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APPLICATION OF MESHLESS RBF COLLOCATION METHODS TO 

NEUTRON DIFFUSION AND TRANSPORT 

SUMMARY 

In the last decades, meshless methods have become an alternative tool to 

conventional schemes, such as the finite difference method, the finite element 

method and the boundary element method, for modelling physical phenomena in 

many fields of science and engineering. With these novel techniques various types of 

problems governed by partial differential, integral and integrodifferential equations 

are solved numerically without the necessity of creating a predefined mesh. 

There are several kinds of meshless methods based on different numerical 

formulations. Among these, the radial basis function (RBF) collocation method has 

some important characteristics together with its meshless nature, which makes it an 

ideal numerical approximation scheme for the solution of differential equations. First 

of all, this collocation scheme is a strong-form method, which means there is no need 

for numerical integration and hence a background mesh in the numerical 

formulation. When it is compared to the weak-form methods, the RBF collocation 

method is defined to be a truly meshless method. The second significant property of 

RBF collocation is the exponential convergence rate of the method. It is possible to 

obtain highly accurate solutions even when the number of nodes to represent the 

problem domain is low. The last feature of this collocation method worthy of 

attention is its ease of implementation in computer programs. The coding step of the 

RBF collocation method is easier than those of other meshless and conventional 

mesh-based methods. 

The RBF collocation solution of a differential equation is actually a generalized 

interpolation problem. The dependent variable of the governing equations and 

boundary conditions, in this case the neutron flux, are interpolated by a finite series 

of radial basis functions. After this approximation step, the resultant equations are 

satisfied at the interpolation nodes, which can be uniformly or randomly distributed 

throughout the domain. Although numerous radial basis functions exist in the 

literature the generalized multiquadric, which was first proposed for surface fitting, 

has dominated this class of functions in both function approximation and numerical 

solution of differential or integral equations. 

Even though the RBF collocation method has been applied to a wide range of  

problems, its use in heterogenous configurations is limited. Recently, a weighted 

version of this method is proposed to tackle multidomain problems of solid 

mechanics. In this method, the weights, which depend on the number of interpolation 

nodes and physical parameters of the media, are determined by balancing the 

approximation error due to the interpolation with RBFs of domains with those of the 

boundaries and interfaces. 

Neutron diffusion and neutron transport equations are being studied for a long time 

to model the behavior of neutrons in a multiplying or nonmultiplying system. 

Although analytical solutions are given in many situations, real life examples of 
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nuclear technology necessitate the use of advanced numerical approximation 

techniques to obtain a reliable and detailed analysis of the problem in question. It is 

impossible to get an analytical expression for a complex multi-component nuclear 

system even with the simpler diffusion approximation. These equations have been 

solved with the finite difference, finite element and boundary element methods, and 

the studies in this area have gained momentum lately with the recent advances in the 

computational capabilities. 

The purpose of this study is to solve the time-independent neutron diffusion and 

transport equations numerically by the RBF collocation method and therefore 

introduce this promising meshless method into the field of nuclear reactor physics. In 

this context, the two-dimensional multigroup neutron diffusion equation is 

approximated with RBFs in both homogeneous and heterogeneous media, while the 

one-speed neutron transport equation is considered in a one-dimensional 

configuration. The performance of the meshless collocation technique is assessed by 

performing numerical experiments for various cases. The accuracy, stability and 

convergence rate of the method are investigated through these calculations. 

In case of homogeneous media, five diffusion problems are solved with the RBF 

collocation method. One of these is an external source example while the rest are 

multigroup fission source problems. The external source and four-group fission 

source cases are studied in detail, and the performance of the RBF collocation 

method is compared with the finite element and boundary element methods 

employing linear shape functions. Multiquadric, inverse multiquadric and Gaussian 

are used as the radial basis functions. The root mean square error and relative percent 

error in the multiplication factor have shown that the multiquadric and inverse 

multiquadric functions are better than the Gaussian in terms of both accuracy and 

stability. It was found that by carefully selecting the value of the shape parameter 

highly accurate solutions can be obtained with the collocation method even with a 

few number of interpolation nodes. Also increasing the value of the shape parameter 

has improved the convergence rate of the method. When the results of multiquadric 

collocation are compared with those of linear finite element and boundary elements it 

is seen that the exponentially convergent RBF collocation is superior in accurate 

determination of the multiplication factor while boundary element method has 

produced the best flux values. On the other hand the finite element method has a 

much better computation time than the collocation scheme. 

For multidomain neutron diffusion, both the conventional and weighted forms of the 

RBF collocation method are used for the numerical solution. Five problems are 

considered. First a one-dimensional two-region external source problem is solved 

with RBF collocation, and it was found that extraordinary accuracies are achievable 

with the arbitrary precision computation feature of MATHEMATICA. Then a two-

dimensional two-region problem, for which an analytical solution is available, is 

dealt with, and the results have revealed that both versions of the RBF collocation 

method are capable of yielding good accuracies. The next two problems involve 

corner singularities, and it was seen that, when the heterogeneity between the regions 

is high, the conventional form of the RBF collocation technique yield accurate 

results, while its weighted counterpart gave up oscillatory solutions with poor 

accuracy. The last example of multiregion case is a five-region International Atomic 

Energy Agency benchmark problem. Considering the lack of robustness of the 

weighted collocation method in the corner singularity problem with high 

heterogeneity, this benchmark is solved only with the conventional form of the RBF 

collocation. The numerical multiplication factor values show that the meshless 
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technique of this study is an effective method in solving multiregion neutron 

diffusion problems. 

The final task of this work is the numerical solution of neutron transport equation 

with the RBF collocation method. The 𝑃𝑁 approach is chosen for the angular 

variable, and solutions are obtained with both conventional and even-parity forms of 

the transport equation. Four problems are treated in this context. The external source 

problem can be dealt with two different approaches within the even-parity form. 

When the 𝑃3 approximation is utilized, the resulting two second-order differential 

equations can be cast into a fourth order one, and it is found that, the numerical 

modelling must be made by approximating coupled second-order differential 

equations instead of directly interpolating the fourth-order equation. The second 

example is a fission source case, and the numerical experiments have shown that 

highly accurate solutions are obtained for both the flux distribution and 

multiplication factor. Finally, in the third and fourth problems Pu-239 benchmarks 

with isotropic and anisotropic scattering are tackled, respectively. The isotropic case 

is solved with both forms and identical solutions are obtained for the multiplication 

factor. Also the results are compared with those of discrete ordinates method 

utilizing finite difference and finite element method for the spatial variable, and it is 

seen that the 𝑃5 collocation solutions are equivalent to the 𝑆8 results. The anisotropic 

problem is solved with the convetional form of the transport equation and the RBF 

collocation method yield a good accuracy, even with the 𝑃5 approximation. 
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AĞSIZ RBF KOLLOKASYON YÖNTEMLERİNİN NÖTRON DİFÜZYON 

VE TRANSPORTUNA UYGULANMASI 

ÖZET 

Son yıllarda ağsız yöntemler, bilim ve mühendisliğin birçok alanında fiziksel 

olayların modellenmesi amacıyla, sonlu farklar metodu, sonlu eleman metodu ve 

sınır eleman metodu gibi geleneksel yöntemlere alternatif hale gelmişlerdir. Bu yeni 

yöntemler sayesinde herhangi bir öntanımlı ağa ihtiyaç duymadan, kısmi 

diferansiyel, integral ve integrodiferansiyel denklemler tarafından betimlenen birçok 

problem sayısal olarak çözülmüştür. 

Literatürde farklı sayısal formülasyonlara bağlı olarak çeşitli ağsız yöntemler bulmak 

mümkündür. Bunlar içerisinde radyal baz fonksiyonu (RBF) kollokasyon yöntemi 

temel karakteristiği olan ağsızlığın yanında bazı önemli özellikleriyle diferansiyel 

denklemlerin çözümü için ideal bir sayısal yaklaşım metodudur. Öncelikle bu 

yöntem bir güçlü-form yöntemidir ve bu sebeple sayısal formülasyon içerisinde bir 

integrasyona ve dolayısıyla bir arkaplan ağına ihtiyaç duyulmaz. Bu özellik 

sayesinde RBF kollokasyon yöntemi diğer zayıf-form ağsız yöntemler ile 

karşılaştırıldığında, gerçek anlamda ağsız bir yöntem olarak sınıflandırılır. Bu 

yöntemin ikinci belirgin özelliği üstel yakınsama hızıdır. Problem bölgesini temsil 

etmek için oluşturulan nokta sayısı az bile olsa bu yakınsama hızı ile yüksek 

doğruluklu çözümler elde etmek mümkündür. Yöntemin dikkate değer bir diğer 

özelliği ise bilgisayar programlarındaki uygulama kolaylığıdır. RBF kollokasyon 

yönteminin programlama aşaması diğer ağsız ve ağ temelli yöntemlerin 

programlanmasına göre daha kolaydır. 

Bir diferansiyel denklemin RBF kollokasyonu ile sayısal çözümü aslında bir 

genelleştirilmiş interpolasyon problemidir. Problemi tanımlayan diferansiyel 

denklemin ve sınır koşullarının bağımlı değişkeni, ki bu çalışma kapsamında nötron 

akısı, radyal baz fonksiyonlarının sonlu bir serisi ile interpole edilir. Daha sonra bu 

yaklaşımla elde edilen denklemler, problem bölgesi boyunca düzenli veya rastgele 

bir biçimde dağıtılmış olan interpolasyon noktalarında sağlanırlar. Her ne kadar 

literatürde birçok radyal baz fonksiyonu bulunsa da, ilk kez yüzey uydurma için 

önerilmiş olan genelleştirilmiş multikuadrik fonksiyonu, bu fonksiyon sınıfında, hem 

fonksiyon yaklaşımı konusunda hem de diferansiyel veya integral denklemlerin 

sayısal çözümünde baskın hale gelmiştir. 

RBF kollokasyon yöntemi bugüne kadar birçok alanda bir çözüm aracı olarak 

kullanılmış olsa da bu yöntemin heterojen sistemlerin çözümündeki kullanımı kısıtlı 

kalmıştır. Yakın bir zamanda bu yöntemin ağırlıklı bir versiyonu, çok bölgeli katı 

mekaniği problemlerinin çözümü için önerilmiştir. Bu ağırlıklı yöntemde, 

interpolasyon noktası sayısı ve ortamın fiziksel parametrelerine bağlı olan ağırlıklar, 

sayısal yaklaşım sonucu iç bölgelerde ortaya çıkan hata ile sınır ve arayüzlerde açığa 

çıkan hatalar arasında bir dengeleme yapılarak belirlenmiştir. 

Çoğaltkan veya çoğaltkan olmayan bir ortamda nötronların davranışlarının 

belirlenmesi amacıyla, nötron difüzyon ve transport denklemleri üzerinde uzun bir 
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süredir çalışılmaktadır. Bazı durumlarda analitik çözümler elde etmek mümkün 

olmakla birlikte nükleer teknolojinin ortaya koyduğu gerçekçi problemlerde 

güvenilir ve detaylı bir analiz yapabilmek için ileri seviyede sayısal yaklaşım 

yüntemlerine ihtiyaç duyulmaktadır. Tahmin edilebileceği gibi çok bileşenli 

karmaşık bir nükleer sistem için difüzyon yaklaşımı durumunda bile analitik bir 

çözüm elde etmek olanaksızdır. Nötron difüzyon ve transport denklemleri bugüne 

kadar sonlu farklar, sonlu eleman ve sınır eleman yöntemleri ile çözülmüş olup son 

yıllarda bilgisayarların hesaplama yeteneklerindeki gelişimle beraber bu alandaki 

çalışmalar yeniden hız kazanmıştır.  

Bu çalışmanın amacı zamandan bağımsız nötron difüzyon ve transport 

denklemlerinin RBF kollokasyon yöntemi ile sayısal olarak çözülmesi ve dolayısıyla 

bu umut vaat eden ağsız yöntemin nükleer reaktör fiziği alanına bir çözüm yöntemi 

olarak dahil edilmesidir. Bu kapsamda iki boyutlu çok gruplu nötron difüzyon 

denklemine hem homojen hem de heterojen ortamlarda radyal baz fonksiyonları ile 

yaklaşım yapılırken transport durumunda tek enerji grubuyla temsil edilen bir 

boyutlu problemler ele alınmıştır. Ağsız kollokasyon yönteminin performansı farklı 

durumlar için yapılan sayısal deneylerle değerlendirilmiş olup bu hesaplamalarla 

yöntemin doğruluğu, kararlılığı ve yakınsama hızı incelenmiştir. 

Homojen ortam durumunda beş difüzyon problemi RBF kollokasyonu ile 

çözülmüştür. Bu problemlerden bir tanesi dış kaynak problemiyken diğer dördü çok 

gruplu fisyon kaynağı problemleridir. Dış kaynak ve dört gruplu fisyon kaynağı 

problemleri detaylı olarak incelenmiştir ve RBF kollokasyon yönteminin performansı 

lineer şekil fonksiyonlu sonlu eleman ve sınır eleman yöntemleri ile 

karşılaştırılmıştır. Radyal baz fonksiyonu olarak multikuadrik, ters multikuadrik ve 

Gauss fonksiyonları kullanılmıştır. Elde edilen ortalama karekök hatası ve çoğaltma 

faktöründeki yüzde bağıl hata değerleri, doğruluk ve kararlılık dikkate alındığında, 

multikuadrik ve ters multikuadrik fonksiyonlarının Gauss baz fonksiyonuna göre 

daha başarılı olduğunu göstermiştir. Şekil parametresinin ince bir şekilde 

ayarlanmasıyla birlikte az sayıda interpolasyon noktası kullanılması durumunda bile 

yüksek doğruluklu çözümler bulunabileceği anlaşılmıştır. Ayrıca, yapılan hesaplarla, 

bu parametrenin değerinin arttırılmasıyla yöntemin yakınsama hızının geliştiği 

görülmüştür. Multikuadrik kollokasyon ile lineer sonlu eleman ve sınır eleman 

yöntemleri karşılaştırıldığında üstel yakınsama özelliğine sahip RBF 

kollokasyonunun çoğaltma faktörünün doğru bir biçimde belirlenmesindeki 

üstünlüğü ortaya konmuştur. Buna karşılık nötron akı dağılımı açısından en iyi 

sonuçlar sınır eleman yöntemi ile elde edilirken, sonlu eleman yöntemi ise 

kollokasyon yaklaşımından çok daha iyi bir hesaplama zamanına sahiptir. 

Çok bölgeli nötron difüzyon problemlerinde sayısal çözüm için RBF kollokasyon 

yönteminin hem geleneksel hem de ağırlıklı formları kullanılmıştır. Beş problem 

üzerinde durulmuş olup bunlardan ilki bir boyutlu iki bölgeli bir dış kaynak 

problemidir. Bu problemin çözümü, MATHEMATICA’nın rastgele hassasiyetle 

hesaplama özelliği kullanıldığında, RBF kollokasyonu ile olağanüstü doğruluk 

değerlerine ulaşılabileceğini göstermiştir. Bu problemin ardından analitik olarak 

çözülebilen iki boyutlu, iki bölgeli bir durum ele alınmış ve RBF kollokasyonunun 

her iki formuyla da iyi sonuçlar elde edilmiştir. Sonraki iki problem yapılarında köşe 

tekilliği içermektedir ve bu problemler üzerinde yapılan incelemeler, bölgeler 

arasındaki heterojenitenin yüksek olması durumunda geleneksel formla doğru 

sonuçlar elde edilebilirken, ağırlıklı RBF kollokasyonunun salınımlı ve hatalı 

sonuçlar ortaya çıkardığını göstermiştir. Çok bölgeli problemler kapsamında son 

olarak beş bölgeli bir Uluslararası Atom Enerjisi Komisyonu kıyaslama problemi 
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üzerinde çalışılmıştır. Ağırlıklı kollokasyon yöntemi durumunda, köşe tekilliği ve 

yüksek heterojenite içeren problemde karşılaşılan sağlamlık eksikliği dikkate 

alınarak bu kıyaslama problemi yalnızca geleneksel form ile çözülmüştür. Elde 

edilen sayısal çoğaltma faktörü değerleri, kullanılan ağsız yöntemin çok bölgeli 

nötron difüzyon problemlerinin sayısal çözümü için etkin bir yöntem olduğunu 

göstermiştir. 

Bu çalışmadaki son görev nötron transport denkleminin RBF kollokasyonu ile 

sayısal olarak çözülmesidir. Hesaplamalarda açısal değişken için 𝑃𝑁 yaklaşımı 

kullanılmış olup transport denklemi hem geleneksel hem de çift-parite formlarında 

çözülmüştür. İncelemede dört problem üzerinde durulmuştur. Dış kaynak problemi, 

çift-parite formunda, iki farklı yaklaşımla çözülebilir. 𝑃3 yaklaşımı kullanıldığında 

elde edilen iki ikinci derece diferansiyel denklem tek bir dördüncü derece denkleme 

indirgenebilir ve yapılan hesaplamalar, sayısal modellemenin, bağlaşık ikinci derece 

denklemler üzerinden yapılması gerektiğini göstermiştir. İkinci problemde bir fisyon 

kaynağı durumu ele alınmış ve hem nötron akı dağılımı hem de çoğaltma faktörü için 

yüksek doğruluğa sahip sonuçlar bulunmuştur. Son olarak, üçüncü ve dördüncü 

örneklerde sırasıyla bir Pu-239 kıyaslama problemi durumu, eşyönlü ve eşyönsüz 

saçılma halleri için çözülmüştür. Eşyönlü problem her iki formla da incelenmiş olup 

elde edilen çoğaltma faktörü değerleri birbirleriyle neredeyse aynıdır. Bu sonuçlar 

ayrıca uzaysal değişken için sonlu fark ve sonlu eleman yaklaşımlarının kullanıldığı 

ayrık ordinat çözümleriyle de karşılaştılmış ve 𝑃5 çözümünün 𝑆8 sonucuna denk 

olduğu görülmüştür. Eşyönsüz problem transport denkleminin geleneksel formuyla 

çözülmüştür ve 𝑃5 yaklaşımı altında bile RBF kollokasyon yöntemi iyi sonuçlar 

vermiştir. 
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1. INTRODUCTION 

The fundamental problem of nuclear reactor physics is to determine the distribution 

of neutrons in a multiplying or nonmultiplying system. The equation that governs the 

physical processes in such a system is the neutron transport equation. This equation 

is also known as the linear Boltzmann equation, since it is the linear version of the 

famous Boltzmann equation which is used to study the kinetics of rarefied gases.  

Neutron transport equation is an integrodifferential equation in seven independent 

variables. Its dependent variable, the angular flux, is the physical parameter that 

describes the spatial, angular, energy and time dependence of neutron distribution. 

The analytical solution of this equation is possible only for highly idealized cases, 

such as the Milne problem. In addition to the mathematical difficulties inherent in 

this complex equation, practical systems are highly heterogeneous. As an example, a 

nuclear reactor consists of fuel elements, moderators, control rods and structural 

material, and in an engineering analysis, effects of these components has to be taken 

into account carefully. For these reasons it is necessary to use numerical techniques 

in the solution of the neutron transport equation. 

In early years of reactor physics, because of the lack of computational capabilities, 

engineers and scientists have focused on an approximate treatment of the neutron 

transport process, the neutron diffusion approximation. This approximation ignores 

the angular dependence of neutron distribution and it is analogous to other diffusion 

processes, such as heat and gas diffusion, encountered in physics. Mathematically, it 

is easier to deal with the neutron diffusion equation, but the highly heterogeneous 

character of practical systems stated above necessitates the use of computational 

methods for an accurate description. 

There are two completely different strategies in computational neutron transport. In 

the stochastic approach a finite number of particle histories are simulated through the 

use of random numbers. This approach does not need any governing equation. These 

stochastic methods are known as Monte Carlo methods. On the other hand, in 
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deterministic methods, the governing equation is discretized and one ends up with an 

algebraic system of equations. Then this algebraic system is solved directly or 

iteratively by conventional methods of linear algebra. In the deterministic approach 

the time variable is usually discretized by implicit methods, such as the backward 

Euler method, since these methods have the advantage of stability. For the energy 

variable multigroup method is the proper choice. The angular variable can be 

discretized by two methods, discrete ordinates (𝑆𝑁 approximation) or spherical 

harmonics (𝑃𝑁 approximation). 

The spatial variable of the neutron transport equation has been studied by many 

numerical methods. Parallel to the evolution in computational science the first 

method applied was the finite difference method (diamond difference). The finite 

element method (FEM) is another important technique that has been introduced to 

the field of neutron transport. It is the most widely used numerical method in science 

and engineering, and many commercial simulation packages are based on this 

scheme. These conventional methods are mesh-based approaches. The nodes that are 

used to discretize the governing equation are connected by a predefined mesh. 

Meshless or meshfree methods are a novel class of computational tools. As their 

name implies, the most significant property that separates them from classical 

techniques is that the nodes that represent the problem domain and its boundary are 

not connected in a predefined manner to form a mesh. These methods were first 

emerged in late 1970s, and they have been applied to a wide range of partial 

differential and integral equations.  

1.1 Purpose and Expected Outcomes of the Thesis 

The purpose of this thesis is to apply the meshless methods to the time-independent 

multigroup neutron diffusion and transport equations. In this context, the radial basis 

function (RBF) collocation method and the weighted RBF collocation method are 

utilized for the spatial discretization of these equations. For neutron diffusion both 

homogeneous and multiregion problems are considered, while single domain 

problems are studied in the transport case. Effects of different basis functions, shape 

parameter strategies, and fill distance will be investigated. Accuracy and stability of 

these collocation methods will be determined by using problems which can be solved 
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analytically or numerically, and the results will be compared with those of 

conventional techniques. 

By the completion of this thesis, it is expected that the RBF collocation technique 

will become an alternative tool for the spatial treatment of neutron diffusion and 

transport equations. It is also anticipated that these methods will be extremely useful 

for the analysis of safety related problems and they will dominate the classical 

discretization techniques. 

1.2 Literature Review 

The neutron transport equation and its approximation, the neutron diffusion equation 

are studied both analytically and numerically by many books [1-6]. Among these 

[1,2] present a detailed computational analysis of the neutron transport process, and 

[6] is a reference which contains a comprehensive application of the FEM to both 

equations. 

As a result of the increase of computational capabilities in the last decades, the 

research in computational neutron transport is boosted and many papers [7-12] can 

be found in the literature. Meshless methods have not been applied yet to the neutron 

transport equation, but several works [13-15] can be found in the field of radiative 

transport which is governed by an equation similar to the neutron transport equation. 

When neutron diffusion is considered, in a recent paper [16] the element free 

Galerkin method is applied to the neutron diffusion equation. 

Although the meshless methods have a short history, one can find an extensive 

literature related to this topic. Many books [17-21] are devoted to this subject. 

Among these [17] is a text that covers most of the methods in a well-structured way. 

These methods have found themselves a wide range of application area which 

includes structural mechanics [22-24], fluid dynamics [25-28], heat transfer [29-31], 

acoustics [32], quantum physics [33], and countless papers can be found in the 

literature. 

1.3 Outline of the Thesis 

This thesis consists of seven sections. In section 2 neutron transport and diffusion 

processes are briefly described. The meshless methods are introduced in section 3, 
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where special emphasis is given to the RBF collocation method. Then, numerical 

solution of the homogeneous neutron diffusion equation is performed in section 4, 

and it is followed by the modelling of multiregion problems in section 5. In section 6 

the neutron transport equation is solved by the RBF collocation method. Finally, the 

conclusions and recommendations of this study are presented in section 7. 
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2. NEUTRON TRANSPORT 

2.1 The Time-independent Neutron Transport Equation 

The distribution of neutrons in a time-independent multiplying or nonmultiplying 

system is characterized by a dependent variable called the angular neutron flux. This 

variable can be defined as follows [3]: 

 
𝜑(𝒓, 𝐸, 𝛀, )𝑑𝑉𝑑Ω𝑑𝐸 = total path length traveled by neutrons, 

                   in 𝑑𝑉𝑑ΩdE about (𝒓, 𝐸, 𝛀) 
(2.1) 

It can be seen from Eq. (2.1) that the angular neutron flux is a function of six 

independent variables: three components, (𝑥, 𝑦 and 𝑧 if Cartesian coordinates are 

chosen), of the spatial variable, two angular variables (𝜃 and 𝜙) and one energy 

variable. The equation that governs the interaction of neutrons within any medium is 

the neutron transport equation:  

 

𝛀 ∙ 𝛁𝜑 + Σ𝑡(𝒓, 𝐸)𝜑(𝒓, 𝐸, 𝛀)

= ∫ 𝑑𝛀′∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋

+ 𝑠(𝒓, 𝐸, 𝛀) 

(2.2) 

This equation is a linear integrodifferential equation. Here Σ𝑡(𝒓, 𝐸) is the 

macroscopic total cross section characterizing the probability of all neutron-nuclei 

interactions, Σ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀) is the double differential macroscopic scattering 

cross section characterizing the scattering probability of a particle with energy 𝐸′ and 

a direction 𝛀′ into an energy interval 𝑑𝐸 about 𝐸 and into a direction 𝑑Ω about 𝛀 

and 𝑠(𝒓, 𝐸, 𝛀) is a general neutron source. First term on left hand side of this 

equation describes the streaming of the neutrons, while the second one is the 

collision term. The streaming term describes the leakage of neutrons into or out of 

the volume and the collision term is a measure of neutron losses due to any kind of 

neutron-nuclei interaction. The two terms on right hand side of Eq. (2.2) express the 



  

6 

 

two gain mechanisms of neutrons. First one considers all neutrons that may scatter 

from any energy 𝐸′ and direction 𝛀′ into 𝐸 and 𝛀, and the second one is simply the 

source term which can be either an external source or a fission source depending on 

the nature of the problem. 

The derivation of the neutron transport equation can be done by simply considering 

an arbitrary volume and taking into account the various mechanisms that add or 

remove a neutron from it. Although this derivation is not given here it is useful to 

summarize the important assumptions that lead to Eq. (2.2) [1,3]: 

1) Particles are considered as points and their interaction can be described by 

classical mechanics. 

2) Particles travel in straight lines between collisions. 

3) Particle-particle interactions are neglected since the particle densities are small 

compared with atomic densities in many applications. 

4) The transport process is assumed to be Markovian. 

5) The neutron transport equation deals with expected or mean neutron population. 

It is obvious from Eq. (2.2) that one needs boundary conditions to complete the 

mathematical statement of the neutron transport problem. The boundary condition 

depends on the configuration of the problem. In general there are two kinds of 

boundary conditions: explicit and implicit [1]. For explicit boundary conditions the 

angular neutron flux is explicitly known. As an example, the commonly used 

vacuum boundary condition is an explicit one: 

 𝜑(𝒓𝑠, 𝐸, 𝛀) = 0,     𝛀 ∙ 𝒏 < 0,     𝒓𝑠 ∈ Γ (2.3) 

Here Γ represents the boundary of the problem domain, 𝒏 is the unit outward normal 

vector to Γ, and subscript 𝑠 is used to denote surface. Implicit boundary conditions 

are conditions that relate incoming and outgoing fluxes. The albedo boundary 

condition is an example to this class 

 𝜑(𝒓𝑠, 𝐸, 𝛀) = 𝛼(𝐸)𝜑(𝒓𝑠, 𝐸, 𝛀
′),      𝛀 ∙ 𝒏 < 0,      𝒓𝑠 ∈ Γ (2.4) 

where the reflection angle 𝛀 and the incidence angle 𝛀′ are related by: 

 𝛀 ∙ 𝒏 = −𝛀′ ∙ 𝒏,      (𝛀 × 𝛀′) ∙ 𝒏 = 0 (2.5) 
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Note that for the special case of 𝛼(𝐸) = 1, Eq. (2.4) is the reflective boundary 

condition. 

Although Eq. (2.2) with boundary conditions is enough to fully describe the transport 

problem mathematically, the source term has to be expressed explicitly. In the most 

general case one can write: 

 𝑠(𝒓, 𝐸, 𝛀) = 𝑠𝑒𝑥(𝒓, 𝐸, 𝛀) + 𝑠𝑓(𝒓, 𝐸) (2.6) 

In this relation 𝑠𝑒𝑥(𝒓, 𝐸, 𝛀) denotes the external neutron source while 𝑠𝑓(𝒓, 𝐸) is the 

fission source which characterizes the fission event when there is a fissionable 

material in the problem considered. If all the neutrons are assumed to be born 

instantaneously (prompt neutrons) then the fission source takes the following form: 

 𝑠𝑓(𝒓, 𝐸) =
𝜒(𝐸)

4𝜋
∫ 𝑑𝛀′∫ 𝑑𝐸′𝜐(𝐸′)Σ𝑓(𝐸

′)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋

 (2.7) 

Here Σ𝑓(𝐸) is the macroscopic fission cross section characterizing the fission 

probability of a fissionable isotope, 𝜐(𝐸) is the number of neutrons per fission and 

𝜒(𝐸) is the fission spectrum. 

For a complete analysis, the influence of delayed neutrons has to be considered. In 

this case one has to work with a set of equations which are known as neutron kinetics 

equations. But since the focus of this work is time-independent problems, the details 

will be omitted and the final form of the time-independent neutron transport equation 

will be given  

 

𝛀 ∙ 𝛁𝜑 + Σ𝑡(𝒓, 𝐸)𝜑(𝒓, 𝐸, 𝛀)                                       

= ∫ 𝑑𝛀′∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋

 

+
𝜒(𝐸)

4𝜋
∫ 𝑑𝛀′∫ 𝑑𝐸′𝜐(𝐸′)Σ𝑓(𝐸

′)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋

      

+𝑠𝑒𝑥(𝒓, 𝐸, 𝛀)                                                                  

(2.8) 

where the fission spectrum is expressed by 
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 𝜒(𝐸) = 𝜒𝑝(𝐸)(1 − 𝛽) + ∑ 𝜒𝑚(𝐸)𝛽𝑚

6

𝑚=1

 (2.9) 

In Eq.(2.9) 𝜒𝑝(𝐸) is the prompt fission spectrum, 𝛽 is the fraction of delayed 

neutrons, and 𝜒𝑚(𝐸) and 𝛽𝑚  are the fission spectrum and fraction of the mth 

delayed neutron group, respectively. 𝛽 and 𝛽𝑚 are related by 

 ∑ 𝛽𝑚

6

𝑚=1

= 𝛽 (2.10) 

It is well known from basic reactor physics that a time-independent solution can be 

obtained in two cases. One must either have a nonmultiplying system with external 

sources or a multiplying system without any external source. For the nonmultiplying 

case, i.e. Σ𝑓 = 0 

 

𝛀 ∙ 𝛁𝜑 + Σ𝑡(𝒓, 𝐸)𝜑(𝒓, 𝐸, 𝛀)                                                                  

= ∫ 𝑑𝛀′∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋

+ 𝑠𝑒𝑥(𝒓, 𝐸, 𝛀) 
(2.11) 

The situation is more complicated for source-free, multiplying system problem which 

is governed by: 

 

𝛀 ∙ 𝛁𝜑 + Σ𝑡(𝒓, 𝐸)𝜑(𝒓, 𝐸, 𝛀)                                      

= ∫ 𝑑𝛀′∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋

 

+
𝜒(𝐸)

4𝜋
∫ 𝑑𝛀′∫ 𝑑𝐸′𝜐(𝐸′)Σ𝑓(𝐸

′)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋

      

(2.12) 

The complexity of this problem comes from the fact that, to obtain a time-

independent chain reacting (critical) system, fine adjustments in composition and/or 

geometry have to be performed. The practical solution to this issue is to convert the 

equation into an eigenvalue problem. The most common formulation is the 𝜆-

eigenvalue formulation, which can be achieved by simply replacing 𝜐 by 𝜐 𝜆⁄ . By 

doing this replacement, the number of neutrons per fission is “magically” adjusted to 
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yield a time-independent solution. 𝜆 is a parameter that measures how far the system 

is away from criticality. If 𝜆 > 1, one has a supercritical system and if 𝜆 < 1 the 

system is said to be subcritical. 

Now some important properties of the solutions of the neutron transport equation can 

be given. An important feature of the angular neutron flux is its smoothness, since it 

has major implications in the accuracy of numerical methods, significant results will 

be summarized here [3]: 

 For planar geometry transport problems if one has vacuum boundary 

conditions and isotropic sources then the flux has 𝐶1 smoothness in both 𝑥 

and 𝜇 where 𝜇 = cos 𝜃 except at outer boundaries and material interfaces. 

 For multidimensional problems with vacuum boundaries generally the flux 

has 𝐶0 smoothness. 

 If the boundary fluxes are not smooth, then the solution is non-smooth 

throughout the problem domain. 

2.2 The Diffusion Approximation 

The complexity of the neutron transport equation can be reduced by assuming that 

the flux is weakly-dependent on the angular variable 𝛀. Although information on the 

behavior of neutron distribution is lost, the equation that governs the angle-

independent system can be solved much more easily then the transport equation. 

