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PREDICTION OF THE HEATING SEASON INDOOR THERMAL DATA
BASED ON SHORT-TERM MEASUREMENT

SUMMARY

This thesis aims to predict the heating season indoor thermal comfort data in the Kartal
elderly home, which is 8 stories building with 18,108 m2 conditioned floor area in
Istanbul, Turkey. The aim of this prediction is providing full heating season’s thermal
comfort dataset by using short-term measured data while the heating system is
performing. The heating season of the building was evaluated by defining a critical
monthly heating consumption, which was 250 MWh per month, and select the period
when the building monthly consumption exceeds this value to be the heating season.
Based on it the heating season was evaluated to be between November 15th and March
21st.

The prediction work was done using two machine learning based models. The targeted
dependent variables of the model were the indoor temperature and relative humidity.
The independent input variables of the prediction were selected to be the outside dry-
bulb temperature, outside dew-point temperature, wind speed, wind direction,
atmospheric pressure, and solar azimuth, which obtained from the weather data, in
addition to the simulation resulted in heating consumption.

The dependent variables data was obtained by real measurements into the Kartal
building. The measurements were done using 4 sensing devices implemented in four
points inside the building. The first device was implemented in a basement room, the
second in the 3rd floor room, the third in the 1st-floor level lobby and the last one was
implemented in the ground floor lobby. The measurement process had been done
during one year started by February 22nd, 2018. Short -term measured data had been
collected since the measured started until the first heating season ended, these short-
term data had been used in the prediction models training phase. The measured data of
the second heating season which started on November 15th, 2018 had been compared
with prediction results to decide the validity of the prediction models in term of
accuracy.

The first prediction approach was the feed forward Artificial Neural Network (ANN)
with Back Propagation learning System (BPS). The ANN model was used to perform
the prediction and it was structured by an input layer, output layer, and one hidden
layer. Four ANN model was performed, each model used to predict the temperature
and humidity of one of the four points in the building.

The second prediction approach was the Adaptive Neuro-Fuzzy Inference System
(ANFIS). The Sugeno ANFIS method was utilized in this prediction work. The ANFIS
model was structured by 6 layers. Eight ANFIS models were performed to achieve the
prediction, each model used to predict one of the targeted variables in one of the four
selected points.

The prediction results were compared with the measured data of the second heating
season. The comparison showed that the ANFIS model was more efficient in this
prediction work since it achieved 85% accuracy rate for indoor temperature and 81%
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for humidity prediction. While the ANN prediction accuracy was 81%, 80% relatively
for the temperature and humidity.

Then the comparison was scaled by selecting the most ordinary period in the measured
data to be the data sample which will be used the comparison. The second comparison
showed again that ANFIS model was a better fit than ANN model in this prediction
work since the ANFIS prediction accuracy became 88% for temperature and 90% for
humidity, while the ANN prediction accuracy became 83% for temperature and 87%
for humidity.

However, the stochasticity of the measured data which caused by the bad performance
of the heating system in some periods, influenced the accuracy rates of the models
since it was calculated by comparing the prediction results to the measured data.
Hence, according to the achieved accuracy rates, both of the ANFIS and ANN
approaches are highly validated in this type of prediction work.



KISA SURELI iC ORTAM OLCUM VERISINE DAYALI ISITMA SEZONU
TAHMINI

OZET

Termal ¢evre, binanin konfor seviyesini iyilestirmek icin en 6nemli faktor oldugundan
binanin enerji performansinin ve verimliliginin ana endeksidir ve herhangi bir binada
uygulanan sistemlerin ¢cogunun temel gorevi, konforlu bir i¢ ortam saglamaktir. Bu
nedenle, binanin enerji tiikketiminin ¢ogu 1sitma veya sogutma i¢indir. Bu sebeple, i¢
ortam konfor seviyesini yonetmek ve siirdiirmek i¢in sicaklik ve nem gibi baz1 konfor
kosullarmi yonetmek gerekir.

Termal konfor kosullarinin 6l¢iilmesi ve dogrulanmasi ve normal sartlar altinda enerji
titketimi iizerindeki etkisi, tiim 1sitma ve sogutma mevsimleri i¢in yaklasik 1-2 yil
stirer. Saatlik, gilinliik, aylik ve mevsimsel verilere dayanarak i¢ mekan termal
ortamimnin dikkatlice tanimlanmasmi gerektirir. Bu uzun siire 1sitma ve sogutma
sistemlerinin performansini vermez kilan 6l¢iim ve dogrulama iglemlerini yapar. Her
ne kadar 1sitma ve sogutma sistemleri kullanimdayken binanin 1s1l ¢evresini
incelemek, diisiik sistem performansina neden olabilecek herhangi bir sorunu rapor
etme ve ¢ozme imkani saglar.

Kisa vadeli 0l¢iilen verileri kullanarak bir binanin i¢ mekan termal kosullarini tahmin
etmek, Ol¢limler bina icindeki sistemler gergeklestirilirken belli bir siirede yapildiysa,
binanin termal ortamini incelemek ve anlamak i¢in etkili bir yol olabilir. Bu 6ngériilen
veriler binadaki enerji yonetimini desteklemek i¢in yararl bir arag olabilir.

Bu tezin amac1 kosullandirilmis alan1 18,108 m2 olan Istanbul, Tiirkiye'de bulunan
Kartal yash bakim evinde 1sitma sezonu i¢in i¢ ortam termal konfor verilerini tahmin
etmektir. Bu tahminin amaci ise 1sitma sistemi ¢alisirken elde edilen kisa vadeli 6l¢iim
verilerini kullanarak tiim 1sitma sezonu i¢in termal konfor veri setini saglamaktir.
Binanm 1sitma sezonu 250 MWh olan bir aylik 1sitma tiiketimi tanimlanarak
degerlendirilmis ve binanin aylik 1sitma tiiketiminin bu degeri astig1 donem 1sitma
sezonu olacak sekilde se¢ilmistir. Buna dayanarak, isitma mevsimi 15 Kasim ile 21
Mart arasinda oldugu belirlenmistir.

Tahmin calismast iki farkli makine 6grenmesi yaklagimi kullanilarak yapilmistir.
Tahmin calismasinda kullanilan yaklasimlarin hedeflenen bagimli degiskenleri i¢
ortam sicaklig1 ve bagil nemdir. Tahminin bagimsiz girdi degiskenleri ise dis ortam
kuru ampul sicakligi, dis ortam ¢iglenme noktasi sicakligi, riizgar hizi, riizgar yonii,
atmosferik basing, hava durumu verilerinden elde edilen solar azimut, ve ayrica
simiilasyon sonuclu 1sitma tiikketimi olarak se¢ilmistir.



Bagimli degisken verileri Kartal binasinda gercek dlciimler sonucu elde edilmistir.
Olgiimler, binanm iginde dért farkli noktaya yerlestirilen dort 6lciim cihazi
kullanilarak yapilmistir. Olgiim cihazlarinmn ilki bodrum katina, ikincisi iigiincii katta
bulunan bir odaya, tglinclsu birinci katta bulunan lobiye, sonuncusu ise zemin katta
bulunan lobiye yerlestirilmistir. Olgiim siireci, 22 Subat 2018'de baslamis ve bir yil
boyunca yapilmustir. 11k 1sitma sezonu sonlanana kadar dlgiimler basladig: icin kisa
stireli veriler toplanmistir. Bu kisa siireli veriler tahmin modellerinin egitim
asamalarinda kullanilmistir. 15 Kasim 2018'de baslayan ikinci 1sitma sezonunun
Ol¢ctim verileri, tahmin modellerinin dogrulugu acgisindan gegerliligine karar vermek
icin tahmin sonuglariyla karsilagtirilmistir.

[1k tahmin yaklasimi, Back Propagation Ogrenme Sistemine (BPS) sahip ileri besleme
Artificial Neural Network (ANN) idi. ANN modeli kullanilmis ayrica bir giris
katmani, bir ¢ikis katmani ve bir gizli katman tarafindan yapilandirilmistir. Dort ANN
modeli olusturulmustur, her bir model binadaki dort noktadan birinin sicakligmi ve
nemini tahmin etmek i¢in kullanild1.

