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PREDICTION OF THE HEATING SEASON INDOOR THERMAL DATA 

BASED ON SHORT-TERM MEASUREMENT 

SUMMARY 

This thesis aims to predict the heating season indoor thermal comfort data in the Kartal 

elderly home, which is 8 stories building with 18,108 m2 conditioned floor area in 

Istanbul, Turkey. The aim of this prediction is providing full heating season’s thermal 

comfort dataset by using short-term measured data while the heating system is 

performing. The heating season of the building was evaluated by defining a critical 

monthly heating consumption, which was 250 MWh per month, and select the period 

when the building monthly consumption exceeds this value to be the heating season. 

Based on it the heating season was evaluated to be between November 15th and March 

21st. 

The prediction work was done using two machine learning based models. The targeted 

dependent variables of the model were the indoor temperature and relative humidity. 

The independent input variables of the prediction were selected to be the outside dry-

bulb temperature, outside dew-point temperature, wind speed, wind direction, 

atmospheric pressure, and solar azimuth, which obtained from the weather data, in 

addition to the simulation resulted in heating consumption. 

The dependent variables data was obtained by real measurements into the Kartal 

building. The measurements were done using 4 sensing devices implemented in four 

points inside the building. The first device was implemented in a basement room, the 

second in the 3rd floor room, the third in the 1st-floor level lobby and the last one was 

implemented in the ground floor lobby. The measurement process had been done 

during one year started by February 22nd, 2018. Short -term measured data had been 

collected since the measured started until the first heating season ended, these short-

term data had been used in the prediction models training phase. The measured data of 

the second heating season which started on November 15th, 2018 had been compared 

with prediction results to decide the validity of the prediction models in term of 

accuracy. 

The first prediction approach was the feed forward Artificial Neural Network (ANN) 

with Back Propagation learning System (BPS). The ANN model was used to perform 

the prediction and it was structured by an input layer, output layer, and one hidden 

layer. Four ANN model was performed, each model used to predict the temperature 

and humidity of one of the four points in the building. 

The second prediction approach was the Adaptive Neuro-Fuzzy Inference System 

(ANFIS). The Sugeno ANFIS method was utilized in this prediction work. The ANFIS 

model was structured by 6 layers. Eight ANFIS models were performed to achieve the 

prediction, each model used to predict one of the targeted variables in one of the four 

selected points. 

The prediction results were compared with the measured data of the second heating 

season. The comparison showed that the ANFIS model was more efficient in this 

prediction work since it achieved 85% accuracy rate for indoor temperature and 81% 
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for humidity prediction. While the ANN prediction accuracy was 81%, 80% relatively 

for the temperature and humidity. 

Then the comparison was scaled by selecting the most ordinary period in the measured 

data to be the data sample which will be used the comparison. The second comparison 

showed again that ANFIS model was a better fit than ANN model in this prediction 

work since the ANFIS prediction accuracy became 88% for temperature and 90% for 

humidity, while the ANN prediction accuracy became 83% for temperature and 87% 

for humidity. 

However, the stochasticity of the measured data which caused by the bad performance 

of the heating system in some periods, influenced the accuracy rates of the models 

since it was calculated by comparing the prediction results to the measured data. 

Hence, according to the achieved accuracy rates, both of the ANFIS and ANN 

approaches are highly validated in this type of prediction work. 
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KISA SÜRELİ İÇ ORTAM ÖLÇÜM VERİSİNE DAYALI ISITMA SEZONU 

TAHMİNİ 

ÖZET 

Termal çevre, binanın konfor seviyesini iyileştirmek için en önemli faktör olduğundan 

binanın enerji performansının ve verimliliğinin ana endeksidir ve herhangi bir binada 

uygulanan sistemlerin çoğunun temel görevi, konforlu bir iç ortam sağlamaktır. Bu 

nedenle, binanın enerji tüketiminin çoğu ısıtma veya soğutma içindir. Bu sebeple, iç 

ortam konfor seviyesini yönetmek ve sürdürmek için sıcaklık ve nem gibi bazı konfor 

koşullarını yönetmek gerekir. 

Termal konfor koşullarının ölçülmesi ve doğrulanması ve normal şartlar altında enerji 

tüketimi üzerindeki etkisi, tüm ısıtma ve soğutma mevsimleri için yaklaşık 1-2 yıl 

sürer. Saatlik, günlük, aylık ve mevsimsel verilere dayanarak iç mekan termal 

ortamının dikkatlice tanımlanmasını gerektirir. Bu uzun süre ısıtma ve soğutma 

sistemlerinin performansını vermez kılan ölçüm ve doğrulama işlemlerini yapar. Her 

ne kadar ısıtma ve soğutma sistemleri kullanımdayken binanın ısıl çevresini 

incelemek, düşük sistem performansına neden olabilecek herhangi bir sorunu rapor 

etme ve çözme imkanı sağlar. 

Kısa vadeli ölçülen verileri kullanarak bir binanın iç mekan termal koşullarını tahmin 

etmek, ölçümler bina içindeki sistemler gerçekleştirilirken belli bir sürede yapıldıysa, 

binanın termal ortamını incelemek ve anlamak için etkili bir yol olabilir. Bu öngörülen 

veriler binadaki enerji yönetimini desteklemek için yararlı bir araç olabilir. 

Bu tezin amacı koşullandırılmış alanı 18,108 m2 olan İstanbul, Türkiye'de bulunan 

Kartal yaşlı bakım evinde ısıtma sezonu için iç ortam termal konfor verilerini tahmin 

etmektir. Bu tahminin amacı ise ısıtma sistemi çalışırken elde edilen kısa vadeli ölçüm 

verilerini kullanarak tüm ısıtma sezonu için termal konfor veri setini sağlamaktır. 

Binanın ısıtma sezonu 250 MWh olan bir aylık ısıtma tüketimi tanımlanarak 

değerlendirilmiş ve binanın aylık ısıtma tüketiminin bu değeri aştığı dönem ısıtma 

sezonu olacak şekilde seçilmiştir. Buna dayanarak, ısıtma mevsimi 15 Kasım ile 21 

Mart arasında olduğu belirlenmiştir. 

Tahmin çalışması iki farklı makine öğrenmesi yaklaşımı kullanılarak yapılmıştır. 

Tahmin çalışmasında kullanılan yaklaşımların hedeflenen bağımlı değişkenleri iç 

ortam sıcaklığı ve bağıl nemdir. Tahminin bağımsız girdi değişkenleri ise dış ortam 

kuru ampul sıcaklığı, dış ortam çiğlenme noktası sıcaklığı, rüzgar hızı, rüzgar yönü, 

atmosferik basınç, hava durumu verilerinden elde edilen solar azimut, ve ayrıca 

simülasyon sonuçlu ısıtma tüketimi olarak seçilmiştir. 
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Bağımlı değişken verileri Kartal binasında gerçek ölçümler sonucu elde edilmiştir. 

Ölçümler, binanın içinde dört farklı noktaya yerleştirilen dört ölçüm cihazı 

kullanılarak yapılmıştır. Ölçüm cihazlarının ilki bodrum katına, ikincisi üçüncü katta 

bulunan bir odaya, üçüncüsü birinci katta bulunan lobiye, sonuncusu ise zemin katta 

bulunan lobiye yerleştirilmiştir. Ölçüm süreci, 22 Şubat 2018'de başlamış ve bir yıl 

boyunca yapılmıştır. İlk ısıtma sezonu sonlanana kadar ölçümler başladığı için kısa 

süreli veriler toplanmıştır. Bu kısa süreli veriler tahmin modellerinin eğitim 

aşamalarında kullanılmıştır.  15 Kasım 2018'de başlayan ikinci ısıtma sezonunun 

ölçüm verileri, tahmin modellerinin doğruluğu açısından geçerliliğine karar vermek 

için tahmin sonuçlarıyla karşılaştırılmıştır. 

İlk tahmin yaklaşımı, Back Propagation Öğrenme Sistemine (BPS) sahip ileri besleme 

Artificial Neural Network (ANN) idi. ANN modeli kullanılmış ayrıca bir giriş 

katmanı, bir çıkış katmanı ve bir gizli katman tarafından yapılandırılmıştır. Dört ANN 

modeli oluşturulmuştur, her bir model binadaki dört noktadan birinin sıcaklığını ve 

nemini tahmin etmek için kullanıldı. 

Kullanılan ikinci tahmin yaklaşımı ise Adaptive Neuro-Fuzzy Inference System. 

