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EFFECTS OF NEGLECTED TERMS IN JOSEPHSON JUNCTIONS

SUMMARY

We show that the existing theory of zero energy Andreev bound state in Josephson
junctions with d-wave superconductors neglects a contribution, which under certain
conditions drastically changes the appearance of zero bias anomalies. Taking these
terms into account allows a better explanation of the experimental data.

It took over 40 years to develop a consistent theory (BCS-Bogoliubov) of
superconductivity after its experimental discovery, in the simplest case of spin-singlet,
s-wave orbital symmetry. The investigation of other types of symmetry in
superconducting and superfluid systems was stimulated after the discovery of A and
B phases of 3 He and unconventional pairings in heavy fermion and cuprate high
temperature superconductors (HTS). The non-BCS pairing mechanisms underlying
superconducting phases with unconventional symmetry remain one of the most
intriguing problems in condensed matter physics. In high temperature
superconductors, the pairing symmetry is solidly established as spin-singlet, orbital d-
wave, while in different superconductors other symmetries are observed as well. While
the nodal lines of the superconducting gap dx2.y? attracted much attention, because they
allowed as unusual (for BCS case) combination of superconductivity with low-energy
excitations, a no less interesting consequence of d-wave symmery followed from the
order parameter changing sign, thus producing an intrinsic, direction-dependent -shift
of the superconducting phase. This phenomenon is particularly well manifested in the
properties of Josephson junctions with high temperature superconducting materials,
leading to the appearance of spontaneous currents and bistabilities, Andreev bound
states and zero-bias anomalies in the normal conductance of Josephson junctions
produced by the existance of these bound states. The latter was instrumental in
establishing their d-wave pairing symmetry and remains the subject of an intensive
theoretical and experimental research over the years. The process of Andreev
reflection converts the quasi particle current to the supercurrent via the incoming
electron-like quasiparticle is being reflected by the off-diagonal superconductor
potential (order parameter) as a hole-like quasiparticle and vice versa. The effect takes
place not only on SNS junctions but also in weak links and whenever two
superconductors with different amplitudes of the order parameter are brought in
contact. In Josephson junctions this leads to the formation of Andreev levels. The
Andreev reflection amplitude depends on the superconducting phase; therefore, the
Andreev levels are phase-sensitive. This allows to express both the superconducting
and quasiparticle contributions of the Josephson current in terms of transport through
the Andreev levels. The Andreev bound state with energy zero appears in junctions
containing a superconductor with direction dependent -phase shift of the order
parameter, which leads to canceling the energy-dependent terms in the quantization
condition for this level. Its existance produces the specific zero-bias conductance peak
(ZBCP) in the differential conductance of the Josephson junction. A convenient
method of calculationg conductance of restricted quantum structures is based on the
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Landauer-Biittiker approach, expressing it through the scattering coefficients. In the
following we will show that the appearance of ZBCP in HTS Josephson junctions may
drastically change if certain terms, which are usually neglected in such calculations,

are properly considered.
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JOSEPHSON BAGLANTILARINDA iHMAL EDIiLEN TERIMLERIN
ETKILERI

OZET

Bu tezde, d-dalga siiperiletken Josephson baglantilarinda var olan sifir enerji bagh
Andreev durumlarin var olan teorisinde ihmal edilen terimlerin etkilerini gosterdik.
Belirli kosullar altinda sifir tabanli anomalilerin degisimlerini gosteren bu ihmal edilen
terimleri, deneysel verilerle daha iyi bir sekilde karsilastirilabilmesi i¢in kullandik.

Deneysel kesfinden sonra tutarli bir (BCS-Bogoliubov) siiper iletkenlik teorisi
gelistirmek igin 40 y1l gecti. Bu teori en basit haliyle Spin-singlet ve s-dalga orbital
simetrilerinin temeli atmak i¢in yapildi. Stiper iletken ve siiper siv1 sistemlerinde diger
simetri tlirlerinin arastirilmasi, 3 He elementinin A ve B fazlarinin kesfinden ve agir
fermion ve yiiksek sicaklik stiperiletkenlerindeki alisilmamis eslesmelerden sonra
uyarilmistir.

Konvansiyonel olmayan simetri ile siiperiletken fazlarin altinda yatan BCS olmayan
eslestirme mekanizmalari, yogun madde fiziginde en ilgi cekici sorunlardan biri
olmaya devam etmektedir. Yiiksek sicaklikli siiperiletkenlerde, eslestirme simetrisi
katt bir sekilde spin-singlet, yoriingesel d-dalga olarak kurulurken, farkli
stiperiletkenlerde diger simetriler de gézlemlenir. Diisiik enerjili uyarimlarla sira disi
(BCS durumu i¢in) siiperiletkenlik kombinasyonuna izin verdikleri i¢in, Siiperiletken
bosluk dx2-y2'nin diigiim ¢izgileri ¢ok dikkat ¢ekerken, d-dalgasi simetrisinin daha az
ilging bir sonucu olan diizen parametresi, degistirme isaretinden takip edilir, bdylece
i¢sel bir sonug elde edilir. Boylece siiper-iletken fazin igsel, yon-bagimli-kaymasi
tiretilir. Bu fenomen, yiiksek sicakliktaki siiper iletken malzemelerle Josephson
baglantilarinin 6zelliklerinde 6zellikle 1yi bir sekilde kendini gosterir. Andreev bagh
durumlart bu bagli durumlarin varligindan kaynaklanan Josephson baglantilarinin
normal iletkenligindeki durumlari ve sifir tabanli anomalilerini gosterir. ikincisi, d-
dalgasi eslestirme simetrisini olustururken etkiliydi ve yillar boyunca yogun bir teorik
ve deneysel aragtirmanin konusu olmaya devam ediyordu.

Andreev yansimasi siireci, kuazi-pargacik akimini siiper akima doniistiiriir. Bu islem
gelen elektron benzeri kuazi-pargacigin siiperiletken potansiyelinin diyagonal
olmayan kismindan delik benzeri kuazi-pargacik olarak yansimasiyla olur. Bu islem
ayn1 zamanda tersinirdir. Yani delik benzeri parcacaik ayni sekilde siiperiletken
potansiyelinin diyagonal olmayan kismiyla etkileserek electron benzeri kuazi-
parcaciga doniisiir. Josephson kesisimlerinde temel akim prensibi bu sekildedir.
Burada siiperiletkenin potansiyelinin agisina bagl olarak kesisim noktasinda akimda
artis ve azalma gozlemlenir.