Kullanilan ikinci tahmin yaklagimi ise Adaptive Neuro-Fuzzy Inference System.
Tahmin i¢in Sugeno ANFIS yontemi kullanilmistir. ANFIS modeli 6 katman ile
yapilandirilmigtir.  Tahmini  gergeklestirmek  icin  sekiz  ANFIS  modeli
gergeklestirilmistir ve her bir model segilen dort noktadan birinde hedeflenen
degiskenlerden birini 6ngérmek i¢in kullanilmagtir.

ANFIS't kullanmanin temel nedeni, 1sitma sistemi stokastik performansi nedeniyle
acikca ortaya ¢ikan Olglilen verilerin belirsizliginden kagmmakti. Verilerin, ANN
tahmininde, Olgllen verilerdeki sesleri azaltmak igin kullanilmak tizere filtrelenmesine
ragmen, 1sitma sistemi performansinin stokastikliginin, ANN tahmininde sakinilmasi
zordu.

Tahmin sonuglari, ikinci 1sitma mevsiminin Ol¢iilen verileri ile karsilastirilmistir.
Sicaklik i¢in ANN tahmin hatalari, dért noktadaki nem i¢in 1.5 ila 5.2 arasinda ve 6.8
ila 10.5 arasinda degismistir. ANFIS tahmin hatalari, sicaklik tahmin hatalar1 14 ile 4
arasinda oldugundan ve nem i¢in tahmin hatalar1 5.8 ile 10.4 arasinda oldugu i¢in
farkliliklar1 da tanidi. Bu sonuglar, ANN ve ANFIS modellerinin, dl¢iilen verilerin
daha az degisiklikle daha stabil oldugu noktada minimum hata oraniyla en iyi tahminde
bulundugunu géstermistir.

Karsilastirma, ANFIS modelinin bu tahmin ¢aligmasi i¢in daha verimli oldugunu
gOstermistir, ¢linkii ortam sicaklig1 ve nem tahmininde %85 ve %81 oraninda dogruluk
ANFIS modeli ile elde edilmistir. ANN yaklasimiyla sicaklik tahminin dogruluk orani
81% iken, nem tahmini dogruluk oran1 %80'd1r.

Stokastiklik, dlglilen ve 6ngorilen veriler arasindaki kargilastirmayi ve hem ANFIS
hem de ANN modellerinin tahmin dogrulugunu etkiledi. Bu etkiden kaginmak igin,
ongoriilen verilerle karsilastirilacak bir 6rnek olarak dlgiilen verinin en siradan siiresi
secilerek ve ardindan secilen 0rnege dayanan dogruluk saglayarak karsilastirma
Olceklendirildi.

Ikinci karsilastirma, ANFIS modelinin, bu tahmin ¢ahismasida ANN modeline gore
daha uygun oldugunu, ciinkii ANFIS tahmin dogrulugunun sicaklik igin %88 ve nem
icin %90, ANN tahmin dogrulugunun sicaklik i¢cin %83 ve nem igin %87 oldugunu
gostermistir.

Isitma sisteminin bazi periyotlarda kotli performans gostermesinden kaynaklanan
Ol¢lim verilerinin stokastikligi gz oOniinde bulundurulmustur. Tahmin sonuglari
Olciilen verilerle karsilastirilarak hesaplandigl icin Olglim verilerinin stokastikligi
modellerin dogruluk oranlarmi etkilemistir. Bu nedenle, elde edilen dogruluk
oranlarma gore, hem ANFIS hem de ANN yaklagimlarmin her ikisi de bu tiir bir
tahmin ¢alismasinda oldukca gecerli olmaktadir.
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Bu calisma sonuglart ileriki ¢aligmalar i¢in farkli yonlere gitme firsat1 sunmaktadir.
Sonuglar, gergek zamanl kalibrasyon yapmak ve beklenmeyen sonuglari bildirmek
icin bina i¢inde uygulanan izleme sistemini destekleyebilir, bu rapor binanin i¢indeki
konfor seviyesinin iyilestirilmesine yardimci olabilir. Tahmini sonuglar ayrica,
belirlenmis noktalar1 1iyilestirerek binanin enerji performans simiilasyonunun
dogrulugunu kalibre etmek ve gelistirmek i¢in bir endeks olarak da kullanilabilir.
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1. INTRODUCTION

Thermal comfort conditions are the most important indicator of energy consumption
in the residential, commercial and industrial buildings because the main mission of
most of the applied systems in any building is providing a comfortable indoor
environment, therefore the cooling and heating consumption represents 50% of the
energy consumption inside the buildings [1]. Because of that most of the energy
efficiency studies had been done based on the inside thermal conditions to improve the

energy performance of the buildings and minimize CO2 emissions.

In addition to its relation with energy efficiency, the thermal environment quality is
highly related to the human health and productivity since it has a direct effect on the
physical and psychological health of the human [2]. Hence, Measurement and
verification of the building’s indoor thermal conditions such as the temperature and
humidity had been investigated significantly in the last decades, according to its

importance to sustain the quality of the indoor environment.

Measurement and verification of the thermal comfort conditions and its effect on the
energy consumption under the normal circumstances take a long time approximately
1-2 years for whole heating and cooling seasons. It requires careful identification of
the indoor thermal environment based on hourly, daily, monthly and seasonal data.
This long time makes the measurement and verification process considering the
heating and cooling systems performance inefficient. Although, examining the thermal
environment of the building while the heating and cooling systems are in-use provides

the opportunity to report and fix any problem may cause poor system performance.

Predicting the indoor thermal conditions of a building using short-term measured data
can be an efficient way to study and understand the building’s thermal environment if
the measurements were done in a period when the systems inside the building are
performing. This predicted data can be a useful tool to support energy management in
the building.



The Artificial intelligence-based algorithms had been utilized widely in the prediction
works and studies. Machine learning is cost effective since it doesn’t need special

infrastructures to be performed.

Artificial Neural Network algorithm (ANN) is one of the most used machine learning
algorithms. ANN mimic the human brain process to convert the information and
experiences into decisions, it had been utilized in widely in both classification and
prediction studies because of its highly accurate results and its ability to correlate the

non-linearity between the variables.

Adaptive Neuro-Fuzzy Inference System (ANFIS) is an algorithm which combines the
Fuzzy approach and the ANN algorithm in order to perform better accurate results.
The ANFIS approach like the ANN had been used in both of the classification and
prediction studies.

In this case, the focus will remain on the heating season by using the short-term
measurements to predict the rest of the heating season’s thermal data inside a big-scale
residential building. The thermal parameters that will be studied are the inside
temperature and humidity. The prediction will be performed by the application of both
of the Back-Propagation Artificial Neural Network referred as ANN and Adaptive

Neuro-Fuzzy Inference System approaches.

The ANFIS model will be implemented in this study to avoid the uncertainty of the
temperature and humidity data. Basically, the uncertainty produced by the
performance of the heating system inside the building which caused noises to the
measurements. The uncertainty of the measured data affects the efficiency of the
prediction. Using ANFIS will reflect the uncertainty in the membership, hence it is

expected to provide better prediction accuracy.

The ANN and ANFIS models’ predicted data will be validated by comparing it with
the measured datasets. Then, define the best effective model in term of prediction

accuracy rate.



2. LITERATURE REVIEW

There is a considerable amount of research on prediction around the world in many
fields and many objectives like weather data forecasting, energy consumption,
economic and currencies changes and as many other fields. Machine learning and deep
learning approaches are the state of the art of the prediction and forecasting work.
Artificial Neural Network approach is one of the most common machine learning
algorithms because of its ability to produce cost-effective accurate predictions.

