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APPLICATION OF MESHLESS RBF COLLOCATION METHODS TO
NEUTRON DIFFUSION AND TRANSPORT

SUMMARY

In the last decades, meshless methods have become an alternative tool to
conventional schemes, such as the finite difference method, the finite element
method and the boundary element method, for modelling physical phenomena in
many fields of science and engineering. With these novel techniques various types of
problems governed by partial differential, integral and integrodifferential equations
are solved numerically without the necessity of creating a predefined mesh.

There are several kinds of meshless methods based on different numerical
formulations. Among these, the radial basis function (RBF) collocation method has
some important characteristics together with its meshless nature, which makes it an
ideal numerical approximation scheme for the solution of differential equations. First
of all, this collocation scheme is a strong-form method, which means there is no need
for numerical integration and hence a background mesh in the numerical
formulation. When it is compared to the weak-form methods, the RBF collocation
method is defined to be a truly meshless method. The second significant property of
RBF collocation is the exponential convergence rate of the method. It is possible to
obtain highly accurate solutions even when the number of nodes to represent the
problem domain is low. The last feature of this collocation method worthy of
attention is its ease of implementation in computer programs. The coding step of the
RBF collocation method is easier than those of other meshless and conventional
mesh-based methods.

The RBF collocation solution of a differential equation is actually a generalized
interpolation problem. The dependent variable of the governing equations and
boundary conditions, in this case the neutron flux, are interpolated by a finite series
of radial basis functions. After this approximation step, the resultant equations are
satisfied at the interpolation nodes, which can be uniformly or randomly distributed
throughout the domain. Although numerous radial basis functions exist in the
literature the generalized multiquadric, which was first proposed for surface fitting,
has dominated this class of functions in both function approximation and numerical
solution of differential or integral equations.

Even though the RBF collocation method has been applied to a wide range of
problems, its use in heterogenous configurations is limited. Recently, a weighted
version of this method is proposed to tackle multidomain problems of solid
mechanics. In this method, the weights, which depend on the number of interpolation
nodes and physical parameters of the media, are determined by balancing the
approximation error due to the interpolation with RBFs of domains with those of the
boundaries and interfaces.

Neutron diffusion and neutron transport equations are being studied for a long time
to model the behavior of neutrons in a multiplying or nonmultiplying system.
Although analytical solutions are given in many situations, real life examples of

xxiii



nuclear technology necessitate the use of advanced numerical approximation
techniques to obtain a reliable and detailed analysis of the problem in question. It is
impossible to get an analytical expression for a complex multi-component nuclear
system even with the simpler diffusion approximation. These equations have been
solved with the finite difference, finite element and boundary element methods, and
the studies in this area have gained momentum lately with the recent advances in the
computational capabilities.

The purpose of this study is to solve the time-independent neutron diffusion and
transport equations numerically by the RBF collocation method and therefore
introduce this promising meshless method into the field of nuclear reactor physics. In
this context, the two-dimensional multigroup neutron diffusion equation is
approximated with RBFs in both homogeneous and heterogeneous media, while the
one-speed neutron transport equation is considered in a one-dimensional
configuration. The performance of the meshless collocation technique is assessed by
performing numerical experiments for various cases. The accuracy, stability and
convergence rate of the method are investigated through these calculations.

In case of homogeneous media, five diffusion problems are solved with the RBF
collocation method. One of these is an external source example while the rest are
multigroup fission source problems. The external source and four-group fission
source cases are studied in detail, and the performance of the RBF collocation
method is compared with the finite element and boundary element methods
employing linear shape functions. Multiquadric, inverse multiquadric and Gaussian
are used as the radial basis functions. The root mean square error and relative percent
error in the multiplication factor have shown that the multiquadric and inverse
multiquadric functions are better than the Gaussian in terms of both accuracy and
stability. It was found that by carefully selecting the value of the shape parameter
highly accurate solutions can be obtained with the collocation method even with a
few number of interpolation nodes. Also increasing the value of the shape parameter
has improved the convergence rate of the method. When the results of multiquadric
collocation are compared with those of linear finite element and boundary elements it
is seen that the exponentially convergent RBF collocation is superior in accurate
determination of the multiplication factor while boundary element method has
produced the best flux values. On the other hand the finite element method has a
much better computation time than the collocation scheme.

For multidomain neutron diffusion, both the conventional and weighted forms of the
RBF collocation method are used for the numerical solution. Five problems are
considered. First a one-dimensional two-region external source problem is solved
with RBF collocation, and it was found that extraordinary accuracies are achievable
with the arbitrary precision computation feature of MATHEMATICA. Then a two-
dimensional two-region problem, for which an analytical solution is available, is
dealt with, and the results have revealed that both versions of the RBF collocation
method are capable of yielding good accuracies. The next two problems involve
corner singularities, and it was seen that, when the heterogeneity between the regions
is high, the conventional form of the RBF collocation technique yield accurate
results, while its weighted counterpart gave up oscillatory solutions with poor
accuracy. The last example of multiregion case is a five-region International Atomic
Energy Agency benchmark problem. Considering the lack of robustness of the
weighted collocation method in the corner singularity problem with high
heterogeneity, this benchmark is solved only with the conventional form of the RBF
collocation. The numerical multiplication factor values show that the meshless
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technique of this study is an effective method in solving multiregion neutron
diffusion problems.

The final task of this work is the numerical solution of neutron transport equation
with the RBF collocation method. The Py approach is chosen for the angular
variable, and solutions are obtained with both conventional and even-parity forms of
the transport equation. Four problems are treated in this context. The external source
problem can be dealt with two different approaches within the even-parity form.
When the P; approximation is utilized, the resulting two second-order differential
equations can be cast into a fourth order one, and it is found that, the numerical
modelling must be made by approximating coupled second-order differential
equations instead of directly interpolating the fourth-order equation. The second
example is a fission source case, and the numerical experiments have shown that
highly accurate solutions are obtained for both the flux distribution and
multiplication factor. Finally, in the third and fourth problems Pu-239 benchmarks
with isotropic and anisotropic scattering are tackled, respectively. The isotropic case
Is solved with both forms and identical solutions are obtained for the multiplication
factor. Also the results are compared with those of discrete ordinates method
utilizing finite difference and finite element method for the spatial variable, and it is
seen that the P collocation solutions are equivalent to the Sg results. The anisotropic
problem is solved with the convetional form of the transport equation and the RBF
collocation method yield a good accuracy, even with the Ps approximation.
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AGSIZ RBF KOLLOKASYON YONTEMLERININ NOTRON DiFUZYON
VE TRANSPORTUNA UYGULANMASI

OZET

Son yillarda agsiz yontemler, bilim ve miihendisligin bir¢cok alaninda fiziksel
olaylarin modellenmesi amaciyla, sonlu farklar metodu, sonlu eleman metodu ve
siir eleman metodu gibi geleneksel yontemlere alternatif hale gelmislerdir. Bu yeni
yontemler sayesinde herhangi bir Ontanimli aga ihtiyag duymadan, kismi
diferansiyel, integral ve integrodiferansiyel denklemler tarafindan betimlenen bir¢ok
problem sayisal olarak ¢oziilmiistiir.

Literatiirde farkli sayisal formiilasyonlara bagli olarak ¢esitli agsiz yontemler bulmak
miimkiindiir. Bunlar igerisinde radyal baz fonksiyonu (RBF) kollokasyon yontemi
temel karakteristigi olan agsizligin yaninda bazi onemli Ozellikleriyle diferansiyel
denklemlerin ¢oziimii icin ideal bir sayisal yaklasim metodudur. Oncelikle bu
yontem bir giiclii-form yontemidir ve bu sebeple sayisal formiilasyon igerisinde bir
integrasyona ve dolayisiyla bir arkaplan agna ihtiyag duyulmaz. Bu ozellik
sayesinde RBF kollokasyon yontemi diger zayif-form agsiz yontemler ile
karsilastirildiginda, gercek anlamda agsiz bir yontem olarak siniflandirilir. Bu
yontemin ikinci belirgin 6zelligi {istel yakinsama hizidir. Problem bdolgesini temsil
etmek icin olusturulan nokta sayisi az bile olsa bu yakinsama hiz1 ile yliksek
dogruluklu ¢oziimler elde etmek miimkiindiir. Yontemin dikkate deger bir diger
Ozelligi ise bilgisayar programlarindaki uygulama kolayligidir. RBF kollokasyon
yonteminin programlama asamasit diger agsiz ve ag temelli ydntemlerin
programlanmasina gore daha kolaydir.

Bir diferansiyel denklemin RBF kollokasyonu ile sayisal ¢6ziimii aslinda bir
genellestirilmis  interpolasyon problemidir. Problemi tanimlayan diferansiyel
denklemin ve sinir kosullarinin bagimli degiskeni, ki bu ¢aligma kapsaminda notron
akisi, radyal baz fonksiyonlarinin sonlu bir serisi ile interpole edilir. Daha sonra bu
yaklagimla elde edilen denklemler, problem bolgesi boyunca diizenli veya rastgele
bir bicimde dagitilmis olan interpolasyon noktalarinda saglanirlar. Her ne kadar
literatiirde bir¢ok radyal baz fonksiyonu bulunsa da, ilk kez yiizey uydurma ig¢in
Onerilmis olan genellestirilmis multikuadrik fonksiyonu, bu fonksiyon sinifinda, hem
fonksiyon yaklagimi konusunda hem de diferansiyel veya integral denklemlerin
sayisal ¢oziimiinde baskin hale gelmistir.

RBF kollokasyon yontemi bugiline kadar bircok alanda bir ¢dziim araci olarak
kullanilmig olsa da bu yontemin heterojen sistemlerin ¢oziimiindeki kullanimi kisith
kalmistir. Yakin bir zamanda bu yontemin agirlikli bir versiyonu, ¢ok bdlgeli kati
mekanigi problemlerinin ¢Oziimii i¢in Onerilmistir. Bu agirlikli  yontemde,
interpolasyon noktasi sayisi ve ortamin fiziksel parametrelerine bagli olan agirliklar,
sayisal yaklagim sonucu i¢ bolgelerde ortaya ¢ikan hata ile sinir ve arayiizlerde aciga
c¢ikan hatalar arasinda bir dengeleme yapilarak belirlenmistir.

Cogaltkan veya c¢ogaltkan olmayan bir ortamda nétronlarin davraniglarinin
belirlenmesi amaciyla, ndtron difiizyon ve transport denklemleri {izerinde uzun bir
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siiredir ¢alisilmaktadir. Bazi durumlarda analitik ¢oziimler elde etmek miimkiin
olmakla birlikte niikleer teknolojinin ortaya koydugu gercek¢i problemlerde
giivenilir ve detayli bir analiz yapabilmek i¢in ileri seviyede sayisal yaklagim
ylintemlerine ihtiya¢ duyulmaktadir. Tahmin edilebilecegi gibi ¢ok bilesenli
karmasik bir niikleer sistem i¢in difiizyon yaklasimi durumunda bile analitik bir
¢ozlim elde etmek olanaksizdir. Notron difiizyon ve transport denklemleri bugiine
kadar sonlu farklar, sonlu eleman ve sinir eleman yontemleri ile ¢6ziilmiis olup son
yillarda bilgisayarlarin hesaplama yeteneklerindeki gelisimle beraber bu alandaki
caligmalar yeniden hiz kazanmistir.

Bu c¢alismanin amact zamandan bagimsiz nodtron difiizyon ve transport
denklemlerinin RBF kollokasyon yontemi ile sayisal olarak ¢oziilmesi ve dolayisiyla
bu umut vaat eden agsiz yontemin niikleer reaktor fizigi alanina bir ¢éziim yontemi
olarak dahil edilmesidir. Bu kapsamda iki boyutlu ¢ok gruplu nétron difiizyon
denklemine hem homojen hem de heterojen ortamlarda radyal baz fonksiyonlar ile
yaklagim yapilirken transport durumunda tek enerji grubuyla temsil edilen bir
boyutlu problemler ele alinmigtir. Agsiz kollokasyon yonteminin performans: farkl
durumlar i¢in yapilan sayisal deneylerle degerlendirilmis olup bu hesaplamalarla
yontemin dogrulugu, kararlilig1 ve yakinsama hizi incelenmistir.

Homojen ortam durumunda bes diflizyon problemi RBF kollokasyonu ile
¢ozlilmiistiir. Bu problemlerden bir tanesi dig kaynak problemiyken diger dordi ¢cok
gruplu fisyon kaynagi problemleridir. Dis kaynak ve dort gruplu fisyon kaynagi
problemleri detayli olarak incelenmistir ve RBF kollokasyon yonteminin performansi
lineer sekil fonksiyonlu sonlu eleman ve siir eleman yontemleri ile
karsilastirilmistir. Radyal baz fonksiyonu olarak multikuadrik, ters multikuadrik ve
Gauss fonksiyonlar1 kullanilmistir. Elde edilen ortalama karekok hatasi ve ¢ogaltma
faktoriindeki yiizde bagil hata degerleri, dogruluk ve kararlilik dikkate alindiginda,
multikuadrik ve ters multikuadrik fonksiyonlarinin Gauss baz fonksiyonuna gore
daha basarili oldugunu gostermistir. Sekil parametresinin ince bir sekilde
ayarlanmasiyla birlikte az sayida interpolasyon noktasi kullanilmasi durumunda bile
yiiksek dogruluklu ¢6ziimler bulunabilecegi anlagilmistir. Ayrica, yapilan hesaplarla,
bu parametrenin degerinin arttirilmasiyla yontemin yakinsama hizinin gelistigi
goriilmiistiir. Multikuadrik kollokasyon ile lineer sonlu eleman ve sinir eleman
yontemleri  karsilagtinnldiginda  iistel yakinsama  Ozelliine sahip RBF
kollokasyonunun c¢ogaltma faktoriiniin dogru bir bigimde belirlenmesindeki
Ustiinliigii ortaya konmustur. Buna karsilik nétron aki dagilimi agisindan en iyi
sonuglar sinir eleman yontemi ile elde edilirken, sonlu eleman yontemi ise
kollokasyon yaklasimindan ¢ok daha iy1 bir hesaplama zamanina sahiptir.

Cok bolgeli ndtron diflizyon problemlerinde sayisal ¢6ziim i¢cin RBF kollokasyon
yonteminin hem geleneksel hem de agirlikli formlar1 kullanilmistir. Bes problem
tizerinde durulmus olup bunlardan ilki bir boyutlu iki bolgeli bir dig kaynak
problemidir. Bu problemin ¢oziimii, MATHEMATICA’ ’nin rastgele hassasiyetle
hesaplama 0zelligi kullanildiginda, RBF kollokasyonu ile olaganiistii dogruluk
degerlerine ulasilabilecegini gdstermistir. Bu problemin ardindan analitik olarak
coziilebilen iki boyutlu, iki bolgeli bir durum ele alinmis ve RBF kollokasyonunun
her iki formuyla da iyi sonuglar elde edilmistir. Sonraki iki problem yapilarinda kose
tekilligi icermektedir ve bu problemler {izerinde yapilan incelemeler, bolgeler
arasindaki heterojenitenin yiiksek olmasi durumunda geleneksel formla dogru
sonuglar elde edilebilirken, agirlikli RBF kollokasyonunun salinimli ve hatali
sonuglar ortaya cikardigimi gostermistir. Cok bolgeli problemler kapsaminda son
olarak bes bolgeli bir Uluslararast Atom Enerjisi Komisyonu kiyaslama problemi
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tizerinde c¢alisilmistir. Agirlikli kollokasyon yontemi durumunda, kose tekilligi ve
yiiksek heterojenite iceren problemde karsilasilan saglamlik eksikligi dikkate
alinarak bu kiyaslama problemi yalmzca gelencksel form ile ¢ozilmistir. Elde
edilen sayisal ¢ogaltma faktorii degerleri, kullanilan agsiz yontemin ¢ok bdlgeli
noétron difiizyon problemlerinin sayisal ¢oziimii i¢in etkin bir yontem oldugunu
gostermistir.

Bu caligmadaki son gorev ndétron transport denkleminin RBF kollokasyonu ile
sayisal olarak c¢oziilmesidir. Hesaplamalarda acisal degisken i¢in Py yaklagimi
kullanilmis olup transport denklemi hem geleneksel hem de ¢ift-parite formlarinda
¢oziilmiistiir. Incelemede dért problem iizerinde durulmustur. Dis kaynak problemi,
cift-parite formunda, iki farkli yaklagimla ¢oziilebilir. P; yaklasimi kullanildiginda
elde edilen iki ikinci derece diferansiyel denklem tek bir dordiincii derece denkleme
indirgenebilir ve yapilan hesaplamalar, sayisal modellemenin, baglasik ikinci derece
denklemler iizerinden yapilmasi gerektigini gdstermistir. Ikinci problemde bir fisyon
kaynagi durumu ele alinmis ve hem notron aki dagilimi hem de ¢ogaltma faktorii igin
yiiksek dogruluga sahip sonuglar bulunmustur. Son olarak, ii¢iincii ve dordiincii
orneklerde sirasiyla bir Pu-239 kiyaslama problemi durumu, esyonli ve esyonsiiz
sacilma halleri i¢in ¢oziilmiistiir. Esyonlii problem her iki formla da incelenmis olup
elde edilen ¢ogaltma faktorii degerleri birbirleriyle neredeyse aymidir. Bu sonuglar
ayrica uzaysal degisken i¢in sonlu fark ve sonlu eleman yaklasimlarinin kullanildig:
ayrik ordinat ¢oziimleriyle de karsilastilmis ve Ps ¢oziimiiniin Sg sonucuna denk
oldugu gorilmiistiir. Esyonsiiz problem transport denkleminin geleneksel formuyla
¢cozlilmiistiir ve Pz yaklasimi altinda bile RBF kollokasyon yontemi iyi sonuglar
vermistir.
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1. INTRODUCTION

The fundamental problem of nuclear reactor physics is to determine the distribution
of neutrons in a multiplying or nonmultiplying system. The equation that governs the
physical processes in such a system is the neutron transport equation. This equation
is also known as the linear Boltzmann equation, since it is the linear version of the

famous Boltzmann equation which is used to study the kinetics of rarefied gases.

Neutron transport equation is an integrodifferential equation in seven independent
variables. Its dependent variable, the angular flux, is the physical parameter that
describes the spatial, angular, energy and time dependence of neutron distribution.
The analytical solution of this equation is possible only for highly idealized cases,
such as the Milne problem. In addition to the mathematical difficulties inherent in
this complex equation, practical systems are highly heterogeneous. As an example, a
nuclear reactor consists of fuel elements, moderators, control rods and structural
material, and in an engineering analysis, effects of these components has to be taken
into account carefully. For these reasons it is necessary to use numerical techniques

in the solution of the neutron transport equation.

In early years of reactor physics, because of the lack of computational capabilities,
engineers and scientists have focused on an approximate treatment of the neutron
transport process, the neutron diffusion approximation. This approximation ignores
the angular dependence of neutron distribution and it is analogous to other diffusion
processes, such as heat and gas diffusion, encountered in physics. Mathematically, it
is easier to deal with the neutron diffusion equation, but the highly heterogeneous
character of practical systems stated above necessitates the use of computational

methods for an accurate description.

There are two completely different strategies in computational neutron transport. In
the stochastic approach a finite number of particle histories are simulated through the
use of random numbers. This approach does not need any governing equation. These
stochastic methods are known as Monte Carlo methods. On the other hand, in



deterministic methods, the governing equation is discretized and one ends up with an
algebraic system of equations. Then this algebraic system is solved directly or
iteratively by conventional methods of linear algebra. In the deterministic approach
the time variable is usually discretized by implicit methods, such as the backward
Euler method, since these methods have the advantage of stability. For the energy
variable multigroup method is the proper choice. The angular variable can be
discretized by two methods, discrete ordinates (Sy approximation) or spherical

harmonics (P approximation).

The spatial variable of the neutron transport equation has been studied by many
numerical methods. Parallel to the evolution in computational science the first
method applied was the finite difference method (diamond difference). The finite
element method (FEM) is another important technique that has been introduced to
the field of neutron transport. It is the most widely used numerical method in science
and engineering, and many commercial simulation packages are based on this
scheme. These conventional methods are mesh-based approaches. The nodes that are

used to discretize the governing equation are connected by a predefined mesh.

Meshless or meshfree methods are a novel class of computational tools. As their
name implies, the most significant property that separates them from classical
techniques is that the nodes that represent the problem domain and its boundary are
not connected in a predefined manner to form a mesh. These methods were first
emerged in late 1970s, and they have been applied to a wide range of partial

differential and integral equations.

1.1 Purpose and Expected Outcomes of the Thesis

The purpose of this thesis is to apply the meshless methods to the time-independent
multigroup neutron diffusion and transport equations. In this context, the radial basis
function (RBF) collocation method and the weighted RBF collocation method are
utilized for the spatial discretization of these equations. For neutron diffusion both
homogeneous and multiregion problems are considered, while single domain
problems are studied in the transport case. Effects of different basis functions, shape
parameter strategies, and fill distance will be investigated. Accuracy and stability of
these collocation methods will be determined by using problems which can be solved



analytically or numerically, and the results will be compared with those of

conventional techniques.

By the completion of this thesis, it is expected that the RBF collocation technique
will become an alternative tool for the spatial treatment of neutron diffusion and
transport equations. It is also anticipated that these methods will be extremely useful
for the analysis of safety related problems and they will dominate the classical

discretization techniques.

1.2 Literature Review

The neutron transport equation and its approximation, the neutron diffusion equation
are studied both analytically and numerically by many books [1-6]. Among these
[1,2] present a detailed computational analysis of the neutron transport process, and
[6] is a reference which contains a comprehensive application of the FEM to both

equations.

As a result of the increase of computational capabilities in the last decades, the
research in computational neutron transport is boosted and many papers [7-12] can
be found in the literature. Meshless methods have not been applied yet to the neutron
transport equation, but several works [13-15] can be found in the field of radiative
transport which is governed by an equation similar to the neutron transport equation.
When neutron diffusion is considered, in a recent paper [16] the element free

Galerkin method is applied to the neutron diffusion equation.

Although the meshless methods have a short history, one can find an extensive
literature related to this topic. Many books [17-21] are devoted to this subject.
Among these [17] is a text that covers most of the methods in a well-structured way.
These methods have found themselves a wide range of application area which
includes structural mechanics [22-24], fluid dynamics [25-28], heat transfer [29-31],
acoustics [32], quantum physics [33], and countless papers can be found in the

literature.

1.3 Outline of the Thesis

This thesis consists of seven sections. In section 2 neutron transport and diffusion

processes are briefly described. The meshless methods are introduced in section 3,
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where special emphasis is given to the RBF collocation method. Then, numerical
solution of the homogeneous neutron diffusion equation is performed in section 4,
and it is followed by the modelling of multiregion problems in section 5. In section 6
the neutron transport equation is solved by the RBF collocation method. Finally, the

conclusions and recommendations of this study are presented in section 7.