Bu tezde yapilan ¢aligma, bu yiizey acilarinin ve baglanti noktasina konulan bir
potansiyel bariyerin degerinin degisimiyle akimda olan degisimleri gézlemlemeye
calismaktir. Etki sadece SNS (siiperiletken-normal-siiperiletken) baglanti noktalarinda
degil, ayn1 zamanda zayif baglantilarda ve diizen parametresinin farkli genliklerine
sahip iki siiperiletken ile temasta bulunur. Bu durum Josephson baglanti noktalarinda
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Andreev seviyelerinin olugsmasina yol acar. Andreev yansima genligi siiperiletkenin
fazina baglidir. Bu nedenle Andreev seviyeleri faza duyarhdir. Bu, Josephson akiminin
Andreev seviyeleri araciligiyla tasinmasi agisindan siiperiletken ve kuazi-parcacik
katkilarini ifade etmeyi saglar.

Josephson baglanti noktalarinda sifir enerji Andreev bagli durumu ydéne baglh
siiperiletken durumunu gosterir. Bu ayrica diizen parametresinin (siiperiletkenin
potansiyel fonksiyonu) faz kaymasini gosterir. Bu durumun varligi, Josephson baglanti
noktalarinin diferansiyel iletkenliginde spesifik bir sifir ongerilim iletkenlik tepe
noktasini iiretir. Kisith kuantum yapilarin iletkenliginin hesaplanmasi i¢in uygun bir
yontem olan Landauer-Biittiker yaklagimi uygulanmaktadir. Tez igerisinde Boliim 4.5
icerisinde bu modelin akim ve iletkenlik icin iiretilen matematiksel modeline
deginilmistir. Bu model, Andreev hesaplarindan gelen Andreev yansima, normal
yansima, elektron benzeri gecis ve delik benzeri gegis olasilik sabitlerinin ve akim
korunumundan ¢ikan kuazi-parcacim diizeltme denklemlerinin kullanilmasi ile bize
akimin ve iletkenligin, yansima ve gecis olasilik sabitleriyle nasil baglantili oldugunu
gosterir. Bu model sagilma katsayilari ile ifade edilir.

Bu tezde, belirli sartlarin uygun bir sekilde dikkate alinmasi durumunda Josephson
kavsaklarinda sifir ongerilimli iletkenlik tepe noktasinin ortaya ¢ikmasinin ciddi
sekilde degisebilecegini gosterecegiz. Boliim 5°te 6zellikle DD siiperiletken Josephson
kesisim noktalarinda bu sifir Ongerilimli iletkenlik tepe noktalarinin degisen
parametrelerle klasik modelden ayrildigini inceleyecegiz.

Genel olarak klasik modellerde (BTK), Josephson baglanti1 noktalarinin matematik
modelleri yazilirken, dalga vektorleri ve momentumlar hesaplarda kolaylik olmasi
sebebiyle fermi seviyesinde kabul edilir. Bu fermi yaklagimi, baglanti noktasinin tiim
noktalarinda diizlemsel eksene gore hareket eden parcaciklarin momentumlarinm esit
almay1 ongoriir. Fakat kullanilan siiperiletkenlerin diizen parametre fonksiyonlarinin
yine diizlemsel eksene gore yaptiklari acilarin farkina gore, gelen, yansiyan ve gegen
parcaciklarin momentumlarinin esit olmasi prensibi, iletkenlik hesaplarinda bazi
detaylarin gozilkkmemesine yol acar.

Biz bu tezde gonderilen elektronu diizlemsel eksene paralel olacak sekilde gondererek,
stiperiletkenin diizen parametre fonksiyonun diizlemsel eksen ile yaptig1 aciy1
degistirerek iletkenlik iizerine etkisini inceledik. D-dalga stiperiletkenlerinin
yapisindan dolay1 45 derecelik degisimler ile gelen parcacigin baglant1 noktasinda
nasil bir potansiye ile karsilagabilecegini 6ngoérebiliyoruz. Burada beklenen sonug,
enerjinin sifira gitmesiyle sifir ongerilimli iletkenlik tepe noktasinin sonsuza
gitmesidir. Hesaplarda D-dalga Josephson baglantilarinda bu durum goriilmektedir.

Hesaplarin daha anlasilir ve kolay olabilmesi i¢in iki d-dalga siiperiletkenin Josephson
baglanti noktasinda malzeme oOzelliklerini ayn1 aldik. Bu durumda diizel
parametlerinin katsayilar1 yani potansiyellerin genlikleri iki taraf i¢inde esit degerde
alinarak sadece yiizey agilarmin ve baglanti noktasinda alinan yalitkan potansiyel
bariyerin degisiminin etkisini gozlemlemeyi hedefledik. Buna ek olarak normal metal
ve siiperiletken Josephson baglanti hesaplarinda normal metalin diizen parametresi
olmadigi i¢in, delta potansiyel fonksiyonu sifira esit olmaktadir. Burada ilging olan,
boliim 5’te de goriinecedi iizere, thmal edilen terimlerin hesaba katilmasiyla tiretilen
algoritmada fermi yaklagiminin yapildig1 degerlerde sonuclarin klasik BTK modeline
benzemesidir. Yaklasimin yapilmadigi sekillerde ise beklenmeyen bir takim ilgi gekici
sonuglar elde edilmektedir. Daha ©once bu hesaplarin denendigi bir arastirma
bulunamadigi icin, bu tez teorik olarak bir model 6ngoriisii ortaya koymaktadir. Ayrica
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hesaplarin basitlestirilmesi i¢in, Spin-yoriinge c¢ifti etkiside hesaplara dahil
edilmemistir. Bu durum, spin etkilesiminin olmadigin1 ve gelen, yansiyan ve gecen
parcaciklarin spin yonlerinin ayni kalmasini dngdriir. Bylece hem sistemin Hamilton
matrisinin boyutu yaritya inmis, hemde iki taraf arasinda spin degisiminden
kaynalabilecek diger etkiler grafiklere konulmamistir. Bu durum sayesinde, sadece
yiizey ag1 parametrelerinin ve yalitkan bariyer genliginin iletkenlik tizerinde Ki etkisi
incelenebilmistir.
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1. INTRODUCTION

The first successful try in superconductivity was made by Heike Kamerlingh Onnes in
liquefying helium in 1908.  He tried to make a research about electrical resistivity of
metals at low temperatures. The first experiments are done on mercury because of its
purity. The resistance started to decrease while temperature decreased. After the
temperature reached to 4.2 K, the resistance showed a sharp drop to zero. On the other
hand, with increasing the temperature, resistance acted like reverse. After this
interesting behavior of mercury investigated, similar experiments were tried on lead
and tin. Lead’s resistivity showed to same drop at 7.2K and tin’s resistivity showed at
3.7K. After this result, the temperatures where the resistivity drop zero called critical
temperatures. Therefore, this effect named as superconductivity. The discovery of the
liquefaction of helium and superconductivity term brought 1931 Nobel Prize to Onnes.
Onnes also discovered the magnetic field’s destruction effect on superconductivity.
According to his research, after a specific magnetic field strength for each material,
the superconductivity disappears. This specific value is also called critical magnetic
field (Hc) [1].