For indoor conditions prediction, some studies accomplished around the world in the
last few years. In 2017, Afroz, Shafiullah, Urmee, and Higgins [1] used Artificial
Neural Network to predict the indoor space temperature of an institutional building in
Australia. They collected data about 25 related parameters, then used neural fitting tool
to sort out the most relevant parameters based on network performance. They selected
8 variables to be prediction inputs (Indoor temperature set point, outdoor temperature,
wind speed, wind direction, dew point temperature, barometric pressure, relative
humidity, and solar radiation), as each parameter of these 8 has its effect on the
prediction which cannot be ignored. They used 3 different algorithms for training the
network and then comparing the results, they also applied their methodology in two
different buildings and they found out that Lovenberg-Marquardt is the best-suited
training algorithm to predict the indoor space temperature in terms of prediction
accuracy, generalization capability and iteration time to train the algorithm. In 2017,
Buratti, Palladino, and Moretti [2] used computational fluid dynamics (CFD)
simulation tool and experimental data to predict indoor conditions and thermal comfort
for a classroom in Perugia University. They took the data in April where the HVAC
system turned off. Outdoor air temperature, solar radiation and the thermal
characteristics of the external walls used as inputs while other indoor and outdoor
parameters collected for validating the model. They found that solar radiation has the
most effect, on the thermal sensation and when there is no solar radiation the thermal
data take a uniform aspect. In 2017, Djamila [3] worked on predictions of the indoor

thermal comfort in of determined locations by Meta-analysis of the ASHRAE RPA-



884 database. This study suggested a new classification for indoor temperature and
relative humidity and by more than one case proved that a huge amount of data is not
an indicator for the prediction accuracy. In 2008, Tao Lu and Martti Viljanen [4] used
four Artificial Neural networks to predict indoor Temperature and relative humidity
inside a test house. They implemented a weather station inside the house and on its
roof to make the measurements for data inside and outside the building to use in their
study and selected 5 parameters of their measured data (time, outdoor temperature,
indoor temperature, outdoor relative humidity and indoor relative humidity) to be used
as inputs and outputs in the prediction model. They employed Nonlinear
AutoRegressive with eXternal input (NNARX) model and genetic algorithm to
establish their networks. By comparing the prediction results with the real
measurements, they found out that temperature predictions had a good accuracy but
relative humidity results need to be improved. In 2015, Zhang and You [5] predicted
the indoor environment in an MD-82 aircraft cabin a test place based on computational
fluid dynamics (CFD) using Artificial Neural Network. 5 parameters used as inputs of
the prediction model: inlet velocity, inlet temperature, inlet angle, the location of inlet
and the location of the outlet. They studied training and normalization methods to
evaluate the ANN. They concluded that using the local logarithm normalization
instead of local linear normalization improved the ANN accuracy. In 2016, L. Mba et
al, [6] performed an ANN model to predict the indoor temperature and relative
humidity for a modern building in a humid climate. They found that there is a
recognizable relation between the number of input variables and the model
performance and they approached that ANN has highly effective prediction model for
the indoor thermal parameters. In 2018, Z. Afroz et al, [7] developed a non-linear
autoregressive network with exogenous inputs-based system identification method to
predict indoor temperature. The aim of their study was to raise the energy efficiency
of a commercial building by using the predicted temperature to reset the air set-points,
which provides advanced energy management. They found that evaluating the context
of the model and the network’s size provide well optimized model, and approached
that using the prediction model to support the energy management system into the
commercial building for a long time will achieve high energy savings, and will
improve the thermal environment and comfort level into the building. In 2012, S.
Pandey et al, [8] used three different experimental data generated by three passive

cooling techniques to develop an Artificial Neural Network model. The model



developed to predict the indoor temperature of the room when applying each of the
three passive cooling methods aiming to find the best comfort conditions can be
achieved. They used the outside temperature, relative humidity, solar intensity and
wind speed as independent variables of the models, and concluded their study by
satisfying results which can lead to extended further work. In 2017, S. Magalhaes et
al, [9] aimed to figure out the relationship between the indoor temperature, heating
energy consumption and typical heating energy demand which obtained by the
available rating systems in residential buildings. The correlation considered different
types of occupant behavior, and it has been done using an Artificial Neural Network
model. The model was performed based on data offered by dynamic thermal
simulations of varied types of buildings. The ANN model achieved a satisfied accurate
prediction with a square mean error less than 0.93 to estimate both of the heating
energy consumption and the indoor temperature. In 2016 S. Magalh&es et al, [10]
developed a linear regression model with panel connected standard errors model to
predict the indoor temperature of the bathrooms and living rooms for 141 households
in the north of Portugal. The model used the winter season measured data to train the
model. The study figured out the correlation between the building characteristics and
the indoor temperature. In 2019, C. Xu et al, [11] developed a novel Long Short-term
memory model to predict the indoor temperature in public buildings. The study aimed
to compare the established novel LSTM model performance with the ordinary LSTM
model and the used machine learning tools’ performance to predict the indoor
temperature. The results of the study showed that the approached novel LSTM model
prediction performance was slightly better than other machine learning tools. The
difference was in term of the accuracy of the directional predictions and the variation
trends predictions. In 2009, when H. Alasha’ary et al, utilized the Sugeno-type of the
ANFIS model in order to predict the indoor temperature of a residential building’s
room in Australia. The climatic data were used as input data. The datasets were
distributed in for dataset types 1-day per month dataset, 1-week per month, 2-week per
month and 3- week per month datasets for the measured year based on the input/output
pattern of the ANFIS model. The measurement was done every 10 minutes in 3 height
levels representing the floors of the building. The prediction outcome data has been
validated and the average error was estimated to be 4% which far less than 10% (the
maximum error). Depending on these results the ANFIS model can be a very effective

approach for indoor thermal prediction [12]



ANN is one of the most used tools in prediction and forecasting studies in various
fields around the world because of its accuracy and low costs. In 2017, Ummiihan
Basaran Filik and Tansu Filik [13] used ANN to predict the wind speed in Eskisehir
based on multiple local measurements. In 2018, Guillermo R. Chantre, Mario R.
Vigna, Juan P. Renzi, and Anibal M. Blanco [14] put a flexible and practical approach
for real-time weed emergence prediction based on Artificial Neural Networks. In 2018,
A. Tebabal, S.M. Radicella, M. Nigussie, B. Damtie, and B. Nava, E. Yizengaw [15]
used ANN for Local TEC modeling and forecasting. In 2016, Xuegian Fu, Shangyuan
Huang, Rui Li, and Qinglai Guo [16] considered solar radiation and weather to predict
the thermal load using ANN. In 2018, Ali Taheer Hammid, Mohd Herwan Bin
Sulaiman, and Ahmed N. Abdalla [17] Predicted of small hydropower plant power
production in Himreen Lake dam (HLD) using an artificial neural network. In 2018,
Wei Sun and Yuwei Wang [18] forecasted Short-term wind speed based on fast
ensemble empirical mode decomposition, phase space reconstruction, sample entropy,
and improved back-propagation neural network. In 2016, Shuangyin Liu, LongginXu,
and Daoliang Li [19] performed multi-scale prediction of water temperature using
empirical mode decomposition with back-propagation neural networks. In 2018,
K.Muralitharan, R.Sakthivel, and R.Vishnuvarthan [20] used ANN to perform an
optimization approach for energy demand prediction in a smart grid. In 2018, A.M.
Durén-Rosal, J.C. Fernandez, C. Casanova-Mateo, S. Salcedo-Sanz, and C. Hervas
Martinez [21] predicted an efficient fog with multi-objective evolutionary neural
networks. In 2018, Madasthu Santhosh, Chintham Venkaiah, and D.M.Vinod Kumar
[22] performed an ensemble empirical mode decomposition based adaptive wavelet
neural network method for wind speed prediction. In 2018, Yi FeiLi and Han Cao [23]
predicted tourism flow based on LSTM neural network. In 2015, Radisa Z.Jovanovid,
Ale ksandra A.Sretenovid, and Branislav D.Zivkovid [24] used an ensemble of various
neural networks for prediction of heating energy consumption. In 2018, Abir Jaafar
Hussain, Panos Liatsis, Mohammed Khalaf, Hissam Tawfik, and Haya Al-Asker [25]
structured a dynamic neural network with immunology inspired optimization for
weather data forecasting. In 2018, Zheng Liu and Clair J.Sullivan [26] predicted
weather induced background radiation fluctuation with recurrent neural networks. In
2010, Murat Kankal, Adem Akpmar, Murat Thsan Kémiircii, and Talat Siikrii Ozsahin
[27] used ANN for modeling and forecasting of Turkey's energy consumption using

socio-economic and demographic variables. In 2010, Mehmet Bilgili, Besir Sahin,



Abdulkadir Yasar, and Erdogan Simsek [28] used ANN to forecast the electric energy
demands of Turkey in residential and industrial sectors. It is impossible to mention
each study had been done by ANN because of its huge literature.

Fuzzy modeling is a branch of system identification which deals with the construction
of a fuzzy inference system or fuzzy model that can predict and explain the behavior
of an unknown system described by a set of sample data. Adaptive neuro-fuzzy
inference system (ANFIS) is an efficient approximation model that combines neuro-
fuzzy systems and the other machine learning techniques. The ANFIS’s map is
significantly different from that of the ANN. It goes from input characteristics to input
membership functions, from rules to a set of output characteristics, then to output
membership functions, to a single-valued output, or to a decision associated with the
output [29].