2. NEUTRON TRANSPORT

2.1 The Time-independent Neutron Transport Equation

The distribution of neutrons in a time-independent multiplying or nonmultiplying
system is characterized by a dependent variable called the angular neutron flux. This

variable can be defined as follows [3]:

o(r E,Q,)dVdQdE = total path length traveled by neutrons,

(2.1)
in dVdQdE about (r, E, Q)

It can be seen from Eq. (2.1) that the angular neutron flux is a function of six
independent variables: three components, (x,y and z if Cartesian coordinates are
chosen), of the spatial variable, two angular variables (6 and ¢) and one energy
variable. The equation that governs the interaction of neutrons within any medium is

the neutron transport equation:

Q-Vo +2.(r,E)p(r,E, Q)

= jdﬂ'j dE'S,(E' - E, Q' - Q) E', Q") (2.2)
41 0

+ s(r,E, Q)

This equation is a linear integrodifferential equation. Here X.(r,E) is the
macroscopic total cross section characterizing the probability of all neutron-nuclei
interactions, £, (E' — E,Q — Q) is the double differential macroscopic scattering
cross section characterizing the scattering probability of a particle with energy E and
a direction Q' into an energy interval dE about E and into a direction dQ about Q
and s(r,E,Q) is a general neutron source. First term on left hand side of this
equation describes the streaming of the neutrons, while the second one is the
collision term. The streaming term describes the leakage of neutrons into or out of
the volume and the collision term is a measure of neutron losses due to any kind of
neutron-nuclei interaction. The two terms on right hand side of Eq. (2.2) express the
5



two gain mechanisms of neutrons. First one considers all neutrons that may scatter
from any energy E’ and direction Q' into E and Q, and the second one is simply the
source term which can be either an external source or a fission source depending on

the nature of the problem.

The derivation of the neutron transport equation can be done by simply considering
an arbitrary volume and taking into account the various mechanisms that add or
remove a neutron from it. Although this derivation is not given here it is useful to

summarize the important assumptions that lead to Eq. (2.2) [1,3]:

1) Particles are considered as points and their interaction can be described by
classical mechanics.

2) Particles travel in straight lines between collisions.

3) Particle-particle interactions are neglected since the particle densities are small
compared with atomic densities in many applications.

4) The transport process is assumed to be Markovian.

5) The neutron transport equation deals with expected or mean neutron population.

It is obvious from Eq. (2.2) that one needs boundary conditions to complete the
mathematical statement of the neutron transport problem. The boundary condition
depends on the configuration of the problem. In general there are two kinds of
boundary conditions: explicit and implicit [1]. For explicit boundary conditions the
angular neutron flux is explicitly known. As an example, the commonly used

vacuum boundary condition is an explicit one:
o, E,Q) =0, Q-n<0, ry€erl (2.3)

Here T represents the boundary of the problem domain, n is the unit outward normal
vector to T, and subscript s is used to denote surface. Implicit boundary conditions
are conditions that relate incoming and outgoing fluxes. The albedo boundary

condition is an example to this class
p(ry,E,Q) =a(E)p(r,E,Q), Q-n<0, r,€eTl (2.4)
where the reflection angle Q and the incidence angle Q' are related by:

Q-n=-Q"'n, AxQ) n=0 (2.5)



Note that for the special case of a(E) =1, Eq. (2.4) is the reflective boundary

condition.

Although Eq. (2.2) with boundary conditions is enough to fully describe the transport
problem mathematically, the source term has to be expressed explicitly. In the most

general case one can write:
S(rE,Q) = s (1 E, Q) + 5,(1, E) (2.6)

In this relation s, (7, E, Q) denotes the external neutron source while sq(r, E) is the
fission source which characterizes the fission event when there is a fissionable
material in the problem considered. If all the neutrons are assumed to be born

instantaneously (prompt neutrons) then the fission source takes the following form:

E co
se(r,E) :)%n) f dﬂ’f dE'v(E")Z(E" ) (r,E', Q") (2.7)
0

41T
Here X,(E) is the macroscopic fission cross section characterizing the fission

probability of a fissionable isotope, v(E) is the number of neutrons per fission and

x(E) is the fission spectrum.

For a complete analysis, the influence of delayed neutrons has to be considered. In
this case one has to work with a set of equations which are known as neutron kinetics
equations. But since the focus of this work is time-independent problems, the details
will be omitted and the final form of the time-independent neutron transport equation

will be given

Q-Vo +2,(r,E)p(r,E, Q)

= jdﬂ’j dE'S(E' > E,Q - Q)o(r, E', Q)

4m 0

x(®)
4

(2.8)

+ Jdﬂ’j dE'v(E")Z(E (T, E', Q')
41T 0

+So (1, E, Q)

where the fission spectrum is expressed by



XE) = (YA = B) + D (D 29)

In Eq.(2.9) x,(E) is the prompt fission spectrum, S is the fraction of delayed
neutrons, and y,,(E) and B,, are the fission spectrum and fraction of the mth

delayed neutron group, respectively. § and (3, are related by

6
Z Bm =8 (2.10)
m=1

It is well known from basic reactor physics that a time-independent solution can be
obtained in two cases. One must either have a nonmultiplying system with external
sources or a multiplying system without any external source. For the nonmultiplying

case, i.e. =0

Q-Vo +2.(r,E)e(rE, Q)

- (2.11)
= f dQ’ f dE'S,(E' - E,Q - Q)o(r,E', Q") + s, (1, E, Q)

41T 0

The situation is more complicated for source-free, multiplying system problem which

is governed by:

Q-Vo+3,(r,E)o(r E,Q)

= fdﬂ'f dE'S,(E' -» E,Q - Q)¢(r,E', Q")
0

41T

(2.12)
X(E) / 14 ! ! ! !

+? dQ dE U(E )Zf(E )(p(r,E ,Q)

4T 0

The complexity of this problem comes from the fact that, to obtain a time-

independent chain reacting (critical) system, fine adjustments in composition and/or

geometry have to be performed. The practical solution to this issue is to convert the

equation into an eigenvalue problem. The most common formulation is the A-

eigenvalue formulation, which can be achieved by simply replacing v by v/A. By

doing this replacement, the number of neutrons per fission is “magically” adjusted to
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yield a time-independent solution. A is a parameter that measures how far the system
is away from criticality. If A > 1, one has a supercritical system and if 1 < 1 the

system is said to be subcritical.

Now some important properties of the solutions of the neutron transport equation can
be given. An important feature of the angular neutron flux is its smoothness, since it
has major implications in the accuracy of numerical methods, significant results will

be summarized here [3]:

e For planar geometry transport problems if one has vacuum boundary
conditions and isotropic sources then the flux has C! smoothness in both x
and u where u = cos 6 except at outer boundaries and material interfaces.

e For multidimensional problems with vacuum boundaries generally the flux
has C° smoothness.

e |f the boundary fluxes are not smooth, then the solution is non-smooth

throughout the problem domain.

2.2 The Diffusion Approximation

The complexity of the neutron transport equation can be reduced by assuming that
the flux is weakly-dependent on the angular variable Q. Although information on the
behavior of neutron distribution is lost, the equation that governs the angle-

independent system can be solved much more easily then the transport equation.

In order to derive the diffusion approximation, two fundamental concepts, the angle-
integrated or total flux and the neutron current must be defined. The total flux can be

obtained by just integrating the angular flux over all directions:

¢(r,E) = f dQo(r,E, Q) (2.13)
41
A closely related dependent variable to the angular flux is the angular neutron current
vector:
Jjr E,Q) = Qo(r,E,Q) (2.14)

This variable has the following physical interpretation [4]:



j(r,E,Q) - dAdEdQ = expected number of neutrons passing
through an area dA per unit time with ~ (2.15)
energy E in dE, direction Q in dQ

The angle-independent current vector can be defined in a similar way that was used

to define the total flux:

J(r,E) = f dQj(r E, Q) (2.16)

The first step in the derivation of the diffusion approximation is to integrate the

neutron transport equation, Eq. (2.2), over all directions:

fdﬂ-V<p+ fdﬂzt(r,E)q)(r,E,ﬂ,)
41T

4T

= j dQ J aqQ’ j dE'S,(E' > E, Q' = Q)o(r,E', Q") (2.17)
4 0

4T

+ f dQs(r, E, Q)

41

All terms, except the first term on right hand side of this equation can be treated in a
straightforward manner by using Egs. (2.13) and (2.14). To evaluate the exceptional
inscattering term it has to be assumed that the double differential scattering cross
section depends only on u, = Q'-Q, which is a frequent case. This assumption

reduces this cross section to a single differential scattering cross section. Hence:

de J dﬂ’f dE'S,(E' - E,Q' - Q)e(r,E', Q") =
4m 0

4T

f dq/ f dE’ f dQs (E' - E,Q - Q)| o(r E', Q) = (2.18)
41 0

41

f dE'3(E' > E) f dQ'o(r, E', Q') = f dE'S (E' - E)p(r E")
0 41T 0
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The equation that comes out of this operation of integrating over all directions is

known as the neutron continuity equation:
V-J(r,E) + Z,(r,E)¢(r,E) = f dE'S.(E' - E)p(r,E")+ S(r,E) (2.19)
0

Notice that Eq. (2.19) contains two unknowns, ¢(r,E) and J(r,E). The
abovementioned procedure can be repeated and the following equation can be

obtained for the current vector [4];

v f dQ QQe(r, E, Q) + Z,(r, E)J (r, E)
41

; (2.20)
= f dE'Z, (E' - E)J(r,E") + S,(1,E)
0
where
1
2, (B = B) = 2 [ dponoZe(B' = Bopo) 2.21)
-1
S;(rE) = f dQ Qs(r,E, Q) (2.22)
41T

To make life simple let’s consider the case where all neutrons are characterized by
the same energy. This is known as the one-speed approximation. The key assumption
in obtaining the diffusion approximation is that the angular flux is only weakly
dependent on angle, so that it is linearly anisotropic. This means one has to expand
the angular flux in angle and neglect all the terms that have an order higher than

linear order in Q:

1 3
o(r,Q) = Ed)(r) + EI -Q (2.23)

By using this relation to evaluate the first term of Eq. (2.20) and taking into account
the one-speed approximation [4]:
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1
FV9 + 2 () (1) = $,(1) (2.24)
The one-speed form of Eq. (2.19) is also needed:

V-J+2Z,@)¢p@) =S) (2.25)

Here, ¥, and X, are the macroscopic absorption and transport cross sections,
respectively. Now there are two equations for two unknowns. These two equations
can be simplified further by assuming that the neutron source term is isotropic i.e.,
S, (r) = 0. From Eq. (2.24) it follows that

Jr) = - Vo(r, ) (2.26)

32 (1)

Now, defining the neutron diffusion coefficient by

D(r) = (2.27)

324 (1)
and substituting (2.26) into (2.25) the familiar one-speed neutron diffusion equation

can be obtained:
VD)V +2,(r)p(r) =S() (2.28)

In summary, Eq. (2.28) is a consequence of three approximations:

e Linear anisotropy
e Energy-independency

e Isotropic sources

As stated above the most important assumption in the derivation of the neutron
diffusion equation is the weak independence of neutron flux on Q. This assumption
is violated near boundaries and localized sources. It also loses validity in strongly
absorbing media and when material properties change dramatically over a small
distance. In these situations one has to work with the neutron transport equation to

get more accurate results.
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2.3 The Time-independent Multigroup Multiregion Neutron Diffusion Equation
and Boundary Conditions

Although the one-speed single region neutron diffusion equation is instructive, the
modelling and design of nuclear reactors necessitates the use of a much detailed
approximation. The time-independent multigroup multiregion neutron diffusion
equation represents the heterogeneous structure of such systems, and it can provide a

better approach for the energy variable:

g-1
i g2 4 L1 ARAC)) J L _ i
DIV + 3k, 05 ™ = > 3l o = 0
g'=1
(2.29)
i i, (n—1
Q5 = A(n—l)XbFl(n )
Sé,ex

whereg=1,..,Gandi=1,..,M. In Eqg. (2.29), g and i denote the energy group

and material number, respectively, and X, =X, — X is the removal cross

$9°9
section. It has been assumed that the fission source iteration is employed for the
determination of A, the effective multiplication factor, and n denotes the iteration

number [4]. The fission source is defined by

G

Fi= Z viEl ol (2.30)

g'=1

where vf, is the number of neutrons emitted per fission of group g and Z},g is the

group fission cross section.

In the fission source case the system of partial differential equations (PDEs) in Eq.
(2.29) is solved iteratively. The iterative algorithm, known as fission source iteration,

starts by making a guess for the fission source and the multiplication factor as

Fi~F2©® and A~2©, which gives or™. Then, ¢-™, g =2,..,G are found

successively and a new fission source and multiplication factor are determined by

G

. L)
PO = 3 olst g, a0 = y0 L 947
g

L
g'=1
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where dA is the area element. This iterative algorithm is terminated when a

predetermined convergence criterion is satisfied

A+ _ )
—| <¢ (2.32)

;{(n+1)

On the other hand if an external source term is present, then Eq. (2.29) can be solved

directly.

To complete the description of the problem boundary and interface conditions are

needed. In general there are three types of boundary conditions (BCs):

L= (Vacuum BC)

=0 (Neumann type reflective BC) (2.33)

=2 i+Da¢£’—0(Rb't BC)
J _4gbg > on obin type vacuum

Finally, at material interfaces the neutron flux and its first derivative should be

continuous:
® = it
on  on
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3. MESHLESS METHODS

Meshless methods are a novel class of computational tools. As their name implies,
they have the significant property that they do not need a mesh for the simulation of
the problem considered. The domain and its boundary are represented by nodes and
these nodes do not have to satisfy any relation in a predefined manner to form a
mesh. The nodes can be distributed uniformly or randomly. By using these nodes one
can first create shape functions to approximate the field variable and then solve the

resulting algebraic system of equations by standard techniques of linear algebra.

One of the first meshless method was proposed in late 1970’s. It was called the
smoothed particle hydrodynamics (SPH) and dealt with astrophysical problems [34].
In the last decades there has been a growing interest in this field and today many
meshless schemes are proposed to tackle various problems of science and

engineering.

3.1 Motivation for Meshless Methods

The motivation behind meshless methods was to eliminate the difficulties
encountered in classical mesh-based techniques. The need for meshless methods can
best be understood by comparing it with the most widely used technique in science
and engineering, the FEM. In [18] a detailed comparison is given based on the

problems of structural mechanics, and these observations will be summarized here:

1) Mesh creation is a requirement in FEM packages and the analyst have to spend
much of his or her time on this operation.

2) The stresses, calculated by FEM are discontinuous and less accurate.

3) It is difficult to simulate problems where the material integrity is lost partially or
totally such as large deformations, crack growth, phase transformations and fracture.
4) Re-meshing is a solution for fracture mechanics problems, but one needs complex
mesh generation processors which increases the computational cost for 3-D

problems.
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3.2 Weighted Residual Method, Strong and Weak Forms

Today, a huge number of meshless methods can be found in the literature, and it is
intuitive to categorize them. This categorization can be done with respect to the
formulation procedure of the problem or function approximation scheme [17]. In the
next section a classification based on the formulation procedure will be presented,
but first the ideas of weighted residual method, strong-form and weak-form have to

be introduced.

Now consider the following problem:

Lw+f=0 ueq (3.1)
Bu)=g wuerT (3.2)

Here u is the field variable, f and g are known functions that drive the system, and L
and B are differential operators. The problem domain and its boundary are denoted

by Q and T, respectively.

In most of the practical situations it is generally not possible to obtain an analytical
solution for the problem considered. Then, it is a natural choice to try to obtain a
numerical solution, and one first approximates the field variable in the following

form

n

w(r) = ) () (3.3)

i=1

where @®; are called the trial or shape functions, a; are unknown coefficients and
r = (x,y,z) are Cartesian coordinates. The trial functions, of course, must satisfy
some admissibility conditions to minimize the error introduced by the last equation.
By substituting Eq. (3.3) into Egs. (3.1) and (3.2) the following residuals can be
obtained

Ry=Lu®) +f (3.4)
Ry =B(u®) —g (3.5)

Then the procedure continues with multiplying these residuals with weight or test
functions and integrating over the problem domain to minimize the error in an

average sense:
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jWﬁﬂQ+JW&AF=Q i=1,..,n (3.6)
r

Here W; and V; are weight functions and one can choose W; = V;. This is known as
the weighted residual method, and it is the starting point of many numerical

procedures.

If Egs. (3.4) and (3.5) are substituted into Eqg. (3.6)

f w; [L (i aiCDi(r)> +f B (i aiCDi(r)> — g] dr=0 (3.7

Q i=1 i=1

dﬂ+j%
r

where i = 1, ...,n or explicitly:

le- (zn:adb(r)> dQ+JV-B<Zn:al<D(r)> glar=2~0

) [ \i=1 r i=1

f w, | (i a;P; (r)) dQ +J V,|B (i al-CIDi(r)) = g- dar=0 (3.8)
Q L i=1 r L i=1 A

f Wn -L <i al-CDl-(r)> +f- ds +f Vn _B <i al-CDl-(r)) - g- dl'=20

Q L i=1 . r L i=1 .

By performing the integrations in Eq. (3.8) a system of algebraic equations can be
obtained. Solution of this system will yield the unknown constants a; and hence the

numerical solution u?.

The integration operation in the weighted residual method has a key role in the
formulation of the numerical scheme. The original statement of the problem, whether
it is an ordinary or partial differential equation, is also called the strong-form. As
stated above, the trial functions should satisfy some criteria. Suppose that the
governing equation is a differential equation of second order. In this case the trial
function must be at least C? smooth. But as an alternative, integration by parts can be
used (Green’s identity for multidimensional problems) to weaken the smoothness
requirements of the trial functions. Therefore, the methods which directly deal with
the original statement of the problem are called strong-form methods, and the
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methods which work on analytically integrated expressions are called weak-form

methods.

Different choices of trial and weight functions will lead to different numerical
methods. As an example one can use the Dirac’s delta function, §(x — x;), as the
weight function to satisfy the differential equation at certain nodes. If this is the
choice then from Eq. (3.7) it is easy to show that

n n
[L <Z aicbi(ri)> +f|+|B (Z aiq)i(ri)> -g|=0 (3.9)
i=1 i=1
by using the fundamental property of Dirac’s delta function:
Fo0) = [ 198G - w)dx (310)

The method, defined by Eq. (3.9) is known as the collocation method. It is obvious
that this is a strong-form method since the approximation function is directly
substituted into the differential equation and its boundary conditions.

Another well known technique is the least squares method that uses the following

weight functions:

dR, dR,
i= Vi =
aai aai

(3.11)

If the trial and weight functions are chosen to be the same then the resulting approach
is of the Bubnov-Galerkin type. This weak-form scheme has the advantage that the
resultant system matrix is symmetric. But, if different functions are preferred for trial
and weight functions, then the procedure is called the Petrov-Galerkin method.

3.3 Classification of Meshless Methods

Meshless methods fall into three categories according to their formulation

procedures:

1) Weak-form methods: These methods are based on the weak-form of the governing
differential equations. The first weak-form method was the diffuse element method
(DEM) which is a generalization of the FEM [35]. Two years later another method,
the element-free Galerkin (EFG) method was proposed [36]. These two methods use
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the moving least squares (MLS) approximation in shape function construction.
Another method that uses the MLS is the meshless local Petrov-Galerkin (MLPG)
method [37]. MLPG differs from DEM and EFG in the way that numerical
integrations are performed locally. The last example to this class is the radial point
interpolation method (RPIM) which utilizes a different approach in shape function
construction [17]. This interpolation based scheme can be employed both locally and

globally.

2) Strong-form methods: In these methods the original form of the governing
equation is satisfied at particular nodes of the domain. The most significant strong-
form method is the radial basis function collocation method in which RBFs are used
as trial functions [38]. Another important strong-form scheme is the finite point

method (FPM), which is based on weighted least squares interpolation [39].

3) Hybrid methods: Weak-form methods can deal with Neumann type boundary
conditions easily since these conditions came up naturally in the problem
formulation, but Dirichlet boundary conditions need special treatments. For strong
form methods the opposite is true, in which the error caused by Neumann boundary
conditions diffuse through the problem domain. Although there are special
techniques to overcome these problems one can also use weak and strong forms

together to get more accurate results. In [40] such a method has been proposed.

3.4 Shape Functions

After determining the nodes in the domain and on the boundary, the second step of
solution for meshless methods is the construction of shape functions by using these
nodes. Most meshless techniques use the concept of support domain. Hence, before
introducing various strategies to build up shape functions it is necessary to define the

support domain.

Support domain is a region with any shape and any size that is used to determine the
number of nodes in the construction of shape functions. It determines the order of
coupling and therefore the order of sparseness of the final system matrix. If one uses
a support domain with a small size relative to the size of the problem domain then
the result will be a sparse matrix. In Figure 3.1, circular support domains are

illustrated as an example.
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Figure 3.1: Circular support domains of size ;.

For any point, the size of the support domain, dg, can be determined by a simple

relation;
d, = agd, (3.12)

where ag is a dimensionless parameter determined by the analyst and d. is the
average nodal spacing. ag should be chosen in an optimal way to give accurate
solutions with low computational cost. If uniformly scattered nodes are used, then d,.
is simply the spacing between neighboring nodes, but if randomly distributed nodes

are used then one has to follow the procedure below [17]:

i) The value of the support domain is estimated and denoted by D;.

if) The nodes enclosed by Dg, nj,, are counted.
iii) For an n-dimensional domain d,. is found from:

Dl/n

S
d, = W (3.13)

Iv) dg is found from Eq. (3.12).

Now that the concept of support domain is defined, the construction of shape
functions can be introduced. Although there are various approaches to buid up these

functions, only the most widely used techniques will be presented in this section.
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These techniques result from two different strategies, point interpolation and least

squares approximation. A detailed discussion can be found in [18].

3.4.1 Point interpolation methods (P1M)

Interpolation is an approximation technique in which one tries to find a function, f,,

to fit a collection of data, y;, where

fa(xi) = y; (3.14)

Here x; are data points (field nodes for meshless methods).

The first step in building up a shape function is to approximate the field variable,

u(x) by a series

m

u(r) = Z a;®,(r) (3.15)

i=1
where a; are unknown coefficients, ®;(r) are shape functions and m is the number
of shape functions. For interpolation, the number of nodes in support domain is
chosen as n = m since the shape function has to pass through the function values at

every node.

In the polynomial point interpolation method the shape functions are chosen as

monomials:

ut(@®) = ) pi@a; = p' (Ma (316)

Here p;(r) are monomials and p and a are the vectors that collect the monomials
and unknown coefficients, respectively. The monomials can be built using Pascal’s
triangles. As an example if quadratic basis functions are needed for a 2-D problem,
then:

pP’)={1 x y x* xy y% (3.17)

The coefficients a; can be determined by enforcing u(7) to pass through the n nodes
in the support domain. This operation yields n equations which can be written in

compact form as follows
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U=P,a (3.18)

where U and a are the vectors that collect the nodal values and unknown coefficients

respectively and

[1 X1 Y1 X1Y1 Pm(ﬁ)]

1 x y2 %y, - pm(ry)

Pp =11 X3 Y3 x3y; - pp(rs) (3.19)
1 Xn Yn XnYn pm(rn)

is called the moment matrix [17]. Notice that P,, is a square matrix since n = m.
From Eqgs. (3.18) and (3.16) it is easy to obtain

u() =p"(r)P,;lU = 9T (r)U (3.20)
where WT (r) is the vector of shape functions:
O7(r) = {@,(r) (1) - (1)} (3.21)

Point interpolation with monomials is a simple method to construct shape functions,
but it has an important defect. The moment matrix, P,,, can become singular. There
are several strategies to avoid this issue. One of them is to use radial basis functions

instead of monomials. These functions will be presented in the next section.

3.4.2 Least squares methods

Least squares technique is a well-known approximation method and it can also be

used in shape function creation for meshless methods.

The first method that will be introduced is the weighted least squares (WLS)
approximation. Once again, the field variable is represented with a finite series of

polynomial basis functions:

m

wi(@) = ) ap(@) =p'a (322)

=1

To determine the coefficients this series is satisfied at the n approximation nodes, but
this time n > m and therefore the resultant moment matrix P,,, is a rectangular one.