Another important effect in superconductivity is called Meissner effect. W. Meissner
and R. Oschenfield showed that a superconductor gave a permission for up to a specific
magnetic field inside itself. Therefore, to specify a materials superconducting property
resistance drop and the Meissner effect must be observed below its critical

temperature.

The formulation of superconductivity is created by Fritz and Heinz London in 1935
and its called the London Theory [2]. This theory brought the idea of order parameter

and coherence length.

One of the most popular superconducting theory is called BCS theory in 1986. The
theory got its name from the scientist Bardeen, Cooper and Schrieffer. The basic idea
in this theory was developing a superconducting model which includes all parameters

of superconductivity.



Different from low temperature superconductivity, the theory of high critical temperature
superconductivity is discovered by Alex Miiller and George Bednorz in 1986. The experiments
showed that a lanthanum-barium-copper-oxide (YBCO) showed superconducting behavior at
30K [3]. In addition of this high temperature superconductivity, Wu et all showed that yttrium-
barium-copper-oxide transition temperature was 93K. This result was interesting because the
temperature of 93K is higher than the boiling point of liquid nitrogen which is 77K. In that case,

YBCO is a very popular superconductor today.

In this thesis, we focused on a theory of multi superconducting junctions separated with a thin
insulating layer. These junctions called as Josephson Junctions. In Chapter 2, we showed some
classical properties and theories of superconductivity. In Chapter 3, we derived some important
equations of Josephson Junctions to understand the cooper pairs, current behavior, flux
quantization and the tunneling phenomena. In Chapter 4, we derived the Classical Andreev
Reflection calculations to understand the model we used. The main model is called Blonder,
Tinkham, Klapwijk (BTK) which is a model of unconventional superconducting junctions. We
derived the conductance results of this BTK model. In Chapter 5, we tried to understand effects
of neglected terms in these unconventional Josephson junctions to make a general model which

is never done before.



2. SUPERCONDUCTIVITY

In this Chapter, we tried to have a look of basic properties and equations of
Superconductivity. To understand how Superconductivity works, one need to know

basics of Superconductivity.

2.1. Basics of Superconductivity

The superconductors mainly divided into two; perfect conductivity and perfect
diamagnetism. The resistivity is decreased with the decreasing temperature because of
the electron and phonon scattering. However, in superconductors the sharp drop of
resistivity to zero at a specific temperature called transition temperature. The main

aspect of superconductors is the conductivity becomes perfect under these transition

Non-superconductor '
S

== Superconductor

temperatures.

Resistance

0 C Temperature/K

Figure 2.1: The resistivity drop difference between superconductor and Non-

superconductor.

As seen in the Figure 2.1 resistivity drops to zero suddenly while the temperature
decreasing in a superconductor. This perfect conductivity can have destroyed using
magnetic field. As mentioned in the Chapter 1, the applying external magnetic field
can destroy the superconductivity. If an external magnetic field applied to a
superconductor for a while and then removed, there will be an induced current starts

to flow around superconductivity continuously. This induced current creates induced



magnetic flux. The magnetic flux seen in the superconducting ring is quantized. This

means it can only have integer values. This is called magnetic flux quantum.

The destruction of superconductivity with applying magnetic field process is similar
as temperature and resistivity curve. If the applying magnetic field excess the critical
magnetic field (Hc), then the material lost its superconducting property. On the other
hand, critical magnetic field is a function of temperature. The critical magnetic field

equation is given in the Equation (2.1).

H(T) = HC(O)[l—(I—)Z] 2.1)

normal conducting state

/ \ » - -~
_ Superconducting A\ —

v state
I lk 7

T T

Figure 2.2: The relation with the critical magnetic field and the temperature [4].

As we can see in the Figure (2.2) the superconductivity depends on both a critical

magnetic field and a critical temperature.

The diamagnetic properties of superconductors also a well-known situation. This
property is differing the superconductors from ideal conductors. These
superconducting states of the materials creates opposite induced magnetic field if any
external magnetic field applied. This induced field is created from the induced current

which is created by applying external field. This phenomenon is called Meissner effect

[5].



2.2. London Equation

The London equations are basic calculations for showing the superconducting

phenomena.

m& _ep MV (2.2)
dt T

The London formulations is starts with the electrical conductivity in Drude model seen
in the Equation (2.2). In here, v is the average velocity of electrons, m refers to mass
of the electrons, e is change of an electron, E is energy and tis mean time between
scattering of electrons. In the superconducting state, the assumption is telling us there
IS no scattering between electrons. Therefore, the mean time dependent side goes to
zero in the Equation (2.2) and we got a new derivation below;

m% =eE (2.3)

To deriving the London equation, first need to write superconducting current density;
Js = nsevS (2.4)

In the Equation (2.4) the ns and vs terms are electron density and average velocity of

electrons respectively. With combining the Equation (2.4) and (2.3) we get

i m

£~ g i (25)
d.

E = (M) (2.6)

A= 2.7
n.e

In here the Equation (2.6) is refers to first London equation. The second London

equation is derived from Ampere’s Law
~V*H =VxJ (2.8)

Combining Equation (2.8) with (2.6) and we get the equation below

v et (2.9)
oT A



Applying Maxwell Faraday equation to Equation (2.9) we get the equation below

yeoH__oH 1 (2.10)
oT ot A
The field equation in Equation (2.10) gives
-B
VXxJ =— 2.11
" (2.11)

The Equation (2.11) is also known as second London Equation. The solution of the
second London equation also gives the penetration depth which is stated in Equation
(2.12) below

A= =~ (2.12)

The penetration depth stating in the Equation (2.12) shows how much magnetic field

penetrate inside a superconductor [6].

2.3. Ginzburg Landau Theory

The main reason of this model is also to formulating the superconductivity phenomena.
In this approach, quantum mechanical descriptions are using. The idea is the showing
long range coherently electrons with wave function. Also, the density of electrons

written from the absolute square of this distance dependent wavefunction.

The theory is also shows the Coherence length which is a characteristic length of
superconductors as a function of temperature. In addition, the Ginzburg-Landau
parameter usually used to describe to type of the superconductor. For Type 1

superconductors the Ginzburg-Landau parameter is lower than 1 [7].

