

FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ

TERMAL KAYNAKLARDAN İZOLE ELDE EDİLEN ÇEŞİTLİ *Bacillus* TÜRLERİNDEN 1,4-β-ENDO KSİLANAZ ENZİMİNİN ÜRETİLMESİ, SAFLAŞTIRILMASI VE TİCARİ KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Orhan ULUÇAY

Tez Danışmanı: Doç. Dr. Arzu GÖRMEZ

Moleküler Biyoloji ve Genetik Anabilim Dalı

Erzurum 2018 Her hakkı saklıdır

FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ

TERMAL KAYNAKLARDAN İZOLE ELDE EDİLEN ÇEŞİTLİ *Bacillus* TÜRLERİNDEN 1,4-β-ENDO KSİLANAZ ENZİMİNİN ÜRETİLMESİ, SAFLAŞTIRILMASI VE TİCARİ KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Orhan ULUÇAY

Tez Danışmanı: Doç. Dr. Arzu GÖRMEZ

Moleküler Biyoloji ve Genetik Anabilim Dalı

Erzurum

2018

Her hakkı saklıdır

T.C. ERZURUM TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEZ ONAY FORMU

TERMAL KAYNAKLARDAN İZOLE ELDE EDİLEN ÇEŞİTLİ *Bacillus* TÜRLERİNDEN 1,4-β-ENDO KSİLANAZ ENZİMİNİN ÜRETİLMESİ, SAFLAŞTIRILMASI VE TİCARİ KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Doç. Dr. Arzu GÖRMEZ danışmanlığında, Orhan ULUÇAY tarafından hazırlanan bu çalışma 20/02/2018 tarihinde aşağıdaki jüri tarafından Moleküler Biyoloji ve Genetik Ana Bilim Dalı'nda Doktora tezi olarak **oybirliği/oy çokluğu (.../...)** ile kabul edilmiştir.

Başkan	: Prof. Dr. Ahmet ADIGÜZEL	İmza	:	
Üye	: Doç. Dr. Arzu GÖRMEZ (Danışman)	İmza		
Üye	: Doç. Dr. Metin ÖĞÜN	İmza	:	
Üye	: Yrd. Doç. Dr. Serkan ÖRTÜCÜ	İmza	:	
Üve	: Yrd. Doc. Dr. Cem ÖZİC	İmza	:	

Yukarıdaki sonucu onaylıyorum

Doç. Dr. Arzu Görmez

Enstitü Müdürü

Bu çalışma Kafkas Üniversitesi **2016-FM-24** numaralı BAP projesi kapsamında desteklenmiştir.

Proje No: 2016-FM-24

ETİK KURALLARA UYGUNLUK BEYANI

Erzurum Teknik Üniversitesi Fen Bilimleri Enstitüsü tez yazım kurallarına uygun olarak hazırladığım bu tez içindeki tüm bilgilerin doğru ve tam olduğunu, bilgilerin üretilmesi aşamasında bilimsel etiğe uygun davrandığımı, yararlandığım bütün kaynakları atıf yaparak belirttiğimi beyan ederim.

20/02/2018

Orhan ULUÇAY

ÖZET

DOKTORA TEZI

TERMAL KAYNAKLARDAN İZOLE ELDE EDİLEN ÇEŞİTLİ *Bacillus* TÜRLERİNDEN 1,4-β-ENDO KSİLANAZ ENZİMİNİN ÜRETİLMESİ, SAFLAŞTIRILMASI VE TİCARİ KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Orhan ULUÇAY Erzurum Teknik Üniversitesi Fen Bilimleri Enstitüsü Moleküler Biyoloji ve Genetik Ana Bilim Dalı Danışman: Doç. Dr. Arzu GÖRMEZ

Bu çalışmada; Doğu ve Güneydoğu Anadolu bölgesinde bulunan sıcak su kaynaklarından termofilik bakteriler izole edilmiştir. İzole edilen örneklerin morfolojik özellikleri tespit edilerek total ksilanaz aktiviteleri belirlenmiştir. İzole edilen DNA'lardan 16s rDNA bölgeleri PCR ile amplifiye edildikten sonra klonlanmış ve sekans analizleri gerçekleştirilmiştir. Yüksek aktivite gösteren Bacillus subtilis türüne ait ksilanaz enzimini kodlayan gen dizileri biyoinformatik analiz yöntemleri ile belirlenmiştir. Nikel affinitesi ile 6X-His takısına sahip rekombinant proteinlerin saflaştırılması gerçekleştirilmiştir. Saflaştırılan enzim ANADOLUCA yöntemi ile kafeslenmiştir. 5 farklı izolat (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis, Bacillus thuringiensis ve Geobacillus kaustophilus) tanılanmış olup bunlardan en yüksek aktivite gösteren B. subtilis izolatının ksilanazı saflaştırılarak rekombinant olarak üretilmiştir. Rekombinant ve rekombinant nano ksilanaz enziminin her ikisinin de optimum pH'nın 7.0, optimum sıcaklık değerinin ise rekombinant enzim için 68 °C, nano enzim için ise 75 °C olarak belirlenmiştir. Optimum enzim aktivitesi rekombinant enzim için 1803 U/mg, nano enzim için ise 1898 U/mg olduğu belirlenmiştir. İzolatların Km ve Vmax değerleri rekombinant enzim için sırasıyla 2,298 (mM) ve 5,691 (EU/mL.dk.), Nano enzim için ise 2,402 (mM) ve 6,195 (EU/mL.dk.) olarak belirlenmiştir. Metal iyonlarının rekombinant ksilanaz enzimi için MgSO₄ (%80), CuSO₄ (%57), CaCl₂ (%74), ZnSO₄ (%5) ve FeSO₄ (%72), rekombinant nano ksilanaz enzimi için ise MgSO₄ (%85), CuSO₄ (%71), CaCl₂ (%85), ZnSO₄ (%50) ve FeSO₄ (%94) farklı rölatif aktivite gösterdiği belirlenmiştir.

Şubat 2018, 165 sayfa

Anahtar Kelimeler: Termofilik bakteri, *Bacillus subtilis*, 1,4-β-Endo Ksilanaz, 16s rDNA, SDS-PAGE, Anadoluca

ABSTRACT

Ph.D. THESİS

PURIFICATION, PRODUCTION AND INVESTIGATION OF COMMERCIAL USE OF 1,4-β-ENDO XYLANASE IN VARIOUS *Bacillus* SPECIES ISOLATED FROM THERMAL RESOURCES

Orhan ULUÇAY

Erzurum Technical University Gradute School of Natural and Applied Sciences Department of Molecular Biology and Genetic Supervisor: Assoc. Prof. Dr. Arzu GÖRMEZ

In this study; thermophilic bacteria have been isolated from hot water springs in Eastern and Southeastern Anatolia. The morphological characteristics of the isolated samples were identified and total xylanase activities were determined. The 16s rDNA regions from the isolated DNAs were amplified by PCR and then clonning and sequence analysis was performed. Gene sequences coding for xylanase enzyme from Bacillus subtilis strain with high activity were determined by bioinformatics analysis methods. Purification of recombinant proteins with 6X-His tag was performed through nickel affinity chromatography. The purified enzyme was caged by the ANADOLUCA method. Five different isolates (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis, Bacillus thuringiensis and Geobacillus kaustophilus) were identified and the xylanase from B. subtilis isolate which showed highest activity was produced as recombinant enzyme. The optimal pH of both the recombinant and recombinant nanoxylanase enzyme was 7.0, the optimum temperature was 68 °C for the recombinant enzyme and 75 °C for the nano-enzyme. Optimum enzyme activity was determined to be 1803 U/mg for the recombinant enzyme and 1898 U / mg for the nano-enzyme. The K_m and V_{max} values of the isolates were determined to be 2,298 (mM) and 5,691 (EU/mL.dk) for the recombinant enzyme, 2,402 (mM) and 6,195 (EU/mL.dk) for the Nano enzyme, respectively. It was found that the recombinant and nano xylanase showed different relative activity when metal ions were included: recombinant xylanase; MgO_4 (80%), CuSO₄ (57%), CaCl₂ (74%), ZnSO₄ (5%) and FeSO₄ (72%), nano xylanase; MgO₄ (85%), CuSO₄ (71%), CaCl₂ (85%), ZnSO₄ (50%) and FeSO₄ (94%).

February 2018, 165 pages

Keywords: Thermophilic bacteria, *Bacillus subtilis*, 1,4-β-Endo Xylanase, 16s rDNA, SDS-PAGE, Anadoluca

TEŞEKKÜR

Öncelikle tez çalışmamda bana araştırma ve kendimi geliştirme olanağı sağlayan, katkı ve fikirleriyle yol gösteren danışmanım Sayın Doç. Dr. Arzu GÖRMEZ'e, yardımlarını ve laboratuvar deneyimlerini benimle paylaştıkları için Veteriner Fakültesi Mikrobiyoloji ABD Bölüm Başkanı Sayın Prof. Dr. Mitat ŞAHİN ve laboratuvar ekibine, çalışma arkadaşım Uzman Mahmut AYDIN'a, tez çalışmamda büyük emeği geçen ve laboratuvardaki çalışmalarım sırasında beni yalnız bırakmayarak tüm bilgi birikimleri ve bunun yanında maddi manevi tüm özverisiyle ailem kadar yanımda olan Sayın Yrd. Doç. Dr. Cem ÖZİÇ' e saygı ve teşekkürü bir borç bilirim. Aynı zamanda tez çalışmamın desteklenmesinde Kafkas Üniversitesi BAP (2016-FM-24) koordinatörlüğüne teşekkür ederim.

Son olarak hayatımın her anında maddi manevi desteklerini benden hiçbir zaman esirgemeyen, ilgi ve sevgilerini her zaman hissettiğim sevgili aileme hep yanımda oldukları için sonsuz sevgilerimi sunarım.