Tahmin için Sugeno ANFIS yöntemi kullanılmıştır. ANFIS modeli 6 katman ile 

yapılandırılmıştır. Tahmini gerçekleştirmek için sekiz ANFIS modeli 

gerçekleştirilmiştir ve her bir model seçilen dört noktadan birinde hedeflenen 

değişkenlerden birini öngörmek için kullanılmıştır. 

ANFIS'i kullanmanın temel nedeni, ısıtma sistemi stokastik performansı nedeniyle 

açıkça ortaya çıkan ölçülen verilerin belirsizliğinden kaçınmaktı. Verilerin, ANN 

tahmininde, ölçülen verilerdeki sesleri azaltmak için kullanılmak üzere filtrelenmesine 

rağmen, ısıtma sistemi performansının stokastikliğinin, ANN tahmininde sakınılması 

zordu. 

Tahmin sonuçları, ikinci ısıtma mevsiminin ölçülen verileri ile karşılaştırılmıştır. 

Sıcaklık için ANN tahmin hataları, dört noktadaki nem için 1.5 ila 5.2 arasında ve 6.8 

ila 10.5 arasında değişmiştir. ANFIS tahmin hataları, sıcaklık tahmin hataları 14 ile 4 

arasında olduğundan ve nem için tahmin hataları 5.8 ile 10.4 arasında olduğu için 

farklılıkları da tanıdı. Bu sonuçlar, ANN ve ANFIS modellerinin, ölçülen verilerin 

daha az değişiklikle daha stabil olduğu noktada minimum hata oranıyla en iyi tahminde 

bulunduğunu göstermiştir. 

Karşılaştırma, ANFIS modelinin bu tahmin çalışması için daha verimli olduğunu 

göstermiştir, çünkü ortam sıcaklığı ve nem tahmininde %85 ve %81 oranında doğruluk 

ANFIS modeli ile elde edilmiştir. ANN yaklaşımıyla sıcaklık tahminin doğruluk oranı 

81% iken, nem tahmini doğruluk oranı %80'dır. 

Stokastiklik, ölçülen ve öngörülen veriler arasındaki karşılaştırmayı ve hem ANFIS 

hem de ANN modellerinin tahmin doğruluğunu etkiledi. Bu etkiden kaçınmak için, 

öngörülen verilerle karşılaştırılacak bir örnek olarak ölçülen verinin en sıradan süresi 

seçilerek ve ardından seçilen örneğe dayanan doğruluk sağlayarak karşılaştırma 

ölçeklendirildi. 

İkinci karşılaştırma, ANFIS modelinin, bu tahmin çalışmasında ANN modeline göre 

daha uygun olduğunu, çünkü ANFİS tahmin doğruluğunun sıcaklık için %88 ve nem 

için %90, ANN tahmin doğruluğunun sıcaklık için %83 ve nem için %87 olduğunu 

göstermiştir. 

Isıtma sisteminin bazı periyotlarda kötü performans göstermesinden kaynaklanan 

ölçüm verilerinin stokastikliği göz önünde bulundurulmuştur. Tahmin sonuçları 

ölçülen verilerle karşılaştırılarak hesaplandığı için ölçüm verilerinin stokastikliği 

modellerin doğruluk oranlarını etkilemiştir. Bu nedenle, elde edilen doğruluk 

oranlarına göre, hem ANFIS hem de ANN yaklaşımlarının her ikisi de bu tür bir 

tahmin çalışmasında oldukça geçerli olmaktadır. 
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Bu çalışma sonuçları ileriki çalışmalar için farklı yönlere gitme fırsatı sunmaktadır. 

Sonuçlar, gerçek zamanlı kalibrasyon yapmak ve beklenmeyen sonuçları bildirmek 

için bina içinde uygulanan izleme sistemini destekleyebilir, bu rapor binanın içindeki 

konfor seviyesinin iyileştirilmesine yardımcı olabilir. Tahmini sonuçlar ayrıca, 

belirlenmiş noktaları iyileştirerek binanın enerji performans simülasyonunun 

doğruluğunu kalibre etmek ve geliştirmek için bir endeks olarak da kullanılabilir. 
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1. INTRODUCTION 

Thermal comfort conditions are the most important indicator of energy consumption 

in the residential, commercial and industrial buildings because the main mission of 

most of the applied systems in any building is providing a comfortable indoor 

environment, therefore the cooling and heating consumption represents 50% of the 

energy consumption inside the buildings [1]. Because of that most of the energy 

efficiency studies had been done based on the inside thermal conditions to improve the 

energy performance of the buildings and minimize CO2 emissions. 

In addition to its relation with energy efficiency, the thermal environment quality is 

highly related to the human health and productivity since it has a direct effect on the 

physical and psychological health of the human [2]. Hence, Measurement and 

verification of the building’s indoor thermal conditions such as the temperature and 

humidity had been investigated significantly in the last decades, according to its 

importance to sustain the quality of the indoor environment. 

Measurement and verification of the thermal comfort conditions and its effect on the 

energy consumption under the normal circumstances take a long time approximately 

1-2 years for whole heating and cooling seasons. It requires careful identification of 

the indoor thermal environment based on hourly, daily, monthly and seasonal data. 

This long time makes the measurement and verification process considering the 

heating and cooling systems performance inefficient. Although, examining the thermal 

environment of the building while the heating and cooling systems are in-use provides 

the opportunity to report and fix any problem may cause poor system performance. 

Predicting the indoor thermal conditions of a building using short-term measured data 

can be an efficient way to study and understand the building’s thermal environment if 

the measurements were done in a period when the systems inside the building are 

performing. This predicted data can be a useful tool to support energy management in 

the building. 
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The Artificial intelligence-based algorithms had been utilized widely in the prediction 

works and studies. Machine learning is cost effective since it doesn’t need special 

infrastructures to be performed. 

Artificial Neural Network algorithm (ANN) is one of the most used machine learning 

algorithms. ANN mimic the human brain process to convert the information and 

experiences into decisions, it had been utilized in widely in both classification and 

prediction studies because of its highly accurate results and its ability to correlate the 

non-linearity between the variables. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is an algorithm which combines the 

Fuzzy approach and the ANN algorithm in order to perform better accurate results. 

The ANFIS approach like the ANN had been used in both of the classification and 

prediction studies. 

 In this case, the focus will remain on the heating season by using the short-term 

measurements to predict the rest of the heating season’s thermal data inside a big-scale 

residential building. The thermal parameters that will be studied are the inside 

temperature and humidity. The prediction will be performed by the application of both 

of the Back-Propagation Artificial Neural Network referred as ANN and Adaptive 

Neuro-Fuzzy Inference System approaches. 

The ANFIS model will be implemented in this study to avoid the uncertainty of the 

temperature and humidity data. Basically, the uncertainty produced by the 

performance of the heating system inside the building which caused noises to the 

measurements. The uncertainty of the measured data affects the efficiency of the 

prediction. Using ANFIS will reflect the uncertainty in the membership, hence it is 

expected to provide better prediction accuracy. 

The ANN and ANFIS models’ predicted data will be validated by comparing it with 

the measured datasets. Then, define the best effective model in term of prediction 

accuracy rate. 
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2. LITERATURE REVIEW 

There is a considerable amount of research on prediction around the world in many 

fields and many objectives like weather data forecasting, energy consumption, 

economic and currencies changes and as many other fields. Machine learning and deep 

learning approaches are the state of the art of the prediction and forecasting work. 

Artificial Neural Network approach is one of the most common machine learning 

algorithms because of its ability to produce cost-effective accurate predictions. 