In general the weighted least squares problem is solved by minimizing
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] =) Wilut@) - u@)P (3:23)

n
=1

where W; (i = 1,2, ...,n) is the weight coefficient for the ith node. To minimize J one

must have
0_] =0 (3.24)
Ja
which leads to
PILWP,,a = PTWU (3.25)
where:
w, - 0
Wz[ : : ] (3.26)
0o - W,

For data fitting problems the weights are usually chosen as the standard deviation to
decrease the effects of possible measurement errors in experiments. In case of
meshless methods one can use the following weight
2 2
e_(g) — e_(%s)
Wi = W(xl-) = 2 (327)
1-— e_(?s)

where 15 is the size of support domain, c is a constant to be determined by the analyst

and

r=ya—x)?+ (- y)? (3.28)
The WLS shape functions can be obtained by letting

A=Pl WP, (3.29)
B=PIW (3.30)

This leads us to:
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®T =p"(r)A'B (3.31)

The second least squares based technique in shape function construction is the
moving least squares approximation. This method is similar to WLS approach and in
fact WLS is just a special case of MLS. In this method the field variable is

approximated by:
w@) = ) p M) = p'@a) (332
j=1

From Eq. (3.32) it is easy to see the difference between MLS and WLS; the
coefficients are functions of the independent variable r in the MLS case. To obtain

the shape functions of MLS the following functional has to be minimized:

] =) W= roa) - ul? (333)

The MLS shape functions can be obtained by a similar procedure that was used to

obtain WLS shape functions:

@' (r) = p"(MAT(1)B(r) (3.34)

3.4.3 Hermite-type approximation

Treatment of Neumann type boundary conditions is an important issue if a strong-
form method is preferred to solve a problem with these type of conditions. If one
uses the abovementioned shape functions directly then there will be a significant loss
in accuracy. Fortunately there are strategies to prevent this issue and in this
subsection, one of them, the Hermite-type approximation, will be introduced. This
method can be applied to any shape function discussed above. A brief description for
WLS approach will be presented and its detailed version can be found in [17].

Suppose that in addition to n interior and Dirichlet type nodes, nyg Neumann type

nodes are created. The field variable is again represented by a series:

wi@) = ) pia =p'a (335)
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To determine the coefficients this series has to be satisfied at the interpolation nodes.

This operation leads to
U=P,a (3.36)

for interior and Dirichlet type nodes, as before. For Neumann type nodes

ou'®)  ou@}?) ou(r®)

on o ox ' 9y (3:37)

where n is the normal vector, and l,; and l,; are the direction cosines. Utilizing

(3.37) for all NB nodes

U =Ppa (3.38)
where
v’ = {au(rgﬂ) ou(z”)  du(rag, | (3.39)
on on on
and
0P (r?) Opm (11?)
0 Iy Lyy - lx1T+lle
Opm (13") Opm (137)
p,=|0 b be o oG =t b= (3.40)
10 lanB lynNB ©tt TXTMNB Ox + YNnB dy
Next, Egs. (3.36) and (3.38) are combined to get;
D _ — Pm
u —Pa—{P }a (3.41)
D
where
NB W/
Ub = {u(rl) u(ry) w M} (3.42)
on on

To obtain the shape functions the following functional is minimized

25



n nNB 2
] = Zl Wi [u®(r) —u(r)]? + le /i [auaa(,:’l'v ) "’”S,’;"VB) (3.43)
which again leads to
P"WPa = PTWUP (3.44)
where
W= [M(;" M(/)D] (3.45)

Here W, and W are again diagonal matrices and same weight functions can be

chosen for both Neumann type nodes and other nodes. Now letting

A= (PTWP) = (PT,W,P,,) + (PLW,P,) (3.46)

B = (PTW) = (PLW,) + (PYW)) (3.47)
the Hermite type WLS functions can be found as follows:

®" =pTA'B (3.48)

3.5 Collocation Methods

As discussed at the beginning of this section collocation methods are strong-form
techniques in which the approximation proposed for the field variable is directly
substituted into the governing differential equation. The global system matrix is
formed by collocating the equation at every node in the problem domain and its

boundary.

There are two main approaches in the utilization of collocation methods. The first
choice is to use a support domain and collocate only with the neighboring nodes.
This strategy will yield a sparse matrix. Suppose that there is a 1-D problem and the
support domain is arranged so that it only covers the two neighboring points. Then
the resultant global system matrix will be a sparse and banded (three-diagonal) one.
The other alternative is to use all the nodes to form the matrix. This approach, in

which the RBFs are chosen as trial functions, leads to a full system matrix. Although
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the RBF collocation technique has a higher computational cost because of its
resultant matrix there is a growing interest in this method due to the flexibility of

radial basis functions and methods developed to deal with populated matrices.

Collocation methods, whether they result in a full or a sparse matrix, have some
significant advantages. First of all they are straightforward since trial functions are
directly substituted into the problem. The programming of these methods is easier
than those of weak-form methods since there is no need for numerical integration.
Also, for the same reason these methods are truly meshless. On the other hand,
collocation techniques are not without disadvantages. Weak-form methods are more
stable, and when RBF collocation is considered, the ill-conditioning problem of the
global system matrix becomes an important issue if the number of nodes is increased.
Finally, treatment of Neumann type boundary conditions has to be performed
carefully in collocation methods, but weak-form methods have a similar

disadvantage when a Dirichlet boundary condition is present.

3.5.1 Local collocation

First, the collocation method with support domains will be briefly presented. To
separate it from the RBF collocation, which will be described in the next subsection,
this method will be called the local collocation method since support domains

localize the calculations.

Application of collocation method is the same whether one deals with a simple
ordinary differential equation or a complex system of partial differential equations.
For simplicity consider the following boundary value problem defined over a 1-D

domain

d?u

ﬁ +u=f(x) (3.49)
Ulx=q = g(x) (3.50)
du
Ix - = h(x) (3.51)

where f(x), g(x) and h(x) are known functions. As shown in Figure 3.2 the domain

is represented by N field nodes.
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Figure 3.2: 1-D domain of problem Eqgs. (3.49)-(3.51).

The first step is to introduce the shape functions (built up by n nodes in the support

domain) which yields

u? = u(x;) = ®Tu (3.52)
aazf _ a;:: u (3.53)
a;f = %u (3.54)
where:
" ={p1 ¢, = Pn} (3.55)
ul ={u; u; - Uy} (3.56)

In practice any shape function construction method demonstrated in section 3.4 can

be used. For an internal node at x;

d?*pT

( 1z T ‘PT)u = f(x;) (3.57)

or in matrix form:

Here
d?eT d?¢ d*¢
—__ T — 1 n

K==+ @ = { D Sy ¢,n} (3.59)
fi1=1rf(xp) (3.60)

Treatment of Dirichlet boundary conditions is easy:

K,u = g(x,) (3.61)
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where

Ki=®"={¢1 ¢ = ¢} (3.62)

There are several approaches to impose Neumann type boundary conditions and

some of them are presented below [17]:

1) The direct collocation method: No special treatment is applied, but there will be a
significant decrease in accuracy.

2) The method using fictitious points: Additional set of nodes are added outside
and/or on the Neumann type boundary.

3) The Hermite-type collocation method: Additional derivative variables for the
Neumann type boundary nodes are used to enforce the derivative boundary
conditions.

4) The method using regular grids: Finite difference method is used for the Neumann
boundary conditions.

5) Hybrid method: A weak-form formulation can be used for the nodes on Neumann

type boundary.

Let us illustrate the second approach, in which a fictitious point is added outside the

domain to impose the derivative boundary condition. Coordinate of this point is:
XN+1 = xN + h (363)

With this approach an additional degree of freedom, uy.,, is added to the global

system matrix

K(N+1)><(N+1)U(N+1)><1 = F(N+1)><1 (3-64)
where:
[ Kiq Ky, Kin Kiv+1) 1
K> K> Kan Kx(v+1)
Knvinxv1) = : : : : (3.65)
N1 K1 Knn Knv+1)
K(N‘l'l)l K(N+1)2 oo K(N+1)N K(N+1)(N+1)
Unipxa = {1 -+ Un-1 Uy Unsa} (3.66)
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F(N+1)x1:{g(x1) fle) = flxy) h(xy)} (3.67)

The first and last rows of the matrix in Eq. (3.65) are related to Dirichlet and
Neumann boundary conditions, respectively, and the other rows are associated with
the differential equation. Since f, g and h are known functions of x, the unknown
coefficients, u,n=1,...,N + 1 can be found from Eg. (3.64) and the numerical
solution can be found in a piecewise manner since the nodes are localized by support

domains:

n

w0 = ) udy (3.68)

i=1

3.5.2 RBF collocation

The RBF collocation technique was proposed by Kansa in 1990 to solve fluid
dynamics problems [38]. Since that day there is a growing interest in this method and
it has been applied to various fields to deal with different kinds of differential,
integral and integrodifferential equations.

The solution procedure is similar to that of the local collocation method, and it is
even simpler since there are no support domains. Absence of such local domains
simplifies the method and also the programming especially for randomly distributed
nodes because there is no need to control whether a node is possessed by a specific

support domain or not.

In the RBF collocation method, the field variable is simply expanded by a finite set
of RBFs and then by using this approximation, the differential equation and its
boundary conditions are collocated by utilizing a uniformly or randomly distributed
set of nodes. Kansa’s method is also known as the asymmetric RBF collocation
method because of its asymmetric collocation matrix. In [41] a symmetric version of
RBF collocation has been proposed which is based on the Hermite-Birkhoff
interpolation.

One of the main concerns of the RBF collocation method is that it results in a full
matrix which becomes ill-conditioned as the number of collocation points increases.
There are several approaches to overcome the ill-conditioning problem of the

collocation matrix such as affine space decomposition [42], matrix preconditioning
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[43] and optimization of the shape parameter of the RBF [44]. These techniques
come with their computational costs, but they also improve the accuracy of the

numerical results.

As for the mathematical background, in [45] it is shown that a general proof for the
nonsingularity of the collocation matrix is impossible, but based on numerical
evidence it is also stated that singularity happens in rare situations. In [46] the RBF
collocation method is compared with Galerkin method using RBFs theoretically and
found that the condition number of the global matrix for the collocation method is
greater than the Galerkin based technique by one order of magnitude. The situation is
worse if the method is compared with the FEM in which the basis functions have
local influence resulting in a sparse global solution matrix, but the spectral
convergence properties of RBFs that cannot be achieved even with super-convergent

adaptive h — p FEM schemes, motivate the use of RBF collocation method.

It has been shown numerically [47] that the RBF collocation method is very accurate,
even with a small number of scattered nodes. There are also papers [48,49] which
show that the RBF collocation has an higher order of accuracy than the spectral

methods and the FEM with linear trial functions.

Before explaining the RBF collocation method it will be useful to give some
information on radial basis functions. These functions are being used widely for both
function approximation and in the solution of PDEs. There is a wide class of RBFs

with different properties and their theoretical background is well established [50,51].

A radial function  is a function with the following property [19]:

Irall =il = $0) =9a) r, T ER (3.69)

Here ||*]| is some norm on RS.

Although there are several RBFs in the literature the most well-known and widely
used RBFs are the generalized multiquadric (GMQ) and the Gaussian (GA). These

globally supported functions are as follows

Y=+ ) (GMQ)

¥ = exp(=12/c?)  (GA) (3.70)
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where, r is the distance between the nodes, 7 = ||x — x;|| ,, the constant c is called

the shape parameter, and g is the exponent of GMQ. These functions are shown in

Figures 3.3a and 3.3b, respectively, where ¢ = 0.1 and, for the GMQ, the exponent is
chosenas 1/2.

08 —08

Figure 3.3b: GA radial basis function.
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The shape parameter determines the shape of the RBF. As c¢ gets larger the function
gets flatter and also its sensitivity to the variation of r decreases. Besides this
geometric influence, increasing the value of c¢ improves the accuracy of the
approximation and theoretically as ¢ — oo, the approximation error vanishes [52].
However, this promising behavior would be possible if one has the chance to
perform infinite precision computation. In practice as ¢ — oo, the accuracy increases,
but the interpolation matrix becomes more and more ill-conditioned and at some
point the solution breaks down. This trade-off between accuracy and stability has
been explained by Schaback’s “uncertainty principle” [53]. There have been many
efforts to treat the ill-conditioning problem caused by the increment of ¢ which
includes matrix preconditioning [54], utilizing variable shape parameter strategy [55]
and analytical treatment in the ¢ — oo limit [56]. The effect of the shape parameter

on the GMQ with g = 1/2 is illustrated for one-dimensional case in Figure 3.4.

W
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Figure 3.4: Effect of shape parameter on GMQ with g = 1/2.

The exponent of the GMQ has an effect similar to that of the shape parameter. Larger
q increases the accuracy of the method, but it also results with a less stable
algorithm. For the widely-utilized multiquadric (MQ) and inverse multiquadric

(IMQ), q takes on the values of 1/2 and — 1/2, respectively.

Positive definiteness is a significant property for RBFs since positive definite
functions generate positive definite matrices in interpolation, which is important,

especially for stable computation. By Micchelli’s theorem [57], the IMQ and GA are
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positive definite functions whereas the MQ is conditionally positive definite of order
one. The conditional positive definiteness of MQ means that, it is necessary to

augment this function by first order monomials as

n

W) = ) apy@) + ) bp,) (3.71)

Jj=1 J

Now since there are n + m variables an additional set of m equations are needed to

obtain a determined system. These can be obtained by

n

z api(r,)=0, i=12,..,m (3.72)

J=1

Besides this theoretical issue, in numerical experiments it was observed that this

augmentation did not improve the results while increasing the condition number [58].

The meshless RBF collocation method is a strong-form method in which the field
variable is approximated by a finite series of RBFs. This finite series is directly
substituted into the governing PDE and BCs. As stated earlier the critical point in the
implementation of the method is the treatment of BCs. When the BCs are of the
Neumann or mixed type, the numerical solution is contaminated by the inaccuracy
introduced via collocation at the nodes near the boundary of the problem domain.
This situation is pointed out by numerical studies [58,59], and Fedoseyev et al. [60]
have formulated an improved version of the method. They have added an additional
set of nodes and an additional set of collocation equations by collocating the PDE

also on the boundary.

Let’s now consider the following partial differential equation to describe the RBF
collocation method:

Viu+u = f(x,y) (3.73)

u(a,y) =u(x,b) =0 (3.74)
ou(0,y) du(x,0)

= oy O (3.75)

The domain is represented by N; internal, N, boundary and N,, external nodes. Note

that external nodes are used because there are Neumann type boundary conditions.
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The solution procedure starts with representation of the field variable by a finite

series of RBFs

N

w6 y) = ) ah;(xy)

J=1

where N = N; + N, + N,,. Substituting Eq. (3.76) into (3.73)-(3.75)

N

02w (x, 02y (x,
Zajl l/)](x y) n lp](x Y) +1pj(x'y)l :f(x’y)
=1

d0x? dy?

N N

Z api(ay) = z ay;(x,b) =0

=1 =1
N N
z 4 0;(0,y) Z ol 09;(x,0) 0
7T x4 ay
Jj=1 j=1

Collocating Egs. (3.77)-(3.79)

a;

INGE iP]=

1l
=

0% (x, yi) y 0% (x;, v1)
d0x? dy?

~

N

J Jj=1

N N
o (0, y; oY, (x;,0
za,MzzajMzo, i = N; + Ny pirs ., Ni + N,

L) ox .
j=1 j=1

ay

+l/)j(xi,yi)l S fi, [ = 1,...,Nl'

ajl,bj(a,yi) = Z aj¢j(xi, b) = 0, i= Ni + 1, ...,Nl' + Nb,DiT

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

where f; = f(x;,y;) and the subscript “Dir” stands for Dirichlet BCs. These

collocation equations can be expressed in matrix form as

Ka=f

(3.83)

Since f(x,y) is a known function, the unknown coeffcients can be found from Eq.

(3.83), and substituting these into Eq. (3.76) the numerical solution can be obtained.

3.5.3 Weighted RBF collocation method

Although the RBF collocation method has become a popular tool for solving partial

differential equations, much of the work deals with single-region problems. There
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exist a few papers dealing with more complex heterogeneous media problems. In
[61], the subdomain RBF collocation method was used to solve multiregion elasticity
problems. According to this study the imposition of interface conditions, in the case
of neutron diffusion continuity of flux and current, is necessary and it has an
important effect on both the accuracy and convergence of the collocation technique.
It is pointed out that to achieve a good accuracy, the number of collocation points
should be larger than that of the interpolation points and the numerical solution of the
problems is performed in a weighted least squares sense. The weights of the
collocation matrix are determined via an error analysis, and it was found that the
exponential convergence characteristic of the RBF collocation method can be

preserved for multiregion problems if the weights are chosen properly.

The weighted RBF collocation method was introduced by Hu et al. [62]. The Poisson
equation and elasticity problems were treated with this method where the
overdetermined system is treated with the least squares approximation. This study
has shown that the least-squares residual method is an approximation of the direct
strong form collocation method. As a heat transfer application, in [63], this weighted
collocation method was used to determine the temperature distribution in biological

tissues.

The least squares approximation is a useful approach in solving PDEs with the
advantage of possessing a positive definite and symmetric matrix. Also, when the
finite element literature is considered, the least squares finite element method
propounds a uniform solution procedure as compared with the ad hoc treatments of
Galerkin methods [64]. On the other hand, least squares approximation has an
important drawback when stability is taken into account as a result of quadratically
increasing the condition number [65].

To illustrate the method, consider a two-region problem as shown in Figure 3.5,
where S; and S, are two domains with different properties, I}, is the vacuum
(Dirichlet) boundary, T is the reflective (Neumann) boundary and T, is the interface
of the two regions. In operator form, the problem can be expressed as

Liqbi(r) = qi(r), re Si' i = 1,2 (384)

$(r)=0, T€T, i=12 (3.85)
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a¢;(r)
on

$1(r) = ¢,(r), TET,

a¢1(r)_D d¢p,(1) r
on % on

=0, rely i=12

(3.86)

D, €T,

where g; is the source term and L; is some differential operator.

Ix

]._|T~Z"
Figure 3.5: A two-region problem.

Formulation of the method starts by defining the weighted least-squares functional

1
Iw;] = > lf(l'iui —q)?dS + wy J (uy —uy)?dl
l ’ (3.87)

_ ouy du, z 5 ou; 2
+Wr f (01%—172 %) dr +wy; Jui dlr + wg; J (Di—> dr

on
Lo Ty Ir

The weights, wy, wg, wy; and wg; give different importance on the interface,
vacuum and reflective boundary conditions and hence they provide additional

freedom in the choice of the numerical solution [66].

In the least-squares approximation one seeks a solution, ¢;, which minimizes the
functional in Eq. (3.87):

I[¢:] = min / [;] (3.88)
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This procedure, which will be given in detail for the one-group neutron diffusion

equation later in Section 5, leads to the bilinear form of Egs. (3.84)-(3.86):

a(p,v) = f(v)
where
0¢; 0v;
a(p,v) = ﬂ Li¢;L;v;dS + WR’l-DiZ %a—nldl" +wy J ¢;v;dl’
S I'g Iy

_ ¢, ¢, vy 6172)
Wk J (Dl on b, 6n)(Dl on b, on dr

To

+wy f(¢1 — ¢2) (v — v)dl
To

fw) = ff qiLiv;dS
Si

(3.89)

(3.90)

(3.91)

Taking into account of the fact that the least-squares residual method is an

approximation of the direct strong-form collocation method, the collocation matrix of

this least-squares approach is

K, 0 o
wy1Ka1 0 Q()l
Wr1Kn1 0 0
wylge — Wylgs a=10
V‘_/R In,l V_VRIn,Z B 0
0 K, Q;
0 Wy 2 K2 0

0 Wg 2K 2] -0 -

(3.92)

Here K, and K, are related to the PDEs, while K;; and K,,; are the collocation

matrices of the Dirichlet and Neumann BCs, respectively, and I,4; and I,,; are the

matrices for the interface conditions.

The success of the weighted RBF collocation method depends on the proper choice

of weights appearing in Eq. (3.92). To accomplish this task, first a weighted norm is

defined
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lvlly = {Ilvllis1 +1vliEs, + ILvligs, + ILvIIEs, + wyallvilgr,

‘|'WV,2||17||(2),1"V,2 + W1!e,1||17||(2),1"R,1 + WR,2||V||(2),FR,2

oV, v, || }1/2

(3.93)

D,

+Wyllvy — v, ll5r, +Wr 2 nll,,
O, 0

where the norms on the right hand side of Eq. (3.93) are Sobolev norms. According
to [61,62,67-69] if the bilinear form of Eq. (3.89) is continuous, i.e.,

a(p,v) < Cllgllxllvily, Vvvev (3.94)
and coercive, i.e.,
a(v,v) = Gyllvll3, VveV (3.95)

where V is the space of admissible functions, then the weighted collocation method

has the following error bound
¢ = ¢nlly = M infligp —vll, (3.96)

It should be noted that in [67,68] collocation is performed in a Galerkin sense where
the weights are chosen to be the weights of quadrature formula for the integral terms.
Inequalities in Eqgs. (3.94) and (3.95) form the basis of the Lax-Milgram lemma, and
convergence analysis of finite element and spectral collocation methods with the
estimate of Eq. (3.96) is presented in [70].

The weights are determined based on Eqg. (3.96), and it is obvious that they depend
on the differential equation and boundary conditions that govern the problem

considered. For the neutron diffusion equation these weights are derived in Section 5.

39






4. HOMOGENEOUS NEUTRON DIFFUSION PROBLEMS

In this chapter, the numerical solution of the homogeneous neutron diffusion
problems in 2-D Cartesian geometry by the meshless RBF collocation method is
presented. In this context, first the numerical formulation of the method is given.
Both external source and multigroup criticality problems are studied, and the results
are discussed in the second section. Finally, some techniques to improve the

performance of the RBF collocation method are evaluated.

4.1 Numerical Formulation

When the problem consists of a single square region Egs. (2.29)-(2.31) reduce to

g-1
—D, V2™ + 3, ;o — Z Zeging®l = Qg
g=1

(4.1)
1
(n-1)
Qg = {/1("—1) xgF™™
Sg.ex
G
F= Z Vg'Zs g by 4.2)
g'=1
\ (1) J dAF®
M 5 (1) _ ) 81
F = Zlvg 2rg by N FTVIO (4.3)
g =

where 0 < x,y < a. Neumann type reflective boundary conditions at the bottom and

left sides and vacuum boundary conditions at the right and top sides are considered

0

&(x,0)=0, 0<x<a

dy

¢)g(a,y):0, 0S:y<a (44)
¢g(x,a) =0, 0<x<a '
g,

—9.(0,y) =0, 0<y<

ax( y) <y<a
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When the medium is nonmultiplying and a one-group energy representation is
chosen only the external source terms in Eq. (4.1) exists and one has the Helmholtz

equation:
—DV2¢p + 2, = Spy (4.5)

where X, is the absorption cross section.

The numerical formulation of the RBF collocation method starts by introducing a set

of internal nodes with N; members such that
I={(x,y):0<x<a0<y<al<i<N} (4.6)
Then a set of reflective boundary nodes with Nz /2 members are introduced such that
Br = Brp U Bg,, 4.7

where By represent a set of reflective boundary nodes on the bottom side while By,

represent a set of reflective boundary nodes on the left side, that is

N,
Bgg = {(xi,O):O <x;<aN, <i<N +TB}
3N, (4.8)
BRL - {(O,yl)o < yi S a,NI +T < l S NI +NB}
Also a set of vacuum boundary nodes with Nz /2 members such that
BV = BVR V) BVT (49)

where By represent a set of vacuum boundary nodes on the right side while By

represent a set of vacuum boundary nodes on the top side. That is:

Ng . Np
BVR = {(O,yl)o S yi < a,NI +T < l S N[ +7}
N, 3N, (4.10)
Byr = {(xl-,O):O <x;<aN +7< <N, +T}
Then, the set of boundary nodes B is
B = Bgr U By = (Bgg U Bg) U (Byg U Byr) (4.11)

The set of domain nodes, D is defined as
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D=IUB (4.12)

which represents a set with N, = N; + Nz members.