Since the ANFIS algorithm can be used for classification and prediction work, the
researchers used for many purposes. The predictive ANFIS model had been utilized in
varied fields and studies. In 2015 A. Abdulshahed et al, employed ANFIS to design
two models to predict the thermal effect on CNC machines [30]. In 2009, Y. Vural et
al, established a predictive ANFIS model which trained and compared with
independent experimental model and trained again in order to predict the exchange
fuel cell of the proton [31]. In 2017, E. Yadegaridehkordi and M. Nilashi, applied the
Adaptive Neuro-FIS prediction model aiming to define the most important successful
parameters of a hotel’s successful development [32]. In 2008, H. Esen et al, used a
pre-processing based ANFIS model to predict the performance of a heat pump system
and compare its results with a proposed ANFIS prediction model [33]. In 2010, M.
Acar and D. Avci, The study aimed to observe the ability of the ANFIS model to
forecast accurately the return of the stock market, they tested the model on the Istanbul
stock market and they could produce a prediction with 98.3% accuracy rate [34].
ANFIS also has been used in some energy performance prediction researches. In 2019,
W. Gao et al, predicted the energetic performance of a thermal photovoltaic heating
system into a building using three artificial intelligence-based algorithms, Artificial
Neural Network, Genetic programming, and Adaptive Neuro Fuzzy Inference system
in order to compare the prediction accuracy of the algorithms. They found out that the
Genetic Programming is the best algorithm in their case [35]. In 2011, B.Bektas EKkici
and U. Aksoy, used the Adaptive Network Fuzzy Inference system to forecast the

energy load of a building in Elazig region. They approached the ANFIS is one of the



best tools for energy consumption prediction in the pre-designed phase [36]. In 2010,
K. Li and H. Su, predicted over than three months consumption of a hotel’s daily air
conditioning using the ANFIS approach, and they found that its prediction accuracy is
better than the Neural Network’s prediction accuracy in that case [37]. In 2011, K. Li
et al, used the Neural Networks and the adaptive network-based inference system to
predict a building’s energy performance, then by comparing the results they observed
that the ANFIS model’s results better than the NN’s results in term of prediction
accuracy [38]. In 2018, J. Woo et al, established a rule-based algorithm, fuzzy logic
algorithm, ANN, and ANFIS in order to test the openings and cooling system of a
double skin envelope the building. They found that the Fuzzy Logic algorithm was the
best fit with an accuracy rate of 99.98% [39].

In this case, Artificial Neural Network and Adaptive Neuro-Fuzzy Inference system
had been utilized to predict the indoor comfort conditions for a big-scale residential
building which hosted to elderly people in Istanbul, Turkey. A monitoring system has
been implemented in selected rooms of the building to conduct real-time
measurements. The indoor humidity and temperature were foremost measured
parameters. The prediction has been done depending on short-term measurements in
purpose to use the results in the building thermal comfort calibration. About 31.5 days
measured data used to predict the rest of the heating season which was defined as 137
days, which saves 77% of the measurement time, which provides the possibility of
examining the thermal environment and the heating system’s performance before
occupying the building, as well as the possibility to start real-time calibration
simultaneously with the occupation phase. Since the heating system is running during
the measurement period, therefore minimizing the measurement period saves energy
and cost. The importance of this study comes from the ability of predicting the whole
heating season’s data with the short term monitored data to be used in a real-time
calibration process. The real-time calibration is a potential opportunity to improve the
indoor thermal comfort by reporting any unexpected measured data immediately,
which may also help to avoid some losses of thermal performance. Correspondingly,
the building energy model was developed and simulated to analyze its energy
performance. The results of the prediction can be used as feedback data to improve

simulation accuracy.



3. METHODOLOGY

The methodology to develop the indoor thermal environment predictor models is
explained in this chapter. Firstly, to be able to develop the structure of each ANN and
ANFIS model, the available data sources and its intervals must be defined. Since both
of the algorithms are supervised machine learning algorithms, that’s made enough
amount of historical data for the targeted variables is required. At the time, evaluating
the heating season period is a must in order to prepare the required data to run the
prediction models. Figure 3.1 shows the methodology’s followed steps.

Data Gathering
Available Measurements
Sources .

Y

Evaluating the Heating Season

Y

Correlating the Variables

Data Setting

Preparation

Filtering

v v

ANN Modeling

ANFIS Modeling

Structure

Training

Selection

Figure 3.1: Methodology flowchart.



3.1 Data Gathering

The quantity and quality of available data play a key role in the formation and accuracy
of the predictive model. Therefore, data gathering is a systematic process to collect
and measure the desired information of the dependent and independent variables to be
used in the prediction model. For the supervised machine learning tools as ANN and
ANFIS there must be available two kinds of data, the historical dependent data, and
the independent data. The historical dependent data is the index of the predictive model
since it must be measured data for the prediction targeted outputs, and the accuracy of
the prediction results is proportional to the quantity and distribution of this data. The
independent variables are the variables that non-linearly correlated with the output
targeted variables, the quality and variety of these data is affecting directly the
prediction results since it is the inputs of the model and it must be available for the
historical period and for the period to be predicted.

3.2 Evaluating the Heating Season

Developing supervised machine learning models is highly dependent on the valid
ranges of the collected data, whether input or output data. This thesis is totally focusing
on thermal environment prediction for the heating season; therefore, the valid collected
data must be in the range of heating season period. Hence, evaluating the heating
season period is necessary to form a clear understanding of what data is available, and
how it will be organized in the prediction model.

The heating period is different for each building based on the location, weather data,
level, occupancy, and many other factors. That means evaluating and defining the
heating period must be the first step in the prediction work. The heating degree day is
the most relevant parameter to identify the heating period. The heating degree days
had used in the simulation of the building, which means that using the heating
consumption results data as the main factor for the period evaluation will be more
customized to the case study.

The changes in the heating consumption data must be observed to define the most
dramatic change from relatively low to high consumption. Based on this change a
value must be set, the period which its heating consumption exceeds the set value

defined as the heating period of the building.
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3.3 Correlating the Variables

Data correlation is the process to figure out the linear relationship between the input
and targeted variables. In the correlation analysis, the changes of each input variable
correlated to the changes of each targeted variable. This correlation produces a
coefficient to express the dependency between those two variables. The coefficient
value is between 1 and -1. The proportion of the variables is direct when the coefficient
value is 1, and it is reverse when the coefficient value -1, and there is no relation when
the coefficient value is 0. Since all of the gathered data are continuous the linear

correlation coefficient formula will be used in the correlation process.
_ nXog XY — Dfe1 Xi Xieq Vi
r(xy) =
2 2
(S = G (a3 yE - G

(3.1)

Where: X is the input variable, y is the output variable, n is the total number of datasets,

and 1 is the dataset’s order.

3.4 Data Setting

The prediction stage is mainly about data management. The more organized, clear and
relevant data would be performed with a more accurate prediction. For this reason, the
data must be obtained and prepared before starting any step of the prediction model.

The data-setting phase must go through the following steps:

3.4.1 Preparation

The obtained data need to be prepared to implement in the prediction model. The
different variables data collected with different frequencies and initial time sometimes
could be in different units and structure. These data must be organized and unified

within their parameters.

3.4.2 Filtering

The filtering process is to avoid or reduce the noises of the measured data. The filtering
is the process of removing or un-using the measured data instances which have
unexpected or out of the normal range values. There are several methods to filter the
data, mostly it was performed by setting maximum and minimum values for the

measured data. Any instance has measured value out of the range between the
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minimum and maximum values, should be un-used in the prediction. The minimum

and maximum values for each variable defined by the following equations:

Max = n+15+* o (3.2)

Min= nu—15%* o (3.3)

Where: p: the mean — o: the standard deviation.

3.5 ANN Modeling

ANN is a successfully applied method in various fields of mathematics, engineering,
medicine, economics, meteorology, psychology, and neurology, therefore this
approach used to correlate data and variables that do not have a clear algorithm to
solve, or link to each other to predict their outputs. The ANN model has many types,
the most used are the linear multi perceptron. The most introduced model in the
prediction work is the feed forward ANN with the BPS model.