In order to derive the diffusion approximation, two fundamental concepts, the angle-

integrated or total flux and the neutron current must be defined. The total flux can be 

obtained by just integrating the angular flux over all directions: 

 𝜙(𝒓, 𝐸) = ∫ 𝑑𝛀𝜑(𝒓, 𝐸, 𝛀)

4𝜋

 (2.13) 

A closely related dependent variable to the angular flux is the angular neutron current 

vector: 

 𝒋(𝒓, 𝐸, 𝛀) ≡ 𝛀𝜑(𝒓, 𝐸, 𝛀) (2.14) 

This variable has the following physical interpretation [4]: 
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𝒋(𝒓, 𝐸, 𝛀) ∙ 𝑑𝐴𝑑𝐸𝑑Ω ≡ expected number of neutrons passing 

                                            through an area 𝑑𝐴 per unit time with 

                                    energy 𝐸 in 𝑑𝐸, direction 𝛀 in d𝛀  

(2.15) 

The angle-independent current vector can be defined in a similar way that was used 

to define the total flux: 

 𝑱(𝒓, 𝐸) = ∫ 𝑑𝛀𝒋(𝒓, 𝐸, 𝛀)

4𝜋

 (2.16) 

The first step in the derivation of the diffusion approximation is to integrate the 

neutron transport equation, Eq. (2.2), over all directions: 

 

∫ d𝛀 ∙ 𝛁𝜑

4π

+ ∫ d𝛀Σ𝑡(𝒓, 𝐸)𝜑(𝒓, 𝐸, 𝛀, )

4𝜋

                             

= ∫ d𝛀 ∫ 𝑑𝛀′∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋4𝜋

 

+ ∫ d𝛀𝑠(𝒓, 𝐸, 𝛀)

4𝜋

                                                                      

(2.17) 

All terms, except the first term on right hand side of this equation can be treated in a 

straightforward manner by using Eqs. (2.13) and (2.14). To evaluate the exceptional 

inscattering term it has to be assumed that the double differential scattering cross 

section depends only on 𝜇0 = 𝛀
′ ∙ 𝛀, which is a frequent case. This assumption 

reduces this cross section to a single differential scattering cross section. Hence: 

 

∫ dΩ ∫ 𝑑Ω′∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀)𝜑(𝒓, 𝐸′, 𝛀′)

∞

04𝜋4𝜋

= 

∫ 𝑑Ω′∫ 𝑑𝐸′ [ ∫ dΩΣ𝑠(𝐸
′ → 𝐸,𝛀′ → 𝛀)

4𝜋

]

∞

0

𝜑(𝒓, 𝐸′, 𝛀′)

4𝜋

= 

∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸) ∫ 𝑑Ω′𝜑(𝒓, 𝐸′, 𝛀′)

4𝜋

∞

0

= ∫ 𝑑𝐸′Σ𝑠(𝐸
′ → 𝐸)𝜙(𝒓, 𝐸′)

∞

0

 

(2.18) 
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The equation that comes out of this operation of integrating over all directions is 

known as the neutron continuity equation: 

 𝜵 ∙ 𝑱(𝒓, 𝐸) + 𝛴𝑡(𝒓, 𝐸)𝜙(𝒓, 𝐸) = ∫ 𝑑𝐸
′𝛴𝑠(𝐸

′ → 𝐸)𝜙(𝒓, 𝐸′)

∞

0

+ 𝑆(𝒓, 𝐸) (2.19) 

Notice that Eq. (2.19) contains two unknowns, 𝜙(𝒓, 𝐸) and 𝑱(𝒓, 𝐸). The 

abovementioned procedure can be repeated and the following equation can be 

obtained for the current vector [4]; 

 

𝜵 ∙ ∫ 𝑑𝛀 𝛀𝛀𝜑(𝒓, 𝐸, 𝛀)

4𝜋

+ 𝛴𝑡(𝒓, 𝐸)𝑱(𝒓, 𝐸) 

= ∫ 𝑑𝐸′𝛴𝑠1(𝐸
′ → 𝐸)𝑱(𝒓, 𝐸′)

∞

0

+ 𝑆1(𝒓, 𝐸)     

(2.20) 

where 

 𝛴𝑠1(𝐸
′ → 𝐸) = 2𝜋 ∫𝑑𝜇0𝜇0Σ𝑠(𝐸

′ → 𝐸, 𝜇0)

1

−1

 (2.21) 

 𝑆1(𝒓, 𝐸) = ∫ 𝑑𝛀 𝛀𝑠(𝒓, 𝐸, 𝛀)

4𝜋

 (2.22) 

To make life simple let’s consider the case where all neutrons are characterized by 

the same energy. This is known as the one-speed approximation. The key assumption 

in obtaining the diffusion approximation is that the angular flux is only weakly 

dependent on angle, so that it is linearly anisotropic. This means one has to expand 

the angular flux in angle and neglect all the terms that have an order higher than 

linear order in 𝛀: 

 𝜑(𝒓,𝛀) ≅
1

4𝜋
𝜙(𝒓) +

3

4𝜋
𝑱 ∙ 𝛀 (2.23) 

By using this relation to evaluate the first term of Eq. (2.20) and taking into account 

the one-speed approximation [4]:   
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1

3
𝜵𝜙 + 𝛴𝑡𝑟(𝒓)𝑱(𝒓) = 𝑆1(𝒓) (2.24) 

The one-speed form of Eq. (2.19) is also needed: 

 𝜵 ∙ 𝑱 + 𝛴𝑎(𝒓)𝜙(𝒓) = 𝑆(𝒓) (2.25) 

Here, 𝛴𝑎 and 𝛴𝑡𝑟 are the macroscopic absorption and transport cross sections, 

respectively. Now there are two equations for two unknowns. These two equations 

can be simplified further by assuming that the neutron source term is isotropic i.e., 

𝑆1(𝒓) = 0. From Eq. (2.24) it follows that 

 𝑱(𝒓) = −
1

3𝛴𝑡𝑟(𝒓)
𝛁𝜙(𝒓, 𝑡) (2.26) 

Now, defining the neutron diffusion coefficient by 

 𝐷(𝒓) =
1

3𝛴𝑡𝑟(𝒓)
 (2.27) 

and substituting (2.26) into (2.25) the familiar one-speed neutron diffusion equation 

can be obtained: 

 −𝜵 ∙ 𝐷(𝒓)𝛁𝜙 + 𝛴𝑎(𝒓)𝜙(𝒓) = 𝑆(𝒓) (2.28) 

In summary, Eq. (2.28) is a consequence of three approximations: 

 Linear anisotropy 

 Energy-independency 

 Isotropic sources 

As stated above the most important assumption in the derivation of the neutron 

diffusion equation is the weak independence of neutron flux on 𝛀. This assumption 

is violated near boundaries and localized sources. It also loses validity in strongly 

absorbing media and when material properties change dramatically over a small 

distance. In these situations one has to work with the neutron transport equation to 

get more accurate results. 
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2.3 The Time-independent Multigroup Multiregion Neutron Diffusion Equation 

and Boundary Conditions 

Although the one-speed single region neutron diffusion equation is instructive, the 

modelling and design of nuclear reactors necessitates the use of a much detailed 

approximation. The time-independent multigroup multiregion neutron diffusion 

equation represents the heterogeneous structure of such systems, and it can provide a 

better approach for the energy variable: 

 

−𝐷𝑔
𝑖∇2𝜙𝑔

𝑖,(𝑛) + Σ𝑟,𝑔
𝑖 𝜙𝑔

𝑖,(𝑛) − ∑ Σ𝑠,𝑔′→𝑔
𝑖 𝜙

𝑔′
𝑖,(𝑛)

𝑔−1

𝑔′=1

= 𝑄𝑔
𝑖  

𝑄𝑔
𝑖 = {

1

𝜆(𝑛−1)
𝜒𝑔
𝑖 𝐹𝑖,(𝑛−1)

𝑠𝑔,𝑒𝑥
𝑖                        

 

(2.29) 

where 𝑔 = 1,… , 𝐺 and 𝑖 = 1,… ,𝑀. In Eq. (2.29), 𝑔 and 𝑖 denote the energy group 

and material number, respectively, and Σ𝑟 ≡ Σ𝑎 − Σ𝑠,𝑔→𝑔 is the removal cross 

section. It has been assumed that the fission source iteration is employed for the 

determination of 𝜆, the effective multiplication factor, and 𝑛 denotes the iteration 

number [4]. The fission source is defined by 

 𝐹𝑖 ≡ ∑ 𝜐𝑔′
𝑖 Σ𝑓,𝑔′

𝑖 𝜙𝑔′
𝑖

𝐺

𝑔′=1

 (2.30) 

where 𝜐𝑔
𝑖  is the number of neutrons emitted per fission of group 𝑔 and Σ𝑓,𝑔

𝑖  is the 

group fission cross section. 

In the fission source case the system of partial differential equations (PDEs) in Eq. 

(2.29) is solved iteratively. The iterative algorithm, known as fission source iteration, 

starts by making a guess for the fission source and the multiplication factor as 

𝐹𝑖~𝐹𝑖,(0) and 𝜆~𝜆(0), which gives 𝜑1
𝑖,(1)

. Then, 𝜑𝑔
𝑖,(1), 𝑔 = 2,… , 𝐺 are found 

successively and a new fission source and multiplication factor are determined by 

 𝐹𝑖,(1) = ∑ 𝜐𝑔′
𝑖 Σ𝑓,𝑔′

𝑖 𝜙
𝑔′
𝑖,(1)

𝐺

𝑔′=1

,             𝜆(1) = 𝜆(0)
∫𝑑A𝐹𝑖,(1)

∫𝑑A𝐹𝑖,(0)
 (2.31) 
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where 𝑑A is the area element. This iterative algorithm is terminated when a 

predetermined convergence criterion is satisfied 

 |
𝜆(𝑛+1) − 𝜆(𝑛)

𝜆(𝑛+1)
| < 𝜉 (2.32) 

On the other hand if an external source term is present, then Eq. (2.29) can be solved 

directly. 

To complete the description of the problem boundary and interface conditions are 

needed. In general there are three types of boundary conditions (BCs): 

 

𝜙𝑔
𝑖 = 0                                                        (Vacuum BC)    

𝐽 ≡
𝜕𝜙𝑔

𝑖

𝜕𝑛
= 0              (Neumann type reflective BC)   

𝐽− ≡
1

4
𝜙𝑔
𝑖 +

𝐷

2

𝜕𝜙𝑔
𝑖

𝜕𝑛
= 0   (Robin type vacuum BC)    

(2.33) 

Finally, at material interfaces the neutron flux and its first derivative should be 

continuous: 

 

𝜙𝑔
𝑖 = 𝜙𝑔

𝑖+1 

𝜕𝜙𝑔
𝑖

𝜕𝑛
=
𝜕𝜙𝑔

𝑖+1

𝜕𝑛
 

(2.34) 
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3. MESHLESS METHODS 

Meshless methods are a novel class of computational tools. As their name implies, 

they have the significant property that they do not need a mesh for the simulation of 

the problem considered. The domain and its boundary are represented by nodes and 

these nodes do not have to satisfy any relation in a predefined manner to form a 

mesh. The nodes can be distributed uniformly or randomly. By using these nodes one 

can first create shape functions to approximate the field variable and then solve the 

resulting algebraic system of equations by standard techniques of linear algebra. 

One of the first meshless method was proposed in late 1970’s. It was called the 

smoothed particle hydrodynamics (SPH) and dealt with astrophysical problems [34]. 

In the last decades there has been a growing interest in this field and today many 

meshless schemes are proposed to tackle various problems of science and 

engineering. 

3.1 Motivation for Meshless Methods 

The motivation behind meshless methods was to eliminate the difficulties 

encountered in classical mesh-based techniques. The need for meshless methods can 

best be understood by comparing it with the most widely used technique in science 

and engineering, the FEM. In [18] a detailed comparison is given based on the 

problems of structural mechanics, and these observations will be summarized here: 

1) Mesh creation is a requirement in FEM packages and the analyst have to spend 

much of his or her time on this operation. 

2) The stresses, calculated by FEM are discontinuous and less accurate.  

3) It is difficult to simulate problems where the material integrity is lost partially or 

totally such as large deformations, crack growth, phase transformations and fracture. 

4) Re-meshing is a solution for fracture mechanics problems, but one needs complex 

mesh generation processors which increases the computational cost for 3-D 

problems. 
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3.2 Weighted Residual Method, Strong and Weak Forms 

Today, a huge number of meshless methods can be found in the literature, and it is 

intuitive to categorize them. This categorization can be done with respect to the 

formulation procedure of the problem or function approximation scheme [17]. In the 

next section a classification based on the formulation procedure will be presented, 

but first the ideas of weighted residual method, strong-form and weak-form have to 

be introduced. 

Now consider the following problem: 

 𝐿(𝑢) + 𝑓 = 0,      𝑢 ∈ Ω (3.1) 

 𝐵(𝑢) = 𝑔     𝑢 ∈ Γ (3.2) 

Here 𝑢 is the field variable, 𝑓 and 𝑔 are known functions that drive the system, and 𝐿 

and 𝐵 are differential operators. The problem domain and its boundary are denoted 

by Ω and Γ, respectively.  

In most of the practical situations it is generally not possible to obtain an analytical 

solution for the problem considered. Then, it is a natural choice to try to obtain a 

numerical solution, and one first approximates the field variable in the following 

form 

 𝑢𝑎(𝒓) =∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

 (3.3) 

where Φ𝑖 are called the trial or shape functions, 𝑎𝑖 are unknown coefficients and 

𝒓 = (𝑥, 𝑦, 𝑧) are Cartesian coordinates. The trial functions, of course, must satisfy 

some admissibility conditions to minimize the error introduced by the last equation. 

By substituting Eq. (3.3) into Eqs. (3.1) and (3.2) the following residuals can be 

obtained 

 𝑅𝑠 = 𝐿(𝑢
𝑎) + 𝑓 (3.4) 

 𝑅𝑏 = 𝐵(𝑢
𝑎) − 𝑔 (3.5) 

Then the procedure continues with multiplying these residuals with weight or test 

functions and integrating over the problem domain to minimize the error in an 

average sense: 
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 ∫ 𝑊𝑖𝑅𝑠𝑑Ω

Ω

+∫ 𝑉𝑖𝑅𝑏𝑑Γ

Γ

= 0,       𝑖 = 1,… , 𝑛 (3.6) 

Here 𝑊𝑖 and 𝑉𝑖 are weight functions and one can choose 𝑊𝑖 = 𝑉𝑖. This is known as 

the weighted residual method, and it is the starting point of many numerical 

procedures. 

If Eqs. (3.4) and (3.5) are substituted into Eq. (3.6) 

 ∫ 𝑊𝑖 [𝐿 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) + 𝑓] 𝑑Ω

Ω

+∫ 𝑉𝑖 [𝐵 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) − 𝑔] 𝑑Γ

Γ

= 0 (3.7) 

where 𝑖 = 1,… , 𝑛 or explicitly: 

 

∫ 𝑊1 [𝐿 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) + 𝑓] 𝑑Ω

Ω

+∫ 𝑉1 [𝐵 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) − 𝑔] 𝑑Γ

Γ

= 0

∫ 𝑊2 [𝐿 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) + 𝑓] 𝑑Ω

Ω

+∫ 𝑉2 [𝐵 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) − 𝑔] 𝑑Γ

Γ

= 0

⋮

∫ 𝑊𝑛 [𝐿 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) + 𝑓] 𝑑Ω

Ω

+∫ 𝑉𝑛 [𝐵 (∑𝑎𝑖Φ𝑖(𝒓)

𝑛

𝑖=1

) − 𝑔] 𝑑Γ

Γ

= 0

 (3.8) 

By performing the integrations in Eq. (3.8) a system of algebraic equations can be 

obtained. Solution of this system will yield the unknown constants 𝑎𝑖 and hence the 

numerical solution 𝑢𝑎. 

The integration operation in the weighted residual method has a key role in the 

formulation of the numerical scheme. The original statement of the problem, whether 

it is an ordinary or partial differential equation, is also called the strong-form. As 

stated above, the trial functions should satisfy some criteria. Suppose that the 

governing equation is a differential equation of second order. In this case the trial 

function must be at least 𝐶2 smooth. But as an alternative, integration by parts can be 

used (Green’s identity for multidimensional problems) to weaken the smoothness 

requirements of the trial functions. Therefore, the methods which directly deal with 

the original statement of the problem are called strong-form methods, and the 
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methods which work on analytically integrated expressions are called weak-form 

methods. 

Different choices of trial and weight functions will lead to different numerical 

methods. As an example one can use the Dirac’s delta function, 𝛿(𝑥 − 𝑥𝑖), as the 

weight function to satisfy the differential equation at certain nodes. If this is the 

choice then from Eq. (3.7) it is easy to show that 

 [𝐿 (∑𝑎𝑖Φ𝑖(𝒓𝒊)

𝑛

𝑖=1

) + 𝑓] + [𝐵 (∑𝑎𝑖Φ𝑖(𝒓𝒊)

𝑛

𝑖=1

) − 𝑔] = 0 (3.9) 

by using the fundamental property of Dirac’s delta function: 

 𝑓(𝑥𝑖) = ∫𝑓(𝑥)𝛿(𝑥 − 𝑥𝑖)𝑑𝑥 (3.10) 

The method, defined by Eq. (3.9) is known as the collocation method. It is obvious 

that this is a strong-form method since the approximation function is directly 

substituted into the differential equation and its boundary conditions. 

Another well known technique is the least squares method that uses the following 

weight functions: 

 𝑊𝑖 =
𝜕𝑅𝑠
𝜕𝑎𝑖

           𝑉𝑖 =
𝜕𝑅𝑏
𝜕𝑎𝑖

 (3.11) 

If the trial and weight functions are chosen to be the same then the resulting approach 

is of the Bubnov-Galerkin type. This weak-form scheme has the advantage that the 

resultant system matrix is symmetric. But, if different functions are preferred for trial 

and weight functions, then the procedure is called the Petrov-Galerkin method. 

3.3 Classification of Meshless Methods 

Meshless methods fall into three categories according to their formulation 

procedures: 

1) Weak-form methods: These methods are based on the weak-form of the governing 

differential equations. The first weak-form method was the diffuse element method 

(DEM) which is a generalization of the FEM [35]. Two years later another method, 

the element-free Galerkin (EFG) method was proposed [36]. These two methods use 



  

19 

 

the moving least squares (MLS) approximation in shape function construction. 

Another method that uses the MLS is the meshless local Petrov-Galerkin (MLPG) 

method [37]. MLPG differs from DEM and EFG in the way that numerical 

integrations are performed locally. The last example to this class is the radial point 

interpolation method (RPIM) which utilizes a different approach in shape function 

construction [17]. This interpolation based scheme can be employed both locally and 

globally. 

2) Strong-form methods: In these methods the original form of the governing 

equation is satisfied at particular nodes of the domain. The most significant strong-

form method is the radial basis function collocation method in which RBFs are used 

as trial functions [38]. Another important strong-form scheme is the finite point 

method (FPM), which is based on weighted least squares interpolation [39].    

3) Hybrid methods: Weak-form methods can deal with Neumann type boundary 

conditions easily since these conditions came up naturally in the problem 

formulation, but Dirichlet boundary conditions need special treatments. For strong 

form methods the opposite is true, in which the error caused by Neumann boundary 

conditions diffuse through the problem domain. Although there are special 

techniques to overcome these problems one can also use weak and strong forms 

together to get more accurate results. In [40] such a method has been proposed.   

3.4 Shape Functions 

After determining the nodes in the domain and on the boundary, the second step of 

solution for meshless methods is the construction of shape functions by using these 

nodes. Most meshless techniques use the concept of support domain. Hence, before 

introducing various strategies to build up shape functions it is necessary to define the 

support domain. 

Support domain is a region with any shape and any size that is used to determine the 

number of nodes in the construction of shape functions. It determines the order of 

coupling and therefore the order of sparseness of the final system matrix. If one uses 

a support domain with a small size relative to the size of the problem domain then 

the result will be a sparse matrix. In Figure 3.1, circular support domains are 

illustrated as an example. 
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Figure 3.1: Circular support domains of size 𝑟𝑠. 

For any point, the size of the support domain, 𝑑𝑠, can be determined by a simple 

relation; 

 𝑑𝑠 = 𝛼𝑠𝑑𝑐 (3.12) 

where 𝛼𝑠 is a dimensionless parameter determined by the analyst and 𝑑𝑐 is the 

average nodal spacing. 𝛼𝑠 should be chosen in an optimal way to give accurate 

solutions with low computational cost. If uniformly scattered nodes are used, then 𝑑𝑐 

is simply the spacing between neighboring nodes, but if randomly distributed nodes 

are used then one has to follow the procedure below [17]: 

i) The value of the support domain is estimated and denoted by 𝐷𝑠. 

ii) The nodes enclosed by 𝐷𝑠, 𝑛𝐷𝑠, are counted. 

iii) For an n-dimensional domain 𝑑𝑐 is found from: 

 𝑑𝑐 =
𝐷𝑠
1 𝑛⁄

𝑛𝐷𝑠
1 𝑛⁄ − 1

 (3.13) 

iv) 𝑑𝑠 is found from Eq. (3.12). 

Now that the concept of support domain is defined, the construction of shape 

functions can be introduced. Although there are various approaches to buid up these 

functions, only the most widely used techniques will be presented in this section. 
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These techniques result from two different strategies, point interpolation and least 

squares approximation. A detailed discussion can be found in [18]. 

3.4.1 Point interpolation methods (PIM) 

Interpolation is an approximation technique in which one tries to find a function, 𝑓𝑎, 

to fit a collection of data, 𝑦𝑖, where 

 𝑓𝑎(𝑥𝑖) = 𝑦𝑖 (3.14) 

Here 𝑥𝑖 are data points (field nodes for meshless methods).  

The first step in building up a shape function is to approximate the field variable, 

𝑢(𝒙) by a series 

 𝑢𝑎(𝒓) =∑𝑎𝑖Φ𝑖(𝒓)

𝑚

𝑖=1

 (3.15) 

where 𝑎𝑖 are unknown coefficients, Φ𝑖(𝒓) are shape functions and 𝑚 is the number 

of shape functions. For interpolation, the number of nodes in support domain is 

chosen as 𝑛 = 𝑚 since the shape function has to pass through the function values at 

every node.  

In the polynomial point interpolation method the shape functions are chosen as 

monomials: 

 𝑢𝑎(𝒓) =∑𝑝𝑖(𝒓)𝑎𝑖

𝑚

𝑖=1

= 𝒑𝑇(𝒓)𝒂 (3.16) 

Here 𝑝𝑖(𝒓) are monomials and 𝒑 and 𝒂 are the vectors that collect the monomials 

and unknown coefficients, respectively. The monomials can be built using Pascal’s 

triangles. As an example if quadratic basis functions are needed for a 2-D problem, 

then: 

 𝒑𝑇(𝒓) = {1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2} (3.17) 

The coefficients 𝑎𝑖 can be determined by enforcing 𝑢(𝒓) to pass through the 𝑛 nodes 

in the support domain. This operation yields 𝑛 equations which can be written in 

compact form as follows 
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 𝑼 = 𝑷𝑚𝒂 (3.18) 

where 𝑼 and 𝒂 are the vectors that collect the nodal values and unknown coefficients 

respectively and 

 𝑷𝑚 =

[
 
 
 
 
1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

     

𝑥1𝑦1 ⋯ 𝑝𝑚(𝒓1)

𝑥2𝑦2 ⋯ 𝑝𝑚(𝒓2)

𝑥3𝑦3 ⋯ 𝑝𝑚(𝒓3)
⋮ ⋮ ⋮
1 𝑥𝑛 𝑦𝑛

     
⋮ ⋱ ⋮

𝑥𝑛𝑦𝑛 ⋯ 𝑝𝑚(𝒓𝑛)]
 
 
 
 

 (3.19) 

is called the moment matrix [17]. Notice that 𝑷𝑚 is a square matrix since 𝑛 = 𝑚. 

From Eqs. (3.18) and (3.16) it is easy to obtain 

 𝑢(𝒓) = 𝒑𝑇(𝒓)𝑷𝑚
−1𝑼 = 𝚿𝑇(𝒓)𝑼 (3.20) 

where 𝚿𝑇(𝒓) is the vector of shape functions: 

 𝚽𝑇(𝒓) = {Φ1(𝒓) Φ2(𝒓)     ⋯ Φ𝑛(𝒓)} (3.21) 

Point interpolation with monomials is a simple method to construct shape functions, 

but it has an important defect. The moment matrix, 𝑷𝑚, can become singular. There 

are several strategies to avoid this issue. One of them is to use radial basis functions 

instead of monomials. These functions will be presented in the next section. 

3.4.2 Least squares methods 

Least squares technique is a well-known approximation method and it can also be 

used in shape function creation for meshless methods. 

The first method that will be introduced is the weighted least squares (WLS) 

approximation. Once again, the field variable is represented with a finite series of 

polynomial basis functions: 

 𝑢𝑎(𝒓) =∑𝑎𝑖𝑝𝑖(𝒓)

𝑚

𝑖=1

= 𝒑𝑇𝒂 (3.22) 

To determine the coefficients this series is satisfied at the 𝑛 approximation nodes, but 

this time 𝑛 > 𝑚 and therefore the resultant moment matrix 𝑷𝑚 is a rectangular one. 

In general the weighted least squares problem is solved by minimizing 
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 𝐽 =∑𝑊𝑖[𝑢
𝑎(𝒓𝑖) − 𝑢(𝒓𝑖)]

2

𝑛

𝑖=1

 (3.23) 

where 𝑊𝑖 (𝑖 = 1,2,… , 𝑛) is the weight coefficient for the ith node. To minimize 𝐽 one 

must have 

 
𝜕𝐽

𝜕𝒂
= 0 (3.24) 

which leads to 

 𝑷𝑚
𝑇𝑾𝑷𝑚𝒂 = 𝑷𝑚

𝑇𝑾𝑼 (3.25) 

where: 

 𝑾 = [
𝑊1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑛

] (3.26) 

For data fitting problems the weights are usually chosen as the standard deviation to 

decrease the effects of possible measurement errors in experiments. In case of 

meshless methods one can use the following weight 

 𝑊𝑖 = 𝑊(𝒙𝑖) =
𝑒−(

𝑟
𝑐)
2

− 𝑒−(
𝑟𝑠
𝑐 )
2

1 − 𝑒−(
𝑟𝑠
𝑐 )
2  (3.27) 

where 𝑟𝑠 is the size of support domain, 𝑐 is a constant to be determined by the analyst 

and 

 𝑟 = √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 (3.28) 

The WLS shape functions can be obtained by letting 

 𝑨 = 𝑷𝑚
𝑇𝑾𝑷𝑚 (3.29) 

 𝑩 = 𝑷𝑚
𝑇𝑾 (3.30) 

This leads us to: 
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 𝚽𝑇 = 𝒑𝑇(𝒓)𝑨−1𝑩 (3.31) 

The second least squares based technique in shape function construction is the 

moving least squares approximation. This method is similar to WLS approach and in 

fact WLS is just a special case of MLS. In this method the field variable is 

approximated by: 

 𝑢𝑎(𝒙) =∑𝑝𝑗(𝒓)𝑎𝑗(𝒓)

𝑚

𝑗=1

= 𝒑𝑇(𝒓)𝒂(𝒓) (3.32) 

From Eq. (3.32) it is easy to see the difference between MLS and WLS; the 

coefficients are functions of the independent variable 𝒓 in the MLS case. To obtain 

the shape functions of MLS the following functional has to be minimized: 

 𝐽 =∑𝑊(𝒓 − 𝒓𝑖)[𝒑
𝑇(𝒓𝑖)𝒂(𝒓) − 𝑢𝑖]

2

𝑛

𝑖=1

 (3.33) 

The MLS shape functions can be obtained by a similar procedure that was used to 

obtain WLS shape functions: 

 𝚽𝑇(𝒓) = 𝒑𝑇(𝒓)𝑨−1(𝒓)𝑩(𝒓) (3.34) 

3.4.3 Hermite-type approximation 

Treatment of Neumann type boundary conditions is an important issue if a strong-

form method is preferred to solve a problem with these type of conditions. If one 

uses the abovementioned shape functions directly then there will be a significant loss 

in accuracy. Fortunately there are strategies to prevent this issue and in this 

subsection, one of them, the Hermite-type approximation, will be introduced. This 

method can be applied to any shape function discussed above. A brief description for 

WLS approach will be presented and its detailed version can be found in [17]. 

Suppose that in addition to 𝑛 interior and Dirichlet type nodes, 𝑛𝑁𝐵 Neumann type 

nodes are created. The field variable is again represented by a series: 

 𝑢𝑎(𝒓) =∑𝑝𝑖(𝒓)𝑎𝑖

𝑚

𝑖=1

= 𝒑𝑇𝒂 (3.35) 
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To determine the coefficients this series has to be satisfied at the interpolation nodes. 

This operation leads to 

 𝑼 = 𝑷𝑚𝒂 (3.36) 

for interior and Dirichlet type nodes, as before. For Neumann type nodes 

 
𝜕𝑢(𝒓𝑖

𝑁𝐵)

𝜕𝒏
= 𝑙𝑥𝑖

𝜕𝑢(𝒓𝑖
𝑁𝐵)

𝜕𝑥
+ 𝑙𝑦𝑖

𝜕𝑢(𝒓𝑖
𝑁𝐵)

𝜕𝑦
 (3.37) 

where 𝒏 is the normal vector, and 𝑙𝑥𝑖 and 𝑙𝑦𝑖 are the direction cosines. Utilizing 

(3.37) for all NB nodes 

 𝑼′ = 𝑷𝐷𝒂 (3.38) 

where 

 𝑼′
𝑇
= {
𝜕𝑢(𝒓1

𝐷𝐵)

𝜕𝒏

𝜕𝑢(𝒓2
𝐷𝐵)

𝜕𝒏
    …

𝜕𝑢(𝒓𝑛𝐷𝐵
𝐷𝐵 )

𝜕𝒏
} (3.39) 

and 

 𝑷𝐷 =

[
 
 
 
 
 
 
 0 𝑙𝑥1 𝑙𝑦1 ⋯ 𝑙𝑥1

𝜕𝑝𝑚(𝒓1
𝑁𝐵)

𝜕𝑥
+ 𝑙𝑦1

𝜕𝑝𝑚(𝒓1
𝑁𝐵)

𝜕𝑦
              

0 𝑙𝑥2 𝑙𝑦2 ⋯ 𝑙𝑥2
𝜕𝑝𝑚(𝒓2

𝑁𝐵)

𝜕𝑥
+ 𝑙𝑦2

𝜕𝑝𝑚(𝒓2
𝑁𝐵)

𝜕𝑦
              

⋮

0

⋮

𝑙𝑥𝑛𝑁𝐵

⋮

𝑙𝑦𝑛𝑁𝐵

⋯

⋯

⋮

𝑙𝑥𝑛𝑁𝐵
𝜕𝑝𝑚(𝒓𝑛𝑁𝐵

𝑁𝐵 )

𝜕𝑥
+ 𝑙𝑦𝑛𝑁𝐵

𝜕𝑝𝑚(𝒓𝑛𝑁𝐵
𝑁𝐵 )

𝜕𝑦 ]
 
 
 
 
 
 
 

 (3.40) 

Next, Eqs. (3.36) and (3.38) are combined to get; 

 𝑼𝐷 = 𝑷𝒂 = {
𝑷𝑚
𝑷𝐷
} 𝒂 (3.41) 

where 

 𝑼𝐷 = {𝑢(𝒓1) ⋯ 𝑢(𝒓𝑛)    
𝜕𝑢(𝒓1

𝑁𝐵)

𝜕𝒏
⋯

𝜕𝑢(𝒓𝑛𝑁𝐵
𝑁𝐵 )

𝜕𝒏
}
𝑇

 (3.42) 

To obtain the shape functions the following functional is minimized 
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 𝐽 =∑𝑊𝑖[𝑢
𝑎(𝒓𝑖) − 𝑢(𝒓𝑖)]

2

𝑛

𝑖=1

+∑𝑊𝑗
𝑁𝐵 [

𝜕𝑢𝑎(𝒓𝑗
𝑁𝐵)

𝜕𝒏
−
𝜕𝑢(𝒓𝑗

𝑁𝐵)

𝜕𝒏
]

2𝑛𝑁𝐵

𝑗=1

 (3.43) 

which again leads to 

 𝑷𝑇𝑾𝑷𝒂 = 𝑷𝑇𝑾𝑼𝐷 (3.44) 

where 

 𝑾 = [
𝑾𝟎 𝟎
𝟎 𝑾𝑫

] (3.45) 

Here 𝑾𝟎 and 𝑾𝑫 are again diagonal matrices and same weight functions can be 

chosen for both Neumann type nodes and other nodes. Now letting 

 𝑨 = (𝑷𝑇𝑾𝑷) = (𝑷𝑚
𝑇𝑾0𝑷𝑚) + (𝑷𝐷

𝑇𝑾𝐷𝑷𝐷) (3.46) 

 𝑩 = (𝑷𝑇𝑾) = (𝑷𝑚
𝑇𝑾0) + (𝑷𝐷

𝑇𝑾𝐷) (3.47) 

the Hermite type WLS functions can be found as follows: 

 𝚽𝑇 = 𝒑𝑇𝑨−1𝑩 (3.48) 

3.5 Collocation Methods 

As discussed at the beginning of this section collocation methods are strong-form 

techniques in which the approximation proposed for the field variable is directly 

substituted into the governing differential equation. The global system matrix is 

formed by collocating the equation at every node in the problem domain and its 

boundary. 

There are two main approaches in the utilization of collocation methods. The first 

choice is to use a support domain and collocate only with the neighboring nodes. 

This strategy will yield a sparse matrix. Suppose that there is a 1-D problem and the 

support domain is arranged so that it only covers the two neighboring points. Then 

the resultant global system matrix will be a sparse and banded (three-diagonal) one. 

The other alternative is to use all the nodes to form the matrix. This approach, in 

which the RBFs are chosen as trial functions, leads to a full system matrix. Although 
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the RBF collocation technique has a higher computational cost because of its 

resultant matrix there is a growing interest in this method due to the flexibility of 

radial basis functions and methods developed to deal with populated matrices. 

Collocation methods, whether they result in a full or a sparse matrix, have some 

significant advantages. First of all they are straightforward since trial functions are 

directly substituted into the problem. The programming of these methods is easier 

than those of weak-form methods since there is no need for numerical integration. 

Also, for the same reason these methods are truly meshless. On the other hand, 

collocation techniques are not without disadvantages. Weak-form methods are more 

stable, and when RBF collocation is considered, the ill-conditioning problem of the 

global system matrix becomes an important issue if the number of nodes is increased. 

Finally, treatment of Neumann type boundary conditions has to be performed 

carefully in collocation methods, but weak-form methods have a similar 

disadvantage when a Dirichlet boundary condition is present. 

3.5.1 Local collocation  

First, the collocation method with support domains will be briefly presented. To 

separate it from the RBF collocation, which will be described in the next subsection, 

this method will be called the local collocation method since support domains 

localize the calculations.  

Application of collocation method is the same whether one deals with a simple 

ordinary differential equation or a complex system of partial differential equations. 

For simplicity consider the following boundary value problem defined over a 1-D 

domain 

 
𝑑2𝑢

𝑑𝑥2
+ 𝑢 = 𝑓(𝑥) (3.49) 

 𝑢|𝑥=𝑎 = 𝑔(𝑥) (3.50) 

 
𝑑𝑢

𝑑𝑥
|
𝑥=𝑏

= ℎ(𝑥) (3.51) 

where 𝑓(𝑥), 𝑔(𝑥) and ℎ(𝑥) are known functions. As shown in Figure 3.2 the domain 

is represented by 𝑁 field nodes.  
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Figure 3.2: 1-D domain of problem Eqs. (3.49)-(3.51). 

The first step is to introduce the shape functions (built up by 𝑛 nodes in the support 

domain) which yields 

 𝑢𝐼
𝑎 = 𝑢𝑎(𝑥𝐼) = 𝚽

𝑇𝒖 (3.52) 

 
𝜕𝑢𝐼

𝑎

𝜕𝑥
=
𝜕𝚽𝑇

𝜕𝑥
𝒖 (3.53) 

 
𝜕2𝑢𝐼

𝑎

𝜕𝑥2
=
𝜕2𝚽𝑇

𝜕𝑥2
𝒖 (3.54) 

where: 

 𝚽𝑇 = {𝜙1 𝜙2    ⋯ 𝜙𝑛} (3.55) 

 𝒖𝑇 = {𝑢1 𝑢2    ⋯ 𝑢𝑛} (3.56) 

In practice any shape function construction method demonstrated in section 3.4 can 

be used. For an internal node at 𝑥𝐼 

 (
𝑑2𝚽𝑇

𝑑𝑥2
+𝚽𝑇)𝒖 = 𝑓(𝑥𝐼) (3.57) 

or in matrix form: 

 𝑲𝐼𝒖 = 𝒇𝐼 (3.58) 

Here 

 𝑲𝐼 =
𝑑2𝚽𝑇

𝑑𝑥2
+𝚽𝑇 = {

𝑑2𝜙1
𝑑𝑥2

+ 𝜙1 ⋯
𝑑2𝜙𝑛
𝑑𝑥2

+ 𝜙𝑛} (3.59) 

 𝒇𝐼 = 𝑓(𝑥𝐼) (3.60) 

Treatment of Dirichlet boundary conditions is easy: 

 𝑲1𝒖 = 𝑔(𝑥1) (3.61) 
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where 

 𝑲1 = 𝚽
𝑇 = {𝜙1 𝜙2    ⋯ 𝜙𝑛} (3.62) 

There are several approaches to impose Neumann type boundary conditions and 

some of them are presented below [17]: 

1) The direct collocation method: No special treatment is applied, but there will be a 

significant decrease in accuracy.  