For indoor conditions prediction, some studies accomplished around the world in the 

last few years. In 2017, Afroz, Shafiullah, Urmee, and Higgins [1] used Artificial 

Neural Network to predict the indoor space temperature of an institutional building in 

Australia. They collected data about 25 related parameters, then used neural fitting tool 

to sort out the most relevant parameters based on network performance. They selected 

8 variables to be prediction inputs (Indoor temperature set point, outdoor temperature, 

wind speed, wind direction, dew point temperature, barometric pressure, relative 

humidity, and solar radiation), as each parameter of these 8 has its effect on the 

prediction which cannot be ignored. They used 3 different algorithms for training the 

network and then comparing the results, they also applied their methodology in two 

different buildings and they found out that Lovenberg-Marquardt is the best-suited 

training algorithm to predict the indoor space temperature in terms of prediction 

accuracy, generalization capability and iteration time to train the algorithm. In 2017, 

Buratti, Palladino, and Moretti [2] used computational fluid dynamics (CFD) 

simulation tool and experimental data to predict indoor conditions and thermal comfort 

for a classroom in Perugia University. They took the data in April where the HVAC 

system turned off. Outdoor air temperature, solar radiation and the thermal 

characteristics of the external walls used as inputs while other indoor and outdoor 

parameters collected for validating the model. They found that solar radiation has the 

most effect, on the thermal sensation and when there is no solar radiation the thermal 

data take a uniform aspect. In 2017, Djamila [3] worked on predictions of the indoor 

thermal comfort in of determined locations by Meta-analysis of the ASHRAE RPA-
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884 database. This study suggested a new classification for indoor temperature and 

relative humidity and by more than one case proved that a huge amount of data is not 

an indicator for the prediction accuracy. In 2008, Tao Lu and Martti Viljanen [4] used 

four Artificial Neural networks to predict indoor Temperature and relative humidity 

inside a test house. They implemented a weather station inside the house and on its 

roof to make the measurements for data inside and outside the building to use in their 

study and selected 5 parameters of their measured data (time, outdoor temperature, 

indoor temperature, outdoor relative humidity and indoor relative humidity) to be used 

as inputs and outputs in the prediction model. They employed Nonlinear 

AutoRegressive with eXternal input (NNARX) model and genetic algorithm to 

establish their networks. By comparing the prediction results with the real 

measurements, they found out that temperature predictions had a good accuracy but 

relative humidity results need to be improved. In 2015, Zhang and You [5] predicted 

the indoor environment in an MD-82 aircraft cabin a test place based on computational 

fluid dynamics (CFD) using Artificial Neural Network. 5 parameters used as inputs of 

the prediction model: inlet velocity, inlet temperature, inlet angle, the location of inlet 

and the location of the outlet. They studied training and normalization methods to 

evaluate the ANN. They concluded that using the local logarithm normalization 

instead of local linear normalization improved the ANN accuracy. In 2016, L. Mba et 

al, [6] performed an ANN model to predict the indoor temperature and relative 

humidity for a modern building in a humid climate. They found that there is a 

recognizable relation between the number of input variables and the model 

performance and they approached that ANN has highly effective prediction model for 

the indoor thermal parameters. In 2018, Z. Afroz et al, [7] developed a non-linear 

autoregressive network with exogenous inputs-based system identification method to 

predict indoor temperature. The aim of their study was to raise the energy efficiency 

of a commercial building by using the predicted temperature to reset the air set-points, 

which provides advanced energy management. They found that evaluating the context 

of the model and the network’s size provide well optimized model, and approached 

that using the prediction model to support the energy management system into the 

commercial building for a long time will achieve high energy savings, and will 

improve the thermal environment and comfort level into the building. In 2012, S. 

Pandey et al, [8] used three different experimental data generated by three passive 

cooling techniques to develop an Artificial Neural Network model. The model 
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developed to predict the indoor temperature of the room when applying each of the 

three passive cooling methods aiming to find the best comfort conditions can be 

achieved. They used the outside temperature, relative humidity, solar intensity and 

wind speed as independent variables of the models, and concluded their study by 

satisfying results which can lead to extended further work. In 2017, S. Magalhães et 

al, [9] aimed to figure out the relationship between the indoor temperature, heating 

energy consumption and typical heating energy demand which obtained by the 

available rating systems in residential buildings. The correlation considered different 

types of occupant behavior, and it has been done using an Artificial Neural Network 

model. The model was performed based on data offered by dynamic thermal 

simulations of varied types of buildings. The ANN model achieved a satisfied accurate 

prediction with a square mean error less than 0.93 to estimate both of the heating 

energy consumption and the indoor temperature. In 2016 S. Magalhães et al, [10] 

developed a linear regression model with panel connected standard errors model to 

predict the indoor temperature of the bathrooms and living rooms for 141  households 

in the north of Portugal. The model used the winter season measured data to train the 

model. The study figured out the correlation between the building characteristics and 

the indoor temperature. In 2019, C. Xu et al, [11] developed a novel Long Short-term 

memory model to predict the indoor temperature in public buildings. The study aimed 

to compare the established novel LSTM model performance with the ordinary LSTM 

model and the used machine learning tools’ performance to predict the indoor 

temperature. The results of the study showed that the approached novel LSTM model 

prediction performance was slightly better than other machine learning tools. The 

difference was in term of the accuracy of the directional predictions and the variation 

trends predictions. In 2009, when H. Alasha’ary et al, utilized the Sugeno-type of the 

ANFIS model in order to predict the indoor temperature of a residential building’s 

room in Australia. The climatic data were used as input data. The datasets were 

distributed in for dataset types 1-day per month dataset, 1-week per month, 2-week per 

month and 3- week per month datasets for the measured year based on the input/output 

pattern of the ANFIS model. The measurement was done every 10 minutes in 3 height 

levels representing the floors of the building. The prediction outcome data has been 

validated and the average error was estimated to be 4% which far less than 10% (the 

maximum error). Depending on these results the ANFIS model can be a very effective 

approach for indoor thermal prediction [12] 
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ANN is one of the most used tools in prediction and forecasting studies in various 

fields around the world because of its accuracy and low costs. In 2017, Ümmühan 

Başaran Filik and Tansu Filik [13] used ANN to predict the wind speed in Eskisehir 

based on multiple local measurements. In 2018, Guillermo R. Chantre, Mario R. 

Vigna, Juan P. Renzi, and Aníbal M. Blanco [14] put a flexible and practical approach 

for real-time weed emergence prediction based on Artificial Neural Networks. In 2018, 

A.  Tebabal, S.M. Radicella, M. Nigussie, B. Damtie, and B. Nava, E. Yizengaw [15] 

used ANN for Local TEC modeling and forecasting. In 2016, Xueqian Fu, Shangyuan 

Huang, Rui Li, and Qinglai Guo [16] considered solar radiation and weather to predict 

the thermal load using ANN. In 2018, Ali Taheer Hammid, Mohd Herwan Bin 

Sulaiman, and Ahmed N. Abdalla [17] Predicted of small hydropower plant power 

production in Himreen Lake dam (HLD) using an artificial neural network. In 2018, 

Wei Sun and Yuwei Wang [18] forecasted Short-term wind speed based on fast 

ensemble empirical mode decomposition, phase space reconstruction, sample entropy, 

and improved back-propagation neural network. In 2016, Shuangyin Liu, LongqinXu, 

and Daoliang Li [19] performed multi-scale prediction of water temperature using 

empirical mode decomposition with back-propagation neural networks. In 2018, 

K.Muralitharan, R.Sakthivel, and R.Vishnuvarthan [20] used ANN to perform an 

optimization approach for energy demand prediction in a smart grid. In 2018, A.M. 

Durán-Rosal, J.C. Fernández, C. Casanova-Mateo, S. Salcedo-Sanz, and C. Hervás 

Martínez [21] predicted an efficient fog with multi-objective evolutionary neural 

networks. In 2018, Madasthu Santhosh, Chintham Venkaiah, and D.M.Vinod Kumar 

[22] performed an ensemble empirical mode decomposition based adaptive wavelet 

neural network method for wind speed prediction. In 2018, Yi FeiLi and Han Cao [23] 

predicted tourism flow based on LSTM neural network. In 2015, Radiša Ž.Jovanovid, 

Ale ksandra A.Sretenovid, and Branislav D.Živkovid [24] used an ensemble of various 

neural networks for prediction of heating energy consumption. In 2018, Abir Jaafar 

Hussain, Panos Liatsis, Mohammed Khalaf, Hissam Tawfik, and Haya Al-Asker [25] 

structured a dynamic neural network with immunology inspired optimization for 

weather data forecasting. In 2018, Zheng Liu and Clair J.Sullivan [26] predicted 

weather induced background radiation fluctuation with recurrent neural networks. In 

2010, Murat Kankal, Adem Akpınar, Murat İhsan Kömürcü, and Talat Şükrü Özşahin 

[27] used ANN for modeling and forecasting of Turkey's energy consumption using 

socio-economic and demographic variables. In 2010, Mehmet Bilgili, Besir Sahin, 
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Abdulkadir Yasar, and Erdogan Simsek [28] used ANN to forecast the electric energy 

demands of Turkey in residential and industrial sectors. It is impossible to mention 

each study had been done by ANN because of its huge literature. 

Fuzzy modeling is a branch of system identification which deals with the construction 

of a fuzzy inference system or fuzzy model that can predict and explain the behavior 

of an unknown system described by a set of sample data. Adaptive neuro-fuzzy 

inference system (ANFIS) is an efficient approximation model that combines neuro-

fuzzy systems and the other machine learning techniques. The ANFIS’s map is 

significantly different from that of the ANN. It goes from input characteristics to input 

membership functions, from rules to a set of output characteristics, then to output 

membership functions, to a single-valued output, or to a decision associated with the 

output [29]. 

