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EFFECTS OF NEGLECTED TERMS IN JOSEPHSON JUNCTIONS 

SUMMARY 

We show that the existing theory of zero energy Andreev bound state in Josephson 

junctions with d-wave superconductors neglects a contribution, which under certain 

conditions drastically changes the appearance of zero bias anomalies. Taking these 

terms into account allows a better explanation of the experimental data. 

It took over 40 years to develop a consistent theory (BCS-Bogoliubov) of 

superconductivity after its experimental discovery, in the simplest case of spin-singlet, 

s-wave orbital symmetry. The investigation of other types of symmetry in 

superconducting and superfluid systems was stimulated after the discovery of A and 

B phases of 3 He and unconventional pairings in heavy fermion and cuprate high 

temperature superconductors (HTS). The non-BCS pairing mechanisms underlying 

superconducting phases with unconventional symmetry remain one of the most 

intriguing problems in condensed matter physics. In high temperature 

superconductors, the pairing symmetry is solidly established as spin-singlet, orbital d-

wave, while in different superconductors other symmetries are observed as well. While 

the nodal lines of the superconducting gap dx
2

-y
2 attracted much attention, because they 

allowed as unusual (for BCS case) combination of superconductivity with low-energy 

excitations, a no less interesting consequence of d-wave symmery followed from the 

order parameter changing sign, thus producing an intrinsic, direction-dependent -shift 

of the superconducting phase. This phenomenon is particularly well manifested in the 

properties of Josephson junctions with high temperature superconducting materials, 

leading to the appearance of spontaneous currents and bistabilities, Andreev bound 

states and zero-bias anomalies in the normal conductance of Josephson junctions 

produced by the existance of these bound states. The latter was instrumental in 

establishing their d-wave pairing symmetry and remains the subject of an intensive 

theoretical and experimental research over the years. The process of Andreev 

reflection converts the quasi particle current to the supercurrent via the incoming 

electron-like quasiparticle is being reflected by the off-diagonal superconductor 

potential (order parameter) as a hole-like quasiparticle and vice versa. The effect takes 

place not only on SNS junctions but also in weak links and whenever two 

superconductors with different amplitudes of the order parameter are brought in 

contact. In Josephson junctions this leads to the formation of Andreev levels. The 

Andreev reflection amplitude depends on the superconducting phase; therefore, the 

Andreev levels are phase-sensitive. This allows to express both the superconducting 

and quasiparticle contributions of the Josephson current in terms of transport through 

the Andreev levels. The Andreev bound state with energy zero appears in junctions 

containing a superconductor with direction dependent -phase shift of the order 

parameter, which leads to canceling the energy-dependent terms in the quantization 

condition for this level. Its existance produces the specific zero-bias conductance peak 

(ZBCP) in the differential conductance of the Josephson junction. A convenient 

method of calculationg conductance of restricted quantum structures is based on the
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Landauer-Büttiker approach, expressing it through the scattering coefficients. In the 

following we will show that the appearance of ZBCP in HTS Josephson junctions may 

drastically change if certain terms, which are usually neglected in such calculations, 

are properly considered. 
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JOSEPHSON BAĞLANTILARINDA İHMAL EDİLEN TERİMLERİN 

ETKİLERİ 

ÖZET 

Bu tezde, d-dalga süperiletken Josephson bağlantılarında var olan sıfır enerji bağlı 

Andreev durumların var olan teorisinde ihmal edilen terimlerin etkilerini gösterdik. 

Belirli koşullar altında sıfır tabanlı anomalilerin değişimlerini gösteren bu ihmal edilen 

terimleri, deneysel verilerle daha iyi bir şekilde karşılaştırılabilmesi için kullandık.   

Deneysel keşfinden sonra tutarlı bir (BCS-Bogoliubov) süper iletkenlik teorisi 

geliştirmek için 40 yıl geçti. Bu teori en basit haliyle Spin-singlet ve s-dalga orbital 

simetrilerinin temeli atmak için yapıldı. Süper iletken ve süper sıvı sistemlerinde diğer 

simetri türlerinin araştırılması, 3 He elementinin A ve B fazlarının keşfinden ve ağır 

fermion ve yüksek sıcaklık süperiletkenlerindeki alışılmamış eşleşmelerden sonra 

uyarılmıştır.   

Konvansiyonel olmayan simetri ile süperiletken fazların altında yatan BCS olmayan 

eşleştirme mekanizmaları, yoğun madde fiziğinde en ilgi çekici sorunlardan biri 

olmaya devam etmektedir. Yüksek sıcaklıklı süperiletkenlerde, eşleştirme simetrisi 

katı bir şekilde spin-singlet, yörüngesel d-dalga olarak kurulurken, farklı 

süperiletkenlerde diğer simetriler de gözlemlenir.  Düşük enerjili uyarımlarla sıra dışı 

(BCS durumu için) süperiletkenlik kombinasyonuna izin verdikleri için,  Süperiletken 

boşluk dx2-y2'nin düğüm çizgileri çok dikkat çekerken, d-dalgası simetrisinin daha az 

ilginç bir sonucu olan düzen parametresi, değiştirme işaretinden takip edilir, böylece 

içsel bir sonuç elde edilir. Böylece süper-iletken fazın içsel, yön-bağımlı-kayması 

üretilir. Bu fenomen, yüksek sıcaklıktaki süper iletken malzemelerle Josephson 

bağlantılarının özelliklerinde özellikle iyi bir şekilde kendini gösterir. Andreev bağlı 

durumları bu bağlı durumların varlığından kaynaklanan Josephson bağlantılarının 

normal iletkenliğindeki durumları ve sıfır tabanlı anomalilerini gösterir. İkincisi, d-

dalgası eşleştirme simetrisini oluştururken etkiliydi ve yıllar boyunca yoğun bir teorik 

ve deneysel araştırmanın konusu olmaya devam ediyordu.  

Andreev yansıması süreci, kuazi-parçacık akımını süper akıma dönüştürür. Bu işlem 

gelen elektron benzeri kuazi-parçacığın süperiletken potansiyelinin diyagonal 

olmayan kısmından delik benzeri kuazi-parçacık olarak yansımasıyla olur. Bu işlem 

aynı zamanda tersinirdir. Yani delik benzeri parçacaık aynı şekilde süperiletken 

potansiyelinin diyagonal olmayan kısmıyla etkileşerek electron benzeri kuazi-

parçacığa dönüşür. Josephson kesişimlerinde temel akım prensibi bu şekildedir. 

Burada süperiletkenin potansiyelinin açısına bağlı olarak kesişim noktasında akımda 

artış ve azalma gözlemlenir. 

Bu tezde yapılan çalışma, bu yüzey açılarının ve bağlantı noktasına konulan bir 

potansiyel bariyerin değerinin değişimiyle akımda olan değişimleri gözlemlemeye 

çalışmaktır. Etki sadece SNS (süperiletken-normal-süperiletken) bağlantı noktalarında 

değil, aynı zamanda zayıf bağlantılarda ve düzen parametresinin farklı genliklerine 

sahip iki süperiletken ile temasta bulunur. Bu durum Josephson bağlantı noktalarında 
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Andreev seviyelerinin oluşmasına yol açar. Andreev yansıma genliği süperiletkenin 

fazına bağlıdır. Bu nedenle Andreev seviyeleri faza duyarlıdır. Bu, Josephson akımının 

Andreev seviyeleri aracılığıyla taşınması açısından süperiletken ve kuazi-parçacık 

katkılarını ifade etmeyi sağlar.  