2) The method using fictitious points: Additional set of nodes are added outside 

and/or on the Neumann type boundary. 

3) The Hermite-type collocation method: Additional derivative variables for the 

Neumann type boundary nodes are used to enforce the derivative boundary 

conditions.  

4) The method using regular grids: Finite difference method is used for the Neumann 

boundary conditions. 

5) Hybrid method: A weak-form formulation can be used for the nodes on Neumann 

type boundary. 

Let us illustrate the second approach, in which a fictitious point is added outside the 

domain to impose the derivative boundary condition. Coordinate of this point is: 

 𝑥𝑁+1 = 𝑥𝑁 + ℎ (3.63) 

With this approach an additional degree of freedom, 𝑢𝑁+1, is added to the global 

system matrix 

 𝑲(𝑁+1)×(𝑁+1)𝑼(𝑁+1)×1 = 𝑭(𝑁+1)×1 (3.64) 

where: 

 𝑲(𝑁+1)×(𝑁+1) =

[
 
 
 
 
𝐾11 𝐾12 ⋯
𝐾21 𝐾22 ⋯
⋮
𝐾𝑁1

𝐾(𝑁+1)1

⋮
𝐾𝑁1

𝐾(𝑁+1)2

⋱
⋯
⋯

      

𝐾1𝑁 𝐾1(𝑁+1)
𝐾2𝑁 𝐾2(𝑁+1)
⋮
𝐾𝑁𝑁

𝐾(𝑁+1)𝑁

⋮
𝐾𝑁(𝑁+1)

𝐾(𝑁+1)(𝑁+1)]
 
 
 
 

 (3.65) 

 𝑼(𝑁+1)×1 = {𝑢1 ⋯ 𝑢𝑁−1 𝑢𝑁 𝑢𝑁+1} (3.66) 
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 𝑭(𝑁+1)×1 = {𝑔(𝑥1) 𝑓(𝑥2) ⋯ 𝑓(𝑥𝑁) ℎ(𝑥𝑁)} (3.67) 

The first and last rows of the matrix in Eq. (3.65) are related to Dirichlet and 

Neumann boundary conditions, respectively, and the other rows are associated with 

the differential equation. Since 𝑓, 𝑔 and ℎ are known functions of 𝑥, the unknown 

coefficients, 𝑢𝑛 𝑛 = 1,… ,𝑁 + 1 can be found from Eq. (3.64) and the numerical 

solution can be found in a piecewise manner since the nodes are localized by support 

domains: 

 𝑢𝑎(𝑥) =∑𝑢𝑖𝜙𝑖

𝑛

𝑖=1

 (3.68) 

3.5.2 RBF collocation 

The RBF collocation technique was proposed by Kansa in 1990 to solve fluid 

dynamics problems [38]. Since that day there is a growing interest in this method and 

it has been applied to various fields to deal with different kinds of differential, 

integral and integrodifferential equations. 

The solution procedure is similar to that of the local collocation method, and it is 

even simpler since there are no support domains. Absence of such local domains 

simplifies the method and also the programming especially for randomly distributed 

nodes because there is no need to control whether a node is possessed by a specific 

support domain or not. 

In the RBF collocation method, the field variable is simply expanded by a finite set 

of RBFs and then by using this approximation, the differential equation and its 

boundary conditions are collocated by utilizing a uniformly or randomly distributed 

set of nodes. Kansa’s method is also known as the asymmetric RBF collocation 

method because of its asymmetric collocation matrix. In [41] a symmetric version of 

RBF collocation has been proposed which is based on the Hermite-Birkhoff 

interpolation. 

One of the main concerns of the RBF collocation method is that it results in a full 

matrix which becomes ill-conditioned as the number of collocation points increases. 

There are several approaches to overcome the ill-conditioning problem of the 

collocation matrix such as affine space decomposition [42], matrix preconditioning 
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[43] and optimization of the shape parameter of the RBF [44]. These techniques 

come with their computational costs, but they also improve the accuracy of the 

numerical results. 

As for the mathematical background, in [45] it is shown that a general proof for the 

nonsingularity of the collocation matrix is impossible, but based on numerical 

evidence it is also stated that singularity happens in rare situations. In [46] the RBF 

collocation method is compared with Galerkin method using RBFs theoretically and 

found that the condition number of the global matrix for the collocation method is 

greater than the Galerkin based technique by one order of magnitude. The situation is 

worse if the method is compared with the FEM in which the basis functions have 

local influence resulting in a sparse global solution matrix, but the spectral 

convergence properties of RBFs that cannot be achieved even with super-convergent 

adaptive ℎ − 𝑝 FEM schemes, motivate the use of RBF collocation method. 

It has been shown numerically [47] that the RBF collocation method is very accurate, 

even with a small number of scattered nodes. There are also papers [48,49] which 

show that the RBF collocation has an higher order of accuracy than the spectral 

methods and the FEM with linear trial functions. 

Before explaining the RBF collocation method it will be useful to give some 

information on radial basis functions. These functions are being used widely for both 

function approximation and in the solution of PDEs. There is a wide class of RBFs 

with different properties and their theoretical background is well established [50,51]. 

A radial function 𝜓 is a function with the following property [19]: 

 ‖𝒓1‖ = ‖𝒓2‖    ⇒     𝜓(𝒓1) = 𝜓(𝒓2)                      𝒓1, 𝒓2 ∈ 𝑅
𝑠 (3.69) 

Here ‖∙‖ is some norm on 𝑅𝑠.  

Although there are several RBFs in the literature the most well-known and widely 

used RBFs are the generalized multiquadric (GMQ) and the Gaussian (GA). These 

globally supported functions are as follows 

 
𝜓𝑗 = (𝑟

2 + 𝑐2)𝑞             (𝐺𝑀𝑄)

𝜓𝑗 = exp(− 𝑟
2 𝑐2⁄ )          (𝐺𝐴)

 (3.70) 
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where, 𝑟 is the distance between the nodes, 𝑟 = ‖𝒙 − 𝒙𝑗‖2, the constant 𝑐 is called 

the shape parameter, and 𝑞 is the exponent of GMQ. These functions are shown in 

Figures 3.3a and 3.3b, respectively, where 𝑐 = 0.1 and, for the GMQ, the exponent is 

chosen as 1 2⁄ . 

 

Figure 3.3a: GMQ radial basis function with 𝑞 = 1 2⁄ . 

 

Figure 3.3b: GA radial basis function. 
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The shape parameter determines the shape of the RBF. As 𝑐 gets larger the function 

gets flatter and also its sensitivity to the variation of 𝑟 decreases. Besides this 

geometric influence, increasing the value of 𝑐 improves the accuracy of the 

approximation and theoretically as 𝑐 → ∞, the approximation error vanishes [52]. 

However, this promising behavior would be possible if one has the chance to 

perform infinite precision computation. In practice as 𝑐 → ∞, the accuracy increases, 

but the interpolation matrix becomes more and more ill-conditioned and at some 

point the solution breaks down. This trade-off between accuracy and stability has 

been explained by Schaback’s “uncertainty principle” [53]. There have been many 

efforts to treat the ill-conditioning problem caused by the increment of 𝑐 which 

includes matrix preconditioning [54], utilizing variable shape parameter strategy [55] 

and analytical treatment in the 𝑐 → ∞ limit [56]. The effect of the shape parameter 

on the GMQ with 𝑞 = 1 2⁄  is illustrated for one-dimensional case in Figure 3.4.  

 

Figure 3.4: Effect of shape parameter on GMQ with 𝑞 = 1 2⁄ . 

The exponent of the GMQ has an effect similar to that of the shape parameter. Larger 

𝑞 increases the accuracy of the method, but it also results with a less stable 

algorithm. For the widely-utilized multiquadric (MQ) and inverse multiquadric 

(IMQ), 𝑞 takes on the values of 1 2⁄  and −1 2⁄ , respectively. 

Positive definiteness is a significant property for RBFs since positive definite 

functions generate positive definite matrices in interpolation, which is important, 

especially for stable computation. By Micchelli’s theorem [57], the IMQ and GA are 
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positive definite functions whereas the MQ is conditionally positive definite of order 

one. The conditional positive definiteness of MQ means that, it is necessary to 

augment this function by first order monomials as 

 𝑢𝑎(𝒓) =∑𝑎𝑗𝜓𝑗(𝒓)

𝑛

𝑗=1

+∑𝑏𝑗𝑝𝑗(𝒓)

𝑚

𝑗=1

 (3.71) 

Now since there are 𝑛 +𝑚 variables an additional set of 𝑚 equations are needed to 

obtain a determined system. These can be obtained by 

 ∑𝑎𝑗𝑝𝑖(𝒓𝑗)

𝑛

𝑗=1

= 0,       𝑖 = 1,2, … ,𝑚 (3.72) 

Besides this theoretical issue, in numerical experiments it was observed that this 

augmentation did not improve the results while increasing the condition number [58]. 

The meshless RBF collocation method is a strong-form method in which the field 

variable is approximated by a finite series of RBFs. This finite series is directly 

substituted into the governing PDE and BCs. As stated earlier the critical point in the 

implementation of the method is the treatment of BCs. When the BCs are of the 

Neumann or mixed type, the numerical solution is contaminated by the inaccuracy 

introduced via collocation at the nodes near the boundary of the problem domain. 

This situation is pointed out by numerical studies [58,59], and Fedoseyev et al. [60] 

have formulated an improved version of the method. They have added an additional 

set of nodes and an additional set of collocation equations by collocating the PDE 

also on the boundary.  

Let’s now consider the following partial differential equation to describe the RBF 

collocation method: 

 ∇2𝑢 + 𝑢 = 𝑓(𝑥, 𝑦) (3.73) 

 𝑢(𝑎, 𝑦) = 𝑢(𝑥, 𝑏) = 0 (3.74) 

 
𝜕𝑢(0, 𝑦)

𝜕𝑥
=
𝜕𝑢(𝑥, 0)

𝜕𝑦
= 0 (3.75) 

The domain is represented by 𝑁𝑖 internal, 𝑁𝑏 boundary and 𝑁𝑒𝑥 external nodes. Note 

that external nodes are used because there are Neumann type boundary conditions. 
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The solution procedure starts with representation of the field variable by a finite 

series of RBFs 

 𝑢(𝑥, 𝑦) =∑𝑎𝑗𝜓𝑗(𝑥, 𝑦)

𝑁

𝑗=1

 (3.76) 

where 𝑁 = 𝑁𝑖 +𝑁𝑏 + 𝑁𝑒𝑥. Substituting Eq. (3.76) into (3.73)-(3.75) 

 ∑𝑎𝑗 [
𝜕2𝜓𝑗(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝜓𝑗(𝑥, 𝑦)

𝜕𝑦2
+ 𝜓𝑗(𝑥, 𝑦)]

𝑁

𝑗=1

= 𝑓(𝑥, 𝑦) (3.77) 

 ∑𝑎𝑗𝜓𝑗(𝑎, 𝑦)

𝑁

𝑗=1

=∑𝑎𝑗𝜓𝑗(𝑥, 𝑏)

𝑁

𝑗=1

= 0 (3.78) 

 ∑𝑎𝑗
𝜕𝜓𝑗(0, 𝑦)

𝜕𝑥

𝑁

𝑗=1

=∑𝑎𝑗
𝜕𝜓𝑗(𝑥, 0)

𝜕𝑦

𝑁

𝑗=1

= 0 (3.79) 

Collocating Eqs. (3.77)-(3.79) 

 ∑𝑎𝑗 [
𝜕2𝜓𝑗(𝑥𝑖 , 𝑦𝑖)

𝜕𝑥2
+
𝜕2𝜓𝑗(𝑥𝑖 , 𝑦𝑖)

𝜕𝑦2
+ 𝜓𝑗(𝑥𝑖 , 𝑦𝑖)]

𝑁

𝑗=1

= 𝑓𝑖 ,   𝑖 = 1,… ,𝑁𝑖 (3.80) 

 ∑𝑎𝑗𝜓𝑗(𝑎, 𝑦𝑖)

𝑁

𝑗=1

=∑𝑎𝑗𝜓𝑗(𝑥𝑖 , 𝑏)

𝑁

𝑗=1

= 0,   𝑖 = 𝑁𝑖 + 1,… , 𝑁𝑖 + 𝑁𝑏,𝐷𝑖𝑟 (3.81) 

 ∑𝑎𝑗
𝜕𝜓𝑗(0, 𝑦𝑖)

𝜕𝑥

𝑁

𝑗=1

=∑𝑎𝑗
𝜕𝜓𝑗(𝑥𝑖 , 0)

𝜕𝑦

𝑁

𝑗=1

= 0,   𝑖 = 𝑁𝑖 + 𝑁𝑏,𝐷𝑖𝑟 , … , 𝑁𝑖 + 𝑁𝑏 (3.82) 

where 𝑓𝑖 ≡ 𝑓(𝑥𝑖 , 𝑦𝑖) and the subscript “Dir” stands for Dirichlet BCs. These 

collocation equations can be expressed in matrix form as 

 𝑲𝒂 = 𝒇 (3.83) 

Since 𝑓(𝑥, 𝑦) is a known function, the unknown coeffcients can be found from Eq. 

(3.83), and substituting these into Eq. (3.76) the numerical solution can be obtained.  

3.5.3 Weighted RBF collocation method 

Although the RBF collocation method has become a popular tool for solving partial 

differential equations, much of the work deals with single-region problems. There 
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exist a few papers dealing with more complex heterogeneous media problems. In 

[61], the subdomain RBF collocation method was used to solve multiregion elasticity 

problems. According to this study the imposition of interface conditions, in the case 

of neutron diffusion continuity of flux and current, is necessary and it has an 

important effect on both the accuracy and convergence of the collocation technique. 

It is pointed out that to achieve a good accuracy, the number of collocation points 

should be larger than that of the interpolation points and the numerical solution of the 

problems is performed in a weighted least squares sense. The weights of the 

collocation matrix are determined via an error analysis, and it was found that the 

exponential convergence characteristic of the RBF collocation method can be 

preserved for multiregion problems if the weights are chosen properly. 

The weighted RBF collocation method was introduced by Hu et al. [62]. The Poisson 

equation and elasticity problems were treated with this method where the 

overdetermined system is treated with the least squares approximation.  This study 

has shown that the least-squares residual method is an approximation of the direct 

strong form collocation method. As a heat transfer application, in [63], this weighted 

collocation method was used to determine the temperature distribution in biological 

tissues. 

The least squares approximation is a useful approach in solving PDEs with the 

advantage of possessing a positive definite and symmetric matrix. Also, when the 

finite element literature is considered, the least squares finite element method 

propounds a uniform solution procedure as compared with the ad hoc treatments of 

Galerkin methods [64]. On the other hand, least squares approximation has an 

important drawback when stability is taken into account as a result of quadratically 

increasing the condition number [65]. 

To illustrate the method, consider a two-region problem as shown in Figure 3.5, 

where 𝑆1 and 𝑆2 are two domains with different properties, Γ𝑉 is the vacuum 

(Dirichlet) boundary, Γ𝑅 is the reflective (Neumann) boundary and Γ0 is the interface 

of the two regions. In operator form, the problem can be expressed as 

 𝐿𝑖𝜙𝑖(𝒓) = 𝑞𝑖(𝒓),   𝒓 ∈ 𝑆𝑖 ,   𝑖 = 1,2 (3.84) 

 𝜙𝑖(𝒓) = 0,   𝒓 ∈ Γ𝑉 ,   𝑖 = 1,2 (3.85) 
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𝜕𝜙𝑖(𝒓)

𝜕𝑛
= 0,   𝒓 ∈ Γ𝑅 ,   𝑖 = 1,2 

 

𝜙1(𝒓) = 𝜙2(𝒓),   𝒓 ∈ Γ0 

𝐷1
𝜕𝜙1(𝒓)

𝜕𝑛
= 𝐷2

𝜕𝜙2(𝒓)

𝜕𝑛
,   𝒓 ∈ Γ0 

(3.86) 

where 𝑞𝑖 is the source term and 𝐿𝑖 is some differential operator.  

 

Figure 3.5: A two-region problem. 

Formulation of the method starts by defining the weighted least-squares functional 

 

𝐼[𝑢𝑖] =
1

2
{∬(𝐿𝑖𝑢𝑖 − 𝑞𝑖)

2𝑑𝑆

𝑆𝑖

+ �̅�𝑉 ∫(𝑢1 − 𝑢2)
2𝑑Γ

Γ0

                                      

+�̅�𝑅 ∫ (𝐷1
𝜕𝑢1
𝜕𝑛

− 𝐷2
𝜕𝑢2
𝜕𝑛
)
2

𝑑Γ

Γ0

+𝑤𝑉,𝑖 ∫ 𝑢𝑖
2𝑑Γ

Γ𝑉

+ 𝑤𝑅,𝑖 ∫ (𝐷𝑖
𝜕𝑢𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

} 

(3.87) 

The weights, �̅�𝑉 , �̅�𝑅, 𝑤𝑉,𝑖 and 𝑤𝑅,𝑖 give different importance on the interface, 

vacuum and reflective boundary conditions and hence they provide additional 

freedom in the choice of the numerical solution [66]. 

In the least-squares approximation one seeks a solution, 𝜙𝑖, which minimizes the 

functional in Eq. (3.87): 

 𝐼[𝜙𝑖] = min
𝑢𝑖∈𝑈

𝐼[𝑢𝑖] (3.88) 
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This procedure, which will be given in detail for the one-group neutron diffusion 

equation later in Section 5, leads to the bilinear form of Eqs. (3.84)-(3.86): 

 𝑎(𝜙, 𝑣) = 𝑓(𝑣) (3.89) 

where 

 

𝑎(𝜙, 𝑣) ≡ ∬𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖𝑑𝑆

𝑆𝑖

+ 𝑤𝑅,𝑖𝐷𝑖
2 ∫

𝜕𝜙𝑖
𝜕𝑛

𝜕𝑣𝑖
𝜕𝑛
𝑑Γ

Γ𝑅

+ 𝑤𝑉,𝑖 ∫ 𝜙𝑖𝑣𝑖𝑑Γ

Γ𝑉

 

+�̅�𝑅 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
) (𝐷1

𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
) 𝑑Γ

Γ0

 

+�̅�𝑉 ∫(𝜙1 − 𝜙2)(𝑣1 − 𝑣2)𝑑Γ

Γ0

                                      

(3.90) 

 𝑓(𝑣) ≡ ∬𝑞𝑖𝐿𝑖𝑣𝑖𝑑𝑆

𝑆𝑖

 (3.91) 

Taking into account of the fact that the least-squares residual method is an 

approximation of the direct strong-form collocation method, the collocation matrix of 

this least-squares approach is 

 

[
 
 
 
 
 
 
 
 

𝑲𝟏 𝟎
𝑤𝑉,1𝑲𝒅,𝟏 𝟎

𝑤𝑅,1𝑲𝒏,𝟏 𝟎

�̅�𝑉𝑰𝒅,𝟏 �̅�𝑉𝑰𝒅,𝟐
�̅�𝑅𝑰𝒏,𝟏 �̅�𝑅𝑰𝒏,𝟐
𝟎 𝑲𝟐
𝟎 𝑤𝑉,2𝑲𝒅,𝟐
𝟎 𝑤𝑅,2𝑲𝒏,𝟐]

 
 
 
 
 
 
 
 

𝒂 =

[
 
 
 
 
 
 
 
𝑸𝟏
𝟎
𝟎
𝟎
𝟎
𝑸𝟐
𝟎
𝟎 ]
 
 
 
 
 
 
 

 (3.92) 

Here 𝑲𝟏 and 𝑲𝟐 are related to the PDEs, while 𝑲𝒅,𝒊 and 𝑲𝒏,𝒊 are the collocation 

matrices of the Dirichlet and Neumann BCs, respectively, and 𝑰𝒅,𝒊 and 𝑰𝒏,𝒊 are the 

matrices for the interface conditions. 

The success of the weighted RBF collocation method depends on the proper choice 

of weights appearing in Eq. (3.92). To accomplish this task, first a weighted norm is 

defined 
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‖𝑣‖𝐻 = {‖𝑣‖1,𝑆1
2 + ‖𝑣‖1,𝑆2

2 + ‖𝐿𝑣‖0,𝑆1
2 + ‖𝐿𝑣‖0,𝑆2

2 + 𝑤𝑉,1‖𝑣‖0,Γ𝑉,1
2  

+𝑤𝑉,2‖𝑣‖0,Γ𝑉,2
2 +𝑤𝑅,1‖𝑣‖0,Γ𝑅,1

2 + 𝑤𝑅,2‖𝑣‖0,Γ𝑅,2
2              

+�̅�𝑉‖𝑣1 − 𝑣2‖0,Γ0
2 +�̅�𝑅 ‖𝐷1

𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
‖
0,Γ0

2

}

1 2⁄

     

(3.93) 

where the norms on the right hand side of Eq. (3.93) are Sobolev norms. According 

to [61,62,67-69] if the bilinear form of Eq. (3.89) is continuous, i.e., 

 𝑎(𝜙, 𝑣) ≤ 𝐶‖𝜙‖𝐻‖𝑣‖𝐻,         ∀𝑣 ∈ 𝑉 (3.94) 

and coercive, i.e., 

 𝑎(𝑣, 𝑣) ≥ 𝐶0‖𝑣‖𝐻
2 ,       ∀𝑣 ∈ 𝑉 (3.95) 

where 𝑉 is the space of admissible functions, then the weighted collocation method 

has the following error bound 

 ‖𝜙 − 𝜙ℎ‖𝐻 ≤ 𝑀 inf
𝑣∈𝑉
‖𝜙 − 𝑣‖𝐻 (3.96) 

It should be noted that in [67,68] collocation is performed in a Galerkin sense where 

the weights are chosen to be the weights of quadrature formula for the integral terms. 

Inequalities in Eqs. (3.94) and (3.95) form the basis of the Lax-Milgram lemma, and 

convergence analysis of finite element and spectral collocation methods with the 

estimate of Eq. (3.96) is presented in [70].  

The weights are determined based on Eq. (3.96), and it is obvious that they depend 

on the differential equation and boundary conditions that govern the problem 

considered. For the neutron diffusion equation these weights are derived in Section 5. 
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4. HOMOGENEOUS NEUTRON DIFFUSION PROBLEMS 

In this chapter, the numerical solution of the homogeneous neutron diffusion 

problems in 2-D Cartesian geometry by the meshless RBF collocation method is 

presented. In this context, first the numerical formulation of the method is given. 

Both external source and multigroup criticality problems are studied, and the results 

are discussed in the second section. Finally, some techniques to improve the 

performance of the RBF collocation method are evaluated. 

4.1 Numerical Formulation 

When the problem consists of a single square region Eqs. (2.29)-(2.31) reduce to  

 

−𝐷𝑔∇
2𝜙𝑔

(𝑛) + Σ𝑟,𝑔𝜙𝑔
(𝑛) − ∑ Σ𝑠,𝑔′→𝑔𝜙𝑔′

(𝑛)

𝑔−1

𝑔′=1

= 𝑄𝑔 

𝑄𝑔 = {
1

𝜆(𝑛−1)
𝜒𝑔𝐹

(𝑛−1)

𝑠𝑔,𝑒𝑥                     
 

(4.1) 

 𝐹 ≡ ∑ 𝜐𝑔′Σ𝑓,𝑔′𝜙𝑔′

𝐺

𝑔′=1

 (4.2) 

 𝐹(1) = ∑ 𝜐𝑔′Σ𝑓𝑔′𝜙𝑔′
(1)

𝐺

𝑔′=1

,             𝜆(1) = 𝜆(0)
∫𝑑A𝐹(1)

∫𝑑A𝐹(0)
 (4.3) 

where 0 ≤ 𝑥, 𝑦 ≤ 𝑎. Neumann type reflective boundary conditions at the bottom and 

left sides and vacuum boundary conditions at the right and top sides are considered 

 

𝜕𝜙𝑔
𝜕𝑦

(𝑥, 0) = 0,            0 ≤ 𝑥 < 𝑎

𝜙𝑔(𝑎, 𝑦) = 0,               0 ≤ 𝑦 < 𝑎

𝜙𝑔(𝑥, 𝑎) = 0,               0 < 𝑥 ≤ 𝑎

𝜕𝜙𝑔
𝜕𝑥

(0, 𝑦) = 0,            0 < 𝑦 ≤ 𝑎

 (4.4) 
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When the medium is nonmultiplying and a one-group energy representation is 

chosen only the external source terms in Eq. (4.1) exists and one has the Helmholtz 

equation: 

 −𝐷∇2𝜙 + Σ𝑎𝜙 = 𝑠𝑒𝑥 (4.5) 

where Σ𝑎 is the absorption cross section. 

The numerical formulation of the RBF collocation method starts by introducing a set 

of internal nodes with 𝑁𝐼 members such that 

 𝐼 = {(𝑥𝑖 , 𝑦𝑖): 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑎, 1 ≤ 𝑖 ≤ 𝑁𝐼} (4.6) 

Then a set of reflective boundary nodes with 𝑁𝐵/2 members are introduced such that 

 𝐵𝑅 = 𝐵𝑅𝐵 ∪ 𝐵𝑅𝐿 (4.7) 

where 𝐵𝑅𝐵 represent a set of reflective boundary nodes on the bottom side while 𝐵𝑅𝐿 

represent a set of reflective boundary nodes on the left side, that is 

 

𝐵𝑅𝐵 = {(𝑥𝑖 , 0): 0 ≤ 𝑥𝑖 < 𝑎,𝑁𝐼 < 𝑖 ≤ 𝑁𝐼 +
𝑁𝐵
4
}             

𝐵𝑅𝐿 = {(0, 𝑦𝑖): 0 < 𝑦𝑖 ≤ 𝑎,𝑁𝐼 +
3𝑁𝐵
4
< 𝑖 ≤ 𝑁𝐼 + 𝑁𝐵}

 (4.8) 

Also a set of vacuum boundary nodes with 𝑁𝐵/2 members such that 

 𝐵𝑉 = 𝐵𝑉𝑅 ∪ 𝐵𝑉𝑇 (4.9) 

where 𝐵𝑉𝑅 represent a set of vacuum boundary nodes on the right side while 𝐵𝑉𝑇 

represent a set of vacuum boundary nodes on the top side. That is: 

 

𝐵𝑉𝑅 = {(0, 𝑦𝑖): 0 ≤ 𝑦𝑖 < 𝑎,𝑁𝐼 +
𝑁𝐵
4
< 𝑖 ≤ 𝑁𝐼 +

𝑁𝐵
2
}  

𝐵𝑉𝑇 = {(𝑥𝑖 , 0): 0 < 𝑥𝑖 ≤ 𝑎,𝑁𝐼 +
𝑁𝐵
2
< 𝑖 ≤ 𝑁𝐼 +

3𝑁𝐵
4
}

 (4.10) 

Then, the set of boundary nodes 𝐵 is 

 𝐵 = 𝐵𝑅 ∪ 𝐵𝑉 = (𝐵𝑅𝐵 ∪ 𝐵𝑅𝐿) ∪ (𝐵𝑉𝑅 ∪ 𝐵𝑉𝑇) (4.11) 

The set of domain nodes, 𝐷 is defined as 
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 𝐷 = 𝐼 ∪ 𝐵 (4.12) 

which represents a set with 𝑁𝐷 = 𝑁𝐼 + 𝑁𝐵 members. 

Secondly, a set of external nodes, 𝐸 is introduced. For the purpose of preserving the 

nonsingularity of the coefficient matrix, the number of members of 𝐸 has to be equal 

to 𝑁𝐵. That is: 

 
𝐸 = {(𝑥𝑖 , 𝑦𝑖): [(𝑥𝑖 < 0) ∨ (𝑥𝑖 > 𝑎)] ∧ [(𝑦𝑖 < 0) ∨ (𝑦𝑖 > 𝑎)],

𝑁𝐷 < 𝑖 ≤ 𝑁𝐷 + 𝑁𝐵} 
(4.13) 

A typical distribution of nodes with 𝑁𝐼 = 4 and 𝑁𝐵 = 12 members is presented in 

Figure 4.1. 

 

Figure 4.1: A node distribution with 𝑁𝐼 = 4, 𝑁𝐵 = 12. 

The neutron flux is to be approximated by 

 �̃�𝑔(𝑥, 𝑦) ≈ ∑ 𝑎𝑗,𝑔𝜓𝑗(𝑥, 𝑦)

𝑁𝐷+𝑁𝐵

𝑗=1

 (4.14) 

where 𝜓𝑗(𝑥, 𝑦) is the radial basis function. 
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For the first part of the collocation process, the neutron diffusion equation is required 

to hold for (𝑥𝑖 , 𝑦𝑖) such that 1 ≤ 𝑖 ≤ 𝑁𝐷. Then: 

 

∑𝑘𝑖𝑗,𝑔
𝐷𝐷 𝑎𝑗,𝑔

𝐷,(𝑛)

𝑁𝐷

𝑗=1

−∑𝑠𝑖𝑗,𝑔′→𝑔
𝐷𝐷 𝑎𝑗,𝑔

𝐷,(𝑛)

𝑁𝐷

𝑗=1

=
𝜒𝑔𝐹

(𝑛−1)

𝜆(𝑛−1)
+ 𝑠𝑔,𝑒𝑥

∑𝑘𝑖𝑗,𝑔
𝐷𝐸 𝑎𝑗,𝑔

𝐸,(𝑛)

𝑁𝐵

𝑗=1

−∑𝑠𝑖𝑗,𝑔′→𝑔
𝐷𝐸 𝑎𝑗,𝑔

𝐸,(𝑛)

𝑁𝐵

𝑗=1

=
𝜒𝑔𝐹

(𝑛−1)

𝜆(𝑛−1)
+ 𝑠𝑔,𝑒𝑥

 (4.15) 

Here 

 

𝑘𝑖𝑗,𝑔
𝐷𝐷 = −𝐷𝑔∇

2𝜓𝑗(𝑥𝑖 , 𝑦𝑖) + Σ𝑟,𝑔𝜓𝑗(𝑥𝑖 , 𝑦𝑖),                      1 ≤ 𝑗 ≤ 𝑁𝐷

𝑘𝑖𝑗,𝑔
𝐷𝐸 = −𝐷𝑔∇

2𝜓𝑗+𝑁𝐷(𝑥𝑖 , 𝑦𝑖) + Σ𝑟,𝑔𝜓𝑗+𝑁𝐷(𝑥𝑖 , 𝑦𝑖),        1 ≤ 𝑗 ≤ 𝑁𝐵

𝑠𝑖𝑗,𝑔′→𝑔
𝐷𝐷 = Σ𝑠,𝑔′→𝑔𝜓𝑗(𝑥𝑖 , 𝑦𝑖),                                               1 ≤ 𝑗 ≤ 𝑁𝐷

𝑠𝑖𝑗,𝑔′→𝑔
𝐷𝐸 = Σ𝑠,𝑔′→𝑔𝜓𝑗+𝑁𝐷(𝑥𝑖 , 𝑦𝑖),                                        1 ≤ 𝑗 ≤ 𝑁𝐵

𝑎𝑗,𝑔
𝐷,(𝑛) = 𝑎𝑗,𝑔

(𝑛),                                                                          1 ≤ 𝑗 ≤ 𝑁𝐷

𝑎𝑗,𝑔
𝐸,(𝑛) = 𝑎𝑗+𝑁𝐷,𝑔

(𝑛) ,                                                                    1 ≤ 𝑗 ≤ 𝑁𝐵

𝑠𝑔,𝑒𝑥𝑡 = 𝑆𝑔,𝑒𝑥𝑡(𝑥𝑖 , 𝑦𝑖),                                                                                 

 (4.16) 

where 1 ≤ 𝑖 ≤ 𝑁𝐷. 

The collocation is completed by requiring the reflective and vacuum boundary 

conditions to hold for points (𝑥𝑖 , 𝑦𝑖) which are members of 𝐵𝑅 and 𝐵𝑉 respectively. 

That is: 

 ∑𝑘𝑖𝑗
𝐵𝐷𝑎𝑗,𝑔

𝐷,(𝑛)

𝑁𝐷

𝑗=1

+∑𝑘𝑖𝑗
𝐵𝐸𝑎𝑗,𝑔

𝐸,(𝑛)

𝑁𝐵

𝑗=1

= 0, 1 ≤ 𝑖 ≤ 𝑁𝐵 (4.17) 

where 

 𝑘𝑖𝑗
𝐵𝐷 =

{
  
 

  
 
𝜕𝜓𝑗
𝜕𝑦

(𝑥𝑖+𝑁𝐼 , 𝑦𝑖+𝑁𝐼), 1 ≤ 𝑖 ≤
𝑁𝐵
4
     

𝜕𝜓𝑗
𝜕𝑥

(𝑥𝑖+𝑁𝐼 , 𝑦𝑖+𝑁𝐼),
3𝑁𝐵
4
< 𝑖 ≤ 𝑁𝐵

𝜓𝑗(𝑥𝑖+𝑁𝐼 , 𝑦𝑖+𝑁𝐼),            
𝑁𝐵
4
< 𝑖 ≤

3𝑁𝐵
4

 (4.18) 

for 1 ≤ 𝑗 ≤ 𝑁𝐷 and 
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 𝑘𝑖𝑗
𝐵𝐸 =

{
  
 

  
 
𝜕𝜓𝑗+𝑁𝐷
𝜕𝑦

(𝑥𝑖+𝑁𝐼 , 𝑦𝑖+𝑁𝐼), 1 ≤ 𝑖 ≤
𝑁𝐵
4
     

𝜕𝜓𝑗+𝑁𝐷
𝜕𝑥

(𝑥𝑖+𝑁𝐼 , 𝑦𝑖+𝑁𝐼),
3𝑁𝐵
4
< 𝑖 ≤ 𝑁𝐵

𝜓𝑗+𝑁𝐷(𝑥𝑖+𝑁𝐼 , 𝑦𝑖+𝑁𝐼),            
𝑁𝐵
4
< 𝑖 ≤

3𝑁𝐵
4

 (4.19) 

for 1 ≤ 𝑗 ≤ 𝑁𝐵. 

The collocation equations, Eqs. (4.15) and (4.17), can be combined and written in the 

block-matrix form: 

 [

𝑲1 𝟎 𝟎 𝟎
−𝑺1→2 𝑲2 𝟎 𝟎
⋮ ⋮ ⋱ 𝟎

−𝑺1→𝐺 −𝑺2→𝐺 ⋯ 𝑲𝐺

]

[
 
 
 
 𝒂1
(𝑛)

𝒂2
(𝑛)

⋮

𝒂𝐺
(𝑛)
]
 
 
 
 

= [

𝑸1
𝑸2
⋮
𝑸𝐺

] (4.20) 

The lower triangular structure of the collocation matrix in Eq. (4.20) is a 

consequence of the no upscattering assumption (i.e., neutrons do not gain energy in 

scattering reactions). 