Since the ANFIS algorithm can be used for classification and prediction work, the 

researchers used for many purposes. The predictive ANFIS model had been utilized in 

varied fields and studies. In 2015 A. Abdulshahed et al, employed ANFIS to design 

two models to predict the thermal effect on CNC machines [30]. In 2009, Y. Vural et 

al, established a predictive ANFIS model which trained and compared with 

independent experimental model and trained again in order to predict the exchange 

fuel cell of the proton [31]. In 2017, E. Yadegaridehkordi and M. Nilashi, applied the 

Adaptive Neuro-FIS prediction model aiming to define the most important successful 

parameters of a hotel’s successful development [32]. In 2008, H. Esen et al, used a 

pre-processing based ANFIS model to predict the performance of a heat pump system 

and compare its results with a proposed ANFIS prediction model [33]. In 2010, M. 

Acar and D. Avci, The study aimed to observe the ability of the ANFIS model to 

forecast accurately the return of the stock market, they tested the model on the Istanbul 

stock market and they could produce a prediction with 98.3% accuracy rate [34]. 

ANFIS also has been used in some energy performance prediction researches. In 2019, 

W. Gao et al, predicted the energetic performance of a thermal photovoltaic heating 

system into a building using three artificial intelligence-based algorithms, Artificial 

Neural Network, Genetic programming, and Adaptive Neuro Fuzzy Inference system 

in order to compare the prediction accuracy of the algorithms. They found out that the 

Genetic Programming is the best algorithm in their case [35]. In 2011, B.Bektas Ekici 

and U. Aksoy, used the Adaptive Network Fuzzy Inference system to forecast the 

energy load of a building in Elaziğ region. They approached the ANFIS is one of the 
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best tools for energy consumption prediction in the pre-designed phase [36]. In 2010, 

K. Li and H. Su, predicted over than three months consumption of a hotel’s daily air 

conditioning using the ANFIS approach, and they found that its prediction accuracy is 

better than the Neural Network’s prediction accuracy in that case [37]. In 2011, K. Li 

et al, used the Neural Networks and the adaptive network-based inference system to 

predict a building’s energy performance, then by comparing the results they observed 

that the ANFIS model’s results better than the NN’s results in term of prediction 

accuracy [38]. In 2018, J. Woo et al, established a rule-based algorithm, fuzzy logic 

algorithm, ANN, and ANFIS in order to test the openings and cooling system of a 

double skin envelope the building. They found that the Fuzzy Logic algorithm was the 

best fit with an accuracy rate of 99.98% [39]. 

In this case, Artificial Neural Network and Adaptive Neuro-Fuzzy Inference system 

had been utilized to predict the indoor comfort conditions for a big-scale residential 

building which hosted to elderly people in Istanbul, Turkey. A monitoring system has 

been implemented in selected rooms of the building to conduct real-time 

measurements. The indoor humidity and temperature were foremost measured 

parameters. The prediction has been done depending on short-term measurements in 

purpose to use the results in the building thermal comfort calibration. About 31.5 days 

measured data used to predict the rest of the heating season which was defined as 137 

days, which saves 77% of the measurement time, which provides the possibility of 

examining the thermal environment and the heating system’s performance before 

occupying the building, as well as the possibility to start real-time calibration 

simultaneously with the occupation phase. Since the heating system is running during 

the measurement period, therefore minimizing the measurement period saves energy 

and cost. The importance of this study comes from the ability of predicting the whole 

heating season’s data with the short term monitored data to be used in a real-time 

calibration process. The real-time calibration is a potential opportunity to improve the 

indoor thermal comfort by reporting any unexpected measured data immediately, 

which may also help to avoid some losses of thermal performance. Correspondingly, 

the building energy model was developed and simulated to analyze its energy 

performance. The results of the prediction can be used as feedback data to improve 

simulation accuracy.
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3. METHODOLOGY 

The methodology to develop the indoor thermal environment predictor models is 

explained in this chapter. Firstly, to be able to develop the structure of each ANN and 

ANFIS model, the available data sources and its intervals must be defined. Since both 

of the algorithms are supervised machine learning algorithms, that’s made enough 

amount of historical data for the targeted variables is required. At the time, evaluating 

the heating season period is a must in order to prepare the required data to run the 

prediction models. Figure 3.1 shows the methodology’s followed steps. 

 

Figure 3.1: Methodology flowchart. 
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3.1 Data Gathering 

The quantity and quality of available data play a key role in the formation and accuracy 

of the predictive model. Therefore, data gathering is a systematic process to collect 

and measure the desired information of the dependent and independent variables to be 

used in the prediction model. For the supervised machine learning tools as ANN and 

ANFIS there must be available two kinds of data, the historical dependent data, and 

the independent data. The historical dependent data is the index of the predictive model 

since it must be measured data for the prediction targeted outputs, and the accuracy of 

the prediction results is proportional to the quantity and distribution of this data. The 

independent variables are the variables that non-linearly correlated with the output 

targeted variables, the quality and variety of these data is affecting directly the 

prediction results since it is the inputs of the model and it must be available for the 

historical period and for the period to be predicted. 

3.2 Evaluating the Heating Season 

Developing supervised machine learning models is highly dependent on the valid 

ranges of the collected data, whether input or output data. This thesis is totally focusing 

on thermal environment prediction for the heating season; therefore, the valid collected 

data must be in the range of heating season period. Hence, evaluating the heating 

season period is necessary to form a clear understanding of what data is available, and 

how it will be organized in the prediction model. 

The heating period is different for each building based on the location, weather data, 

level, occupancy, and many other factors. That means evaluating and defining the 

heating period must be the first step in the prediction work. The heating degree day is 

the most relevant parameter to identify the heating period. The heating degree days 

had used in the simulation of the building, which means that using the heating 

consumption results data as the main factor for the period evaluation will be more 

customized to the case study. 

The changes in the heating consumption data must be observed to define the most 

dramatic change from relatively low to high consumption. Based on this change a 

value must be set, the period which its heating consumption exceeds the set value 

defined as the heating period of the building. 
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3.3 Correlating the Variables 

Data correlation is the process to figure out the linear relationship between the input 

and targeted variables. In the correlation analysis, the changes of each input variable 

correlated to the changes of each targeted variable. This correlation produces a 

coefficient to express the dependency between those two variables. The coefficient 

value is between 1 and -1.  The proportion of the variables is direct when the coefficient 

value is 1, and it is reverse when the coefficient value -1, and there is no relation when 

the coefficient value is 0. Since all of the gathered data are continuous the linear 

correlation coefficient formula will be used in the correlation process. 

𝑟(𝑥𝑦) =  
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖 ∑ 𝑦𝑖
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2 √𝑛 ∑ 𝑦𝑖
2𝑛

𝑖=1 −  (∑ 𝑦𝑖 )𝑛
𝑖=1

2

 
(3.1) 

Where: x is the input variable, y is the output variable, n is the total number of datasets, 

and i is the dataset’s order. 

3.4 Data Setting 

The prediction stage is mainly about data management. The more organized, clear and 

relevant data would be performed with a more accurate prediction. For this reason, the 

data must be obtained and prepared before starting any step of the prediction model. 

The data-setting phase must go through the following steps: 

3.4.1 Preparation 

The obtained data need to be prepared to implement in the prediction model. The 

different variables data collected with different frequencies and initial time sometimes 

could be in different units and structure. These data must be organized and unified 

within their parameters. 

3.4.2 Filtering 

The filtering process is to avoid or reduce the noises of the measured data. The filtering 

is the process of removing or un-using the measured data instances which have 

unexpected or out of the normal range values. There are several methods to filter the 

data, mostly it was performed by setting maximum and minimum values for the 

measured data. Any instance has measured value out of the range between the 
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minimum and maximum values, should be un-used in the prediction. The minimum 

and maximum values for each variable defined by the following equations: 

𝑀𝑎𝑥 =  µ + 1.5 ∗  σ (3.2) 

𝑀𝑖𝑛 =  µ − 1.5 ∗  σ (3.3) 

Where: µ: the mean – σ: the standard deviation. 

3.5 ANN Modeling 

ANN is a successfully applied method in various fields of mathematics, engineering, 

medicine, economics, meteorology, psychology, and neurology, therefore this 

approach used to correlate data and variables that do not have a clear algorithm to 

solve, or link to each other to predict their outputs. The ANN model has many types, 

the most used are the linear multi perceptron. The most introduced model in the 

prediction work is the feed forward ANN with the BPS model. 

 

3.5.1 Structure 

The structure of the ANN is obtained by defining the number of the hidden layers and 

the number of the neurons in the hidden layers. Then defining the ANN model and the 

loss index error method in addition to the training algorithm which is totally optional 

based on different training trials by considering the quality of the prediction results. 

