.UZ + AZ)VZ - #2/12)
0 (r)(V +u?)(V2—2%) =0
Forthe case k > 1
@,(r) =AX(r) + CY(r)
(V2+u®)X=0
(V2=2H)Y =0
1
u2=—————<{M2+M2)+JM2+M2+4Q—1MNM2)
ZMIZM”Z 1 11 I 11 I 11
1
Fz—————QM2+M2)+JM2+M2+4w—1MﬂM2)
ZMIZMUZ 1 11 I 11 I 11

Q)II = SIAX(T) + SIICY(T)

_ Ys2/Yaz | _ Ys2/Yaz
I 1+M112ﬂ2 et} 1—M112/12
Forr <m
( ) sinh(4r)
X(r) = Y(r) =———
r
Hence

sinh(4r)
T

0,(r) =4 4 ¢

Forr >

sin(ur cos(ur
(ur) e (ur)
r r

X(r) = A'
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sinh(Ar cosh(Ar
Y(r) = A”—r( ) +C" —( )

r

sin(uR cos(uR
(u O)+C' (uRy) _

X(Ry) =4 0
(Ro) R R
Cl _— _AI sin(uRo)
B cos(iRo)
A sin(uRy)
X(r) = —(si -
(r) " (sm(ur) cos(iRy) cos(ur))

!

X(r) = rcos(iRy) (sin(ur)cos(uRy) — sin(uRy)cos(ur))
X(r) = ——_ sin(uRn —
(r) rcos(iRy) sin(uRo — pur)
~ —A !
A= st

A
X(r) = —sin(uRo — ur)

sinh(AR cosh(AR
inh( 0)+C” ( 0)=O

V(Ro) = A" = R

Y(r) = ATH <sinh()lr) _ % cosh()lr))
Y(r) = msinh(/mo — )

A=

A
Y(r) = ;sinh(ARo —Ar)
Forr <

sinh(4r)
T

¢,(r)=A4 Sini‘m +C
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sinh(Ar)

Bu(r) =S4T 4 5,0 2 (4.87)
Forr >,

8,(r) = Asin(;uio—ur) + ésinh(Afo—Ar) (4.88)
O (r) = AR | g ¢ IRERZAD (4.89)

Derivatives for r < r,

d(bl(r)
dr
Ao, (r) _ S/A

dr r2

= %(HTCOS (ur) — sin(ur)) + r% (Arcosh(Ar) — sinh(Ar))

(urcos(ur) — sin(ur)) + S;;ZC (Arcosh(Ar) — sinh(Ar))

Derivatives for r > r,

d@[(r) A 1
== =5 (ur cos(uRo — pur) +sin(uRo ~ )

C
— — (Ar cosh(AR, — Ar) + sinh(AR, — Ar))
r2

dg,(r)  AS -
cIlIr = — T_zl (ur cos(uRy — ur) + sin(uRy — ur))

CS
- T—ZH (Ar cosh(ARy — Ar) + sinh(AR, — Ar))

Applying Boundary Conditions for Interface

0,(ro7) = 0;(r0™)

Asin(ury) + Csinh(Ary) = Asin(uR, — ury) + Csinh(AR, — A1)

Bu(re™) = 0o ™)

S, Asin(ury) + S;;Csinh(Ary) = S;Asin(uR, — ury) + S;;Csinh(AR, — Ary)

ag,(r) _ do,(r) 9o

dr r0+_ dr - D_1

2
To"qo

A(urgcos(ury) — sin(ury)) + C(Arycosh(Ary) — sinh(Ary)) —

= A(ury cos(uRy — ury) + sin(uRy — prp))
— C(Ary cosh(AR, — Arp) + sinh(AR, — A1p))
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do,(r) _ do, (r)

dr .+ dr -

S;A(urycos(ury) — sin(ury)) + S;;C(Argcosh(Ary) — sinh(Ary))
= —AS;(ury cos(uRy — ury) + sin(uRo — prp))
— €S;;(Ary cosh(AR, — Arp) + sinh(AR, — A1)