3.5.1 Structure

The structure of the ANN is obtained by defining the number of the hidden layers and
the number of the neurons in the hidden layers. Then defining the ANN model and the
loss index error method in addition to the training algorithm which is totally optional
based on different training trials by considering the quality of the prediction results.

Additionally, the data must be distributed for training and selection phases.

3.5.2 Training

Training and running the ANN by setting the number of the iterations and defining the
activation function between the layers which defines the numerical calculations
between the neurons of the network. The network calculations will depend on the
sigmoid (logistic) activation function to avoid the non-linearity between the variables.

Sigmoid activation function can be expressed by the following equations:

sigmoid(x) or sig(x) = 1/(1 + e”(—x)) (3.4)

Zj = sig(T(xi X wij) — 0) (3.5)
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Where: Zj is the set that received by the artificial neuron, xi the input value, wij is the
weight and 0 is the use of a threshold.

3.5.3 Selection

The selection is the process of measuring the features and performance of the model.
By a defined number of iterations, the ANN compares the selection data prediction
results with its actual targeted data and calculates the losses of the model, then it
improves the parameters of the model until it reaches the minimum losses. When based
on the minimum losses the final structure of the model will be defined, then the last
training performs. The selection loop is shown in Figure 3.2.

Evaluate the ANN -

Jv Improve the Features
Min Loss T

!

Figure 3.2: Selection model.

3.6 ANFIS Modeling

Adaptive Neuro-Fuzzy Inference System modeling can be performed in two methods.
The first method is the Mamdani fuzzy inference and the second one is the Sugeno
fuzzy inference, both of them are similar to each other in fuzzing the inputs and
applying the fuzzy operator. But the Sugeno method’s output membership functions
are either linear or constant.

13



The Sugeno method was used in this study because it is a more compact and
computationally efficient than a Mamdani method. The Sugeno system is suited for
modeling nonlinear systems by interpolating between multiple linear models, and it
uses adaptive techniques for constructing fuzzy models which can be used to
customize the membership functions so that the fuzzy system best performs data
modeling.

ANFIS is a class of adaptive, multi-layer feedforward networks, which is comprised
of input and output variables and fuzzy rule base of Takagi-Sugeno fuzzy if-then rules
for a first-order Sugeno fuzzy model. A two rule-based ANFIS model with x and y

inputs and f output is expressed in equations.

Rule (1): If x is Az and y is By then fi = pix + quy + 1 (3.6)
Rule (2): If x is A2then y is B2 then f, = pox + qay+ 12 (3.7)

Where A;and A» are the input membership functions for the input layer, Bi1and B are
the input membership functions of y. The output function parameters are p1, q1, 71, p2,
q2, and 2, The framework of ANFIS consists of five layers, which are described

below:

Layer 1: This layer is responsible for the production of the input variable membership
grades in each node. The values of membership functions for each i th nodes are

defined in this layer:

Qi' = pAi (x)= ——— (3.8)

1+ (55|

Where x is the input to node i and Ai if the linguistic label associated with this node
function, ai,bi,ci is the parameter set that changes the shapes of the membership

function.

Layer 2: In this layer, each node multiplies by the incoming signals, as shown by the

equation:

Qi? = wi = pdi (x) pdi (x) X uBi (v),1=1,2 .... (3.9)

Layer 3: This layer is responsible for the normalized firing strength for the membership

values in node i th by the equation:
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Qi*=wi= —2— i=1,2.... (3.10)

(wl+w2)

Layer 4: In this layer, the relationship between the input and output value can be
established by the equation:

Qi*=wi (pi x +qi y + i) (3.11)

Where wi is the output from layer 3 and pi, qi, and ri are the parameters. Parameters

in this layer will be referred to as ‘consequent parameters.

Layer 5: This layer includes only one node and it makes a summation of all the output
results which comes from the previous node and gives the output in a single node by
the equation:

Qi =ML (3.12)

>iwi

The learning rule of ANFIS is exactly the same as the back-propagation learning rule
used in the common feed-forward neural networks. The optimization parameters are
ai ,bi ,ci which are the premise parameters, while pi ,qi ,ri are the consequent
parameters. A hybrid-learning rule was employed in this research, which involves
gathering the gradient descent and the least-squares method in order to find the
appropriate set of preceding and consequent parameters [40]. The advantage of using
a hybrid-learning rule was that it also seemed to be significantly faster than the

classical back-propagation method [29]. Figure 3.3 shows the structure of ANFIS.

Layer1 Layer2 Layer3 Layer4 Layer$

<:“Al o w, *i w1 fi
#A ( N r——b‘ N
% Z —»f
“51[
4&7 ;;szz

Figure 3.3: Structure of ANFIS. [41]

The hybrid-learning procedure includes two passes, namely the forward pass and the
backward pass. In the forward pass, the functional signals will go forward till layer 4
and the least-squares technique will identify the consequent parameters. In the

backward pass, the error rates transmit backward and the gradient descent will update
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the premise parameters. While the values of the premise parameters are fixed, it’s
possible to express the overall output as a linear combination of the consequent
parameters [42]
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4. CASE STUDY

The thermal comfort conditions were studied in an 8 stories elderly home building with
18,108 m? conditioned floor area in Kartal, Istanbul during the heating season, where
the heating system was running but the building wasn’t fully occupied. Figure 4.1

demonstrates the image of the building.

Figure 4.1: Kartal elderly home.

4.1 Data Gathering:

The prediction models highly dependent on the quality and quantity of the available

data, so the first step in this process was defining the available data sources.

4.1.1 Measurements

The most important source of the data was the measurements. The temperature and
relative humidity had been measured in four different points into the building. The
measurements into the building had been done during one year starting from 2018
February 22 until 2019 February 29.

The measurements were done by four Testo devices distributed into the selected four
points. The first point was in the room 4 in the basement, the second point was selected
to be in the room 16 in the third floor and the rest two points were in the lobby but one
of them was in the ground floor level and the another was in the first-floor level. This
distribution of the sensors was done considering the big-scale of the building in order
to make the measurements in different places and locations in the building. The
measurements were taken in 15 minutes interval. The selected four points are

demonstrated in Figures 4.2, 4.3 and 4.4.
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Figure 4.4: Lobby points.
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4.1.2 \Weather data

The temperature and humidity data were collected as the targeted dependent variables
of the prediction models, but the models need to input independent variables. The
independent variables are available data which are non-linearly correlated with
dependent variables and available for the whole period to be predicted. The outside
weather data are the most important variables that have a high impact on the indoor
thermal environment. In the time, weather data can be obtained from different sources.
In this thesis, the weather data was obtained from the used weather data in the
DesignBuilder simulation software. The obtained variables from the weather data were
the outside dry-bulb temperature, outside dew-point temperature, wind speed, wind

direction, atmospheric pressure and, solar azimuth.

4.1.3 Energy performance simulation

Since the heating system was active during the measured period, a heating
consumption related data source was needed to be involved in the prediction model in
order to provide a balance in the input datasets with the real case and to achieve better
prediction in term of accuracy. The building has an energy performance simulation
model which has been done by the DesignBuilder software. The simulation provides
many types of predicted results, one of these types is the hourly heating consumption

which can be used as an independent variable in the prediction model.

4.2 Evaluating the Heating Season

The scope of the prediction work in this thesis is the indoor thermal data of the heating
season, but the heating season is different for each region and also for each building.
The heating degree days is a very important tool to define the heating season. But since
the heating consumption data is available from the simulation result so the heating
season can be defined using this data. By observing the heating consumption data, it
is recognized that a dramatical change in the heating consumption is happening
directly before reaching the 250 MWh per month as heating consumption, which
makes this point able to be as the heating season’s set-point. Based on this the heating
season of the Kartal building as the period where the monthly heating consumption
exceeds 250 MWh, which is roughly the period between November 15" and March
31% (137 days per year), as represented in Figure 4.5.

19



Heating Consumption MWh
(Simulated)

400.00
350.00
300.00
250.00
200.00
150.00
100.00

50.00

Figure 4.5: Monthly heating consumption graph from the building energy model.
4.3 Data Setting

4.3.1 Data preparation

The gathered data were collected with different structures and frequencies. In this part,
the datasets had been unified in term of frequency and prepared to be distributed in

one datasheet in an appropriate form to be imported to the prediction models.