Orhan ULUÇAY

Şubat 2018

İÇİNDEKİLER

<u>Sayfa</u>

TEŞEKKÜR	v
İÇİNDEKİLER	vi
ŞEKİLLER DİZİNİ	viii
SİMGELER VE KISALTMALAR	xi
1. GİRİŞ	1
2. KURAMSAL TEMELLER	
2.1. Enzimler ve Biyoteknolojide Kullanımı	
2.2. Ksilanaz Enzimi	
2.2.1. Ksilanaz Enziminin Genel Özellikleri	
2.2.2. Ksilanaz Enziminin Kullanım Alanları	
2.3. Bacillus Türleri ve Genel Özellikleri	15
2.3.1. Bacillus Türleri ve Biyoteknolojide Kullanımı	16
2.4. Amaç	17
3. MATERYAL ve YÖNTEM	
3.1. Materyal	
3.1.1. Biyolojik Materyal	
3.1.2. Kullanılan Cihazlar	
3.1.3. Kullanılan Kitler	19
3.1.4. Kullanılan Besiyerleri	19
3.1.5. Kullanılan Kimyasallar ve Çözeltiler	
3.2. Yöntem	
3.2.1. Biyolojik Materyalin Toplanma Yöntemi	
3.2.2. Sıcak Su Kaynaklarının Kimyasal Analizi	
3.2.3. Bakterilerin İzolosyonu	
3.2.4. Bakteri Örneklerinin Gelişim Gösterdiği Sıcaklıkların Tespiti	
3.2.5. Bakteri İzolatlarının Tanılanması	
3.2.5.1. Morfolojik Tanılama	
3.2.5.2. Moleküler Tanılama	
3.2.6. İzolatlarınTotal Ksilanaz Aktivitesinin Belirlenmesi	

3.2.7. Rekombinant Ksilanaz Üretilmesi	
3.2.7.1. Biyoinformatik Analizler	
3.2.7.2. 1,4-β-endo Ksilanaz Proteinlerine Ait Genlerin Klonlanması	
3.2.7.3. 1,4-β-endo Ksilanaz Enzimine Ait Proteininin E. coli'de Hete	rolog Protein
Olarak Üretilmesi, Saflaştırılması ve Karakterizasyonu	
3.2.7.4. ANADOLUCA Yöntemi ile Enzimin Kafeslenmesi	
3.2.7.5. Ksilanaz Enziminin Aktivitesinin Tayini	41
4. ARAŞTIRMA BULGULARI	
4.1. Sıcak Su Kaynaklarının Kimyasal Analiz Sonuçları	
4.2. Bakteri İzolatlarının Gelişim Sıcaklıkları	
4.3. Bakterileri İzolatlarının Tanısı	45
4.3.1. Morfolojik Tanılama	
4.3.2. Moleküler Tanılama	
4.4. İzolatların Total Ksilanaz Aktivitesi	54
4.5. B. subtilis'ten Rekombinant Ksilanaz Üretilmesi	56
4.6. Anadoluca Metoduyla Enzimin Kafeslenmesi	61
4.7. Rekombinant Ksilanaz ve Nano Ksilanaz Enzimlerinin Aktivitesinin Belir	lenmesi 64
5. TARTIŞMA ve SONUÇ	69
KAYNAKLAR	79
EKLER	88
ÖZGEÇMİŞ	

ŞEKİLLER DİZİNİ

Şekil 2.1 Ksilanazların Ksilan Omurgasına Etki Noktaları	. 11
Şekil 2.2 Ksilanaz Enziminin Kristal Yapısı	. 11
Şekil 3.1 A: Köprü sıcak su kaynağı, B: Davut sıcak su kaynağı	. 22
Şekil 3.2 Davut sıcak su kaynaklarının genel doğal görünümü	. 22
Şekil 3.3 Sıvı besiyerine ekim yapılan örnekler	. 24
Şekil 3.6 Ni-NTA Agarose Boncuk Sistemi	. 38
Şekil 4.1 Gram Boyama; A: Davut çamur kaynağı, B: Pasinler su kaynağı	.45
Şekil 4.2 İzolatların PCR ürünlerinin elektroforez jel sonucu	. 49
Şekil 4.3 Ksilanaz geninin PCR ampllifikasyon sonucunun agaroz jel görüntüsü	. 56
Şekil 4.4 Ksilanaz geninin (Btx6 izolatı) jel saflaştırma sonucu. M: Marker	. 57
Şekil 4.5 Ksilanaz genini taşıyan PGEMTeasy plazmidinin kesim sonucu elde edilen agaroz	Z
jel görüntüsü. M: Lambda DNA/EcoRI /Hind III Marker, Ürünler; A: PGEMeasy	
plazmit bant büyüklüğü B: Ksilanaz geni bant büyüklüğü	. 58
Şekil 4.6 Ni-NTA saflaştırılması sonucu oluşan SDS jelin görüntüsü. M: Marker (SDS-PAC	GΕ
Molekülar Ağırlık Standartları Broad Range (Bio-RAD, Kat. no:161-0317)), 1: 1 Saat	
İndüklenmiş, 2: 2 Saat İndüklenmiş, 3: 3 Saat İndüklenmiş ve 4: Total Proteinin SDS	Jel
Görüntüsü.	60
Şekil 4.7 Rekombinant ksilanaz proteininin Western Blot Analizi ile görüntülenmesi. M:	
Marker (Kaleidoscope Pretained Standarts BİORAD), 1: 1 Saat İndüklenmiş, 2: 2 Saat	t
İndüklenmiş, 3: 3 Saat İndüklenmiş ve 4: Total Protein Antihistidin ve İkincil Antikor	ile
yapılan Western Blot görüntüleri	60
Şekil 4.8 Rekombinant Ksilanaz Zeta Boyut Analizi	61
Şekil 4.9 Rekombinant Nano Ksilanaz Zeta Boyut Analizi	61
Şekil 4.10 Rekombinant Ksilanaz'ın CD Spektroskopisi	. 63
Şekil 4.11 Rekombinant Nano Ksilanaz'ın CD Spektroskopisi	. 63
Şekil 4.12 Rekombinant Ksilanaz ve Rekombinant Nano Ksilanaz enziminin optimum	
aktivite gösterdiği pH	. 64
Şekil 4.13 Rekombinant Ksilanaz enziminin optimum aktivite gösterdiği sıcaklık	. 65
Şekil 4.14 Rekombinant Nano Ksilanaz enziminin optimum aktivite gösterdiği sıcaklık	. 65

Şekil 4.15 Rekombinant Ksilanaz enziminin optimum aktivite gösterdiği substrat	
konsantrasyonu	66
Şekil 4.16 Rekombinant Nano Ksilanaz enziminin optimum aktivite gösterdiği substrat	
konsantrasyonu	. 66
Şekil 4.17 Metal iyonlarının rekombinant Ksilanaz enzimine etki grafiği	. 67
Şekil 4.18 Metal iyonlarının rekombinant Nano Ksilanaz enzimine etki grafiği	. 67
Şekil 4.19 B. subtilis'den elde edilen rekombinant Ksilanazın Lineweaver Burke denklemi	ile
K_m ve V_{max} değerinin ölçülmesi	68
Şekil 4.20 B. subtilis'den elde edilen rekombinant Nano Ksilanazın Lineweaver Burke	
denklemi ile K_m ve V_{max} değerinin ölçülmesi	. 68

ÇİZELGELER DİZİNİ

Çizelge 2.1 Mikrobiyal Kaynaklı Enzimler ve Kullanım Alanları	9
Çizelge 3.1 PCR Temel Bileşenleri	27
Çizelge 3.2 PCR Reaksiyon Koşulları	27
Çizelge 3.3 Aday genlerin PCR amplifikasyonunda kullanılan primer DNA dizileri	32
Çizelge 4.1 Su örneklerinin kimyasal analizi	43
Çizelge 4.2 Bakteri izolatlarının gelişim sıcaklık değerleri	44
Çizelge 4.3 Bakteri izolatlarının morfolojik test sonuçları	46
Çizelge 4.4 İzolatların sekans analiz sonuçları	51
Çizelge 4.5 Farklı saatlerde türlere ait total ksilanaz aktivitesinin ölçümü	55

SİMGELER VE KISALTMALAR

μL	Mikrolitre	
ANADOLUCA	AminoAcid Decorated and Light Underpining Conjugation Approach	
BHI	Brain Heart İnfusion	
CaCl ₂	Kalsiyum Klorür	
dk	Dakika	
DNA	Deoksiribonükleik Asit	
DNS	Dinitro Salisilik Asit	
EDTA	Etilendiamin tetra asetik asit	
L	Litre	
LB	Luria Bertani	
Μ	Molar	
mg	Miligram	
mL	Mililitre	
ng	Nanogram	
°C	Santigrat	
OD	Optik Yoğunluk	
RNA	Ribonükleik Asit	
Rpm	rounds per minute	
SDS	Sodyum Dodesil Sülfat	
SDS PAGE	Sodyum Dodesil Sülfat, Poliakrilamit Jel	
sn	Saniye	
TAE	Tris Asetik Asit EDTA	
Tris	2-Amino-2-(hydroksimetil)-1,3-propanediol	
Tris-HCl	Tris Hidroklorik asit	

1. GİRİŞ

Temelde biyolojik organizmalardaki özel kimyasal reaksiyonların katalizlenmesinde oldukça etkin yeteneğe sahip enzimlerin geneli protein yapıdadır. Enzim sentezleme yeteneğine sahip olan mikroorganizmalarda, enzimler hücre içinde oluşturulur. Bu sentezlenen enzimlerin bir kısmı hücre içinde yapım ve yıkım olaylarına etki için hücre içinde kalır (Gangadhar 2013). Enzimler, her ne kadar canlı hücreler tarafından oluşturulsa da aktivitelerine doğal olmayan ortamlarda da yani '*in vitro*' koşullarda da devam edebilme yeteneğine sahiptir (Temîzkan and Arda 1999). Enzimler hücre içinde gerçekleşen pek çok çalışmanın özgünlüğünü ve hızını düzenledikleri gibi, *İn vitro* ortamda da pek çok kimyasal reaksiyonları katalizlemede görev yapmaktadırlar (Ekinci *et al.* 2016).