2.4. BCS Theory

The BCS theory mainly answers the question of why superconducting electrons do not
face with any resistance below their transition temperature. This theory usually used

for understanding the physics of superconductors.

BCS theory begins with the cooper pair formations below critical temperatures.
Phonon-electron interaction causes attractive forces and bound two electrons which is
defined as cooper pairs. To stabilize the spin conservation to be zero, these electrons

have opposite spins. This shows us the bosonic structure of cooper pairs. In the low



temperatures, an electron create phonon where another electron absorbs that phonon
the cooper pairs are started to form [5].

2.5. Type 2 Superconductors

This type of superconductors are found by Abrikosov. His theory depends on different
behaviors of some superconductors under a magnetic field. In this type, some
superconductors still preserve its superconducting behavior if external magnetic field
exceeds the critical magnetic field. Type 2 superconductors have two critical magnetic
field. Also, the Ginzburg-Landau parameter is greater than one in these
superconductors.

In type 2 superconductors, the applied magnetic field penetrates the material. This
magnetic field vectors formed as vortices inside the material. After exceeding the first
critical magnetic field value, the material still preserves its superconducting behavior.
However, with increasing the vortices size, in the second critical magnetic field these
vortices cross each other and destroy the superconductivity [5].






3. JOSEPHSON JUNCTIONS AND TUNNELING

The Josephson Junction is a junction between two superconductors. The cross section
of these two superconductors is made by an insulating layer. This phenomenon is
depending on electron tunneling in these junctions. With the tunneling of these
electrons, the supercurrent is created. This model is using in many quantum devices.
At low temperatures, the lattice vibrations of crystals are very small. Two electrons
can move with pairing by attracting the lattice. These pairs are Cooper pairs and they
can move without resistivity in superconductors [8]. The Schrédinger’s wave function
represents these pairing electrons [6]. The pairing has a twice mass of an electron and
half density.

The representative wave function is giving in the Equation (3.1).

y(r,t) =/n(r,t)e’ (3.1)

3.1. Current Density

The current density expression with wavefunction is seen in the Equation (3.2) and the
superconducting current density equation depends on magnetic vector potential “A” is

showing in the Equation (3.3) below

3, =q Re{y (v - A} (3.2)
Im m
_ h q
2, =N D=V L A ) (33

We can use gauge transformations for vector and scalar potential showing in the

Equation (3.4) and (3.5) respectively

A=A+V, (3.4)
=L (3.5)
ot



The new phase is stated in Equation (3.6).

*

0 =6’+%x (3.6)

The new current density with using gauge transformation is shown in the Equation

(3.7) [6].

J. = q*n*(r,t)(r:* Vo (rt)- ;‘1 A(r,1) (3.7)

3.2. Josephson Tunneling

The Josephson junction model and the mathematical representations are shown in the
Figure (3.1).

Josephson relations:
—

_ [, i
\{/1 — »\..'Hl(.? I=1Ising

9 2 dt
| 16
\Pf_) — N."Hz =

~ ¢ =0,-06

Figure 3.1: Josephson junctions and voltage and current relations [6]

In the model, each superconducting region is showing with their own wavefunctions.
The tunneling effect occurs in the thin insulator layer showing in blue color in the
Figure (3.1). We do not need to solve this tunneling phenomena in this part. We solved

this model in the Andreev reflection and BTK model in Chapter 4 and 5.
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4. ANDREEV REFLECTION AND BTK MODEL

4.1. BTK Model

We used Normal metal and Superconductor junction in the first aspect. The general

model and the gap order parameter delta is shown in the Figure (4.1).

A(z) = 0(z) Ag ¢

Figure 4.1: The BTK model for N-S junctions with order parameter [9].

In the model shown in the Figure (4.1) the three-dimensional coordinates are X
(longitudinal), y and z (transversal). For the simplicity of the calculations, we put the
junction in the origin where x is equal to zero. We can write the system with using the
Bogolubov de Gennes Equation showing in the Equation (4.1) [9].

(Z’f —ﬁ;jm: Em (4.)

11



The step like junction order parameter is showing in the Equation (4.2).
A(X) = O(X)A " (4.2)

According to three dimensional coordinates, we can separate the wavefunction into

transversal and longitudinal parts showing in the Equation (4.3).
Y(xy,2) =y (x)®,(y,2) (4.3)

In the function includes transverse coordinates (y, z) the letter “n” donates the quantum
number. We wrote the Schrodinger’s equation of the system in Equation (4.4) with
transversal energy and potential.
W 0 0
—(—+—)+V,.(y,2) |D,(y,2)=E D, (Y, 4.4
Lm e ayz) Ly )} (y,2) (y,2) (4.4)
The energy is equals to sum of both transversal and longitudinal energies showing in
the Equation (4.5).

E=E +E, (4.5)

For a given mode “n”, the effective chemical potentials can be derived showing in the

Equation (4.6).

&y =& — E, (4.6)

n

The assumption that ¢ has already includes the self-consisting potential U.
After that, we put a Dirac potential barrier at the boundary to with a strength to show
the contact resistance. With Using the Equations below, the final Hamiltonian from
BdG is showing in the Equation (4.7) [10].
n* o
———— &g, +AO(X) A(X) ulx ulx
2m Ox ( ( )sz( ( )j )

. n o v(x) v(x)
A (X) +ﬂy+8Fn—A5(X)

The equation stated in Equation (4.7) is called BTK (Blonder-Tinkham-Klapwijk)

model. The first aim is to find solutions with non-negative energies.

Lets look up for Normal (N) side solutions where order parameter goes to zero as seen
in the Equation (4.8).

12



LA 0
2moxt " (U(X)] _ E[U(X)] 4.8)
n? 02 V(X) v(X)
0 +——+&r,
2m ox?

From the N side equation, we can see two particle and hole solutions stated in the

Equations (4.9) and (4.10) respectively

1) ..
P (X) = [oj gl (4.9)
h 0 +ikp, X
Ti(x):[lje : (4.10)
Where
K =k, |1+ (4.11)
Ern
I (4.12)
an
NE
K, = '28”‘ (4.13)

Figure 4.2: The Normal (N) side Spectrum [9].

After we reached the solutions of the N side as seen in Figure (4.2), we continued our
calculations in the S (Superconducting) side, where the order parameters are not equal

to zero.
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In the Superconducting (S) region as seeing in Figure (4.3), the BAG Hamiltonian is

showing in the Equation (4.14).

hZ 62 )
Tomaxd OF A" u(x u(x
2m Ox ( ( )sz( ( )j (4.14)
i n? 8° v(x) v(x)
A +———=t+¢&m
2m OX

In here, two situations have occurred. One is the Supra-gap solutions (E > Ao). Supra-
gap solution means the incident electron has more energy than the gap energy.