Applying the values to the matrix for the fast dirac delta source

sin(ury) sinh(Ary) —sin(uR, — ury) —sinh(AR, — Ary)
[ S;sin(ury) Sysinh(Ary) —S;sin(uR, — ury) =Sy sinh(AR, — Ary) ]
| urg cos(uRy — ury) + sin(uR, — pry) Argcosh(Ary) — sinh(Ary) ury cos(uRy — pury) + sin(uRy — ury)  Argcosh(ARy — Ary) + sinh(AR, — Ary) |
S;(ury cos(uRy — uro) + sin(uRo — urp)) Sy (Argcosh(Ary) — sinh(dry)) S, (prp cos(uRy — ury) + sin(uRy — ury)) S (Arg cosh(ARy — Arp))
0
C 72
2| =[70°qo|
4 D
C 1
0

Therefore the coefficients

A= __ Suroqocsc(uro)sin(uRo—uro) (4.90)
uD1(S1=Sm)

A — _SIITOqOCSC(AurO)Sin(”rO) (4.91)

uD1(S1=S11)
S1r0qocsch(ARg)sinh(ARy—Ary)

C = 4.92
AD1(S1=S11) ( )

C—: — _ SiToqocSsch(ARy)sinh(Ary) (493)

AD1(S1—S11)
Since coefficients are obtained k can be obtained

S

k.=——
S S+0

For the sake of practicality

A = a csc(ury)sin(uRy — ury)

A = dcsc(ury)sin(ury)

C = c csch(ARy)sinh(AR, — Ary)

C = ¢csch(ARy)sinh(Ary)
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Asin(ur)  Csinh(Ar,
[ r(#) r( O)for0<r<1”0 ]
?,(r) — A Csi
Asin(uR r) Csinh(AR, — Ar |
l (Mo ﬂ)+ (ro )forr0<T<RoJ
SiAsin(ur) Sy Csinh(Ar,
I r(ﬂ)+ 1 r( O)for0<7‘<7‘o ]
Pu) =\, dsinGuRo — pr) _SuCsinh(AR, — Ar) |
. + - forry <r <Ry

3

47R,
S =0Xr10r +9Xr2011) 3

Q = 4mqoR,”

Rg 1 3 Ro
b= | 0,Marridr———=—
! 0 ! 47TRO3 Ro3 0
3

3 To
¢ =—3 <Af rsin(ur)dr + Cj
Ro 0 0

Ry
+C f rsinh(AR, — Ar)dr)
To

@,(r) ridr

o Ro
rsinh(Ar)dr + A J rsin(uR, — ur)dr
T

0

3 : - Argcosh(Ary) — sinh(A
b, = = (A (sm(uro) #/:rocos(uro)> N C( rocosh( ro/l)2 sinh( r0)>
0

R, — sin(uR 1) — Urgcos(uR, — ur
+A<uo (URy — pury) — procos(uR, H0)>

12
; </’lr0cosh(AR0 — Ary) — Arg + sinh(AR, — Aro))>

AZ
To

3 To
b = F(AS,I rsin(ur)dr + CS,,f rsinh(Ar)dr
0 0 0

RO RO
+ A4S, f rsin(uRy, — ur)dr + CSy, f rsinh(AR, — Ar)dr)
To To

O3 ‘le A2

b = 3 <AS, <sin(,ur0) - ,urocos(/u"o)> Lcs, <Arocosh(lr0) — sinh(/lro)>

+ AS;

(uRo — sin(uRy — pry) — procos(uRy — Wo)>
e

- Arqgcosh(AR, — Ary) — Ary + sinh(AR, — Ar
+CS,,< 0 (AR 0) — 0 (AR, o)>>
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Hence