Canlı yapısında önemli metabolik görevleri olan enzimler; insanoğluna, günlük yaşamının bir parçası olarak ekonomi, gıda, tarım ve sanayii gibi birçok alanda, farklı amaçlarda kullanılarak önemli katkılarda bulunmaktadır (Wiseman 1983). Günümüzde üretim ve kullanım amaçları gittikçe artan enzimlerin eldesi bitkisel, hayvansal ve mikroorganizma kaynaklıdır (Akcan 2011). Gelişen ve büyüyen dünya pazar sektöründe enzimlerin oldukça geniş ve yaygın kullanımı mevcuttur (Turker 2004), bu dağılım oranlarının sanayide deterjan ürünlerinde %29, kâğıt endüstrisinde % 11, deri, tekstil ürünlerinde % 17 ve tarım ve gıda sektöründe ise yaklaşık olarak % 34'lük bir oranda olduğu bilinmektedir (Outtrup and Jorgensen 2002). Daha hızlı çoğalabilme, üretiminin kolay olması, ekstrem koşullarda üreyebilmesi ve hücre yapılarından dolayı mikroorganizmalardan ticari enzim üretimi bilim adamları tarafından oldukça popüler bir çalışma alanı haline gelmiştir (Aehle 2007). Mikroorganizmaların yaşam şartları oldukça değişkenlik göstermektedir. Jeotermal bölgeler ile volkanik alanlardaki yüksek sıcaklıklara sahip bölgelerde yasayan mikroorganizmalara ek olarak, derin denizlerde, kutuplarda, çok yüksek ya da çok düşük basınç altındaki bölgelerde ve değişken olan aşırı asidik veya bazik pH şartlarına adapte olan ekstremofilik mikroorganizmalar da bulunmaktadır. Bu ekstrem koşullardaki yaşayan organizmalar ve onların sahip oldukları enzimler izole edilerek karakterize edilmişlerdir (Petti and Carroll 2011). Ekstremofil organizmalardan elde edilen enzimler standart enzimlerin aktif olarak çalışamadığı ekstrem şartlarda çalışabilmektedirler (Kulkarni et al. 1999). Mikroorganizmalar

bulunduğu dış ortam şartlarına göre; asidofilik, barofilik, halofilik, alkafilik ve termofilik olarak sınıflandırılmaktadır.

Uchino and Nakane (1981) tarafından yapılan bir çalışmada; termofilik asidofilik bakteri türü olan *Bacillus* sp. 11-1S'ın, ksilan içeren ortamda hücre dışına ksilanaz enzimi ürettiği bildirilmiştir.

Bernier *et al.* (1983) tarafından yapılan bir çalışmada; *B. subtilis*'ten kromatografi ile izole edilen bir hücre dışı ksilanazın kısmi karakterizasyonu neticesinde molekül ağırlığının 32.000, optimum pH'sının 5.0, optimum sıcaklığının ise 50 ° C olduğu tespit edilmiştir.

Fukusaki *et al.* (1984) tarafından yapılan bir çalışmada; ksilanaz (EC 3.2.1.8) geninin (xywl) ve ksilanazın hiper üreticisi olan *Bacillus pumilus* IPO'nun tam nükleotid dizisi belirlenmiştir. Çalışmada ksilanaz geni için 684 bp okuma çerçevesi gözlemlemişlerdir.

Honda *et al.* (1985) tarafından yapılan bir çalışmada; alkalofilik *Bacillus sp.* C-125 suşundan Ksilanaz A geni saflaştırılarak klonlanmıştır.

Paul and Varma (1992) tarafından yapılan bir çalışmada; mezofilik *Bacillus sp.* izolatının büyümesi sırasında karbon kaynağı olarak pirinç kabuğunun kullanılması neticesinde, substratın selülozik ve hemiselülozik bileşenlerinin parçalanmasından sorumlu bir dizi hücre dışı enzimin salgılandığı bildirilmiştir. Çalışmada sırasıyla % 1 CMC'ye ve % 0.5 ksilan'a karşı aktif olan 30 kd ve 15.7 kd'lik molekül ağırlıklarına sahip iki önemli glikoprotein kültür süpernatantından tespit edilmiş ve afinite kromatografisi kullanılarak kısmen saflaştırılmıştır. Her iki proteinin de *Km* değerlerinde, karbonhidrat içeriğinde, pH ve sıcaklık kararlılıklarında farklılık gösterdiği belirtilmiştir. Bağlanmış fraksiyon üzerinde gerçekleştirilen IEF jel elektroforezi, her iki protein için de asidik pI (İzoelektrik nokta) saptamıştır. Böylelikle çalışmada bu proteinlerin katalitik özellikleri araştırılmış ve parçalanma sürecinde olası rolleri tartışılmıştır. Jung and Pack (1993) tarafından yapılan bir çalışmada; *Clostridium thermocellum*'dan izole edilen bir ksilanaz geninin C-terminal bölgesinin ksilanaz etkinliği ile ilgili olmayan bir kısmı çıkarılmıştır. Modifiye ksilanaz geni, *B. subtilis*'e transforme edilmiştir. Ksilanaz geni *B. subtilis*'de iyi ifade edilmiş ve büyüme OD_{600} 'üne ulaştığında hücre dışı ksilanaz, ml başına 30 üniteye kadar üretilmiştir.

Wolf *et al.* (1995) tarafından yapılan bir çalışmada; ekstraselüler ksilanaz (~ rynA) enzimini kodlayan gen, *B. subtilis* 168 DNA'sından 770 bp'lik bir DNA parçası olarak amplifiye edilmiştir. Endo- β -1,4 - glukanaz ve endo- β , 1,3 - 1,4 - glukanazı kodlayan genler *B. subtilis* 168'in genomik kütüphanesinden izole edilmiştir. Çalışmada XynA ve eglS dizilerinin *B. subtilis* PAP115'de bulunan ksilanaz ve selülaz genleriyle aynı olduğunu gözlemlenmiştir.

Davoodi *et al.* (1998) tarafından yapılan bir çalışmada; *Bacillus circulans* ksilanaz ve bir disülfid köprü içeren mutantın (SIOOC / N148C) stabilitesi, diferansiyel tarama kalorimetresi (DSC) ve termal inaktivasyon kinetiği ile incelenmiştir. Her iki proteinin termal denatürasyonunun geri döndürülemez olduğu ve görünür geçiş sıcaklığının tarama hızı üzerinde önemli bir bağımlılık gösterdiği bulunmuştur.

Lin *et al.* (1998) tarafından yapılan bir çalışmada; endüstri ve biyoteknoloji alanında yaygın olarak kullanılan *Bacillus* sınıfında yer alan birçok enzim tespit edilmiştir. Sanayi ve ticari sektörde sıklıkla tercih edilen amilaz ve ksilanaz enzimlerinin ticari olarak üretilmelerinde en çok tercih edilen türlerin; *B. amyloliquefaciens*, *B. subtilis* ve *B. licheniformis* türleri olduğu bildirilmiştir.

Cordeiro *et al.* (2002) tarafından yapılan bir çalışmada; termal ortamlardan elde edilen bakterilerin 16s rRNA sekans analizleri çıkarılmış ve izolatların ribozomal DNA sekanslarının % 94 oranında *Bacillus coldoxylolyticus* ve *Bacillus* sp AK1 suşu ile benzer olduğu bildirilmiştir.

Damiano *et al.* (2003) tarafından yapılan bir çalışmada; alkalofilik *B. licheniformis* 77-2'den, mısır samanını içeren ortamda selülaz aktivitesine sahip ve hücre dışı alkaliye dayanıklı bir ksilanaz enzimi üretilmiştir. Okaliptüs Kraft küspesinin işlenmesine yönelik ham ksilanazın etkinliği değerlendirilmiş, klor tasarrufu ile enzim tarafından işlenmiş ve işlenmemiş pulpa karşılaştırmak için bir biyolojik ağartma deneyi gerçekleştirilmiştir. İki aşamalı ağartmada ClO₂ ve NaOH ekstraksiyonu (DE serisi) kullanılarak yapılmıştır. Enzimatik muamele ile aynı Kappa sayısı ve parlaklık değerini elde etmek için enzimatik olarak muamele edilmemiş numunelere kıyasla sırasıyla % 28.5 ve % 30 daha az ClO₂ gerektiği bildirilmiştir.

Tolan and Collins (2004) tarafından yapılan bir çalışmada; termofil bakterilerden elde edilen ksilanazların yüksek sıcaklıklarda yapılarının tamamen bozulmadığı, sadece ileri derecede olmayan yüzeysel modifikasyonların oluştuğu tespit edilmiştir.

Yapılan birçok araştırmada *Bacillus sp.* suşlarının optimum aktivite gösterdikleri pH aralıklarının farklı değerlerde pH (5.5, 5.6, 6.0, 6.5 ve 7.0) olduğu belirtilmiştir (Blanco *et al.* 1995; Pham *et al.* 1998b; Dhillon and Khanna 2000; Lama *et al.* 2004; Avcioglu *et al.* 2005).

Sapre *et al.* (2005) tarafından yapılan bir çalışmada; ksilanaz enziminin ksilan substratının hidrolizi haricinde başka hiçbir şekilde aktivitesini göstermediği anlaşılmıştır. Enzim aktivitelerinde optimal sıcaklığın 50 °C olduğu görülmüştür. Ksilanaz aktivitesi için optimum pH'nın sırasıyla, 6.5, 8.5 ve 10.5 seviyelerinde olduğu ve enzimin pH değerinin 6.0'dan 10.5'e kadar geniş bir pH aralığında kararlı yapı gösterdiği tespit edilmiştir.

Choudhury *et al.* (2006) tarafından yapılan bir çalışmada; *B. coagulans* izolatından ksilanaz üretimi; çevresel parametrelere, karbon kaynağına ve sallama düzeyi seviyesindeki karbon kaynağının konsantrasyonuna göre incelenmiştir. Kullanılan çeşitli karbon kaynakları arasında buğday tozu yüksek enzim üretimi göstermiştir. Buğday tozundan izole edilen ksilanın, birchwood ksilana kıyasla daha yüksek enzim üretimi sağladığı belirtilmiştir. Çalışmada % 2 buğday tozu ile maksimum 165 IU / ml enzim aktivitesi elde edilmiştir.

Ayyachamy and Vatsala (2007) tarafından yapılan bir çalışmada; tarımsal bitki atıklarından ksilanaz üretimi için katı ekimler optimize edilmiş ve ksilanazın odunsu

olmayan bitki materyalleri üzerindeki biyolojik etkinliği test edilmiştir. Enzim yardımlı biyolojik ağartma sonuçları; ksilanazın odunsu olmayan bitki hamuru posasının parlaklığını arttırmada potansiyel uygulama alanı olduğunu göstermiştir.