In Eq. (4.20), the elements of the global system matrix are block matrices 

themselves. For every energy group an (𝑁𝐷 + 𝑁𝐵) × (𝑁𝐷 + 𝑁𝐵) system of equations 

has to be solved. As an example for the first group one has to deal with 

 [
𝑲1
𝐷𝐷 𝑲1

𝐷𝐸

𝑲1
𝐵𝐷 𝑲1

𝐵𝐸] [
𝒂1
𝐷,(𝑛)

𝒂1
𝐸,(𝑛)

] = [
𝑸1
𝟎
] (4.21) 

where 𝑲1
𝐷𝐷 and 𝑲1

𝐵𝐸 are square matrices of dimension 𝑁𝐷  and 𝑁𝐵 respectively. The 

matrix 𝑲1
𝐵𝐷 is rectangular with dimensions 𝑁𝐵 × 𝑁𝐷, while 𝑲1

𝐷𝐸 is again rectangular 

with dimensions 𝑁𝐷 × 𝑁𝐵. 𝒂1
𝐷,(𝑛)

 and 𝑸1 vectors are 𝑁𝐷 dimensional while the 

vector 𝒂1
𝐸,(𝑛)

 is 𝑁𝐵 dimensional. Solution of Eq. (4.21) yields 𝒂1
𝐷,(𝑛)

 and hence the 

numerical result. 

The linear system in block-matrix form can be subjected to block-LU decomposition 

by: 

 [𝑲
𝐷𝐷 𝑲𝐷𝐸

𝑲𝐵𝐷 𝑲𝐵𝐸
] = [𝑲

𝐷𝐷 𝟎𝐷𝐸

𝑲𝐵𝐷 𝑳𝐵𝐸
] [𝑰

𝐷𝐷 𝑼𝐷𝐸

𝟎𝐵𝐷 𝑰𝐵𝐸
] (4.22) 
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Here 𝟎𝐷𝐸 and 𝟎𝐵𝐷 are rectangular matrices consisting of zero entries which are 

𝑁𝐷 × 𝑁𝐵 and 𝑁𝐵 × 𝑁𝐷 dimensional, respectively, and the subscript 𝑔 is omitted to 

simplify the notation. The identity matrices, 𝑰𝐷𝐷 and 𝑰𝐵𝐸 are 𝑁𝐷 and 𝑁𝐵 dimensional, 

respectively. From the matrix equality, it follows: 

 
𝑼𝐷𝐸 = (𝑲𝐷𝐷)−1𝑲𝐷𝐸     

𝑳𝐵𝐸 = 𝑲𝐵𝐸 −𝑲𝐵𝐷𝑼𝐷𝐸
 (4.23) 

The determination of 𝑼𝐷𝐸 requires the solution of 𝑁𝐵 linear systems of dimension 

𝑁𝐷. Since the coefficient matrix 𝑲𝐷𝐷 does not change, an LU decomposition of 𝑲𝐷𝐷 

for once is sufficient for the solution of the 𝑁𝐵 linear systems. 

Once 𝑼𝐷𝐸 and 𝑳𝐵𝐸 are determined, the algorithm 

 

𝒚𝐷,(𝑛) = (𝑲𝐷𝐷)−1(𝑭𝐷,(𝑛−1) + 𝑸)          

𝒚𝐵,(𝑛) = −(𝑳𝐵𝐸)−1𝑲𝐵𝐷𝒚𝐷,(𝑛)                

𝒂𝐸,(𝑛) = 𝒚𝐵,(𝑛)                                           

𝒂𝐷,(𝑛) = 𝒚𝐷,(𝑛) − 𝑼𝐷𝐸𝒂𝐸,(𝑛)                  

 (4.24) 

yields the desired solution. 

4.2 Results and Discussion 

In order to assess the performance of the meshless RBF collocation method several 

examples are considered. First, a 1-group external source case is studied, which is 

followed by 1-,2-,3- and 4-group fission source problems. For the external source 

and 4- group fission source problems, the RBF collocation method is compared with 

finite element [71] and boundary element [72] methods. All calculations are 

performed in FORTRAN with double precision.  

4.2.1 External source problem 

For the external source problem three types of sources are treated: 

 

𝑠1(𝑥, 𝑦) = 𝑆0                                      0 ≤ 𝑥 ≤ 𝑎,   0 ≤ 𝑦 ≤ 𝑎

𝑠2(𝑥, 𝑦) = cos (
𝜋𝑥

2𝑎
) cos (

𝜋𝑦

2𝑎
)        0 ≤ 𝑥 ≤ 𝑎,   0 ≤ 𝑦 ≤ 𝑎

𝑠3(𝑥, 𝑦) = {
1 −

𝑥

𝑎
         0 ≤ 𝑦 ≤ 𝑥 ≤ 𝑎

1 −
𝑦

𝑎
         0 ≤ 𝑥 ≤ 𝑦 ≤ 𝑎

                                  

 (4.25) 
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The trigonometric and linear sources are presented in Figure 4.2. The analytical 

solutions corresponding to these sources are as follows [73] 

 

𝜑1(𝑥, 𝑦) = (
4

𝜋
)
2 𝑆0
Σ𝑎

∑ ∑
(−1)

𝑛+𝑚
2
+1

𝑛𝑚

cos (
𝑛𝜋𝑥
�̃�
) cos (

𝑚𝜋𝑦
�̃�
)

1 + 𝐿2 [(
𝑛𝜋
�̃�
)
2
+ (
𝑚𝜋
�̃�
)
2
]

∞

𝑚=1
𝑚 𝑜𝑑𝑑

∞

𝑛=1
𝑛 𝑜𝑑𝑑

𝜑2(𝑥, 𝑦) =
1

Σ𝑎 [1 + 2𝐿
2 (
𝜋
�̃�
)
2
]
cos (

𝜋𝑥

�̃�
) cos (

𝜋𝑦

�̃�
)                                    

𝜑3(𝑥, 𝑦) =
8

𝜋2Σ𝑎
∑

cos (
𝑛𝜋𝑥
�̃�
) cos (

𝑚𝜋𝑦
�̃�
)

𝑛2 [1 + 2𝐿2 (
𝑛𝜋
�̃�
)
2
]

∞

𝑛=1
𝑛 𝑜𝑑𝑑

                                            

 (4.26) 

where �̃� = 2𝑎 and 𝐿 = √𝐷 Σ𝑎⁄  is the diffusion length. 

 

Figure 4.2a: Graphical representation of the trigonometric source. 

 

Figure 4.2b: Graphical representation of the linear source. 
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The diffusion constant and the diffusion length are chosen as 1.77764 cm 

and, 11.1232 cm respectively. For the constant source problem the source rate is 

taken to be 𝑆0 = 1 n cm3𝑠⁄ . Accuracy of the methods is tested via calculating the 

root mean square (RMS) and pointwise percent errors, which are defined as 

 𝜖𝑟𝑚𝑠 = √
1

𝑁𝐷
∑[𝜙𝑠(𝑥𝑖 , 𝑦𝑖) − �̃�𝑠(𝑥𝑖 , 𝑦𝑖)]

2

𝑁𝐷

𝑖=1

 (4.27) 

 𝜖𝑚𝑎𝑥 = max
1≤𝑖≤𝑁𝐷

[|𝜙𝑠(𝑥𝑖 , 𝑦𝑖) − �̃�𝑠(𝑥𝑖 , 𝑦𝑖)| × 100 𝜙𝑠(𝑥𝑖 , 𝑦𝑖)⁄ ] (4.28) 

where �̃�𝑠 is the numerical solution and, 𝑠 = 1,2,3 corresponds to constant, 

trigonometric and linear sources respectively.  

The infinite series of the analytical solutions for constant and linear sources are 

approximated by setting the upper limits of series to 250. In all tests uniformly 

scattered sets of nodes with different fill distances, ℎ, are utilized. The nodes that are 

outside the domain are located by a distance of ℎ to the nearest boundary node.  

The RBF collocation method is invariant under uniform scaling [74] and 

computations are carried out on a domain scaled to [0,1]2. This is done by simply 

multiplying the elements of 𝑲𝐷𝐷 by 1 𝑎2⁄ . In all tests 𝑎 is chosen to be 25 cm. 

First, the effect of the shape parameter, 𝑐, on the accuracy and stability of the RBF 

collocation method is examined. In Figure 4.3 (a)-(c) the variation of RMS errors 

with the shape parameter in case of linear source, 𝑠3, when 𝑁 = 40 for MQ, IMQ 

and GA, respectively, where 𝑁 is the inverse of the fill distance is presented. It can 

be inferred from this figure that there is an optimum shape parameter value for all 

basis functions, and as 𝑐 increases the RMS error first decreases and then at some 

point it starts to oscillate and the accuracy decreases sharply if one continues to 

increase the shape parameter. This result is expected since as 𝑐 increases the solution 

matrix becomes singular. It is seen from this figure that the MQ and IMQ results in a 

better performance than the GA. Also the GA has a narrower range of maneuvering 

for the shape parameter. This sensitivity of GA to 𝑐 has also been reported by Cheng 

et al. [47]. 
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Figure 4.3a: Variation of the RMS error with 𝑐 in the case of 𝑠3 for MQ. 

 

Figure 4.3b: Variation of the RMS error with 𝑐 in the case of 𝑠3 for IMQ. 

 

Figure 4.3c: Variation of the RMS error with 𝑐 in the case of 𝑠3 for GA. 
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The shape parameter dependence of RMS errors were also studied for constant and 

trigonometric sources, and the results are given in Figure 4.4 where 𝑁 = 40. Once 

again, for all basis functions considered, there exists a minimum RMS error with 

respect to the shape parameter, and the MQ and IMQ are superior to the GA in terms 

of both accuracy and stable range of computation. 

 

Figure 4.4a: Variation of the RMS error with shape parameter for 𝑠1. 

 

Figure 4.4b: Variation of the RMS error with shape parameter for 𝑠2. 

The shape parameter has an important effect on the convergence rate of the RBF 

collocation method. In Figure 4.5 (a)-(c) the variation of RMS errors with 𝑁 for the 

MQ, IMQ and GA, respectively, in the case of the constant source, 𝑠1, for three 

values of 𝑐 in semi-log scale is shown. Continuous lines are obtained by fitting the 

RMS error data in the form of 𝜀𝑅𝑀𝑆~𝑂(𝑚 exp(−𝑛 ℎ⁄ )). The constants 𝑚 and 𝑛 are 

given in Table 4.1. It is clear from this figure that there exists an exponential 
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convergence rate and the accuracy of solution increases with increasing shape 

parameter, which also enhances the convergence rate, for all basis functions. It can 

also be observed from Figure 4.5 that the GA has performed poorly for sparse sets of 

nodes where MQ and IMQ gave a reasonable accuracy. 

 

Figure 4.5a: Variation of the RMS error with fill distance for MQ in case of 𝑠1. 

 

Figure 4.5b: Variation of the RMS error with fill distance for IMQ in case of 𝑠1. 

 

Figure 4.5c: Variation of the RMS error with fill distance for GA in case of 𝑠1. 
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Table 4.1: Values of 𝑚 and 𝑛 in 𝜖𝑅𝑀𝑆~𝑂(𝑚 exp(−𝑛 ℎ⁄ )) for the constant source 

problem. 

 MQ IMQ GA 

𝑐2 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 

𝑚 0.227 0.325 0.396 5.169 2.874 2.442 15.90 45.05 103.7 

𝑛 0.096 0.144 0.184 0.092 0.115 0.143 0.112 0.284 0.398 

A noticeable result of Table 4.1 is the much higher 𝑚 values of the GA than MQ and 

IMQ. Huang et al. [75] have reported exponential convergence rates of 

𝜖~𝑂 (exp(𝑏𝑐3 2⁄ ) Λ𝑐
1 2⁄ ℎ⁄ ) and 𝜖~𝑂(exp𝑏𝑐4 Λ𝑐 ℎ⁄ ) for IMQ and GA, respectively, 

where 0 < Λ < 1 and 𝑏 > 0, for the solution of the Poisson equation. Since 𝑐 has a 

larger exponent for the convergence rate of GA, the 𝑚 values of Table 4.1 are in well 

agreement with the estimates of [75]. 

The results of RMS errors with fill distance, when trigonometric and linear sources 

are considered, are similar to those presented in Figure 4.5 and Table 4.1. The RMS 

errors diminish exponentially with increasing 𝑁 and the shape parameter improves 

both accuracy and convergence rate of the method. GA produces less accurate results 

for sparse sets of nodes. 

In Figure 4.6 (a)-(c) the convergence curves of the RBF collocation method with MQ 

and IMQ are plotted together with the FEM and BEM (boundary element method) 

for the constant, trigonometric and linear sources, respectively. For collocation, the 

shape parameter is chosen as 𝑐2 = 0.1 for both MQ and IMQ. FEM is employed by 

discretizing the 2D domain with linear triangular elements, while BEM utilizes linear 

elements for the discretization along the system boundary. First of all, it is observed 

from this figure that the collocation method converges faster than FEM and BEM for 

all cases. MQ collocation provided more accurate results than both FEM and BEM 

for 𝑠1 and 𝑠2. When 𝑁 = 20, the RMS error of MQ is better by at least one order of 

magnitude. In the case of linear source, 𝑠3, to obtain a more accurate solution than 

FEM and BEM, the MQ collocation should have 𝑁 > 20.  

To observe the effect of source type on convergence rate, the data presented in 

Figure 4.6 is fitted exponentially for MQ and IMQ in the form of 

𝜖𝑅𝑀𝑆~𝑂(𝑚 exp(−𝑛 ℎ⁄ )), and algebraically for FEM and BEM in the form of 

𝜖𝑅𝑀𝑆~𝑂(𝑝ℎ
−𝑟). The values of the constants 𝑚, 𝑛, 𝑝 and 𝑟 are given Table 4.2. This 
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table shows that, when RBF collocation and BEM are used the fastest convergence 

rate is found for the constant source problem, while FEM has the best rate for the 

trigonometric source. 

 

Figure 4.6a: Comparison of the performance of MQ and IMQ collocation with FEM 

and BEM for 𝑠1. 

 

Figure 4.6b: Comparison of the performance of MQ and IMQ collocation with FEM 

and BEM for 𝑠2. 

 

Figure 4.6c: Comparison of the performance of MQ and IMQ collocation with FEM 

and BEM for 𝑠3. 
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Table 4.2: The values of the constants for the exponential fit 

𝜖𝑅𝑀𝑆~𝑂(𝑚 exp(−𝑛 ℎ⁄ )), and algebraic fit 𝜖𝑅𝑀𝑆~𝑂(𝑝ℎ
−𝑟). 

Source type 
MQ IMQ FEM BEM 

𝑚 𝑛 𝑚 𝑛 𝑝 𝑟 𝑝 𝑟 

𝑠1 1.831 0.420 1.427 0.257 9.025 2.063 1.102 1.703 

𝑠2 0.729 0.377 0.502 0.241 5.310 2.156 0.736 1.634 

𝑠3 0.508 0.235 0.173 0.202 3.844 2.122 0.560 1.613 

Despite the better accuracy and convergence characteristics of the collocation 

method, FEM and BEM have a significant advantage, when stability is considered, 

owing to their weak-form formulation and local approximation nature. As an 

example, the MQ collocation becomes unstable for 𝑁 ≥ 30 when 𝑐2 = 0.1, while 

FEM and BEM preserve their stability. The instability of the MQ collocation can be 

treated by decreasing the value of 𝑐, but this results in less accurate solutions. There 

is a trade-off, that is, if one increases the value of 𝑐 indefinitely for the sake of 

accuracy, it results with the loss of stability.  

A simple strategy to improve the accuracy of RBF collocation without causing 

instability is to select an optimum value of 𝑐. In Tables 4.3-4.5 the optimum shape 

parameter values with corresponding RMS and maximum pointwise percent errors 

for constant, trigonometric and linear sources are presented, respectively. These 

calculations are carried out with three fill distances. The optimum shape parameters 

are the ones that result in minimum RMS errors. In these tables the FEM and BEM 

solutions to the problems considered are also given. 

It is observed from Tables 4.3-4.5 that the MQ, IMQ and GA RBFs have exhibited a 

good performance in the numerical solution of the neutron diffusion equation and 

yield highly accurate numerical solutions, when the shape parameter is optimized. 

For the constant and linear sources, MQ and IMQ gave better results than the GA, 

especially as 𝑁 increases. The MQ solution is better than the GA solution by two 

orders of magnitude for the constant source when 𝑁 = 50. In the case of 

trigonometric source, the performance of RBFs is similar, and the best solution was 

obtained by the GA when 𝑁 = 25. It is also seen that the value of the optimum 𝑐2 

decreases as the fill distance decreases, except the MQ for the linear source and GA 

for the trigonometric source. 
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Table 4.3: RMS and maximum pointwise errors of RBF collocation, FEM and BEM 

together with optimum 𝑐2 values for MQ, IMQ and GA for 𝑠1. 

𝑁 Method 𝑐2 𝜖𝑚𝑎𝑥 𝜖𝑟𝑚𝑠 

10 

MQ 0.8843 7.35 × 10−2 1.07 × 10−3 

IMQ 1.1042 7.11 × 10−2 9.53 × 10−4 

GA 0.2152 9.42 × 10−2 1.73 × 10−3 

FEM - 1.68 7.78 × 10−2 

BEM - 3.62 × 10−1 2.24 × 10−2 

25 

MQ 0.0790 1.03 × 10−1 1.39 × 10−4 

IMQ 0.1685 7.15 × 10−2 1.20 × 10−4 

GA 0.0269 1.19 × 10−1 2.01 × 10−3 

FEM - 1.29 1.20 × 10−2 

BEM - 1.69 × 10−1 4.04 × 10−3 

50 

MQ 0.0258 3.77 × 10−2 4.93 × 10−5 

IMQ 0.0470 4.43 × 10−2 1.62 × 10−4 

GA 0.0109 2.66 × 10−1 4.87 × 10−3 

FEM - 9.96 × 10−1 2.96 × 10−3 

BEM - 1.88 × 10−1 1.04 × 10−3 

Table 4.4: RMS and maximum pointwise errors of RBF collocation, FEM and BEM 

together with optimum 𝑐2 values for MQ, IMQ and GA for 𝑠2. 

𝑁 Method 𝑐2 𝜖𝑚𝑎𝑥 𝜖𝑟𝑚𝑠 

10 

MQ 2.4473 3.78 × 10−4 3.39 × 10−6 

IMQ 3.3799 1.42 × 10−4 2.24 × 10−6 

GA 0.4551 3.28 × 10−5 5.42 × 10−7 

FEM - 7.87 × 10−1 3.71 × 10−2 

BEM - 1.68 × 10−1 1.76 × 10−2 

25 

MQ 0.2773 6.30 × 10−4 2.66 × 10−6 

IMQ 0.2872 9.45 × 10−4 1.04 × 10−6 

GA 1.1450 6.96 × 10−3 4.44 × 10−6 

FEM - 1.65 × 10−1 5.16 × 10−3 

BEM - 3.36 × 10−2 3.37 × 10−3 

50 

MQ 0.0382 8.44 × 10−3 1.57 × 10−6 

IMQ 0.0782 2.82 × 10−2 3.92 × 10−6 

GA 0.2250 5.24 × 10−2 8.06 × 10−6 

FEM - 4.85 × 10−2 1.21 × 10−3 

BEM - 9.20 × 10−3 8.97 × 10−4 
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Table 4.5: RMS and maximum pointwise errors of RBF collocation, FEM and BEM 

together with optimum 𝑐2 values for MQ, IMQ and GA for 𝑠3. 

𝑁 Method 𝑐2 𝜖𝑚𝑎𝑥 𝜖𝑟𝑚𝑠 

10 

MQ 0.0068 9.08 × 10−1 8.99 × 10−3 

IMQ 0.6016 7.84 × 10−1 1.06 × 10−2 

GA 0.0875 1.42 1.08 × 10−2 

FEM - 8.13 × 10−1 2.91 × 10−2 

BEM - 1.96 × 10−1 1.50 × 10−2 

25 

MQ 0.0902 2.28 × 10−1 1.79 × 10−3 

IMQ 0.0660 4.73 × 10−1 1.72 × 10−3 

GA 0.0177 7.59 × 10−1 5.90 × 10−3 

FEM - 1.83 × 10−1 4.05 × 10−3 

BEM - 4.24 × 10−2 2.92 × 10−3 

50 

MQ 0.0261 6.70 × 10−1 4.14 × 10−4 

IMQ 0.0304 1.16 × 10−1 5.44 × 10−4 

GA 0.0043 8.53 3.78 × 10−2 

FEM - 5.60 × 10−2 9.39 × 10−4 

BEM - 1.41 × 10−2 7.82 × 10−4 

When the performance of FEM and BEM is compared with those of RBF 

collocation, it is seen that for all sources considered the RBF collocation method 

with MQ and IMQ give better performance than both FEM and BEM at all values of 

𝑁. For the constant source, when 𝑁 = 50, the MQ results with a solution that is two 

orders of magnitude more accurate than FEM and BEM, and the GA becomes less 

accurate than these mesh-based methods. For the trigonometric source it is observed 

that RBF collocation outperforms both FEM and BEM, especially for sparse sets of 

nodes. In all cases collocation solutions are better than the solutions of FEM and 

BEM by at least two orders of magnitude. RBFs have also worked well for the linear 

source problem, but the GA performed poorly for the linear source when 𝑁 = 50 

yielding a result two orders of magnitude less accurate than all other methods. 

The results of Tables 4.3-4.5 point out the importance of shape parameter 

optimization for the collocation method. By carefully selecting the value of 𝑐, highly 

accurate results can be obtained even with low 𝑁. Optimization also helps to increase 

𝑁 in a stable manner without utilizing algorithms such as domain decomposition and 

matrix preconditioning.   

Next, the central processing unit (CPU) time of the RBF collocation method is 

compared with those of FEM and BEM. In Figure 4.7, the CPU times of MQ 
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collocation together with FEM and BEM in the case of constant source is presented 

in semi-log scale. The shape parameter, which does not affect the computation time, 

is chosen as 𝑐2 = 0.01. It is clear from this figure that the FEM is superior to the 

RBF collocation method when the CPU time is taken into account, and the 

collocation method is more efficient than the BEM. The superiority of FEM is due to 

the sparse and symmetric nature of the resulting coefficient matrix. It should be 

noted that similar results are obtained for other source types and RBFs.  

 

Figure 4.7: CPU times of the MQ collocation, FEM and BEM. 

As a last study for the external source problem, in Figure 4.8 the distribution of 

pointwise errors, 𝜖𝜑, in the case of trigonometric source is illustrated for all basis 

functions. The shape parameter is chosen as 𝑐2 = 0.1 and 𝑁 = 40 for all RBFs. It 

can be seen from this figure that the errors tend to increase near the boundaries of the 

domain. This was expected, even though external nodes ares used to enhance the 

performance of RBF collocation, due to the so-called Runge phenomenon [55]. 

According to this phenomenon, oscillation is observed around the edges when 

interpolation is deployed with a uniformly distributed set of nodes in a finite domain. 

 

Figure 4.8a: Distribution of pointwise errors in the case of 𝑠2 when 𝑁 = 40 for MQ. 
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Figure 4.8b: Distribution of pointwise errors in the case of 𝑠2 when 𝑁 = 40 for 

IMQ. 

 

Figure 4.8c: Distribution of pointwise errors in the case of 𝑠2 when 𝑁 = 40 for GA. 

4.2.2 Multigroup fission source problems 

To investigate the performance of the RBF collocation method for multigroup fission 

source problems, 1-, 2-, 3- and 4-group cases are considered. The analytical solutions 

for 1-, 2- and 3-group problems can be found in [5]. For the calculation of flux 

values the power is selected as 16 kW cm⁄  for the first three problems and 

25 kW cm⁄  for the 4-group case. The convergence criterion is chosen as 10−6 for all 

problems. Accuracy of the method is examined via calculating the error in 𝜆 and 

maximum errors in group fluxes 

 𝜖𝜆 = |𝜆 − �̃�| × 100 𝜆⁄  (4.29) 

 𝜖𝑚𝑎𝑥,𝑔 = max
1≤𝑖≤𝑁𝐷

[|𝜙𝑔(𝑥𝑖 , 𝑦𝑖) − �̃�𝑔(𝑥𝑖 , 𝑦𝑖)| × 100 𝜙𝑔(𝑥𝑖 , 𝑦𝑖)⁄ ]    (4.30) 
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where 𝑔 = 1,2,3,4, and �̃� and �̃�𝑔 are the numerical effective multiplication factor 

and group flux, respectively. 

In the first problem the one-group case is studied. The length of the square domain is 

taken as 𝑎 = 50 𝑐𝑚, while 𝐷 = 1.77764 𝑐𝑚, Σ𝑓 = 0.0104869 𝑐𝑚
−1, 𝜐 = 2.5, 

Σ𝑟 = 0.0143676 𝑐𝑚
−1 and 𝜒 = 1. The analytical value of 𝜆 is 1.46657782. Figure 

4.9 shows the variation of 𝜖𝑚𝑎𝑥 and 𝜖𝜆with respect to 𝑁, where 𝑐2 = 0.06. It is 

observed from this figure that 𝜖𝑚𝑎𝑥 decreases continuously with decreasing value of 

the fill distance. It has its minimum value of 5.642 × 10−3 when 𝑁 = 36. Highly 

accurate 𝜆 values are obtained above 𝑁 = 22 and, the percent error has decreased to 

its minimum of 4.091 × 10−6 when 𝑁 = 32. 

 

Figure 4.9a: Variation of 𝜖𝑚𝑎𝑥 with respect to 𝑁. 

 

Figure 4.9b: Variation of 𝜖𝜆 with respect to 𝑁. 
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In the second problem the number of energy groups is two and 𝑎 = 25 𝑐𝑚. The 

nuclear data is given in Table 4.6. Diffusion constants are given in units of 

centimeters and all cross sections have units of inverse centimeters in Table 4.6 and 

later on in Table 4.8 and Table 4.10. For this problem 𝜆𝑎 = 1.96293774. 

Table 4.6: Two-group nuclear data. 

Group  𝐷  𝜈  Σ𝑓    Σ𝑟   Σ𝑠,𝑔→𝑔+1   𝜒 

1  1.2245  2.65  0.063  0.13552  0.0676  0.575 

2  1.2245  2.55  0.06776  0.08228 -  0.425 

The numerical results of the two-group problem are summarized in Table 4.7, where 

𝑐2 = 0.06. It is seen that the maximum errors in group fluxes are similar and 

decrease with decreasing fill distance value. For the multiplication factor, a very high 

level of accuracy is obtained above 𝑁 = 16. It is also observed from this table that 

the number of iterations increases by one when 𝑁 = 32. 

Table 4.7: 𝜖𝑚𝑎𝑥 and 𝜖𝜆 for the two-group problem. 

 𝑁  𝑛𝑖𝑡𝑒𝑟 𝜖𝑚𝑎𝑥,1   𝜖𝑚𝑎𝑥,2  𝜖𝜆 

8 29  1.040  1.060  3.221 × 10−2 

12 29  4.429 × 10−1  4.478 × 10−1  8.663 × 10−3 

16 29  2.222 × 10−1  2.236 × 10−1  2.691 × 10−3 

20 29  1.274 × 10−1  1.277 × 10−1  8.238 × 10−4 

24 29  8.173 × 10−2  8.161 × 10−2  1.722 × 10−4 

28 29  5.550 × 10−2  5.502 × 10−2  7.132 × 10−5 

32 30  4.361 × 10−2  4.298 × 10−2  9.730 × 10−5 

36 30  8.136 × 10−3  7.384 × 10−3  1.365 × 10−4 

In Figure 4.10 the variation of 𝜖𝑚𝑎𝑥,1 and 𝜖𝑚𝑎𝑥,2 with the shape parameter of the 

multiquadric is illustrated where 𝑁 = 25 is chosen. The maximum pointwise errors 

in flux for both groups decrease continuously with increasing shape parameter up to 

𝑐2 ≅ 0.12. Beyond this value the errors start to oscillate and the numerical solution 

breaks down except for 𝑐2 = 0.149. This is expected since as the shape parameter 

increases the collocation matrix becomes more and more ill-conditioned. 

The error in multiplication factor is shown in Figure 4.11 where, again 𝑁 = 25. It is 

seen that the error increases with the shape parameter at first up to 𝑐2 = 0.015 and 

then starts to decrease until 𝑐2 = 0.072 where the analytical solution is reproduced. 
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Above this value it increases again, and similar to the pointwise errors in group 

fluxes the numerical solution oscillates and breaks down above 𝑐2 ≅ 0.12. 

 

Figure 4.10a: Variation of 𝜖𝑚𝑎𝑥,1 with respect to the shape parameter. 

 

Figure 4.10b: Variation of 𝜖𝑚𝑎𝑥,2 with respect to the shape parameter. 

 

Figure 4.11: Variation of 𝜖𝜆 with respect to the shape parameter. 
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It should also be noted that the change of errors in flux and multiplication factor with 

the shape parameter is found to be similar for the one and three-group problems.  

The third problem deals with the solution of the three-group neutron diffusion 

equation where 𝑎 is assumed to be 25 𝑐𝑚. The nuclear data characterizing a three-

group structure is given in Table 4.8 and the analytical value of 𝜆 is 0.75024241 for 

this problem. 

Table 4.8: Three-group nuclear data. 

Group  𝐷  𝜈  Σ𝑓  Σ𝑟 Σ𝑠,𝑔→𝑔+1 Σ𝑠,𝑔→𝑔+2  𝜒 

1  3.0034  2.65 0.0131267  0.05286 0.02705 0.01181  0.575 

2  2.2297  2.53  0.006102 0.016704 0.00822 -  0.326 

3  1.4627  2.47  0.008317  0.01414 - -  0.099 

The number of iterations, maximum pointwise errors for the three group fluxes and 

the error in 𝜆 is given in Table 4.9 for different 𝑁 values where 𝑐2 = 0.06. Once 

again, it is found that the errors in group fluxes and multiplication factor decrease 

with decreasing value of the fill distance. Highly accurate 𝜆 values are obtained when 

𝑁 = 20 or higher.  It is also observed that the number of iterations does not depend 

on the choice of 𝑁.  

Table 4.9: 𝜖𝑚𝑎𝑥 and 𝜖𝜆 for the three-group problem. 

 𝑁  𝑛𝑖𝑡𝑒𝑟 𝜖𝑚𝑎𝑥,1   𝜖𝑚𝑎𝑥,2  𝜖𝑚𝑎𝑥,3  𝜖𝜆 

8 12  9.715 × 10−1  1.068  1.116  1.702 × 10−1 

12 12  4.232 × 10−1  4.494 × 10−1  4.624 × 10−1  4.649 × 10−2 

16 12  2.149 × 10−1  2.234 × 10−1  2.276 × 10−1  1.519 × 10−2 

20 12  1.239 × 10−1  1.270 × 10−1  1.285 × 10−1  5.428 × 10−3 

24 12  7.958 × 10−2  8.072 × 10−2  8.128 × 10−2  2.037 × 10−3 

28 12  5.363 × 10−2  5.406 × 10−2  5.427 × 10−2  7.811 × 10−4 

32 12  4.149 × 10−2  4.168 × 10−2  4.172 × 10−2  2.972 × 10−4 

36 12  8.572 × 10−3  5.375 × 10−3  5.329 × 10−3  9.197 × 10−5 

As the final example, the 4-group fission source problem is studied. In this case, 

since the analytical solution does not exist in the literature, it will be given first. The 

group flux distributions have the following form 

 𝜙𝑔(𝑥, 𝑦) = 𝐻𝑔𝐴4cos (
𝜋𝑥

�̃�
) cos (

𝜋𝑦

�̃�
) ,           𝑔 = 1,2,3,4 (4.31) 
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where �̃� = 2𝑎, 𝐻𝑔 = 𝐴𝑔 𝐴4⁄ , 𝑔 = 1,2,3,4 and 𝐴4 is a factor dependening on the 

power (𝑃) and size of the system, and fission cross sections 

 
𝐻1 =

𝑎1
𝜒4
𝜒1
+

1
𝐷1𝐵𝑔

2 + 𝛴𝑟,1
[𝛴𝑠,1→4 + 𝛴𝑠,2→4𝑎2 + 𝛴𝑠,3→4𝑎3]

 
(4.32) 

 𝐻2 = 𝐻1𝑎2 (4.33) 

 𝐻3 = 𝐻1𝑎3 (4.34) 

 𝐴4 =
𝑃𝜋2

𝑤𝑓(𝐻1Σ𝑓,1 + 𝐻2Σ𝑓,2 + 𝐻3Σ𝑓,3 + Σ𝑓,4)𝑎
2
 (4.35) 

where 𝐵𝑔
2 = 0.5 × (𝜋 𝑎⁄ )2 is the geometric buckling and 

 𝑎1 =
𝐷4𝐵𝑔

2 + 𝛴𝑟,4
𝐷1𝐵𝑔

2 + 𝛴𝑟,1
 (4.36) 

 𝑎2 =

𝜒2
𝜒1
+

𝛴𝑠,1→2
𝐷1𝐵𝑔

2 + 𝛴𝑟,1
𝐷2𝐵𝑔

2 + 𝛴𝑟,2
𝐷1𝐵𝑔2 + 𝛴𝑟,1

 (4.37) 

 
𝑎3 =

𝜒3
𝜒1
+

𝛴𝑠,1→3
𝐷1𝐵𝑔

2 + 𝛴𝑟,1
+

𝛴𝑠,2→3 (
𝜒2
𝜒1
+

𝛴𝑠,1→2
𝐷1𝐵𝑔

2 + 𝛴𝑟,1
)

𝐷2𝐵𝑔
2 + 𝛴𝑟,2

𝐷3𝐵𝑔
2 + 𝛴𝑟,3

𝐷1𝐵𝑔2 + 𝛴𝑟,1

 
(4.38) 

The nuclear data representing a four-group structure is presented in Table 4.10. 

Length of the square domain is chosen to be 𝑎 = 50 cm. These data yield a 

subcritical (i.e., 𝜆 < 1) system with an analytical multiplication factor of 𝜆 =

0.87227. 

Table 4.10: Group constants for the 4-group problem. 