3
. O f1b1+95 p2 1) 222
- 3
Y OS5 b1 R L amgoRo?
ks
M. =
ST 1k
o 1 —keyy
kepp 0
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5. MATHEMATICA MODELS FOR BENCHMARK SOLUTIONS

5.1 One Group One Region Flat Source

Plotting the analytical solution for k.rr and ks for dimensionless system (x =
BmRy), it can be observed that at x=0 and criticality level, just as k.sr and ks values

are at 0 and 1 respectively.kis 1.03 (For nuclear parameters refer 6.1.0ne Group
One Region Flat Source).

ks
10 -

0.8 |-

0.6 —_— keff

04 |

0.2 |

Figure 5.1 : One group one region flat source change of k.r and k with radius.

Plotting the analytical solution for M, for dimensionless system (x = B, Ry);
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Figure 5.2 : One group one region flat source change of M, with x.

Plotting the analytical solution for ¢* for dimensionless system (x = B,,Ry);
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Figure 5.3 : One group one region flat source change of ¢* with x.

With one region flat source, as dimensionless radius increases source efficiency
decreases. . Even though at first inspection this seems like an unexpected result, it is
only natural. Since source neutrons are produced at every radial position with equal
probability, the increase in the system radius, leads to an increase in the fraction of
source neutrons that escape from the system without causing fission. Thus source

efficiency drops.

5.2 One Group One Region Dirac Source

Plotting the analytical solution for k.rr and kswith respect to dimensionless system
(x = BnRy); it can be observed that at x=0 and at criticality level, both k,¢¢ and k;

values are 0 and 1 respectively. k., is 1.03.Dirac Delta Source is at 0.75 x = 31/4
(For nuclear parameters refer 6.2.0ne Group One Region Dirac Source)
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Figure 5.4 : One group one region Dirac source change of k.. and kg with x.
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Plotting M with respect to dimensionless system
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Figure 5.5 : One group one region Dirac source change of M with Xx.

Plotting the analytical solution for ¢@* (seff),with respect to dimensionless source
position (y = By,1y)
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Figure 5.6 : One group one region Dirac source change of ¢* with .

The system is chosen, has dimensions that corresponds almost to criticality, in which
we have a very slightly subcritical system. From the figure, it is evident that
maximizing source efficiency requires that we place the Dirac source at the center.
Since the relative importance of the source is at a maximum when it is placed at the

center, the source efficiency reaches its maximum value as expected.

5.3 One Group Two Region System With Flat Source In the Inner Region

Plotting the analytical solution for k.r and k; as a function of system radius (R, in
cm), it can be observed that at beginning and criticality level, just as k.sr and kg

values are at 0 and 1 respectively. Source region radius is ry = 4.1745
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(For nuclear parameters refer 6.3.0ne Group Two Region System with Flat Source in
the Inner Region)

Kk

08 t+ — ks
06 |——  keff
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Figure 5.7 : One group two region with flat source in the first region change of k¢

and k, with R,

Plotting the analytical solution for M with respect to system outer radius (R, in cm),

10 15 20 % 0 3 40

Figure 5.8 : One group two region with flat source in the first region change of M,
with R,

Plotting the analytical solution for ¢* with system outer radius (R, in cm).
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Figure 5.9 : One group two region with flat source in the first region change of ¢*
with R,

Naturally as blanket area radius of the system increases, source efficiency increases

proportionally.

5.4 Two Group One Region Dirac Source

Plotting the analytical solution for k., tks and k, for radius (x), it can be observed
that at beginning and criticality level, just as, tk, and k, values are at 0 and 1 and
source at the center respectively. k; and tk, refer to the values of the subcritical
multiplication factor when the Dirac delta source is in the fast and thermal groups,
respectively. (For nuclear parameters, refer 6.4.Two Group One Region Dirac

Source).