Bocchini *et al.* (2008) tarafından yapılan bir çalışmada; *B. circulans* D1 izolatının, hücre dışı termostabil ksilanazın iyi bir üreticisi olduğu belirtilmiştir. Farklı karbon kaynaklı ksilanaz üretimi değerlendirilmiş ve enzim sentezi çeşitli karbon kaynakları ile indüklenmiştir. D-glikoz ve D-arabinoz, bazal ksilanaz düzeylerine yol açarken, D-maltozun enzim sentezinde indükleyici olduğu gözlemlenmiştir.

Yasinok *et al.* (2010) tarafından yapılan bir çalışmada; topraktan izole edilen *B. pumilus* SBM13 suşundan izole edilen ksilanaz geni dizisinin diğer *B. pumilus* suşlarından elde edilen ksilanaz genlerine % 89-94 benzerlik gösterdiği belirtilmiştir.

Garg *et al.* (2011) tarafından yapılan bir çalışmada; katı hal fermantasyonu altında *B. pumilus* ASH'dan ksilanaz üretimini optimize etmek için iki aşamalı istatistiksel tasarım kullanılmıştır. Üretim parametrelerinin seçimi için Plackett-Burman tasarımı (PB) kullanılmıştır. Çalışmanın sonucunda pepton, maya özütü, inkübasyon süresi, nem seviyesi ve pH, ksilanaz üretimi için kritik faktörler olarak gözlemlenmiştir.

Battan *et al.* (2012) tarafından yapılan bir çalışmada; pamuklu ve mikro-poli kumaşların desikasyonu, *B. pumilus* ASH'den izole edilen termostabil ksilanaz kullanılarak yapılmıştır. Enzim varlığında mikropoli kumaşların aynı koşullar altında pamuktan daha iyi desizasyon gösterdiği saptanmıştır.

Banka *et al.* (2014) tarafından yapılan bir çalışmada; *Escherichia coli*'de, *B. subtilis* M015'den izole edilen ksilanaz ve β -ksilosidaz'ın enzimlerinin klonlanması, ekspresyonu ve karakterizasyonu yapılmıştır. Genlerin ksilanaz geninin (glikozid hidrolaz (GH) ailesi 11) 213 amino asit ile β -ksilosidazın ise 533 amino asit tarafından (GH ailesi 43) kodlandığı saptanmıştır.

Chutani and Sharma (2016) tarafından yapılan bir çalışmada; Hindistan'ın farklı bölgelerinden; tarım toprakları ve endüstriyel kullanıma açık topraklardan, toplam altmış mantar kültürü izole edilmiştir. On beş mantar kültürü ksilanaz ve selülaz üretimi için seçilmiş ve çeşitli primerler (ITS, NS ve MNS) kullanılarak belirlenmiştir. Çalışmanın sonucunda 3811 IU/g ksilanaz ve 9.9 IU/g selülazdan oluşan *Trichoderma longibrachiatum* MDU-6'dan elde edilen enzim kokteyli, çeşitli kağıt atıklarının dejenerasyonu için nicel olarak uygun olduğu tespit edilmiştir.

Gong *et al.* (2016) tarafından yapılan bir çalışmada; iyon değişim kromatografisi kullanılarak, üç farklı endo1,4- β -ksilanaz (An_xyn1, An_xyn2 ve An_xyn3) enziminin, SDS-PAGE ile ayrımış olduğunu tespit etmişlerdir.

Kim *et al.* (2016) tarafından yapılan bir çalışmada; *Acidothermus cellulolyticus*'tan izole edilen ksilanazın heterolog ekspresyonu sağlanmıştır.

Anbarasan *et al.* (2017) tarafından yapılan bir çalışmada; termofilik *Termoplastikpora flexuosa* GH10 ksilanazı (TfXYN10A), biyofaz çözücü hidrofilik iyonik sıvılar ile (IL) [EMIM] OAc (Asetat), [EMIM] DMP (2,2-dimetoksipropan) ve [DBNH] OAc'nin varlığında çalışılmıştır. 65-70 °C'de ve TfXYN10A'nın optimum sıcaklık değerinde selüloz içerikli çözülmeyen ksilan, 70-75 °C'de % 1 ksilan ve 75-80 °C'de % 3 ksilan ile çözündürülmüştür. Bu nedenle, çözünür substrat miktarının seviyesinin, yüksek sıcaklıklarda enzim aktivitesini etkilediği belirtilmiştir.

Walia *et al.* (2017) tarafından yapılan bir çalışmada; ksilanaz enzimi ile kağıt hamuru parlaklığının arttırılması, çevre kirliliğinin azaltılması ve bununla ilgili biyolojik arındırma işlemlerinin gerçekleştirildiği potansiyel endüstriyel uygulamaları çalışılmıştır.

Zheng (2017) yaptığı bir çalışmada; *Pichia pastoris* GS115'de *B. pumilus* G1-3'den elde edilen rekombinant alkalin ksilanazın (xynG1-3-opt) ekspresyon seviyesini iyileştirmek için *P. pastoris*'da heterojen ekpresyonu için kodon optimizasyonu gerçekleştirilmiştir. Optimize edilmiş gen (xynG1-3-opt) tarafından kodlanan ksilanazın aktivitesinin, 33641 U / mL'ye kadar olduğu belirlenmiş ve bu yabani türün, xynG1-3 geninden % 37 daha yüksek olduğu belirlenmiştir. Çalışmanın sonucunda, *P. pastoris*'teki rekombinant proteinlerin üretiminin arttırılmasına ve alkalın ksilanazın endüstriyel üretiminin geliştirilmesine etkisinin büyük ölçüde katkıda bulunacağı öngörülmüştür. Zhan *et al.* (2017) tarafından yapılan bir çalışmada; pirinçte tanımlanan bir XIP-Tipi ksilanaz inhibitörü geni olan riceXIP, *E. coli*'de klonlanmış ve eksprese edilmiştir. Rekombinant protein riceXIP'in, *Aspergillus niger*'den izole edilen ksilanaza karşı aktif olarak, doğru bir şekilde eksprese olduğu belirtilmiştir. Çalışmada transgenik teknikler kullanılarak, riceXIP geninin aşırı ekspresyonu gerçekleştirilmiş ve bitkilerde gen nakavt ve diğer metotlarla otoburlara karşı bitki savunmasına katkı sağlayacağı açıklanmıştır.

Cano *et al.* (2017) yapmış oldukları çalışmada; % 1 poliakrilamid jel elektroforezi ile farklı kaynaklardan elde edilmiş bakteri ve mantarların, selülaz ve ksilanaz aktivitelerini % 1 (w/v) poliakrilamid jeller kullanarak ayırmışlardır. Bu yöntemin, selülaz ve ksilanaz üreticilerinin taranması, bu aktiviteleri gösteren polipeptidlerin tanımlanması ve moleküler ağırlıklarının belirlenmesi için uygun bir metot olduğunu bildirmişlerdir.

2. KURAMSAL TEMELLER

2.1. Enzimler ve Biyoteknolojide Kullanımı

Enzimler, organizmalarda substratların biyolojik ve kimyasal olaylarını katalizleyen moleküllerdir. Dış ortamda da aktivite gösterebilen enzimler, çeşitli canlı gruplarından biyoteknolojik yöntemlerle izole edilerek farklı endüstriyel alanlarda kullanılabilirler. Biyoteknolojinin gelişmesi ve ilerlemesi ile birlikte, canlı hücrelerden elde edilen enzimler; bira üretiminde, sütçülükte, etlerin işlenmesinde, meyve şuruplarının berraklaştırılmasında, gıda alanında, yağ atıklarının parçalanması için deterjan sektöründe, deri ve dokuma sanayide, tıpta tanı ve teşhislerde, tıbbi tedavi yöntemlerinde, deterjan ve diğer kimyasal temizleyicilerin ağartma işlemlerinde de büyük katkı sağlamaktadır (Voget et al. 2006). Giderek gelişen ve büyüyen enzim teknolojisi, üretilen ürünlerin çeşitlilik gösteren kullanım alanları ve yüksek ekonomik değere sahip olması nedeniyle son yıllarda biyoteknolojik alanlarda endüstriyel enzimlere olan ilgi artmış ve bu alanda çalışmalar ve araştırmalar yapılması oldukça büyük bir önem kazanmıştır. Yine rekombinant DNA teknolojisi ile de enzim üretim çalışmaları oldukça büyük önem kazanmıştır (Hols et al. 1994). Biyoteknolojik gelişmeler ile birlikte mikroorganizma kaynaklı spesifik enzimler çeşitli alanlarda ticari olarak kullanılmaktadırlar. Mikrobiyal kaynaklı enzimler ve bunların kullanım alanları Çizelge 2.1' de belirtilmiştir (Kennedy and Rehm 1987).

Enzim Sınıfı	Kullanıldığı Alanlar	Mikroorganizma Örnekleri
α-amilaz	Dekstrin ve Maltoz reaksiyonunda Ekmek yapımı Glikoz yapımı	B. subtilis Aspergillus oryzae B. licheniformis
β-glucanaz	Bira berraklaştırılması	A. oryzae B.subtilis
Katalaz	İçecek korunması	A. niger Micrococcus lysodelcticıts
Selülaz	Atik yikiminda	Penicillum spp.
Glukoz izomeraz Glukoz oksidaz	Glukoz, Fruktoz dönüşümü Biyosensor	Aspergillus spp. A.niger
Laktaz	Peynir altı suyu Laktozsuz gıda üretimi	Kluyveromyces lactis
Lipaz	Deri Endüstrisi, Sindirime yardımcı	A. oryzae
Renin	Peynir Endüstrisi	Kluyveromyces lactis
Sukraz (invertaz)	Şekerleme yapımı	Mucor spp. Saccharomyces spp. Bacillus sp.
Ksilanaz	Kâğıt hamuru sanayisi, Hayvan yemleri Meyve ve şıra suyu yapımı ve berraklaştırılması Gıda endüstrisi	B. circulans B.licheniformis Bacillus ginsengihumi Cellulumonas fimi Micrococcus sp AR-135, Trichoderma longibrachiatum Thermoascus aurantiacus Rahnella aquatilis Pseudumonas monteilii
Bacterial a-amilaz	Maltoz ve dekstrinin yıkılması Leke çıkarıcı Glikoz şurubu	Bacillus amyloliquefaciens,
Hemiselulaz	Deterjan katkı maddesi Atıkların değerlendirilmesi	B.subtilis, Aspergillus niger
Pullulanaz	Biyo-yakıt üretimi	Bacillus sp. Clostridium pasteurianum,
Pektinaz	Meyve suyu yapımında Şarap ve diğer içeceklerin berraklaştırılması	Erwinia spp