Secondly, a set of external nodes, E is introduced. For the purpose of preserving the
nonsingularity of the coefficient matrix, the number of members of E has to be equal
to Ng. That is:

E={(x,y):[(x; <OV (x; >a)]A[(y; <O) vV (y; > a)],

Np <i < Np + Ng} (4.13)
A typical distribution of nodes with N; = 4 and Ny = 12 members is presented in
Figure 4.1.

26 25 24 23
o) O O O
14 13 12 11 e Domain node
® ? ® 'Y
0 Extemal node
27C 159 ® * 210 022
3 4
280 169 * ° $9 021
1 2
® * * ®
5 6 7 8
e} 's) ') )
17 18 19 20

Figure 4.1: A node distribution with N; = 4, Ny = 12.

The neutron flux is to be approximated by

Np+Np

o)~ D ayqu(6) (4.14)

=1

where ¥;(x, y) is the radial basis function.
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For the first part of the collocation process, the neutron diffusion equation is required

to hold for (x;, y;) such that 1 < i < Nj. Then:

Np

DD ,D.(n) DD D,(n) _

z kijg%.g z Sijg'~g%9g T
j=1
Np

DE E(m)
Ekug Y.g

j=1 j=1

Here

kll;?g = _ngzlpj(xil yl) + 2:r,glﬁbj(-xi; yi)r =
kgz = ngzlpf'FND(xi' yi) + 2:r,gl:bj+ND(xi; Yi); 1<) <

SZ’Z'—@J = Zg g/ g¥i (X, i),
Si’j’fe’—nq = Zs g/ gWjenp (X0 Y0,
a]%(n) e aj(z)’

af.él(n) = aj(-‘IBVD,g'

Sg.ext = Sg,ext (i, vi),

where 1 <i < Np.

E
z sPE,  a; ) _

1,9 2919

XgF(n_l)
1@-1) t Sgex
(4.15)
Xgp(n 1)
Aa-D T Sgex
1<j<Np
< Ng
1<j<Np
<Np (4.16)
<j=Np
<j=Ng

The collocation is completed by requiring the reflective and vacuum boundary

conditions to hold for points (x;,y;) which are members of B, and By, respectively.

That is:
Z kBD D(n) + Z kBE E(n)
where
f%_l/;f (Xiewp Yisn,),

BD _ ) 0Y;
kij = a_xj(xi+N11 :Vi+N1)l

i (Xitny Vien,)

for1<j<Npand
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1<i<N, (4.17)
Np
1<i<<—
Sl s 4
3N
TB<iSNB (4.18)
Npg 3N,
= i< — 2
2 S'=7g



(alpj-l'ND

. B
ay (xi+N11yi+N1)l 1<i< T
BE _ 61/) N 3Ng .
kij = < ] D (xl-HVI; yl-{-NI) T <i S NB (419)
Ng . _3Ng
Ll/)j+ND(xl'+N[’yi+NI)’ T <ls—

for1 <j < N;.

The collocation equations, Egs. (4.15) and (4.17), can be combined and written in the

block-matrix form:

K, o o o01[a”] o,
_ (n)
S:1—>2 I{:Z 0 g az.n — Q:Z (420)

—S1.¢ Sz 0 Kg a(an) Q¢

The lower triangular structure of the collocation matrix in Eg. (4.20) is a
consequence of the no upscattering assumption (i.e., neutrons do not gain energy in

scattering reactions).

In Eq. (4.20), the elements of the global system matrix are block matrices
themselves. For every energy group an (N, + Ng) X (N + Ng) system of equations

has to be solved. As an example for the first group one has to deal with

[Ql (4.21)

D( )
Kli)D KDE n
Kll?D KBE E (n)

where KPP and K%E are square matrices of dimension N, and Ny respectively. The
matrix K¥P is rectangular with dimensions N x N;,, while KPE is again rectangular

with dimensions N X Ng. af'(") and Q, vectors are N, dimensional while the

E(m) ;

vector a’ D)

is Np dimensional. Solution of Eq. (4.21) yields a;" and hence the

numerical result.

The linear system in block-matrix form can be subjected to block-LU decomposition
by:

o0 Koy s o0y e -
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Here OPE and 0BP are rectangular matrices consisting of zero entries which are
Np X N and N X Np dimensional, respectively, and the subscript g is omitted to
simplify the notation. The identity matrices, I°? and IPE are N;, and Ny dimensional,

respectively. From the matrix equality, it follows:

UDE — (KDD)—lKDE

LBE — KBE _ KBD UDE (423)

The determination of UPE requires the solution of Ny linear systems of dimension
Np,. Since the coefficient matrix KPP does not change, an LU decomposition of KPP

for once is sufficient for the solution of the Ny linear systems.

Once UPE and LPE are determined, the algorithm

yD,(n) — (KDD)—I(FD,(n—l) + Q)

yB,(n) — _(LBE)—lKBDyD,(n)

VE) _ yBm (4.24)

aD,(n) — yD,(n) il UDEaE,(n)

yields the desired solution.

4.2 Results and Discussion

In order to assess the performance of the meshless RBF collocation method several
examples are considered. First, a 1-group external source case is studied, which is
followed by 1-,2-,3- and 4-group fission source problems. For the external source
and 4- group fission source problems, the RBF collocation method is compared with
finite element [71] and boundary element [72] methods. All calculations are

performed in FORTRAN with double precision.

4.2.1 External source problem

For the external source problem three types of sources are treated:

s1(x,y) =So 0<x<a 0<y<a
X T
S, (x,y) =cos(%)cos(%) 0<x<a 0<y<a
SS(ny): y
1—5 O<xSySa



The trigonometric and linear sources are presented in Figure 4.2. The analytical

solutions corresponding to these sources are as follows [73]

. . n+ nmx m~y
wien= (2 3 3 e e le)ele)
" vt mods e () + (7 |
1 X Ty
P2(x,y) = - [1 y (%)z] cos (7) cos (7) (4.26)
B >, cos (n_7~rx) cos mlty)
Pa0y) = TZq £d 2 [1a+ 212 (E;Z]

nodd a

where @ = 2a and L = /D /X, is the diffusion length.

Figure 4.2b: Graphical representation of the linear source.
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The diffusion constant and the diffusion length are chosen as 1.77764 cm
and, 11.1232 cm respectively. For the constant source problem the source rate is
taken to be S, = 1 n/cm3s. Accuracy of the methods is tested via calculating the

root mean square (RMS) and pointwise percent errors, which are defined as

Np
1 -
€Erms = N_DZ[(pS(xiiyi) - d)s(xirYi)]Z (4.27)
i=1
€Emax = 122]§D[|¢s(xi,yi) - és(xi:yi)l X 100/¢s(xi;yi)] (4.28)

where @, is the numerical solution and, s = 1,2,3 corresponds to constant,

trigonometric and linear sources respectively.

The infinite series of the analytical solutions for constant and linear sources are
approximated by setting the upper limits of series to 250. In all tests uniformly
scattered sets of nodes with different fill distances, h, are utilized. The nodes that are

outside the domain are located by a distance of h to the nearest boundary node.

The RBF collocation method is invariant under uniform scaling [74] and
computations are carried out on a domain scaled to [0,1]2. This is done by simply

multiplying the elements of KPP by 1/a?. In all tests a is chosen to be 25 cm.

First, the effect of the shape parameter, c, on the accuracy and stability of the RBF
collocation method is examined. In Figure 4.3 (a)-(c) the variation of RMS errors
with the shape parameter in case of linear source, s;, when N = 40 for MQ, IMQ
and GA, respectively, where N is the inverse of the fill distance is presented. It can
be inferred from this figure that there is an optimum shape parameter value for all
basis functions, and as c increases the RMS error first decreases and then at some
point it starts to oscillate and the accuracy decreases sharply if one continues to
increase the shape parameter. This result is expected since as c increases the solution
matrix becomes singular. It is seen from this figure that the MQ and IMQ results in a
better performance than the GA. Also the GA has a narrower range of maneuvering
for the shape parameter. This sensitivity of GA to ¢ has also been reported by Cheng
etal. [47].
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Figure 4.3a: Variation of the RMS error with ¢ in the case of s; for MQ.

€rms

0.020} ¢
0.010} o
0.005} ¢ .

0.002F ° o
1 °
0.001F e o °

0.00 001 0.02 0.03 0.04 0.05 O.O6C

2

Figure 4.3b: Variation of the RMS error with ¢ in the case of s; for IMQ.
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Figure 4.3c: Variation of the RMS error with c in the case of s; for GA.

49



The shape parameter dependence of RMS errors were also studied for constant and
trigonometric sources, and the results are given in Figure 4.4 where N = 40. Once
again, for all basis functions considered, there exists a minimum RMS error with
respect to the shape parameter, and the MQ and IMQ are superior to the GA in terms

of both accuracy and stable range of computation.

€rms
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0.020F , - GAQ S e
® [ ]
0.010f o " AR ‘o
[ ]
™ u ° mon
0.005F 2 "
° I. ® ® | |
[ |
0002F ® " ® M L
.. l... ®
0.001 &’

0.02 0.04 0.06 0.08 0.10

Figure 4.4a: Variation of the RMS error with shape parameter for s, .
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Figure 4.4b: Variation of the RMS error with shape parameter for s,.

The shape parameter has an important effect on the convergence rate of the RBF
collocation method. In Figure 4.5 (a)-(c) the variation of RMS errors with N for the
MQ, IMQ and GA, respectively, in the case of the constant source, s;, for three
values of ¢ in semi-log scale is shown. Continuous lines are obtained by fitting the
RMS error data in the form of ez s~0(mexp(—n/h)). The constants m and n are

given in Table 4.1. It is clear from this figure that there exists an exponential
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convergence rate and the accuracy of solution increases with increasing shape
parameter, which also enhances the convergence rate, for all basis functions. It can
also be observed from Figure 4.5 that the GA has performed poorly for sparse sets of
nodes where MQ and IMQ gave a reasonable accuracy.

EI'II’IS
0.1r
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Figure 4.5a: Variation of the RMS error with fill distance for MQ in case of s;.
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Figure 4.5b: Variation of the RMS error with fill distance for IMQ in case of s;.
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Figure 4.5c: Variation of the RMS error with fill distance for GA in case of s;.
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Table 4.1: Values of m and n in ez);s~0(m exp(—n/h)) for the constant source
problem.

MQ IMO GA

c? 001 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03
m 0227 0325 039% 5169 2874 2442 1590 4505 103.7

n 009 0.144 0.184 0.092 0.115 0.143 0.112 0.284 0.398

A noticeable result of Table 4.1 is the much higher m values of the GA than MQ and

IMQ. Huang et al. [75] have reported exponential convergence rates of
e~0 (exp(bc3/2)Acl/2/h) and e~0(exp bc* A7) for IMQ and GA, respectively,

where 0 < A < 1 and b > 0, for the solution of the Poisson equation. Since ¢ has a
larger exponent for the convergence rate of GA, the m values of Table 4.1 are in well

agreement with the estimates of [75].

The results of RMS errors with fill distance, when trigonometric and linear sources
are considered, are similar to those presented in Figure 4.5 and Table 4.1. The RMS
errors diminish exponentially with increasing N and the shape parameter improves
both accuracy and convergence rate of the method. GA produces less accurate results

for sparse sets of nodes.

In Figure 4.6 (a)-(c) the convergence curves of the RBF collocation method with MQ
and IMQ are plotted together with the FEM and BEM (boundary element method)
for the constant, trigonometric and linear sources, respectively. For collocation, the
shape parameter is chosen as ¢ = 0.1 for both MQ and IMQ. FEM is employed by
discretizing the 2D domain with linear triangular elements, while BEM utilizes linear
elements for the discretization along the system boundary. First of all, it is observed
from this figure that the collocation method converges faster than FEM and BEM for
all cases. MQ collocation provided more accurate results than both FEM and BEM
for s; and s,. When N = 20, the RMS error of MQ is better by at least one order of
magnitude. In the case of linear source, s, to obtain a more accurate solution than
FEM and BEM, the MQ collocation should have N > 20.

To observe the effect of source type on convergence rate, the data presented in
Figure 4.6 is fitted exponentially for MQ and IMQ in the form of
erus~0(mexp(—n/h)), and algebraically for FEM and BEM in the form of

€rmus~0(ph™"). The values of the constants m, n, p and r are given Table 4.2. This
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table shows that, when RBF collocation and BEM are used the fastest convergence
rate is found for the constant source problem, while FEM has the best rate for the

trigonometric source.
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Figure 4.6a: Comparison of the performance of MQ and IMQ collocation with FEM
and BEM for s;.
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Figure 4.6b: Comparison of the performance of MQ and IMQ collocation with FEM
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Figure 4.6¢c: Comparison of the performance of MQ and IMQ collocation with FEM
and BEM for s;.
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Table 4.2: The values of the constants for the exponential fit
€rms~0(mexp(—n/h)), and algebraic fit ey s~0(ph™").

Source type MQ IMQ FEM BEM
m n m n p r p r
) 1.831 0420 1427 0257 9.025 2063 1102 1.703
S5 0729 0377 0502 0241 5310 2156 0736 1.634
S5 0508 0235 0.173 0202 3.844 2122 0560 1.613

Despite the better accuracy and convergence characteristics of the collocation
method, FEM and BEM have a significant advantage, when stability is considered,
owing to their weak-form formulation and local approximation nature. As an
example, the MQ collocation becomes unstable for N > 30 when ¢? = 0.1, while
FEM and BEM preserve their stability. The instability of the MQ collocation can be
treated by decreasing the value of c, but this results in less accurate solutions. There
is a trade-off, that is, if one increases the value of c¢ indefinitely for the sake of

accuracy, it results with the loss of stability.

A simple strategy to improve the accuracy of RBF collocation without causing
instability is to select an optimum value of c. In Tables 4.3-4.5 the optimum shape
parameter values with corresponding RMS and maximum pointwise percent errors
for constant, trigonometric and linear sources are presented, respectively. These
calculations are carried out with three fill distances. The optimum shape parameters
are the ones that result in minimum RMS errors. In these tables the FEM and BEM

solutions to the problems considered are also given.

It is observed from Tables 4.3-4.5 that the MQ, IMQ and GA RBFs have exhibited a
good performance in the numerical solution of the neutron diffusion equation and
yield highly accurate numerical solutions, when the shape parameter is optimized.
For the constant and linear sources, MQ and IMQ gave better results than the GA,
especially as N increases. The MQ solution is better than the GA solution by two
orders of magnitude for the constant source when N = 50. In the case of
trigonometric source, the performance of RBFs is similar, and the best solution was
obtained by the GA when N = 25. It is also seen that the value of the optimum c?
decreases as the fill distance decreases, except the MQ for the linear source and GA

for the trigonometric source.
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Table 4.3: RMS and maximum pointwise errors of RBF collocation, FEM and BEM
together with optimum c? values for MQ, IMQ and GA for s;.

N Method c? Emax €rms
MQ 0.8843 7.35 x 1072 1.07 x 1073
IMQ 1.1042 7.11 x 1072 9.53 x 107*
10 GA 0.2152 9.42 x 1072 1.73x 1073
FEM - 1.68 7.78 x 1072
BEM - 3.62x 1071 2.24 x 1072
MQ 0.0790 1.03 x 1071 1.39 x 1074
IMQ 0.1685 7.15 x 1072 1.20 x 1074
25 GA 0.0269 1.19 x 107t 2.01x 1073
FEM - 1.29 1.20 x 1072
BEM - 1.69 x 1071 4,04 x 1073
MQ 0.0258 3.77 x 1072 493 x 1075
IMQ 0.0470 443 x 1072 1.62 x 107*
50 GA 0.0109 2.66 x 1071 487 x 1073
FEM - 9.96 x 1071 2.96 x 1073
BEM - 1.88 x 1071 1.04 x 1073

Table 4.4: RMS and maximum pointwise errors of RBF collocation, FEM and BEM
together with optimum c¢? values for MQ, IMQ and GA for s,.

N Method c? Emax Erms
MQ 2.4473 3.78 x 10~* 3.39x 107°
IMQ 3.3799 1.42 x 107* 2.24x10°°
10 GA 0.4551 3.28 x 107> 5.42 x 1077
FEM - 7.87 x 1071 3.71 x 1072
BEM - 1.68 x 1071 1.76 x 10™2
MQ 0.2773 6.30 x 10~* 2.66 X 107°
IMQ 0.2872 9.45 x 10™* 1.04 x 107
25 GA 1.1450 6.96 x 1073 444 x 107°
FEM - 1.65 x 1071 5.16 x 1073
BEM - 3.36 x 1072 3.37 x 1073
MQ 0.0382 8.44 x 1073 1.57 x 107
IMQ 0.0782 2.82 x 1072 3.92 x 107°
50 GA 0.2250 5.24 x 1072 8.06 x 107°
FEM - 4.85 % 1072 1.21x 1073
BEM - 9.20 x 1073 8.97 x 10
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Table 4.5: RMS and maximum pointwise errors of RBF collocation, FEM and BEM
together with optimum c? values for MQ, IMQ and GA for s;.

N Method c? Emax €rms
MQ 0.0068 9.08 x 1071 8.99 x 1073
IMQ 0.6016 7.84 x 1071 1.06 x 1072
10 GA 0.0875 1.42 1.08 x 1072
FEM - 8.13x 1071 2.91 x 1072
BEM - 1.96 x 1071 1.50 x 1072
MQ 0.0902 2.28x 1071 1.79 x 1073
IMQ 0.0660 473 x 1071 1.72 x 1073
25 GA 0.0177 7.59 x 1071 5.90 x 1073
FEM - 1.83 x 107t 4,05 x 1073
BEM - 424 x 1072 2.92x 1073
MQ 0.0261 6.70 x 1071 414 x107*
IMQ 0.0304 1.16 x 1071 5.44 x 10™*
50 GA 0.0043 8.53 3.78 x 1072
FEM - 5.60 x 1072 9.39 x 107
BEM - 1.41 x 1072 7.82x 107*

When the performance of FEM and BEM is compared with those of RBF
collocation, it is seen that for all sources considered the RBF collocation method
with MQ and IMQ give better performance than both FEM and BEM at all values of
N. For the constant source, when N = 50, the MQ results with a solution that is two
orders of magnitude more accurate than FEM and BEM, and the GA becomes less
accurate than these mesh-based methods. For the trigonometric source it is observed
that RBF collocation outperforms both FEM and BEM, especially for sparse sets of
nodes. In all cases collocation solutions are better than the solutions of FEM and
BEM by at least two orders of magnitude. RBFs have also worked well for the linear
source problem, but the GA performed poorly for the linear source when N = 50

yielding a result two orders of magnitude less accurate than all other methods.

The results of Tables 4.3-4.5 point out the importance of shape parameter
optimization for the collocation method. By carefully selecting the value of c, highly
accurate results can be obtained even with low N. Optimization also helps to increase
N in a stable manner without utilizing algorithms such as domain decomposition and

matrix preconditioning.

Next, the central processing unit (CPU) time of the RBF collocation method is
compared with those of FEM and BEM. In Figure 4.7, the CPU times of MQ
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collocation together with FEM and BEM in the case of constant source is presented
in semi-log scale. The shape parameter, which does not affect the computation time,
is chosen as ¢? = 0.01. It is clear from this figure that the FEM is superior to the
RBF collocation method when the CPU time is taken into account, and the
collocation method is more efficient than the BEM. The superiority of FEM is due to
the sparse and symmetric nature of the resulting coefficient matrix. It should be

noted that similar results are obtained for other source types and RBFs.
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Figure 4.7: CPU times of the MQ collocation, FEM and BEM.

As a last study for the external source problem, in Figure 4.8 the distribution of

pointwise errors, €,, in the case of trigonometric source is illustrated for all basis

functions. The shape parameter is chosen as ¢? = 0.1 and N = 40 for all RBFs. It
can be seen from this figure that the errors tend to increase near the boundaries of the
domain. This was expected, even though external nodes ares used to enhance the
performance of RBF collocation, due to the so-called Runge phenomenon [55].
According to this phenomenon, oscillation is observed around the edges when
interpolation is deployed with a uniformly distributed set of nodes in a finite domain.

Figure 4.8a: Distribution of pointwise errors in the case of s, when N = 40 for MQ.
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Figure 4.8b: Distribution of pointwise errors in the case of s, when N = 40 for

IMQ.

Figure 4.8c: Distribution of pointwise errors in the case of s, when N = 40 for GA.

4.2.2 Multigroup fission source problems

To investigate the performance of the RBF collocation method for multigroup fission
source problems, 1-, 2-, 3- and 4-group cases are considered. The analytical solutions
for 1-, 2- and 3-group problems can be found in [5]. For the calculation of flux
values the power is selected as 16 kW/cm for the first three problems and
25 kW/cm for the 4-group case. The convergence criterion is chosen as 10 for all
problems. Accuracy of the method is examined via calculating the error in A and

maximum errors in group fluxes

€, = |A— 4| x 100/2 (4.29)
Emax,g = max [|¢g(xi: Yi) - (ﬁg(xi: yi)l X 100/¢g(xi' yi)] (430)

1<i<Np
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where g = 1,2,3,4, and 1 and ¢3g are the numerical effective multiplication factor

and group flux, respectively.

In the first problem the one-group case is studied. The length of the square domain is
taken as a =50 ¢cm, while D =1.77764 cm, 2 =0.0104869 cm™l, v =2.5,
¥, = 0.0143676 cm™! and y = 1. The analytical value of A is 1.46657782. Figure
4.9 shows the variation of €,,,, and €;with respect to N, where ¢? = 0.06. It is
observed from this figure that €,,,, decreases continuously with decreasing value of
the fill distance. It has its minimum value of 5.642 x 10~3 when N = 36. Highly
accurate A values are obtained above N = 22 and, the percent error has decreased to

its minimum of 4.091 x 10~® when N = 32.
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Figure 4.9a: Variation of €,,,, with respect to N.
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Figure 4.9b: Variation of €, with respect to N.
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In the second problem the number of energy groups is two and a = 25 cm. The
nuclear data is given in Table 4.6. Diffusion constants are given in units of
centimeters and all cross sections have units of inverse centimeters in Table 4.6 and
later on in Table 4.8 and Table 4.10. For this problem 4, = 1.96293774.

Table 4.6: Two-group nuclear data.

Group D v Xr z, T gog+1 X
1 1.2245 2.65 0.063 0.13552 0.0676 0.575
2 1.2245 2.55 0.06776  0.08228 - 0.425

The numerical results of the two-group problem are summarized in Table 4.7, where
c2 =0.06. It is seen that the maximum errors in group fluxes are similar and
decrease with decreasing fill distance value. For the multiplication factor, a very high
level of accuracy is obtained above N = 16. It is also observed from this table that

the number of iterations increases by one when N = 32.

Table 4.7: €,,4, and €, for the two-group problem.

N Niter Emax,1 €Emax,2 )

8 29 1.040 1.060 3.221x 1072
12 29 4429 x 107" 4478x 107" 8.663 x 1073
16 29 2.222x1071  2236x 107!  2.691x 1073
20 29 1.274x 107t 1277 x 107! 8.238x107*
24 29 8.173x107% 8.161x107% 1.722x107*
28 29 5,550 x 1072 5502 x 1072 7.132x107°
32 30 4361 x 1072 4.298x 1072 9.730x 107°
36 30 8.136 x 1073 7.384x 1073 1.365x107*

In Figure 4.10 the variation of €,,,, 1 and €,,,,, With the shape parameter of the
multiquadric is illustrated where N = 25 is chosen. The maximum pointwise errors
in flux for both groups decrease continuously with increasing shape parameter up to
c? = 0.12. Beyond this value the errors start to oscillate and the numerical solution
breaks down except for ¢? = 0.149. This is expected since as the shape parameter

increases the collocation matrix becomes more and more ill-conditioned.