10 ¢
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04 |

02 r
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Figure 5.10 : Two group one region Dirac source change of k.sf,tks and ks with R,

(ro is placed at Ry /2).
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Considering the plot of,tk;and ks, tk, is always greater than k, since the thermal

neutrons have more capacity to cause fissions that the fast neutrons.

Plotting the analytical solution for M with system outer radius (R, in cm).

Figure 5.11 : Two group one region Dirac source change of M., tM, with R,,.

Variation of, tkg and k,with respect to source position (r, in cm)

099
098 ¢

097 ©

0% |

095 |

094 ¢

093 ¢

Figure 5.12 : Two group one region Dirac source region change of tk.k, with

source positron r.

Plotting the analytical solution for ¢* ,t™* with respect to source position (r, in cm)
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Figure 5.13 : Two Group One Region Dirac Source Region change ofg™, to* with

respect to source position ry.

Relation of source position and source efficiency is displayed at the figure above.As
source is moved towards the boundary of the core, source efficiency drops
drastically.
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6. COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

6.1 One Group One Region Flat Source

For one group one region flat source problem the finite difference multi group

diffusion code DIFSP (A.Ozgener, 2012) model is used with a 1000 node mesh and

unit source being at a position of every given node.

Table 6.1 : One Group One Region Flat Source Numerical Analytical Comparison.

Numerical Analytical Error%
D(cm) 5 5
Ya(1/cm) 0.1 0.1
9Y5(1/cm) 0.103 0.103
Yr(1/cm) 0.0429 0.0429
ko 1.03 1.03
B, 0.0244948974278 0.0244948974278
Ry(cm) 96.19123725999  96.19123725999
x = B,R, 1.875112 1.875112
kg 0.92431651772 0.924316 0.0001%
kess 0.950000036105 0.95000002 0.0000%
M 12.2129226869 12.2129 0.0002%
Q* 0.642784915989 0.642784 0.0001%

6.2 One Group One Region Dirac Source

For One Group One Region Dirac Source problem, the finite difference multi group

diffusion code DIFSP (A.Ozgener, 2012) model was used with a 1200 node mesh

and unit source being at a position of every 800th node.
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Table 6.2 : One Group One Region Dirac Source Numerical Analytical Comparison.

Numerical Analytical Error%
D ) 3)
Y. (1/cm) 0.1 0.1
9Yr(1/cm) 0.103 0.103
Yr(1/cm) 0.0429 0.0429
k., 1.03 1.03
B, 0.0244948974278 0.0244948974278
ro(cm) 64.127 64.127
Ry(cm) 96.19123725999  96.19123725999
y = BT 1.570784 1.570784
x = B,R, 2.356194 2.356194
kg 0.974744 0.974683 0.006%
kess 0.9778481 0.977848 0.000%
Mg 38.5951 38.4992 0.248%
Q" 0.874322 0.872151 0.248%

6.3 One Group Two Region System with Flat Source in the Inner Region

For One Group Two Region with Flat Source in the First Region problem the finite
difference multi group diffusion code DIFSP (A.Ozgener, 2012) model was used

with a 480 node mesh and unit source having radius value of 4.1745 cm

56



Table 6.3 : One Group Two Region with Flat Source in the First Region Numerical
Analytical Comparison.

Numerical Data Analytical Error%
D;(cm) 2.08018 2.08018
D;;(cm) 1.81454 1.81454
Y (1/cm) 0.0177676 0.0177676
Y (1/cm) 0.00469138 0.00469138
9Yr1(1/cm) 0 0
I s (1/cm) 0.0142548 0.0142548
xs(1/cm) 0 0
Y (1/cm) 0.0059395 0.0059395
k. 1.03 1.03
B 0.072598 0.0244948974278
L,(cm?) 10.82022 10.82022
ro(cm) 4.1745 4.1745
Ro(cm) 42 42
kg 0.975987274173 0.975986 0.0001%
kesf 0.9556117031549 0.9556117031549 0.0000%
Mg 40.64458492715 40.6432 0.0004%
Q" 1.88794663662552 1.8879551692259 0.0005%

6.4 Two Group One Region Dirac Source

For Two Group One Region Dirac Source the finite difference multi group diffusion
code DIFSP (A.Ozgener, 2012) model was used with a 500 node mesh and unit

source being at a position of 250th node.
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Table 6.4 : Two Group One Region Dirac Source In the First Region Numerical
Analytical Comparison.