Josephson bağlantı noktalarında sıfır enerji Andreev bağlı durumu yöne bağlı 

süperiletken durumunu gösterir. Bu ayrıca düzen parametresinin (süperiletkenin 

potansiyel fonksiyonu) faz kaymasını gösterir. Bu durumun varlığı, Josephson bağlantı 

noktalarının diferansiyel iletkenliğinde spesifik bir sıfır öngerilim iletkenlik tepe 

noktasını üretir. Kısıtlı kuantum yapıların iletkenliğinin hesaplanması için uygun bir 

yöntem olan Landauer-Büttiker yaklaşımı uygulanmaktadır. Tez içerisinde Bölüm 4.5 

içerisinde bu modelin akım ve iletkenlik için üretilen matematiksel modeline 

değinilmiştir. Bu model, Andreev hesaplarından gelen Andreev yansıma, normal 

yansıma, elektron benzeri geçiş ve delik benzeri geçiş olasılık sabitlerinin ve akım 

korunumundan çıkan kuazi-parçacım düzeltme denklemlerinin kullanılması ile bize 

akımın ve iletkenliğin, yansıma ve geçiş olasılık sabitleriyle nasıl bağlantılı olduğunu 

gösterir. Bu model saçılma katsayıları ile ifade edilir. 

Bu tezde, belirli şartların uygun bir şekilde dikkate alınması durumunda  Josephson 

kavşaklarında sıfır öngerilimli iletkenlik tepe noktasının ortaya çıkmasının ciddi 

şekilde değişebileceğini göstereceğiz. Bölüm 5’te özellikle DD süperiletken Josephson 

kesişim noktalarında bu sıfır öngerilimli iletkenlik tepe noktalarının değişen 

parametrelerle klasik modelden ayrıldığını inceleyeceğiz.  

Genel olarak klasik modellerde (BTK), Josephson bağlantı noktalarının matematik 

modelleri yazılırken, dalga vektörleri ve momentumlar hesaplarda kolaylık olması 

sebebiyle fermi seviyesinde kabul edilir. Bu fermi yaklaşımı, bağlantı noktasının tüm 

noktalarında düzlemsel eksene göre hareket eden parçacıkların momentumlarını eşit 

almayı öngörür. Fakat kullanılan süperiletkenlerin düzen parametre fonksiyonlarının 

yine düzlemsel eksene göre yaptıkları açıların farkına göre, gelen, yansıyan ve geçen 

parçacıkların momentumlarının eşit olması prensibi, iletkenlik hesaplarında bazı 

detayların gözükmemesine yol açar.  

Biz bu tezde gönderilen elektronu düzlemsel eksene paralel olacak şekilde göndererek, 

süperiletkenin düzen parametre fonksiyonun düzlemsel eksen ile yaptığı açıyı 

değiştirerek iletkenlik üzerine etkisini inceledik. D-dalga süperiletkenlerinin 

yapısından dolayı 45 derecelik değişimler ile gelen parçacığın bağlantı noktasında 

nasıl bir potansiye ile karşılaşabileceğini öngörebiliyoruz. Burada beklenen sonuç, 

enerjinin sıfıra gitmesiyle sıfır öngerilimli iletkenlik tepe noktasının sonsuza 

gitmesidir. Hesaplarda D-dalga Josephson bağlantılarında bu durum görülmektedir. 

Hesapların daha anlaşılır ve kolay olabilmesi için iki d-dalga süperiletkenin Josephson 

bağlantı noktasında malzeme özelliklerini aynı aldık. Bu durumda düzel 

parametlerinin katsayıları yani potansiyellerin genlikleri iki taraf içinde eşit değerde 

alınarak sadece yüzey açılarının ve bağlantı noktasında alınan yalıtkan potansiyel 

bariyerin değişiminin etkisini gözlemlemeyi hedefledik. Buna ek olarak normal metal 

ve süperiletken Josephson bağlantı hesaplarında normal metalin düzen parametresi 

olmadığı için, delta potansiyel fonksiyonu sıfıra eşit olmaktadır. Burada ilginç olan, 

bölüm 5’te de görüneceği üzere, ihmal edilen terimlerin hesaba katılmasıyla üretilen 

algoritmada fermi yaklaşımının yapıldığı değerlerde sonuçların klasik BTK modeline 

benzemesidir. Yaklaşımın yapılmadığı şekillerde ise beklenmeyen bir takım ilgi çekici 

sonuçlar elde edilmektedir. Daha önce bu hesapların denendiği bir araştırma 

bulunamadığı için, bu tez teorik olarak bir model öngörüsü ortaya koymaktadır. Ayrıca 
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hesapların basitleştirilmesi için, Spin-yörünge çifti etkiside hesaplara dahil 

edilmemiştir. Bu durum, spin etkileşiminin olmadığını ve gelen, yansıyan ve geçen 

parçacıkların spin yönlerinin aynı kalmasını öngörür. Böylece hem sistemin Hamilton 

matrisinin boyutu yarıya inmiş, hemde iki taraf arasında spin değişiminden 

kaynalabilecek diğer etkiler grafiklere konulmamıştır. Bu durum sayesinde, sadece 

yüzey açı parametrelerinin ve yalıtkan bariyer genliğinin iletkenlik üzerinde ki etkisi 

incelenebilmiştir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxii 

 

 

 

 

 

 

 



1 

 

1.   INTRODUCTION  

The first successful try in superconductivity was made by Heike Kamerlingh Onnes in 

liquefying helium in 1908. He tried to make a research about electrical resistivity of 

metals at low temperatures. The first experiments are done on mercury because of its 

purity. The resistance started to decrease while temperature decreased. After the 

temperature reached to 4.2 K, the resistance showed a sharp drop to zero. On the other 

hand, with increasing the temperature, resistance acted like reverse. After this 

interesting behavior of mercury investigated, similar experiments were tried on lead 

and tin. Lead’s resistivity showed to same drop at 7.2K and tin’s resistivity showed at 

3.7K. After this result, the temperatures where the resistivity drop zero called critical 

temperatures. Therefore, this effect named as superconductivity. The discovery of the 

liquefaction of helium and superconductivity term brought 1931 Nobel Prize to Onnes. 

Onnes also discovered the magnetic field’s destruction effect on superconductivity. 

According to his research, after a specific magnetic field strength for each material, 

the superconductivity disappears. This specific value is also called critical magnetic 

field (Hc) [1]. 

Another important effect in superconductivity is called Meissner effect. W. Meissner 

and R. Oschenfield showed that a superconductor gave a permission for up to a specific 

magnetic field inside itself. Therefore, to specify a materials superconducting property 

resistance drop and the Meissner effect must be observed below its critical 

temperature. 

The formulation of superconductivity is created by Fritz and Heinz London in 1935 

and its called the London Theory [2]. This theory brought the idea of order parameter 

and coherence length. 