Additionally, the data must be distributed for training and selection phases. 

 

3.5.2 Training 

Training and running the ANN by setting the number of the iterations and defining the 

activation function between the layers which defines the numerical calculations 

between the neurons of the network. The network calculations will depend on the 

sigmoid (logistic) activation function to avoid the non-linearity between the variables. 

Sigmoid activation function can be expressed by the following equations: 

sigmoid(x) or sig(x) =  1/(1 + e^(−x)) (3.4) 

Zj =  sig(∑(xi ×  wij )  −  θ) (3.5) 
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Where: Zj is the set that received by the artificial neuron, xi the input value, wij is the 

weight and θ is the use of a threshold. 

3.5.3 Selection 

The selection is the process of measuring the features and performance of the model. 

By a defined number of iterations, the ANN compares the selection data prediction 

results with its actual targeted data and calculates the losses of the model, then it 

improves the parameters of the model until it reaches the minimum losses. When based 

on the minimum losses the final structure of the model will be defined, then the last 

training performs. The selection loop is shown in Figure 3.2. 

 

Figure 3.2: Selection model. 

3.6 ANFIS Modeling 

Adaptive Neuro-Fuzzy Inference System modeling can be performed in two methods. 

The first method is the Mamdani fuzzy inference and the second one is the Sugeno 

fuzzy inference, both of them are similar to each other in fuzzing the inputs and 

applying the fuzzy operator. But the Sugeno method’s output membership functions 

are either linear or constant. 

Evaluate the ANN 

Improve the Features 

Min Loss 
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The Sugeno method was used in this study because it is a more compact and 

computationally efficient than a Mamdani method. The Sugeno system is suited for 

modeling nonlinear systems by interpolating between multiple linear models, and it 

uses adaptive techniques for constructing fuzzy models which can be used to 

customize the membership functions so that the fuzzy system best performs data 

modeling. 

ANFIS is a class of adaptive, multi-layer feedforward networks, which is comprised 

of input and output variables and fuzzy rule base of Takagi-Sugeno fuzzy if-then rules 

for a first-order Sugeno fuzzy model. A two rule-based ANFIS model with x and y 

inputs and f output is expressed in equations. 

Rule (1): If 𝑥 is A1 and 𝑦 is B1, then f1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 (3.6) 

Rule (2): If 𝑥 is A2 then 𝑦 is B2 then f2 = 𝑝2𝑥 + 𝑞2𝑦+ 𝑟2 (3.7) 

Where 𝐴1 and 𝐴2 are the input membership functions for the input layer, 𝐵1 and 𝐵2 are 

the input membership functions of 𝑦. The output function parameters are 𝑝1, 𝑞1, 𝑟1, 𝑝2, 

𝑞2, and 𝑟2. The framework of ANFIS consists of five layers, which are described 

below: 

Layer 1: This layer is responsible for the production of the input variable membership 

grades in each node. The values of membership functions for each 𝑖 𝑡ℎ nodes are 

defined in this layer: 

𝑄𝑖1 = µ𝐴𝑖 (𝑥)= 
1

1+[(
𝑥−𝐶𝑖

𝑎𝑖
)

2
 ]

𝑏𝑖 (3.8) 

Where 𝑥 is the input to node 𝑖 and 𝐴𝑖 if the linguistic label associated with this node 

function, 𝑎𝑖,𝑏𝑖,𝑐𝑖 is the parameter set that changes the shapes of the membership 

function. 

Layer 2: In this layer, each node multiplies by the incoming signals, as shown by the 

equation: 

𝑄𝑖2 = 𝑤𝑖 = µ𝐴𝑖 (𝑥) µ𝐴𝑖 (𝑥) × µ𝐵𝑖 (𝑦), 𝐼 = 1, 2 …. (3.9) 

Layer 3: This layer is responsible for the normalized firing strength for the membership 

values in node 𝑖 𝑡ℎ by the equation: 
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𝑄𝑖3 = 𝑤𝑖 =  
 𝑤1

(𝑤1+𝑤2)
  𝑖 = 1, 2…. (3.10) 

Layer 4: In this layer, the relationship between the input and output value can be 

established by the equation:  

𝑄𝑖4= 𝑤𝑖 (𝑝𝑖 𝑥 + 𝑞𝑖 𝑦 + 𝑟𝑖) (3.11) 

Where 𝑤𝑖 is the output from layer 3 and 𝑝𝑖, 𝑞𝑖, and 𝑟𝑖 are the parameters. Parameters 

in this layer will be referred to as ‘consequent parameters. 

Layer 5: This layer includes only one node and it makes a summation of all the output 

results which comes from the previous node and gives the output in a single node by 

the equation: 

𝑄𝑖5 =
∑𝑖𝑤𝑖 𝑓𝑖  

∑𝑖𝑤𝑖
 (3.12) 

The learning rule of ANFIS is exactly the same as the back-propagation learning rule 

used in the common feed-forward neural networks. The optimization parameters are 

𝑎𝑖 ,𝑏𝑖 ,𝑐𝑖 which are the premise parameters, while 𝑝𝑖 ,𝑞𝑖 ,𝑟𝑖 are the consequent 

parameters. A hybrid-learning rule was employed in this research, which involves 

gathering the gradient descent and the least-squares method in order to find the 

appropriate set of preceding and consequent parameters [40]. The advantage of using 

a hybrid-learning rule was that it also seemed to be significantly faster than the 

classical back-propagation method [29]. Figure 3.3 shows the structure of ANFIS. 

 

Figure 3.3: Structure of ANFIS. [41] 

The hybrid-learning procedure includes two passes, namely the forward pass and the 

backward pass. In the forward pass, the functional signals will go forward till layer 4 

and the least-squares technique will identify the consequent parameters. In the 

backward pass, the error rates transmit backward and the gradient descent will update 
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the premise parameters. While the values of the premise parameters are fixed, it’s 

possible to express the overall output as a linear combination of the consequent 

parameters [42]
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4. CASE STUDY 

The thermal comfort conditions were studied in an 8 stories elderly home building with 

18,108 m2 conditioned floor area in Kartal, Istanbul during the heating season, where 

the heating system was running but the building wasn’t fully occupied. Figure 4.1 

demonstrates the image of the building.  

 

Figure 4.1: Kartal elderly home. 

4.1 Data Gathering: 

The prediction models highly dependent on the quality and quantity of the available 

data, so the first step in this process was defining the available data sources. 

4.1.1 Measurements 

The most important source of the data was the measurements. The temperature and 

relative humidity had been measured in four different points into the building. The 

measurements into the building had been done during one year starting from 2018 

February 22 until 2019 February 29. 

The measurements were done by four Testo devices distributed into the selected four 

points. The first point was in the room 4 in the basement, the second point was selected 

to be in the room 16 in the third floor and the rest two points were in the lobby but one 

of them was in the ground floor level and the another was in the first-floor level. This 

distribution of the sensors was done considering the big-scale of the building in order 

to make the measurements in different places and locations in the building. The 

measurements were taken in 15 minutes interval. The selected four points are 

demonstrated in Figures 4.2, 4.3 and 4.4. 
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Figure 4.2: Basement (room 4) point. 

 

Figure 4.3: 3rd floor (room 16) point. 

 

Figure 4.4: Lobby points. 
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4.1.2 Weather data 

The temperature and humidity data were collected as the targeted dependent variables 

of the prediction models, but the models need to input independent variables. The 

independent variables are available data which are non-linearly correlated with 

dependent variables and available for the whole period to be predicted. The outside 

weather data are the most important variables that have a high impact on the indoor 

thermal environment. In the time, weather data can be obtained from different sources. 

In this thesis, the weather data was obtained from the used weather data in the 

DesignBuilder simulation software. The obtained variables from the weather data were 

the outside dry-bulb temperature, outside dew-point temperature, wind speed, wind 

direction, atmospheric pressure and, solar azimuth. 

4.1.3 Energy performance simulation 

Since the heating system was active during the measured period, a heating 

consumption related data source was needed to be involved in the prediction model in 

order to provide a balance in the input datasets with the real case and to achieve better 

prediction in term of accuracy. The building has an energy performance simulation 

model which has been done by the DesignBuilder software. The simulation provides 

many types of predicted results, one of these types is the hourly heating consumption 

which can be used as an independent variable in the prediction model. 

4.2 Evaluating the Heating Season 

The scope of the prediction work in this thesis is the indoor thermal data of the heating 

season, but the heating season is different for each region and also for each building. 