𝑔 𝐷 𝜐Σ𝑓 Σ𝑟 Σ𝑠,𝑔→𝑔+1 Σ𝑠,𝑔→𝑔+2 Σ𝑠,𝑔→𝑔+3 𝜒 

1 2.876787 0.0118781 0.028204 0.023597 4.079×10-6 4.449×10
-8 

0.768 

2 1.570845 0.0053251 0.005275 0.001615 4.231×10-8 - 0.232 

3 0.722486 0.0104709 0.017612 0.004684 - - 0 

4 0.964199 0.0266109 0.026546 - - - 0 

The effect of shape parameter on 𝜖𝜆 is illustrated in Figure 4.12a-c for MQ, IMQ and 

GA, respectively, when 𝑁 = 40. This figure shows that the error in  𝜆 decreases with 
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𝑐 for IMQ and GA, until the iterative algorithm becomes divergent as a result of ill-

conditioning of the collocation matrix. On the other hand, an interesting trend is 

observed when MQ is utilized. Before going into the unstable region, 𝜖𝜆 passes 

through a maximum value of 4.71 × 10−4 at 𝑐2 = 0.014. Figure 4.12 also shows 

that MQ and IMQ are superior to GA in terms of both accuracy and stability. The 

stable region of GA is narrower than MQ and IMQ, and a convergent solution exists 

for a limited number of 𝑐 values. 

 

Figure 4.12a: Variation of 𝜖𝜆 with shape parameter for MQ when 𝑁 = 40. 

 

Figure 4.12b: Variation of 𝜖𝜆 with shape parameter for IMQ when 𝑁 = 40. 
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Figure 4.12c: Variation of 𝜖𝜆 with shape parameter for GA when 𝑁 = 40. 

The abovementioned calculations are carried out for 𝑁 = 10,15,… ,50. The 

maximum error behavior is observed at all 𝑁 values for MQ, while it is encountered 

only at 𝑁 = 10 and 15 for IMQ, and never seen for GA. The maximum and 

minimum errors with corresponding shape parameter values are tabulated in Table 

4.11 for MQ and IMQ. The results show that highly accurate results can be obtained 

by the RBF collocation method even with low 𝑁 and thus propound the importance 

of shape parameter optimization. Also, in cases where there is a maximum error in 𝜆, 

the multiplication factor corresponding to that error is indeed a good approximation 

to the analytical value. 

Table 4.11: Maximum and minimum 𝜖𝜆 for MQ and IMQ. 

N MQ IMQ 

 𝑐𝑚𝑎𝑥
2  𝜖𝜆,𝑚𝑎𝑥 𝑐𝑚𝑖𝑛

2  𝜖𝜆,𝑚𝑖𝑛 𝑐𝑚𝑎𝑥
2  𝜖𝜆,𝑚𝑎𝑥 𝑐𝑚𝑖𝑛

2  𝜖𝜆,𝑚𝑖𝑛 

10 0.022 8.81 × 10−2 1.203 4.17 × 10−6 0.516 2.65 × 10−3 1.694 1.03 × 10−6 

20 0.013 1.05 × 10−2 0.231 5.52 × 10−5 - - 0.314 3.24 × 10−5 

30 0.015 1.94 × 10−3 0.096 4.06 × 10−5 - - 0.120 4.02 × 10−4 

40 0.014 4.71 × 10−4 0.047 5.32 × 10−6 - - 0.064 5.48 × 10−4 

50 0.013 1.15 × 10−4 0.009 2.89 × 10−6 - - 0.040 1.11 × 10−3 

To see whether the criticality has an influence on the solution, the calculations are 

repeated for 𝑎 = 100 cm which yields a supercritical (i.e., 𝜆 > 1) system with 

𝜆 = 1.23984. In Figures 4.13a and 4.13b the effect of criticality on the 𝑐 dependence 

of 𝜖𝜆 is demonstrated where MQ is chosen as the RBF and 𝑁 = 50, for the 
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subcritical and supercritical cases, respectively. These figures show that an increase 

in 𝜆 has resulted with the disappearance of maximum error behavior. These 

numerical tests are also done with 𝑁 = 10,15,… ,50 for MQ, IMQ and GA. It was 

found that the stable computation region with respect to 𝑐 is narrowed down with an 

increase in 𝜆. In addition, the results show that, when there is a maximum error in 

stable region, the corresponding 𝑐 value is independent of the criticality. 

 

Figure 4.13a: Variation of 𝜖𝜆 with shape parameter for subcritical case when MQ is 

the RBF and 𝑁 = 50. 

 

Figure 4.13b: Variation of 𝜖𝜆 with shape parameter for supercritical case when MQ 

is the RBF and 𝑁 = 50. 
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The variations of 𝜖𝜆 and 𝜖𝑚𝑎𝑥,3 with respect to 𝑁, for the three RBFs, are plotted in 

Figures 4.14a and 4.14b, respectively where 𝑐2 = 0.02 and 𝜆 = 0.87227. The 

relative maximum percent error in group flux is presented only for the third group, 

since it follows a similar path for 𝑔 = 1,2,4. It is clear from this figure that GA 

converges faster than both MQ and IMQ, but it performs poorly for low 𝑁. Another 

disadvantage of GA is its stability. At 𝑁 = 40, MQ and IMQ produces 𝜖𝜆 values of 

3.82 × 10−4 and 6.86 × 10−2, respectively, while iteration diverges due to 

instability for the GA. These results show that, MQ is the proper choice, when 

accuracy and stability are taken into account together. 

 

Figure 4.14a: Comparison of MQ, IMQ and GA for 𝜖𝜆. 

 

Figure 4.14b: Comparison of MQ, IMQ and GA for 𝜖𝑚𝑎𝑥,3. 
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In order to make a comparison, the convergence curves of MQ collocation, FEM and 

BEM for 𝜖𝜆 and 𝜖𝑚𝑎𝑥,2 are presented in Figures 4.15a and 4.15b, respectively, where 

𝜆 = 0.87227. The shape parameter for MQ is chosen as 𝑐2 = 0.04. As observed 

from this figure, for the calculation of the multiplication factor, with its exponential 

convergence rate, MQ collocation has performed much better than both FEM and 

BEM, especially as 𝑁 increases. MQ collocation has yielded 𝜖𝜆 = 6.16 × 10
−3 at 

𝑁 = 20, which is more accurate than the results of FEM and BEM at 𝑁 = 45. 

However, although MQ collocation converges faster, BEM has provided the best 

results when group fluxes are considered. Furthermore, if the stability is taken into 

account, similar to the external source problem, the collocation technique has the 

disadvantage of being less stable than FEM and BEM. The MQ collocation becomes 

unstable at 𝑁 = 50, whereas FEM and BEM have kept to provide convergent 

solutions. 

 

Figure 4.15a: Comparison of MQ collocation, FEM and BEM for 𝜖𝜆. 

 

Figure 4.15b: Comparison of MQ collocation, FEM and BEM for 𝜖𝑚𝑎𝑥,2. 
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Finally, in Figure 4.16, the variation of CPU times of MQ collocation, FEM and 

BEM for the subcritical problem is illustrated. This figure shows that FEM is more 

efficient than both MQ collocation and BEM. With increasing 𝑁, FEM becomes 

superior, at 𝑁 = 50 it is better than the other methods by an order of magnitude. MQ 

collocation is slightly better than the BEM. The number of iterations, determined by 

the convergence criterion, is an important factor in neutron diffusion calculations, 

and for the subcritical problem it was found that for all methods, the numerical 

solution is obtained after 14 iterations. Hence, the advantage of FEM in computation 

cost can be attributed to its sparse and symmetric stiffness matrix. 

 

Figure 4.16: CPU times of the MQ collocation, FEM and BEM. 

4.3 Improving the Performance of the RBF Collocation Method 

The effectiveness of a numerical method, whether it is meshless or mesh-based, is 

evaluated by its accuracy, stability and CPU time usage. It is necessary to investigate 

how a numerical scheme can become more preferable to its opponents. Since the 

radial basis function collocation method approximates partial differential equations 

globally, the stability of the method becomes an important issue. The numerical tests, 

based on new approaches would play a valuable role before going into multiregion 

problems. 

4.3.1 Increasing the precision 

A brute force method to improve the stability of the method is to increase the 

precision. Generally, the matrix condition number is used to test whether a numerical 
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method is stable or not. For an algebraic system 𝑲𝒖 = 𝒇, the relative round-off error 

can be estimated by [58] 

 𝜀𝑟𝑜𝑢𝑛𝑑 ≤ 𝜅𝜀𝑚𝑎𝑐ℎ (4.39) 

where 𝜅 is the condition number and 𝜀𝑚𝑎𝑐ℎ is the machine precision. Using higher 

precision arithmetic decreases the machine precision and therefore it provides a more 

stable computation environment, since for a specified round-off error it is possible to 

achieve higher condition numbers. 

In order to test the effect of precision on the stability of the method the external 

source problem with the constant source is considered. Figure 4.17 shows the 

comparison of results obtained by FORTRAN’s double precision and 

MATHEMATICA’s 100-precision arithmetic. In these calculations the shape 

parameter of the multiquadric radial basis function is chosen as 𝑐2 = 0.1. It is clear 

from this figure that using a higher precision has improved the stability of the 

method. For the double precision, the RMS error has started to increase above 

𝑁 = 30 whereas it has continued to decrease when calculations are done with 100 

precision. 

 

Figure 4.17: Comparison of double and 100 precision calculations in the RBF 

collocation method. 

The price to pay when the precision is increased is the CPU time, as expected. To see 

the relation between precision and CPU time several numerical tests are performed 

with different precision values, and it is found that higher precision arithmetic 
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becomes worse in terms of CPU time as the number of nodes used in discretization 

gets higher. As an example, when 𝑁 = 50, the CPU time is %20 more when 100 and 

20 precision computations are compared. 

4.3.2 Exponent of the generalized multiquadric 

In the previous section the effect of the shape parameter on the performance of the 

RBF collocation method was illustrated. Also, in Chapter 3 the role of this parameter 

on the interpolant was illustrated (see Figure 3.4). As the value of 𝑐 increases the 

RBF becomes flatter and it becomes less sensitive to the distance between the nodes. 

In computations, the condition number of the collocation matrix increases with 

increasing shape parameter and the method becomes less stable. It was found that by 

fine-tuning of this parameter one can obtain high level of accuracies for both external 

and fission source problems even when the number of nodes is low. The convergence 

rate is also affected by 𝑐, the errors diminish faster as the shape parameter becomes 

larger. 

The exponent, 𝑞, of the generalized multiquadric has an effect on the RBF, similar to 

that of the shape parameter 𝑐 as shown in Figure 4.18 where 𝑐 = 0.2. So, it is 

expected that the performance of the method can be improved by optimizing this 

parameter. 

 

Figure 4.18: Effect of the exponent on generalized multiquadric centered at the 

origin. 
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To see the influence of 𝑞 on the accuracy and stability of the algorithm, once again, 

the constant source problem is considered. Calculations are done with FORTRAN 

and the shape parameter is chosen as 𝑐2 = 0.02. In Figure 4.19, the RMS error with 

respect to 𝑁 is plotted for three values of the exponent, 𝑞. It is observed from this 

figure that the accuracy of the method increases with increasing 𝑞 value, but on the 

other hand the algorithm becomes less stable. When 𝑞 = 0.5 (the MQ case), the 

RMS error decreases with the fill distance continuously, while it started to increase 

above 𝑁 = 30 for 𝑞 = 2.5. It can also be deduced from this figure that increasing the 

exponent enhances the convergence rate of the collocation method. These results 

show that, it is possible to improve the characteristics of the RBF collocation method 

by varying the exponent of the generalized multiquadric radial basis function. 

 

Figure 4.19: RMS error with respect to 𝑁 for the constant source problem. 

4.3.3 Node number dependent shape parameter strategy 

Radial basis functions can be expressed in different forms. As an example, the MQ 

can be stated as follows 

 𝜓𝑗 = {[
(𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2

ℎ2
] 𝛼2 + 1}

𝑞

 (4.40) 

where 𝛼 is called the relative width parameter since it is the width relative to the fill 

distance ℎ [76]. It is obvious that the traditional form, and Eq. (4.40) are related by 

𝛼 = 1 ℎ𝑐⁄ . 
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In [76] six strategies were tested to treat the Runge phenomenon which is a source of 

accuracy degradation in numerical methods. One of these strategies is to use a 

variable 𝛼 scheme instead of a constant shape parameter. It was found that by 

decreasing 𝛼 as 𝑎 𝑁1 4⁄⁄ , the Runge phenomenon can be defeated in interpolation of 

functions where 𝑁 is the number of nodes and 𝑎 is some constant.  

This node number dependent shape parameter approach is tried for the solution of the 

constant source problem. The results are presented in Figure 4.20 together with those 

of constant 𝛼 strategy. This figure shows that variable shape parameters can provide 

accurate results with few nodes, but on the other hand they do not improve the 

stability of the method, since oscillatory behavior is observed for 𝛼 = 0.5 𝑁1 4⁄⁄  and 

the method diverges when 𝛼 = 0.3 𝑁1 4⁄⁄ . These instabilities can be dealt with by 

choosing lower values for 𝑎, but this results in degraded accuracy. Therefore node 

number dependent shape parameter strategy does not affect the performance of the 

RBF collocation technique significantly.  

 

Figure 4.20: Results of node number dependent shape parameter strategy. 

4.3.4 Singular value decomposition filtering 

For an 𝑚 × 𝑛 matrix 𝑨 the singular value decomposition (SVD) is defined as 

 𝑨 = 𝑼𝑇𝚺𝑽 (4.41) 

where 𝑼 and 𝑽 are orthogonal matrices and 𝚺 is a square diagonal matrix containing 

the singular values. These matrices satisfy [77] 
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 𝑼𝑇𝑨𝑽 = 𝚺 = diag(𝜎1, … , 𝜎𝑝) ∈ 𝑅
𝑚×𝑛,    𝑝 = min{𝑚, 𝑛} (4.42) 

where 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑝 ≥ 0. In [78] it has been shown that SVD can be used as a 

tool for teaching linear algebra geometrically, and also it is applied in solving least 

squares problems and in data compression. 

SVD is an effective tool for solving linear systems when the matrix in question is ill-

conditioned. Since the RBF collocation method is a global approximation scheme it 

gives a full matrix at the end of discretization process. As it is shown in previous 

simulations, the solution can become unstable depending on the values of the fill 

distance, ℎ and shape parameter, 𝑐. Hence, SVD may improve the performance of the 

algorithm by treating the ill-conditioning of the collocation matrix. 

Now suppose that the linear system resulting from approximation of a PDE with its 

BCs is given by 

 𝑲𝒂 = 𝒇 (4.43) 

If this system is decomposed into its singular values one has 

 𝑼𝑇𝚺𝑽𝒂 = 𝒇 (4.44) 

and the vector whose elements are the coefficients of the RBFs can be found by 

 𝒂 = 𝑽𝑇𝚺−1𝑼𝒇 (4.45) 

When the condition number of 𝑲 is high it is useful to omit the smallest singular 

values by replacing 1 𝜎𝑗⁄  with zero in 𝚺−1. By this SVD filtering, the amplification 

of round-off errors corresponding to the smallest singular values is depressed [76]. 

Numerical experiments are performed in MATHEMATICA to see the effect of SVD 

filtering with 50-precision arithmetic, again, for the constant external source case. 

The fill distance is chosen to be 𝑁 = 15 which means that there are 320 singular 

values. For these fill distance and precision values instability is observed when 

𝑐2 ≥ 0.8 if all singular values are kept. The contour plot in Figure 4.21 demonstrates 

the RMS error with respect to the shape parameter, 𝑐 and the number of singular 

values omitted in calculations, 𝑛𝑠𝑣. This figure shows that SVD filtering can improve 

the accuracy of the RBF collocation method in both stable and unstable regions. It is 
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also observed from this figure that as the shape parameter increases (i.e., the 

collocation matrix becomes more ill-conditioned), 𝑛𝑠𝑣 has to be increased to get the 

best results. 

 

Figure 4.21: RMS error of constant source problem with respect to 𝑐 and 𝑛𝑠𝑣. 
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5. MODELLING OF MULTIREGION NEUTRON DIFFUSION 

This chapter deals with the numerical modelling of multiregion neutron diffusion 

problems with the RBF collocation method. As stated in the third chapter, when this 

type of collocation scheme is chosen for the solution of problems involving 

heterogeneous media, the weighted version of the method is applied. Taking this 

situation into account, the weighted RBF collocation method is used for multiregion 

neutron diffusion problems together with the classical collocation scheme, and 

therefore, initially the numerical formulation of the weighted collocation method is 

presented. Next, the accuracy and stability of the classical and weighted approaches 

are tested by working on five problems. First two of these five cases are two-region 

configurations for which analytical solutions exist. Then a more complex two-region 

problem which contains a corner singularity is considered. To assess the robustness 

of the numerical scheme, this corner singularity problem is studied again, this time 

with a high level of heterogeneity, and finally a five-region IAEA (International 

Atomic Energy Agency) benchmark problem is solved with the RBF collocation 

method. 

5.1 Numerical Formulation for the Weighted RBF Collocation Method 

For ease of illustration a system consisting of two-regions is considered as shown in 

Figure 5.1. Here 𝑆1 and 𝑆2 are two domains with different properties, Γ0 is the 

interface of these regions, and Γ𝑉 and Γ𝑅 are the vacuum and reflective boundaries, 

respectively. The one-group neutron diffusion equation can be expressed in the 

following operator form: 

 

𝐿𝑖𝜙𝑖(𝒓) = 𝑞𝑖(𝒓),   𝒓 ∈ 𝑆𝑖 ,   𝑖 = 1,2

𝜙𝑖(𝒓) = 0,   𝒓 ∈ Γ𝑉 ,   𝑖 = 1,2           

 
𝜕𝜙𝑖(𝒓)

𝜕𝑛
= 0,   𝒓 ∈ Γ𝑅 ,   𝑖 = 1,2        

𝜙1(𝒓) = 𝜙2(𝒓),   𝒓 ∈ Γ0                    

𝐷1
𝜕𝜙1(𝒓)

𝜕𝑛
= 𝐷2

𝜕𝜙2(𝒓)

𝜕𝑛
,   𝒓 ∈ Γ0   

 (5.1) 
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The source term, 𝑞𝑖(𝒓), represents an external or fission source. For the vacuum 

boundary term a Dirichlet type BC is chosen, however a Robin type vacuum 

condition can also be treated in the same way. In the one-energy group 

approximation 𝐿𝑖 takes the following form 

 𝐿𝑖 ≡ −∇𝐷𝑖(𝒓)∇ + Σ𝑎,𝑖 (5.2) 

where 𝐷𝑖 and Σ𝑎,𝑖 are the diffusion constant and absorption coefficient of the ith 

region, respectively. 

 

Figure 5.1: A typical two-region problem. 

The numerical formulation starts by defining the following weighted least squares 

functional: 

 

𝐼[𝑢𝑖] =
1

2
{∬(𝐿𝑖𝑢𝑖 − 𝑞𝑖)

2𝑑𝑆

𝑆𝑖

+ �̅�𝑉 ∫(𝑢1 − 𝑢2)
2𝑑Γ

Γ0

                                    

+�̅�𝑅 ∫ (𝐷1
𝜕𝑢1
𝜕𝑛

− 𝐷2
𝜕𝑢2
𝜕𝑛
)
2

𝑑Γ

Γ0

+𝑤𝑉,𝑖 ∫ 𝑢𝑖
2𝑑Γ

Γ𝑉

+ 𝑤𝑅,𝑖 ∫ (𝐷𝑖
𝜕𝑢𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

} 

(5.3) 
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where 𝑖 = 1,2. Here �̅�𝑉 and �̅�𝑅 refer to the vacuum and reflective type interface 

conditions, respectively (i.e., continuity of the neutron flux and current), whereas 

𝑤𝑉,𝑖 and 𝑤𝑅,𝑖 are the weights related to vacuum and reflective boundaries. The aim of 

the least-squares approximation is to find a solution 𝜙𝑖, such that the functional 𝐼[𝑢𝑖] 

is minimized: 

 𝐼[𝜙𝑖] = min
𝑢𝑖∈𝑈

𝐼[𝑢𝑖] (5.4) 

Since 𝜙𝑖 is the function minimizing  𝐼[𝑢𝑖] and the solution to Eq. (5.1) one can write 

 𝑢𝑖 = 𝜙𝑖 + 𝑣𝑖 (5.5) 

If Eq. (5.5) is substituted into Eq. (5.3), the first integral term on the right hand side 

of Eq. (5.3) becomes 

 

∬(𝐿𝑖𝑢𝑖 − 𝑞𝑖)
2𝑑𝑆

𝑆𝑖

=∬[(𝐿𝑖𝑢𝑖)
2 − 2𝑞𝑖𝐿𝑖𝑢𝑖 + 𝑞𝑖

2]𝑑𝑆

𝑆𝑖

                              

=∬{[𝐿𝑖(𝜙𝑖 + 𝑣𝑖)]
2 − 2𝑞𝑖𝐿𝑖(𝜙𝑖 + 𝑣𝑖) + 𝑞𝑖

2}𝑑𝑆

𝑆𝑖

                                      

=∬{(𝐿𝑖𝜙𝑖)
2 + 2𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖 + (𝐿𝑖𝑣𝑖)

2 − 2𝑞𝑖𝐿𝑖𝜙𝑖 − 2𝑞𝑖𝐿𝑖𝑣𝑖 + 𝑞𝑖
2}𝑑𝑆

𝑆𝑖

 

=∬[(𝐿𝑖𝜙𝑖)
2 − 2𝑞𝑖𝐿𝑖𝜙𝑖 + 𝑞𝑖

2]𝑑𝑆

𝑆𝑖

+∬(𝐿𝑖𝑣𝑖)
2𝑑𝑆

𝑆𝑖

                                  

+2∬[𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖 − 𝑞𝑖𝐿𝑖𝑣𝑖]𝑑𝑆

𝑆𝑖

                                                                          

=∬(𝐿𝑖𝜙𝑖 − 𝑞𝑖)
2𝑑𝑆

𝑆𝑖

+∬(𝐿𝑖𝑣𝑖)
2𝑑𝑆

𝑆𝑖

+ 2∬[𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖 − 𝑞𝑖𝐿𝑖𝑣𝑖]𝑑𝑆

𝑆𝑖

    

(5.6) 

The second term 

 ∫(𝑢1 − 𝑢2)
2𝑑Γ

Γ0

= ∫(𝑢1
2 − 2𝑢1𝑢2 + 𝑢2

2)𝑑Γ

Γ0
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 = ∫[(𝜙1
2 + 2𝜙1𝑣1 + 𝑣1

2) − 2(𝜙1𝜙2 + 𝜙1𝑣2 + 𝜙2𝑣1 + 𝑣1𝑣2)

Γ0

                    

 +(𝜙2
2 + 2𝜙2𝑣2 + 𝑣2

2)]𝑑Γ                                                                                      (5.7) 

 = ∫[(𝜙1
2 − 2𝜙1𝜙2 + 𝜙2

2) + (2𝜙1𝑣1 − 2𝜙1𝑣2 − 2𝜙2𝑣1 + 2𝜙2𝑣2)

Γ0

           

 +(𝑣1
2 − 2𝑣1𝑣2 + 𝑣2

2)]𝑑Γ                                                                                        

 = ∫(𝜙1 − 𝜙2)
2

Γ0

𝑑Γ + 2 ∫(𝜙1 − 𝜙2)(𝑣1 − 𝑣2)𝑑Γ

Γ0

+ ∫(𝑣1 − 𝑣2)
2

Γ0

𝑑Γ  

The third term can be manipulated in a similar manner 

 

∫ (𝐷1
𝜕𝑢1
𝜕𝑛

− 𝐷2
𝜕𝑢2
𝜕𝑛
)
2

𝑑Γ

Γ0

                                                           

= ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
)
2

𝑑Γ

Γ0

+ ∫ (𝐷1
𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)
2

𝑑Γ

Γ0

 

+2 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
) (𝐷1

𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)𝑑Γ

Γ0

                   

(5.8) 

The last two terms have the following forms: 

 ∫ 𝑢𝑖
2𝑑Γ

Γ𝑉

= ∫ 𝜙𝑖
2𝑑Γ

Γ𝑉

+ 2 ∫ 𝜙𝑖𝑣𝑖𝑑Γ

Γ𝑉

+ ∫ 𝑣𝑖
2𝑑Γ

Γ𝑉

 (5.9) 

 

∫ (𝐷𝑖
𝜕𝑢𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

= 𝐷𝑖
2 [ ∫ (

𝜕𝜙𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

+ 2 ∫
𝜕𝜙𝑖
𝜕𝑛

𝜕𝑣𝑖
𝜕𝑛
𝑑Γ

Γ𝑅

 

+ ∫ (
𝜕𝑣𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

]            

(5.10) 

Substituting Eqs. (5.6-5.10) into Eq. (5.3) 
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𝐼[𝑢𝑖] =
1

2
{∬(𝐿𝑖𝜙𝑖 − 𝑞𝑖)

2𝑑𝑆

𝑆𝑖

+∬(𝐿𝑖𝑣𝑖)
2𝑑𝑆

𝑆𝑖

                               

+2∬[𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖 − 𝑞𝑖𝐿𝑖𝑣𝑖]𝑑𝑆

𝑆𝑖

+ �̅�𝑉 [∫(𝜙1 − 𝜙2)
2

Γ0

𝑑Γ                 

+2 ∫(𝜙1 − 𝜙2)(𝑣1 − 𝑣2)𝑑Γ

Γ0

+ ∫(𝑣1 − 𝑣2)
2

Γ0

𝑑Γ]                        

+�̅�𝑅 [∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
)
2

𝑑Γ

Γ0

+ ∫ (𝐷1
𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)
2

𝑑Γ

Γ0

 

+2 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
) (𝐷1

𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)𝑑Γ

Γ0

]                        

+𝑤𝑉,𝑖 [ ∫ 𝜙𝑖
2𝑑Γ

Γ𝑉

+ 2 ∫ 𝜙𝑖𝑣𝑖𝑑Γ

Γ𝑉

+ ∫ 𝑣𝑖
2𝑑Γ

Γ𝑉

]                                   

+𝑤𝑅,𝑖𝐷𝑖
2 [ ∫ (

𝜕𝜙𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

+ 2 ∫
𝜕𝜙𝑖
𝜕𝑛

𝜕𝑣𝑖
𝜕𝑛
𝑑Γ

Γ𝑅

+ ∫ (
𝜕𝑣𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

]}  

(5.11) 

Rearranging terms yields 

 

𝐼[𝑢𝑖] =
1

2
{∬(𝐿𝑖𝜙𝑖 − 𝑞𝑖)

2𝑑𝑆

𝑆𝑖

+ �̅�𝑉 ∫(𝜙1 − 𝜙2)
2

Γ0

𝑑Γ + 𝑤𝑉,𝑖 ∫ 𝜙𝑖
2𝑑Γ

Γ𝑉

   

+�̅�𝑅 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
)
2

𝑑Γ

Γ0

 +𝑤𝑅,𝑖𝐷𝑖
2 ∫ (

𝜕𝜙𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

}                          

+{∬[𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖 − 𝑞𝑖𝐿𝑖𝑣𝑖]𝑑𝑆

𝑆𝑖

+ �̅�𝑉 ∫(𝜙1 − 𝜙2)(𝑣1 − 𝑣2)𝑑Γ

Γ0

                    

+�̅�𝑅 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
) (𝐷1

𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)𝑑Γ

Γ0

+ 𝑤𝑉,𝑖 ∫ �̃�𝑖𝑣𝑖𝑑Γ

Γ𝑉

      

+𝑤𝑅,𝑖𝐷𝑖
2 ∫

𝜕𝜙𝑖
𝜕𝑛

𝜕𝑣𝑖
𝜕𝑛
𝑑Γ

Γ𝑅

} +
1

2
{∬(𝐿𝑖𝑣𝑖)

2𝑑𝑆

𝑆𝑖

+ �̅�𝑉 ∫(𝑣1 − 𝑣2)
2

Γ0

𝑑Γ          

(5.12) 
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+�̅�𝑅 ∫ (𝐷1
𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)
2

𝑑Γ

Γ0

+ 𝑤𝑉,𝑖 ∫ 𝑣𝑖
2𝑑Γ

Γ𝑉

+ 𝑤𝑅,𝑖𝐷𝑖
2 ∫ (

𝜕𝑣𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

} 

Next, the following definitions are made 

 

𝐼[𝜙𝑖] ≡
1

2
{∬(𝐿𝑖𝜙𝑖 − 𝑞𝑖)

2𝑑𝑆

𝑆𝑖

++�̅�𝑅 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
)
2

𝑑Γ

Γ0

          

+�̅�𝑉 ∫(𝜙1 − 𝜙2)
2

Γ0

𝑑Γ + 𝑤𝑉,𝑖 ∫ 𝜙𝑖
2𝑑Γ

Γ𝑉

+𝑤𝑅,𝑖𝐷𝑖
2 ∫ (

𝜕𝜙𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

               

(5.13) 

 

𝛿𝐼[𝜙𝑖 , 𝑣𝑖] ≡ ∬[𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖 − 𝑞𝑖𝐿𝑖𝑣𝑖]𝑑𝑆

𝑆𝑖

+ 𝑤𝑅,𝑖𝐷𝑖
2 ∫

𝜕𝜙𝑖
𝜕𝑛

𝜕𝑣𝑖
𝜕𝑛
𝑑Γ

Γ𝑅

             

+�̅�𝑉 ∫(𝜙1 − 𝜙2)(𝑣1 − 𝑣2)𝑑Γ

Γ0

+𝑤𝑉,𝑖 ∫ 𝜙𝑖𝑣𝑖𝑑Γ

Γ𝑉

                                       

+�̅�𝑅 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
) (𝐷1

𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)𝑑Γ

Γ0

                                   

(5.14) 

 

𝛿2𝐼[𝑣𝑖] ≡
1

2
{∬(𝐿𝑖𝑣𝑖)

2𝑑𝑆

𝑆𝑖

+ �̅�𝑉 ∫(𝑣1 − 𝑣2)
2

Γ0

𝑑Γ + 𝑤𝑉,𝑖 ∫ 𝑣𝑖
2𝑑Γ

Γ𝑉

         

+�̅�𝑅 ∫ (𝐷1
𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)
2

𝑑Γ

Γ0

+𝑤𝑉,𝑖 ∫ 𝑣𝑖
2𝑑Γ

Γ𝑉

+ 𝑤𝑅,𝑖𝐷𝑖
2 ∫ (

𝜕𝑣𝑖
𝜕𝑛
)
2

𝑑Γ

Γ𝑅

 

(5.15) 

Since 𝛿2𝐼[𝑣𝑖] > 0, to minimize 𝐼[𝑢𝑖], one must have 𝛿𝐼[𝜙𝑖 , 𝑣𝑖] = 0. This is the 

stationary condition and hence the bilinear form of Eq. (5.1) is obtained: 

 𝑎(𝜙, 𝑣) = 𝑓(𝑣) (5.16) 

where 

 𝑓(𝑣) ≡ ∬𝑞𝑖𝐿𝑖𝑣𝑖𝑑𝑆

𝑆𝑖

 (5.17) 
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𝑎(𝜙, 𝑣) ≡ ∬𝐿𝑖𝜙𝑖𝐿𝑖𝑣𝑖𝑑𝑆

𝑆𝑖

+ �̅�𝑉 ∫(𝜙1 − 𝜙2)(𝑣1 − 𝑣2)𝑑Γ

Γ0

 

+�̅�𝑅 ∫ (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
) (𝐷1

𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
)𝑑Γ

Γ0

              

+𝑤𝑉,𝑖 ∫ 𝜙𝑖𝑣𝑖𝑑Γ

Γ𝑉

+ 𝑤𝑅,𝑖𝐷𝑖
2 ∫

𝜕𝜙𝑖
𝜕𝑛

𝜕𝑣𝑖
𝜕𝑛
𝑑Γ

Γ𝑅

                                

(5.18) 

The next step of the numerical formulation is to determine the weights. To 

accomplish this task, first, a weighted norm is defined as it was done in Eq. (3.90), 

and it is recalled that the error introduced by the weighted collocation method is 

bounded by  

 ‖𝜙 − 𝜙ℎ‖𝐻 ≤ 𝑀 inf
𝑣∈𝑉
‖𝜙 − 𝑣‖𝐻 (5.19) 

provided that the bilinear form, 𝑎(𝜙, 𝑣), is continuous and coercive. For the problem 

considered Eq. (5.19) becomes 

 

‖𝜙 − 𝜙ℎ‖𝐻 ≤ 𝐶1𝛼1‖𝜙1 − 𝑣1‖2,S1 + 𝐶2𝛼2‖𝜙2 − 𝑣2‖2,S2                      

+𝐶3𝑤𝑉,1‖𝜙1 − 𝑣1‖0,Γ𝑉,1 + 𝐶4𝑤𝑉,2‖𝜙2 − 𝑣2‖0,𝜕Γ𝑉,2                                 

+𝐶5𝑤𝑅,1 ‖𝐷1
𝜕

𝜕𝑛
(𝜙1 − 𝑣1)‖

0,Γ𝑅,1

+ 𝐶6𝑤𝑅,2 ‖𝐷2
𝜕

𝜕𝑛
(𝜙2 − 𝑣2)‖

0,Γ𝑅,2

 

+𝐶7�̅�𝑉‖𝑣1 − 𝑣2‖0,Γ0 + 𝐶8�̅�𝑅 ‖𝐷1
𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛
‖
0,Γ0

                           

(5.20) 

where 𝜙ℎ is the optimal numerical solution, 𝛼𝑖 = max[𝐷𝑖 , Σ𝑎,𝑖] , 𝑖 = 1,2 and 

𝐶𝑗 , 𝑗 = 1,… 8 are generic constants. Since the approximation error is larger on the 

boundaries of the domain as compared to the error resulting from the approximation 

of PDE, all norms on right hand side of Eq. (5.20) will be transformed to  ‖∙‖1,𝑆, and 

then these error terms will be balanced by selecting appropriate weights for the 

boundary and interface terms. The following inequalities, given in [61,62,65,67,70], 

will be utilized for this purpose 
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‖𝑎𝑖‖2,S𝑖 ≤ 𝐶𝑁𝑖,𝑖𝑛𝑡‖𝑎‖1,S𝑖          

‖𝑎𝑖‖0,Γ𝑉,𝑖 ≤ 𝐶‖𝑎‖1,𝑆                 

‖
𝜕𝑎𝑖
𝜕𝑛
‖
0,Γ𝑅,𝑖

≤ 𝐶�̅�𝑖𝑛𝑡√�̅�‖𝑎‖1,𝑆 

‖𝑎𝑖‖0,Γ0 ≤ 𝐶‖𝑎‖1,𝑆                   

‖
𝜕𝑎𝑖
𝜕𝑛
‖
0,Γ0

≤ 𝐶𝑁𝑖,𝑖𝑛𝑡√�̅�‖𝑎‖1,𝑆 

 (5.21) 

where 𝑁𝑖𝑛𝑡 = max[𝑁1,𝑖𝑛𝑡 , 𝑁2,𝑖𝑛𝑡]. 