Çizelge 2.1 Mikrobiyal Kaynaklı Enzimler ve Kul	lanım Alanları
---	----------------

2.2. Ksilanaz Enzimi

Bitkilerde bulunan hücre duvarı, mikroorganizmaların hücreye girişini engellemek için önemli bir bariyer konumundadır. Bitkilerde doğal olarak var olan ve yaklaşık olarak biyokütlenin % 20-30'luk kısmını heteropolisakkarit yapıda olan hemiselülozik tabaka oluşturur (Gamerith, G 1992). Bu biyokütle dünyanın yakıt ihtiyacını karşılamada da önemli bir konumdadır (Alvarez-Cervantes et al. 2016). Ksilan, çoğu bitki hücre duvarının hemiselülozik olan temel yapısıdır (Anbarasan et al. 2017). Kullanışlı ve son ürüne parçalanabilen bir yapıdadır (Yang et al. 1995). Büyüyen ve gelişen dünyamızda katı ve sıvı atıkların büyük bir kısmının da yine bu hemiselüloz yapısından kaynaklandığı bilinmektedir (Lee et al. 2015). Mantarların ve bakterilerin büyük çoğunluğu ksilan'ı parçalayabilmek için ksilanaz enzimine mutlak olarak sahip olmaları gerekmektedir. Bu sebepten ötürü patojen ve saprofit türler hücre duvarının temel bileşeni ve aynı zamanda bitki hücrelerinin orta lamelinde bulunan ksilanı parçalamak için ksilanaz enzimini üretir (Salles et al. 2000). Ksilanaz enzimi, ksilan yapısında bulunan β -1,4-D-ksilozidik bağlarını hidrolizle parçalamaktadır. Bu nedenle ksilanaz enzimi doğada yaygın şekilde görülen ve bitki patojenlerince bitki hücresinin enfeksiyonunda gerekli olan bir enzim çeşiti olarak bilinmektedir (Collins et al. 2005).

Ksilan içeriğinin tamamen hidrolizi geniş bir grup mikrobiyal enzim işbirliği ile sağlanabilmektedir (Amerah *et al.* 2017). Bu enzimlerin en önemlisi ksilan yapısındaki glikozid bağını kıran β -1,4-endoksilanaz grubu olan ksilanohidrolazlardır (Gilbert and Hazlewood 1993). Endoksilanazlar, ksilan iskeletindeki iç glikozit bağlarını hidrolize ederken, ekzoksilanazlar ise endoksilanazların aktivitesi neticesinde meydana gelen ksilooligosakkaritleri hidroliz etmektedirler (Wong *et al.* 1988). Şekil 2.1 ve Şekil 2.2'de ksilanaz enzimlerinin kristal yapısı ve ksilan iskeletindeki yapısal bölgeler gösterilmektedir.

Şekil 2.1 Ksilanazların Ksilan Omurgasına Etki Noktaları (Collins et al. 2005).

Şekil 2.2 Ksilanaz Enziminin Kristal Yapısı (St John, Franz J., et al. 2009)

2.2.1. Ksilanaz Enziminin Genel Özellikleri

Genel olarak mikrobiyal kaynaklı ksilanazlar asidik veya nötral pH'larda optimum aktivite gösterirler. Bakteri kaynaklı ksilanazlar ise genellikle pH 5-9 arasında, büyük bir alanda etkin olmasına rağmen çoğu nötral pH'larda da optimum aktiviteye sahiptirler (Beg *et al.* 2001). Endoksilanazların izoelektrik noktaları PI 3-10 aralığındadır. Ksilanazlar, katalitik, hidrolitik ve termal kararlılıktan sorumludurlar. Sıcaklık değerlerinin optimum 34 ile 75 °C aralığında değişebildiği ancak 75-90 °C sıcaklıklar arasında aktivite gösteren ksilanazların bulunduğu bilinmektedir. Ksilanaz aktivitelerinin, düşük amonyum sülfat konsantrasyonunda bile sıcaklıkla artış gösterdiği bilinmektedir. Fungal ksilanazlar genelde bakteriyel ksilanazlara göre daha düşük sıcaklık direncine sahiptirler (Abdulla *et al.* 2017). Ksilanaz çeşitlerinde molekül ağırlığı ve pH değeri arasında belli sabit bir ilişki vardır; düşük molekül ağırlıklarında bazik iken, yüksek molekül ağırlığında ise asidik yapı gözlemlenmiştir (Wong *et al.* 1988).

2.2.2. Ksilanaz Enziminin Kullanım Alanları

Ksilan, yüksek bitkilerin hücre duvarının hemiselülozik tabakasının temel bileşenidir ve endüstride doğaya zararı en aza indirgeyerek kullanılabilirliği bakımından oldukça önemli bir yere sahiptir (Gessesse 1998). Dünyada ksilandan en çok gıda ve yem alanında faydalanılmakta aynı zamanda, kâğıt sanayisinde ve atıkların arıtım işlemlerinde değerlendirme prosesleri olarak da ksilana yönelik uygulamalar bulunmaktadır. Ksilanın ve ksilanaz enziminin en önemli özelliklerinin başında sanayi endüstrisinde kullanılan bitkisel veya bitkisel kaynaklı olmayan atıkların enzimatik olarak hidrolizi gelmektedir. Ksilanın enzimatik hidrolozindeki en önemli enzim ise β -1,4 bağları ile bağlanan ve ksiloz birimlerinden oluşan iskeleti hidrolizleyen β -1,4 ksilanazlardır (Sargın *et al.* 2003).

Doğa kirliliğini önlemek ve çevresel düzenlemeler çerçevesinde kağıt hamuru ve kağıt endüstrisinde beyazlatma ve ağartma işlemleri genellikle yüksek yoğunluktaki klor ile yapılmaktaydı. Ancak klor kullanımının sınırlandırılması, ağartma işlemlerinde enzim kullanılmasına, akabinde araştırmacıların mikrobiyal enzimlere yönelmesine neden olmuştur (Eren-Kıran Ö. 2006). Kâğıt endüstrisindeki kirliliği azaltmak için mikrobiyal enzimlerin uygulanması ile birlikte ağartma işlemlerinde klorun kullanımı azaltılmış ve

böylelikle çevreye vermiş olduğu zararın indirgenmesi sağlanmıştır. Kuzey Amerika'da ve Batı Avrupa ülkelerinde ksilanazlar, ağaç mantar dokulu kabuk ekstraktında, geri dönüşüm ürünlerinin ağartılmasında ve kullanılmış olan kâğıt hamurunun beyazlatılması işleminde selülozun hidroliz edilmesiyle tekrar kullanılmaktadır (Yang et al. 1995). Gıda sanayisinde ise ksilanazlar, ekmek yapımında hamurun yoğrulması esnasında kullanılmakta ve böylelikle hamurun kabarık, yumuşak ve kıvamlı bir hal almasına neden olmaktadır (Güneri vd. 2008). Bunun temel nedeni buğday unundaki ksilanaz için substrat olan ve su içerisinde çözülemeyen arabinoxylan (AX)'ın çözünmesi olduğu bilinmektedir. Ksilanaz, meyve ve şıra sularının arıtılması, sebze ve meyve sularının eldesi için de yoğun olarak kullanılmaktadır. Ksilanazın diğer önemli kullanım alanı ise yem ve hayvancılıkta piliçlerin besinleri olan çavdar tabanlı diyetlerin içerisine dâhil edilmek suretiyle yemlerde viskozitenin azaltılmasıdır. Bunun sonucunda ise hem yemlerin ağırlıkları artmakta hem de piliçlerin ağırlıkları artmaktadır. Gıda endüstrisindeki atıklarda ksilan miktarı oldukça yüksektir. Bu sonuçla birlikte ksilanın kullanım alanları ksilanazlar sularda bulunan ksilan'ı iskeletini ksiloz'a dönüştürmek içinde kullanılır. Çizelge 2.2'de ksilanaz enziminin dünya çapındaki kullanılabilirliği ve işlemlerdeki önceliği işlevsel ve ayrıntılı olarak verilmektedir (Collins et al. 2005).

Sanayi Katkısı	Kullanım Alanı	Özelliği
Sanayii kuruluşlarındaki meyve, sebze ve şarap üretim ve işleme alanlarında	Yağ, meyve suyu, şarap ve diğer meyve ve sebzelerin atık ve işlemlerinde kullanılır	Yağ, meyve suyu, şarap ve diğer meyve sularının kalitesinin arttırılmasında ve berraklaştırılmasında kullanılır
Ekmek ve unlu mamül üretim tesislerinde	Ekmek yapımında ve diğer hamur ürünlerinin üretiminde	Hamurun daha şişkin, yumuşak ve kıvamlı bir hal almasını sağlar.
Hayvancılık	Yem ürünlerinin üretilmesinde ve geliştirilmesinde	Hayvanlarının aldıkları yemlerden içerik yoğunluğunu azaltarak proteinlerden ve diğer bileşiklerden en üst düzeyde faydalanmasını sağlar.
Kâğıt endüstrisinde	Kâğıt üretiminde kâğıt renginin kalitesinin artmasına ve ağartma işleminin daha net olmasında	Kâğıt endüstrisinden kullanılan zararlı kimyasalların sayısının azaltılması sağlar.
Glukoz ve Nişasta	Nişastanın diğer ürünlerden ayrımına	Hanur işlerindeki yoğunluğu azaltır ve daha kıvamlı bir hal verir.
Giyim ve tekstil sanayisinde	Giyim sanayide kullanılan kot, keten ve kendir gibi ürünlerin işlenmesinde	Enzimatik yüzeye etki eder.
Biyoyakıt üretim tesislerinde dönüşüm	Elde edilen atıkların zararının en aza indirgenmesinde ve uzaklaştırılmasında	Fabrika ve diğer sanayi kuruluşlarındaki atıkların arıtımını sağlar.