The heating degree days is a very important tool to define the heating season. But since 

the heating consumption data is available from the simulation result so the heating 

season can be defined using this data. By observing the heating consumption data, it 

is recognized that a dramatical change in the heating consumption is happening 

directly before reaching the 250 MWh per month as heating consumption, which 

makes this point able to be as the heating season’s set-point. Based on this the heating 

season of the Kartal building as the period where the monthly heating consumption 

exceeds 250 MWh, which is roughly the period between November 15th and March 

31st (137 days per year), as represented in Figure 4.5. 
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Figure 4.5: Monthly heating consumption graph from the building energy model. 

4.3 Data Setting 

4.3.1 Data preparation 

The gathered data were collected with different structures and frequencies. In this part, 

the datasets had been unified in term of frequency and prepared to be distributed in 

one datasheet in an appropriate form to be imported to the prediction models. 

4.3.2 Data correlation 

After collecting the available data and prepare it to be usable and comparable, the 

independent variables and dependent correlation must be analyzed to figure out if any 

of the independent variables has no numerical impact on the dependent outputs so it 

can be eliminated from the model. The Table shows the correlation factor of each of 

the independent variables with each of the dependent variables, the results of the 

correlation analysis showed that each of the selected variables was correlated to the 

dependent variables with different effect as shown in Table 4.1. 

4.3.3 Data filtering 

In the measured data there is some pick points which make noise for the model that 

was filtered respectively, 68 data sets in the basement’s point, 88 data sets in the upper 

room, 138 data sets in the upper lobby, and 178 data sets in the ground lobby, which 

reduced the data sets and increased the accuracy. 
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Table 4.1: Input – output variables correlation 
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Outside Dry-

Bulb 

Temperature 

0.057 0.0925 0.151 0.205 0.385 0.428 0.29 0.392 

Outside Dew-
Point 

Temperature 

0.239 0.251 0.437 0.456 0.461 0.542 0.416 0.57 

Wind Speed 0.0969 0.272 0.084 0.134 0.368 0.135 0.272 0.0419 

Wind 

Direction 
0.0216 0.0469 0.0686 0.116 0.039 0.115 0.00865 0.0896 

Atmospheric 

Pressure 
0.464 0.367 0.392 0.375 0.0288 0.0324 0.203 0.246 

Solar Azimuth 0.0265 0.0294 0.0252 0.039 0.00152 0.0377 0.0571 0.0916 

Heating (Gas) 0.0224 0.000904 0.00826 0.0189 0.0195 0.0506 0.006 0.0515 

4.4 ANN Modeling 

4.4.1 ANN structure 

Four Artificial Neural Networks used to predict thermal comfort data. Each network 

represents one of the four points (Basement, Upper room, Upper lobby, and Ground 

lobby). Each network concludes three layers, the first layer is the input layer, which 

contains 7 neurons represent the independent variables. The second layer is the hidden 

layer, which contains 3 neurons. The third layer is the output layers, which is 2 neurons 

represent the targeted data (Temperature and Relative humidity) for each point. 

Structure of ANN was represented in Figure 8. 

4.4.2 Training the artificial neural network 

Firstly, the measured data was organized and sorted in an hourly data format to match 

with the hourly weather and heating consumption data. This process was also 

minimized the amount of data to be trained. That’s mean only 753 measured datasets 

for each point in the heating season is able to be trained. Later the data were scaled by 

using the Minimum-Maximum method to be used into the activation function.  Based 
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on the short-term measured data, 85% of the datasets were used for the training phase, 

which used Quasi-Newton algorithm and sigmoid activation function to go from the 

input to the hidden layer and linear function to move to the input layer with 0.3 learning 

rate. Python code was used to perform the ANN model. 

4.4.3 Selection 

After training the ANN, 15% of the data was used into the selection method of 10 

iterations to test the performance of the model and the parameters. The selection phase 

has changed the structure of the Network by increasing the hidden nodes to be 8 nodes 

and minimized the losses of the model. By using the selection phase’ results, the model 

was trained again to achieve the minimum losses as shown in Table 4.2. The final 

structure of the ANN model was shown in Figure 4.6. 

Table 4.2: Final losses. 

 

Basement 

room 
Upper room 

Upper 

Lobby 

Ground 

Lobby 

Final Losses 0.295 0.369 0.38 0.56 

 

Figure 4.6: ANN final structure. 

The performed ANN showed that filtering the data reduced the confused results of the 

model and improved the accuracy. In addition, the number of hidden layers, which 
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changed through the selection analysis, had a significant effect on the final losses. The 

major effect of those phases made them the most critical parts of this prediction work. 

4.5 ANFIS Modeling 

4.5.1 ANFIS structure 

Eight adaptive neuro-fuzzy inference system models had been developed to predict the 

indoor temperature and the relative humidity of the building. Each model used to 

predict one of the targeted parameters in one of the four points. Each of the utilized 

models structured by six layers, the first layer is the input layer which it is include 7 

nodes each node represents one of the independent variables. The second layer is the 

input membership function layer, this layer contains 14 adaptive nodes, each pair of 

adaptive nodes receives the value of one of the independent variables to use it as input 

in its function. The third layer includes fixed nodes which receive signals from the 

input layer, the output of this layer is the product of the received signals and it’s called 

the firing strength of the rules. The fourth layer is the normalization layer, in the nodes 

of this layer the ratio of each rule’s firing strength has been calculated. The layer 5 is 

the output membership function layer, and the last layer is the single output layer 

which is the temperature or relative humidity for each point. The ANFIS final structure 

is shown in Figure 4.7. 

 

Figure 4.7: ANFIS final structure. 
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4.5.2 Training the adaptive neuro-fuzzy inference system 

The data set of the ANFIS is the same in the ANN model, which means that the 

available datasets to be trained are 753 hourly datasets for the heating season. The 

ANFIS model utilized the Sugeno method and its output membership functions. The 

hybrid-learning algorithm’s feedforward backpropagation procedures had been used 

as the learning algorithm for the 20 iterations ANFIS model. The number of iterations 

was defined by the testing phase since the datasets were distributed in 85% for the 

training phase and 15% for the testing phase. Matlab’s ANFIS tool was used to 

perform the model.
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5. RESULTS AND DISCUSSION 

5.1 ANN Results 

5.1.1 Basement 

The prediction results of the Artificial Neural Network models are slightly different in 

term of being in the comfort level for each point and parameter. The predicted 

temperature data in the basement room, in general, seems to be close to the temperature 

comfort level in the heating season which is in the range 22-24°C, and the average of 

the ANN predicted temperature in the basement 21.7°C. In the same time, the hourly 

data is significantly varying, it reached 27.1°C as the maximum value and 15.1°C as 

it is shown in Figure 5.1 and Table 5.1. 

 

Figure 5.1: Basement - ANN hourly predicted temperature. 

The predicted humidity is also in the same situation. It didn’t reach the comfort level 

range which starts with 50% relative humidity, but it still close since the average of 

the predicted relative humidity is 44.1%. But again, the variation of the result is 

significant since the maximum value reached 56.7%, whereas the minimum value was 

30.1%. The variation of the humidity data is clearly shown in Figure 5.2, and the 

maximum and minimum values are shown in Table 5.1. 
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Figure 5.2: Basement - ANN hourly predicted humidity. 

Table 5.1: Basement - ANN predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 56.7 27.1 

Min 30.1 15.1 

Average 44.1 21.7 

 

5.1.2 Upper room 

 

Figure 5.3: Upper Room - ANN hourly predicted temperature. 

The prediction results for the upper room is not that much different than the results in 

the basement, as but the predicted temperature in this poin , in general, reached the 

comfort level since the average temperature is 23.7°C which is perfect. In the time, the 
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data variation is again significant sine the maximum temperature was around 28.9°C, 

while the minimum value didn’t exceed 17.1°C. The temperature predicted data in the 

upper room is shown in Figure 5.3 and the predicted parameters are shown in Table 

5.2. 

The average predicted humidity in the upper room is around 36.5% which is far lower 

than the comfort level. Although it reached 49.2% this was the maximum value which 

doesn’t represent a considerable time out of the heating season and as shown in Table 

5.2 in a peak point the humidity was around 22.1% which is extremely under the 

comfort level. Figure 5.4 represented the predicted relative humidity in the upper 

room. 

 

Figure 5.4: Upper Room - ANN hourly predicted humidity. 

Table 5.2: Upper Room - ANN predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 49.2 28.9 

Min 22.1 17.1 

Average 36.5 23.7 

5.1.3 Upper lobby 

As in the third-floor room, the average of the predicted temperature in the lobby first-

floor level is in the comfort level which is around 23.7°C. In addition, the maximum 

temperature value was around 29.3°C, while the minimum value around 17.7°C as 

shown in Table 5.3. Figure 5.5 showed the predicted temperature data. 
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Figure 5.5: Upper Lobby - ANN hourly predicted temperature. 