One of the most popular superconducting theory is called BCS theory in 1986. The 

theory got its name from the scientist Bardeen, Cooper and Schrieffer. The basic idea 

in this theory was developing a superconducting model which includes all parameters 

of superconductivity. 
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Different from low temperature superconductivity, the theory of high critical temperature 

superconductivity is discovered by Alex Müller and George Bednorz in 1986. The experiments 

showed that a lanthanum-barium-copper-oxide (YBCO) showed superconducting behavior at 

30K [3]. In addition of this high temperature superconductivity, Wu et all showed that yttrium-

barium-copper-oxide transition temperature was 93K. This result was interesting because the 

temperature of 93K is higher than the boiling point of liquid nitrogen which is 77K. In that case, 

YBCO is a very popular superconductor today. 

In this thesis, we focused on a theory of multi superconducting junctions separated with a thin 

insulating layer. These junctions called as Josephson Junctions. In Chapter 2, we showed some 

classical properties and theories of superconductivity. In Chapter 3, we derived some important 

equations of Josephson Junctions to understand the cooper pairs, current behavior, flux 

quantization and the tunneling phenomena. In Chapter 4, we derived the Classical Andreev 

Reflection calculations to understand the model we used. The main model is called Blonder, 

Tinkham, Klapwijk (BTK) which is a model of unconventional superconducting junctions. We 

derived the conductance results of this BTK model. In Chapter 5, we tried to understand effects 

of neglected terms in these unconventional Josephson junctions to make a general model which 

is never done before.  
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2. SUPERCONDUCTIVITY 

In this Chapter, we tried to have a look of basic properties and equations of 

Superconductivity. To understand how Superconductivity works, one need to know 

basics of Superconductivity. 

2.1. Basics of Superconductivity 

The superconductors mainly divided into two; perfect conductivity and perfect 

diamagnetism. The resistivity is decreased with the decreasing temperature because of 

the electron and phonon scattering. However, in superconductors the sharp drop of 

resistivity to zero at a specific temperature called transition temperature. The main 

aspect of superconductors is the conductivity becomes perfect under these transition 

temperatures. 

 

Figure 2.1: The resistivity drop difference between superconductor and Non-

superconductor. 

As seen in the Figure 2.1 resistivity drops to zero suddenly while the temperature 

decreasing in a superconductor. This perfect conductivity can have destroyed using 

magnetic field. As mentioned in the Chapter 1, the applying external magnetic field 

can destroy the superconductivity. If an external magnetic field applied to a 

superconductor for a while and then removed, there will be an induced current starts 

to flow around superconductivity continuously. This induced current creates induced 
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magnetic flux. The magnetic flux seen in the superconducting ring is quantized. This 

means it can only have integer values. This is called magnetic flux quantum. 

The destruction of superconductivity with applying magnetic field process is similar 

as temperature and resistivity curve. If the applying magnetic field excess the critical 

magnetic field (Hc), then the material lost its superconducting property. On the other 

hand, critical magnetic field is a function of temperature. The critical magnetic field 

equation is given in the Equation (2.1). 

 2( ) (0)[1 ( ) ]c c

c

T
H T H

T
= −  (2.1)  

 

Figure 2.2: The relation with the critical magnetic field and the temperature [4].  

As we can see in the Figure (2.2) the superconductivity depends on both a critical 

magnetic field and a critical temperature. 

The diamagnetic properties of superconductors also a well-known situation. This 

property is differing the superconductors from ideal conductors. These 

superconducting states of the materials creates opposite induced magnetic field if any 

external magnetic field applied. This induced field is created from the induced current 

which is created by applying external field. This phenomenon is called Meissner effect 

[5]. 
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2.2.  London Equation 

The London equations are basic calculations for showing the superconducting 

phenomena. 

dv mv
m eE

dt
= −


              (2.2) 

The London formulations is starts with the electrical conductivity in Drude model seen 

in the Equation (2.2). In here, v is the average velocity of electrons, m refers to mass 

of the electrons, e is change of an electron, E is energy and  is mean time between 

scattering of electrons. In the superconducting state, the assumption is telling us there 

is no scattering between electrons. Therefore, the mean time dependent side goes to 

zero in the Equation (2.2) and we got a new derivation below; 

 
dv

m eE
dt

=   (2.3) 

To deriving the London equation, first need to write superconducting current density; 

 s s sJ n ev=   (2.4) 

In the Equation (2.4) the ns and vs terms are electron density and average velocity of 

electrons respectively. With combining the Equation (2.4) and (2.3) we get 

 
2

[ ]s

s

d m
E j

dt n e
=   (2.5) 

 ( )s

d
E j

dt
=    (2.6) 

 
2

s

m

n e
 =   (2.7) 

In here the Equation (2.6) is refers to first London equation. The second London 

equation is derived from Ampere’s Law 

 
2H xJ− =    (2.8) 

Combining Equation (2.8) with (2.6) and we get the equation below 

 
2 1

.
H

xE
T


− =

 
  (2.9) 
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Applying Maxwell Faraday equation to Equation (2.9) we get the equation below 

 2 1
.

H H

T t

 
− = −

  
  (2.10) 

The field equation in Equation (2.10) gives 

 
B

xJ
−

 =


  (2.11) 

The Equation (2.11) is also known as second London Equation. The solution of the 

second London equation also gives the penetration depth which is stated in Equation 

(2.12) below 

 
0





=   (2.12) 

The penetration depth stating in the Equation (2.12) shows how much magnetic field 

penetrate inside a superconductor [6]. 

2.3. Ginzburg Landau Theory 

The main reason of this model is also to formulating the superconductivity phenomena. 

In this approach, quantum mechanical descriptions are using. The idea is the showing 

long range coherently electrons with wave function. Also, the density of electrons 

written from the absolute square of this distance dependent wavefunction. 

The theory is also shows the Coherence length which is a characteristic length of 

superconductors as a function of temperature. In addition, the Ginzburg-Landau 

parameter usually used to describe to type of the superconductor. For Type 1 

superconductors the Ginzburg-Landau parameter is lower than 1 [7]. 

2.4.  BCS Theory 

The BCS theory mainly answers the question of why superconducting electrons do not 

face with any resistance below their transition temperature. This theory usually used 

for understanding the physics of superconductors. 

BCS theory begins with the cooper pair formations below critical temperatures. 

Phonon-electron interaction causes attractive forces and bound two electrons which is 

defined as cooper pairs. To stabilize the spin conservation to be zero, these electrons 

have opposite spins. This shows us the bosonic structure of cooper pairs. In the low 
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temperatures, an electron create phonon where another electron absorbs that phonon 

the cooper pairs are started to form [5]. 

2.5.  Type 2 Superconductors 

This type of superconductors are found by Abrikosov. His theory depends on different 

behaviors of some superconductors under a magnetic field. In this type, some 

superconductors still preserve its superconducting behavior if external magnetic field 

exceeds the critical magnetic field. Type 2 superconductors have two critical magnetic 

field. Also, the Ginzburg-Landau parameter is greater than one in these 

superconductors. 