Çizelge 2.2 Ksilanaz enziminin kullanım alanları

2.3. Bacillus Türleri ve Genel Özellikleri

İlk olarak 1872'de Ferdinand Cohn tarafından adlandırılan Bacillus'lar gram pozitif, krem ya da beyaz renkli farklı koloni tiplerine sahip, olumsuz koşullara oldukça dayanıklı endospor oluşturan peritrik kamçılı aerobik veya fakültatif aneorobik bir bakteri cinsidir (Lin et al. 1998). Vejetatif hücre yapıları 0.5x1.2 µm ile 2.5x10 µm çapı arasında değişkenlik göstermektedir (Buchanan 1994). Bilinen yaklaşık elliye yakın Bacillus türü bulunmaktadır. Bu türlerin bazılarında endosporun hücre içindeki konumunda farklılıklar gözlemlenmektedir. Endosporlarının konumuna göre sentral, terminal ya da subterminal olarak ayrılabilirler. Yine Turnbell and Kramer'in yapmış olduğu çalışmada Bacillus türlerinin teşhisinde spor morfolojilerinin temel alındığı ve buna göre Bacillus'ların 3 gruba ayrıldığı bildirilmiştir. İlk grup Bacillus' lar kendi içlerinde A ve B olmak üzere ayrılmaktadırlar. Bu grupların ikisinde de sporangia şiş değildir. Sporlar merkezi veya terminal konumlu ve elips veya silindirik şekilli yapıdadır ve gram pozitiftirler. Bu gruplardan A grubunda hücreler 1µm'den küçüktür. B grubunda ise hücreler 1µm'den büyüktür. A grubunda; B. megaterium ve B. cereus gibi türler var iken; B grubunda ise B. pumilus, B. firmus, B. licheniformis, B. subtilis ve B. coagulans gibi türler vardır. Diğer grupta ise Bacillus türlerinde sporangia şiş durumdadır. Elips, sentral veya terminal seklinde sporlar vardır. B. circulans, B. stearothermophilus, B. polymyxa, B. macerans, B. alvei, B laterosporus ve B. brevis gibi türler bunlara örnektir. Üçüncü grup Bacillus türlerinde de sporangia şiş konumdadır. Küresel, subterminal veya terminal konumlu sporlar vardır. B. sphaericus bu gruba örnek olarak verilebilir (Turnbell et al. 1991). Bazı Bacillus türleri polipeptit yapıda kapsül geliştirmişlerdir (B. subtilis, B. anthracis, B. megaterium ve B. licheniformis). DNA'larındaki G + C oranı yaklaşık olarak % 32 ile % 62 arasında değişmektedir (Con et al. 1997). Birçok Bacillus türünde hücre duvarı mezodiamino pimelik asitten meydana gelir (Özçelik 1995). Tüm Bacillus türleri kanlı agar, nutrient agar, trypticase soy agar ve brain heart infusion besi ortamlarında rahatlıkla üreyebilmektedirler. Sentetik ortam büyüme koşullarında ise en iyi ortam nitrojen kaynağı olan amonyum bulunduran ortamlar iken, karbon içeren organik asit, şeker ve alkol de çok iyi bir büyüme ortamıdır (Kaynar and Beyatli 2008). Genel olarak şekerleri fermente ederek asit üretebilirken, proteinleri de kullanarak amonyak oluşturacak şekilde parçalamakta ve böylelikle kokuşmaya neden olabilmektedirler. Bacillus türleri genellikle saprofit olup toprakta, su, bitki, bitki atıkları ve hayvanlarda yaygın olarak bulunmaktadırlar. Bacillus türlerinin genel olarak çalışılmasının nedenlerinden biri, bazı

biyolojik kaynaklı metabolitlerin üretimi ve sıcaklık dirençli spor oluşturma yetenekleridir (Silo-Suh *et al.* 1998).

2.3.1. Bacillus Türleri ve Biyoteknolojide Kullanımı

Biyoteknoloji; biyoloji, moleküler biyoloji ve genetik alanlarındaki gelişmelere paralel olarak gelişen ve sürekli olarak güncellenen yeni, güvenilir ve gelecek vadeden bir çalışma alanıdır. Enzim teknolojisinin gelişmesi ve ekonomik değeri yüksek olan ürünlerin kullanım alanının çeşitliliği nedeniyle, biyoteknolojik alanda endüstriyel enzimlerin önemi de giderek artmıştır. Özellikle mikroorganizmalar hızlı üremeleri yanında gelişimlerinin kolay ve ekonomik olması gibi nedenlerden dolayı enzim kaynağı olarak tercih edilmişlerdir. Ekstrem koşullarda yaşayan mikroorganizmalar ve onların üretmiş olduğu enzimler bu anlamda büyük önem kazanmıştır. *Bacillus* türleri ekstra sellüler enzimler üretme yetenekleri ve diğer enzim kaynaklarına göre daha az ürün oluşturmaları nedeni ile en çok tercih edilen bakteri grupları arasındadır.

Bacillus'lar genel olarak mezofiliktirler, termofilik ve psikrofilik türleri de bulunmaktadır (Ayhan 2000.). Termofilik açıdan değerlendirildiğinde *Bacillus* cinsine ait sıcaklığa en dirençli türün *B. subtilis*, en hassas türün ise *B. coagulans* olduğu; pH açısından değerlendirildiğinde, *B. coagulans* (*B. thermoacidurans*) ve *B. stearothermophilus* gibi bazı türlerin 4,2 gibi oldukça düşük pH'larda gelişim süreçlerini devam ettirebildiği bilinmektedir. Ekstrem türler dışında *Bacillus* türleri genellikle çamur, su, toprak ve çeşitli besinlerde kolaylıkla bulunabilmektedirler.

Bacillus türlerinden amilaz, proteaz, lipaz, azoredüktaz, katalaz-peroksidaz ve pektat liyaz gibi pek çok enzim çalışması yapılmıştır (Gomes ve Steiner 2004). Bunun yanında *Bacillus* türlerinin ekstradan üretmiş olduğu çeşitli bileşiklerinde biyoteknolojik açıdan önem arz ettiği ve pek çok çalışmada kullanıldığı bilinmektedir. *B. subtilis*'den subtilin, *B. licheniformis*'den basitrasin, *B. polymyxa*'dan ise polimiksin antibiyotiklerinin üretimi bunlara örnek olarak verilebilir (Ayhan 2000).

2.4. Amaç

Çalışmanın amacı Doğu ve Güneydoğu Anadolu bölgesinde bulunan sıcak su kaynaklarından toplanan su ve çamur örneklerinden termofilik bakterilerin izole edilerek tanılanmasıdır. Bunun yanı sıra izole edilen bakterilerden ksilanaz enzim aktivitelerinin tespit edilmesi ve ksilanaz enzim aktivitesi yüksek olan türün seçilerek enzimin saflaştırılması, saflaştırılan enzimin rekombinant ve nano kapsüllenmiş formunun aktivite sonuçlarının kıyaslanıp ticari olarak kullanılabilirliğinin araştırılmasıdır.

3. MATERYAL ve YÖNTEM

3.1. Materyal

3.1.1. Biyolojik Materyal

Pasinler (Erzurum), Hasanabdal (Van), Hıstaçermiği (Siirt), Diyadin; Davut ve Köprü çermiği (Ağrı), Dargeçit (Mardin) ve Güçlükonak (Şırnak) termal kaynaklardan alınan su ve çamur örneklerinden izole edilen bakteriler çalışmanın materyalini oluşturmaktadır.

3.1.2. Kullanılan Cihazlar

Çalkamalı inkübatör: LABWİT ZWYR-200D Orbital

Distile su cihazı: Nüve ND 4L

Elektroforez: WEALTEC ELİTE 300 PLUS

Etüv: Nüve FN500

Hassas terazi: Vibra AJ3200H Shinko

Isıtıcılı magnetik karıştırıcı: Are VELP Scientifica

Jel görüntüleme: Dnr Bio-imaging Systems MiniLumi

Nanodrop spektrometre: ACTG Gene UVS-99

Otoklav: Nüve OT 40 Otoklav

PCR cihazı: BİOER GenePro

pH metre: AZ 8685

Pipetler: Eppendorf

Santrifüj: ScanSpeed mini

Sıcak su banyosu: Labo BMS 5200

Vortex: PV-1 Grant-bio Vortex Mixer

Western blot: WEALTEC

3.1.3. Kullanılan Kitler

pGEMTeasy vektörü: 1.2µg pGEM®-T Vektör (50ng/µL) • 12µL Kontrol Insert DNA (4ng/µL) • 100u T4 DNA Ligaz • 200µL 2X Rapid Ligasyon Solüsyonu, T4 DNA Ligaz (Promega)

pET16b vektör: Novagen pET-16b vektör (Kat. No. 69662-3)

Proteo qwest kiti: Sigma (LC6070)

QIAGEN plazmid kiti: Plasmid Midi Kit (Kat. No. 12143)

Quick Gel Extraction Kit: İnvitrogen (K210012)

3.1.4. Kullanılan Besiyerleri

Kanlı Agar: Toplamda 40 gr; (Oxoid) Blood Agar Base çözeltisinden, (2.5 gr Liver digest, 15 gr proteose peptone, , 5 gr sodium chloride, 5 gr yeast extract) ve 12 gr agar alınıp 1000 ml su ile çözündürülmüştür. Hazırlanan çözelti 121 °C'de yüksek basınç altında 15 dk otoklanmıştır.

Luria Bertani (LB): Toplamda; 10 gr tripton (Sigma), 5 gr Yeast infusion (Merck) ve 5 gr NaCl (Merck) karışımı 600 ml H₂O ile çözülerek pH 7.4'e ayarlanır ve toplam hacim 1000 ml olacak şekilde H₂O ile tamamlanır. Hazırlanan besi ortamı 121 °C'de 1,5 atm basınçta 15 dk otoklavlanır.

Nutrient Broth (**NB**): Toplamda 13 gr; (Oxoid) NB çözeltisinden, (1 gr `Lab-Lemco' powder, 5 gr peptone, 5 gr sodium chloride, 2 gr yeast extract) alınıp 1000 ml su ile çözündürülmüştür. Hazırlanan besi ortamı 121 °C'de 1,5 atm basınçta 15 dk otoklavlanır.