For the 𝐶1 and 𝐶2 terms 

 
𝐶1𝛼1‖𝜙1 − 𝑣1‖2,S1 ≤ �̅�1𝛼1𝑁1,𝑖𝑛𝑡‖𝜙1 − 𝑣1‖1,S1 

𝐶2𝛼2‖𝜙2 − 𝑣2‖2,S2 ≤ �̅�2𝛼2𝑁2,𝑖𝑛𝑡‖𝜙2 − 𝑣2‖1,S2 
(5.22) 

note that �̅�𝑖 ≡ 𝐶𝐶𝑖. Since the same PDE governs both regions it is expected that 

‖𝜙1 − 𝑣1‖1,S1 ≈ ‖𝜙2 − 𝑣2‖1,S2 and thus the error, due to the approximation of the 

flux by RBFs will be dominated by 𝛼𝑖𝑁𝑖,𝑖𝑛𝑡, and therefore one can write 

 
�̅�1𝛼1𝑁1,𝑖𝑛𝑡‖𝜙1 − 𝑣1‖1,S1 + �̅�2𝛼2𝑁2,𝑖𝑛𝑡‖𝜙2 − 𝑣2‖1,S2                      

= (�̅�1𝛼1𝑁1,𝑖𝑛𝑡 + �̅�2𝛼2𝑁2,𝑖𝑛𝑡)‖𝜙 − 𝑣‖1,S~�̅�1−2�̅��̅�𝑖𝑛𝑡‖𝜙 − 𝑣‖1,S 
(5.23) 

where �̅� = max[𝛼1, 𝛼2]. Next, the vacuum and reflective BC terms will be treated 

 𝐶3𝑤𝑉,1‖𝜙1 − 𝑣1‖0,Γ𝑉,1 ≤ �̅�3𝑤𝑉,1‖𝜙 − 𝑣‖1,𝑆 (5.24) 

 𝐶4𝑤𝑉,2‖𝜙2 − 𝑣2‖0,Γ𝑉,2 ≤ �̅�4𝑤𝑉,2‖𝜙 − 𝑣‖1,𝑆 (5.25) 

 

𝐶5𝑤𝑅,1 ‖𝐷1
𝜕

𝜕𝑛
(𝜙1 − 𝑣1)‖

0,Γ𝑅,1

= 𝐶5𝑤𝑅,1𝐷1 ‖
𝜕

𝜕𝑛
(𝜙1 − 𝑣1)‖

0,Γ𝑅,1

 

                                                         ≤ 𝐶5𝐶𝑤𝑅,1�̅�𝑖𝑛𝑡√�̅�𝐷1‖𝜙 − 𝑣‖1,𝑆 

                                                      = �̅�5𝑤𝑅,1�̅�𝑖𝑛𝑡√�̅�𝐷1‖𝜙 − 𝑣‖1,𝑆 

(5.26) 

 

𝐶6𝑤𝑅,2 ‖𝐷2
𝜕

𝜕𝑛
(𝜙2 − 𝑣2)‖

0,Γ𝑅,2

= 𝐶6𝑤𝑅,2𝐷2 ‖
𝜕

𝜕𝑛
(𝜙2 − 𝑣2)‖

0,Γ𝑅,2

 

                                                         ≤ 𝐶6𝐶𝑤𝑅,2�̅�𝑖𝑛𝑡√�̅�𝐷2‖𝜙 − 𝑣‖1,𝑆 

                                                      = �̅�6𝑤𝑅,2�̅�𝑖𝑛𝑡√�̅�𝐷2‖𝜙 − 𝑣‖1,𝑆 

(5.27) 
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When the continuity of the neutron flux condition is considered it is first noted that 

𝜙1 − 𝜙2 = 0 on Γ0. Then 

 

𝐶7�̅�𝑉‖𝑣1 − 𝑣2‖0,Γ0 = 𝐶7�̅�𝑉‖𝑣1 − 𝑣2 − (𝜙1 − 𝜙2)‖0,Γ0 

                                 = 𝐶7�̅�𝑉‖𝑣1 − 𝜙1 + 𝜙2 − 𝑣2‖0,Γ0 

                                               ≤ 𝐶7�̅�𝑉[‖𝜙1 − 𝑣1‖0,Γ0 + ‖𝜙2 − 𝑣2‖0,Γ0] 

(5.28) 

Assuming that ‖𝜙1 − 𝑣1‖0,Γ0 ≈ ‖𝜙2 − 𝑣2‖0,Γ0 one can write 

 𝐶7�̅�𝑉[‖𝜙1 − 𝑣1‖0,Γ0 + ‖𝜙2 − 𝑣2‖0,Γ0]~𝐶7�̅�𝑉‖𝜙 − 𝑣‖0,Γ0 (5.29) 

and therefore 

 𝐶7�̅�𝑉‖𝜙 − 𝑣‖0,Γ0 ≤ 𝐶7𝐶�̅�𝑉‖𝜙 − 𝑣‖1,S = �̅�7�̅�𝑉‖𝜙 − 𝑣‖1,S (5.30) 

The treatment of the continuity of neutron current condition is similar to that of the 

neutron flux. Noting that 𝐷1
𝜕𝜙1

𝜕𝑛
− 𝐷2

𝜕𝜙2

𝜕𝑛
= 0 on Γ0 

 

𝐶8�̅�𝑅 ‖𝐷1
𝜕𝑣1
𝜕𝑛

− 𝐷2
𝜕𝑣2
𝜕𝑛

− (𝐷1
𝜕𝜙1
𝜕𝑛

− 𝐷2
𝜕𝜙2
𝜕𝑛
)‖

0,Γ0

              

= 𝐶8�̅�𝑅 ‖𝐷1
𝜕

𝜕𝑛
(𝑣1 − 𝜙1) + 𝐷2

𝜕

𝜕𝑛
(𝜙2 − 𝑣2)‖

0,Γ0

                

≤ 𝐶8�̅�𝑅 [𝐷1 ‖
𝜕

𝜕𝑛
(𝜙1 − 𝑣1)‖

0,Γ0

+ 𝐷2 ‖
𝜕

𝜕𝑛
(𝜙2 − 𝑣2)‖

0,Γ0

] 

(5.31) 

Substituting the last inequality of Eq. (5.21) into Eq. (5.31) 

 

𝐶8�̅�𝑅 [𝐷1 ‖
𝜕

𝜕𝑛
(𝜙1 − 𝑣1)‖

0,Γ0

+ 𝐷2 ‖
𝜕

𝜕𝑛
(𝜙2 − 𝑣2)‖

0,Γ0

]              

≤ 𝐶8�̅�𝑅[𝐷1𝐶𝑁1,𝑖𝑛𝑡√�̅�‖𝜙 − 𝑣‖1,S + 𝐷2𝐶𝑁2,𝑖𝑛𝑡√�̅�‖𝜙 − 𝑣‖1,S]     

= �̅�8�̅�𝑅[𝐷1𝑁1,𝑖𝑛𝑡√�̅�‖𝜙 − 𝑣‖1,S + 𝐷2𝑁2,𝑖𝑛𝑡√�̅�‖𝜙 − 𝑣‖1,S]          

~�̅�8�̅��̅�𝑖𝑛𝑡√�̅��̅�𝑅‖𝜙 − 𝑣‖1,S                                                                  

(5.32) 

where, �̅� = max[𝐷1, 𝐷2], and it is considered that 𝐷𝑖𝑁𝑖,𝑖𝑛𝑡√�̅� term has determined 

the order of error.  
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To obtain the weights related to the boundary and interface conditions Eqs. (5.23)-

(5.27), (5.30) and (5.32) have to be substituted into Eq. (5.20). This gives 

 

‖𝜙 − 𝜙ℎ‖𝐻 ≤ �̅�1−2�̅��̅�𝑖𝑛𝑡‖𝜙 − 𝑣‖1,S + �̅�3𝑤𝑉,1‖𝜙 − 𝑣‖1,𝑆 

                                   +�̅�4𝑤𝑉,2‖𝜙 − 𝑣‖1,𝑆 + �̅�5𝑤𝑅,1�̅�𝑖𝑛𝑡√�̅�𝐷1‖𝜙 − 𝑣‖1,𝑆   

                                 +�̅�6𝑤𝑅,2√�̅��̅�𝑖𝑛𝑡𝐷2‖𝜙 − 𝑣‖1,𝑆 + �̅�7�̅�𝑉‖𝜙 − 𝑣‖1,S   

+�̅�8�̅��̅�𝑖𝑛𝑡√�̅��̅�𝑅‖𝜙 − 𝑣‖1,S          

(5.33) 

To get a balance in errors the following weights must be chosen: 

 𝑤𝑉,1 = 𝑤𝑉,2 = �̅�𝑉 = �̅��̅�𝑖𝑛𝑡 ,   𝑤𝑅,1 =
√�̅�

𝐷1
,   𝑤𝑅,2 =

√�̅�

𝐷2
,    �̅�𝑅 =

√�̅�

�̅�
 (5.34) 

Now that the weights are determined, the rest of the numerical solution procedure is 

similar to that presented for homogeneous cases. The domain of the problem is 

discretized by introducing sets of interpolation nodes for the two subdomains 

(𝑫𝟏, 𝑫𝟐), interface (𝑰), vacuum type boundaries (𝑩𝑽
𝟏 , 𝑩𝑽

𝟐) and reflective type 

boundaries (𝑩𝑹
𝟏 , 𝑩𝑹

𝟐). Also a set of external nodes (𝑬) are created to enhance the 

accuracy of the method: 

 

𝑫𝟏 = {𝒅1
1, 𝒅2

1, … , 𝒅𝑁
𝐷1

1 },   𝑫𝟐 = {𝒅1
2, 𝒅2

2, … , 𝒅𝑁
𝐷2

2 }            

𝑰 = {𝒊1, 𝒊2, … , 𝒊𝑁𝐼}                                                                      

𝑩𝑽
𝟏 = {𝒃𝑉,1

1 , 𝒃𝑉,2
1 , … , 𝒃𝑁

𝐵𝑉
1

1 },   𝑩𝑽
𝟐 = {𝒃𝑉,1

2 , 𝒃𝑉,2
2 , … , 𝒃𝑁

𝐵𝑉
2

2 } 

𝑩𝑹
𝟏 = {𝒃𝑅,1

1 , 𝒃𝑅,2
1 , … , 𝒃𝑁

𝐵𝑅
1

1 },   𝑩𝑹
𝟐 = {𝒃𝑅,1

2 , 𝒃𝑅,2
2 , … , 𝒃𝑁

𝐵𝑅
2

2 } 

𝑬𝟏 = {𝒆1
1, 𝒆2

1, … , 𝒆𝑁
𝐸1

1 },   𝑬𝟐 = {𝒆1
2, 𝒆2

2, … , 𝒆𝑁
𝐸2

2 }               

(5.35) 

Here 𝑁𝑥 denotes the number of nodes contained in the region 𝑥. A typical uniform 

distribution with 49 domain nodes and 24 exterior nodes is presented in Figure 5.2a. 

It should be noted that the domain nodes will also be used in the collocation step of 

the numerical procedure.  

As stated in Chapter 3, the accuracy of the weighted RBF collocation method can be 

improved by utilizing more collocation nodes than the interpolation nodes, and a 

distribution with ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙, where ℎ is the distance between adjacent nodes is 

presented in Figure 5.2b.  
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Figure 5.2a: A typical uniform node distribution for the 2-region problem with 49 

domain nodes and 24 exterior nodes. 

 

Figure 5.2b: Uniformly distributed interpolation and collocation nodes where 

ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙. 

After the discretization of the domain, the neutron fluxes are approximated by the 

radial basis functions at the interpolation nodes 

 𝜙1(𝒓𝟏) =∑𝑎𝑗
1𝜓𝑗

1(𝒓)

𝑁1

𝑗=1

,   𝜙2(𝒓𝟐) =∑𝑎𝑗
2𝜓𝑗

2(𝒓)

𝑁2

𝑗=1

 (5.36) 
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where 𝒓𝟏 and 𝒓𝟐 are the interpolation nodes contained in regions 1 and 2, 

respectively, and 

 𝑁𝑖 = 𝑁𝐷𝑖 + 𝑁𝐼 +𝑁𝐵𝑉𝑖
+ 𝑁𝐵𝑅𝑖

+ 𝑁𝐸𝑖 ,   𝑖 = 1,2 (5.37) 

Substituting the series in Eq. (5.36) into the governing equations, Eq. (5.1), 

collocating at the collocation nodes, and taking into account of the fact that the least-

squares residual method is an approximation of the direct strong form collocation 

method, the collocation matrix of this method is 

 

[
 
 
 
 
 
 
 
 

𝑲𝟏 𝟎
𝑤𝑉,1𝑲𝒗,𝟏 𝟎

𝑤𝑅,1𝑲𝒓,𝟏 𝟎

�̅�𝑉𝑰𝒗,𝟏 −�̅�𝑉𝑰𝒗,𝟐
�̅�𝑅𝑰𝒓,𝟏 −�̅�𝑅𝑰𝒓,𝟐
𝟎 𝑲𝟐
𝟎 𝑤𝑉,2𝑲𝒗,𝟐
𝟎 𝑤𝑅,2𝑲𝒓,𝟐]

 
 
 
 
 
 
 
 

𝒂 =

[
 
 
 
 
 
 
 
𝑸𝟏
𝟎
𝟎
𝟎
𝟎
𝑸𝟐
𝟎
𝟎 ]
 
 
 
 
 
 
 

 (5.38) 

The block matrices 𝑲𝒊, 𝑲𝒗,𝒊, 𝑲𝒓,𝒊, 𝑰𝒗,𝒊 and 𝑰𝒓,𝒊 and vectors 𝑸𝒊, 𝑖 = 1,2 of Eq. (5.38) are 

calculated by 

 

𝑲𝒊 = −∇𝐷𝑖(𝒓𝑘)∇𝜓𝑖(𝒓𝑘, 𝒓𝑗) + Σ𝑎,𝑖𝜓𝑖(𝒓𝑘, 𝒓𝑗),   𝒓𝑘 ∈ 𝑫
𝒊,𝒄𝒐𝒍,   𝒓𝑗 ∈ 𝑺

𝒊 

𝑲𝒗,𝒊 = 𝜓𝑖(𝒓𝑘, 𝒓𝑗),   𝒓𝑘 ∈ 𝑩𝑽
𝒊,𝒄𝒐𝒍,   𝒓𝑗 ∈ 𝑺

𝒊                                                    

𝑲𝒓,𝒊 = 𝐷𝑖
𝜕𝜓𝑖(𝒓𝑘, 𝒓𝑗)

𝜕𝑛
,   𝒓𝑘 ∈ 𝑩𝑹

𝒊,𝒄𝒐𝒍,   𝒓𝑗 ∈ 𝑺
𝒊                                            

𝑰𝒗,𝒊 = 𝜓𝑖(𝒓𝑘, 𝒓𝑗),   𝒓𝑘 ∈ 𝑰
𝒄𝒐𝒍,   𝒓𝑗 ∈ 𝑺

𝒊                                                        

𝑰𝒓,𝒊 = 𝐷𝑖(𝒓𝑘)
𝜕𝜓𝑖(𝒓𝑘, 𝒓𝑗)

𝜕𝑛
,   𝒓𝑘 ∈ 𝑰

𝒄𝒐𝒍,   𝒓𝑗 ∈ 𝑺
𝒊                                       

𝑸𝒊 = 𝑞𝑖(𝒓𝑘),   𝒓𝑘 ∈ 𝑫
𝒊,𝒄𝒐𝒍                                                                              

(5.39) 

The solution of Eq. (5.38) reveals the coefficient vector 

 𝒂 = {𝑎1
1, 𝑎2

1, … , 𝑎𝑗
𝑁1 , 𝑎1

2, 𝑎2
2, … , 𝑎𝑗

𝑁2} (5.40) 

and hence the numerical solution. Note that when the number of collocation and 

interpolation nodes is the same Gauss elimination can be used to deal with Eq. 

(5.38), whereas a least squares solver is required when the number of collocation 

nodes is higher. 
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5.2 Numerical Results 

5.2.1 One-dimensional external source problem 

The first problem considered is a 1-D two region external source case with the 

following mathematical description.  

 

−𝐷1
𝑑2𝜙1(𝑥)

𝑑𝑥2
+ Σ𝑎,1𝜙1(𝑥) = 0,          0 ≤ 𝑥 ≤ 𝑎 

−𝐷2
𝑑2𝜙2(𝑥)

𝑑𝑥2
+ Σ𝑎,2𝜙2(𝑥) = 𝑠2,        𝑎 ≤ 𝑥 ≤ 𝑏 

𝑑𝜙1(0)

𝑑𝑥
= 0,   𝜙2(𝑏) = 0                                          

𝜙1(𝑎) = 𝜙2(𝑎),   𝐷1
𝑑𝜙1(𝑎)

𝑑𝑥
= 𝐷2

𝑑𝜙2(𝑎)

𝑑𝑥
          

(5.41) 

This problem is studied in [5] to explain the spatial self-shielding phenomenon and 

the analytical solution is 

 

𝜙1(𝑥) =
𝑠2 cosh (

𝑥
𝐿1
)

[
𝐿1
𝐷1
coth (

𝑎
𝐿1
) +

𝐿2
𝐷2
coth (

𝑏 − 𝑎
𝐿2

)]
𝐷1
𝐿1
Σ𝑎,2 sinh (

𝑎
𝐿1
)
                  

𝜙2(𝑥) =
𝑠2
Σ𝑎,2

[1 −
cosh (

𝑏 − 𝑥
𝐿2

)

[
𝐿1
𝐷1
coth (

𝑎
𝐿1
) +

𝐿2
𝐷2
coth (

𝑏 − 𝑎
𝐿2

)]
𝐷2
𝐿2
sinh (

𝑏 − 𝑎
𝐿2

)
] 

(5.42) 

where 𝑎 is the junction point, 𝑏 is the size of the domain and 𝐿𝑖 = √𝐷𝑖 Σ𝑎,𝑖⁄  is the 

diffusion length of the ith region. A typical node distribution, where both regions are 

interpolated by 4 domain nodes and an external node is given in Figure 5.3.  

 

Figure 5.3: A typical distribution of interpolation nodes for the 1-D problem. 

This problem is solved with the RBF collocation method with no weights. The 

multiquadric is used as the RBF. In the numerical experiments two sets of 

collocation points, ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙 and ℎ𝑖𝑛𝑡 = 4ℎ𝑐𝑜𝑙, are utilized. Physical parameters 

are taken as 𝑎 = 50 𝑐𝑚, 𝑏 = 100 𝑐𝑚, 𝑠2 = 1 𝑛 𝑐𝑚3𝑠⁄ , 𝐷1 = 1.77764 𝑐𝑚, 𝐷2 =
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1.558 𝑐𝑚, Σ𝑎,1 = 0.0143676 𝑐𝑚
−1 and Σ𝑎,2 = 0.01112 𝑐𝑚

−1. The analytical flux 

distribution obtained with these values is illustrated in Figure 5.4. 

 

Figure 5.4: Analytical flux distribution for the one-dimensional problem. 

Since the problem is 1-D, the arbitrary precision computation property of 

MATHEMATICA has been appealed in calculations. The number of interpolation 

and collocation nodes is the same and the shape parameter is chosen to be 𝑐2 = 0.05. 

The results for maximum error and RMS error in flux are presented in Figure 5.5 in 

semi-log scale for both machine precision and a 100-precision solution. This figure 

clearly shows the power of utilizing high precision computation for the RBF 

collocation technique. When machine precision is used the numerical method 

becomes unstable above 1 ℎ𝑖𝑛𝑡⁄ = 40, whereas the 100-precision case yields a 

smooth decrease in both maximum and RMS errors. In addition to its superiority in 

stability, the high precision arithmetic gives highly accurate results. The RMS error 

of 100-precision calculation is 7.52 × 10−15 when 1 ℎ𝑖𝑛𝑡⁄ = 100. 

The results observed can be improved further by increasing the number of 

collocation points and the value of the shape parameter. Figure 5.6 shows the 

variation of RMS error with 1 ℎ𝑖𝑛𝑡⁄  for ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙 and ℎ𝑖𝑛𝑡 = 4ℎ𝑐𝑜𝑙, when 𝑐2 =

0.1. It is seen from this figure that extraordinary accuracy is achievable when the 

RBF collocation method is used with oversampling. When 1 ℎ𝑖𝑛𝑡⁄ = 100 the RMS 

error is 2.43 × 10−28 for ℎ𝑖𝑛𝑡 = 4ℎ𝑐𝑜𝑙. 
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Figure 5.5a: 𝜖𝑚𝑎𝑥 for machine precision and 100-precision calculations. 

 

Figure 5.5b: 𝜖𝑟𝑚𝑠 for machine precision and 100-precision calculations. 

 

Figure 5.6: 𝜖𝑟𝑚𝑠 for the 1-D problem when ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙 and ℎ𝑖𝑛𝑡 = 4ℎ𝑐𝑜𝑙. 
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5.2.2 Two-dimensional problem without corner singularity 

The next problem considered is a two-dimensional two-group fission source case for 

which an analytical solution exists. The geometry and boundary conditions of this 

configuration are illustrated in Figure 5.7, and the two-group parameters are 

presented in Table 5.1.  

 

Figure 5.7: The geometry and boundary conditions of the 2-D problem without 

corner singularity. 

Table 5.1: Two-group parameters for the 2-D problem without corner singularity. 

 Core Reflector 

𝐷1 0.6165356 0.6165356 

𝐷2 0.6165356 0.6165356 

Σ𝑟,1 0.080117 0.01021 

Σ𝑟,2 0.11484 0.00267 

Σ𝑓,1 0.03252 0 

Σ𝑓,2 0.071372 0 

Σ𝑠,1→2 0.063567 0.01005 

𝜐Σ𝑓,1 0.0813 0 

𝜐Σ𝑓,2 0.17843 0 

𝜒1 1 0 

𝜒2 1 0 

The analytical solution of this problem is given in [79], and with the parameters 

given in Table 5.1, a critical system is achieved when 𝑎 = 4.86 𝑐𝑚 and 𝑏 = 20 𝑐𝑚. 

This problem is solved with both RBF collocation and weighted RBF collocation 

methods, and inverse multiquadric is chosen as the RBF. Overcollocation is utilized 

with ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙. The convergence criterion for the fission source iteration is 

chosen to be 𝜀 = 10−6. 
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The percent error in the multiplication factor, 𝜆, due to approximation with weighted 

RBF collocation and RBF collocation is given in Tables 5.2 and 5.3, respectively, for 

several values of the shape parameter, 𝑐 = 𝑎 × √𝑚. The linear boundary element 

solutions are also given in these tables. Here 𝑁 is the number of equidistant intervals 

on each side of the core and on the side of the reflector parallel to the y-axis and 𝑀 is 

the number of equidistant intervals on the sides of the reflector parallel to and on the 

x-axis. 

The error values presented in Tables 5.2 and 5.3 show that RBF collocation and 

weighted RBF collocation methods can produce highly accurate solutions for the 2-

region problem considered. Although the boundary element method gives a better 

accuracy than collocation methods when 𝑁 = 4 and 𝑀 = 5, with their faster 

convergence rates radial basis functions yields better results for higher values of 𝑁 

and 𝑀. When 𝑁 = 32 and 𝑀 = 40 the percent error is  0.000137, which is better 

than the boundary element solution by approximately three orders of magnitude. On 

the other hand the results obtained with 𝑚 = 0.2, 0.3 reveals that the weighted 

collocation method has a broader range of stable computation in terms of the shape 

parameter. 

Table 5.2: The percent error in 𝜆 for weighted RBF collocation calculations. 

N M LBE 𝑚 = 0.08 𝑚 = 0.09 𝑚 = 0.1 𝑚 = 0.2 𝑚 = 0.3 

4 5 2.17 8.170 7.716 7.309 5.052 3.584 

8 10 0.71 0.199 0.152 0.672 0.269 0.165 

16 20 0.22 0.0610 0.0467 0.0371 0.00565 0.00352 

24 30 0.11 0.00525 0.00400 0.003215 0.00201 0.00208 

32 40 0.09 0.00162 0.00166 0.00149 0.00132 0.00126 

Table 5.3: The percent error in 𝜆 for RBF collocation calculations. 

N M LBE 𝑚 = 0.08 𝑚 = 0.09 𝑚 = 0.1 𝑚 = 0.2 𝑚 = 0.3 

4 5 2.17 11.484 9.727 8.209 1.831 0.551 

8 10 0.71 0.407 0.338 0.329 0.192 0.142 

16 20 0.22 0.0686 0.0550 0.0606 0.0118 0.00654 

24 30 0.11 0.0104 0.00733 0.00449 0.00364 0.00424 

32 40 0.09 0.000137 0.000724 0.000899 0.00382 0.00547 

5.2.3 Two-dimensional problem with corner singularity 

It is a well-known fact that when a singularity is present in the geometry, material 

properties or boundary conditions of the problem, the performance of the numerical 
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method, whether it is meshless or mesh-based, may be deteriorated [80-82]. In this 

regard, the third example is a 2-group, 2-region problem containing a corner 

singularity. The configuration of the problem is shown in Figure 5.8, and the nuclear 

parameters are given in Table 5.4. 

 

Figure 5.8: The geometry and boundary conditions of the 2-D problem with corner 

singularity. 

Table 5.4: Two-group parameters for the 2-D problem with corner singularity. 

 Core Reflector 

𝐷1 1.2 1.15 

𝐷2 0.3 0.15 

Σ𝑟,1 0.003 0.001 

Σ𝑟,2 0.1016 0.02 

Σ𝑓,1 0.0004166 0 

Σ𝑓,2 0.05166 0 

Σ𝑠,1→2 0.025 0.06 

𝜐Σ𝑓,1 0.001 0 

𝜐Σ𝑓,2 0.124 0 

𝜒1 1 0 

𝜒2 0 0 

In order to test the performance of the RBF collocation techniques, this problem is 

solved with FEM [71], and when 𝑎 = 7.5 𝑐𝑚 a reference solution of 𝜆 =
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1.125893191 is found with 180000 linear finite elements. The RBF collocation and 

its weighted version are employed by dividing the problem domain into four square 

subdomains to better capture the corner singularity. Inverse multiquadric is used as 

the RBF, and calculations are performed with both ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙 and ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙. The 

convergence criterion for the fission source iteration is 10−6. 

Figures 5.9a and 5.9b show the relative percent error in the multiplication factor with 

respect to the number of equidistant intervals along one side of the square domain for 

weighted RBF collocation and RBF collocation, respectively. The shape parameter is 

chosen to be 𝑐 = 𝑏 × √0.05, where 𝑏 = 2𝑎. The most significant observation of 

these figures is that, when the collocation techniques are utilized with 

overcollocation (i.e., ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙), the algorithm underestimates the reference 𝜆 

value, contrary to the overestimated solutions of the ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙 route. As seen from 

Figure 5.9b, when overcollocation is employed without weights the collocation 

method produces unstable results with poor accuracy at low values of 𝑁. Finally, a 

comparison of the results plotted on Figure 5.9 shows that the collocation method 

with no weights and ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙 has produced the best results in terms of both 

accuracy and stability. This alternative has kept its stability and it gives an error 

value of 𝜖𝜆 = −7.78 × 10
−5 at 𝑁 = 60. On the other hand the weighted collocation 

method loses its stability at 𝑁 = 42 and 𝑁 = 30 for ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙 and ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙, 

repectively. 

 

Figure 5.9a: Variation of 𝜖𝜆 with respect to 𝑁 for the weighted RBF collocation. 
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Figure 5.9b: Variation of 𝜖𝜆 with respect to 𝑁 for the RBF collocation. 

The effect of the shape parameter, 𝑐 = 𝑏 × √𝑚 on the accuracy and convergence rate 

of the RBF collocation method is illustrated in Figure 5.10 on a semi-log scale. The 

relative percent errors presented on this graph are the absolute error values. Similar 

to the homogeneous problems, increasing the value of the shape parameter improves 

both the accuracy and the convergence rate of the scheme. The error at 𝑁 = 48 

decreases by an order of magnitude when the value of 𝑚 is shifted from 0.06 to 0.08. 

 

Figure 5.10: The effect of the shape parameter on the performance of the RBF 

collocation method. 
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5.2.4 Two-dimensional problem with corner singularity and high material 

heterogeneity 

The fourth problem has the same geometric configuration with the third one, but this 

time the diffusion constants, removal and scattering cross sections of the core are 

chosen to be 10 times higher than those of the reflector region (i.e., 𝐷1
2 = 0.12, 

𝐷2
2 = 0.03, Σ𝑟,1

2 = 0.0003, Σ𝑟,2
2 = 0.01016, Σ𝑠,1→2

2 = 0.0025). This configuration 

results with 𝜆 = 3.726583216 when a FEM solution is obtained with 180000 linear 

finite elements. It should be noted that these types of differences in nuclear 

properties are not observed in practical applications, but this case of high material 

heterogeneity is studied to test the robustness of the weighted RBF collocation 

method. 

The variation of the relative percent error in 𝜆 with respect to 𝑁 is shown in Figure 

5.11 for weighted and standard RBF collocation methods where 𝑐 = 𝑏 × √0.2 and 

ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙. This figure clearly shows that the RBF collocation method has 

produced a much better performance than its weighted alternative. Although small 

oscillations are observed at low 𝑁 the RBF collocation method has yielded accurate 

results, while the weighted collocation method gave up a divergent solution with 

poor accuracy. This high material heterogeneity problem shows that when the 

robustness of the method is taken into account the RBF collocation method is 

advantageous. 

 

Figure 5.11: Variation of 𝜖𝜆 with respect to 𝑁 for weighted and standard collocation 

methods. 
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5.2.5 The IAEA two-dimensional benchmark problem  

The last example considered in this chapter is a two-dimensional one-group IAEA 

benchmark problem consisting of five regions. The geometry of the problem is 

presented in Figure 5.12 where the dimensions are in 𝑐𝑚, and the one-group 

parameters are given in Table 5.5 (𝜐 = 2.43 for regions 1 and 3). This benchmark is 

defined to be very difficult to solve because of the large differences in quadrant-

averaged fluxes [83].  

 

Figure 5.12: The geometry of the IAEA two-dimensional benchmark problem. 

Table 5.5: The one-group parameters for the IAEA two-dimensional benchmark 

problem. 

Region 𝐷(𝑐𝑚) Σ𝑎(𝑐𝑚
−1) 𝜐Σ𝑓(𝑐𝑚

−1) 

1 0.6536 0.07 0.079 

2 0.7042 0.28 0 

3 0.55556 0.04 0.043 

4 0.55556 0.15 0 

5 0.43478 0.01 0 

This benchmark problem is solved with the RBF collocation method. The domain is 

divided into 16 subdomains to improve the performance of the numerical algorithm. 

Twelve subdomains are used to model the fifth region, and the remaining four 

subdomains represent regions 1-4. The calculations are performed with ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙. 
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In [83], the reference solution for the multiplication factor is reported to be 𝜆 =

0.99222. 

The numerical multiplication factor values obtained with the RBF collocation 

technique are tabulated in Table 5.6 for three values of the shape parameter, 𝑐 =

0.96 × √𝑚. All subdomains are interpolated with uniformly distributed nodes and 𝑁 

is the number of equidistant intervals in both directions. The results of this table 

show that the RBF collocation method has produced accurate results with a smooth 

convergence, and therefore it is successful in modelling multiregion neutron 

diffusion problems.  

Table 5.6: Numerical 𝜆 values for the IAEA benchmark problem obtained with RBF 

collocation method for three values of the shape parameter. 

𝑁 𝑚 = 0.08 𝑚 = 0.1 𝑚 = 0.2 

3 1.01613 1.01583 1.01632 

4 1.01002 1.00973 1.00843 

5 1.00389 1.00375 1.00214 

6 1.00057 0.998703 0.998263 

7 0.997276 0.9962 0.996151 

8 0.994168 0.995012 0.994679 

9 0.993303 0.994187 0.993785 

10 0.993686 0.993749 0.993377 

11 0.99339 0.993316 0.993156 

12 0.992993 0.992985 0.992889 

13 0.992833 0.992858 0.992613 

14 0.992749 0.992702 0.992195 

15 0.992605 0.992602 0.991776 
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6. NUMERICAL SOLUTION OF NEUTRON TRANSPORT PROBLEMS 

6.1 The One-dimensional Neutron Transport Equation and Angular 

Approximations 

Until now the distribution of neutrons in a multiplying or nonmultiplying system has 

been studied with the diffusion approximation, which ignored the angular behavior 

and required the numerical solution of a PDE and a set of PDEs for homogeneous 

and heterogeneous systems, respectively. Since the computational capabilities have 

increased substantially in the last decades, attention has been focused on the 

numerical solution of the more detailed neutron transport equation. Taking into 

account this fact, in this chapter, the meshless RBF collocation method has been 

introduced into the field of neutron transport as a spatial approximation tool. 

For a one-dimensional configuration the within group neutron transport equation can 

be expressed as follows [1]: 

 𝜇
𝜕𝜑

𝜕𝑥
(𝑥, 𝜇) + Σ𝑡(𝑥)𝜑(𝑥, 𝜇) =∑(2𝑙 + 1)𝑃𝑙(𝜇)Σ𝑠𝑙(𝑥)𝜙𝑙(𝑥)

𝐿

𝑙=0

+ 𝑠(𝑥, 𝜇) (6.1) 

Here 𝜇 is the directional cosine, 𝜑 is the angular flux, Σ𝑡 is the total cross section and 

𝑠(𝑥, 𝜇) is either an external source and/or fission source. As is seen from Eq. (6.1), 

the scattering term on the right hand side is expanded in Legendre polynomials, 

where 𝑃𝑙(𝜇) is the Legendre polynomial and the Legendre moments are given by 

 𝜙𝑙(𝑥) =
1

2
∫𝑃𝑙(𝜇)𝜑(𝑥, 𝜇)𝑑𝜇

1

−1

 (6.2) 

 Σ𝑠𝑙(𝑥) =
1

2
∫𝑃𝑙(𝜇)Σ𝑠(𝑥, 𝜇)𝑑𝜇

1

−1

 (6.3) 

The Legendre polynomials 𝑃𝑙(𝜇) are defined by [84] 
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 𝑃0(𝜇) = 1 (6.4) 

 𝑃𝑙(𝜇) =
1

2𝑙
𝑑𝑙

𝑑𝜇𝑙
(𝜇2 − 1)𝑙 ,   𝑙 = 1,2, … (6.5) 

These polynomials satisfy the following orthogonality relation on the interval 

−1 ≤ 𝜇 ≤ 1: 

 
1

2
∫𝑑𝜇𝑃𝑙(𝜇)𝑃𝑙′(𝜇)

1

−1

=
𝛿𝑙𝑙′

2𝑙 + 1
 (6.6) 

where 𝛿𝑙𝑙′ is the Kronecker delta. 𝑃𝑙(𝜇) also satisfy the recurrence relation 

 𝜇𝑃𝑙(𝜇) =
1

2𝑙 + 1
[(𝑙 + 1)𝑃𝑙+1(𝜇) + 𝑙𝑃𝑙−1(𝜇)] (6.7) 

For the treatment of the angular variable of the flux there exists two widely utilized 

techniques: the spherical harmonics method (𝑃𝑁 method) and the discrete ordinates 

method (𝑆𝑁 method). The spherical harmonics method is an old approach and it was 

first used by astrophysicists [85]. Approximately half a century later it was 

introduced into the field of neutron transport [86]. On the other hand the history of 

the 𝑆𝑁 method goes back to the study of radiation transport in stellar atmospheres 

[87], and its first application in reactor physics is seen in [88]. 