In type 2 superconductors, the applied magnetic field penetrates the material. This 

magnetic field vectors formed as vortices inside the material. After exceeding the first 

critical magnetic field value, the material still preserves its superconducting behavior. 

However, with increasing the vortices size, in the second critical magnetic field these 

vortices cross each other and destroy the superconductivity [5].  
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3. JOSEPHSON JUNCTIONS AND TUNNELING 

 

The Josephson Junction is a junction between two superconductors. The cross section 

of these two superconductors is made by an insulating layer. This phenomenon is 

depending on electron tunneling in these junctions. With the tunneling of these 

electrons, the supercurrent is created. This model is using in many quantum devices. 

At low temperatures, the lattice vibrations of crystals are very small. Two electrons 

can move with pairing by attracting the lattice. These pairs are Cooper pairs and they 

can move without resistivity in superconductors [8]. The Schrödinger’s wave function 

represents these pairing electrons [6]. The pairing has a twice mass of an electron and 

half density. 

The representative wave function is giving in the Equation (3.1). 

 ( , )( , ) ( , ) i r tr t n r t e  =   (3.1) 

3.1. Current Density 

 

The current density expression with wavefunction is seen in the Equation (3.2) and the 

superconducting current density equation depends on magnetic vector potential “A” is 

showing in the Equation (3.3) below 

 
*

* *

*
Re{ ( )}s

q
J q A

im m
=  −   (3.2) 

 
*

* *

* *
( , )( ( , ) ( , ))s

q
J q n r t r t A r t

im m
=  −   (3.3) 

We can use gauge transformations for vector and scalar potential showing in the 

Equation (3.4) and (3.5) respectively  

 'A A = +   (3.4) 

 
'

t


 = +


  (3.5)
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The new phase is stated in Equation (3.6). 

 
*

' q
 = +    (3.6) 

The new current density with using gauge transformation is shown in the Equation 

(3.7) [6]. 

 
*

* * ' '

* *
( , )( ( , ) ( , ))s

q
J q n r t r t A r t

m m
=  −   (3.7) 

3.2.  Josephson Tunneling 

 

The Josephson junction model and the mathematical representations are shown in the 

Figure (3.1). 

 

Figure 3.1: Josephson junctions and voltage and current relations [6] 

 

In the model, each superconducting region is showing with their own wavefunctions. 

The tunneling effect occurs in the thin insulator layer showing in blue color in the 

Figure (3.1). We do not need to solve this tunneling phenomena in this part. We solved 

this model in the Andreev reflection and BTK model in Chapter 4 and 5. 
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4. ANDREEV REFLECTION AND BTK MODEL 

 

4.1.  BTK Model 

We used Normal metal and Superconductor junction in the first aspect. The general 

model and the gap order parameter delta is shown in the Figure (4.1). 

 

Figure 4.1: The BTK model for N-S junctions with order parameter [9]. 

In the model shown in the Figure (4.1) the three-dimensional coordinates are x 

(longitudinal), y and z (transversal). For the simplicity of the calculations, we put the 

junction in the origin where x is equal to zero. We can write the system with using the 

Bogolubov de Gennes Equation showing in the Equation (4.1) [9]. 

 
* *

e

e

H u u
E

H v v

    
=    

 −     
  (4.1) 
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The step like junction order parameter is showing in the Equation (4.2). 

 0( ) ( ) ix x e  =    (4.2) 

According to three dimensional coordinates, we can separate the wavefunction into 

transversal and longitudinal parts showing in the Equation (4.3). 

 ( , , ) ( ) ( , )nx y z x y z =    (4.3) 

In the function includes transverse coordinates (y, z) the letter “n” donates the quantum 

number. We wrote the Schrödinger’s equation of the system in Equation (4.4) with 

transversal energy and potential.  

 
2 2 2

2 2
( ) ( , ) ( , ) ( , )

2
n n nV y z y z E y z

m x y
⊥

  
+ +  =  

  
  (4.4) 

The energy is equals to sum of both transversal and longitudinal energies showing in 

the Equation (4.5). 

 nE E E= +   (4.5) 

For a given mode “n”, the effective chemical potentials can be derived showing in the 

Equation (4.6). 

 Fn F nE = −   (4.6) 

The assumption that F has already includes the self-consisting potential U. 

After that, we put a Dirac potential barrier at the boundary to with a strength to show 

the contact resistance. With Using the Equations below, the final Hamiltonian from 

BdG is showing in the Equation (4.7) [10]. 

 

2 2

2

2 2
*

2

( ) ( )
( ) ( )2

( ) ( )
( ) ( )

2

Fn

Fn

x x
u x u xm x

E
v x v x

x x
m x

 

 

 
− − +        =   
     

 + + − 
 

  (4.7) 

The equation stated in Equation (4.7) is called BTK (Blonder-Tinkham-Klapwijk) 

model. The first aim is to find solutions with non-negative energies. 

Lets look up for Normal (N) side solutions where order parameter goes to zero as seen 

in the Equation (4.8). 
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2 2

2

2 2

2

0
( ) ( )2

( ) ( )
0

2

Fn

Fn

u x u xm x
E

v x v x

m x





 
− −      =   
     

+ + 
 

  (4.8) 

From the N side equation, we can see two particle and hole solutions stated in the 

Equations (4.9) and (4.10) respectively 

 
1

( )
0

eik xe x e




 
 =  

 
  (4.9) 

 
0

( )
1

hik xh x e




 
 =  

 
  (4.10) 

Where 

 1e Fn

Fn

E
k k


= +   (4.11) 

 1h Fn

Fn

E
k k


= −   (4.12) 

 
2 Fn

Fn

m
k


=   (4.13) 

 

Figure 4.2: The Normal (N) side Spectrum [9]. 

After we reached the solutions of the N side as seen in Figure (4.2), we continued our 

calculations in the S (Superconducting) side, where the order parameters are not equal 

to zero. 
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In the Superconducting (S) region as seeing in Figure (4.3), the BdG Hamiltonian is 

showing in the Equation (4.14). 

 

2 2

02

2 2

0 2

( ) ( )2

( ) ( )

2

i

Fn

i

Fn

e
u x u xm x

E
v x v x

e
m x







−

 
− −       =   
     

 + + 
 

  (4.14) 

In here, two situations have occurred. One is the Supra-gap solutions (E > Δ0). Supra-

gap solution means the incident electron has more energy than the gap energy. 

Therefore the electron wave expected to be propagate.  

 

Figure 4.3: Superconducting (S) side spectrum [9]. 

The Supra-Gap solutions are stated in the equations below. In here, we have two 

particle-like and two hole-like solutions stated in the Equations (4.15) and (4.16) 

respectively [10]. 

 
2

0

2
0

( ) e

i

iq xe

i

u e
x e

v e








−

 
  =
 
 

  (4.15) 

 
2

0

2
0

( ) h

i

iq xh

i

v e
x e

u e








−

 
  =
 
 

  (4.16) 

Where 

 
2 2

0

2
1e Fn

Fn

E
q k



− 
= +   (4.17) 
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2 2

0

2
1h Fn

Fn

E
q k



− 
= −   (4.18) 

And 

 
2 Fn

Fn

m
k


=   (4.19) 

Here the quantities u0 and v0 are called as quasi-particles related with electron-like and 

hole-like particles. The solution of the Hamiltonian gives the quasi particle results 

stated in the Equations (4.20) and (4.21). 