3.1.5. Kullanılan Kimyasallar ve Çözeltiler

10x TAE: Tris Acetate-EDTA buffer BioReagent, 50x suitable for electrophoresis

Ampisilin: Sigma A 6140 Solüsyon, 1000x ampisilin stok solüsyonu

Brain Heart İnfusion (BHİ): Toplamda 37 gr; (Oxoid) 12.5 gr Brain heart infusion, 5 gr Beef Heart infusion, 10 gr Proteose peptone, 2 gr Glukoz, 5 gr Sodyum klorid, 2.5 gr Disodium phosphate üzerine 1000 ml distile su içinde çözülerek pH 7.4'e ayarlanır. Hazırlanan besi ortamı 121 °C'de 1,5 atm basınçta 15 dk otoklavlanır.

DNS: Enzim aktivitesinin belirlenmesinde reaksiyonu durdurmak ve aktivite sonucu açığa çıkan indirgen şeker miktarını belirlemek için kullanılır. 1g DNS 50 mL dH₂O içerisinde çözülür ve daha sonra son hacim 30g K-Na-Tartarat ve 20 mL 2N NaOH ile 100 mL'ye tamamlanır.

EDTA: Fluka Kat no: 03620

Etanol: Merck 100983 Ethanol absolute for analysis ACS, ISO, Reag. Ph Eur 2.5 L

Etidyum bromür: 10 mg/ml stok çözelti Ethidium bromide hazırlandı [EB], (Kod: 802511)

Fenol Kloroform İzoamilalkol: Sigma

Gliserol: Emsure® ACS,Reag. Ph Eur. CAS 56-81-5, EC Number 200-289-5 % 80'lik gliserol kullanıldı

İzopropanol: Sigma EC no: 200-661-7

Kalsiyum Klorür: 25:24:1, Saturated with 10mM Tris, pH 8.0, 1mM EDTA, 7.34 gr CaCl2 üzerine 1lt H₂O eklenir.

Kloroform: Sigma Anhydrous, \geq % 99 contains % 0.5-1.0 ethanol as stabilizer

TE: Sigma Tris EDTA pH:8.0

Tris: Sigma EC No: 201-064-4

X-gal: (Bio Basic Katalog no: 12872) 50 mg/ml hazırlandı (N-N dimetilformamide Sigma Katalog no:38H0812)

3.2. Yöntem

3.2.1. Biyolojik Materyalin Toplanma Yöntemi

İzolasyon yapılan alanlardan alınan su ve çamur örnekleri 2 lt'lik cam kavanozlara konularak etrafi güneş ışığı almayacak şekilde alüminyum folyo ile tamamen kapatıldı ve alınan bölgenin bilgileri ve koordinatları kaydedildi (Wulf 1989). Çalışmada; Ağrı (Diyadin; Davut ve Köprü çermiği) Lat. :39,493548, Lng. : 43,649362 kaynak suyu sıcaklığı 70 °C (Şekil 3.1), Davut sıcak su kaynaklarının genel doğal görünümü (Şekil 3.2), Pasinler (Erzurum) Lat. : 39,978194 Lng. : 41,664286, kaynak suyu sıcaklığı 38 °C, Hasanabdal (Van) Lat: 39,225049, Lng. : 43,388236 kaynak suyu sıcaklığı 70 °C, Hıstaçermiği (Siirt) Lat.: 37,707582, Lng. :42,002020 kaynak suyu sıcaklığı 60 °C, Dargeçit (Mardin) Lat. : 37,546184, Lng. : 41,720381 kaynak su sıcaklığı 60 °C, olarak tespit edildi ve alınan örneklerden izolasyon gerçekleştirildi.

Şekil 3.1 A: Köprü sıcak su kaynağı, B: Davut sıcak su kaynağı

Şekil 3.2 Davut sıcak su kaynaklarının genel doğal görünümü

3.2.2. Sıcak Su Kaynaklarının Kimyasal Analizi

Toplanan su örneklerinin kimyasal analizleri Kars Halk Sağlığı İl Müdürlüğü su analiz laboratuvarında yapılmıştır. Örneklerde pH, iletkenlik, NO₃⁻¹ (Nitrat), NH4⁺¹ (Amonyum), NO₂⁻¹ (Nitrit), Fe (Demir), Al⁺³ (Alüminyum), Cu (Bakır), Pb (Kurşun) ve suyun kaynak sıcaklıkları rapor edilmiştir.

3.2.3. Bakterilerin İzolosyonu

Termal kaynaklarından alınan su ve çamur numuneleri distile su içeren tüplere (1 mL örnek 9 mL distile su olacak şekilde aktarılmış) alınarak 10^{-1} ve 10^{-6} 'lık dilüsyonları yapılmıştır. Her bir dilüsyondan 25 µL alınarak sıvı besi ortamlarında geliştirilmiş (Şekil 3.3) ve gelişen her bir besi ortamından da 100 µL inokulum alınarak katı besi ortamlarına ekilmiş ve 55-58 °C' de 24 saat inkübe edilmiştir. İnkübasyon süreci sonunda gelişen kolonilerden öze ile alınan bakteri izolatları ayrı besi ortamlarına çizgi ekim yöntemi ile ekilerek saf kültürleri elde edilmiştir.

Mikroorganizmaların stoklanması amacıyla 2 mL'lik ependorf tüplerine 500 µl (% 30'luk gliserol) ile 500 µl LB eklendi. Çalışma sonucunda saflaştırılan her bir izolattan bir öze dolumu bakteri tüplere alınarak vortekslendi. İzolat numaraları kaydedilen her bir tüp -80 °C'de stoklandı.

3.2.4. Bakteri Örneklerinin Gelişim Gösterdiği Sıcaklıkların Tespiti

İzolatlara ait örnekler farklı sıcaklık (40 °C, 55 °C, 65 °C, 70 °C, 75 °C, 85 °C ve 90 °C) değerlerine sahip parametler baz alınarak ölçülerek sonuçlar rapor edilmiştir.
3.2.5. Bakteri İzolatlarının Tanılanması

3.2.5.1. Morfolojik Tanılama

Tüm bakteriler mikroskop altında incelenerek morfolojik yapıları gözlenmiş olup aynı zamanda endospor ve gram boyama testleri yapılmıştır.

Şekil 3.3 Sıvı besiyerine ekim yapılan örnekler

Hücre Morfolojileri

İzole edilen bakteriler LB agar besi ortamında 70 °C'de 48 saat süre ile inkübe edilmişlerdir. Bu süre sonunda izolatların oluşturduğu hücreler mikroskop altında incelenerek hücre morfolojileri tespit edilmiştir. (Jampaphaeng *et al.* 2017).

Endospor Oluşumları

Endospor elverişsiz yaşam şartlarında bakterilerin yaşamda kalmalarını sağlamak amaçlı oluşturdukları bir yapıdır. Bir gece LB besiyerindeki kültürden saf koloni alınarak lam üzerine yayılarak alevden geçirilerek fikse edildi. Hazırlanan preperat 5 dk boyunca karbon fuksin ile boyandı. Daha sonra yıkanan preperatlar 10 sn boyunca %10'luk nitrik

asitle muamele edildikten sonra 2 dk boyunca metilen mavisi ile boyandı ve mikroskop ile incelendi.

Gram Boyama

İzole edilen bakterilerin gram özelliklerini tespit etmek amacıyla izolatlar LB besi ortamında geliştirilmiş ve lam üzerine alınarak fikse edilmiştir (Yang *et al.* 1995). Fikse edilen örnek ilk aşamada kristal viyole boyasında 1 dk boyunca muamele edilmiş ve bu sürenin ardından distile su ile yıkanmıştır. Böylelikle kristal viyole, ortamda bulunan tüm hücrelerin mor renge boyanmasını sağlamıştır. Akabinde lügol çözeltisi ile örnekler 1 dk kadar muamele edilerek, % 96'lık etil alkol ile yıkanmıştır. Bu aşamalardan sonra hücre duvarları yapılarından dolayı lam üzerinde bulunan ve gram negatif özelliğe sahip bakteriler rengini kaybederken, gram pozitif bakteriler ise mor renkte görülmüşlerdir. Son olarak distile su ile yıkanan örnekler yaklaşık 15 sn. kadar safranin boyasıyla muamele edilip, distile su ile tekrar yıkanarak preperatlar kurumaya bırakılmıştır. İmmersiyon yağı yardımı ile preperatlar mikroskopta incelenmiş, inceleme sonucunda gram pozitif bakterilerin mor renkte, gram negatif bakterilerin ise pembe renkte olduğu gözlenmiştir (Bernard *et al.* 2017).

3.2.5.2. Moleküler Tanılama

Bakterilerden DNA İzolasyonu

Bakterilerden genomik DNA izolasyonu için izlenen protokol aşağıda verilmiştir.

1) Bakteri izolatları 5 mL NB besi yeri içeren ortama alınarak 37 °C'de 24 saat boyunca inkübe edilmiştir. Daha sonra besiyerinden ependorflara 1.5 mL kadar alınmış ve 7000 rpm'de 5 dk. boyunca santrifüj edilmiştir. Üst kısım sıvısı atılmış ve hücre peletinin üzerine; 200 μ l dH₂O, 50 μ l 0,5M EDTA, 10 μ l % 20 sarkosyl, 10 μ l proteinaz K (10mg/ml), 10 μ l 1M Tris- HCl (pH:8) ve 5 μ l 5M NaCl eklenerek karışım 5 dk. boyunca vortekslenmiştir.

 Örnekler 30 dk. boyunca 65°C'ye ayarlanmış su banyosunda bekletilmiştir. Süreç boyunca örnekler her 10 dakikada bir vortekslenmiştir.

3) Örneklerle aynı hacimde olacak şekilde fenol: kloroform: izoamilalkol (25: 24: 1) eklenmiş ve hafifçe ters/düz edilmiştir.

4) 13000 rpm'de 5 dk. boyunca santrifüj yapılmış ve süpernatant kısım pipet yardımı ile alınarak yeni ependorf tüpüne aktarılmıştır.

5) Fenol: kloroform: izoamilalkol (25: 24: 1) işlemi 3 defa yukarıda belirtildiği şekilde yapılmıştır. Her basamakta santrifüj sonunda elde edilen ürünlerden süpernatant kısmı alınmış ve yeni ependorf tüpüne aktarılmıştır.

6) Yeni ependorfa alınan süpernatant hacminin 1/10'u kadar 3M NaOAc ve hacminin 2 katı kadar absolüt etanol eklenip -20°C'de 1 gece inkübasyona bırakılmıştır.