The error in multiplication factor is shown in Figure 4.11 where, again N = 25. It is
seen that the error increases with the shape parameter at first up to ¢? = 0.015 and

then starts to decrease until ¢ = 0.072 where the analytical solution is reproduced.
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Above this value it increases again, and similar to the pointwise errors in group
fluxes the numerical solution oscillates and breaks down above c¢? = 0.12
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Figure 4.10a: Variation of €,,,,, 1 With respect to the shape parameter.
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Figure 4.10b: Variation of €,,,, , With respect to the shape parameter.
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Figure 4.11: Variation of €; with respect to the shape parameter.
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It should also be noted that the change of errors in flux and multiplication factor with

the shape parameter is found to be similar for the one and three-group problems.

The third problem deals with the solution of the three-group neutron diffusion
equation where a is assumed to be 25 cm. The nuclear data characterizing a three-

group structure is given in Table 4.8 and the analytical value of 4 is 0.75024241 for

this problem.
Table 4.8: Three-group nuclear data.
Group D v Xr z, Zo gogtl  Tsgog+2 X
1 3.0034 2.65 0.0131267 0.05286 0.02705 0.01181 0.575
2 2.2297 2,53 0.006102 0.016704 0.00822 - 0.326
3 1.4627 2.47 0.008317 0.01414 - - 0.099

The number of iterations, maximum pointwise errors for the three group fluxes and
the error in A is given in Table 4.9 for different N values where ¢? = 0.06. Once
again, it is found that the errors in group fluxes and multiplication factor decrease
with decreasing value of the fill distance. Highly accurate A values are obtained when
N = 20 or higher. It is also observed that the number of iterations does not depend

on the choice of N.

Table 4.9: €,,4, and €, for the three-group problem.

N Niter Emax,1 Emax,2 €max,3 €L

8 12 9.715x 1071 1.068 1.116 1.702 x 1071
12 12 4232x1071 4494 x 107" 4.624x 107!  4.649 x 1072
16 12 2149 x 1071 2.234x 107! 2276x 107! 1.519x 1072
20 12 1.239x 107t 1.270x 107! 1.285x107* 5428 x 1073
24 12 7.958x 1072 8.072x107% 8.128x 1072 2.037x 1073
28 12 5363 x107% 5406x 1072 5427x107% 7.811x107*
32 12 4149x 1072  4.168x107% 4.172x1072 2.972x107*
36 12 8.572x 1072 5375x107% 5329x107® 9.197 x107°

As the final example, the 4-group fission source problem is studied. In this case,

since the analytical solution does not exist in the literature, it will be given first. The

group flux distributions have the following form

X T
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where a = 2a, Hy, = Ay/A4, g = 1,2,3,4 and A, is a factor dependening on the

power (P) and size of the system, and fission cross sections

H, = N
| =
X 1 4.32
)Ti + D.BZ +3,, [Zs10a + Zs24a2 + Z53.403] (4.32)
H2 - Hlaz (433)
H3 = H1a3 (434)
A pr” (4.35)
4 = .
wr(Hy2p 1 + HoZpp + HaZp 3 + 25, )a?
where BF = 0.5 x (m/a)? is the geometric buckling and
D,BZ + %, ,
Y= DB 5, (4.36)
1Pg 7,1
X2 + 25152
LK D\B? + 2,4 @37
2 D,BZ + 2., '
DlBg2 + 25,
2
5o <)Q N 5,12 >
X3 + 25,1—»3 + 5223 X1 DlBg2 + Zr,l
e DiB§ + 21 D;B§ + %, (4.38)
3 D3BZ + X, 3
D\BZ + 2y,

The nuclear data representing a four-group structure is presented in Table 4.10.
Length of the square domain is chosen to be a = 50 cm. These data yield a
subcritical (i.e., A < 1) system with an analytical multiplication factor of A1 =
0.87227.

Table 4.10: Group constants for the 4-group problem.

g D sz Zr 2:s,g—>g+1 z:s,g—>g+2 z:s,g—>g+3 X
1 2.876787 0.0118781 0.028204 0.023597 4.079x106 4.449x10° 0.768
2 1570845 0.0053251 0.005275 0.001615 4.231x10-8 - 0.232
3 0.722486 0.0104709 0.017612 0.004684 - - 0
4 0.964199 0.0266109 0.026546 - - - 0

The effect of shape parameter on ¢, is illustrated in Figure 4.12a-c for MQ, IMQ and

GA, respectively, when N = 40. This figure shows that the error in A decreases with
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¢ for IMQ and GA, until the iterative algorithm becomes divergent as a result of ill-
conditioning of the collocation matrix. On the other hand, an interesting trend is
observed when MQ is utilized. Before going into the unstable region, €; passes
through a maximum value of 4.71 x 10™* at ¢? = 0.014. Figure 4.12 also shows
that MQ and IMQ are superior to GA in terms of both accuracy and stability. The
stable region of GA is narrower than MQ and IMQ, and a convergent solution exists

for a limited number of ¢ values.
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Figure 4.12a: Variation of €; with shape parameter for MQ when N = 40.
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Figure 4.12b: Variation of €, with shape parameter for IMQ when N = 40.
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Figure 4.12c: Variation of €, with shape parameter for GA when N = 40.

The abovementioned calculations are carried out for N = 10,15, ...,50. The

maximum error behavior is observed at all N values for MQ, while it is encountered

only at N =10 and 15 for IMQ, and never seen for GA. The maximum and

minimum errors with corresponding shape parameter values are tabulated in Table

4.11 for MQ and IMQ. The results show that highly accurate results can be obtained

by the RBF collocation method even with low N and thus propound the importance

of shape parameter optimization. Also, in cases where there is a maximum error in A,

the multiplication factor corresponding to that error is indeed a good approximation

to the analytical value.

Table 4.11: Maximum and minimum €, for MQ and IMQ.

N MQ IMQ

Crax €1, max Chin €Amin Chax €1, max Coin €A min
10 0.022 8.81x1072 1203 4.17x10°® 0516 2.65x1073 1.694 1.03x10°°
20 0.013 1.05x1072 0231 552x10°° - - 0314 3.24x107°
30 0.015 194x107% 0.09 4.06x1075 - - 0.120 4.02x107*
40 0.014 4.71x10™* 0.047 5.32x10°° - - 0.064 5.48x 107
50 0.013 1.15x10* 0.009 2.89x107° - - 0.040 1.11x1073

To see whether the criticality has an influence on the solution, the calculations are

repeated for a = 100 cm which yields a supercritical (i.e., 4 > 1) system with
A = 1.23984. In Figures 4.13a and 4.13b the effect of criticality on the ¢ dependence

of €, is demonstrated where MQ is chosen as the RBF and N = 50, for the
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subcritical and supercritical cases, respectively. These figures show that an increase
in A has resulted with the disappearance of maximum error behavior. These
numerical tests are also done with N = 10,15, ...,50 for MQ, IMQ and GA. It was
found that the stable computation region with respect to c¢ is narrowed down with an
increase in A. In addition, the results show that, when there is a maximum error in

stable region, the corresponding c value is independent of the criticality.

€x

0.001 F .
Sx1074F *

1><10_5_" R X P
5x107°F *

1x107°F .®
Sx107%F

2

1x107¢ a a a e
0.00 0.01 0.02 0.03 0.04

Figure 4.13a: Variation of €; with shape parameter for subcritical case when MQ is
the RBF and N = 50.
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Figure 4.13b: Variation of €, with shape parameter for supercritical case when MQ
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The variations of €, and €,,,, 3 With respect to N, for the three RBFs, are plotted in
Figures 4.14a and 4.14b, respectively where ¢? = 0.02 and A = 0.87227. The
relative maximum percent error in group flux is presented only for the third group,
since it follows a similar path for g = 1,2,4. It is clear from this figure that GA
converges faster than both MQ and IMQ, but it performs poorly for low N. Another
disadvantage of GA is its stability. At N = 40, MQ and IMQ produces €, values of
3.82x10™* and 6.86 x 1072, respectively, while iteration diverges due to
instability for the GA. These results show that, MQ is the proper choice, when
accuracy and stability are taken into account together.
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Figure 4.14a: Comparison of MQ, IMQ and GA for ;.
€max .3
10.00F
5.00F .
1.00F "~ “m
- ~~—— l
0.50 e MO ~e_\ —
e
—=—IM e
0.10} Q S
0.05} GA
A A A A A A A j\f
0 5 10 15 20 25 30 35

Figure 4.14b: Comparison of MQ, IMQ and GA for €,,,4y 3.
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In order to make a comparison, the convergence curves of MQ collocation, FEM and
BEM for €, and €,,4, » are presented in Figures 4.15a and 4.15b, respectively, where
A =0.87227. The shape parameter for MQ is chosen as c¢? = 0.04. As observed
from this figure, for the calculation of the multiplication factor, with its exponential
convergence rate, MQ collocation has performed much better than both FEM and
BEM, especially as N increases. MQ collocation has yielded ¢; = 6.16 x 1073 at
N = 20, which is more accurate than the results of FEM and BEM at N = 45.
However, although MQ collocation converges faster, BEM has provided the best
results when group fluxes are considered. Furthermore, if the stability is taken into
account, similar to the external source problem, the collocation technique has the
disadvantage of being less stable than FEM and BEM. The MQ collocation becomes
unstable at N = 50, whereas FEM and BEM have kept to provide convergent
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Figure 4.15a: Comparison of MQ collocation, FEM and BEM for ;.
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Finally, in Figure 4.16, the variation of CPU times of MQ collocation, FEM and
BEM for the subcritical problem is illustrated. This figure shows that FEM is more
efficient than both MQ collocation and BEM. With increasing N, FEM becomes
superior, at N = 50 it is better than the other methods by an order of magnitude. MQ
collocation is slightly better than the BEM. The number of iterations, determined by
the convergence criterion, is an important factor in neutron diffusion calculations,
and for the subcritical problem it was found that for all methods, the numerical
solution is obtained after 14 iterations. Hence, the advantage of FEM in computation

cost can be attributed to its sparse and symmetric stiffness matrix.
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Figure 4.16: CPU times of the MQ collocation, FEM and BEM.
4.3 Improving the Performance of the RBF Collocation Method

The effectiveness of a numerical method, whether it is meshless or mesh-based, is
evaluated by its accuracy, stability and CPU time usage. It is necessary to investigate
how a numerical scheme can become more preferable to its opponents. Since the
radial basis function collocation method approximates partial differential equations
globally, the stability of the method becomes an important issue. The numerical tests,
based on new approaches would play a valuable role before going into multiregion

problems.

4.3.1 Increasing the precision

A brute force method to improve the stability of the method is to increase the

precision. Generally, the matrix condition number is used to test whether a numerical
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method is stable or not. For an algebraic system Ku = f, the relative round-off error

can be estimated by [58]

Eround < K&mach (4-39)

where K is the condition number and &,,,., 1S the machine precision. Using higher
precision arithmetic decreases the machine precision and therefore it provides a more
stable computation environment, since for a specified round-off error it is possible to

achieve higher condition numbers.

In order to test the effect of precision on the stability of the method the external
source problem with the constant source is considered. Figure 4.17 shows the
comparison of results obtained by FORTRAN’s double precision and
MATHEMATICA’s 100-precision arithmetic. In these calculations the shape
parameter of the multiquadric radial basis function is chosen as ¢? = 0.1. It is clear
from this figure that using a higher precision has improved the stability of the
method. For the double precision, the RMS error has started to increase above
N = 30 whereas it has continued to decrease when calculations are done with 100

precision.

EI'ITIS
—=e—— Double precision

0.100F
0.050F

—a—— 100 precision

0.010F
0.005F

0.001
5x 1074}

1 x 1074}
0 10 20 30 40 50

N

Figure 4.17: Comparison of double and 100 precision calculations in the RBF
collocation method.

The price to pay when the precision is increased is the CPU time, as expected. To see
the relation between precision and CPU time several numerical tests are performed
with different precision values, and it is found that higher precision arithmetic
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becomes worse in terms of CPU time as the number of nodes used in discretization
gets higher. As an example, when N = 50, the CPU time is %20 more when 100 and

20 precision computations are compared.

4.3.2 Exponent of the generalized multiquadric

In the previous section the effect of the shape parameter on the performance of the
RBF collocation method was illustrated. Also, in Chapter 3 the role of this parameter
on the interpolant was illustrated (see Figure 3.4). As the value of ¢ increases the
RBF becomes flatter and it becomes less sensitive to the distance between the nodes.
In computations, the condition number of the collocation matrix increases with
increasing shape parameter and the method becomes less stable. It was found that by
fine-tuning of this parameter one can obtain high level of accuracies for both external
and fission source problems even when the number of nodes is low. The convergence
rate is also affected by c, the errors diminish faster as the shape parameter becomes

larger.

The exponent, g, of the generalized multiquadric has an effect on the RBF, similar to
that of the shape parameter ¢ as shown in Figure 4.18 where ¢ = 0.2. So, it is
expected that the performance of the method can be improved by optimizing this

parameter.

-1.0 -0.5 0.5 1.0

Figure 4.18: Effect of the exponent on generalized multiquadric centered at the
origin.
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To see the influence of g on the accuracy and stability of the algorithm, once again,
the constant source problem is considered. Calculations are done with FORTRAN
and the shape parameter is chosen as ¢ = 0.02. In Figure 4.19, the RMS error with
respect to N is plotted for three values of the exponent, g. It is observed from this
figure that the accuracy of the method increases with increasing q value, but on the
other hand the algorithm becomes less stable. When g = 0.5 (the MQ case), the
RMS error decreases with the fill distance continuously, while it started to increase
above N = 30 for g = 2.5. It can also be deduced from this figure that increasing the
exponent enhances the convergence rate of the collocation method. These results
show that, it is possible to improve the characteristics of the RBF collocation method

by varying the exponent of the generalized multiquadric radial basis function.

El'l'l’lS

0.100F
0.050F

0.010F
0.005F

0.001F
5% 1074}

q=2.5

1 x 1074}
a » - o u N
0 10 20 30 40 50

Figure 4.19: RMS error with respect to N for the constant source problem.
4.3.3 Node number dependent shape parameter strategy

Radial basis functions can be expressed in different forms. As an example, the MQ

can be stated as follows

2 2 q
P, = {[(x - xj) }‘1"2(3’ - yi) a? + 1} (4.40)

where « is called the relative width parameter since it is the width relative to the fill
distance h [76]. It is obvious that the traditional form, and Eq. (4.40) are related by
a =1/hc.
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In [76] six strategies were tested to treat the Runge phenomenon which is a source of
accuracy degradation in numerical methods. One of these strategies is to use a
variable a scheme instead of a constant shape parameter. It was found that by
decreasing a as a/N'/4, the Runge phenomenon can be defeated in interpolation of

functions where N is the number of nodes and a is some constant.

This node number dependent shape parameter approach is tried for the solution of the
constant source problem. The results are presented in Figure 4.20 together with those
of constant « strategy. This figure shows that variable shape parameters can provide
accurate results with few nodes, but on the other hand they do not improve the
stability of the method, since oscillatory behavior is observed for & = 0.5/N'/# and
the method diverges when a = 0.3/N1/*. These instabilities can be dealt with by
choosing lower values for a, but this results in degraded accuracy. Therefore node
number dependent shape parameter strategy does not affect the performance of the
RBF collocation technique significantly.

E1'111 S

—&— a=constant -
10} o
—=— q=03/N"* _/’
a=0.5/NV* |/
O0.1f
0.01F
| S
0.001} VN
1L
10 . . . — N
0 5 10 15 20

Figure 4.20: Results of node number dependent shape parameter strategy.
4.3.4 Singular value decomposition filtering

For an m X n matrix A the singular value decomposition (SVD) is defined as
A=UTzvV (4.41)

where U and V are orthogonal matrices and X is a square diagonal matrix containing

the singular values. These matrices satisfy [77]
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UTAV =X = diag(oy, ..., 0,) € R™", p = min{m,n} (4.42)

where oy = 0, = -+ = 0, = 0. In [78] it has been shown that SVD can be used as a

tool for teaching linear algebra geometrically, and also it is applied in solving least

squares problems and in data compression.

SVD is an effective tool for solving linear systems when the matrix in question is ill-
conditioned. Since the RBF collocation method is a global approximation scheme it
gives a full matrix at the end of discretization process. As it is shown in previous
simulations, the solution can become unstable depending on the values of the fill
distance, h and shape parameter, c. Hence, SVD may improve the performance of the

algorithm by treating the ill-conditioning of the collocation matrix.

Now suppose that the linear system resulting from approximation of a PDE with its

BCs is given by
Ka=f (4.43)
If this system is decomposed into its singular values one has
UTVa=f (4.44)
and the vector whose elements are the coefficients of the RBFs can be found by
a=V'EUf (4.45)

When the condition number of K is high it is useful to omit the smallest singular
values by replacing 1/g; with zero in 2~*. By this SVD filtering, the amplification

of round-off errors corresponding to the smallest singular values is depressed [76].

Numerical experiments are performed in MATHEMATICA to see the effect of SVD
filtering with 50-precision arithmetic, again, for the constant external source case.
The fill distance is chosen to be N = 15 which means that there are 320 singular
values. For these fill distance and precision values instability is observed when
c? > 0.8 if all singular values are kept. The contour plot in Figure 4.21 demonstrates
the RMS error with respect to the shape parameter, ¢ and the number of singular
values omitted in calculations, ng,. This figure shows that SVD filtering can improve

the accuracy of the RBF collocation method in both stable and unstable regions. It is
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also observed from this figure that as the shape parameter increases (i.e., the
collocation matrix becomes more ill-conditioned), n, has to be increased to get the

best results.

Figure 4.21: RMS error of constant source problem with respect to ¢ and ng,,.
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5. MODELLING OF MULTIREGION NEUTRON DIFFUSION

This chapter deals with the numerical modelling of multiregion neutron diffusion
problems with the RBF collocation method. As stated in the third chapter, when this
type of collocation scheme is chosen for the solution of problems involving
heterogeneous media, the weighted version of the method is applied. Taking this
situation into account, the weighted RBF collocation method is used for multiregion
neutron diffusion problems together with the classical collocation scheme, and
therefore, initially the numerical formulation of the weighted collocation method is
presented. Next, the accuracy and stability of the classical and weighted approaches
are tested by working on five problems. First two of these five cases are two-region
configurations for which analytical solutions exist. Then a more complex two-region
problem which contains a corner singularity is considered. To assess the robustness
of the numerical scheme, this corner singularity problem is studied again, this time
with a high level of heterogeneity, and finally a five-region IAEA (International
Atomic Energy Agency) benchmark problem is solved with the RBF collocation

method.

5.1 Numerical Formulation for the Weighted RBF Collocation Method

For ease of illustration a system consisting of two-regions is considered as shown in
Figure 5.1. Here S; and S, are two domains with different properties, I, is the
interface of these regions, and I, and I’y are the vacuum and reflective boundaries,
respectively. The one-group neutron diffusion equation can be expressed in the

following operator form:

Lipi(r) =q;(r), T€S;, i=1.2
¢;,(r)=0 rer, i=1.2
a%r(lr) =0, rET, i=12
$1(r) = ¢p,(r), TET,
d1(1) -D 0, (1)

on 2 oan "

(5.1)

D,

€T,
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The source term, q;(r), represents an external or fission source. For the vacuum
boundary term a Dirichlet type BC is chosen, however a Robin type vacuum
condition can also be treated in the same way. In the one-energy group

approximation L; takes the following form
Ly =-VD;(r)V+Z,; (5.2)

where D; and X, ; are the diffusion constant and absorption coefficient of the ith

region, respectively.

Figure 5.1: A typical two-region problem.

The numerical formulation starts by defining the following weighted least squares

functional:

1
Iu;] = > ff(Liui — q;)%dS + wy f(lh — u,)?dl’
Si To

(5.3)

_ ou, Ouy\> ) duy\>
+WR f (D1 % — Dz %) dr +WV,i f u; dalr + WR,i f (Dl %) dar
To Ty T'r
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where i = 1,2. Here w,, and wy refer to the vacuum and reflective type interface
conditions, respectively (i.e., continuity of the neutron flux and current), whereas
wy ; and wg ; are the weights related to vacuum and reflective boundaries. The aim of

the least-squares approximation is to find a solution ¢;, such that the functional I[u;]

is minimized:

I[¢;] = min I[w;] (5.4)

u;eU
Since ¢; is the function minimizing I[u;] and the solution to Eq. (5.1) one can write
u; = d)i + 14 (55)

If Eqg. (5.5) is substituted into Eq. (5.3), the first integral term on the right hand side
of Eq. (5.3) becomes
ff(Liui —q;)%dS = ff[(Liui)z —2q;Liu; + q;%]dS
Si Si
= ff{[l'i(d)i +v)1* — 2q;Li(¢p; + v;) + q;°}dS
Si
= .U{(Li(ﬁi)z +2L;p;Liv; + (Liv)? — 2q;L;ip; — 2q;L;v; + q;°}dS
. (5.6)
= ﬂ[(Lifﬁi)z —2q;Li¢; + q;*]dS + jf(Livi)zdS
Si Si
+2 ff [Li¢;L;iv; — q;L;v;]dS
Si
= ff(LiQ—')i —q;)%dS + ff(l'ivi)zds + 2 ff [Li¢;L;iv; — q;L;v;]dS
Si Si Si
The second term

](ul —uy)%drlr = j(uf — 2uquy + u3)dr
To I'o
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= J- [(@F + 20101 +v]) — 2(P12 + D1V + P01 + 1v41,)
To

+(¢p2 + 2¢,v, + v2)]dI (5.7)

= f[(d)% — 2010, + $3) + (2111 — 21V, — 20,01 + 2¢,1)

Lo

+ (W — 2v,v, + v2)]dl
= .f(d)l — ¢)?dl + 2 f(¢1 — ¢) (v —v)dl + f(lﬁ —v,)%dr
To To 1)

The third term can be manipulated in a similar manner

2

f(D %—D %) dr
L on 2 on

Lo
—J(D 0¢1 Da¢22dF+J(D e Davzzdr 5.8
= | (050 =22 57) VD25 8)
Ty Ty
dp, 0o, v, av,
+2 ,[ (D1 on — D 6n>(D1 on — D E)n)dr
Ty

The last two terms have the following forms:

Juizdf‘: ]¢>§dr+2 j ¢;v;dl + fvfdr (5.9)

Ty Ty Ty Ty
f(D aul’)zdr—p2 f(aqb")z ar+2 [ 2209% 4

L on - on on on
T'r Tr Tr

(5.10)
+ f (avi)zdr
on
I'r

Substituting Egs. (5.6-5.10) into Eq. (5.3)
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;] = %{ || iti = azas + [[ vozas
Si Si

f (1 — )2 dr
To

+2 || [Lig;L;iv; — q;L;iv;]dS + Wy
g

+2 f(¢1 — ¢) (v —vy)dll + f(vl - 172)2 dl"‘
Fo l—‘0

_ 0, 0, 2 f o0V, o0V, 2
——D,—= ——D,— 5.11
Wr _f(Dl on D, 6n) dr+ (Dl on D, an) dr ( )