In the same time, the humidity average was better than the 3rd floor room since it 

reached 41.3%, which is slightly closer to the comfort level. The maximum relative 

humidity value was around 63.1% and the minimum value was around 22.4%. The 

predicted humidity data are shown in Figure 5.6. 

 

Figure 5.6: Upper Lobby - ANN hourly predicted humidity. 

Table 5.3: Upper Lobby - ANN predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 63.1 29.3 

Min 22.4 17.7 

Average 41.3 23.7 

5.1.4 Ground lobby 

The temperature in the ground floor lobby was under the comfort level since the 

average was about 20.7°C.  The maximum temperature value reached 24.8°C, while 
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the minimum value 16°C. These results are clearly shown in Figure 5.7 and in Table 

5.4. 

Table 5.4: Ground Lobby - ANN predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 64.8 24.8 

Min 32.2 16.0 

Average 43.7 20.7 

 

Figure 5.7: Ground Lobby - ANN hourly predicted temperature. 

The humidity in this point also reached significant peak points since the maximum 

relative humidity was 64.8% and the minimum value was 32.2%. But the average 

humidity was closed to the comfort level as it was estimated to be about 43.7%, as 

shown in Table 5.4. and Figure 5.8. 

 

Figure 5.8: Ground Lobby - ANN hourly predicted humidity. 
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5.2 ANFIS Results 

5.2.1 Basement 

The results of the Adaptive Neuro-Fuzzy Inference Systems prediction are as expected 

relatively close to the ANN prediction results. The average of the predicted 

temperature of the basement room is estimated to be 20.4°C which under the comfort 

level range. The maximum predicted temperature in the basement was 21.9°C, and the 

minimum temperature was predicted to be 14.9°C as shown in Table 5.5. Figure 5.9 

shows the hourly predicted temperature in the basement. 

 

Figure 5.9: Basement - ANFIS hourly predicted temperature. 

The predicted humidity in the basement was between 36.9% as a minimum value and 

48.2% as a maximum value. The average of the predicted humidity was estimated to 

be 43.4% which is relatively close to the comfort range but didn’t reach it. Figure 5.10 

shows the hourly dataset of the humidity predicted by ANFIS for the basement room. 

 

Figure 5.10: Basement - ANFIS hourly predicted humidity. 
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Table 5.5: Basement - ANFIS predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 48.2 21.9 

Min 36.9 14.9 

Average 43.4 20.4 

5.2.2 Upper room 

The predicted average of the temperature in the 3rd floor room was calculated to be 

22.8°C which reflects perfect expectation for the heating system performance in this 

room where the average is in the comfort level, and the peak points are varying far out 

the thermal comfort range, since the maximum predicted temperature was 24.5°C and 

the minimum was around 19.4°C. The predicted temperature data is shown in Figure 

5.11. 

Table 5.6: Upper Room - ANFIS Predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 41.0 24.5 

Min 31.9 19.4 

Average 36.2 22.8 

 

Figure 5.11: Upper Room - ANFIS hourly predicted temperature. 

On the other hand, the predicted humidity in this room is far under the humid comfort 

range, where the average was 36.2%. The minimum humidity value was 31.9% and 

the maximum value 41%, as shown in Table 5.6. Figure 5.12 shows the hourly 

humidity dataset. 
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Figure 5.12: Upper Room - ANFIS hourly predicted humidity. 

5.2.3 Upper lobby 

The 1st floor level lobby predicted temperature results are mostly in the comfort level. 

The average of the predicted temperature in this point was 22.4°C. The maximum 

temperature value was 23.4°C and the minimum value was 16.1°C but this minimum 

value represents very unique peak point as shown in Figure 5.13 while the most of the 

predicted results are in a reasonable range in term of comfort conditions. 

 

Figure 5.13: Upper Lobby - ANFIS hourly predicted temperature. 

Table 5.7: Upper Lobby - ANFIS predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 49.9 23.4 

Min 33.5 16.1 

Average 42.4 22.4 
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Figure 5.14: Upper Lobby - ANFIS hourly predicted humidity. 

The average of the predicted humidity is around 42.4% which is relatively close to the 

comfort range as shown in Table 5.7. The values of the humidity in this point varies 

between 49.9% as the maximum value and 33.5% as the minimum value. Figure 5.14 

represented the predicted humidity dataset. 

5.2.4 Ground lobby 

The ANFIS predicted temperature results were mostly varying around 20°C which 

relatively close to the comfort level. The average of the predicted temperature in the 

lobby was 20.1°C and the maximum was 20.9°C. In rare peak points, the results went 

down to be 15.5°C which is the minimum value. These results are clearly shown in 

Figure 5.15 and Table 5.8. 

 

Figure 5.15: Ground Lobby - ANFIS hourly predicted temperature. 

The ANFIS predicted humidity for the lobby is under the comfort range. The average 

of the humidity results was 42.3% in this point which is not far less than 50%. The 
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results varied between 32.9% as the minimum rate and 47.8 as maximum rate. The 

predicted humidity dataset is represented in Figure 5.16. 

Table 5.8: Ground Lobby - ANFIS predicted parameters. 

 
Humidity 

[%rH] 

Temperature 

[°C] 

Max 47.8 20.9 

Min 32.9 15.5 

Average 42.3 20.1 

 

Figure 5.16: Ground Lobby - ANFIS hourly predicted humidity. 

5.3 Comparing the Results 

In this part, the ANFIS and ANN prediction results will be compared with the second-

year heating season measurements. This comparison will show whether the 

approached are applicable to predict the indoor thermal data, and which one is more 

appropriate in term of accuracy. 

Figures 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, and 5.24 show that both of the predicted 

data of ANN and ANFIS are relatively matching the measured data. For both 

temperature and humidity, The ANN predicted results’ variation seems to be more 

realistic and closer to the measured data. While the ANFIS results seem to be more 

stable with fewer variations. 

 In the Figure 5.17, it is recognized that the period between December 27th and January 

1st the measured data seems to be far less than the average, in some points it went down 

less than 10°C, which shows that the heating system wasn’t properly performing. This 

deviation in some periods may cause mistakes in estimating the errors of the prediction 
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work. It will decrease the accuracy of the prediction models since the errors were 

calculated by comparing the predicted data with the measured data. Therefore, the 

prediction model will carry responsibility for the heating system’s bad performance. 

 

Figure 5.17: Basement - hourly predicted and measured temperature. 

 

Figure 5.18: Basement - hourly predicted and measured humidity. 

 

Figure 5.19: Upper Room - hourly predicted and measured temperature. 
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Figure 5.20: Upper Room - hourly predicted and measured humidity. 

 

Figure 5.21: Upper Lobby - hourly predicted and measured temperature.

 

Figure 5.22: Upper Lobby - hourly predicted and measured humidity. 
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Figure 5.23: Ground Lobby - hourly predicted and measured temperature. 

 

Figure 5.24: Ground Lobby - hourly predicted and measured humidity. 

Table 5.9, shows that the ANFIS model prediction of the temperature has less than the 

ANN model prediction in 3 points out of four. The ANFIS temperature prediction 

results’ RMSEs (Root Mean Square Error) are 4, 2.9, 2.7, and 1.4 respectively in the 

basement room, upper room, upper lobby, and ground lobby, while in the same order 

the ANN prediction errors are 5.2, 3.9, 3.8, and 1.5. 

It is significant the small error of both of the models in the ground lobby which. This 

can be explained by observing the measured temperature dataset in Figure 5.23. It is 

clear that the measured data at this point is more stable with fewer variations compared 
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to other points. Even though the average of the measured temperature which is 

20.74°C, which is less than the comfort range, but the stability of the measured data in 

the point shows that the heating system is performing properly in the lobby. However, 

these results show that the ANFIS prediction has better accuracy when it is compared 

with these stochastic measured data of the four points since the overall temperature 

prediction accuracy of the ANFIS model has been calculated to be 85%, in the other 

hand the accuracy of the temperature ANN prediction was 81%. 

Table 5.9: Predicted and measured temperature parameters. 