Numerical Data Analytical Error%
D4(cm) 1.2105 1.2105
D,(cm) 0.21958 0.21958
Y .1(1/cm) 0.033338 0.033338
Y 2(1/cm) 0.05579 0.05579
Y 21(1/cm) 0.0295616 0.0295616
9Yr1(1/cm) 0 0
IV f2(1/cm) 0.11772 0.11772
Sr1(1/cm) 0 0
Yr2(1/cm) 0.04864 0.04864
ko 1.21975 1.21975
B, 0.531073 0.531073
Tro(cm) 12 12
Ry(cm) 24 24
kg 0.764540621248 0.763095 0.18908%
tkg 0.850309992983  0.8492868812705 0.12032%
kess 0.7202643559899 0.7202641806754 0.00002%
Mg 3.24701706 3.221101 0.79815%
Q" 1.2610736636160 1.25101 0.79806%
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7. SOURCE EFFICIENCY

7.1 Target Radius and Source Efficiency

To observe the variation of source efficiency radius with respect to target, numerical
solutions are obtained for two region system, values below were obtained, while
k.sr is kept constant at the value of 0.95. Inner region is the target region with a flat
source and outer region is the blanket region. Four Group two region finite difference
multi group diffusion code DIFSP (A.Ozgener, 2012) model was used with a 500

node mesh and a four energy group model. Nuclear parameters are listed below.

Table 7.1: Nuclear Parameters for 7.Source Efficiency.

Values Values
D;1(cm) 2.09 Yara(1/cm) 0.03151
D, (cm) 1.66 91 (1/cm) 0
D3(cm) 1.08 9Yr12(1/cm) 0
D4(cm) 0.64 9Yr13(1/cm) 0
D1 (cm) 1.84 9y r1a(1/cm) 0
D;jp(cm) 1.64 Y i (1/cm) 0.013302124
Dy;3(cm) 0.989 Y r112(1/cm) 0.023409464
Dj4(cm) 0.878 Y ri3(1/cm) 0.02015619
Yar1(1/cm) 0.018138 9Yr114(1/cm) 0.049034
Yarz(1/cm) 0.01247 Ys121(1/cm) 0.000238
Yar3(1/cm) 0.0158 Ye31(1/cm) 0.00137
Yara(1/cm) 0.0351 Ys1a1(1/cm) 0.0022
Yar1(1/cm) 0.0039491 Ysi21(1/cm) 0.0000121
Yarz(1/cm) 0.0118671 Ysi31(1/cm) 0.0000571
Yar3(1/cm) 0.010715 Ysr141(1/cm) 0.000105

The ks is kept at constant value of 0.95. To render this possible R, (system radius)

and r,, (target radius) are modified.
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Table 7.2: Target Radius and Source Efficiency Comparison.