4.3.2 Data correlation

After collecting the available data and prepare it to be usable and comparable, the
independent variables and dependent correlation must be analyzed to figure out if any
of the independent variables has no numerical impact on the dependent outputs so it
can be eliminated from the model. The Table shows the correlation factor of each of
the independent variables with each of the dependent variables, the results of the
correlation analysis showed that each of the selected variables was correlated to the

dependent variables with different effect as shown in Table 4.1.

4.3.3 Data filtering

In the measured data there is some pick points which make noise for the model that
was filtered respectively, 68 data sets in the basement’s point, 88 data sets in the upper
room, 138 data sets in the upper lobby, and 178 data sets in the ground lobby, which

reduced the data sets and increased the accuracy.
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Table 4.1: Input — output variables correlation

Basement room Upper room Upper Lobby | Ground Lobby
2 2 2 2

Output | B S | = S| 3 S| 3 =

Eeo 88 | Ee 88| Ee L8| Ex &8

Intput g 28 | T 28| I 23| I 28

(<} = (<} = @ = £ (<5} = £

S () it @ = [ = [

g — g — E — g —
Outside Dry-

Bulb 0.057 0.0925 0.151 0.205 0.385 0.428 0.29 0.392
Temperature
Outside Dew-

Point 0.239 0.251 0.437 0.456 0.461 0.542 0.416 0.57
Temperature

Wind Speed 0.0969 0.272 0.084 0.134 0.368 0.135 0.272  0.0419

.Wm.d 0.0216  0.0469 0.0686  0.116 0.039 0.115 0.00865 0.0896

Direction

Atmospheric

0.464 0.367 0392 0375 0.0288 0.0324 0.203  0.246
Pressure

Solar Azimuth 0.0265 0.0294  0.0252 0.039 0.00152 0.0377 0.0571 0.0916

Heating (Gas) 0.0224 0.000904 0.00826 0.0189 0.0195 0.0506 0.006 0.0515

4.4  ANN Modeling

4.4.1 ANN structure

Four Artificial Neural Networks used to predict thermal comfort data. Each network
represents one of the four points (Basement, Upper room, Upper lobby, and Ground
lobby). Each network concludes three layers, the first layer is the input layer, which
contains 7 neurons represent the independent variables. The second layer is the hidden
layer, which contains 3 neurons. The third layer is the output layers, which is 2 neurons
represent the targeted data (Temperature and Relative humidity) for each point.

Structure of ANN was represented in Figure 8.

4.4.2 Training the artificial neural network

Firstly, the measured data was organized and sorted in an hourly data format to match
with the hourly weather and heating consumption data. This process was also
minimized the amount of data to be trained. That’s mean only 753 measured datasets
for each point in the heating season is able to be trained. Later the data were scaled by

using the Minimum-Maximum method to be used into the activation function. Based
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on the short-term measured data, 85% of the datasets were used for the training phase,
which used Quasi-Newton algorithm and sigmoid activation function to go from the
input to the hidden layer and linear function to move to the input layer with 0.3 learning
rate. Python code was used to perform the ANN model.

4.4.3 Selection

After training the ANN, 15% of the data was used into the selection method of 10
iterations to test the performance of the model and the parameters. The selection phase
has changed the structure of the Network by increasing the hidden nodes to be 8 nodes
and minimized the losses of the model. By using the selection phase’ results, the model
was trained again to achieve the minimum losses as shown in Table 4.2. The final
structure of the ANN model was shown in Figure 4.6.

Table 4.2: Final losses.

Basement Unbper room Upper Ground
room PP Lobby Lobby
Final Losses 0.295 0.369 0.38 0.56

Input Layer Hidden Layer

Cutside Dry-Bulb Temperature
Qutside Dew-Point Temperature
Inside Temperature

Wind Direction

Inside Humidity Rate

Atmospheric Pressure

Solar Azimuth

Heating (Gas)

Figure 4.6: ANN final structure.

The performed ANN showed that filtering the data reduced the confused results of the

model and improved the accuracy. In addition, the number of hidden layers, which
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changed through the selection analysis, had a significant effect on the final losses. The

major effect of those phases made them the most critical parts of this prediction work.

4.5 ANFIS Modeling

45.1 ANFIS structure

Eight adaptive neuro-fuzzy inference system models had been developed to predict the
indoor temperature and the relative humidity of the building. Each model used to
predict one of the targeted parameters in one of the four points. Each of the utilized
models structured by six layers, the first layer is the input layer which it is include 7
nodes each node represents one of the independent variables. The second layer is the
input membership function layer, this layer contains 14 adaptive nodes, each pair of
adaptive nodes receives the value of one of the independent variables to use it as input
in its function. The third layer includes fixed nodes which receive signals from the
input layer, the output of this layer is the product of the received signals and it’s called
the firing strength of the rules. The fourth layer is the normalization layer, in the nodes
of this layer the ratio of each rule’s firing strength has been calculated. The layer 5 is
the output membership function layer, and the last layer is the single output layer

which is the temperature or relative humidity for each point. The ANFIS final structure

is shown in Figure 4.7,

Input

Outside Dry-Bulb TemperatureQ:::_‘Z::_

Qutside Dew-Point TemperafureQ::__::_,
wnd Spee‘iQr:;:‘_ -

Wind DirectionQ;::::::

Atmospheric PressureO::::::

st it @) ——"_

e (GaS)Q::::::i:

Figure 4.7: ANFIS final structure.
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4.5.2 Training the adaptive neuro-fuzzy inference system

The data set of the ANFIS is the same in the ANN model, which means that the
available datasets to be trained are 753 hourly datasets for the heating season. The
ANFIS model utilized the Sugeno method and its output membership functions. The
hybrid-learning algorithm’s feedforward backpropagation procedures had been used
as the learning algorithm for the 20 iterations ANFIS model. The number of iterations
was defined by the testing phase since the datasets were distributed in 85% for the
training phase and 15% for the testing phase. Matlab’s ANFIS tool was used to
perform the model.
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5. RESULTS AND DISCUSSION

5.1 ANN Results

5.1.1 Basement

The prediction results of the Artificial Neural Network models are slightly different in
term of being in the comfort level for each point and parameter. The predicted
temperature data in the basement room, in general, seems to be close to the temperature
comfort level in the heating season which is in the range 22-24°C, and the average of
the ANN predicted temperature in the basement 21.7°C. In the same time, the hourly
data is significantly varying, it reached 27.1°C as the maximum value and 15.1°C as

it is shown in Figure 5.1 and Table 5.1.

Temperature [°C]
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Figure 5.1: Basement - ANN hourly predicted temperature.

The predicted humidity is also in the same situation. It didn’t reach the comfort level
range which starts with 50% relative humidity, but it still close since the average of
the predicted relative humidity is 44.1%. But again, the variation of the result is
significant since the maximum value reached 56.7%, whereas the minimum value was
30.1%. The variation of the humidity data is clearly shown in Figure 5.2, and the

maximum and minimum values are shown in Table 5.1.
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Figure 5.2: Basement - ANN hourly predicted humidity.

Table 5.1: Basement - ANN predicted parameters.

Humidity Temperature

[%orH] [°C]

Max 56.7 27.1
Min 30.1 15.1
Average 44.1 21.7

5.1.2 Upper room

Temperature [°C]
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Figure 5.3: Upper Room - ANN hourly predicted temperature.

The prediction results for the upper room is not that much different than the results in
the basement, as but the predicted temperature in this poin , in general, reached the
comfort level since the average temperature is 23.7°C which is perfect. In the time, the
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data variation is again significant sine the maximum temperature was around 28.9°C,
while the minimum value didn’t exceed 17.1°C. The temperature predicted data in the
upper room is shown in Figure 5.3 and the predicted parameters are shown in Table
5.2.

The average predicted humidity in the upper room is around 36.5% which is far lower
than the comfort level. Although it reached 49.2% this was the maximum value which
doesn’t represent a considerable time out of the heating season and as shown in Table
5.2 in a peak point the humidity was around 22.1% which is extremely under the
comfort level. Figure 5.4 represented the predicted relative humidity in the upper

room.
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Figure 5.4: Upper Room - ANN hourly predicted humidity.

Table 5.2: Upper Room - ANN predicted parameters.