In the 𝑃𝑁 method, which is adopted for the angular treatment of the neutron transport 

equation in this study, the angular flux and the source term are expanded in a finite 

series of Legendre polynomials similar to the expansion of the scattering cross 

section on the right hand side of Eq. (6.1): 

 𝜑(𝑥, 𝜇) ≈∑(2𝑙 + 1)𝜙𝑙(𝑥)𝑃𝑙(𝜇)

𝑁

𝑙=0

 (6.8) 

 𝑠(𝑥, 𝜇) ≈∑(2𝑙 + 1)𝑠𝑙(𝑥)𝑃𝑙(𝜇)

𝑁

𝑙=0

 (6.9) 

These approximations are substituted into Eq. (6.1), then it is multiplied by 
1

2
𝑃𝑙′(𝜇), 

integrated from −1 to +1. With the help of orthogonality and recurrence relations 

the 𝑃𝑁 equations can be found by setting 𝜙𝑁+1 = 0 [1] 
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 𝑙

2𝑙 + 1

𝑑𝜙𝑙−1
𝑑𝑥

+
𝑙 + 1

2𝑙 + 1

𝑑𝜙𝑙+1
𝑑𝑥

+ (Σ𝑡 − Σ𝑠𝑙)𝜙𝑙 = 𝑠𝑙 ,      𝑙 = 0,1,… , 𝑁 − 1 (6.10) 

 
𝑁

2𝑁 + 1

𝑑𝜙𝑁−1
𝑑𝑥

+ (Σ𝑡 − Σ𝑠𝑁)𝜙𝑁 = 𝑠𝑁 (6.11) 

Eqs. (6.10) and (6.11) show that with the 𝑃𝑁 method, the integrodifferential neutron 

transport equation is transformed into a set of 𝑁 ordinary differential equations. 

An important point in the solution of the neutron transport equation by Legendre 

polynomials is the vacuum type boundary conditions. A sum of these polynomials 

cannot satisfy this condition [3], and hence a modified boundary condition is needed 

for these kinds of boundaries. A well-known solution to this problem is to use the 

Marshak boundary conditions. Suppose that for a 1-D geometry with 0 ≤ 𝑥 ≤ 𝑎, the 

angular flux vanishes at 𝑥 = 𝑎. Then the Marshak boundary conditions can be 

expressed as 

 ∫𝑃𝑙(𝜇)𝜓(𝑎, 𝜇)𝑑𝜇

0

−1

= 0,      𝑙 = 0,1, … ,𝑁 (6.12) 

Another method in dealing with the vacuum boundary conditions is to use the double 

𝑃𝑁 or 𝐷𝑃𝑁 approximation which is also advantageous when a heterogeneous system 

is considered. This approach is also known as Yvon’s method in the literature [89]. 

In the 𝐷𝑃𝑁 method separate expansions are used for −1 ≤ 𝜇 ≤ 0 and 0 ≤ 𝜇 ≤ 1: 

 𝜑(𝑥, 𝜇) ≈

{
 
 

 
 ∑(2𝑙 + 1)𝜙𝑙

+(𝑥)𝑃𝑙(2𝜇 − 1)

𝑁

𝑙=0

,   𝜇 > 0

∑(2𝑙 + 1)𝜙𝑙
−(𝑥)𝑃𝑙(2𝜇 + 1)

𝑁

𝑙=0

,   𝜇 < 0

 (6.13) 

It has been shown in [1] that for problems dominated by the diffusion of neutrons 

through optically thick regions, the 𝑃𝑁 method yields better results than the 𝐷𝑃𝑁 

approach. But when vacuum boundaries are present the 𝐷𝑃𝑁 method is found to be 

the better choice [90]. 

Another alternative for the angular approximation of the transport equation is the 𝑆𝑁 

method. In this approach the angular flux is evaluated in a number of discrete 

directions. The formulation of the method starts by satisfying Eq. (6.1) for distinct 𝜇𝑛 
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 𝜇𝑛
𝑑

𝑑𝑥
𝜑𝑛(𝑥) + Σ(𝑥)𝜑𝑛(𝑥) =∑(2𝑙 + 1)𝑃𝑙(𝜇𝑛)Σ𝑙(𝑥)𝜙𝑙(𝑥)

𝐿

𝑙=0

+ 𝑠(𝑥, 𝜇𝑛) (6.14) 

where 𝜑𝑛(𝑥) ≡ 𝜑(𝑥, 𝜇𝑛). The angles are chosen so that an accurate result is obtained 

for the flux moments by a quadrature formula [1]. 

In the 𝑆𝑁 approach the scalar flux and the Legendre moments are approximated by 

 𝜙(𝑥) =
1

2
∑𝑤𝑛𝜑𝑛(𝑥)

𝑁

𝑛=1

 (6.15) 

 𝜙𝑙(𝑥) =
1

2
∑𝑤𝑛𝑃𝑙(𝜇𝑛)𝜓𝑛(𝑥)

𝑁

𝑛=1

 (6.16) 

respectively [1]. Here 𝑤𝑛 are the weights of the quadrature and satisfy 

 ∑𝑤𝑛
𝑛

= 2 (6.17) 

The quadrature formulas are generally constructed by choosing an even value for 𝑁 

taking into account the fact that right and left particles have equal importance. Hence 

the ordinates and the weights satisfy the following relations [1] 

 

𝜇𝑛 > 0                                                         

𝜇𝑁+1−𝑛 = −𝜇𝑛                 𝑛 = 1,2, … ,
𝑁

2
𝑤𝑁+1−𝑛 = 𝑤𝑛                                             

 (6.18) 

The spherical harmonics approach and the discrete ordinates method are equivalent 

in 1-D Cartesian geometry when certain conditions are met [91]. 

6.2 Even Parity Form of the Neutron Transport Equation 

In the last decades, a different methodology namely the even parity form or second 

order form has emerged for tackling neutron transport problems. With this approach 

the first order spatial derivatives of the integrodifferential neutron transport equation 

are transformed into second order derivatives. By doing this the necessity of solution 

over the full angular domain in the integrodifferential form has been reduced to the 

half angle range. The attention has been increased on this method due to its 
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advantages in variational formulations [1]. The even parity form of the transport 

equation is self-adjoint which gives rise to sparse symmetric coefficient matrices and 

therefore to effective numerical algorithms. 

In what follows the derivation of the even-parity 𝑃3 neutron transport equation will 

be presented for isotropic scattering and sources. Although anisotropy can be dealt 

with the even-parity form [92], it is known that the derivation of such equations is 

tiresome when it is compared to the treatment of the integrodifferential form of the 

neutron transport equation [1]. 

For a 1-group and 1-D case with a fission source the neutron transport equation takes 

the following form 

 𝜇
𝜕

𝜕𝑥
𝜑(𝑥, 𝜇) + Σ𝑡𝜑(𝑥, 𝜇) = Σ𝑠𝜙(𝑥) +

1

𝜆
𝜐Σ𝑓𝜙(𝑥),      0 ≤ 𝑥 ≤ 𝑎 (6.19) 

If a Marshak and a reflective boundary condition exist on the right and left sides of 

the domain, respectively then: 

 ∫𝑃𝑙(𝜇)𝜑(𝑎, 𝜇)𝑑𝜇

0

−1

= 0,     𝑙 = 1,3 (6.20) 

 𝐽(0, 𝜇) =
1

2
∫𝜇𝜑(0, 𝜇)𝑑𝜇

1

−1

= 0 (6.21) 

Formulation of the method starts by defining the even and odd pairs of the angular 

flux: 

 𝜑+(𝑥, 𝜇) =
1

2
[𝜑(𝑥, 𝜇) + 𝜑(𝑥,−𝜇)] (6.22) 

 𝜑−(𝑥, 𝜇) =
1

2
[𝜑(𝑥, 𝜇) − 𝜑(𝑥,−𝜇)] (6.23) 

It is obvious that 

 𝜑(𝑥, 𝜇) = 𝜑+(𝑥, 𝜇) + 𝜑−(𝑥, 𝜇) (6.24) 

Writing Eq. (6.19) for – 𝜇 gives 
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 −𝜇
𝜕

𝜕𝑥
𝜑(𝑥, −𝜇) + Σ𝑡𝜑(𝑥,−𝜇) = [Σ𝑠 +

1

𝜆
𝜐Σ𝑓] 𝜙(𝑥) (6.25) 

Then adding Eq. (6.19) and (6.25) 

𝜇 [
𝜕

𝜕𝑥
𝜑(𝑥, 𝜇) −

𝜕

𝜕𝑥
𝜑(𝑥, −𝜇)] + Σ𝑡[𝜑(𝑥, 𝜇) + 𝜑(𝑥, −𝜇)] = 2 [Σ𝑠 +

1

𝜆
𝜐Σ𝑓] 𝜙(𝑥) 

𝜇
𝜕

𝜕𝑥
[𝜑(𝑥, 𝜇) − 𝜑(𝑥,−𝜇)]⏟            

2𝜑−(𝑥,𝜇)

+ Σ𝑡 [𝜑(𝑥, 𝜇) + 𝜑(𝑥,−𝜇)]⏟            
2𝜑+(𝑥,𝜇)

= 2 [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] 𝜙(𝑥) 

 𝜇
𝜕

𝜕𝑥
𝜑−(𝑥, 𝜇) + Σ𝑡𝜑

+(𝑥, 𝜇) = [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] 𝜙(𝑥) (6.26) 

Subtracting Eq. (6.19) from (6.25) 

−𝜇
𝜕

𝜕𝑥
𝜑(𝑥,−𝜇) − 𝜇

𝜕

𝜕𝑥
𝜑(𝑥, 𝜇) + Σ𝑡𝜑(𝑥,−𝜇) − Σ𝑡𝜑(𝑥, 𝜇) = 0 

−𝜇
𝜕

𝜕𝑥
[𝜑(𝑥, 𝜇) + 𝜑(𝑥,−𝜇)]⏟            

2𝜑+(𝑥,𝜇)

− Σ𝑡 [𝜑(𝑥, 𝜇) − 𝜑(𝑥,−𝜇)]⏟            
2𝜑−(𝑥,𝜇)

= 0 

 −𝜇
𝜕

𝜕𝑥
𝜑+(𝑥, 𝜇) − Σ𝑡𝜑

−(𝑥, 𝜇) = 0 (6.27) 

Eq. (6.27) gives 

 𝜑−(𝑥, 𝜇) = −
𝜇

Σ𝑡

𝜕

𝜕𝑥
𝜑+(𝑥, 𝜇) (6.28) 

Inserting Eq. (6.28) into (6.26): 

 −
𝜇2

Σ𝑡

𝜕2

𝜕𝑥2
𝜑+(𝑥, 𝜇) + Σ𝑡𝜑

+(𝑥, 𝜇) = [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] 𝜙(𝑥) (6.29) 

Legendre expansion for the even flux 

 𝜑+(𝑥, 𝜇) = ∑ (2𝑙 + 1)𝑃𝑙(𝜇)𝜙𝑙(𝑥)

𝐿

𝑙=0
𝑙 𝑒𝑣𝑒𝑛

 (6.30) 

Substituting this expansion into Eq. (6.30) yields 
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−
𝜇2

Σ𝑡
∑ (2𝑙 + 1)𝑃𝑙(𝜇)

𝑑2𝜙𝑙(𝑥)

𝑑𝑥2

𝐿

𝑙=0
𝑙 𝑒𝑣𝑒𝑛

+ Σ𝑡 ∑ (2𝑙 + 1)𝑃𝑙(𝜇)𝜙𝑙(𝑥)

𝐿

𝑙=0
𝑙 𝑒𝑣𝑒𝑛

 

= [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] 𝜙(𝑥)                                                                                 

(6.31) 

Multiplying Eq. (6.31) by 
1

2
𝑃𝑛(𝜇) and integrating over 𝜇 

 

1

Σ𝑡
∑ (2𝑙 + 1)(

1

2
∫𝜇2𝑃𝑙(𝜇)𝑃𝑛(𝜇)𝑑𝜇

1

−1

)
𝑑2𝜙𝑙(𝑥)

𝑑𝑥2

𝐿

𝑙=0
𝑙 𝑒𝑣𝑒𝑛

 

+Σ𝑡 ∑ (2𝑙 + 1)(
1

2
∫𝑃𝑙(𝜇)𝑃𝑛(𝜇)𝑑𝜇

1

−1

)𝜙𝑙(𝑥)

𝐿

𝑙=0
𝑙 𝑒𝑣𝑒𝑛

      

= [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] (

1

2
∫𝑃𝑛(𝜇)𝑑𝜇

1

−1

)𝜙(𝑥)                      

(6.32) 

With 𝑃3 approximation: 

−
1

Σ𝑡
[(
1

2
∫𝜇2𝑃0(𝜇)𝑃𝑛(𝜇)𝑑𝜇

1

−1

)
𝑑2𝜙0
𝑑𝑥2

+ 5(
1

2
∫𝜇2𝑃2(𝜇)𝑃𝑛(𝜇)𝑑𝜇

1

−1

)
𝑑2𝜙2
𝑑𝑥2

] 

+Σ𝑡 [(
1

2
∫𝑃0(𝜇)𝑃𝑛(𝜇)𝑑𝜇

1

−1

)𝜙0 + 5(
1

2
∫𝑃2(𝜇)𝑃𝑛(𝜇)𝑑𝜇

1

−1

)𝜙2]                   

= [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] (

1

2
∫𝑃𝑛(𝜇)𝑑𝜇

1

−1

)𝜙0                                                                     

(6.33) 

since 𝜙0(𝑥) ≅ 𝜙(𝑥) [1]. For 𝑛 = 0: 

 

−
1

Σ𝑡
[(
1

2
∫𝜇2𝑃0

2(𝜇)𝑑𝜇

1

−1

)
𝑑2𝜙0
𝑑𝑥2

+ 5(
1

2
∫𝜇2𝑃2(𝜇)𝑃0(𝜇)𝑑𝜇

1

−1

)
𝑑2𝜙2
𝑑𝑥2

] 

+Σ𝑡 [(
1

2
∫𝑃0

2(𝜇)𝑑𝜇

1

−1

)𝜙0 + 5(
1

2
∫𝑃2(𝜇)𝑃0(𝜇)𝑑𝜇

1

−1

)𝜙2]                    
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= [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] (

1

2
∫𝑃0(𝜇)𝑑𝜇

1

−1

)𝜙0                                                          

With 𝑃0(𝜇) = 1 and 𝑃2(𝜇) = (3𝜇
2 − 1) 2⁄  it is easy to show that 

 −
1

3Σ𝑡

𝑑2𝜙0(𝑥)

𝑑𝑥2
−
2

3Σ𝑡

𝑑2𝜙2(𝑥)

𝑑𝑥2
+ Σ𝑡𝜙0(𝑥) = Σ𝑠𝜙0(𝑥) +

1

𝜆
𝜐Σ𝑓𝜙0(𝑥) (6.34) 

For 𝑛 = 2: 

 

−
1

Σ𝑡
[(
1

2
∫𝜇2𝑃0(𝜇)𝑃2(𝜇)𝑑𝜇

1

−1

)
𝑑2𝜙0
𝑑𝑥2

+ 5(
1

2
∫𝜇2𝑃2

2(𝜇)𝑑𝜇

1

−1

)
𝑑2𝜙2
𝑑𝑥2

] 

+Σ𝑡 [(
1

2
∫𝑃0(𝜇)𝑃2(𝜇)𝑑𝜇

1

−1

)𝜙0 + 5(
1

2
∫𝑃2

2(𝜇)𝑑𝜇

1

−1

)𝜙2]                   

= [Σ𝑠 +
1

𝜆
𝜐Σ𝑓] (

1

2
∫𝑃2(𝜇)𝑑𝜇

1

−1

)𝜙0                                                           

(6.35) 

Evaluating the integrals results with 

 −
2

15Σ𝑡

𝑑2𝜙0(𝑥)

𝑑𝑥2
−
11

21Σ𝑡

𝑑2𝜙2(𝑥)

𝑑𝑥2
+ Σ𝑡𝜙2(𝑥) = 0 (6.36) 

Therefore the equations of the even parity 𝑃3 approximation, Eqs. (6.34) and (6.36), 

are obtained. These two ordinary differential equations can be cast into a fourth order 

equation so that an analytical solution can be found. To achieve this goal, first Eq. 

(6.34) is multiplied by −3𝜎𝑡 

 
𝑑2𝜙0(𝑥)

𝑑𝑥2
+ 2

𝑑2𝜙2(𝑥)

𝑑𝑥2
= 3Σ𝑡 (Σ𝑎 −

1

𝜆
𝜐Σ𝑓)𝜙0(𝑥) (6.37) 

where Σ𝑎 = Σ𝑡 − Σ𝑠. By utilizing Eqs. (6.34) and (6.36), the second flux moment can 

be written in terms of the zeroth moment as 

 𝜙2(𝑥) =
11

14Σ𝑡
(Σ𝑎 −

1

𝜆
𝜐Σ𝑓)𝜙0(𝑥) −

9

70Σ𝑡
2

𝑑2𝜙0(𝑥)

𝑑𝑥2
 (6.38) 

Differentiating both sides of Eq. (6.38) with respect to 𝑥 gives 
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𝑑2𝜙2(𝑥)

𝑑𝑥2
=

11

14Σ𝑡
(Σ𝑎 −

1

𝜆
𝜐Σ𝑓)

𝑑2𝜙0(𝑥)

𝑑𝑥2
−

9

70Σ𝑡
2

𝑑4𝜙0(𝑥)

𝑑𝑥4
 (6.39) 

Inserting Eq. (6.39) into Eq. (6.37) and rearranging terms yields the fourth order 

equation: 

 

𝑑4𝜙0(𝑥)

𝑑𝑥4
−
5

9
Σ𝑡(11Σ𝑎 + 7Σ𝑡)

𝑑2𝜙0(𝑥)

𝑑𝑥2
+
35

3
Σ𝑡
3𝜎𝑎𝜙0(𝑥) 

=
35

3
Σ𝑡
3
1

𝜆
𝜐Σ𝑓𝜙0(𝑥) −

55

9
Σ𝑡
1

𝜆
𝜐Σ𝑓

𝑑2𝜙0(𝑥)

𝑑𝑥2
                        

(6.40) 

Next, the boundary conditions will be derived. By using Eqs. (6.24) and (6.27) it can 

be shown that 

 𝜑(𝑥, 𝜇) = 𝜑+(𝑥, 𝜇) −
𝜇

Σ𝑡

𝜕

𝜕𝑥
𝜑+(𝑥, 𝜇) (6.41) 

Substituting this into Eq. (6.20) 

 
1

2
∫𝑃𝑙(𝜇) [𝜑

+ −
𝜇

Σ𝑡

𝜕

𝜕𝑥
𝜑+] 𝑑𝜇

0

−1

= 0 (6.42) 

Then using the 𝑃3 expansion 

 𝜑+(𝑥, 𝜇) = 𝑃0(𝜇)𝜙0(𝑥) + 5𝑃2(𝜇)𝜙2(𝑥) (6.43) 

in Eq. (6.42) results with 

 

∫𝑃𝑙(𝜇)[𝜙0(𝑎) + 5𝑃2(𝜇)𝜙2(𝑎)]𝑑𝜇

0

−1

                                 

−
1

Σ𝑡

𝜕

𝜕𝑥
∫𝜇𝑃𝑙(𝜇)[𝜙0(𝑥) + 5𝑃2(𝜇)𝜙2(𝑥)]𝑑𝜇

0

−1

|

𝑥=𝑎

= 0 

(6.44) 

For = 1 𝑃1(𝜇) = 𝜇. Then evaluating the integrals gives 

 
1

2
𝜙0(𝑎) +

1

3Σ𝑡

𝑑𝜙0
𝑑𝑥
|
𝑥=𝑎

+
5

8
𝜙2(𝑎) +

2

3Σ𝑡

𝑑𝜙2
𝑑𝑥
|
𝑥=𝑎

= 0 (6.45) 
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For 𝑙 = 3 𝑃3(𝜇) = (5𝜇
3 − 3𝜇) 2⁄  and Eq. (6.44) yields 

 
1

8
𝜙0(𝑎) −

5

8
𝜙2(𝑎) −

3

7Σ𝑡

𝑑𝜙2
𝑑𝑥
|
𝑥=𝑎

= 0 (6.46) 

Boundary conditions can also be transformed so that a compatible form with the 

fourth order equation can be obtained. Using Eq. (6.46) 

 
𝑑𝜙2
𝑑𝑥
|
𝑥=𝑎

=
7Σ𝑡
24
𝜙0(𝑎) −

35Σ𝑡
24

𝜙2(𝑎) (6.47) 

Inserting this result into Eq. (6.45) 

 𝜙2(𝑎) = 2𝜙0(𝑎) +
24

25Σ𝑡

𝑑𝜙0
𝑑𝑥
|
𝑥=𝑎

 (6.48) 

Then using this in Eq. (6.47) 

 
𝑑𝜙2
𝑑𝑥
|
𝑥=𝑎

= −
21Σ𝑡
8
𝜙0(𝑎) −

7

5

𝑑𝜙0
𝑑𝑥
|
𝑥=𝑎

 (6.49) 

Substituting Eq. (6.38) into Eq. (6.48) gives 

 

9

70Σ𝑡
2

𝑑2𝜙0
𝑑𝑥2

|
𝑥=𝑎

+
24

25Σ𝑡

𝑑𝜙0
𝑑𝑥
|
𝑥=𝑎

+ [2 −
11

14

Σ𝑎
Σ𝑡
] 𝜙0(𝑎) 

= −
11

14

1

𝜆
𝜐Σ𝑓

1

Σ𝑡
𝜙0(𝑎)                                                         

(6.50) 

Differentiating Eq. (6.38) results with 

 
𝑑𝜙2
𝑑𝑥

= −
9

70Σ𝑡
2

𝑑3𝜙0
𝑑𝑥3

+
11

14Σ𝑡
(Σ𝑎 −

1

𝜆
𝜐Σ𝑓)

𝑑𝜙0
𝑑𝑥

 (6.51) 

Substituting Eq. (6.49) into Eq. (6.51) 

 

−
9

70Σ𝑡
2

𝑑3𝜙0
𝑑𝑥3

|
𝑥=𝑎

+ (
7

5
+
11

14

Σ𝑎
Σ𝑡
)
𝑑𝜙0
𝑑𝑥
|
𝑥=𝑎

+
21

8
Σ𝑡𝜙0(𝑎) 

=
11

14

𝜐Σ𝑓
Σ𝑡

1

𝜆

𝑑𝜙0
𝑑𝑥
|
𝑥=𝑎
                                                                    

(6.52) 
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Therefore the derivation of Marshak boundary conditions compatible with the fourth 

order equation, Eqs. (6.50) and (6.52), is completed. 

Final task is to derive the reflective boundary conditions. Substituting Eq. (6.41) into 

Eq. (6.21) 

 ∫𝑃𝑛(𝜇)𝜑
+(0, 𝜇)𝑑𝜇

1

−1

−
1

Σ𝑡
∫𝜇𝑃𝑛(𝜇)

𝜕𝜑+

𝜕𝑥
|
𝑥=0

𝑑𝜇

1

−1

= 0 (6.53) 

Since the integrand is odd 

 ∫𝑃𝑛(𝜇)𝜑
+(0, 𝜇)𝑑𝜇

1

−1

= 0 (6.54) 

and hence 

 ∫𝜇𝑃𝑛(𝜇)
𝜕𝜑+

𝜕𝑥
|
𝑥=0

𝑑𝜇

1

−1

= 0 (6.55) 

Following a similar path to the derivation of Marshak boundary conditions the 

following reflective boundary conditions can be obtained: 

 
1

3

𝑑𝜙0(𝑥)

𝑑𝑥
|
𝑥=0

+
2

3

𝑑𝜙2(𝑥)

𝑑𝑥
|
𝑥=0

= 0 (6.56) 

 
𝑑𝜙2(𝑥)

𝑑𝑥
|
𝑥=0

= 0 (6.57) 

Finally, reflective boundary conditions compatible with the fourth order equation can 

be obtained by substituting Eq. (6.57) into Eq. (6.56) and from Eq. (6.51), 

 
𝑑𝜙0(𝑥)

𝑑𝑥
|
𝑥=0

= 0 (6.58) 

 
𝑑3𝜙0(𝑥)

𝑑𝑥3
|
𝑥=0

= 0 (6.59) 

respectively. 

The analytical solution of Eq. (6.40) can be obtained as follows. By defining 
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 𝛼 =
3

35Σ𝑡
,      𝛽 =

Σ𝑡
3
+
11

21
(Σ𝑎 − 𝜐Σ𝑓),      𝛾 = Σ𝑡

2(Σ𝑎 − 𝜐Σ𝑓) (6.60) 

one can write 

 𝛼
𝑑4𝜙

𝑑𝑥4
− 𝛽

𝑑2𝜙

𝑑𝑥2
+ 𝛾𝜙 = 0 (6.61) 

This equation can be rewritten as 

 (
𝑑2

𝑑𝑥2
− 𝜇2)(

𝑑2

𝑑𝑥2
+ 𝜆2)𝜙 = 0 (6.62) 

Then 

 
𝑑4𝜙

𝑑𝑥4
+ (𝜆2 − 𝜇2)

𝑑2𝜙

𝑑𝑥2
− 𝜇2𝜆2𝜙 = 0 (6.63) 

Comparing Eq. (6.63) with Eq. (6.61) 

 𝜆4 +
𝛽

𝛼
𝜆2 +

𝛾

𝛼
= 0 (6.64) 

Therefore 

 𝜆1
2 = −

𝛽

2𝛼
(1 + √1 −

4𝛼𝛾

𝛽2
),     𝜆2

2 = −
𝛽

2𝛼
(1 − √1 −

4𝛼𝛾

𝛽2
) (6.65) 

In a similar way 𝜇1
2 and 𝜇2

2 can be found to be 

 𝜇1
2 =

𝛽

2𝛼
(1 + √1 −

4𝛼𝛾

𝛽2
),      𝜇2

2 =
𝛽

2𝛼
(1 − √1 −

4𝛼𝛾

𝛽2
) (6.66) 

From Eq. (6.62) 

 (
𝑑2

𝑑𝑥2
− 𝜇2)𝑋 = 0,      (

𝑑2

𝑑𝑥2
+ 𝜆2)𝑌 = 0 (6.67) 

and thus 



  

113 

 

 𝑋(𝑥) = cosh(𝜇𝑥) ,        𝑌(𝑥) = cos(𝜆𝑥) (6.68) 

Since 

 𝜙(𝑥) = 𝐴 cosh(𝜇𝑥) + 𝐶 cos(𝜆𝑥) (6.69) 

the following equations can be obtained from the Marshak boundary conditions (i.e., 

Eqs. (6.50) and (6.52)) 

 

{[
9𝜇2

70Σ𝑡
2 + (2 −

11

14

Σ𝑎 − 𝜐Σ𝑓
Σ𝑡

)] cosh(𝜇𝑎) +
24𝜇

25Σ𝑡
sinh(𝜇𝑎)}               

+𝐶 {[−
9𝜆2

70Σ𝑡
2 + (2 −

11

14

Σ𝑎 − 𝜐Σ𝑓
Σ𝑡

)] cos(𝜆𝑎) −
24𝜆

25Σ𝑡
sin(𝜆𝑎)} = 0 

(6.70) 

 

{[
9𝜇3

70Σ𝑡
2 − (

7

5
+
11

14

Σ𝑎 − 𝜐Σ𝑓
Σ𝑡

) 𝜇] sinh(𝜇𝑎) −
21Σ𝑡
8
cosh(𝜇𝑎)}         

+𝐶 {[
9𝜆3

70Σ𝑡
2 + (

7

5
+
11

14

Σ𝑎 − 𝜐Σ𝑓
Σ𝑡

) 𝜆] sin(𝜆𝑎) −
21Σ𝑡
8
cos(𝜆𝑎)} = 0 

(6.71) 

By defining  

 𝑎1 =
9

70Σ𝑡
2 ,    𝑎2 =

11

14

Σ𝑎 − 𝜐Σ𝑓
Σ𝑡

,    𝑎3 =
21Σ𝑡
8
,    𝑎4 =

24

25Σ𝑡
 (6.72) 

a relation between the constants 𝐴 and 𝐶 can be found from Eqs. (6.70) and (6.71) 

 
𝐶

𝐴
= −

𝜇 [𝑎1𝜇
2 − (

7
5
+ 𝑎2)] sinh(𝜇𝑎) − 𝑎3 cosh(𝜇𝑎)

𝜆 [𝑎1𝜆
2 + (

7
5
+ 𝑎2)] sin(𝜆𝑎) − 𝑎3 cos(𝜆𝑎)

 (6.73) 

In a similar way, using the reflective boundary conditions one can show that 

 
𝐶

𝐴
= −

[𝑎1𝜇
2 + (2 − 𝑎2)] cosh(𝜇𝑎) + 𝑎4𝜇 sinh(𝜇𝑎)

[−𝑎1𝜆
2 + (2 − 𝑎2)] 𝑐𝑜𝑠(𝜆𝑎) − 𝑎4𝜆 𝑠𝑖𝑛(𝜆𝑎)

 (6.74) 

Combining Eqs. (6.73) and (6.74) yields 

 𝑓(𝜇𝑎) − 𝑔(𝜇𝑎) = 0 (6.75) 

where 
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 𝑓(𝜇𝑎) =
𝜇 [𝑎1𝜇

2 − (
7
5
+ 𝑎2)] sinh(𝜇𝑎) − 𝑎3 cosh(𝜇𝑎)

𝜆 [𝑎1𝜆
2 + (

7
5
+ 𝑎2)] sin(𝜆𝑎) − 𝑎3 cos(𝜆𝑎)

 (6.76) 

 𝑔(𝜇𝑎) =
[𝑎1𝜇

2 + (2 − 𝑎2)] cosh(𝜇𝑎) + 𝑎4𝜇 sinh(𝜇𝑎)

[−𝑎1𝜆
2 + (2 − 𝑎2)] 𝑐𝑜𝑠(𝜆𝑎) − 𝑎4𝜆 𝑠𝑖𝑛(𝜆𝑎)

 (6.77) 

The solution of Eq. (6.75) provides the value of 𝑎 which sustains a critical system. 

As an example if Σ𝑎 = 0.2Σ𝑡 and 𝜐Σ𝑓 = 0.246Σ𝑡 then the critical thickness can be 

found numerically to be 𝑎 = 4.102640972417Σ𝑡. 

6.3 Numerical Formulations 

6.3.1 𝑷𝟑 equations 

For ease of illustration an external source problem is considered with anisotropic 

scattering. In this case the 𝑃𝑁 equations become 

 

𝑑𝜙1
𝑑𝑥

+ [Σ𝑡 − Σ𝑠,0]𝜙0 = 𝑠0                                                                                      

𝑛 + 1

2𝑛 + 1

𝑑𝜙𝑛+1
𝑑𝑥

+
𝑛

2𝑛 + 1

𝑑𝜙𝑛−1
𝑑𝑥

+ [Σ𝑡 − Σ𝑠,𝑛]𝜙𝑛 = 𝑠𝑛, 𝑛 = 1,2,… , 𝑁 − 1 

𝑁

2𝑁 + 1

𝑑𝜙𝑁−1
𝑑𝑥

+ [Σ𝑡 − Σ𝑠,𝑁]𝜙𝑁 = 𝑠𝑁                                                                 

(6.78) 

Then the 𝑃3 equations are 

 

𝑑𝜙1(𝑥)

𝑑𝑥
+ [Σ𝑡 − Σ𝑠,0]𝜙0(𝑥) = 𝑠0(𝑥)                           

2

3

𝑑𝜙2(𝑥)

𝑑𝑥
+
1

3

𝑑𝜙0(𝑥)

𝑑𝑥
+ [Σ𝑡 − Σ𝑠,1]𝜙1(𝑥) = 𝑠1(𝑥) 

3

5

𝑑𝜙3(𝑥)

𝑑𝑥
+
2

5

𝑑𝜙1(𝑥)

𝑑𝑥
+ [Σ𝑡 − Σ𝑠,2]𝜙2(𝑥) = 𝑠2(𝑥) 

3

7

𝑑𝜙2(𝑥)

𝑑𝑥
+ [Σ𝑡 − Σ𝑠,3]𝜙3(𝑥) = 𝑠3(𝑥)                        

(6.79) 

The Marshak boundary conditions can be derived by substituting the Legendre 

expansion 
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 𝜑(𝑎, 𝜇) = ∑(2𝑚 + 1)𝑃𝑚(𝜇)𝜙𝑚(𝑎)

3

𝑚=0

 (6.80) 

into Eq. (6.12) and evaluating the integrals. The resultant equations are 

 

−
1

2
𝜙0(𝑎) + 𝜙1(𝑎) −

5

8
𝜙2(𝑎) = 0 

1

8
𝜙0(𝑎) −

5

8
𝜙2(𝑎) + 𝜙3(𝑎) = 0 

(6.81) 

Finally the reflective boundary conditions are 

 
𝜙1(0) = 0 

𝜙3(0) = 0 
(6.82) 

The numerical formulation of the problem starts by discretizing the problem domain 

with 𝑀 nodes and an external node to improve the accuracy. When this discretization 

is compared with those made for diffusion problems, it is seen that the external node 

is created on only one side of the domain. If external nodes are used on both sides the 

collocation matrix becomes underdetermined, and there will be no solution. On the 

other hand with the even-parity form this problem can be solved and external nodes 

can be chosen on both sides of the domain.  A typical set of nodes with 𝑀 = 6 is 

illustrated in Figure 6.1. 

 

Figure 6.1: Discretization of the 1-D domain with 𝑀 = 6. 