Tro(cm) Ry(cm) keff kg Mg Q" P(Watt)
0.0625 40.97193 0.949999521722 0.972554259247849 35.43553 1.865046461756720 0.0000000000002973794654
0.125 40.97195 0.949999860222 0.972552357507547 35.43300 1.864900303429520 0.0000000000023788661686
0.25 40.97203 0.950000186708 0.972544338785647 35.42236 1.864327453221380 0.0000000000190252110540
0.5 40.97256 0.949999569168 0.972511675905656 35.37908 1.862073843628670 0.0000000001520156208195
1 40.97695 0.950000083236 0.972386511688772 35.21419 1.853374959330470 0.0000000012104544876905
3 41.09973 0.949999919974 0.971196538495191 33.71805 1.774637169845170 0.0000000312939527171478
5 41.50745 0.950000082635 0.969215407120668 31.48378 1.657038268223480 0.0000001352897354678510
10 43.98530 0.950000493715 0.962663259337411 25.78327 1.357000097155880 0.0000008868112461472930
15 47.91340 0.949999960229 0.955194027217932 21.31845 1.122024784312170 0.0000024762530457723800
20 52.50733 0.950000250319 0.947187747203483 17.93500 0.943942387266174 0.0000049404222330101200
25 57.36890 0.949999584802 0.938747917418254 15.32598 0.806637340626208 0.0000082481270283522400
30 62.33300 0.950019943309  0.930021062140552 13.29001 0.699180745204809 0.0000123617689945867000
35 67.33235 0.950000024077 0.921041235502779 11.66484 0.613938556877638 0.0000172316240579757000
40 72.34385 0.949999790016 0.911990962480583 10.36247 0.545395539895960 0.0000228518339700811000
45 77.35773 0.949987443124 0.902897031428666 9.29835 0.489516022592566 0.0000291974291961845000
50 82.37085 0.950000050483 0.893882854551522 8.42355 0.443344153573524 0.0000362847721010127000
60 92.39226 0.949999734183 0.876048187907571 7.06765 0.371983729897443 0.0000526105255691546000
70 102.40790 0.950000401408 0.858668169665760 6.07555 0.319762926310529 0.0000718190844977592000
90 122.42800 0.950000219044 0.825510540299350 4.73101 0.248999125163749 0.0001188673992171600000
110 142.43960 0.950000440233 0.794553532900184 3.86745 0.203548009404734 0.0001774179867009440000
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Table 7.2 (Continued)
130
150
210
270
330
390
450
510
570
630
690
750

162.44635
182.45005
242.50000
302.43690
362.42210
422.39880
482.37035
542.33715
602.29950
662.25766
722.21187
782.16225

0.949999613997
0.949999922556
0.951587163058
0.949913885256
0.949999723965
0.950000126084
0.950000425332
0.950000294998
0.949999834145
0.949999601602
0.950000381021
0.949999555659

0.765688459594175
0.738762212196719
0.675365300402386
0.608839999052244
0.559815788131165
0.517576721663524
0.481054826145930
0.449140474781388
0.420994785267375
0.395973541409781
0.373573920032092
0.353381067173693

3.26782
2.82793
2.08039
1.55650
1.27178
1.07287
0.92699
0.81534
0.72710
0.65556
0.59636
0.54651

0.171992041147492
0.148838670757888
0.105841445431462
0.082069511094135
0.066935976524076
0.056466611381372
0.048788291372031
0.042912620123921
0.038268563185204
0.034503269198201
0.031386987509892
0.028763737924662

0.0002474528603790480000
0.0003289673028434350000
0.0006641639168516150000
0.0010559935784767700000
0.0015753490671601500000
0.0021936260396814000000
0.0029115840999198900000
0.0037279125705493400000
0.0046411629003283300000
0.0056498011701029100000
0.0067522408221065600000
0.0079462921999401600000
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Figure 7.1: Target Radius and Source Efficiency Comparison.

While target radius increases, source efficiency decreases drastically, therefore the

target radius must be kept as small as possible to maximize source efficiency. But

since power level decreases as target radius decrease, an optimal value should be

chosen that take bot power and source efficiency

7.2 Blanket Radius and Source Efficiency

To study the variaton of source efficiency with blanket radius R, through numerical

solution, values below are obtained keeping r, at the constant value of 5.2 cm.