Humidity Temperature

[%orH] [°C]

Max 49.2 28.9
Min 22.1 17.1
Average 36.5 23.7

5.1.3 Upper lobby

As in the third-floor room, the average of the predicted temperature in the lobby first-
floor level is in the comfort level which is around 23.7°C. In addition, the maximum
temperature value was around 29.3°C, while the minimum value around 17.7°C as

shown in Table 5.3. Figure 5.5 showed the predicted temperature data.
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Figure 5.5: Upper Lobby - ANN hourly predicted temperature.

In the same time, the humidity average was better than the 3™ floor room since it
reached 41.3%, which is slightly closer to the comfort level. The maximum relative
humidity value was around 63.1% and the minimum value was around 22.4%. The

predicted humidity data are shown in Figure 5.6.
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Figure 5.6: Upper Lobby - ANN hourly predicted humidity.

Table 5.3: Upper Lobby - ANN predicted parameters.

Humidity Temperature

[%orH] [°C]

Max 63.1 29.3
Min 22.4 17.7
Average 41.3 23.7

5.1.4 Ground lobby

The temperature in the ground floor lobby was under the comfort level since the
average was about 20.7°C. The maximum temperature value reached 24.8°C, while
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the minimum value 16°C. These results are clearly shown in Figure 5.7 and in Table
54.

Table 5.4: Ground Lobby - ANN predicted parameters.

Humidity Temperature

[%orH] [°C]

Max 64.8 24.8
Min 32.2 16.0
Average 43.7 20.7
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Figure 5.7: Ground Lobby - ANN hourly predicted temperature.

The humidity in this point also reached significant peak points since the maximum
relative humidity was 64.8% and the minimum value was 32.2%. But the average
humidity was closed to the comfort level as it was estimated to be about 43.7%, as

shown in Table 5.4. and Figure 5.8.
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Figure 5.8: Ground Lobby - ANN hourly predicted humidity.
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5.2 ANFIS Results

5.2.1 Basement

The results of the Adaptive Neuro-Fuzzy Inference Systems prediction are as expected
relatively close to the ANN prediction results. The average of the predicted
temperature of the basement room is estimated to be 20.4°C which under the comfort
level range. The maximum predicted temperature in the basement was 21.9°C, and the
minimum temperature was predicted to be 14.9°C as shown in Table 5.5. Figure 5.9
shows the hourly predicted temperature in the basement.
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Figure 5.9: Basement - ANFIS hourly predicted temperature.

The predicted humidity in the basement was between 36.9% as a minimum value and
48.2% as a maximum value. The average of the predicted humidity was estimated to
be 43.4% which is relatively close to the comfort range but didn’t reach it. Figure 5.10
shows the hourly dataset of the humidity predicted by ANFIS for the basement room.
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Figure 5.10: Basement - ANFIS hourly predicted humidity.
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Table 5.5: Basement - ANFIS predicted parameters.

Humidity Temperature

[%orH] [°C]

Max 48.2 21.9
Min 36.9 14.9
Average 43.4 20.4

5.2.2 Upper room

The predicted average of the temperature in the 3™ floor room was calculated to be
22.8°C which reflects perfect expectation for the heating system performance in this
room where the average is in the comfort level, and the peak points are varying far out
the thermal comfort range, since the maximum predicted temperature was 24.5°C and
the minimum was around 19.4°C. The predicted temperature data is shown in Figure
5.11.

Table 5.6: Upper Room - ANFIS Predicted parameters.

Humidity Temperature

[%orH] [°C]

Max 41.0 24.5
Min 31.9 19.4
Average 36.2 22.8
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Figure 5.11: Upper Room - ANFIS hourly predicted temperature.

On the other hand, the predicted humidity in this room is far under the humid comfort
range, where the average was 36.2%. The minimum humidity value was 31.9% and
the maximum value 41%, as shown in Table 5.6. Figure 5.12 shows the hourly

humidity dataset.
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Figure 5.12: Upper Room - ANFIS hourly predicted humidity.

5.2.3 Upper lobby

The 1% floor level lobby predicted temperature results are mostly in the comfort level.
The average of the predicted temperature in this point was 22.4°C. The maximum
temperature value was 23.4°C and the minimum value was 16.1°C but this minimum
value represents very unique peak point as shown in Figure 5.13 while the most of the

predicted results are in a reasonable range in term of comfort conditions.
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Figure 5.13: Upper Lobby - ANFIS hourly predicted temperature.

Table 5.7: Upper Lobby - ANFIS predicted parameters.

Humidity Temperature

[%rH] [°C]

Max 49.9 23.4
Min 33.5 16.1
Average 42.4 22.4
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Figure 5.14: Upper Lobby - ANFIS hourly predicted humidity.

The average of the predicted humidity is around 42.4% which is relatively close to the
comfort range as shown in Table 5.7. The values of the humidity in this point varies
between 49.9% as the maximum value and 33.5% as the minimum value. Figure 5.14

represented the predicted humidity dataset.

5.2.4 Ground lobby

The ANFIS predicted temperature results were mostly varying around 20°C which
relatively close to the comfort level. The average of the predicted temperature in the
lobby was 20.1°C and the maximum was 20.9°C. In rare peak points, the results went
down to be 15.5°C which is the minimum value. These results are clearly shown in
Figure 5.15 and Table 5.8.
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Figure 5.15: Ground Lobby - ANFIS hourly predicted temperature.

The ANFIS predicted humidity for the lobby is under the comfort range. The average

of the humidity results was 42.3% in this point which is not far less than 50%. The
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results varied between 32.9% as the minimum rate and 47.8 as maximum rate. The

predicted humidity dataset is represented in Figure 5.16.

Table 5.8: Ground Lobby - ANFIS predicted parameters.

Humidity Temperature

[%orH] [°C]

Max 47.8 20.9
Min 32.9 15.5
Average 42.3 20.1
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Figure 5.16: Ground Lobby - ANFIS hourly predicted humidity.
5.3 Comparing the Results

In this part, the ANFIS and ANN prediction results will be compared with the second-
year heating season measurements. This comparison will show whether the
approached are applicable to predict the indoor thermal data, and which one is more
appropriate in term of accuracy.

Figures5.17,5.18, 5.19, 5.20, 5.21, 5.22, 5.23, and 5.24 show that both of the predicted
data of ANN and ANFIS are relatively matching the measured data. For both
temperature and humidity, The ANN predicted results’ variation seems to be more
realistic and closer to the measured data. While the ANFIS results seem to be more
stable with fewer variations.

In the Figure 5.17, it is recognized that the period between December 27" and January
1% the measured data seems to be far less than the average, in some points it went down
less than 10°C, which shows that the heating system wasn’t properly performing. This

deviation in some periods may cause mistakes in estimating the errors of the prediction
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work. It will decrease the accuracy of the prediction models since the errors were
calculated by comparing the predicted data with the measured data. Therefore, the

prediction model will carry responsibility for the heating system’s bad performance.
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Figure 5.17: Basement - hourly predicted and measured temperature.
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Figure 5.18: Basement - hourly predicted and measured humidity.
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Figure 5.19: Upper Room - hourly predicted and measured temperature.
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Figure 5.20: Upper Room - hourly predicted and measured humidity.
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Figure 5.21: Upper Lobby - hourly predicted and measured temperature.
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Figure 5.22: Upper Lobby - hourly predicted and measured humidity.
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Figure 5.23: Ground Lobby - hourly predicted and measured temperature.
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Figure 5.24: Ground Lobby - hourly predicted and measured humidity.

Table 5.9, shows that the ANFIS model prediction of the temperature has less than the
ANN model prediction in 3 points out of four. The ANFIS temperature prediction
results’ RMSEs (Root Mean Square Error) are 4, 2.9, 2.7, and 1.4 respectively in the
basement room, upper room, upper lobby, and ground lobby, while in the same order
the ANN prediction errors are 5.2, 3.9, 3.8, and 1.5.

It is significant the small error of both of the models in the ground lobby which. This
can be explained by observing the measured temperature dataset in Figure 5.23. It is
clear that the measured data at this point is more stable with fewer variations compared
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to other points. Even though the average of the measured temperature which is
20.74°C, which is less than the comfort range, but the stability of the measured data in
the point shows that the heating system is performing properly in the lobby. However,
these results show that the ANFIS prediction has better accuracy when it is compared
with these stochastic measured data of the four points since the overall temperature
prediction accuracy of the ANFIS model has been calculated to be 85%, in the other

hand the accuracy of the temperature ANN prediction was 81%.