Therefore the electron wave expected to be propagate.

Figure 4.3: Superconducting (S) side spectrum [9].

The Supra-Gap solutions are stated in the equations below. In here, we have two

particle-like and two hole-like solutions stated in the Equations (4.15) and (4.16)
respectively [10].

%
e uoe ? +igeX
Y (x) = o, g% (4.15)
Ve 72
h VOei% +ig, X
Y1(x)= gt (4.16)
T —|%
Uye
Where
E2 - A2
Q. =Kg, 1+ > 0 (4.17)
an

14



(4.18)

And

P2
k, = Yk (4.19)

! h
Here the quantities uo and vo are called as quasi-particles related with electron-like and

hole-like particles. The solution of the Hamiltonian gives the quasi particle results
stated in the Equations (4.20) and (4.21).

2 1arccoshE
U= [ 14 1= Bo] |2 [Bog2™ (4.20)
2 E 2E

Z —larccoshi
V, = Lo ho[& |2 /ﬁe 2 (4.21)
2 E 2E

We can write the quasi-particle equations in the Wavefunction stated in the Equations

(4.15) and (4.16) and we get the new wavefunction equations stated in the Equations
(4.22) and (4.23).

1 E
A eaarccoshA—oei% .
Ye(x)=,|=2 g (4.22)
- 1 E
2E —=arccosh— —i¢/
e 2 AOe g)

1 arccos hE

i?,
e 2 hog |
Ph(x) = Ao et (4.23)
N 2E | larccoshE _.(V
g2 Mg 2

Up to here, we solved the Supra-gap solutions for the S side. Let’s look for Sub-gap
solutions (E < Ao). In this part situation, the incident electron coming with less energy

than the gap energy. Therefore, the wave expected to be evanescent.

In the sub-gap solution, the wave-vectors have an imaginary part. The real parts are
remaining to the order of krn. The analytical continuation solution is giving in the
Equations (4.24) and (4.25) stated in the below.

15



(4.24)

(4.25)

The analytical continuation of the Equations (4.20) and (4.21) can be written similarly
and stated in the Equations (4.26) and (4.27).

i E
Uy = B 2%, (4.26)
2
i E
A —EarccosA—
v, =,[=—2e 0 4.27
= (4.27)

For the evanescent waves the summation of absolute squares of quasi-particle states

are not equal to zero.
|u0|2 +|V0|2 #1 (4.28)

On the other hand, with non-absolute summation:

) ) A i arccosAE —i arccosAE
Uy +Vp =,[—=|e ™+e ° =
2E

. cos(arccos E) =1
2E )

(4.29)

Such this continuation is generally not unitary. Unitarity only comes from the
propagating modes. The evanescent waves are complex are carry no current. Unitarity
is related with the conservation of current therefore the unitarity is a confirmation in

propagating modes.

In the last part, we looked for the conditions at the boundary where the Dirac barrier

exist.

IO 00+ ASOOU()+ AGV(H) = Eu(x) (4.30)
2m OX

With integrating the Equation (4.30), the Schrédinger’s boundary conditions obtained
around x = 0 seen in the Equations (4.31) and (4.32).

16



2mA

8,u(0")-0,u(0") = Z=u(0) (4.31)
o.v(0")—o.v(0) = 2;:2’\ v(0) (4.32)

With approaching infinitesimal to the origin from both right-hand side and left-hand

side and integrating gives the results showing above.

4.2. Scattering Matrix Coefficient

In this part, we want to calculate the Scattering Matrix coefficient. Firstly, we need to
consider an incident electron sending from the N (left) side of the model. The incident

electron wavefunction is stated in the Equation (4.33).

¥ (X)= ! (1je*ikex (4.33)
" J27hv, \ 0

The reflected particles are considered as left-moving electron or a left-moving hole.

Therefore, we can write the reflection wavefunction in the Equation (4.34).

I 1) . r 0) i
Y (x)=——== e + = g 4.34
- geol ™ ) (30

On the other hand, the transmitted particles written as right-moving electron-like or
hole-like particles. The transmission wavefunction is stated in the Equation (4.35).

i? i?,
tee uoelé igex the Voelé
lPtrans (X) =T

\J2hw, Voefi% \J27hw, uoefi%

The ree refers to reflection coefficient from electron to electron, rne refers to reflection

g 1w (4.35)

coefficient from electron to hole, tee refers to transmission coefficient from electron to

electron and the last one tne refers to transmission coefficient from electron to hole.

The wavefunctions are normalized with their velocities. The velocities are different
from electron to holes and from normal to superconducting side. With normalization,
same amount of flux of quasiparticle probability current carried by wavefunctions. The
“r” and “t” coefficients describe a unitary matrix. Now, for the conversation of quasi-

particle probability current we need to write the parameters [11].

In the N side,

17



21,2
AL [+ (4.36)
2 nldk,| m
21,2
ey LdEI Ak (4.37)
hldk,| m
In the S side,
2,42 2
e [ M9 _p | sa2 w, =2[9E[_ TG (4.38)
2m nldg,l m
2.2 2
E= —hqh+an +A§—>Wh:1d—E:% (4.39)
2m nldg,| m

With using the derivations stated below, we calculate the velocities showing in the
Equations (4.40) and (4.41).

Ve/h = ? (440)
JE?-A?
We/h = E - Ve/h = (Ué _Vg)ve/h (441)

The electron and hole have different signs in the momenta in reflected wave and

transmitted waves according to description.

To find the full solution, we need to apply boundary conditions stated in the below.
The boundary conditions coming from the continuity are stated in the Equations (4.42)
and (4.43).

u(0*)=u(0") (4.42)
v(0*) =v(0") (4.43)

The derivative boundary conditions derived from the integration of the Schrédinger’s

equation are stated in the Equations (4.44) and (4.45).

0.u(07)=0.u(0) = 2;12/\ u(0) (4.42)
007 —0.v(0) = 22‘2/\ v(0) (4.45)
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The four boundary conditions created four linear equations to find four unknowns ree,

rhe, tee and the.

4.3. Solution of the Andreev Approximation

The Andreev approximation states that in the low energies fermi approximation can
be made. This approximation makes the equation sets very simple. This approximation
is using also in classical BTK model. After the derivation of the classical results, we
showed our non-fermi approximation solutions and the purpose of this thesis in the
Chapter 5.