Table 7.3: Blanket Radius and Source Efficiency Comparison.

ro(cm) Ry(cm) kess kg M P P(Watt)
52 40  0.901962776  0.936698781 14797484 1.608385947  0.0000000712800771
52 40,5 0.917346675  0.947303259  17.97650558 1.619690788  0.0000000866922427
5.2 41  0.932676906 0.95762368  22.59808492  1.63118973  0.0000001091005816
5.2 415  0.947951114 0.96766005  29.92150704 1.642891812  0.0000001446123228
5.2 42 0.963167037  0.977412636 43.272542  1.654807401  0.0000002093566545
5.2 425 0978322511  0.986881913  75.23062837 1.666946363  0.0000003643408384
5.2 43 0.99341546  0.996068574  253.3606503 1.679320808  0.0000012282240051
5.2 431 0.996426371  0.997872067  468.9396269 1.681826369  0.0000022737294600
5.2 43.2  0.999434686  0.999664297  2977.827484 1.684359629  0.0000144412336397
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Figure 7.2: Blanket Radius and Source Efficiency Comparison.

While blanket radius increases, source efficiency increases almost linearly. This
increase is expected due to the fact that increase in multiplying region radius,

heightens the possibility of source neutrons to cause fission. But since k,fr must be

kept around 0.95, there is a limitation on blanket radius.

7.3 Am-Pu Ratio Comparisons for An ADS

To demonstrate a fuel model for an ADS,@* and other key parameters will be

calculated for various ratios of Americium and Plutonium

Table 7.4: Elemental Densities.

Fuel Composition By Weight Elemental Density (g/cm®)
U (52.98%) 5.83
Pu(26.73%) 2.94
Am(9.01%) 0.99
O (11.27%) 1.27
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Table 7.5: Isotopic Compositions.

Elemental Composition (By Atom %) U Pu Am

25y 3.8
28y 96.2

238Pu 5

29py 38

240py 30

24lpy 13

42y 14

“Am 67

2BAm 33

To obtain percentage of an Americium and Plutonium mixed fuel

26.73
(26.73 + 9.01)

= 0.7479 = 74.79% Pu in (Pu — Am)

9.01
(26.73 + 9.01)

= 0.2521 = 25.21% Am in (Pu — Am)

For Elemental Composition

AV = 0.038 * 235 + 0.962 * 238 = 237.89

AP* = 0.05 % 238 + 0.38 * 239 + 0.3 * 240 + 0.13 = 241 + 0.14 * 241 + 0.14
* 242 = 239.53

AA™ = 0.67 * 241 + 0.33 = 243 = 241.66

y_ 5.83%0.6022 0.014766 b-1crm-1
7T 23789 cm

NPu = 2.94%0.6022 _ 0.007379 b~ tcm™?
23993

am _ 099 %0.6022 0.0024676b *cm™1
24186

1.24 % 0.6022
NO = — - 0.04667 b~ tcm™t
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Table 7.6: Elemental Atom Densities.

Element Densities (b~1cm™1)
25 0.01476*0.038=5.61*10"*
28y 0.01476*0.962=1.42*10"
2%8py 0.007379*0.05=3.69*10*
29py 0.007379*0.38=2.80*10"
40y 0.007379*0.3=2.21*107°
#lpy 0.007379*0.13=9.59*10"*
22py 0.007379*0.14=1.03*10"°

2 Am 0.002467*0.67=1.65*10"
“BAm 0.002467*0.33=8.14*10™

For one group microscopic cross sections

Table 7.7: Elemental One Group Cross Sections.

Element o.(b) os(b) o.(b)
25y 2.55 1.97 12.05
28y 0.453 0.025 12.54
238p 1.79 1.025 13.17
239py 2.34 1.78 12.26
240py 0.96 0.29 11.86
#lpy 3.01 2.58 11.91
42y 0.73 0.19 12.42

“Am 2.15 0.19 12.30
“BAm 1.73 0.15 12.67
%0 0.0006 0 3.5

Hence it is possible to calculate the macroscopic cross sections

i=10
Y = Z ElementDensity(i) * 0., (i) = 0.468 cm™1

=1

D =0.712cm

3%
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i=10

Yo = Z ElementDensity(i) * o,(i) = 0.0258 cm™1

=1

i=10

Yr = Z ElementDensity(i) * o7 (i) = 0.0106 cm™"

=1
Foramean9 = 2.94

9)r = 2.94%0.0106 = 0.0312 cm™?