 0

12
arccos

20 0
0

1
1 1

2 2

E
h

u e
E E


    = + −  
  
 

  (4.20) 

 0

12
arccos

20 0
0

1
1 1

2 2

E
h

v e
E E

−


    = − −  
  
 

  (4.21) 

We can write the quasi-particle equations in the Wavefunction stated in the Equations 

(4.15) and (4.16) and we get the new wavefunction equations stated in the Equations 

(4.22) and (4.23). 

 
0

0

1
arccos

2 2

0

1
arccos

2 2

( )
2

e

E
h

i

iq xe

E
h

i

e e
x e

E
e e










−

−

 
 

 =  
 
 

  (4.22) 

 
0

0

1
arccos

2 2

0

1
arccos

2 2

( )
2

h

E
h

i

iq xh

E
h

i

e e
x e

E
e e





−






−

 
 

 =  
 
 

  (4.23) 

Up to here, we solved the Supra-gap solutions for the S side. Let’s look for Sub-gap 

solutions (E < Δ0). In this part situation, the incident electron coming with less energy 

than the gap energy. Therefore, the wave expected to be evanescent. 

In the sub-gap solution, the wave-vectors have an imaginary part. The real parts are 

remaining to the order of kFn. The analytical continuation solution is giving in the 

Equations (4.24) and (4.25) stated in the below.  
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2 2

0

2
1e Fn

Fn

E
q k i



 −
= +   (4.24) 

 
2 2

0

2
1h Fn

Fn

E
q k i



 −
= −   (4.25) 

The analytical continuation of the Equations (4.20) and (4.21) can be written similarly 

and stated in the Equations (4.26) and (4.27). 

 0

arccos
20

0
2

i E

u e
E


=   (4.26) 

 0

arccos
20

0
2

i E

v e
E

−


=   (4.27) 

For the evanescent waves the summation of absolute squares of quasi-particle states 

are not equal to zero. 

 
2 2

0 0 1u v+    (4.28) 

On the other hand, with non-absolute summation: 

 

0 0

arccos arccos
2 2 0
0 0

0

0

2

2cos(arccos ) 1
2

E E
i i

u v e e
E

E

E

−
 

 
+ = + = 

 
 


= =



  (4.29) 

Such this continuation is generally not unitary. Unitarity only comes from the 

propagating modes. The evanescent waves are complex are carry no current. Unitarity 

is related with the conservation of current therefore the unitarity is a confirmation in 

propagating modes. 

In the last part, we looked for the conditions at the boundary where the Dirac barrier 

exist. 

 
2 2

2
( ) ( ) ( ) ( ) ( ) ( )

2
Fn

u
u x x u x x v x Eu x

m x
 


− − + + =


  (4.30) 

With integrating the Equation (4.30), the Schrödinger’s boundary conditions obtained 

around x = 0 seen in the Equations (4.31) and (4.32). 
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2

2
(0 ) (0 ) (0)x x

m
u u u+ − 

 − =   (4.31) 

 
2

2
(0 ) (0 ) (0)x x

m
v v v+ − 

 − =   (4.32) 

With approaching infinitesimal to the origin from both right-hand side and left-hand 

side and integrating gives the results showing above. 

4.2.  Scattering Matrix Coefficient 

In this part, we want to calculate the Scattering Matrix coefficient. Firstly, we need to 

consider an incident electron sending from the N (left) side of the model. The incident 

electron wavefunction is stated in the Equation (4.33). 

 
11

( )
02

eik x

in

e

x e
v

+ 
 =  

 
  (4.33) 

The reflected particles are considered as left-moving electron or a left-moving hole. 

Therefore, we can write the reflection wavefunction in the Equation (4.34). 

 
1 0

( )
0 12 2

e hik x ik xee he
ref

e h

r r
x e e

v v 

− +   
 = +   

   
  (4.34) 

On the other hand, the transmitted particles written as right-moving electron-like or 

hole-like particles. The transmission wavefunction is stated in the Equation (4.35). 

 
2 2

0 0

2 2
0 0

( )
2 2

e h

i i

iq x iq xee he
trans

i i
e h

u e v et t
x e e

w w
v e u e

 

  

−

− −

   
    = +
   
   

  (4.35) 

The ree refers to reflection coefficient from electron to electron, rhe refers to reflection 

coefficient from electron to hole, tee refers to transmission coefficient from electron to 

electron and the last one the refers to transmission coefficient from electron to hole. 

The wavefunctions are normalized with their velocities. The velocities are different 

from electron to holes and from normal to superconducting side. With normalization, 

same amount of flux of quasiparticle probability current carried by wavefunctions. The 

“r” and “t” coefficients describe a unitary matrix. Now, for the conversation of quasi-

particle probability current we need to write the parameters [11]. 

In the N side, 
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2 2 1

2

e e
Fn e

e

k dE k
E v

m dk m
= − → = =   (4.36) 

 
2 2 1

2

h h
Fn h

h

k dE k
E v

m dk m
= − + → = =   (4.37) 

In the S side, 

 

2
2 2

2

0

1

2

e e
Fn e

e

q dE q
E w

m dq m


 
= − +  → = = 

 
  (4.38) 

 

2
2 2

2

0

1

2

h h
Fn h

h

q dE q
E w

m dq m


 
= − + +  → = = 

 
  (4.39) 

With using the derivations stated below, we calculate the velocities showing in the 

Equations (4.40) and (4.41). 

 
e h

e h

k
v

m
=   (4.40) 

 ( )
2 2

2 20

0 0e h e h e h

E
w v u v v

E

−
= = −   (4.41) 

The electron and hole have different signs in the momenta in reflected wave and 

transmitted waves according to description. 

To find the full solution, we need to apply boundary conditions stated in the below. 

The boundary conditions coming from the continuity are stated in the Equations (4.42) 

and (4.43). 

 (0 ) (0 )u u+ −=   (4.42) 

 (0 ) (0 )v v+ −=   (4.43) 

The derivative boundary conditions derived from the integration of the Schrödinger’s 

equation are stated in the Equations (4.44) and (4.45). 

  
2

2
(0 ) (0 ) (0)x x

m
u u u+ − 

 − =  (4.44) 

 
2

2
(0 ) (0 ) (0)x x

m
v v v+ − 

 − =   (4.45) 
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The four boundary conditions created four linear equations to find four unknowns ree, 

rhe, tee and the. 

4.3.  Solution of the Andreev Approximation 

 

The Andreev approximation states that in the low energies fermi approximation can 

be made. This approximation makes the equation sets very simple. This approximation 

is using also in classical BTK model. After the derivation of the classical results, we 

showed our non-fermi approximation solutions and the purpose of this thesis in the 

Chapter 5. 