E,A, < é&p, (4.46)

The approximation made in the Equation (4.46) refers to the approximations stated in
the equations below.

ke/h &~ qe/h ~ an (447)
And
Vo = Ve, (4.48)
E*-A]
We/h ~ TOVFn = (Ug _Vg)VFn (449)

The fermi velocity is also defined as
Vg, =—=4 (4.50)
m

After the approximation, the equations of the model is solving using the boundary
conditions. The results of coefficients for classical BTK model stated in the below.

_ UoVo
2 2 2 2
ug +2%(ug -z )

e (4.51)

rhe

_(Zz+iZ)(u§—v§)

“u ez (U -vg)

1—iZ)u JuZ —v2
t _( ) 0 0 0 e—l¢)/2 (4.53)

ee — 2 2( 2 2
Uy +Z (uo—vo)

(4.52)
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_ (IZ)VO \' ug_vg e7i¢1/2 (4.54)

L=
Toui+Z(uf-vg)

And

>
3
>

(4.55)

n Fn

The Z is the dimensionless parameter of the transparency of the interface in BTK
model. If Z is very small from one the solution called very transparent interface. On
the other side, if Z is greater than one the solution called weakly transparent interface.
Transparency is referred as transmission probability Tn of the junction in the normal
case. If the gap in superconducting side is goes to zero of the temperature decreased

below critical temperature, The BTK transmission probability goes as T,

1

_ 4.56
N1+ 22 (4.:56)

Transmission and reflection coefficients can be written as a different notation using in

the equations below [12].

A= A? = [ (4.57)
. pee 2
B=AT =|r,| (4.58)
. ee - 2
C=A; = |tee| (4.59)
D= A =lt,[ (4.60)
Now we can look for the solutions for Supra-gap and sub-gap.
For Supra-gap (E > Ao),
AZ
A(E) = 0 > (4.61)
(E +(1+222)E? —Ag)
2 2\(E2 _ A2
B(E) = 4Z°(1+2Z%)(E* - A2) (462)

(E+(1+222),/EZ—A§)2
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. 2(1+2Z2)(E? — A2)(E +,E? —A2) .63

(E+(1+222)1/E2—A§)2

D(E):2221/E2—A§(E—1/E2—A2§) (4.64)
(E+(1+222)1/E2—A§)

The summation of the probability functions gives one (A+B+C+D=1) as required by

unitarity of the S-matrix.
For Sub-gap (E < Ao),

Al
AB)=F T (L+22%)(AZ—E?) (4.65)
o 4222(1+ 2222)(A§2— EZZ) (.66
E°+(1+2Z2°)(A;—E")
C(E)=0 (4.67)
D(E)=0 (4.68)

In the sub-gap case the transmission coefficients go to zero. Also, if we look at the
condition that E = Ao, the supra-gap transmission coefficients also goes to zero which
means no propagation waves among the superconducting side. Therefore, we can also
easily verify that for zero transmission coefficients the summation condition gives one
(A+B=1).

4.4. Andreev Reflection

4.4.1. The ideal interface

The ideal interface is the condition of Z = 0 where no barrier in the junction. In this
section we tried to analyze the ideal case. In here, the Andreev-reflection amplitude
for electron to hole conversion coefficient stated in Equation (4.69) and hole to
electron coefficient stated in Equation (4.70).

—iarccosAE
u. . |e °* >E<A
=g =g ° (4.69)
he E
Vo —arccoshA—
e "> E>A,
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- E
—iarccos—

A
V. . |e ° > E<A
r, =-2e¥ =g 0 (4.70)
eh E
Uy —arccoshA—
e * > E>A,

The coefficients behavior is shown in the Figure (4.4).

Z=0
1.2 :
——A(E)
3 ——B(E)
C(E)
0.8 | —iE)
0.6
0.4 |
0.2
0 x
0 2 4 6 8
E/ A,

Figure 4.4: The probability coefficients in BTK model for Z=0.

As seeing in the Figure (4.4) the coefficients B and D are vanishing.

For sub-gap regime (E < Ao)

A(E) =1 (4.71)
B(E)=0 (4.72)
C(E)=0 (4.73)
D(E)=0 (4.74)

In here A is the Andreev reflection coefficient, B is normal reflection coefficient, C is
electron-like particle transmission coefficient and D is hole-like particle transmission
coefficient. In the sub-gap regime, we can see that for an ideal interface all the incident
electron reflected as a hole. Therefore, we see only Andreev reflection in this model.

This situation is called as Andreev reflection [13-14]. The momentum is not conserved
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but the charge is conserved. Because of the fermi approximation, we can say this the

momentum is almost conserved.

For supra-gap regime (E < Ao)

Yo p— (4.75)
(E+1/E2—A§)
B(E)=0 (4.76)
2, JE? — A2
C(E) = 0 4.77
® EEY @77
D(E)=0 (4.78)

For energies above the gap, electron transmission probability gets finite values.
Increasing the energy will result to full transmission on the superconducting side. For
supra-gap regime the particle probability is divided into Andreev reflection and

electron-like transmission coefficients.

4.4.2. Interface with arbitrary transparency

In this section, we look for non-ideal cases (Z>0). In this interface, still a probability
exists for the electrons reflection as hole. On the other hand, changing the barrier
strength also results to normal reflection. Therefore, with creating a potential barrier
in the junction results for both Andreev and normal reflection. In the Figure 4.5 we
can see that as we increase the barrier the particle most likely reflect as electron
(normal reflection). On the other hand, we can see that clearly when the energy equals
to the gap, the particle most likely reflected as hole (Andreev reflection). The electron-
like transmission coefficient (C(E)) is decreasing with increasing barrier strength.
Also, we can see that there is a small amount of increment seeing in the hole-like
transmission coefficient with increasing barrier strength. The calculation of the
coefficients was done with using computational programming. With using our
algorithm, we got the same results as originally Blonder-Tinkham-Klapwijk model.
As we can see in the Figure (4.5), Andreev reflection coefficient act as Dirac-Delta
function as the barrier strength increases. On the other hand, normal reflection and e-
like Transmission coeffients getting increase.
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Z=0.2

——A(E) ——A(E)
0.8 ——B(E) ; ——B(E)
C(E) C(E)
——D(E) —D(E)
0.6
0.4
0.2
0 =
0 2 4 6 8 8
E/ ._\O
Z=1.5
1.2
——A(E) —A(E)

——B(E) 1 —B(E)
C(E) C(E)
08 —D(E) 08 —D(E)
0.6 0.6 r”—;
o
0.4 0.4 /
0.2 0.2 J

0 0
0 2 4 6 8 0 2 4 6 8
E/ AO E/ AO

Figure 4.5: Reflection and transmission coefficients with increasing barrier strength.
4.5. Current and Conductance

The current transport through the single channel system is expressed by Landauer-

Biittiker expression seeing in the Equation (4.79) [16].
2¢*
=" j dET (E)(f,(E) - f.(E)) (4.79)

T(E)=1-R(E) (4.80)

In here T(E) is the transmission coefficient and R(E) is the reflection coefficient. The
“2” factor coming from spin degeneracy and fir functions are fermi distribution
functions for left hand and right hand side particles.