Table 5.9: Predicted and measured temperature parameters.

Inside Temperature [°C]

Upper Upper Ground
Basement room room Lobby Lobby
Measured Average 18.5 20.4 20.6 20.7
Average 21.7 23.7 23.7 20.7
ANN RMSE 5.2 3.9 3.8 15
Predicted Final
RMSE i
Average 20.4 22.8 22.4 20.1
ANFIS RMSE 4.0 2.9 2.7 1.4
Predicted i
Final 29
RMSE

According to Table 5.10, both of the ANFIS and ANN predictions’ errors are close to
each other. The ANFIS humidity prediction results’ RMSEs were 10.4, 8.3, 5.8, and
7.9 respectively in the basement room, upper room, upper lobby, and ground lobby,
while in the same order the ANN prediction errors were 10.5, 8.5, 6.8, and 9. The
ANFIS prediction was better in the four points. However, for overall humidity
prediction again the ANFIS model which had 81% accuracy rate was slightly more

accurate than the ANN model which had an accuracy rate of 81%.

Table 5.10: Predicted and measured humidity parameters.

Inside Humidity Rate [%rH]

Upper Upper Ground
Basement room room Lobby Lobby
Measured Average 45.4 42.0 45.6 38.6
Average 44.1 36.5 41.3 43.7
ANN RMSE 10.5 8.5 6.8 9.0
Predicted Final
RMSE 8.8
Average 43.4 36.2 42.4 42.3
ANFIS RMSE 10.4 8.3 5.8 7.9
Predicted Final
RMSE 8.3
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5.4 Scaling the Comaprison:

The irregular performance of the heating system produced a stochastic measured data
in some periods. This stochasticity affected the comparison between measured and
predicted data and the prediction accuracy of both of the ANFIS and ANN models. To
avoid this effect the comparison will be scaled by selecting the most ordinary period

of the measured data as a sample to be compared with the predicted data and then

provide the accuracy based on the selected sample.

By observing Figures (5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, and 5.24), it is
recognized that the most stable period for the measured data was the period between
10/12/2018 and 20/12/2018. The data of this period will be the sample which is used

for the comparison scaling.
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Figure 5.25: Basement temperature data sample.
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Figure 5.26: Upper room temperature data sample.
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Figure 5.27: Upper lobby temperature data sample.
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Figure 5.28: Ground lobby temperature data sample.

Table 5.11: Data sample temperature parameters.

Inside Temperature [°C]

Basement Upper Upper Ground
room room Lobby Lobby
Measured Average 17.7 20.0 20.2 20.3
Average 21.7 23.0 24.0 21.0
ANN RMSE 4.1 3.4 3.9 1.0
Predicted Final
RMSE 34
Average 20.2 22.3 22.9 20.2
ANFIS RMSE 2.6 2.5 2.7 0.8
Predicted Final
2.3
RMSE
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Figures 5.25, 5.26, 5.27, 5.28, and Table 5.11 show that the temperature prediction
error increased in the most stable sample of the measured data for both ANN and
ANFIS prediction models. For ANN the accuracy rate after scaling increased from
81% to 83%, but this increasing rate still affected by the quality of the measured data,
because even though the measured data is stable but it doesn’t match the expected
results especially in the basement where the average of the measured data was less
than 18°C, which is far away under the comfort zone. So the more the measured data
is closed to the comfort zone, the less prediction error achieved. The ANN maximum
RMSE was in the basement around 4.1, while it was minimum in the ground lobby
point which is around 1. For ANFIS model the temperature prediction accuracy after
scaling was increased by 3%, again the accuracy rate was affected by the heating
system performance, and the average error decreased when the measured temperature
was closer to the temperature comfort zone. The accuracy of ANFIS prediction became
88% after scaling while the ANN prediction accuracy increased to be 85% which make
the ANFIS model more eligible in term of accuracy to perform the kind of prediction

work.
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Figure 5.29: Basement humidity data sample.
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Figure 5.30: Upper room humidity data sample.
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Figure 5.31: Upper lobby humidity hata sample.
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Figure 5.32: Ground lobby humidity data sample.

Table 5.12: Data sample humidity parameters.

Inside Humidity Rate [%rH]

Upper Upper Ground
Basement room room Lobby Lobby
Measured Average 45.4 41.4 44.9 37.8
Average 47.5 37.9 411 42.8
ANN RMSE 5.7 4.8 4.8 6.0
Predicted Final
RMSE >3
Average 45.0 37.2 41.6 42.0
ANFIS RMSE 3.5 5.0 3.6 4.9
RMSE 4.3
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Figures 5.29, 5.30, 5.31, 5.32, and Table 5.12 showed that the prediction accuracy of
the humidity was improved after scaling for both ANN and ANFIS prediction models.
For ANN results the final prediction accuracy was increased by 6% after scaling. For
ANFIS results also the final prediction error was decreased and the accuracy rate
increased. The final humidity prediction accuracy of ANN is 87% while it is 90% for
ANFIS, which shows that ANFIS model’s accuracy is better than the accuracy of the
ANN model in the whole cases in this study.
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6. CONCLUSION

The thermal environment is the main index of the building energy performance and
efficiency, since it is the most important factor to improve the comfort level of the
building, and the main mission of most of the applied systems in any building is
providing a comfortable indoor environment. Hence, most of the building energy
consumption is for heating or cooling. Therefore, it is necessary to manage certain
comfort conditions like temperature and humidity in order to manage and sustain the
indoor environment comfort level.

This thesis aimed to predict the heating season indoor thermal comfort data in the
Kartal elderly home, which is 8 stories building with 18,108 m2 conditioned floor area
in Istanbul, Turkey. The aim of this prediction is providing full heating season’s
thermal comfort dataset by using short-term measured data while the heating system
is performing. The heating season of the building was evaluated by defining a critical
monthly heating consumption, which was 250 MWh per month, and select the period
when the building monthly consumption exceeds this value to be the heating season.
Based on it the heating season was evaluated to be between November 15th and March
21st.

The ANFIS and ANN approaches had been used as predictive models. The two
approaches were trained based on the measured indoor temperature and relative
humidity data. The measurements inside the building were taken for one year which
started on the 22nd of February 2018. Therefore, short-term data was collected in the
first heating season and these data were used into the models training phase. While the
data collected in the second heating season was used in validating the prediction
results. In addition, the independent variables were obtained from the weather data and
heating consumption simulated data.

The measurement and prediction works were done into four different points inside the
building. The prediction results showed that the temperature averages should be in the
comfort level for two points out of four, while the measured data showed that the four

points are under the comfort condition. This was because of the poor performance of
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the heating system in some periods. This poor performance cause recognized
stochasticity in the measured data which influenced the prediction results validation
and affected the prediction accuracy calculations.

The ANN prediction errors for temperature were varied between 1.5 and 5.2, and
between 6.8 and 10.5 for humidity in the four points. The ANFIS prediction errors
have recognized variations too since the temperature prediction errors were between
14 and 4, and for the humidity, prediction errors were between 5.8 and 10.4. These
results showed that the ANN and ANFIS models achieved the best prediction with a
minimum error rate in the point where the measured data was more stable with fewer
variations.

However, the ANFIS prediction was more accurate in general since its prediction final
accuracy rate was 85% for temperature and 81% for humidity, while the ANN
prediction final accuracy rates were 81% for temperature and 80% for humidity.
These results were significantly affected by the heating system poor performance, in
order to minimize this effect, the comparison was scaled by selecting the best measured
period to be the data sample which will be used in the comparison. After scaling, the
prediction accuracy was increased for both ANN and ANFIS models, to be 83% and
88%, respectively for temperature prediction. For humidity the accuracy rate of 87%
for ANN and 90% for ANFIS. According to the results, the ANFIS model was the best
fit for all of this prediction work cases. Considering the measured data stochasticity,
both of the ANFIS and ANN approaches are highly validated in this type of prediction
work. Since the building is an elderly home, these results can be an indicator to
improve the thermal environment inside the building Taking into account its impact
on the health and well-being of older persons.

This study results offer the opportunity to go in different directions as further work.
The results can support the monitoring system which was implemented inside the
building to perform real-time calibration and report the unexpected results, this report
can help to improve the comfort level inside the building. The prediction results can
also be used as an index to calibrate and develop the accuracy of the energy

performance simulation of the building by improving the set points.
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