 0, FnE    (4.46) 

The approximation made in the Equation (4.46) refers to the approximations stated in 

the equations below. 

 e h e h Fnk q k    (4.47) 

And 

 e h Fnv v   (4.48) 

 ( )
2 2

2 20

0 0e h Fn Fn

E
w v u v v

E

−
 = −   (4.49) 

The fermi velocity is also defined as 

 Fn
Fn

k
v

m
=   (4.50) 

After the approximation, the equations of the model is solving using the boundary 

conditions. The results of coefficients for classical BTK model stated in the below. 

 
( )
0 0

2 2 2 2

0 0 0

i

he

u v
r e

u Z u v

−=
+ −

  (4.51) 

 
( )
( )

2 2 2

0 0

2 2 2 2

0 0 0

( )
ee

Z iZ u v
r

u Z u v

+ −
=

+ −
  (4.52) 

 
( )

2 2

/20 0 0

2 2 2 2

0 0 0

(1 ) i

ee

iZ u u v
t e

u Z u v

−− −
=

+ −
  (4.53) 
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( )

2 2

/20 0 0

2 2 2 2

0 0 0

( ) i

he

iZ v u v
t e

u Z u v

−−
=

+ −
  (4.54) 

And  

 
2

Fn Fn

m
Z

k v

 
= =   (4.55) 

The Z is the dimensionless parameter of the transparency of the interface in BTK 

model. If Z is very small from one the solution called very transparent interface. On 

the other side, if Z is greater than one the solution called weakly transparent interface.  

Transparency is referred as transmission probability TN of the junction in the normal 

case. If the gap in superconducting side is goes to zero of the temperature decreased 

below critical temperature, The BTK transmission probability goes as TN. 

 
2

1

1
NT

Z
=

+
  (4.56) 

Transmission and reflection coefficients can be written as a different notation using in 

the equations below [12]. 

 
2he

LL heA A r   (4.57) 

 
2ee

LL eeB A r   (4.58) 

 
2ee

RL eeC A t   (4.59) 

 
2he

RL heD A t   (4.60) 

Now we can look for the solutions for Supra-gap and sub-gap. 

For Supra-gap (E > Δ0), 

 

( )

2

0

2
2 2 2

0

( )

(1 2 )

A E

E Z E


=

+ + −

  (4.61) 

 

( )

2 2 2 2

0

2
2 2 2

0

4 (1 2 )( )
( )

(1 2 )

Z Z E
B E

E Z E

+ −
=

+ + −

  (4.62) 
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( )

2 2 2 2 2

0 0

2
2 2 2

0

2(1 2 )( )( )
( )

(1 2 )

Z E E E
C E

E Z E

+ − + −
=

+ + −

  (4.63) 

 

( )

2 2 2 2 2

0 0

2
2 2 2

0

2 ( )
( )

(1 2 )

Z E E E
D E

E Z E

− − −
=

+ + −

  (4.64) 

The summation of the probability functions gives one (A+B+C+D=1) as required by 

unitarity of the S-matrix. 

For Sub-gap (E < Δ0), 

 
2

0

2 2 2 2

0

( )
(1 2 )( )

A E
E Z E


=

+ +  −
  (4.65) 

 
2 2 2 2

0

2 2 2 2

0

4 (1 2 )( )
( )

(1 2 )( )

Z Z E
B E

E Z E

+  −
=

+ +  −
  (4.66) 

 ( ) 0C E =   (4.67) 

 ( ) 0D E =   (4.68) 

In the sub-gap case the transmission coefficients go to zero. Also, if we look at the 

condition that E = Δ0, the supra-gap transmission coefficients also goes to zero which 

means no propagation waves among the superconducting side. Therefore, we can also 

easily verify that for zero transmission coefficients the summation condition gives one 

(A+B=1).  

 

4.4.  Andreev Reflection 

 

4.4.1. The ideal interface  

The ideal interface is the condition of Z = 0 where no barrier in the junction. In this 

section we tried to analyze the ideal case. In here, the Andreev-reflection amplitude 

for electron to hole conversion coefficient stated in Equation (4.69) and hole to 

electron coefficient stated in Equation (4.70).   
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  (4.70) 

The coefficients behavior is shown in the Figure (4.4).  

 

Figure 4.4: The probability coefficients in BTK model for Z=0. 

As seeing in the Figure (4.4) the coefficients B and D are vanishing. 

For sub-gap regime (E < Δ0) 

 ( ) 1A E =   (4.71) 

 ( ) 0B E =   (4.72) 

 ( ) 0C E =   (4.73) 

 ( ) 0D E =   (4.74) 

In here A is the Andreev reflection coefficient, B is normal reflection coefficient, C is 

electron-like particle transmission coefficient and D is hole-like particle transmission 

coefficient. In the sub-gap regime, we can see that for an ideal interface all the incident 

electron reflected as a hole. Therefore, we see only Andreev reflection in this model. 

This situation is called as Andreev reflection [13-14]. The momentum is not conserved 
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but the charge is conserved. Because of the fermi approximation, we can say this the 

momentum is almost conserved. 

For supra-gap regime (E < Δ0) 

 

( )

2

0

2
2 2

0

( )A E

E E


=

+ −

  (4.75) 

 ( ) 0B E =   (4.76) 

 

( )

2 2

0

2 2

0

2
( )

E
C E

E E

−
=

+ −
  (4.77) 

 ( ) 0D E =   (4.78) 

For energies above the gap, electron transmission probability gets finite values. 

Increasing the energy will result to full transmission on the superconducting side. For 

supra-gap regime the particle probability is divided into Andreev reflection and 

electron-like transmission coefficients. 

4.4.2. Interface with arbitrary transparency 

 

In this section, we look for non-ideal cases (Z>0). In this interface, still a probability 

exists for the electrons reflection as hole. On the other hand, changing the barrier 

strength also results to normal reflection. Therefore, with creating a potential barrier 

in the junction results for both Andreev and normal reflection. In the Figure 4.5 we 

can see that as we increase the barrier the particle most likely reflect as electron 

(normal reflection). On the other hand, we can see that clearly when the energy equals 

to the gap, the particle most likely reflected as hole (Andreev reflection). The electron-

like transmission coefficient (C(E)) is decreasing with increasing barrier strength. 

Also, we can see that there is a small amount of increment seeing in the hole-like 

transmission coefficient with increasing barrier strength. The calculation of the 

coefficients was done with using computational programming. With using our 

algorithm, we got the same results as originally Blonder-Tinkham-Klapwijk model. 

As we can see in the Figure (4.5), Andreev reflection coefficient act as Dirac-Delta 

function as the barrier strength increases. On the other hand, normal reflection and e-

like Transmission coeffients getting increase. 
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Figure 4.5: Reflection and transmission coefficients with increasing barrier strength. 

 

4.5. Current and Conductance 

 

The current transport through the single channel system is expressed by Landauer-

Büttiker expression seeing in the Equation (4.79) [16]. 
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( )( ( ) ( ))L R

e
I dET E f E f E

h
= −   (4.79) 

 ( ) 1 ( )T E R E= −   (4.80) 

In here T(E) is the transmission coefficient and R(E) is the reflection coefficient. The 

“2” factor coming from spin degeneracy and fL,R functions are fermi distribution 

functions for left hand and right hand side particles. 