Lo To

do, 6¢2>< v, av2>
b f (Dl on D, on Dy on Dz on ar

To

+WV,i

J¢i2dF+2J¢ividI‘+ fvizdl“]
I'y Ty Iy

[ e [ o8tars | (3 |

I'r Ir I'r

Rearranging terms yields

1
Il = 5{ [|wsi—ards v [ @ -g2dr+w, [ grar
Si Ty 'y

0 dh,\ 2 A \>2
+wg j (Dl%—D2 %) dl +wpg ;D? f (%) dl“}

Ty T'r

+ {Jj [Li¢iLivi - qiLiUi]dS + wy J (¢1 — ¢2)(U1 _ vz)dr (512)
S; f

on P2 )\Prgy — D

d 0 ov ov -
i f (Dl 91 ¢2>(D L 2) dr + wy f &;v;dr
Ty

Lo

d¢; dv; 1
+wp D? f a(il a—nldr} + E{ﬂ (L;v)%dS + wy f (v, — v,)?dl
o

Ir Si
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_ v, Av,\° ) 5 av\*
+WR f (Dl % - DZ %> dal + WV,L' f Vi dar + WR,L'Di f (%) dar
Ty 'y T'r

Next, the following definitions are made
1 _ GI0) Gl
g =5 ﬂ(Liqbi — q;)%dS + +ivg f <D1 a_nl - D, a_nz) dr
Si

o
(5.13)

AP\ >
+wy f(¢1 — ¢,)%dl + wy; ]¢i2dF+WR,iDi2 J (;f:) dr
Lo Ty

Ir

0l[¢p;, v;] = Jf [Lip:L;iv; — q;L;v;]dS + wg D} —L——Ldr
Si Tr

sy [ @1 = 9201 = v AN + i [ giar (5.14)
To Ty

_ 0¢, 0o, o0V, 0V,
+Wr f (Dl on b, on ) (Dl on b, 0n>dF
Lo

1
5%[v;] = > ff(Livi)zdS + Wy f(vl —v,)%dl + wy; f vZdl
Si Ty Ty
(5.15)

_ dv, av, 2 ) ) av; 2
+WR j (D1 % - DZ %) dF + WV,i f vi dr + WR,iDi f (%) dF
To Ty TR

Since 6%I[v;] > 0, to minimize I[u;], one must have 8I[¢;, v;] = 0. This is the

stationary condition and hence the bilinear form of Eq. (5.1) is obtained:

a(¢,v) = f(v) (5.16)
where
fw) = || qiLiv;dS (5.17)
I
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a(p,v) = f f LibiLvidS + iy f (b1 — b2)(vy — v)dT
Si )

_ 09, 20, o0, o0v,
W f (DIW‘DZ W) <D1%_D2 %) dr (5.18)

6(].’)L- avi r
on on

The next step of the numerical formulation is to determine the weights. To
accomplish this task, first, a weighted norm is defined as it was done in Eq. (3.90),
and it is recalled that the error introduced by the weighted collocation method is

bounded by
¢ = ¢nlly <M infllg — vl (5.19)

provided that the bilinear form, a(¢, v), is continuous and coercive. For the problem

considered Eq. (5.19) becomes

lp — dnlly < Craqllpr —villzs, + Coazlld, — v3l2s,

+Cwyllpr —villor,, + Cawy2llds — v2lloary,

d G,
+Cswp 1 ||D1 5= (91 — 1) + CeWgr || Dz = (¢ — v2) (5.20)
on 0TR1 on 0TR2
_ _ 6171 6172
+C7WV”v1 - 172”0;0 + CSWR D1 % - 2 % 0’1_,0

where ¢, is the optimal numerical solution, a; = max[D;,2,;],i =12 and

c,

j =1,..8 are generic constants. Since the approximation error is larger on the
boundaries of the domain as compared to the error resulting from the approximation
of PDE, all norms on right hand side of Eq. (5.20) will be transformed to ||-||, s, and
then these error terms will be balanced by selecting appropriate weights for the
boundary and interface terms. The following inequalities, given in [61,62,65,67,70],

will be utilized for this purpose
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”ainz,si < CNi,int”a”LSi

llaillor,,; < Cllallys

Oai —

— < CNypValla

|5 v = eVl 620

laillor, < Cllallys
”aai
on

< CNi,int\/E”alll,S
O,Fo

where Nint = maX[NLmt, Nz,int]'

For the C; and C, terms

Cragllpy — villzs, < CragNyiellpr — v1ll1s,
(5.22)

Ca;|lp, — Uz”z,sz < ézazNz,int||¢2 - 172”1,52

note that C; = CC;. Since the same PDE governs both regions it is expected that
lp1 — v1llys, = lldp2 — v2llys, and thus the error, due to the approximation of the

flux by RBFs will be dominated by a;N; ;,., and therefore one can write

C_lalNl,int||¢1 > V1||1,51 + ézazNz,int||¢2 - 172”1,52

il r _ _ (5.23)
= (ClalNl,int + Cz“zNz,int)”(I-') - 17||1,s"’C1—267Nim:||<I-') - U||1,s

where @ = max[a,, a,]. Next, the vacuum and reflective BC terms will be treated

CSWV,1”¢1 - 171||0,1"V_1 < C_3WV,1”¢ - U||1,5 (5.24)
Cawy 2l — 772“0,1"1,,2 < Cawy2llp = vllys (5.25)
Cowns || Dy (61— v1) CownaDs |- (g — v0)
w -— -V = w — -V
sWr1||¥15, \P1 1 0ras sWr1b1 |5 (@1 1 0ras
— — (5.26)
< CSCWR,lNint\/EDllld) - V||1,s
= ESWR,llvint\/EDlll(p - l7||1,s
Cowz [P (b — v2) CownaDs || o= (5 — v2)
w -_— — 7D = w - —v
6Wr2 ||[F2 5 (P2 2 0res sWr2U2 |15 (@2 2 0res
(5.27)

< CGCWR,ZNint\/EDZH(p - v||1,s

= C_‘6WR,2Nint\/ED2”¢ - 17||1,s
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When the continuity of the neutron flux condition is considered it is first noted that
¢1 — ¢, =0o0nT,. Then

Cywy|lv, — 172”0,1‘0 = Cwyllvy — v, — (1 — ¢2)||0,1“0
= Cywyllvy — ¢y + ¢2 — vallor, (5.28)

< C7WV[||¢1 —v1llor, t ¢z — 172”0,1"0]

Assuming that ||y — v1llor, = l[¢2 — v2llor, ONE can write

C7“_’V[||¢1 - V1||0,F0 + [l — 172||o,1‘0]~C7WV||¢ - U”o,ro (5.29)
and therefore
C;wyllp = vllor, < CCWyllp — vllys = Cmyllp — vllys (5.30)

The treatment of the continuity of neutron current condition is similar to that of the

09,1 092
—_ D2 et 5,
d

neutron flux. Noting that D, 4 o 0onT,

_ v, v, d¢, ¢,
L L e L
_ 0 0

= CgWp ||D; an (w1 — ¢1) + D, an (P2 —v2) or, (5.31)

<c—[D % pr-v| |- ]

= w b -V -— %

8YWR 1 an 1 1 0.5 2 an 2 2 0L
Substituting the last inequality of Eq. (5.21) into Eq. (5.31)
c—[D O -+ || ]
w —(p1—v — (¢, —v
8YWR 1 an 1 1 0L, 2 an 2 2 0,

< CgWpg [D1CN1,int\/E”¢ - U||1,s + DZCNZ,int\/E”d) - 17||1,s] (5.32)
= Cgivg [DlNl,int\/Elld) —v|lys + DZNZ,int\/E”¢ - U||1,S]
~C_'85Nint‘/EWR”¢ - 17”1,5

where, D = max[D;, D,], and it is considered that D;N; ;,.v/@ term has determined

the order of error.
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To obtain the weights related to the boundary and interface conditions Egs. (5.23)-
(5.27), (5.30) and (5.32) have to be substituted into Eq. (5.20). This gives

lp — dplly < 51—267Nint”¢ - v||1,s + 53WV,1||¢ - 17”1,5
+Cawy 5 llp — Vllys + Cswr i NieVaDs |l — vllys

_ _ _ (5.33)
+CeWr VAN Dy |l — vllys + Cmyllp — vllys
+C_'85Nint\/5WR”¢ —Vllys

To get a balance in errors the following weights must be chosen:
_ Va Va Va
Wyq = Wy =Wy = @Nipy, Wp1=-—, Wg, =—, Wzg=—= (5.34)
' ' o M D, D

Now that the weights are determined, the rest of the numerical solution procedure is
similar to that presented for homogeneous cases. The domain of the problem is
discretized by introducing sets of interpolation nodes for the two subdomains

(D1, D?), interface (I), vacuum type boundaries (B},,B%) and reflective type

boundaries (B}, B%). Also a set of external nodes (E) are created to enhance the

accuracy of the method:
p'={di,d} ..d} } D?={ddj..d}}
I= {il' iz, aany iNI}

Bl = {bg,_l, b}, '"'bllVB},}’ BZ = {bé,l,b?/,z, ...,bzszlzl} (5.35)

1_)pt pt 1 2 _)p2 p2 2
BR - {bR‘l’ bR,Z, ...’bNBl}, BR - {bR,l, bR’Z, ---,bNBZ}
R

R

El

1 ,1 1 2 _[,2 52 2
{el,ez,...,eNEl}, E —{el,ez,...,eNEz}

Here N, denotes the number of nodes contained in the region x. A typical uniform
distribution with 49 domain nodes and 24 exterior nodes is presented in Figure 5.2a.
It should be noted that the domain nodes will also be used in the collocation step of

the numerical procedure.

As stated in Chapter 3, the accuracy of the weighted RBF collocation method can be
improved by utilizing more collocation nodes than the interpolation nodes, and a
distribution with h;,; = 2h.,;, where h is the distance between adjacent nodes is

presented in Figure 5.2b.
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Figure 5.2a:

i
-

A typical uniform node distribution for the 2-region problem with 49
domain nodes and 24 exterior nodes.
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Figure 5.2b: Uniformly distributed interpolation and collocation nodes where
hint = 2hcgr-

After the discretization of the domain, the neutron fluxes are approximated by the

radial basis functions at the interpolation nodes

B0 = ) @i, $2aD) = ) ey

Nl

J=1
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where ! and r? are the interpolation nodes contained in regions 1 and 2,

respectively, and
N'=Npi+ Ny +Npgg + Npe + Ny, 0=1,2 (5.37)

Substituting the series in Eg. (5.36) into the governing equations, Eq. (5.1),
collocating at the collocation nodes, and taking into account of the fact that the least-
squares residual method is an approximation of the direct strong form collocation
method, the collocation matrix of this method is

K, 0 P
wy 1K1 0 Qol
Wr1Kr 1 0 0
V_VVIv,l _WVIU,Z 0
WRIr,l _WRIr,Z " 4 0 (538)
0 K, Q;
0 wy Ko 0
0 Wg2K; 2 -0 -

The block matrices K;, K, ;, K,.;, I,,; and I,.; and vectors Q;, i = 1,2 of Eq. (5.38) are
calculated by

Ki = —VDi(rk)Vl/)i(rk,rj) + Za,ilpi(rk,rj), Ty € Di’COl, rj € Si

i col ]
K,;= lpi(rk:rj): r, € B;,w , T € St

oY (1, 1; ; ,
K,; =D, M' ry € B;écol’ r; €S
’ on
_ (5.39)
I‘U,i = l/]i(rk,rj), Ty (S ICOI, rj € Sl
oYi(ry, i .
I,.; = Di(ry) —lpl(a: ]). r eI, r;est
Q; = q;(ry), 1 € D!
The solution of Eq. (5.38) reveals the coefficient vector
a ={a},a}, ...,a}vl,a%,aﬁ, ...,a]’-\'z} (5.40)

and hence the numerical solution. Note that when the number of collocation and
interpolation nodes is the same Gauss elimination can be used to deal with Eq.
(5.38), whereas a least squares solver is required when the number of collocation

nodes is higher.
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5.2 Numerical Results

5.2.1 One-dimensional external source problem

The first problem considered is a 1-D two region external source case with the

following mathematical description.

d2
_ch(leZ(x) + Za,1¢1(x) = 0, 0 <x<a

d?¢, (x)
D, 4 by =5, asx<h o
dg,(0) B '
T == O, (,bz(b) = 0

_ d¢,(a) _ . dgs (a)
$1(a) = ¢,(a), Dy dx D, dx

This problem is studied in [5] to explain the spatial self-shielding phenomenon and

the analytical solution is

S, cosh (Zc—l)
; o [é—i coth (%) + IL)—z coth (bll__za)] % Za,2 Sinh (Lil) (5.42)
. cosh (b L_z x) |
= 1-
¢, (x) San é_i coth (l%) + é—zcoth (b L_z a)] IZ_; sinh (b L_z a)

where a is the junction point, b is the size of the domain and L; = /D;/Z,; is the
diffusion length of the ith region. A typical node distribution, where both regions are

interpolated by 4 domain nodes and an external node is given in Figure 5.3.
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Figure 5.3: A typical distribution of interpolation nodes for the 1-D problem.

This problem is solved with the RBF collocation method with no weights. The
multiquadric is used as the RBF. In the numerical experiments two sets of
collocation points, hj,; = h.o; and h;,; = 4h,,;, are utilized. Physical parameters

are taken as a =50 cm, b =100 cm, s, =1 n/cm3s, D, = 1.77764 cm, D, =
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1.558 cm, 2,4, = 0.0143676 cm™* and £, = 0.01112 cm~t. The analytical flux

distribution obtained with these values is illustrated in Figure 5.4.
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Figure 5.4: Analytical flux distribution for the one-dimensional problem.

Since the problem is 1-D, the arbitrary precision computation property of
MATHEMATICA has been appealed in calculations. The number of interpolation
and collocation nodes is the same and the shape parameter is chosen to be ¢ = 0.05.
The results for maximum error and RMS error in flux are presented in Figure 5.5 in
semi-log scale for both machine precision and a 100-precision solution. This figure
clearly shows the power of utilizing high precision computation for the RBF
collocation technique. When machine precision is used the numerical method
becomes unstable above 1/h;,, = 40, whereas the 100-precision case yields a
smooth decrease in both maximum and RMS errors. In addition to its superiority in
stability, the high precision arithmetic gives highly accurate results. The RMS error
of 100-precision calculation is 7.52 x 101> when 1/h;,,; = 100.

The results observed can be improved further by increasing the number of
collocation points and the value of the shape parameter. Figure 5.6 shows the
variation of RMS error with 1/h;,, for hi,; = heo and hj,e = 4hgy;, When c? =
0.1. It is seen from this figure that extraordinary accuracy is achievable when the
RBF collocation method is used with oversampling. When 1/h;,; = 100 the RMS

error is 2.43 x 10728 for hy,,; = 4h,,).
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Figure 5.5a: €,,,, for machine precision and 100-precision calculations.
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Figure 5.5b: €,,, for machine precision and 100-precision calculations.
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Figure 5.6: €, for the 1-D problem when h;,; = h.; and hjpe = 4he;-
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5.2.2 Two-dimensional problem without corner singularity

The next problem considered is a two-dimensional two-group fission source case for
which an analytical solution exists. The geometry and boundary conditions of this
configuration are illustrated in Figure 5.7, and the two-group parameters are

presented in Table 5.1.

Jm=0
a
J=0 Core Reflector J-=0
0 a J=0 atb

Figure 5.7: The geometry and boundary conditions of the 2-D problem without
corner singularity.

Table 5.1: Two-group parameters for the 2-D problem without corner singularity.

Core Reflector
D, 0.6165356 0.6165356
D, 0.6165356 0.6165356
1 0.080117 0.01021
I 0.11484 0.00267
Zrq 0.03252 0
Zfo 0.071372 0
Ls1-2 0.063567 0.01005
vIfq 0.0813 0
vIf, 0.17843 0
X1 1 0
X2 1 0

The analytical solution of this problem is given in [79], and with the parameters
given in Table 5.1, a critical system is achieved when a = 4.86 cm and b = 20 cm.
This problem is solved with both RBF collocation and weighted RBF collocation
methods, and inverse multiquadric is chosen as the RBF. Overcollocation is utilized
with h;,; = 2h.,;. The convergence criterion for the fission source iteration is

chosen to be e = 107°.
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The percent error in the multiplication factor, A, due to approximation with weighted
RBF collocation and RBF collocation is given in Tables 5.2 and 5.3, respectively, for
several values of the shape parameter, ¢ = a X v/m. The linear boundary element
solutions are also given in these tables. Here N is the number of equidistant intervals
on each side of the core and on the side of the reflector parallel to the y-axis and M is
the number of equidistant intervals on the sides of the reflector parallel to and on the
X-axis.

The error values presented in Tables 5.2 and 5.3 show that RBF collocation and
weighted RBF collocation methods can produce highly accurate solutions for the 2-
region problem considered. Although the boundary element method gives a better
accuracy than collocation methods when N =4 and M =5, with their faster
convergence rates radial basis functions yields better results for higher values of N
and M. When N = 32 and M = 40 the percent error is 0.000137, which is better
than the boundary element solution by approximately three orders of magnitude. On
the other hand the results obtained with m = 0.2,0.3 reveals that the weighted
collocation method has a broader range of stable computation in terms of the shape

parameter.

Table 5.2: The percent error in A for weighted RBF collocation calculations.

N M LBE m=0.08 m = 0.09 m=0.1 m = 0.2 m = 0.3

4 5 217 8.170 7.716 7.309 5.052 3.584
8§ 10 071 0.199 0.152 0.672 0.269 0.165
16 20 0.22 0.0610 0.0467 0.0371 0.00565 0.00352

24 30 0.11 0.00525 0.00400 0.003215 0.00201 0.00208
32 40 0.09 0.00162 0.00166 0.00149 0.00132 0.00126

Table 5.3: The percent error in A for RBF collocation calculations.

N M LBE m=0.08 m = 0.09 m=0.1 m = 0.2 m = 0.3

4 5 217 11.484 9.727 8.209 1.831 0.551
8§ 10 071 0.407 0.338 0.329 0.192 0.142
16 20 0.22 0.0686 0.0550 0.0606 0.0118 0.00654
24 30 0.11 0.0104 0.00733 0.00449 0.00364 0.00424

32 40 0.09 0.000137 0.000724 0.000899 0.00382 0.00547

5.2.3 Two-dimensional problem with corner singularity

It is a well-known fact that when a singularity is present in the geometry, material

properties or boundary conditions of the problem, the performance of the numerical
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method, whether it is meshless or mesh-based, may be deteriorated [80-82]. In this
regard, the third example is a 2-group, 2-region problem containing a corner
singularity. The configuration of the problem is shown in Figure 5.8, and the nuclear

parameters are given in Table 5.4.

Reflector

Core

J=0

Figure 5.8: The geometry and boundary conditions of the 2-D problem with corner
singularity.

Table 5.4: Two-group parameters for the 2-D problem with corner singularity.

Core Reflector
D, 1.2 1.15
D, 0.3 0.15
Zrq 0.003 0.001
T 0.1016 0.02
Xy 0.0004166 0
%, 0.05166 0
To12 0.025 0.06
D 0.001 0
I 0.124 0
X1 1 0
X2 0 0

In order to test the performance of the RBF collocation techniques, this problem is

solved with FEM [71], and when a =7.5cm a reference solution of A=
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1.125893191 is found with 180000 linear finite elements. The RBF collocation and
its weighted version are employed by dividing the problem domain into four square
subdomains to better capture the corner singularity. Inverse multiquadric is used as
the RBF, and calculations are performed with both h;,; = h.o; and h,e = 2h,;. The

convergence criterion for the fission source iteration is 107,

Figures 5.9a and 5.9b show the relative percent error in the multiplication factor with
respect to the number of equidistant intervals along one side of the square domain for
weighted RBF collocation and RBF collocation, respectively. The shape parameter is
chosen to be ¢ = b x +/0.05, where b = 2a. The most significant observation of
these figures is that, when the collocation techniques are utilized with
overcollocation (i.e., hj,; = 2h.y;), the algorithm underestimates the reference A
value, contrary to the overestimated solutions of the h;,; = h.,; route. As seen from
Figure 5.9b, when overcollocation is employed without weights the collocation
method produces unstable results with poor accuracy at low values of N. Finally, a
comparison of the results plotted on Figure 5.9 shows that the collocation method
with no weights and h,; = h.,; has produced the best results in terms of both
accuracy and stability. This alternative has kept its stability and it gives an error
value of €, = —7.78 X 107> at N = 60. On the other hand the weighted collocation
method loses its stability at N = 42 and N = 30 for h;,; = hgo; and hjpe = 2h,ey,

repectively.
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Figure 5.9a: Variation of €; with respect to N for the weighted RBF collocation.
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Figure 5.9b: Variation of €, with respect to N for the RBF collocation.

The effect of the shape parameter, ¢ = b X v/m on the accuracy and convergence rate
of the RBF collocation method is illustrated in Figure 5.10 on a semi-log scale. The
relative percent errors presented on this graph are the absolute error values. Similar
to the homogeneous problems, increasing the value of the shape parameter improves
both the accuracy and the convergence rate of the scheme. The error at N = 48

decreases by an order of magnitude when the value of m is shifted from 0.06 to 0.08.

€x

10¢

1 5
0.1F —eo— m=0.06
—a— m=0.07

0.01F
m=0.08

0‘001 2 2 2 2 2 2 Ml N
0 10 20 30 40 50 60 70

Figure 5.10: The effect of the shape parameter on the performance of the RBF
collocation method.
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5.2.4 Two-dimensional problem with corner singularity and high material
heterogeneity

The fourth problem has the same geometric configuration with the third one, but this
time the diffusion constants, removal and scattering cross sections of the core are
chosen to be 10 times higher than those of the reflector region (i.e., D = 0.12,
D% =0.03, £, = 0.0003, £Z, = 0.01016, =2, ,, = 0.0025). This configuration
results with A = 3.726583216 when a FEM solution is obtained with 180000 linear
finite elements. It should be noted that these types of differences in nuclear
properties are not observed in practical applications, but this case of high material
heterogeneity is studied to test the robustness of the weighted RBF collocation

method.

The variation of the relative percent error in A with respect to N is shown in Figure

5.11 for weighted and standard RBF collocation methods where ¢ = b x /0.2 and
hint = 2h.o;- This figure clearly shows that the RBF collocation method has
produced a much better performance than its weighted alternative. Although small
oscillations are observed at low N the RBF collocation method has yielded accurate
results, while the weighted collocation method gave up a divergent solution with
poor accuracy. This high material heterogeneity problem shows that when the
robustness of the method is taken into account the RBF collocation method is

advantageous.

€x
25¢
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10§
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Figure 5.11: Variation of €; with respect to N for weighted and standard collocation
methods.
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5.2.5 The IAEA two-dimensional benchmark problem

The last example considered in this chapter is a two-dimensional one-group IAEA
benchmark problem consisting of five regions. The geometry of the problem is
presented in Figure 5.12 where the dimensions are in cm, and the one-group
parameters are given in Table 5.5 (v = 2.43 for regions 1 and 3). This benchmark is
defined to be very difficult to solve because of the large differences in quadrant-

averaged fluxes [83].

¢=0
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68
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¢=0 43 5 5 ¢ =0
1 2
18
5
0 18 48 78 96
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Figure 5.12: The geometry of the IAEA two-dimensional benchmark problem.

Table 5.5: The one-group parameters for the IAEA two-dimensional benchmark

problem.
Region D(cm) Ta(em™1) vZ(em™)
1 0.6536 0.07 0.079
2 0.7042 0.28 0
3 0.55556 0.04 0.043
4 0.55556 0.15 0
5 0.43478 0.01 0

This benchmark problem is solved with the RBF collocation method. The domain is
divided into 16 subdomains to improve the performance of the numerical algorithm.
Twelve subdomains are used to model the fifth region, and the remaining four

subdomains represent regions 1-4. The calculations are performed with h;,,; = h.,;-
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In [83], the reference solution for the multiplication factor is reported to be A =
0.99222.