    Inside Temperature [°C] 

    Basement room 
Upper 
room 

Upper 
Lobby 

Ground 
Lobby 

Measured Average 18.5 20.4 20.6 20.7 

ANN 
Predicted 

Average 21.7 23.7 23.7 20.7 

RMSE 5.2 3.9 3.8 1.5 

Final 

RMSE 
3.8 

ANFIS 

Predicted 

Average 20.4 22.8 22.4 20.1 

RMSE 4.0 2.9 2.7 1.4 

Final 
RMSE 

2.9 

According to Table 5.10, both of the ANFIS and ANN predictions’ errors are close to 

each other. The ANFIS humidity prediction results’ RMSEs were 10.4, 8.3, 5.8, and 

7.9 respectively in the basement room, upper room, upper lobby, and ground lobby, 

while in the same order the ANN prediction errors were 10.5, 8.5, 6.8, and 9. The 

ANFIS prediction was better in the four points. However, for overall humidity 

prediction again the ANFIS model which had 81% accuracy rate was slightly more 

accurate than the ANN model which had an accuracy rate of 81%. 

Table 5.10: Predicted and measured humidity parameters. 

    Inside Humidity Rate [%rH] 

    Basement room 
Upper 

room 

Upper 

Lobby 

Ground 

Lobby 

Measured Average 45.4 42.0 45.6 38.6 

ANN 
Predicted 

Average 44.1 36.5 41.3 43.7 

RMSE 10.5 8.5 6.8 9.0 

Final 

RMSE 
8.8 

ANFIS 

Predicted 

Average 43.4 36.2 42.4 42.3 

RMSE 10.4 8.3 5.8 7.9 

Final 

RMSE 
8.3 
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5.4 Scaling the Comaprison: 

The irregular performance of the heating system produced a stochastic measured data 

in some periods. This stochasticity affected the comparison between measured and 

predicted data and the prediction accuracy of both of the ANFIS and ANN models. To 

avoid this effect the comparison will be scaled by selecting the most ordinary period 

of the measured data as a sample to be compared with the predicted data and then 

provide the accuracy based on the selected sample. 

By observing Figures (5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, and 5.24), it is 

recognized that the most stable period for the measured data was the period between 

10/12/2018 and 20/12/2018. The data of this period will be the sample which is used 

for the comparison scaling. 

 

Figure 5.25: Basement temperature data sample.

 

Figure 5.26: Upper room temperature data sample. 
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Figure 5.27: Upper lobby temperature data sample. 

 

Figure 5.28: Ground lobby temperature data sample. 

Table 5.11: Data sample temperature parameters. 

    Inside Temperature [°C] 

    
Basement 

room 

Upper 

room 

Upper 

Lobby 

Ground 

Lobby 

Measured Average 17.7 20.0 20.2 20.3 

ANN 

Predicted 

Average 21.7 23.0 24.0 21.0 

RMSE 4.1 3.4 3.9 1.0 

Final 

RMSE 
3.4 

ANFIS 

Predicted 

Average 20.2 22.3 22.9 20.2 

RMSE 2.6 2.5 2.7 0.8 

Final 

RMSE 
2.3 



41 

Figures 5.25, 5.26, 5.27, 5.28, and Table 5.11 show that the temperature prediction 

error increased in the most stable sample of the measured data for both ANN and 

ANFIS prediction models. For ANN the accuracy rate after scaling increased from 

81% to 83%, but this increasing rate still affected by the quality of the measured data, 

because even though the measured data is stable but it doesn’t match the expected 

results especially in the basement where the average of the measured data was less 

than 18°C, which is far away under the comfort zone. So the more the measured data 

is closed to the comfort zone, the less prediction error achieved. The ANN maximum 

RMSE was in the basement around 4.1, while it was minimum in the ground lobby 

point which is around 1. For ANFIS model the temperature prediction accuracy after 

scaling was increased by 3%, again the accuracy rate was affected by the heating 

system performance, and the average error decreased when the measured temperature 

was closer to the temperature comfort zone. The accuracy of ANFIS prediction became 

88% after scaling while the ANN prediction accuracy increased to be 85% which make 

the ANFIS model more eligible in term of accuracy to perform the kind of prediction 

work. 

 

Figure 5.29: Basement humidity data sample. 

 

Figure 5.30: Upper room humidity data sample. 
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Figure 5.31: Upper lobby humidity hata sample. 

 

Figure 5.32: Ground lobby humidity data sample. 

Table 5.12: Data sample humidity parameters. 

    Inside Humidity Rate [%rH] 

    Basement room 
Upper 
room 

Upper 
Lobby 

Ground 
Lobby 

Measured Average 45.4 41.4 44.9 37.8 

ANN 

Predicted 

Average 47.5 37.9 41.1 42.8 

RMSE 5.7 4.8 4.8 6.0 

Final 

RMSE 
5.3 

ANFIS 

Predicted 

Average 45.0 37.2 41.6 42.0 

RMSE 3.5 5.0 3.6 4.9 

Final 

RMSE 
4.3 
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Figures 5.29, 5.30, 5.31, 5.32, and Table 5.12 showed that the prediction accuracy of 

the humidity was improved after scaling for both ANN and ANFIS prediction models. 

For ANN results the final prediction accuracy was increased by 6% after scaling. For 

ANFIS results also the final prediction error was decreased and the accuracy rate 

increased. The final humidity prediction accuracy of ANN is 87% while it is 90% for 

ANFIS, which shows that ANFIS model’s accuracy is better than the accuracy of the 

ANN model in the whole cases in this study.  
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6. CONCLUSION 

The thermal environment is the main index of the building energy performance and 

efficiency, since it is the most important factor to improve the comfort level of the 

building, and the main mission of most of the applied systems in any building is 

providing a comfortable indoor environment. Hence, most of the building energy 

consumption is for heating or cooling. Therefore, it is necessary to manage certain 

comfort conditions like temperature and humidity in order to manage and sustain the 

indoor environment comfort level. 

This thesis aimed to predict the heating season indoor thermal comfort data in the 

Kartal elderly home, which is 8 stories building with 18,108 m2 conditioned floor area 

in Istanbul, Turkey. The aim of this prediction is providing full heating season’s 

thermal comfort dataset by using short-term measured data while the heating system 

is performing. The heating season of the building was evaluated by defining a critical 

monthly heating consumption, which was 250 MWh per month, and select the period 

when the building monthly consumption exceeds this value to be the heating season. 

Based on it the heating season was evaluated to be between November 15th and March 

21st. 

The ANFIS and ANN approaches had been used as predictive models. The two 

approaches were trained based on the measured indoor temperature and relative 

humidity data. The measurements inside the building were taken for one year which 

started on the 22nd of February 2018. Therefore, short-term data was collected in the 

first heating season and these data were used into the models training phase. While the 

data collected in the second heating season was used in validating the prediction 

results. In addition, the independent variables were obtained from the weather data and 

heating consumption simulated data. 

The measurement and prediction works were done into four different points inside the 

building. The prediction results showed that the temperature averages should be in the 

comfort level for two points out of four, while the measured data showed that the four 

points are under the comfort condition. This was because of the poor performance of 
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the heating system in some periods. This poor performance cause recognized 

stochasticity in the measured data which influenced the prediction results validation 

and affected the prediction accuracy calculations. 

The ANN prediction errors for temperature were varied between 1.5 and 5.2, and 

between 6.8 and 10.5 for humidity in the four points. The ANFIS prediction errors 

have recognized variations too since the temperature prediction errors were between 

14 and 4, and for the humidity, prediction errors were between 5.8 and 10.4. These 

results showed that the ANN and ANFIS models achieved the best prediction with a 

minimum error rate in the point where the measured data was more stable with fewer 

variations. 

However, the ANFIS prediction was more accurate in general since its prediction final 

accuracy rate was 85% for temperature and 81% for humidity, while the ANN 

prediction final accuracy rates were 81% for temperature and 80% for humidity. 

These results were significantly affected by the heating system poor performance, in 

order to minimize this effect, the comparison was scaled by selecting the best measured 

period to be the data sample which will be used in the comparison. After scaling, the 

prediction accuracy was increased for both ANN and ANFIS models, to be 83% and 

88%, respectively for temperature prediction. For humidity the accuracy rate of 87% 

for ANN and 90% for ANFIS. According to the results, the ANFIS model was the best 

fit for all of this prediction work cases. Considering the measured data stochasticity, 

both of the ANFIS and ANN approaches are highly validated in this type of prediction 

work. Since the building is an elderly home, these results can be an indicator to 

improve the thermal environment inside the building Taking into account its impact 

on the health and well-being of older persons. 

This study results offer the opportunity to go in different directions as further work. 

The results can support the monitoring system which was implemented inside the 

building to perform real-time calibration and report the unexpected results, this report 

can help to improve the comfort level inside the building. The prediction results can 

also be used as an index to calibrate and develop the accuracy of the energy 

performance simulation of the building by improving the set points.
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