 
/

/ ( )/

1
( )

1 BL R
L R E k T

f E
e

−
=

+
  (4.81) 

In our model for a single channel, the sample is contacted with one normal and one 

superconducting electrode. Therefore, the Landauer-Büttiker formalism is forming as 

stated in the Equation (4.82). 
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(1 ( ) ( ))( ( ) ( ))L R

e
I dE B E A E f E f E

h
= − + −   (4.82) 

In here, again B(E) is the normal reflection and A(E) is the Andreev reflection. The 

main logic in here, normal reflection decreases the current on the other hand Andreev 

reflection increases the current.  

The theoretical approach allows us to investigate the results as zero temperature. The 

Landauer-Büttiker formalism in zero temperature is seeing in the Equation (4.83). 

 
2

0

2
(1 ( ) ( ))

eV
e

I dE B E A E
h

= − +   (4.83) 

As we can see, the fermi distribution functions disappear in the zero-temperature 

limit. The chemical potentials are stated in the below. 

 0L F R FeV V   = + → = →    (4.84) 

We can derive the non-linear conductance at zero temperature from here. 
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( ) (1 ( ) ( ))NS

dI e
V B eV A eV

dV h
 = = − +   (4.85) 

With using the conductance, we derived the Figure (4.6) showing below  

 

Figure 4.6: Changing of conductance with respect to changing energy and the barrier 

strength. 
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5. EFFECTS OF NEGLECTED TERMS IN JOSEPHSON JUNCTIONS 

 

The main reason of this thesis is the understanding of the effects of neglected terms on 

conductance in different Josephson Junctions. Up to this chapter, we saw classical 

BTK model solutions [10], Andreev reflection solutions and classical conductance 

calculations. The idea is coming from the remove the fermi approach from the BTK 

model. The model we tried to solve is seen in the Figure (5.1) below. 

 

 

Figure 5.1: The basic model of ND and DD junctions. Electron and hole reflection 

and transmission directions are shown. 

Let us consider a Josephson junction with a cuprate superconductor. We will use the 

standard simplified model of such a system [20], that is, assume a cylindrical Fermi 

surface and the order parameter stated in Equation (5.1). 

 0( ) cos(2( ))   =  −   (5.1) 
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Here beta is the angle between the interface normal and the lobe direction of the order 

parameter. This superconductor forms one of the banks of a junction. The other one 

can be formed either by a similar superconductor (DD junction), or a normal conductor 

(ND junction). 

Following the Ref. [20], we consider the junction in the x-y plane, with a Dirac 

functional interface potential at x equals to zero. The Fermi wave number (kF) and the 

effective mass “m” are assumed to be equal in both sides. Due to the translation 

invariance in y-direction, we can write the wave functions in each side in the equations 

below respectively [27]. 

 ( ) ( , ) yik y

L Lr x e  =   (5.2) 

 ( ) ( , ) yik y

R Rr x e  =   (5.3) 

The corresponding wavefunctions are; 

 1 2 1( , ) ( , ) ( , ) ( , )x x xik x ik x ik xL L L T L L L T L L L T

L x e u v ae v u be u v    −
= + +   (5.4) 

 1 2( , ) ( , ) ( , )x xiq x iq xR R R T R R R T

R x ce u v de v u   −
= +   (5.5) 

The corresponding wavevectors are stated between Equations (5.6) and (5.7) seeing 

in below. 

 
( )

2 2

1 2
2

2
( )L

F

m
k E E= −     (5.6) 

 
( )

2 2

1 2
2

2
( )R

F

m
q E E= −     (5.7) 

The in-plane wave vectors are stated in the Equations (5.8) and (5.9). 

 cos( )ix ik k =   (5.8) 

 cos( )ix iq q =   (5.9) 

The quasi-particle derivations are stated in the Equations (5.10) and (5.11). 

 

2
( )

( ) 1
(1 1 )

2

L R
L Ru

E

 
= + −  

 
  (5.10) 
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2
( )

( ) 1
(1 1 )

2

L R
L Rv

E

 
= − −  

 
  (5.11) 

The phase of the delta function is stated in the Equation (5.12). 

 
( )( ) ( ) ( )L RL R i L R L Re  −= =     (5.12) 

To solve this model, we need to apply Schrödinger’s B.C.’s first; 

 ( 0, ) ( 0, )R Lx x   = = =   (5.13) 

 02

( 0, ) ( 0, ) 2
( 0, )R Lx x mH
x

x x

   
 

 =  =
− = =

 
  (5.14) 

With the B.C.’s we get the equations below: 

 L L L R Ru av bu cu dv= + = +   (5.15) 

 L L L L L L R R L Rv a u b v c v d u    + + = +   (5.16) 

 1 2 1 2 1 2

2
( )R R L L L L L LmH

cq u dq v k u ak v bk u u av bu
i

− − − + = + +   (5.17) 

 
1 2 1 2 1

2

2
( )

R R R R L L L L L L

L L L L L L

cq v dq u k v ak u bk v

mH
v a u b v

i

    

  

− − − +

= + +
  (5.18) 

With using the a, b, c and d coefficient, we can use gauss elimination to find these 

coefficients respectively. The matrices we used in gauss elimination is stated in the 

equations below. For the simplicity of the numerical analysis, we used MATLAB for 

numerical computation and controled our results with current conservation law. The 

solution of the matrices gives our coefficients. 

 
2 1 1 2

2 1 1 2

( ) ( )

( ) ( )

L L R R

L L L L R R R R

L L R R

L L L L R R R R

v u u v

u v v u
A

Z k v k Z u u q v q

Z k u k Z v v q u q

   

   

 − −
 

− − =
 − − − −
  − − − − 

  (5.19) 

 
1

1

( )

( )

L

L L

L

L L

u

v
M

Z k u

Z k v





 −
 
− 

=  
+

 
 + 

  (5.20) 
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a

b
C

c

d

 
 
 =
 
 
 

  (5.21) 

The coefficients can be found from Equation (5.22) with using MATLAB seeing in 

below. 

 1C A M−=   (5.22) 

In here a, b, c and d both are functions of energy and the angle theta. Also, a, b, c and 

d are complex amplitudes of the Andreev reflection, normal reflection, electron-hole 

and hole-electron conversion respectively. In Equation (5.14) “H” parameter refers to 

amplitude of delta functional potential barrier and Z is the dimensionless barrier 

strength where, 

 
2 cos( )F

mH
Z

k 
=   (5.23) 

The probability current of both sides is given by, 

 
1 †

( ) ( ) ( ) ( ) 0( 0) Im[ ( , ) ( , )]L R L R L R z L R xJ x hm x x x    −

== =    (5.24) 

Where “m” is the effective mass term on left and right side, σz is the Pauli matrix. The 

continuity of the current at the interface requires the statement shown in the Equation 

(5.25). 