The numerical multiplication factor values obtained with the RBF collocation
technique are tabulated in Table 5.6 for three values of the shape parameter, ¢ =
0.96 x v/m. All subdomains are interpolated with uniformly distributed nodes and N
is the number of equidistant intervals in both directions. The results of this table
show that the RBF collocation method has produced accurate results with a smooth
convergence, and therefore it is successful in modelling multiregion neutron

diffusion problems.

Table 5.6: Numerical A values for the IAEA benchmark problem obtained with RBF
collocation method for three values of the shape parameter.

N m = 0.08 m=0.1 m = 0.2
3 1.01613 1.01583 1.01632
4 1.01002 1.00973 1.00843
5 1.00389 1.00375 1.00214
6 1.00057 0.998703 0.998263
7 0.997276 0.9962 0.996151
8 0.994168 0.995012 0.994679
9 0.993303 0.994187 0.993785
10 0.993686 0.993749 0.993377
11 0.99339 0.993316 0.993156
12 0.992993 0.992985 0.992889
13 0.992833 0.992858 0.992613
14 0.992749 0.992702 0.992195
15 0.992605 0.992602 0.991776
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6. NUMERICAL SOLUTION OF NEUTRON TRANSPORT PROBLEMS

6.1 The One-dimensional Neutron Transport Equation and Angular

Approximations

Until now the distribution of neutrons in a multiplying or nonmultiplying system has
been studied with the diffusion approximation, which ignored the angular behavior
and required the numerical solution of a PDE and a set of PDEs for homogeneous
and heterogeneous systems, respectively. Since the computational capabilities have
increased substantially in the last decades, attention has been focused on the
numerical solution of the more detailed neutron transport equation. Taking into
account this fact, in this chapter, the meshless RBF collocation method has been
introduced into the field of neutron transport as a spatial approximation tool.

For a one-dimensional configuration the within group neutron transport equation can

be expressed as follows [1]:

L
dg
Hae (o) + 200G ) = ) @+ DPWE(IG@ +sGow)  (61)
=0
Here w is the directional cosine, ¢ is the angular flux, Z, is the total cross section and
s(x, u) is either an external source and/or fission source. As is seen from Eq. (6.1),
the scattering term on the right hand side is expanded in Legendre polynomials,

where P;(u) is the Legendre polynomial and the Legendre moments are given by

1

1
000 =3 [ P0Gy ©2)

-1
1

1
2000 =5 [ PGOZ G 63

-1

The Legendre polynomials P;(u) are defined by [84]
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Py(p) =1 (6.4)

1 dt

P(w) = ?d_’ul(ﬂz -DL 1=12,.. (6.5)

These polynomials satisfy the following orthogonality relation on the interval

—-1<u<tl:

1 ‘ 6

'
Z () = 6.6
Zfdﬂpl(#)Pz ™) I+ 1 (6.6)
-1
where §;; is the Kronecker delta. P;(u) also satisfy the recurrence relation
pP (p) = [+ DPyq () + 1P ()] (6.7)

2l+1

For the treatment of the angular variable of the flux there exists two widely utilized
techniques: the spherical harmonics method (Py method) and the discrete ordinates
method (Sy method). The spherical harmonics method is an old approach and it was
first used by astrophysicists [85]. Approximately half a century later it was
introduced into the field of neutron transport [86]. On the other hand the history of
the S, method goes back to the study of radiation transport in stellar atmospheres

[87], and its first application in reactor physics is seen in [88].

In the Py, method, which is adopted for the angular treatment of the neutron transport
equation in this study, the angular flux and the source term are expanded in a finite
series of Legendre polynomials similar to the expansion of the scattering cross

section on the right hand side of Eq. (6.1):

N

PG ~ D@L+ DEEPW) (68)
=0
N

sGo) = ) (@l + DsOP W 69)
=0

These approximations are substituted into Eq. (6.1), then it is multiplied by %Pz'(ﬂ),

integrated from —1 to +1. With the help of orthogonality and recurrence relations

the Py equations can be found by setting ¢y41 = 0 [1]
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L dp, 1+1 dey, _ _ (6.10)
2A+1 dr T2+l dax TG EIe=s 1=0L. N

N déy_q
2N +1 dx

+ (2 — Zsn) Py = sy (6.11)

Egs. (6.10) and (6.11) show that with the P, method, the integrodifferential neutron

transport equation is transformed into a set of N ordinary differential equations.

An important point in the solution of the neutron transport equation by Legendre
polynomials is the vacuum type boundary conditions. A sum of these polynomials
cannot satisfy this condition [3], and hence a modified boundary condition is needed
for these kinds of boundaries. A well-known solution to this problem is to use the
Marshak boundary conditions. Suppose that for a 1-D geometry with 0 < x < a, the
angular flux vanishes at x = a. Then the Marshak boundary conditions can be

expressed as

0
fPl(u)w(a,u)du =0, [=01,.. N (6.12)

-1

Another method in dealing with the vacuum boundary conditions is to use the double
Py or DPy approximation which is also advantageous when a heterogeneous system
is considered. This approach is also known as Yvon’s method in the literature [89].

In the DP, method separate expansionsare used for -1 < u<0and 0 < u < 1:

N
QL+ Do COPQu—1), 1>0
0

(
I
ole,u) ~ 'y
QL+ 1D )P Cu+1), pn<0
0

(6.13)

=

It has been shown in [1] that for problems dominated by the diffusion of neutrons
through optically thick regions, the Py method yields better results than the DPy
approach. But when vacuum boundaries are present the DP, method is found to be
the better choice [90].

Another alternative for the angular approximation of the transport equation is the Sy
method. In this approach the angular flux is evaluated in a number of discrete

directions. The formulation of the method starts by satisfying Eq. (6.1) for distinct u,,
103



L
d
fin == 00 () + 2P () = Z(Zz + DP()E () (0) + s, my)  (6.14)
=0

where ¢, (x) = ¢(x, u,). The angles are chosen so that an accurate result is obtained

for the flux moments by a quadrature formula [1].

In the Sy approach the scalar flux and the Legendre moments are approximated by

N
1
d(x) == ) wpe,(x) (6.15)
1 N
LORPIWLIBIHC 6.16)

respectively [1]. Here w,, are the weights of the quadrature and satisfy

Z Wy = 2 (6.17)

The quadrature formulas are generally constructed by choosing an even value for N
taking into account the fact that right and left particles have equal importance. Hence
the ordinates and the weights satisfy the following relations [1]

pn >0

UN+1-n = —Hn n=12,.., (6.18)

Wnt1—-n = Wy

The spherical harmonics approach and the discrete ordinates method are equivalent

in 1-D Cartesian geometry when certain conditions are met [91].

6.2 Even Parity Form of the Neutron Transport Equation

In the last decades, a different methodology namely the even parity form or second
order form has emerged for tackling neutron transport problems. With this approach
the first order spatial derivatives of the integrodifferential neutron transport equation
are transformed into second order derivatives. By doing this the necessity of solution
over the full angular domain in the integrodifferential form has been reduced to the

half angle range. The attention has been increased on this method due to its
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advantages in variational formulations [1]. The even parity form of the transport
equation is self-adjoint which gives rise to sparse symmetric coefficient matrices and

therefore to effective numerical algorithms.

In what follows the derivation of the even-parity P; neutron transport equation will
be presented for isotropic scattering and sources. Although anisotropy can be dealt
with the even-parity form [92], it is known that the derivation of such equations is
tiresome when it is compared to the treatment of the integrodifferential form of the

neutron transport equation [1].

For a 1-group and 1-D case with a fission source the neutron transport equation takes
the following form

0 1

Hor @) + Zep(0 i) = Zp(x) +20Eph(x), 0<x<a  (619)
If a Marshak and a reflective boundary condition exist on the right and left sides of
the domain, respectively then:

0

f P(we(a,wdu=0, 1=13 (6.20)

-1
1

1
JOw =75 JWP(O, wdp =0 (6.21)

-1

Formulation of the method starts by defining the even and odd pairs of the angular

flux:

0* o) = 3T Co ) + 9, —4) 6:22)
0~ Ce ) = 5[0 Co ) — 9, —4) 623)

It is obvious that
Q) = @ (x, 1) + ¢~ (x, 1) (6.24)

Writing Eq. (6.19) for - u gives
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] 1
—U aw(x, —u) +Zep(x, —p) = [zs + zuzf] é(x) (6.25)
Then adding Eqg. (6.19) and (6.25)
d ] 1
om0 Com = 0= + 2o Gom) + oG -] = 2|1, + 703, 60

Hox

1
oG 1) = 9, =] + 3 [P (6 ) + 90 =] = 2|5, + 7%y | 60)
29~ (x,u) 2% (x,u0)

d 1
Ha ™ () + Bt () = [, + 202y 6(0) (6.26)
Subtracting Eq. (6.19) from (6.25)
g ( 0 z0( ) =0
“Ha 00— — e (6 ) + Zep (6, —p) — Zeg(x, ) =

0

2¢7% (x,u) 29~ (x,u)
9
—uaqﬁ(x,u) — 20 (x,u) =0 (6.27)
Eq. (6.27) gives
_ pao |
= 2
o~ (x, 1) 2tax<p (x, 1) (6.28)

Inserting Eqg. (6.28) into (6.26):

”2 2

1
e e L = [La e 629)

Legendre expansion for the even flux

P = ) @ DRGSO (6.30)
=0

l even

Substituting this expansion into Eq. (6.30) yields
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2 2 L
N @ nr@w T 4 r Y @ DR

U
t =0 =0

l even l even

= [Zs + %vZf] ¢ (x)

Multiplying Eq. (6.31) by%Pn(y) and integrating over u

L 1
1 1 d?
5, 2 2l+1) <§ fszl(,u)Pn(u)d,u> :Zé?)
L 1 1
+2 Z 2l+1) (E f Pz(u)Pn(u)du> ¢1(x)
1 1
= [z+5 vzf]< j B (u)du>¢(x)

With P; approximation:

N| =

[ 1

1 2 2

. ( f WPy ()P, (u)du> dd)zo 2Pz(u)P (u)du> d¢22
[\ -1

+Z-1J1P()P()d 1JlP()P()d
t1l 2 ol wdu | oo + > 2L wdu | o,

-1

= [25 + %uzf] (% j Pn(u)du> bo

-1

since ¢o(x) = ¢(x) [1]. Forn = 0:
1 [ 1 2¢) 1 2¢)
3 ( fﬂzPo (#)du> o 2°+5<2f ZPz(u)Po(u)du> = 22]
— 1 g 1 g
+2; <§ fPOZ(,u)d/,L> ¢ + 5(5 fpz(H)Po(.U)dll> (0P

-1 -1

N =
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(6.33)



= [Zs"'%vzf] %fPo(u)d,u bo

-1
With Py(u) = 1 and P,(u) = (3u? — 1)/2 it is easy to show that

1 d?’¢po(x) 2 d?¢,(x)
3%, dx? 3%, dx?

+Eipo(2) = Zuo(x) + 0E90() (63)

Forn = 2:
1](1 ¢ d?¢o (1 1 d’¢
% [\ 2 f.“ Py(u)P,(u)dp dx? +5 2_{ P; Gn)du dx? ]
- _1 _1
1 [ 1 [
+2, 2 fpo(ﬂ)Pz(H)d# $o +5 2 JPZZ(”)d“ b2 (6.35)
-1 -1

1

:[zs+%vzf] %sz(u)du $o

-1
Evaluating the integrals results with

2 d*¢po(x) 11 d?¢,(x)

- - = 6.36
153, dx?  21%, dx? +Z¢y(x) =0 (6.36)

Therefore the equations of the even parity P; approximation, Egs. (6.34) and (6.36),
are obtained. These two ordinary differential equations can be cast into a fourth order
equation so that an analytical solution can be found. To achieve this goal, first Eq.
(6.34) is multiplied by —30;

d2¢>0(x) 19 d2¢2 (x)

dx? dx?

=33, <2a — %uzf) $o(x) (6.37)

where £, = X, — Z,. By utilizing Egs. (6.34) and (6.36), the second flux moment can

be written in terms of the zeroth moment as

9 d2¢0(x)
702? dx?

11 1
#20) = 77 (50— 707 ) ) - (6.38)
Differentiating both sides of Eq. (6.38) with respect to x gives
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(6.39)

d2¢2(x)= 11 (Z _lvz)dzd)o(x)_ 9 d*¢p(x)
dx2 143, \"* A7) dx? 7032 dx*

Inserting Eqg. (6.39) into Eq. (6.37) and rearranging terms yields the fourth order

equation:
d* 5 d?
C‘fjjfx) 5 Ze (115, + 72) — —— ¢°(x) 2? Tatpo(x)
35 .1 1 d2¢() (540)
olx
Z?Zt AUZf¢0(X) Ztﬂ Zf dxz

Next, the boundary conditions will be derived. By using Eqgs. (6.24) and (6.27) it can

be shown that

0
0o = 9* (o) ~ 550" (o) (641

Substituting this into Eqg. (6.20)
0
1 9]
3 sz(u) [<p L ptldu=0 (6.42)

%, 0x
-1

Then using the P; expansion
@* (e, 1) = Po(o(x) + 5P (1), (x) (6.43)

in Eq. (6.42) results with

0

[ 190 + 5P, @1dn

-1

o (6.44)

0
e | PGB + 5P WNd| =0
X, 0x
-1 x=a
For =1 P;(u) = u. Then evaluating the integrals gives
deo dga)  _
¢0(a) 32t d rea +3 d)Z(a) + oo th d vea - O (645)
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Forl = 3 P;(u) = (5u3 — 3u)/2 and Eq. (6.44) yields

1 5 3.dey 6.46
§P0@ —gha(@ —5F| =0 (6.46)

Boundary conditions can also be transformed so that a compatible form with the
fourth order equation can be obtained. Using Eq. (6.46)

d¢ _7E 35%
—| = %@ == S a(a) (6.47)
X ly=g
Inserting this result into Eq. (6.45)
4 d¢o
Then using this in Eq. (6.47)
d 212 7d
WO P . (6.49)
dx ly—q 5dx ly—q
Substituting Eq. (6.38) into Eq. (6.48) gives
9 d2¢, 24 do, 113,
7057 dx? dx [ ]‘Ma)
7 dx 25%; dx -4 142
(6.50)
111 5 (
1427y, 0
Differentiating Eq. (6.38) results with
do, 9 d’¢ 1 deo
__ _= -7 6.51
dx 7052 dxd | 14, (2‘1 Pl ) dx (6:51)
Substituting Eq. (6.49) into Eg. (6.51)
9 d3¢, 7 113%,\ d¢, 21
77027 da? | * (5 T3, ) ax |, T heb(@
(6.52)
11 1dq,’>0
143, 2 dx |,
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Therefore the derivation of Marshak boundary conditions compatible with the fourth

order equation, Egs. (6.50) and (6.52), is completed.

Final task is to derive the reflective boundary conditions. Substituting Eg. (6.41) into
Eqg. (6.21)

1 1
N 1 dp*
[ Bwer@wdn -5 [unw S| du=0 (6.53)
-1 t_l X x=0
Since the integrand is odd
1
[ PG ©.dn =0 (6.54)
-1
and hence
1 a 4
@
[up S| du=0 (6.55)
1 X x=0

Following a similar path to the derivation of Marshak boundary conditions the

following reflective boundary conditions can be obtained:

ld({bo(x) zdd’z (x) -0 (6.56)
3 dx ro 3 dx ro B '
dep,(x) ~0
dx o - (6.57)

Finally, reflective boundary conditions compatible with the fourth order equation can
be obtained by substituting Eq. (6.57) into Eq. (6.56) and from Eq. (6.51),

dpo(x)

- 6.58
x| 0 (6.58)
Bo(x)|
a3 =0 (6.59)
x=0

respectively.

The analytical solution of Eq. (6.40) can be obtained as follows. By defining
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T, 11
B = 3 + Z(Za — sz), y =223(2, — vZf) (6.60)
one can write

d*¢  d%¢
CZW—,BW'{—)KPZO (661)

This equation can be rewritten as

d? d?
el N ) _
<dx2 U )(dx2+/1 >q_’> 0 (6.62)
Then
d* d?¢
Tt + (A% — u?) T u2Al¢p =0 (6.63)

Comparing Eq. (6.63) with Eqg. (6.61)

PO LI A (6.64)
a a

B 4ay B 4ay
2 _ 2 "
A= r 1+ |1-— _,6’2 , A5 = ~5a 1 1 52 (6.65)

In a similar way u? and u2 can be found to be

Therefore

B 4ay B 4ay
2 _ P _ 2 _F (1 |1 2L
M=o 1+ |1 gz | Mz = oo 1 1 ik (6.66)
From Eq. (6.62)
d? d?
<ﬁ‘#2>x =0, (ﬁ+AZ>Y =0 (6.67)

and thus
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X(x) = cosh(ux), Y(x) = cos(Ax) (6.68)
Since
¢(x) = Acosh(ux) + C cos(Ax) (6.69)

the following equations can be obtained from the Marshak boundary conditions (i.e.,
Egs. (6.50) and (6.52))

9u? N (2 11%, —v2f> h(ua) + 24
7052 14 3, )|

U,
253, smh(ua)}

(6.70)
912 112, — v 24
— R —— _ ; —
+C{l 7OE§+< a3, )l cos(Aa) Zsztsm(/la)} 0
oud (7 11X, —vE; 213,
(L4 =22 ) 4] sinh(ua) — ==L cosh
{lng <5+14 %, )” sinh(ua) — —g=cosh(ua)
- 93 +<7+112a—uzf>/1 G 213, ool = 0 (6.71)
TR CRE V) sin(da g cos(Aa) =
By defining
9 1%, -vr o 21%, 575
Mg 2Ty, 0 BT g BT, (672

a relation between the constants A and C can be found from Egs. (6.70) and (6.71)

C U [aluz — (% + az)] sinh(ua) — a3 cosh(ua)

A" A [a1/12 + (g + az)] sin(da) — a; cos(Aa) (67%)
In a similar way, using the reflective boundary conditions one can show that
c _ [a,u? + (2 — ay)] cosh(ua) + a,u sinh(ua) (6.74)
A [—a;2% + (2 — a,)] cos(Aa) — a,A sin(Aa)
Combining Egs. (6.73) and (6.74) yields
f(pa) —g(pa) =0 (6.75)

where
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U [aluz - (% + az)] sinh(ua) — a3 cosh(ua)

f(ua) = (6.76)
A [a1/12 + (é + az)] sin(Aa) — a3 cos(Aa)
_ la1p? + (2 = a;)] cosh(ua) + a,p sinh(ua)
9(ua) = [—a;4% + (2 — a,)] cos(Aa) — azA sin(Aa) (6.77)

The solution of Eq. (6.75) provides the value of a which sustains a critical system.
As an example if 2, = 0.2%; and vXZ; = 0.246%, then the critical thickness can be
found numerically to be a = 4.102640972417%,.

6.3 Numerical Formulations

6.3.1 P3 equations

For ease of illustration an external source problem is considered with anisotropic

scattering. In this case the Py equations become

d¢
d_xl + [Et - 2:s,o]¢0 =S
n+1 d¢n+1 n d¢n—1
2n+1 dx 2n+1 dx
N dpy_q
2N +1 dx

+[5 = Zgu]dn =spn=12,..,N—1 (6.78)

+ [Et - 2:s,zv]qu = SN

Then the P; equations are

d

d)dlygx) + [Zt - Zs,o]<750(96) = 5o(x)
Ed‘f’z(x) _I_ldqbo(x)
3 dx 3 dx
§d¢3(x) zd(f’l(x)
5 dx 5 dx
§d¢2(x)
7 dx

+ [Zt - Zs,1]¢1(x) =s5,(x)
(6.79)

+ [Zt - Es,z]d)z(x) = 5,(x)

+ [Et - 25,3]4)3(95) = s3(x)

The Marshak boundary conditions can be derived by substituting the Legendre

expansion
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3

0@ = ) @m+ DPnW)bm(@ (6:80)

m=0

into Eq. (6.12) and evaluating the integrals. The resultant equations are

1 5
_E‘Po(a) + ¢1(a) - §¢2(a) =0

1 5 (6.81)
§¢0(a) - §¢2(a) + ¢3(a) =0
Finally the reflective boundary conditions are
0)=0
$10) (6.82)
$3(0)=0

The numerical formulation of the problem starts by discretizing the problem domain
with M nodes and an external node to improve the accuracy. When this discretization
Is compared with those made for diffusion problems, it is seen that the external node
is created on only one side of the domain. If external nodes are used on both sides the
collocation matrix becomes underdetermined, and there will be no solution. On the
other hand with the even-parity form this problem can be solved and external nodes
can be chosen on both sides of the domain. A typical set of nodes with M = 6 is
illustrated in Figure 6.1.

(=]
[
8]
w
P
wu

Figure 6.1: Discretization of the 1-D domain with M = 6.

Then the flux moments are approximated with M radial basis functions:

M

$n(x) = Z ajpi(x), n=0,123 (6.83)

j=1

Substituting these approximations into the differential equations and boundary

conditions results with:
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M 2M dll)
D @ -To]+ D g—L=s
j=1 j=M+1
M 2M 3M
1dy; 2dy;
2ol 2, alt-zwle ) wl5ge=s
j=1 j=M+1 Jj=2M+1
(6.84)
2M Zdl/) 3M aM 3dl/j
J J
2, alsaelt Q2 elw-zawls ) wfegl]=s
j=M+1 j=2M+1 j=3M+1
3M 4M
3dy;
| Z aj 7%] + z [(2c = Zs3)15] = 53
j=2M+1 Jj=3M+1
2M
1
Z [F3uls Y e > al-Su]-o
j=1 j=M+1 j=2M+1
(6.85)
M 4M
Z [ ] Z af[ 8¢’] Z 4¥; =0
j=1 j=2M+1 j=3M+1
2M
2 a ;=0
j=M+1
4M (6.86)
apj =0
j=3M+1
Then these equations are collocated at the discretization nodes
M 2M l/)
Za] [(Be = Zs0)wis] + Z Y dx —J =5, i=1..,M
j=1 j=M+1
M 2M 3M
1dy 2dY;;
2.olalr 2, ele-sanlr o, a5 =n
j=1 j=M+1 j=2M+1
i=M+1,..2M
2M 3M 4M
2dy 3dy
2 sl 2 ale-zawls ) ol =s
Jj=M+1 j=2M+1 j=3M+1
i=2M+1,..,3M
3M 4M
3d1/}.. )
Z 4|5 dx”]+ Z a[(Zc — Zg3)¢i] =530 i=3M+1,..4M
j=2M+1 j=3M+1
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M 1 2M

Sal-tule 3 w3 af-Zuf-o c-n
j=1 j=M+1 j=2M+1

M 1 3 aM

Qalgeal+ X al-guel+ > awi=o i-m
j= j=2M+1 j=3M+1

2M

Z a; =0, i=1

j=M+1

4M

Z a; =0, i=1

j=3M+1

These collocation equations can be cast into a (4 x M) X (4 x M) system of

algebraic equations:
Ka=f (6.87)

Here the matrix K contains the coefficients in Eqgs. (6.84)-(6.86), a isa 4 X M vector
of the coefficients a; and f is a 4 X M vector of the right hand side of Egs. (6.84)-
(6.86). Solution of Eqg. (6.87) yields the coefficients and hence the numerical

solution.