(E—n1, 3 )keT (4.81)

1
f < (E)=
L= (E) Tie

In our model for a single channel, the sample is contacted with one normal and one
superconducting electrode. Therefore, the Landauer-Biittiker formalism is forming as
stated in the Equation (4.82).
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|=ZTez [dE@-B(E)+ AE))(f.(E)- T (E) (4.82)

In here, again B(E) is the normal reflection and A(E) is the Andreev reflection. The
main logic in here, normal reflection decreases the current on the other hand Andreev
reflection increases the current.

The theoretical approach allows us to investigate the results as zero temperature. The

Landauer-Biittiker formalism in zero temperature is seeing in the Equation (4.83).

|=ZTezedeE(1— B(E)+ A(E)) (4.83)

As we can see, the fermi distribution functions disappear in the zero-temperature

limit. The chemical potentials are stated in the below.
U =e-+eV >y, =g >V >0 (4.84)
We can derive the non-linear conductance at zero temperature from here.

oy (V) = j—\'/ p 2%(1— B(eV)+ AleV)) (4.85)

With using the conductance, we derived the Figure (4.6) showing below

Z=0 Z=0.2
2 T 25
1.8
ot
1.6
- ~
&
1.4
1.5
1.2

E/ AD E/ ﬁu
Z=1 Z=1.5
4 8
6
3
o w4
2
2
1 0
4 4
E/ ;\D E/ ,-’_\D

Figure 4.6: Changing of conductance with respect to changing energy and the barrier

strength.
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5. EFFECTS OF NEGLECTED TERMS IN JOSEPHSON JUNCTIONS

The main reason of this thesis is the understanding of the effects of neglected terms on
conductance in different Josephson Junctions. Up to this chapter, we saw classical
BTK model solutions [10], Andreev reflection solutions and classical conductance
calculations. The idea is coming from the remove the fermi approach from the BTK

model. The model we tried to solve is seen in the Figure (5.1) below.

Normal-reflection

ey

0

incoming particle

Andreev-reflection

Figure 5.1: The basic model of ND and DD junctions. Electron and hole reflection
and transmission directions are shown.
Let us consider a Josephson junction with a cuprate superconductor. We will use the
standard simplified model of such a system [20], that is, assume a cylindrical Fermi

surface and the order parameter stated in Equation (5.1).

A(8) = A,cos(2(0 - ) (5.1)
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Here beta is the angle between the interface normal and the lobe direction of the order
parameter. This superconductor forms one of the banks of a junction. The other one
can be formed either by a similar superconductor (DD junction), or a normal conductor
(ND junction).

Following the Ref. [20], we consider the junction in the x-y plane, with a Dirac
functional interface potential at x equals to zero. The Fermi wave number (kr) and the
effective mass “m” are assumed to be equal in both sides. Due to the translation

invariance in y-direction, we can write the wave functions in each side in the equations

below respectively [27].
w (1) =y, (x,0)e"" (5.2)

wa(r) =ye(x0)e"” (5.3)

The corresponding wavefunctions are;
l//|_ (X, 9) = eiklxx (U L,VLUL)T + aeiKZXX (VL, uLﬂL)T + be—iklxx (UL,VLﬂL)T (54)
we(X,0) = ce'® (Ut vin®)T +de % (vF,utp®)T (5.5)

The corresponding wavevectors are stated between Equations (5.6) and (5.7) seeing

in below.

iy = \/Zh:T\/«/EZ _(A) +E, (5.6)

/Zm
q(l) = ?\/V Ez_(AR)Z +E; (5.7)
2
The in-plane wave vectors are stated in the Equations (5.8) and (5.9).
k,, =k, cos(6) (5.8)

0, = 0 cos(6) (5.9

The quasi-particle derivations are stated in the Equations (5.10) and (5.11).

LR E ~ AL(R) 2
oo o (52, o1
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(R l o AR 2
o a5, -~

The phase of the delta function is stated in the Equation (5.12).
NV I (5.12)

To solve this model, we need to apply Schrodinger’s B.C.’s first;

l//R(X = 0’0) = lr//L(X = 0!0) (513)
oy,(x=0,0) oy (x=0,0) 2mH
WR(@X ) _ WL(aX ) — hz l/lo(x — 010) (514)

With the B.C.’s we get the equations below:

ut =av- +bu" =cu® +dvk (5.15)
n'v-+an‘u" +bp'vt =cpvt +dnptu® (5.16)
2mH

cgu® —da,v® —ku" —ak,v" +bku" = (u-+av" +bu") (5.17)

e vR =da,n"u® —kp'vt —ak,nut +bkzptvt

(5.18)
- 2”;': (7"v- +an‘ut +by'v)
i

With using the a, b, ¢ and d coefficient, we can use gauss elimination to find these
coefficients respectively. The matrices we used in gauss elimination is stated in the
equations below. For the simplicity of the numerical analysis, we used MATLAB for
numerical computation and controled our results with current conservation law. The

solution of the matrices gives our coefficients.

L L R

\Y u —-u

AL ntu nv* —pRVR —pRuR (5.19)
(-Z-k,)V"  (k,-Z)u" ufq, Vg, '
(-Z-k)n'u" (k-2Z)n'v" Vg -n"ufq,
_atyt
M=| 7 (5.20)
(Z +k)u"

(Z+k)nv"
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(5.21)

o O T 9

The coefficients can be found from Equation (5.22) with using MATLAB seeing in

below.
C=AM (5.22)

In here a, b, c and d both are functions of energy and the angle theta. Also, a, b, ¢ and
d are complex amplitudes of the Andreev reflection, normal reflection, electron-hole
and hole-electron conversion respectively. In Equation (5.14) “H” parameter refers to
amplitude of delta functional potential barrier and Z is the dimensionless barrier

strength where,

z-__M (5.23)
h°k. cos(6)
The probability current of both sides is given by,
‘]L(R)(X =0)= hml:(lR) |m[‘//z(R)(Xn e)axo-zl//L(R)(Xl 0], (5.24)

Where “m” is the effective mass term on left and right side, o is the Pauli matrix. The
continuity of the current at the interface requires the statement shown in the Equation
(5.25).