 ( 0) ( 0)L RJ x J x= = =   (5.25) 

Combining boundary condition defined above with current conservation law. First 

check for the left side current; 

 

1 * * * * * * * * * * *

1 2 1

( 0) Im ( , ) ( , ) ( , )

( , ) ( , ) ( , )

L L L L L L L L L L L

T T T

x L L L x L L L x L L L

J x hm u v a v u b u v

ik u v ik a v u ik b u v

  

  

−  = = + + 

 − + − − − 

  (5.26) 
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2 2 2 22

1 2

2 2 2 22 *
1

1 1

* * * * * *

1 2

* * * * * *

1 2

( )( 0) Im

( ) ( )

( ) ( )

L L L L

x x

L L L L

x x
L L

L L L L L L L L

x x

L L L L L L L L

x x

ik u v ik a u v

ik b u v ik b u v ccJ x hm

ik a v u u v ik a v u u v

ia bk v u u v ib ak v u u v

−

 − − −
 
 
− − + − − = =
 
 + − − −
 
− − − −  

  (5.27) 
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With continue for the right current; 

 

1 * * * * * * * *

1 2

( 0) Im ( , ) ( , )

( , ) ( , )

R R R R R R R R

T T

x R R R x R R R

J x hm c u v d v u

iq c u v iq d v u

 

 

−  = = + 

 − − − 

  (5.28) 

 
( ) ( )2 2 2 22 2

1 21

* * * * * *

2 1

( 0) Im

( ) ( )

R R R R

x x

R R
R R R R R R R R

x x

iq c u v iq d u v
J x hm

iq c d v u u v iq d c v u u v

−

 − + −
 = =
 
+ − + − 

  (5.29) 

Now we can write the currents with using the probability coefficients. 

 ( )1

1( 0) Re( ) L

L L x a b abJ x hm k R R R−

+= = − − −   (5.30) 

where,  

 
2

2Re( ) L

a xR k a =   (5.31) 

 
2

1Re( ) L

b xR k b =   (5.32) 

For the right side we have 

 ( )1( 0)R R c d cdJ x hm R R R−= = + +   (5.33) 

where, 

 
2

1Re( ) R

c xR q c =   (5.34)  

 
2

2Re( ) R

d xR q d =   (5.35) 

with,  

 ( )2 2
( ) ( ) ( )L R L R L Ru v = −   (5.36) 

Note that when wave vectors “k” and “q” are complex, there appear cross terms Rab 

(5.37) and Rcd (5.38). The cross terms importance are showing in the current 

conservation law.  

 
( ) ( )2 2

* * * *

2 1 1

* * * * * *

2 1

( ) ( )
Re

( ) ( )

L L L L L L

x x x

ab
L L L L L L L L

x x

ak a k u v v u k b u v cc
R

b ak u v v u a bk u v v u

 − − + − −
 =
 
+ − + − 

  (5.37) 

 * * * * * *

1 2Re ( ) ( )R R R R R R R R

cd x xR q d c v u u v q c d v u u v = − + −    (5.38) 
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We don’t use Spin-orbit coupling in these calculations. Therefore, the relative phase 

factor between two spin branches is equal to one. 

With using the Landauer-Büttiker formalism thus we can derive the conductance with 

using cross terms shown in the Equation below (5.39). 

 ( , ) ( , ) ( , ) ( , ) ( , )T c d cdE T E R E R E R E     = = + +   (5.39) 

We know the classical conductance is related with Andreev reflection and normal 

reflection coefficients. In this situation, with using the cross terms, the conductance 

calculations changed. 

5.1.  ND Junction   

The differential conductance in this case is obtained from the general formulas by 

setting  

 

0

1

0

L

L

L

u

v

  =
 

= 
 

= 

  (5.40) 

 For x greater than zero we have effective pairing potentials shown in the Equation 

below (5.41). 

 0 cos(2( ))R R   =  −   (5.41) 

The differential conductance of an ND junction for a various surface alignment angles 

beta is shown in the Figure (5.2) and Figure (5.3). The main difference between these 

two figures comes from the definition of wavevectors. In Figure (5.2) the wavevectors 

are taken equal to fermi wavevector. On the other hand, in Figure (5.3) the wavevectors 

defined as in Equations (5.6) and (5.7). One can notice that the contribution of cross 

terms has a huge contribution in lower Z values. On the other hand, surface alignment 

angle gives a difference between conductance peaks.  

In the ND junction, first we used our model in Blonder-Tinkham-Klapwijk model to 

confirmation. These crossterms are going to zero when the wavevectors approach to 

fermi wavevector. After the confirmation of our algorithm with BTK model. We 

applied the same model to ND junction to both cases either fermi approach or not. We 

used this model with using MATLAB.  
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Figure 5.2: Conductance changing with surface alignments, barrier strength and 

energy with using fermi approach. Cross terms are zero. 

 

 

Figure 5.3: Conductance changing with surface alignments, barrier strength and 

energy without fermi approach. Cross terms are not zero. 
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5.2.  DD Junction 

 

In this model, for simplicity we choose all the material parameters of the two 

superconductors to be equal. The pair potentials in the left and right-side 

superconductors are shown in the Equations (5.42) and (5.43) respectively. 

 0 cos(2( ))L L   =  −   (5.42) 

 0 cos(2( ))R R   =  −   (5.43) 

The angles alpha and beta are the angles between the crystalline axis and the normal 

to the interface in the both side superconductors. Amplitudes of pair potentials are 

taken equal shown in the Equation (5.44). 

 0 0

L R =    (5.44) 

The solutions of conductance of asymmetric contact and parallel contact are both 

shown in the Figures (5.4) and (5.5).  
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Figure 5.4: Conductance spectrum of two d-wave SC junction with various surface 

alignments for cross terms equal to zero. 

 

Figure 5.5: Conductance spectrum of two d-wave SC junction with various surface 

alignments for cross terms not equal to zero. 

In both case where the fermi approach brings cross terms zero Figure (5.4) and non-

fermi approach brings cross terms Figure (5.5) the conductance has a significant 

difference in small barrier strengths.  
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6. CONCLUSION 

 

In this thesis, we tried to work on Josephson junctions which is a very popular topic. 

The Josephson junction phenomenon is planning to use in quantum devices and energy 

sectors. In the first chapters, we derived some important phenomenon about 

superconductivity. To understand our model, we derived the classical Andreev 

reflection problem. With using the calculations of the classical BTK model, we got a 

chance to compare our results to make correction. 

We tried to solve this model without some basic approximations to show the 

conductance behavior which is never done before. We have shown that the differential 

conductance of a Josephson junction with d-wave superconductors contains 

contributions from the cross terms. These terms are routinely neglected, because they 

are zero in the limit when quasi particle wave vector amplitude is equal to fermi value. 

Outside of this approximation, their contribution to the differential conductance of ND 

and DD junctions where barrier strength changing from zero to a finite value is shown. 

It crucial in forming zero-bias conductance peak in DD junctions in Figure (5.4) and 

(5.5). 

The cross-term influence is doubled the conductance peak where energy goes to two 

times pair potential. On the other hand, in Figure (5.5) where there is no fermi 

approach, we can see the conductance goes to zero where energy equals to pairing 

potential and one and half times greater than the pairing potential. 

In ND case, the Figure (5.2) where there the cross terms are zero is shown similar 

behavior with classical BTK model. However, in Figure (5.3) where cross terms are 

not zero we can see double conductance peaks where the barrier strength smaller than 

one. As the barrier strength increases, the conductance behavior became like classical 

BTK model. In both cases, we can see the significant effects of cross terms in 

Josephson junctions. 
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