6.3.2 Even-parity P equations

There are two alternatives for the numerical formulation when the even-parity form
of the P; approximation is considered. As seen earlier the two ordinary differential
equations can be cast into a single fourth order equation, and compatible boundary
conditions can be derived from the original Marshak and reflective boundary

conditions.

In the first route, the coupled equations together with the boundary conditions will be
approximated by the RBFs. Once again the first step is the discretization of the
domain as observed in Figure 6.1 and to interpolate the flux moments by

M

Pn(x) = Z ajj(x), n=0,2 (6.88)

J=1

Next, these two series are substituted into the Egs. (6.34), (6.36), (6.45), (6.46),
(6.57) and (6.58) to give
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M _ 2M
1 d*y; 2 d%y;
Z“f T35, dx? +2a¢f]+ ,Z afl_3_zt dle_
=1 - =M+1
/= /= (6.89)
i 2 ) Z ndy 1
/%" 153, dx? T2z, dx2 TRV T
j=1 - j=M+1
M
1 1 dy;] 5 2 dyy] _
Z“f 2% T3y, ) T Z @[5+ 3%, dx
j=1 j=M+1
(6.90)
M 2M
Z 1 N z [ 5 3 dl/)]
2,48t 2, %78V T 7y, ax
Jj=1 j=M+1
M
dp;
ajE—O
=1
(6.91)
2M dl/)]
D, G g =0
j=M+1

These equations can be cast into a matrix form similar to Eq. (6.87). Notice that with
the even parity form, the resulting system of equations has a dimension of (2 x M) X
(2 x M).

The second alternative for the numerical solution of the even parity P; equations is to
deal with the fourth order equation, Eq. (6.40). In this case there is only one flux

moment to be approximated:

M

$o(x) = Z a;jj(x) (6.92)

j=1

Substituting Eq. (6.92) into Egs. (6.40), (6.50), (6.52), (6.58) and (6.59) gives the
following:

M
d'y; 5 d*;
Za][ J — 5 2e(11Zq + 72¢) — J +?z zalp,l

j=1

Ei[y,  55d%s
E) £S5 T 3 dx?

(6.93)
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i 9 dy; 24 dy (2 112) s
- 717022 dx? = 25%, dx 14 % T 143,
]:
(6.94)
i 9 d3¢,+< 111, )dlpj 21 1 11 ds
_1af 7052 dx® ' \5 ' 14%,) dx T 8 tYI| T T 143, dx
]:
M
d
X
=1
w o (6.95)
T
a; dx3
=1

Once again the fission source terms are replaced by external source terms. Final step
of the formulation is the collocation of Egs. (6.93)-(6.95)

d* 5 d? % 55 d?s;
Z l Vi — 5 Ze(11%g + 73%,) ¢”+?z3za¢ul l352t51 ll

3 dx?
i=1,..,.M
M _
9 d*; 24 dyy 112, 11s;

Za’ 7052 dx? | 253, dx +< 123, Yy 143, '
i |
i“' 9 d3¢ij+< 11z, >d¢U - 1 ds,
7| 7057 dx® T \5 143,/ dx UL T 143, dx
ol
M

dl/]l] .
Z i =0, i=1
j=1
M

d3;; .
Zaj e =0, i=1

These collocation equations can be cast into a (1 x M) x (1 x M) matrix equation.
When this dimension size is compared with those of the previous formulations, it is
seen that this last method is advantageous to the previous ones in terms of the CPU
time. But, in the next section, it will observed that, approximating the fourth order
derivatives with RBFs directly is an important price to pay when accuracy is
considered.
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6.4 Results

To test the accuracy and stability of the RBF collocation method four problems are
considered. All calculations are performed with MATHEMATICA 7 on a 2.7 GHz
computer. Depending on the type of problem two error criteria, root mean square
error in flux and relative percent error in the multiplication factor are used to assess

the performance of the numerical scheme. Multiquadric is chosen as the RBF.

6.4.1 External source problem

The first problem is an external source case where a constant source term, s(x) =
1 n/cm3s, is chosen. This problem is solved within the even-parity P; context, and
as mentioned in the previous section two algorithms are possible with this form of
the transport equation. The cross sections are taken as £, = 1cm™1,%, = 0.2 cm™1

and the size of the domain is a = 5 cm. With these parameters the flux distribution is

¢o(x) =5—0.000014215 exp(—2.14577x) — 0.077749 exp(—0.71188x)
— 0.077749 exp(0.71188x) — 0.000014215 exp(2.14577x)

As the first approach, the coupled equations are chosen to tackle the problem. The
effect of the shape parameter, ¢ = av/m on the RMS error in flux is illustrated in
Figure 6.2. It is observed from this figure for all values of the shape parameter, a
high level of accuracy is achieved. Also, the accuracy and convergence rate of the

method improves when c takes on higher values.

6l‘ITlS
001} —o— m=0.02
0.001F —=— m=0.04
10-4 m=0.05
10-°F
10¢F
» = » 2 2 M
0 20 40 60 80 100

Figure 6.2: Effect of the shape parameter on the RMS error for the external source
problem.
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It is possible to get better accuracies by increasing the number of collocation nodes.
In this case the collocation matrix becomes overdetermined, and the system of
equations has to be solved by the least-squares method. In Figure 6.3 the RMS error
is plotted with respect to M in semi-log scale for three sets of collocation nodes. The
shape parameter is chosen as ¢ = a+/0.08 for these calculations. As seen from this
figure the accuracy of the method gets better by increasing the number of collocation
nodes. Also, the method converges faster when M is low. This effect is significant
when h;,; = 2h,,; is utilized instead of h;,,; = h.,;. Although better approximations
are obtained with lower h.,;, one should be careful on choosing the value of the
shape parameter when dense set of collocation nodes are used. The method becomes
unstable when a high value of ¢ is chosen together with these types of node

distributions.

EHDS
0.01F
—o— Ny =l
0.001F
—— D =2heo)
]0—4 L
hinl=3hcol
10—5 L
1075}
R -
10_7 | M 2 2 2 2 M
0 20 40 60 80 100

Figure 6.3: Effect of the number of collocation nodes on the RMS error for the
external source problem.

Instead of a constant shape parameter strategy, a node number dependent approach
can be used in calculations. As discussed earlier, one of them is to use a variable
shape parameter strategy where ¢ = m x h'/*. This approach has been adopted here
and the results are shown in Figure 6.4 for three values of m. It is clear from this
figure that high levels of accuracies can be achieved even with sparse sets of nodes,
especially when m = 3. When the results are compared with the constant shape
parameter strategy same convergence rate characteristics are observed and an RMS

error around 10~7 is achieved with both schemes.
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0.01F
—— c=2xh!*
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1074}
1073}
T m
10~} -
-

0 20 40 60 80 100

Figure 6.4: RMS errors for the external source problem when a variable shape
parameter is utilized.

The external source problem can also be solved by directly approximating the fourth
order differential equation (i.e., the second alternative of subsection 6.3.2). The RMS
errors of this route are presented in Figure 6.5 for three values of the shape
parameter. For these calculations a constant shape parameter strategy with h.,; =
h;,+ 1S chosen. Comparison of Figures 6.2 and 6.5 reveals that there are two major
problems when the second alternative is used. First, the method becomes unstable for
sparse sets of nodes. The RMS errors are high and oscillation is observed below a
threshold value of M which depends on the shape parameter. The second problem is
the poor accuracy of the algorithm. The accuracy of the first alternative is better than
the latter one by at least two orders of magnitude for all M values. This problem of

approximating higher order derivatives is also pointed out in [93].

El'lll‘_,
p—A % *— AN
001fF |—*— m=0.02
—=— m=0.04
0.001 | N
m=0.05
1074F S
n » » 1 r‘ _E J-:tf
0 20 40 60 80 100

Figure 6.5: RMS error behavior of the external source problem when the fourth
order equation is directly approximated with RBFs.
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6.4.2 Fission source problems

The second problem solved with the even-parity P; approach is a fission source case.
The nuclear constants are chosentobe £, = 1 cm™,%, = 0.2cm™, %, = 0.1 cm™
and v = 2.46. With these parameters the value of a that makes the system critical is
3.4795925 cm. For the calculation of RMS error, the neutron flux is normalized to

unity i.e. ¢,(0) = 1 so that the following analytical form is obtained

¢Po(x) = [COSh(ux)-————Cos(Ax)

(1/ 2)

where

9u? 115, —vE 24
a; = l— + (2 E—f>l cosh(pacrit) + sz sinh(uacyi;)
t

7052 14 25,
922 113, — v3;
o0 =75z + (2 3375, )] s - s

The relative percent error in the multiplication factor and the RMS error in neutron
flux are presented in Figures 6.6a and 6.6b, respectively, where a variable shape
parameter approach is chosen. High level of accuracies are achieved for both A and
¢. Similar to the previous problem the convergence rate of the RBF collocation

method increases with a higher value of the shape parameter.

€7
e
0.1F :ttt\\HH‘xﬁx&gxaihiﬁhlﬁi'H““““ic
0.01} .
-
—8— c=I1xh 1/4 m
0.001F
—m— oc=2xh'*
104 c=3xh'*
- - - - | - - - » Il - " - - I - - - - A - - - - il - - " - ] M
10 20 30 40 50 60

Figure 6.6a: Error in the multiplication factor for the fission source problem for
three values of the shape parameter.
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Figure 6.6b: RMS error in the neutron flux for the fission source problem for three
values of the shape parameter.

The third example is a Pu-239 benchmark problem with isotropic scattering. The
nuclear constants of this problem are X, = 0.3264cm™!, ¥, = 0.101184 cm™1,
% = 0.0816 cm™! and v = 3.24, and the benchmark value of a; is 1.853722 cm
[94]. Since the scattering is isotropic, this problem is solved with both conventional
and even-parity forms of the transport equation with P; and Pg approximations.
Also, the discrete ordinates solutions are given for the purpose of comparison

between the two angular approximations.

But before presenting these results, the accuracy and stability of the method will be
tested by considering the analytical solution given in section 6.2, which produces an
a.-i value of 1.927538 cm for the cross sections given above. In Figure 6.7, the
relative percent error in A with respect to the number of interpolation nodes is
illustrated. A constant shape parameter strategy is utilized in these calculations. This
figure shows that it is possible to obtain highly accurate values for the multiplication
factor. The relative percent error is found to be 1.89816 x 107¢ at M = 100 when
m = 0.06.

The value of the multiplication factor corresponding to the benchmark solution of
acrit = 1.853722 cm is plotted in Figures 6.8a and 6.8b for even-parity and

conventional forms of the transport equation, respectively. The shape parameter is

chosen to be ¢ = av0.05. Numerical results of the Sy approximation for the angular
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flux are given in Tables 6.1-6.3 upto N = 64 where a diamond difference (finite
difference), discontinuous linear finite element and discontinuous quadratic finite
element is used for treatment of the spatial variable, respectively. It is obvious from
Figure 6.8 that the RBF collocation method produces stable solutions for both even-
parity and conventional form of the neutron transport equation. The results are
almost identical, that P; and P approximations converge to approximately 0.9717
and 0.9918, respectively. When the results are compared with the S, approach, it is
observed that the P approach with RBF approximation for the spatial variable is

equivalent to the results of Sg finite difference and finite element solutions.
€)

1F

0.01F

—o— m=0.04
104} | —=—m=0.05
m=0.06

e . . . M
0 20 40 60 80 100

Figure 6.7: Percent error in A for the plutonium benchmark problem with isotropic
scattering when a,;; = 1.927538.

A
1.03¢
1.02F —e— I3
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0.98F
097 a @ ® @ @ ®
096 M M M M M M

20 40 60 80 100

Figure 6.8a: The value of A for the plutonium benchmark problem when a_,.;; =
1.853722 and even-parity form is considered.
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Figure 6.8b: The value of A for the plutonium benchmark problem when a.,;; =
1.853722 and conventional form is considered.

Table 6.1: Sy solutions of the Pu-239 benchmark problem with diamond difference
approximation for the spatial variable.

M SZ S4 SS 516 532 564-

10 0.803729 0.946616 0991290 0.998012  0.999187  0.999459
20 0.804070 0.947008 0.991641 0.998352  0.999526  0.999798
30 0.804133 0947081 0.991706 0.998415 0.999589  0.999860
40  0.804155 0.947106 0.991728 0.998437  0.999611  0.999882
50 0.804166 0.947118 00991739  0.998448  0.999621  0.999892
60 0.804171 0947124 00991745 0.998453  0.999626  0.999898
70 0.804174 00947128 0.991748  0.998457  0.999630  0.999901
80 0.804176 0947131 0991750 0.998459  0.999632  0.999903
90  0.804178 0.947132 0991752 0.998460  0.999633  0.999905
100 0.804179  0.947134 0.991753  0.998461  0.999635  0.999906

Table 6.2: Sy solutions of the Pu-239 benchmark problem with discontinuous linear
finite element approximation for the spatial variable.

M S2 Sy Sg S16 S32 Se4
10 0.8041789 0.9471308 0.9917496 0.9984574 0.9996297 0.9999007
20 0.8041832 0.9471378 0.9917567 0.9984648 0.9996379 0.9999092
30 0.8041836 0.9471385 0.9917574 0.9984656 0.9996387 0.9999102
40 0.8041837 0.9471387 0.9917576 0.9984658 0.9996390 0.9999104
50 0.8041838 0.9471388 0.9917577 0.9984658 0.9996390 0.9999105
60 0.8041838 0.9471388 0.9917577 0.9984659 0.9996391 0.9999106
70 0.8041838 0.9471388 0.9917577 0.9984659 0.9996391 0.9999106
80 0.8041838 0.9471388 0.9917577 0.9984659 0.9996391 0.9999106
90 0.8041838 0.9471388 0.9917577 0.9984659 0.9996391 0.9999106
100 0.8041838 0.9471388 0.9917577 0.9984659 0.9996391 0.9999106
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Table 6.3: Sy solutions of the Pu-239 benchmark problem with discontinuous
quadratic finite element approximation for the spatial variable.

M S2 Sy Sg S16 S32 Se4
10 0.8041838 0.9471388 0.9917577 0.9984658 0.9996390 0.9999105
20 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
30 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
40 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
50 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
60 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
70 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
80 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
90 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106
100 0.8041838 0.9471388 0.9917577 0.9984658 0.9996391 0.9999106

The fourth and final problem is a Pu-239 benchmark with anisotropic scattering. Two
levels of anisotropy in the scattering, P, and P,, are considered within this context.
The benchmark solutions corresponding to these levels are a.,;; = 0.77032 cm and
a.i+ = 0.76378 cm, respectively. This problem is solved with conventional form of

the transport equation with P; and P approximations.

The variation of the multiplication factor with the number of interpolation nodes is
illustrated in Figures 6.9a and 6.9b for P; and P, scattering cases, respectively. The
shape parameter is chosen to be ¢ = av/0.05, and the number of interpolation and
collocations nodes are the same in these calculations. The results show that for both
problems the RBF collocation scheme is highly stable and with an increase in the
degree of angular approximation a good accuracy is achievable. When a Pg solution
is performed, a multiplication value of approximately 0.995 is obtained which means
that the percent error in A is less than 1% even with this low level of angular

approximation.

The numerical approximation of plutonium benchmark problems with isotropic and
anisotropic scattering via RBFs are also done with variable shape parameter strategy,
¢ = mh~'/*. The results are similar to that of constant shape parameter route that a
highly stable algorithm with a good accuracy is obtained with the meshless

collocation method.
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Figure 6.9a: The value of A for the plutonium benchmark problem with anisotropic
P; scattering.
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Figure 6.9b: The value of A for the plutonium benchmark problem with anisotropic
P, scattering.

128



7. CONCLUSIONS

In this study the time-independent neutron diffusion and transport equations are
numerically solved by the meshless radial basis function collocation method. For the
neutron diffusion case two-dimensional, multigroup homogeneous and
heterogeneous problems are considered, while one-dimensional single region and
energy cases with isotropic and anisotropic scattering are dealt within the transport

approach.

For homogeneous problems two types of neutron sources are studied, and five
examples, the external source problem, one-, two-, three- and four-group fission
source problems are solved with the RBF collocation technique. Among these
problems, the external source and four-energy group fission source cases are
examined in detail (one-, two-, and three-energy group results are similar to those of
the four-energy group problem). In this context a comparison is made between the
meshless radial basis function collocation method and mesh-based finite and
boundary element methods. For the collocation technique multiquadric, inverse
multiquadric and Gaussian are used as the basis functions, while FEM and BEM are
employed with linear shape functions. Since both examples have Cauchy boundary
conditions external nodes are utilized to enhance the accuracy of the collocation
method. The effect of shape parameter on the accuracy, convergence rate and

stability of the collocation method is also investigated.

The external source problem was essentially the Helmholtz equation. Performance of
the numerical methods is compared by calculating the root mean square and
maximum pointwise errors for constant, trigonometric and linear sources. Numerical
experiments showed that for all source types there is an optimum shape parameter
value which vyields the least RMS error, and MQ and IMQ have performed better
than the GA in terms of both accuracy and stability. This optimization of the shape
parameter is important; it provides a chance to obtain high levels of accuracy with
just a few nodes. Another function of the shape parameter is its effect on the

convergence rate of the collocation method. RBF collocation converges faster with
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an increase in this parameter. It was found that the collocation method converges
exponentially, which is better than the algebraic rates of FEM and BEM. Gaussian
has the best convergence rate, but it has the disadvantage of being less stable and
performing poorly for large fill distances. When CPU times are considered, the FEM
is superior to other methods while RBF collocation is more efficient than the BEM.
For the collocation technique, the distribution of pointwise errors has revealed that

the error tends to have the maximum near the boundaries of the problem domain.

In the four-group fission source case accuracy of the methods is tested via calculating
the relative percent errors in the multiplication factor and group fluxes. When the
shape parameter dependence of the collocation method is investigated, an unusual
behavior was observed. Depending on the choice of RBF, fill distance and criticality
of the system, the error in multiplication factor may have a maximum value in the
stable computation range of the shape parameter. The results have shown that, when
the shape parameter is carefully selected, it is almost possible to produce analytical
multiplication factors. A comparison among the three RBFs has showed that MQ is
the best choice for fission source problems. Exponentially convergent MQ
collocation has outperformed both FEM and BEM in the determination of the
multiplication factor. On the contrary BEM gave the best solutions for the group

fluxes. If the computation time is considered, the FEM is the most effective choice.

Although FEM and BEM have slow algebraic convergence rates, they have the
significant advantage of being more stable than the RBF collocation method. This
stability is a result of local approximation and weak-form characteristics of these
methods. If the shape parameter is fixed, to preserve stability of the collocation
method, algorithms such as domain decomposition and matrix preconditioning
should be preferred. However, if the shape parameter is optimized very good

accuracies can be obtained without encountering ill-conditioning problems.

Before tackling multiregion neutron diffusion problems four strategies are tested to
improve the performance of the RBF collocation method via performing numerical
experiments on the external source problem. First the effect of increasing the
precision is investigated, and it is found that the stability of the algorithm can be
improved significantly in price of computation time. Next the exponent of the
generalized multiquadric is taken into account, and it is shown that it has a similar

effect to that of the shape parameter on the characteristics of the RBF collocation.
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The third approach is to use a variable shape parameter which decreases with the
number of the interpolation nodes. Although accurate and stable results are obtained,
this strategy generally did not improve the performance of the collocation method.
The final technique is to use the singular value decomposition filtering method to
achieve a better result, and it was found that the accuracy can be enhanced in both

stable and unstable computation regions.

Next topic of this work is to model the multiregion neutron diffusion problems with
the RBF collocation method. These problems are solved with the conventional and
weighted forms of the RBF collocation method. The accuracy and stability of these
two approaches are investigated by working on five problems. First a one-
dimensional two-region external source configuration is studied. This problem is
solved with the conventional form of the RBF collocation method. Since it is a 1-D
problem the arbitrary precision computation of MATHEMATICA is employed in
calculations, and highly accurate and stable results are observed. It is also found that
by increasing the number of collocation nodes it is possible to obtain extraordinary
accuracy in neutron flux values. The second problem is a two-dimensional, two-
group fission source case for which an analytical solution exists, and it is solved with
both RBF collocation and weighted RBF collocation methods. These two methods
yield highly accurate results for this problem, and a comparison with the linear
boundary element method has shown that with their fast convergence rates, a much
better solution is possible with the collocation technique.

After treating the two analytically solvable problems, more complex multiregion
configurations are considered. The third case is a two-region system containing a
corner singularity. The numerical results have shown that when overcollocation is
utilized, the numerical scheme underestimates the value of the multiplication factor
unlike the situation where the number of interpolation and collocation nodes is the
same. A comparison of the two methods has revealed that the conventional form of
the RBF collocation method is better in terms of both accuracy and stability. As the
fourth problem, the corner singularity problem is modified so that a high level of
heterogeneity is present. The aim of this alteration is to assess the robustness of the
two collocation schemes, and it was found that the no-weight collocation method is
more reliable than the weighted collocation alternative. The last problem is a five-

region IAEA benchmark. This problem is modelled with the conventional form of
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the RBF collocation technique, and the numerical results show that the meshless
collocation method is effective in the approximation of multiregion neutron diffusion

problems.

The numerical solution of the neutron transport equation with the RBF collocation
method is the final task of this study. In this regard, the spatial variable of the one-
dimensional transport equation is approximated with RBFs. For the angular variable
the Py approach is chosen, and both conventional and even-parity forms of this
equation are considered. The assessment of the RBF collocation method is done by
solving four problems. The first example is an external source case, and it is solved
within the even-parity framework. Two solution routes are possible for this problem,
and it is found that using the coupled equations instead of directly solving the fourth
order differential equation results in a much better accuracy and stability. The
numerical results also show that, similar to the diffusion case, the accuracy and
convergence rate of the method can be improved by adjusting the shape parameter.
As the second problem a fission source case is solved again within the even-parity
form, and it is shown that very good accuracies are possible for both the
multiplication factor and neutron flux distribution. The third problem is a Pu-239
benchmark with isotropic scattering, and it is approached with both conventional and
even-parity forms of the transport equation. It is found that the numerical solution
resulting from these two alternatives is almost identical. Also a comparison with the
discrete ordinates finite difference and finite element solutions revealed that the Pg
meshless collocation solution is equivalent to the Sg finite difference and finite
element approaches. The fourth and final problem is again a Pu-239 benchmark, this
time with anisotropic scattering, and it is dealt with the conventional form of the
transport equation. The RBF collocation method has produced a highly stable
algorithm, and the accuracy of the method is good even with a low order

approximation for the angular variable of the flux.

Although an extensive study is performed on the numerical modelling of neutron
diffusion and transport processes with the meshless RBF collocation method, there
are still a lot of things to do in this research area. As explained in the third chapter,
and demonstrated in the following three chapters, the shape parameter of the radial
basis functions has a significant effect on the properties of the collocation scheme. In

this work, constant and node number dependent shape parameters are used, but one

132



can find optimization techniques in the literature that focus on the ideal choice of this
important parameter. Another topic of interest in RBF collocation is the domain
decomposition technique, which is employed to enhance the stability of the
collocation method. The solution of the multiregion diffusion problems has shown
the positive effect of splitting the problem domain into subdomains, especially when
corner singularities are present in the configuration. Hence, the use of domain
decomposition techniques in heterogeneous problems can be done as a further study.
Another subject in multiregion problems is the improvement of the weighted RBF
collocation method by adding local shape functions to better capture the local
behavior near the interfaces of different regions. As for the neutron transport
equation, the radial basis functions can also be used together with the discrete
ordinates approach for the angular variable of the neutron flux, and a comparison can
be made with the results of this thesis. Finally, other weak-form, strong-form or
hybrid meshless methods can also be used for the numerical solution of problems in

nuclear reactor physics.
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