J (x=0)=J;(x=0) (5.25)

Combining boundary condition defined above with current conservation law. First

check for the left side current;
3 (x=0)=hm Im[ (uy,vim)) +&" (v, upm) +b7(up,v) |
LKy (U, =v)" +ikp,a(v,—uo )T =ik, b(ug,—v ;)" |
ke (Jut = =ik o (= o)

. 2(1 LR AN (1 L2 L2
3, (x = 0) = hm* Im| ~Kux 0] (\“ [ =v"] )*'klx(b (\“ v )‘CC) (5.27)
+ik,a (v ut —utvh) ik, a"(viut —utvh)
| —ia'bk, (v-ut —utvt)—ibak,, (v-ut —utvh) |

(5.26)
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With continue for the right current;

Ja(x=0) = hmg* Im| ¢ Uy, Virzg) +d (Vg Upz) |

(5.28)
[0, C(Ug, ~Va77e)" =10, d (Ve —Ug7zg)" |
Jo(x=0)=hmz'Im & |C|2 (‘UR‘Z _‘VR‘Z)Jr g2 |d|2 (‘UR‘Z _‘VR‘Z) (5.29)
+ig,, c d(vVuR —u®v®) +ig,dc(viut —uFvR)
Now we can write the currents with using the probability coefficients.
J, (x=0)=hm*(Re(k,)x" —R, =R, —R,, ) (5.30)
where,
R, =Re(k,,)|a[" «* (5.31)
R, = Re(k,)|o|" x* (5.32)
For the right side we have
Jo(x=0)=hm;" (R, +R, +R) (5.33)
where,
R, = Re(q,,)[c[ «* (5.34)
R, = Re(dy,)|d| «° (5.35)
with,
KR (‘UL‘R)‘Z —‘VL(R)‘Z) (5.36)

€ 9

Note that when wave vectors “k” and “q” are complex, there appear cross terms Rap
(5.37) and Rcq (5.38). The cross terms importance are showing in the current
conservation law.

e JUV 8k )0

+bak,, (u-vt —v-ut)+abk, UVt -vtut)

R, = Re[qlxd*c(vR*uR —u®vR)+q, cd(viuR - uR*vR)] (5.38)
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We don’t use Spin-orbit coupling in these calculations. Therefore, the relative phase
factor between two spin branches is equal to one.

With using the Landauer-Biittiker formalism thus we can derive the conductance with

using cross terms shown in the Equation below (5.39).
o, (E,0)=T(E,0) =R (E,0) +R,(E,0) +R,(E,0) (5.39)

We know the classical conductance is related with Andreev reflection and normal
reflection coefficients. In this situation, with using the cross terms, the conductance
calculations changed.

5.1. ND Junction

The differential conductance in this case is obtained from the general formulas by

setting
A" =0
u- = (5.40)
v-=0

For x greater than zero we have effective pairing potentials shown in the Equation
below (5.41).

AR = Af cos(2(0 - B)) (5.41)

The differential conductance of an ND junction for a various surface alignment angles
beta is shown in the Figure (5.2) and Figure (5.3). The main difference between these
two figures comes from the definition of wavevectors. In Figure (5.2) the wavevectors
are taken equal to fermi wavevector. On the other hand, in Figure (5.3) the wavevectors
defined as in Equations (5.6) and (5.7). One can notice that the contribution of cross
terms has a huge contribution in lower Z values. On the other hand, surface alignment
angle gives a difference between conductance peaks.

In the ND junction, first we used our model in Blonder-Tinkham-Klapwijk model to
confirmation. These crossterms are going to zero when the wavevectors approach to
fermi wavevector. After the confirmation of our algorithm with BTK model. We
applied the same model to ND junction to both cases either fermi approach or not. We
used this model with using MATLAB.
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Figure 5.2: Conductance changing with surface alignments, barrier strength and

energy with using fermi approach. Cross terms are zero.
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energy without fermi approach. Cross terms are not zero.



5.2. DD Junction

In this model, for simplicity we choose all the material parameters of the two
superconductors to be equal. The pair potentials in the left and right-side
superconductors are shown in the Equations (5.42) and (5.43) respectively.

A" = A§ cos(2(0 - a)) (5.42)
AR = Af cos(2(0- ) (5.43)

The angles alpha and beta are the angles between the crystalline axis and the normal
to the interface in the both side superconductors. Amplitudes of pair potentials are

taken equal shown in the Equation (5.44).
Ay = A§ (5.44)

The solutions of conductance of asymmetric contact and parallel contact are both
shown in the Figures (5.4) and (5.5).
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Figure 5.4: Conductance spectrum of two d-wave SC junction with various surface

alignments for cross terms equal to zero.
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Figure 5.5: Conductance spectrum of two d-wave SC junction with various surface
alignments for cross terms not equal to zero.
In both case where the fermi approach brings cross terms zero Figure (5.4) and non-
fermi approach brings cross terms Figure (5.5) the conductance has a significant

difference in small barrier strengths.
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6. CONCLUSION

In this thesis, we tried to work on Josephson junctions which is a very popular topic.
The Josephson junction phenomenon is planning to use in quantum devices and energy
sectors. In the first chapters, we derived some important phenomenon about
superconductivity. To understand our model, we derived the classical Andreev
reflection problem. With using the calculations of the classical BTK model, we got a
chance to compare our results to make correction.

We tried to solve this model without some basic approximations to show the
conductance behavior which is never done before. We have shown that the differential
conductance of a Josephson junction with d-wave superconductors contains
contributions from the cross terms. These terms are routinely neglected, because they
are zero in the limit when quasi particle wave vector amplitude is equal to fermi value.
Outside of this approximation, their contribution to the differential conductance of ND
and DD junctions where barrier strength changing from zero to a finite value is shown.
It crucial in forming zero-bias conductance peak in DD junctions in Figure (5.4) and
(5.5).

The cross-term influence is doubled the conductance peak where energy goes to two
times pair potential. On the other hand, in Figure (5.5) where there is no fermi
approach, we can see the conductance goes to zero where energy equals to pairing
potential and one and half times greater than the pairing potential.

In ND case, the Figure (5.2) where there the cross terms are zero is shown similar
behavior with classical BTK model. However, in Figure (5.3) where cross terms are
not zero we can see double conductance peaks where the barrier strength smaller than
one. As the barrier strength increases, the conductance behavior became like classical
BTK model. In both cases, we can see the significant effects of cross terms in

Josephson junctions.
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