The target cross sections are as given in Table 7.8.

Table 7.8: Target and Fuel Cross Sections.

D(cm) Ya(em™) Ys(cm™) Yy(em™)
Target 2.080 0.00178 0 0
Fuel 0.712 0.0258 0.0312 0.0106
Y

ko = —— = 1.2093
)

a

Now that k., is obtained for the values of fuel and target, the parameters of k, can be

calculated for the values of
Ty = 4.1745; R, = 32;

AS:

ks = 0.972375; ko = 0.951847; M, = 35.1999; ¢ = 1.780732

The same calculations are made for different ratios of plutonium and americium

mixes
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Table 7.9: Nuclear Parameters for Pu/Am Mix Percentages.

%Pu/%Am  Target 80/20 75125 70/30 65/35 60/40 55/45 50/50
D 2.080 0.71167  0.711542  0.711414  0.711286 0.711158 0.71103 0.710903
Ya 0.00178 0.0257226 0.0258394 0.0259563 0.0260731  0.0261899  0.026306 0.0264236

9 s 0 0.0326164 0.0311643 0.0297122 0.02826 0.0268075  0.025355 0.0239036
Xf 0 0.011094 0.0106001 0.0101062 0.00961225 0.00911833 0.00862441 0.00813049
ko 0 1.26801  1.20607 1.1447 1.08388 1.0236 0.96385 0.904633
To 4.1745 41745 41745 4.1745 4.1745 4.1745 4.1745 4.1745
R, 0 32 32 32 32 32 32 32
kg 0 0.998661 0.971088  0.940340  0.906704 0.870468 0.831917 0.791319

kess 0 0.997512 0.949746 0.902312  0.85521 0.808440 0.761994 0.715864
M 0 745.6777 33.587356 15.761737 9.718536 6.720120 4.949431 3.379200
Q" 0 1.86009 1.777219 1.706426  1.645379 1.592339 1.545939 1.505096

1

0,95 /
0,9 /

0,85 /

0,8 /

>
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0,75
50 55 60 65 70 75 80 85
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Figure 7.3: kg vs plutonium weight percentage in Pu Am Fuel.
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Figure 7.4: ¢*vs plutonium weight percentage in Pu Am Fuel.

With respect to these values that are obtained with plutonium ratio increasing, values
for k¢ and ¢* also increase, which is an expected result, since fission cross section of

Pu isotopes are higher than Am isotopes.
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8. CONCLUSION

One of the most important aspects of ADS design is the optimization of source
efficiency, while keeping k. at a value (For example 0.95) that will both guarantee

the sub criticality and continuous operation of the system.

In this thesis, the change of source efficiency has been observed with respect to
various parameters. First, through analytical solutions of benchmark problems,
source efficiency for four problems has been calculated. (Through
MATHEMATICA)

Then, using the finite difference multi group diffusion code DIFSP (A.Ozgener,
2012), results for the same benchmark problems have been obtained and compared to
analytical results.

After confirmation of analytical and numerical results, the change in source

efficiency with respect to material composition and geometry has been demonstrated

As such, while target radius increases, source efficiency decreases drastically,
therefore the target radius must be kept as small as possible to maximize source
efficiency in an ADS design

While as blanket radius increases, source efficiency increases almost linearly.

Also a benchmark americium and plutonium mixed fuel, with Americium ratio
increasing, values of k.sr,ks and ¢* decrease fast. Therefore, in ADS fuel design the

americium content must be kept within certain limits if the source efficiency is not to

assume undesirably low values.
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