Then the flux moments are approximated with 𝑀 radial basis functions: 

 𝜙𝑛(𝑥) =∑𝑎𝑗𝜓𝑗(𝑥)

𝑀

𝑗=1

,   𝑛 = 0,1,2,3 (6.83) 

Substituting these approximations into the differential equations and boundary 

conditions results with: 
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 ∑𝑎𝑗[(Σ𝑡 − Σ𝑠,0)𝜓𝑗]

𝑀

𝑗=1

+ ∑ 𝑎𝑗
𝑑𝜓𝑗
𝑑𝑥

2𝑀

𝑗=𝑀+1

= 𝑠0                                                

 ∑𝑎𝑗 [
1

3

𝑑𝜓𝑗
𝑑𝑥
]

𝑀

𝑗=1

+ ∑ 𝑎𝑗[(Σ𝑡 − Σ𝑠,1)𝜓𝑗]

2𝑀

𝑗=𝑀+1

+ ∑ 𝑎𝑗 [
2

3

𝑑𝜓𝑗
𝑑𝑥
]

3𝑀

𝑗=2𝑀+1

= 𝑠1   

(6.84) 

 ∑ 𝑎𝑗 [
2

5

𝑑𝜓𝑗
𝑑𝑥
]

2𝑀

𝑗=𝑀+1

+ ∑ 𝑎𝑗[(Σ𝑡 − Σ𝑠,2)𝜓𝑗]

3𝑀

𝑗=2𝑀+1

+ ∑ 𝑎𝑗 [
3

5

𝑑𝜓𝑗
𝑑𝑥
]

4𝑀

𝑗=3𝑀+1

= 𝑠2 

 ∑ 𝑎𝑗 [
3

7

𝑑𝜓𝑗
𝑑𝑥
]

3𝑀

𝑗=2𝑀+1

+ ∑ 𝑎𝑗[(Σ𝑡 − Σ𝑠,3)𝜓𝑗]

4𝑀

𝑗=3𝑀+1

= 𝑠3                                      

 

∑𝑎𝑗 [−
1

2
𝜓𝑗]

𝑀

𝑗=1

+ ∑ 𝑎𝑗𝜓𝑗

2𝑀

𝑗=𝑀+1

+ ∑ 𝑎𝑗 [−
5

8
𝜓𝑗]

3𝑀

𝑗=2𝑀+1

= 0                       

∑𝑎𝑗 [
1

8
𝜓𝑗]

𝑀

𝑗=1

+ ∑ 𝑎𝑗 [−
5

8
𝜓𝑗]

3𝑀

𝑗=2𝑀+1

+ ∑ 𝑎𝑗𝜓𝑗

4𝑀

𝑗=3𝑀+1

= 0                        

(6.85) 

 

∑ 𝑎𝑗𝜓𝑗

2𝑀

𝑗=𝑀+1

= 0                                                                                                  

∑ 𝑎𝑗𝜓𝑗

4𝑀

𝑗=3𝑀+1

= 0                                                                                                 

(6.86) 

Then these equations are collocated at the discretization nodes  

∑𝑎𝑗[(Σ𝑡 − Σ𝑠,0)𝜓𝑖𝑗]

𝑀

𝑗=1

+ ∑ 𝑎𝑗
𝑑𝜓𝑖𝑗
𝑑𝑥

2𝑀

𝑗=𝑀+1

= 𝑠0,𝑖 ,       𝑖 = 1,… ,𝑀                     

∑𝑎𝑗 [
1

3

𝑑𝜓𝑖𝑗
𝑑𝑥

]

𝑀

𝑗=1

+ ∑ 𝑎𝑗[(Σ𝑡 − Σ𝑠,1)𝜓𝑖𝑗]

2𝑀

𝑗=𝑀+1

+ ∑ 𝑎𝑗 [
2

3

𝑑𝜓𝑖𝑗
𝑑𝑥

]

3𝑀

𝑗=2𝑀+1

= 𝑠1,𝑖     

𝑖 = 𝑀 + 1,… ,2𝑀                                                                                                       

∑ 𝑎𝑗 [
2

5

𝑑𝜓𝑖𝑗
𝑑𝑥

]

2𝑀

𝑗=𝑀+1

+ ∑ 𝑎𝑗[(Σ𝑡 − Σ𝑠,2)𝜓𝑖𝑗]

3𝑀

𝑗=2𝑀+1

+ ∑ 𝑎𝑗 [
3

5

𝑑𝜓𝑖𝑗
𝑑𝑥

]

4𝑀

𝑗=3𝑀+1

= 𝑠2,𝑖 

𝑖 = 2𝑀 + 1,… ,3𝑀                                                                                                     

∑ 𝑎𝑗 [
3

7

𝑑𝜓𝑖𝑗
𝑑𝑥

]

3𝑀

𝑗=2𝑀+1

+ ∑ 𝑎𝑗[(Σ𝑡 − Σ𝑠,3)𝜓𝑖𝑗]

4𝑀

𝑗=3𝑀+1

= 𝑠3,𝑖 ,   𝑖 = 3𝑀 + 1,… ,4𝑀 
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∑𝑎𝑗 [−
1

2
𝜓𝑖𝑗]

𝑀

𝑗=1

+ ∑ 𝑎𝑗𝜓𝑖𝑗

2𝑀

𝑗=𝑀+1

+ ∑ 𝑎𝑗 [−
5

8
𝜓𝑖𝑗]

3𝑀

𝑗=2𝑀+1

= 0,     𝑖 = 𝑀         

∑𝑎𝑗 [
1

8
𝜓𝑖𝑗]

𝑀

𝑗=1

+ ∑ 𝑎𝑗 [−
5

8
𝜓𝑖𝑗]

3𝑀

𝑗=2𝑀+1

+ ∑ 𝑎𝑗𝜓𝑖𝑗

4𝑀

𝑗=3𝑀+1

= 0,      𝑖 = 𝑀         

∑ 𝑎𝑗𝜓𝑖𝑗

2𝑀

𝑗=𝑀+1

= 0,      𝑖 = 1                                                                                       

∑ 𝑎𝑗𝜓𝑖𝑗

4𝑀

𝑗=3𝑀+1

= 0,      𝑖 = 1                                                                                      

These collocation equations can be cast into a (4 × 𝑀) × (4 × 𝑀) system of 

algebraic equations: 

 𝑲𝒂 = 𝒇 (6.87) 

Here the matrix 𝑲 contains the coefficients in Eqs. (6.84)-(6.86), 𝒂 is a 4 × 𝑀 vector 

of the coefficients 𝑎𝑗 and 𝒇 is a 4 × 𝑀 vector of the right hand side of Eqs. (6.84)-

(6.86). Solution of Eq. (6.87) yields the coefficients and hence the numerical 

solution. 

6.3.2 Even-parity 𝑷𝟑 equations 

There are two alternatives for the numerical formulation when the even-parity form 

of the 𝑃3 approximation is considered. As seen earlier the two ordinary differential 

equations can be cast into a single fourth order equation, and compatible boundary 

conditions can be derived from the original Marshak and reflective boundary 

conditions.  

In the first route, the coupled equations together with the boundary conditions will be 

approximated by the RBFs. Once again the first step is the discretization of the 

domain as observed in Figure 6.1 and to interpolate the flux moments by 

 𝜙𝑛(𝑥) =∑𝑎𝑗𝜓𝑗(𝑥)

𝑀

𝑗=1

,   𝑛 = 0,2 (6.88) 

Next, these two series are substituted into the Eqs. (6.34), (6.36), (6.45), (6.46), 

(6.57) and (6.58) to give 
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∑𝑎𝑗 [−
1

3Σ𝑡

𝑑2𝜓𝑗
𝑑𝑥2

+ Σ𝑎𝜓𝑗]

𝑀

𝑗=1

+ ∑ 𝑎𝑗 [−
2

3Σ𝑡

𝑑2𝜓𝑗
𝑑𝑥2

]

2𝑀

𝑗=𝑀+1

= 𝑠      

∑𝑎𝑗 [−
2

15Σ𝑡

𝑑2𝜓𝑗
𝑑𝑥2

]

𝑀

𝑗=1

+ ∑ 𝑎𝑗 [−
11

21Σ𝑡

𝑑2𝜓𝑗
𝑑𝑥2

+ Σ𝑡𝜓𝑗]

2𝑀

𝑗=𝑀+1

= 0 

(6.89) 

 

∑𝑎𝑗 [
1

2
𝜓𝑗 +

1

3Σ𝑡

𝑑𝜓𝑗
𝑑𝑥
]

𝑀

𝑗=1

+ ∑ 𝑎𝑗 [
5

8
𝜓𝑗 +

2

3Σ𝑡

𝑑𝜓𝑗
𝑑𝑥
]

2𝑀

𝑗=𝑀+1

= 0      

∑𝑎𝑗
1

8
𝜓𝑗

𝑀

𝑗=1

+ ∑ 𝑎𝑗

2𝑀

𝑗=𝑀+1

[−
5

8
𝜓𝑗 −

3

7Σ𝑡

𝑑𝜓𝑗
𝑑𝑥
] = 0                         

(6.90) 

 

∑𝑎𝑗
𝑑𝜓𝑗
𝑑𝑥

𝑀

𝑗=1

= 0                                                                                   

∑ 𝑎𝑗
𝑑𝜓𝑗
𝑑𝑥

2𝑀

𝑗=𝑀+1

= 0                                                                                  

(6.91) 

These equations can be cast into a matrix form similar to Eq. (6.87). Notice that with 

the even parity form, the resulting system of equations has a dimension of (2 × 𝑀) ×

(2 × 𝑀). 

The second alternative for the numerical solution of the even parity 𝑃3 equations is to 

deal with the fourth order equation, Eq. (6.40). In this case there is only one flux 

moment to be approximated: 

 𝜙0(𝑥) =∑𝑎𝑗𝜓𝑗(𝑥)

𝑀

𝑗=1

 (6.92) 

Substituting Eq. (6.92) into Eqs. (6.40), (6.50), (6.52), (6.58) and (6.59) gives the 

following: 

 

∑𝑎𝑗 [
𝑑4𝜓𝑗
𝑑𝑥4

−
5

9
Σ𝑡(11Σ𝑎 + 7Σ𝑡)

𝑑2𝜓𝑗
𝑑𝑥2

+
35

3
Σ𝑡
3Σ𝑎𝜓𝑗]

𝑀

𝑗=1

                      

=
Σ𝑡
3
[35Σ𝑡

2𝑠 −
55

3

𝑑2𝑠

𝑑𝑥2
]                                                                           

(6.93) 
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∑𝑎𝑗 [
9

70Σ𝑡
2

𝑑2𝜓𝑗
𝑑𝑥2

+
24

25Σ𝑡

𝑑𝜓𝑗
𝑑𝑥

+ (2 −
11

14

Σ𝑎
Σ𝑡
)𝜓𝑗]

𝑀

𝑗=1

= −
11𝑠

14Σ𝑡
          

∑𝑎𝑗 [−
9

70Σ𝑡
2

𝑑3𝜓𝑗
𝑑𝑥3

+ (
7

5
+
11

14

Σ𝑎
Σ𝑡
)
𝑑𝜓𝑗
𝑑𝑥

+
21

8
Σ𝑡𝜓𝑗]

𝑀

𝑗=1

= −
11

14Σ𝑡

𝑑𝑠

𝑑𝑥
 

(6.94) 

 

∑𝑎𝑗
𝑑𝜓𝑗
𝑑𝑥

𝑀

𝑗=1

= 0                                                                                              

∑𝑎𝑗
𝑑3𝜓𝑗
𝑑𝑥3

𝑀

𝑗=1

= 0                                                                                           

(6.95) 

Once again the fission source terms are replaced by external source terms. Final step 

of the formulation is the collocation of Eqs. (6.93)-(6.95) 

∑𝑎𝑗 [
𝑑4𝜓𝑖𝑗
𝑑𝑥4

−
5

9
Σ𝑡(11Σ𝑎 + 7Σ𝑡)

𝑑2𝜓𝑖𝑗
𝑑𝑥2

+
35

3
Σ𝑡
3Σ𝑎𝜓𝑖𝑗]

𝑀

𝑗=1

=
Σ𝑡
3
[35Σ𝑡

2𝑠𝑖 −
55

3

𝑑2𝑠𝑖
𝑑𝑥2

] 

𝑖 = 1,… ,𝑀                                                                                                                               

∑𝑎𝑗 [
9

70Σ𝑡
2

𝑑2𝜓𝑖𝑗
𝑑𝑥2

+
24

25Σ𝑡

𝑑𝜓𝑖𝑗
𝑑𝑥

+ (2 −
11

14

Σ𝑎
Σ𝑡
)𝜓𝑖𝑗]

𝑀

𝑗=1

= −
11𝑠𝑖
14Σ𝑡

,              𝑖 = 𝑀       

∑𝑎𝑗 [−
9

70Σ𝑡
2

𝑑3𝜓𝑖𝑗
𝑑𝑥3

+ (
7

5
+
11

14

Σ𝑎
Σ𝑡
)
𝑑𝜓𝑖𝑗
𝑑𝑥

+
21

8
Σ𝑡𝜓𝑖𝑗]

𝑀

𝑗=1

= −
11

14Σ𝑡

𝑑𝑠𝑖
𝑑𝑥
,   𝑖 = 𝑀      

∑𝑎𝑗
𝑑𝜓𝑖𝑗
𝑑𝑥

𝑀

𝑗=1

= 0,     𝑖 = 1                                                                                                       

∑𝑎𝑗
𝑑3𝜓𝑖𝑗
𝑑𝑥3

𝑀

𝑗=1

= 0,   𝑖 = 1                                                                                                      

These collocation equations can be cast into a (1 × 𝑀) × (1 × 𝑀) matrix equation. 

When this dimension size is compared with those of the previous formulations, it is 

seen that this last method is advantageous to the previous ones in terms of the CPU 

time. But, in the next section, it will observed that, approximating the fourth order 

derivatives with RBFs directly is an important price to pay when accuracy is 

considered. 
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6.4 Results 

To test the accuracy and stability of the RBF collocation method four problems are 

considered. All calculations are performed with MATHEMATICA 7 on a 2.7 GHz 

computer. Depending on the type of problem two error criteria, root mean square 

error in flux and relative percent error in the multiplication factor are used to assess 

the performance of the numerical scheme. Multiquadric is chosen as the RBF. 

6.4.1 External source problem 

The first problem is an external source case where a constant source term, 𝑠(𝑥) =

1 𝑛 𝑐𝑚3𝑠⁄ , is chosen. This problem is solved within the even-parity 𝑃3 context, and 

as mentioned in the previous section two algorithms are possible with this form of 

the transport equation. The cross sections are taken as Σ𝑡 = 1 𝑐𝑚
−1, Σ𝑎 = 0.2 𝑐𝑚

−1 

and the size of the domain is 𝑎 = 5 𝑐𝑚. With these parameters the flux distribution is 

𝜙0(𝑥) = 5 − 0.000014215 exp(−2.14577𝑥) − 0.077749 exp(−0.71188𝑥)

− 0.077749 exp(0.71188𝑥) − 0.000014215 exp(2.14577𝑥) 

As the first approach, the coupled equations are chosen to tackle the problem. The 

effect of the shape parameter, 𝑐 = 𝑎√𝑚 on the RMS error in flux is illustrated in 

Figure 6.2. It is observed from this figure for all values of the shape parameter, a 

high level of accuracy is achieved. Also, the accuracy and convergence rate of the 

method improves when 𝑐 takes on higher values. 

 

Figure 6.2: Effect of the shape parameter on the RMS error for the external source 

problem. 
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It is possible to get better accuracies by increasing the number of collocation nodes. 

In this case the collocation matrix becomes overdetermined, and the system of 

equations has to be solved by the least-squares method. In Figure 6.3 the RMS error 

is plotted with respect to 𝑀 in semi-log scale for three sets of collocation nodes. The 

shape parameter is chosen as 𝑐 = 𝑎√0.08 for these calculations. As seen from this 

figure the accuracy of the method gets better by increasing the number of collocation 

nodes. Also, the method converges faster when 𝑀 is low. This effect is significant 

when ℎ𝑖𝑛𝑡 = 2ℎ𝑐𝑜𝑙 is utilized instead of ℎ𝑖𝑛𝑡 = ℎ𝑐𝑜𝑙. Although better approximations 

are obtained with lower ℎ𝑐𝑜𝑙, one should be careful on choosing the value of the 

shape parameter when dense set of collocation nodes are used. The method becomes 

unstable when a high value of 𝑐 is chosen together with these types of node 

distributions. 

 

Figure 6.3: Effect of the number of collocation nodes on the RMS error for the 

external source problem. 

Instead of a constant shape parameter strategy, a node number dependent approach 

can be used in calculations. As discussed earlier, one of them is to use a variable 

shape parameter strategy where 𝑐 = 𝑚 × ℎ1 4⁄ . This approach has been adopted here 

and the results are shown in Figure 6.4 for three values of 𝑚. It is clear from this 

figure that high levels of accuracies can be achieved even with sparse sets of nodes, 

especially when 𝑚 = 3. When the results are compared with the constant shape 

parameter strategy same convergence rate characteristics are observed and an RMS 

error around 10−7 is achieved with both schemes. 
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Figure 6.4: RMS errors for the external source problem when a variable shape 

parameter is utilized. 

The external source problem can also be solved by directly approximating the fourth 

order differential equation (i.e., the second alternative of subsection 6.3.2). The RMS 

errors of this route are presented in Figure 6.5 for three values of the shape 

parameter. For these calculations a constant shape parameter strategy with ℎ𝑐𝑜𝑙 =

ℎ𝑖𝑛𝑡 is chosen. Comparison of Figures 6.2 and 6.5 reveals that there are two major 

problems when the second alternative is used. First, the method becomes unstable for 

sparse sets of nodes. The RMS errors are high and oscillation is observed below a 

threshold value of 𝑀 which depends on the shape parameter. The second problem is 

the poor accuracy of the algorithm. The accuracy of the first alternative is better than 

the latter one by at least two orders of magnitude for all 𝑀 values. This problem of 

approximating higher order derivatives is also pointed out in [93]. 

 

Figure 6.5: RMS error behavior of the external source problem when the fourth 

order equation is directly approximated with RBFs. 



  

123 

 

6.4.2 Fission source problems 

The second problem solved with the even-parity 𝑃3 approach is a fission source case. 

The nuclear constants are chosen to be Σ𝑡 = 1 𝑐𝑚
−1, Σ𝑎 = 0.2 𝑐𝑚

−1, Σ𝑓 = 0.1 𝑐𝑚
−1 

and 𝜐 = 2.46. With these parameters the value of 𝑎 that makes the system critical is 

3.4795925 𝑐𝑚. For the calculation of RMS error, the neutron flux is normalized to 

unity i.e. 𝜙0(0) = 1 so that the following analytical form is obtained 

𝜙0(𝑥) =
1

1 − (𝑎1 𝑎2⁄ )
[𝐶𝑜𝑠ℎ(𝜇𝑥) −

𝑎1
𝑎2
𝐶𝑜𝑠(𝜆𝑥)] 

where 

𝑎1 = [
9𝜇2

70Σ𝑡
2 + (2 −

11

14

Σ𝑎 − 𝜐Σ𝑓
Σ𝑡

)] cosh(𝜇𝑎𝑐𝑟𝑖𝑡) +
24𝜇

25Σ𝑡
sinh(𝜇𝑎𝑐𝑟𝑖𝑡) 

𝑎2 = [−
9𝜆2

70Σ𝑡
2 + (2 −

11

14

Σ𝑎 − 𝜐Σ𝑓
Σ𝑡

)] cos(𝜆𝑎𝑐𝑟𝑖𝑡) −
24𝜆

25Σ𝑡
sin(𝜆𝑎𝑐𝑟𝑖𝑡) 

The relative percent error in the multiplication factor and the RMS error in neutron 

flux are presented in Figures 6.6a and 6.6b, respectively, where a variable shape 

parameter approach is chosen. High level of accuracies are achieved for both 𝜆 and 

𝜙. Similar to the previous problem the convergence rate of the RBF collocation 

method increases with a higher value of the shape parameter. 

 

Figure 6.6a: Error in the multiplication factor for the fission source problem for 

three values of the shape parameter. 
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Figure 6.6b: RMS error in the neutron flux for the fission source problem for three 

values of the shape parameter. 

The third example is a Pu-239 benchmark problem with isotropic scattering. The 

nuclear constants of this problem are Σ𝑡 = 0.3264 𝑐𝑚
−1, Σ𝑎 = 0.101184 𝑐𝑚

−1,

Σ𝑓 = 0.0816 𝑐𝑚
−1 and 𝜐 = 3.24, and the benchmark value of 𝑎𝑐𝑟𝑖𝑡 is 1.853722 𝑐𝑚 

[94]. Since the scattering is isotropic, this problem is solved with both conventional 

and even-parity forms of the transport equation with 𝑃3 and  𝑃5 approximations. 

Also, the discrete ordinates solutions are given for the purpose of comparison 

between the two angular approximations.  

But before presenting these results, the accuracy and stability of the method will be 

tested by considering the analytical solution given in section 6.2, which produces an 

𝑎𝑐𝑟𝑖𝑡 value of 1.927538 𝑐𝑚 for the cross sections given above. In Figure 6.7, the 

relative percent error in 𝜆 with respect to the number of interpolation nodes is 

illustrated. A constant shape parameter strategy is utilized in these calculations. This 

figure shows that it is possible to obtain highly accurate values for the multiplication 

factor. The relative percent error is found to be 1.89816 × 10−6 at 𝑀 = 100 when 

𝑚 = 0.06. 

The value of the multiplication factor corresponding to the benchmark solution of 

𝑎𝑐𝑟𝑖𝑡 = 1.853722 𝑐𝑚 is plotted in Figures 6.8a and 6.8b for even-parity and 

conventional forms of the transport equation, respectively. The shape parameter is 

chosen to be 𝑐 = 𝑎√0.05. Numerical results of the 𝑆𝑁 approximation for the angular 
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flux are given in Tables 6.1-6.3 upto 𝑁 = 64 where a diamond difference (finite 

difference), discontinuous linear finite element and discontinuous quadratic finite 

element is used for treatment of the spatial variable, respectively. It is obvious from 

Figure 6.8 that the RBF collocation method produces stable solutions for both even-

parity and conventional form of the neutron transport equation. The results are 

almost identical, that 𝑃3 and 𝑃5 approximations converge to approximately 0.9717 

and 0.9918, respectively. When the results are compared with the 𝑆𝑁 approach, it is 

observed that the 𝑃5 approach with RBF approximation for the spatial variable is 

equivalent to the results of 𝑆8 finite difference and finite element solutions. 

 

Figure 6.7: Percent error in 𝜆 for the plutonium benchmark problem with isotropic 

scattering when 𝑎𝑐𝑟𝑖𝑡 = 1.927538. 

 

Figure 6.8a: The value of 𝜆 for the plutonium benchmark problem when 𝑎𝑐𝑟𝑖𝑡 =
1.853722 and even-parity form is considered. 
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Figure 6.8b: The value of 𝜆 for the plutonium benchmark problem when 𝑎𝑐𝑟𝑖𝑡 =
1.853722 and conventional form is considered. 

Table 6.1: 𝑆𝑁 solutions of the Pu-239 benchmark problem with diamond difference 

approximation for the spatial variable. 

𝑀  𝑆2  𝑆4  𝑆8  𝑆16  𝑆32  𝑆64  

10 0.803729 0.946616 0.991290 0.998012 0.999187 0.999459 

20 0.804070 0.947008 0.991641 0.998352 0.999526 0.999798 

30 0.804133 0.947081 0.991706 0.998415 0.999589 0.999860 

40 0.804155 0.947106 0.991728 0.998437 0.999611 0.999882 

50 0.804166 0.947118 0.991739 0.998448 0.999621 0.999892 

60 0.804171 0.947124 0.991745 0.998453 0.999626 0.999898 

70 0.804174 0.947128 0.991748 0.998457 0.999630 0.999901 

80 0.804176 0.947131 0.991750 0.998459 0.999632 0.999903 

90 0.804178 0.947132 0.991752 0.998460 0.999633 0.999905 

100 0.804179 0.947134 0.991753 0.998461 0.999635 0.999906 

Table 6.2: 𝑆𝑁 solutions of the Pu-239 benchmark problem with discontinuous linear 

finite element approximation for the spatial variable. 

𝑀  𝑆2  𝑆4  𝑆8  𝑆16  𝑆32  𝑆64  

10 0.8041789

2 

0.9471308

8 

0.9917496

0 

0.9984574

2 

0.9996297

2 

0.9999007

2 

 

20 0.8041832

3 

0.9471378

7 

0.9917567

3 

0.9984648

4 

0.9996379

0 

0.9999092

6 30 0.8041836

7 

0.9471385

8 

0.9917574

6 

0.9984656

1 

0.9996387

9 

0.9999102

3 40 0.8041837

8 

0.9471387

6 

0.9917576

4 

0.9984658

0 

0.9996390

1 

0.9999104

8 50 0.8041838

2 

0.9471388

2 

0.9917577

0 

0.9984658

7 

0.9996390

9 

0.9999105

7 60 0.8041838

3 

0.9471388

5 

0.9917577

3 

0.9984659

0 

0.9996391

2 

0.9999106

1 70 0.8041838

4 

0.9471388

6 

0.9917577

5 

0.9984659

2 

0.9996391

4 

0.9999106

3 80 0.8041838

5 

0.9471388

7 

0.9917577

5 

0.9984659

3 

0.9996391

5 

0.9999106

4 90 0.8041838

5 

0.9471388

7 

0.9917577

6 

0.9984659

3 

0.9996391

6 

0.9999106

5 100

0 

0.8041838

5 

0.9471388

8 

0.9917577

6 

0.9984659

4 

0.9996391

6 

0.9999106

5 
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Table 6.3: 𝑆𝑁 solutions of the Pu-239 benchmark problem with discontinuous 

quadratic finite element approximation for the spatial variable. 

𝑀  𝑆2  𝑆4  𝑆8  𝑆16  𝑆32  𝑆64  

10 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996390

1 

0.9999105

3 20 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 30 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 40 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 50 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 60 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 70 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 80 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 90 0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 100

0 

0.8041838

1 

0.9471388

3 

0.9917577

2 

0.9984658

9 

0.9996391

2 

0.9999106

1 
The fourth and final problem is a Pu-239 benchmark with anisotropic scattering. Two 

levels of anisotropy in the scattering, 𝑃1 and 𝑃2, are considered within this context. 

The benchmark solutions corresponding to these levels are 𝑎𝑐𝑟𝑖𝑡 = 0.77032 𝑐𝑚 and 

𝑎𝑐𝑟𝑖𝑡 = 0.76378 𝑐𝑚, respectively. This problem is solved with conventional form of 

the transport equation with 𝑃3 and  𝑃5 approximations. 

The variation of the multiplication factor with the number of interpolation nodes is 

illustrated in Figures 6.9a and 6.9b for 𝑃1 and 𝑃2 scattering cases, respectively. The 

shape parameter is chosen to be 𝑐 = 𝑎√0.05, and the number of interpolation and 

collocations nodes are the same in these calculations. The results show that for both 

problems the RBF collocation scheme is highly stable and with an increase in the 

degree of angular approximation a good accuracy is achievable. When a 𝑃5 solution 

is performed, a multiplication value of approximately 0.995 is obtained which means 

that the percent error in 𝜆 is less than 1% even with this low level of angular 

approximation. 

The numerical approximation of plutonium benchmark problems with isotropic and 

anisotropic scattering via RBFs are also done with variable shape parameter strategy, 

𝑐 = 𝑚ℎ−1 4⁄ . The results are similar to that of constant shape parameter route that a 

highly stable algorithm with a good accuracy is obtained with the meshless 

collocation method. 
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Figure 6.9a: The value of 𝜆 for the plutonium benchmark problem with anisotropic 

𝑃1 scattering. 

 

Figure 6.9b: The value of 𝜆 for the plutonium benchmark problem with anisotropic 

𝑃2 scattering. 
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7. CONCLUSIONS 

In this study the time-independent neutron diffusion and transport equations are 

numerically solved by the meshless radial basis function collocation method. For the 

neutron diffusion case two-dimensional, multigroup homogeneous and 

heterogeneous problems are considered, while one-dimensional single region and 

energy cases with isotropic and anisotropic scattering are dealt within the transport 

approach. 

For homogeneous problems two types of neutron sources are studied, and five 

examples, the external source problem, one-, two-, three- and four-group fission 

source problems are solved with the RBF collocation technique. Among these 

problems, the external source and four-energy group fission source cases are 

examined in detail (one-, two-, and three-energy group results are similar to those of 

the four-energy group problem). In this context a comparison is made between the 

meshless radial basis function collocation method and mesh-based finite and 

boundary element methods. For the collocation technique multiquadric, inverse 

multiquadric and Gaussian are used as the basis functions, while FEM and BEM are 

employed with linear shape functions. Since both examples have Cauchy boundary 

conditions external nodes are utilized to enhance the accuracy of the collocation 

method. The effect of shape parameter on the accuracy, convergence rate and 

stability of the collocation method is also investigated. 

The external source problem was essentially the Helmholtz equation. Performance of 

the numerical methods is compared by calculating the root mean square and 

maximum pointwise errors for constant, trigonometric and linear sources. Numerical 

experiments showed that for all source types there is an optimum shape parameter 

value which yields the least RMS error, and MQ and IMQ have performed better 

than the GA in terms of both accuracy and stability. This optimization of the shape 

parameter is important; it provides a chance to obtain high levels of accuracy with 

just a few nodes. Another function of the shape parameter is its effect on the 

convergence rate of the collocation method. RBF collocation converges faster with 
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an increase in this parameter. It was found that the collocation method converges 

exponentially, which is better than the algebraic rates of FEM and BEM. Gaussian 

has the best convergence rate, but it has the disadvantage of being less stable and 

performing poorly for large fill distances. When CPU times are considered, the FEM 

is superior to other methods while RBF collocation is more efficient than the BEM. 

For the collocation technique, the distribution of pointwise errors has revealed that 

the error tends to have the maximum near the boundaries of the problem domain. 

In the four-group fission source case accuracy of the methods is tested via calculating 

the relative percent errors in the multiplication factor and group fluxes. When the 

shape parameter dependence of the collocation method is investigated, an unusual 

behavior was observed. Depending on the choice of RBF, fill distance and criticality 

of the system, the error in multiplication factor may have a maximum value in the 

stable computation range of the shape parameter. The results have shown that, when 

the shape parameter is carefully selected, it is almost possible to produce analytical 

multiplication factors. A comparison among the three RBFs has showed that MQ is 

the best choice for fission source problems. Exponentially convergent MQ 

collocation has outperformed both FEM and BEM in the determination of the 

multiplication factor. On the contrary BEM gave the best solutions for the group 

fluxes. If the computation time is considered, the FEM is the most effective choice. 

Although FEM and BEM have slow algebraic convergence rates, they have the 

significant advantage of being more stable than the RBF collocation method. This 

stability is a result of local approximation and weak-form characteristics of these 

methods. If the shape parameter is fixed, to preserve stability of the collocation 

method, algorithms such as domain decomposition and matrix preconditioning 

should be preferred. However, if the shape parameter is optimized very good 

accuracies can be obtained without encountering ill-conditioning problems. 

Before tackling multiregion neutron diffusion problems four strategies are tested to 

improve the performance of the RBF collocation method via performing numerical 

experiments on the external source problem. First the effect of increasing the 

precision is investigated, and it is found that the stability of the algorithm can be 

improved significantly in price of computation time. Next the exponent of the 

generalized multiquadric is taken into account, and it is shown that it has a similar 

effect to that of the shape parameter on the characteristics of the RBF collocation. 
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The third approach is to use a variable shape parameter which decreases with the 

number of the interpolation nodes. Although accurate and stable results are obtained, 

this strategy generally did not improve the performance of the collocation method. 

The final technique is to use the singular value decomposition filtering method to 

achieve a better result, and it was found that the accuracy can be enhanced in both 

stable and unstable computation regions. 

Next topic of this work is to model the multiregion neutron diffusion problems with 

the RBF collocation method. These problems are solved with the conventional and 

weighted forms of the RBF collocation method. The accuracy and stability of these 

two approaches are investigated by working on five problems. First a one-

dimensional two-region external source configuration is studied. This problem is 

solved with the conventional form of the RBF collocation method. Since it is a 1-D 

problem the arbitrary precision computation of MATHEMATICA is employed in 

calculations, and highly accurate and stable results are observed. It is also found that 

by increasing the number of collocation nodes it is possible to obtain extraordinary 

accuracy in neutron flux values. The second problem is a two-dimensional, two-

group fission source case for which an analytical solution exists, and it is solved with 

both RBF collocation and weighted RBF collocation methods. These two methods 

yield highly accurate results for this problem, and a comparison with the linear 

boundary element method has shown that with their fast convergence rates, a much 

better solution is possible with the collocation technique. 

After treating the two analytically solvable problems, more complex multiregion 

configurations are considered. The third case is a two-region system containing a 

corner singularity. The numerical results have shown that when overcollocation is 

utilized, the numerical scheme underestimates the value of the multiplication factor 

unlike the situation where the number of interpolation and collocation nodes is the 

same. A comparison of the two methods has revealed that the conventional form of 

the RBF collocation method is better in terms of both accuracy and stability. As the 

fourth problem, the corner singularity problem is modified so that a high level of 

heterogeneity is present. The aim of this alteration is to assess the robustness of the 

two collocation schemes, and it was found that the no-weight collocation method is 

more reliable than the weighted collocation alternative. The last problem is a five-

region IAEA benchmark. This problem is modelled with the conventional form of 
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the RBF collocation technique, and the numerical results show that the meshless 

collocation method is effective in the approximation of multiregion neutron diffusion 

problems. 

The numerical solution of the neutron transport equation with the RBF collocation 

method is the final task of this study. In this regard, the spatial variable of the one-

dimensional transport equation is approximated with RBFs. For the angular variable 

the 𝑃𝑁 approach is chosen, and both conventional and even-parity forms of this 

equation are considered. The assessment of the RBF collocation method is done by 

solving four problems. The first example is an external source case, and it is solved 

within the even-parity framework. Two solution routes are possible for this problem, 

and it is found that using the coupled equations instead of directly solving the fourth 

order differential equation results in a much better accuracy and stability. The 

numerical results also show that, similar to the diffusion case, the accuracy and 

convergence rate of the method can be improved by adjusting the shape parameter. 

As the second problem a fission source case is solved again within the even-parity 

form, and it is shown that very good accuracies are possible for both the 

multiplication factor and neutron flux distribution. The third problem is a Pu-239 

benchmark with isotropic scattering, and it is approached with both conventional and 

even-parity forms of the transport equation. It is found that the numerical solution 

resulting from these two alternatives is almost identical. Also a comparison with the 

discrete ordinates finite difference and finite element solutions revealed that the 𝑃5 

meshless collocation solution is equivalent to the 𝑆8 finite difference and finite 

element approaches. The fourth and final problem is again a Pu-239 benchmark, this 

time with anisotropic scattering, and it is dealt with the conventional form of the 

transport equation. The RBF collocation method has produced a highly stable 

algorithm, and the accuracy of the method is good even with a low order 

approximation for the angular variable of the flux. 

Although an extensive study is performed on the numerical modelling of neutron 

diffusion and transport processes with the meshless RBF collocation method, there 

are still a lot of things to do in this research area. As explained in the third chapter, 

and demonstrated in the following three chapters, the shape parameter of the radial 

basis functions has a significant effect on the properties of the collocation scheme. In 

this work, constant and node number dependent shape parameters are used, but one 
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can find optimization techniques in the literature that focus on the ideal choice of this 

important parameter. Another topic of interest in RBF collocation is the domain 

decomposition technique, which is employed to enhance the stability of the 

collocation method. The solution of the multiregion diffusion problems has shown 

the positive effect of splitting the problem domain into subdomains, especially when 

corner singularities are present in the configuration. Hence, the use of domain 

decomposition techniques in heterogeneous problems can be done as a further study. 

Another subject in multiregion problems is the improvement of the weighted RBF 

collocation method by adding local shape functions to better capture the local 

behavior near the interfaces of different regions. As for the neutron transport 

equation, the radial basis functions can also be used together with the discrete 

ordinates approach for the angular variable of the neutron flux, and a comparison can 

be made with the results of this thesis. Finally, other weak-form, strong-form or 

hybrid meshless methods can also be used for the numerical solution of problems in 

nuclear reactor physics.  
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