7) Süre bitiminde örneklere 13000 rpm'de 10 dk. boyunca santrifüj yapılarak süpernatant uzaklaştırılmış ve pelet kurutulmuştur. Kurutulan pelet 200 μ l dH₂O eklenip pelet çözündürülerek, çözülmüş olan peletin üstüne 1/10 hacminde 0,3M NaOAc ve 440 μ l etanol eklenmiş ve örnekler -20°C'de 1 gece inkübe edilmiştir.

8) Süre bitiminde örnekler 13000 rpm'de 10 dk. boyunca santrifüj edilerek süpernatant kısmı tüpten uzaklaştırılmış ve pelet kurumaya bırakılmıştır.

9) Kurutulan pelet 100 μL dH₂O ile çözündürülerek % 0.8'lik agaroz jelde yürütüldü. Aynı zamanda DNA'nın kalitesi ve saflığını tespit amacıyla spektrofotometrik ölçümler dalga boyu 260 ve 280 nm olacak şekilde nanodrop'ta gerçekleştirildi. Ölçümlerde kör olarak peletlerin çözündürüldüğü tampon kullanılarak bakteri izolatlarının nanodrop sonuçları kayıt altına alındı (Ozic 2012).

16S rRNA PCR (Polimeraz Zincir Reaksiyonu) Reaksiyon Koşulları ve Amplifikasyonu

Bakteri izolatlarının 16S rRNA bölgelerinin amplifikasyonu için gerekli olan tüm PCR temel bileşenleri Çizelge 3.1'de verilmiştir. Çalışılacak örnek sayısı kadar bileşenlerin yoğunluğu ve miktarları hazırlanarak hazırlanan bu karışımlar PCR tüplerine aktarılmış ve Çizelge 3.2' de verilen reaksiyon koşulları dikkate alınarak örnekler amplifiye edilmiştir. PCR sonrası elde edilen ürünlerin DNA konsantrasyonları ölçülerek kayıt altına alınmıştır. (Baltacı vd 2016).

Bileşenler	Bileşen Miktarları
Taq Polimeraz (5U/µL)	0,25 μL
10x Buffer PCR	2,5 μL
MgCl ₂ (25 mM)	2 µL
Primer 27 F (25pmol/ µL)	2,5 μL
Primer 1385 R (25pmol/ μ L)	2,5 μL
DNA (Genomik)	1 µL
dNTP (25mM)	1,5 µL
Distile Su	12,75 μL

Cizelge 3.1 PCR Temel Bileşenleri

Çizelge 3.2 PCR Reaksiyon Koşulları

Sıcaklık	Süre	Döngü
94 °C	5 dakika	
94 °C	1dakika	
55 °C	1dakika	
72 °C	1dakika	40 Döngü
72 °C	5 dakika	
4 °C	∞	

16S rRNA PCR ürünlerinin Klonlanması

Kompetent Hücre

PCR amplikonları taşıyıcı vektörlere ve ardından *E. coli*'ye aktarılmıştır. Çalışmamızda daha önceden stoklanmış hazır *E.coli* DH5-α kompetent hücre stokları kullanılmıştır.

PCR ürününün plazmite ligasyonu

PCR ürününün taşıyıcı plazmite eklemesi T-A klonlanması (plazmitdeki T nükleotid ile Taq polimeraz tarafından PCR ürününün uçlarına eklenen A nükleotidin birleştirilmesi) temeline dayandırılmıştır.

PCR ürünlerine A ekleme reaksiyonu: 1 μl 10X tampon, 1 μl 25 mM MgCl₂, 0,5 μl 2.5 μM dATP, 6.5 μl PCR ürünü, 1 μl Taq DNA Polimeraz ile hazırlanan karışım 70°C 'de 30 dk. bekletilmiş ve sonra PCR ürünü ligasyona alınmıştır.

Ligasyon: Klonlama reaksiyonlarında genel olarak pGEMTEasy (Promega) vektörü kullanılmıştır. Vektörler ilgili firmadan temin edilmiştir. Ligasyon, plazmit içeriğinde bulunan T nükleotitleri ile PCR ile ürün amplifikasyonu yapıldığında Taq polimeraz enziminin ürünün uçlarına eklediği A nükleotidinin bir araya gelmesi ile T-A klonlanması olayı temeline dayanmaktadır. Hazırlanan karışım 70°C 'de 30 dk. inkübe edildikten sonra PCR ürünü ligasyon için hazırlanmıştır.

Transformasyon: Daha önceden stoklanmış ve -80°C' de muhafaza edilen kompetent hücreler çıkarılmış ve buz üzerinde yaklaşık 5 dk. bekletilmiştir. Ligasyon aşamasında elde edilen ürün daha önceden temin edilmiş olan kompetent hücrenin üzerine aktarılmış ve buz üzerinde yaklaşık 30 dk. boyunca bekletilmiştir. Bu süre zarfı sonucunda buz üzerinden alınan örnekler 42 °C'ye ayarlanan ısı bloğuna 1 dk. ısı şokuna bırakılmıştır. Süre sonunda ısı bloğu üzerinden alınan örnekler tekrar buz üzerine alınmış ve buzda 3 dk. bekletilmiştir. Süre sonunda üzerine 500 µL LB eklenmiş ve 37 °C'de 35 dk. inkübe edilmiştir. İnkübe edilen örnekler 10000 rpm'de 2 dk. boyunca santrifüj edilmiştir. Besiyerlerinin ekimi yapılacağı petriler 40'ar µL X-Gal ile muamele edilmiştir. Tüp içerisinde süpernatanttan 50 μ L kalacak şekilde süpernatant uzaklaştırılmıştır. Pelet 50 μ L içerisinde çözülmüş, sonra LB-agar-ampisilin - XGal plate yüzeyine dağıtılmış ve bir gece 37 °C'de inkübe edilmiştir. Yapılan bu transformasyon basamağından sonra oluşacak olan mavi-beyaz kolonilerden beyaz renkli olan koloniler seçilerek alınmıştır. Aseptik koşullar altında öze yardımıyla alınarak, önceden hazırlanmış olan 40 μ L X-Gal içeren LB Agar Amfisilin (100 μ g/ μ L) petrilerine çizgi ekimleri yapılmıştır. İşlemde arta kalan öze uçlarındaki amfisilinli kısım 100 ml sıvı besiyeri içeren erlenlere alınmıştır. X-Gal içeren LB Agar amfisilin petrileri ve LB besiyerleri 37 °C'de bir gece inkübe edilmiştir.

Plazmid İzolasyonu: Plazmid izolasyonu için izole edilen beyaz kolonilerden plazmid izolasyonu yapmadan önce koloniler 1 gece boyunca 120 rpm'de 37°C'de ampisilin (100 µg/µL) içeren LB agar besi yerinde büyütülmüştür. Daha sonra besiyerleri falkon tüplerine transfer edilmiş ve 8000 rpm'de 5 dk. santrifüje tabi tutulmuştur. Elde edilen süpernatant uzaklaştırılarak üzerlerine pH'1 8.0 olan 1000 µL 50 mM Tris-HCl ilave edilmiştir. Vorteks yardımı ile elde edilen peletler çözündürülmüş ve ependorf tüplerine transfer edilmişlerdir ve bu aşamadan sonra 1 dk. boyunca 8000 rpm'de santrifüj edilmiştir. Bakteri peletinin parçalanmasında ise 150 µL Lizozim-Tris ve pH'ı 8.0 olan 20 µL 0.5 M EDTA karıştırılarak pelet üzerine aktarılmış ve pelet solüsyon çözündürülmüştür. Çözündürülen pelet 30 dk. boyunca buz üzerinde inkübe edilmiştir. Plazmit DNA'sının çöktürülmesi aşamasında ise her bir tüpe 400 µL 0.2 M NaOH ve 1:1 oranında % 1'lik SDS eklenmiş ve 5 dk. buzda inkübe edilmiştir. Bu süreç zarfı sonunda pelete 300 µL 7.5 M amonyum asetat eklenmiştir. Tüpler nazikçe ters düz edilmiştir ve 10 dk. boyunca buzda inkübe edilmiştir. Bu aşamadan sonra çöken plazmitin saflaştırılması için süre sonunda tüpler buzdan alınarak 8000 rpm'de 15 dakika boyunca santrifüj edilmiş ve süpernatant kısmı yeni ependorflara aktarılmıştır. Fenol-kloroform uygulama aşamasında süpernatantın üzerine 800 µL fenol: kloroform: izoamilalkol (25: 24: 1) eklenmiştir. Çalkalamalı tabla üzerinde 5 dakika karıştırılmış ve tüpler 8000 rpm'de 2 dk santrifüj yapılmıştır. Oluşan üç fazdan plazmit içeren en üst faz yeni bir ependorfa alınmış ve üzerine hacminin 0.6 katı kadar 2-Propanol ilave edilmiştir. Nazikçe karıştırılmış ve 15 dk. oda sıcaklığında inkübe edilmiştir. Daha sonra 8000 rpm'de 10 dk santrifüj yapılmıştır. Süpernatant uzaklaştırılmış ve pelette kalan sıvının kuruması sağlanmıştır. Kurutulan pelet üzerine 200 µL 0.3 M NaOAc eklenmiş ve çözündürülmüştür. Tüpe 400 µL absolut etanol ilave edilmiş ve -20 °C'de gece boyunca

inkübasyonu sağlanmıştır. Daha sonra 8000 rpm'de 10 dakika santrifüj edilmiş, süpernatant uzaklaştırılmış ve pelet kurumaya bırakılmıştır. Pelet üzerine 30 µL TE ilave edilmiş ve -20 °C'de muhafaza edilmiştir.

Çalışmada bakteriler için spesifik olan ve evrensel olarak kabul edilen primerler [Primer 1: 27 F (5'-GAG TTT GAT CCT GGC TCA-3') ve Primer 2: (1385R) (5'-CGGTGTGT[A/G]CAAGGCCC-3')] kullanılmıştır. Primerler kullanılarak amplifiye edilen PCR ürünlerinin 5 μ L' si % 1'lik agaroz jelde yürütülerek 16s rRNA bölgelerinin elde edilip edilmediği yani istenilen bölgenin çoğaltılıp çoğaltılamadığı doğrulanmıştır. (Yanmis ve Adiguzel 2014).

% 1'lik agaroz jel hazırlamak için 22 gram agaroz 220 ml 1xTAE solüsyona eklenerek mikrodalga fırında homojen bir şekilde çözülmesi sağlanmış, homojen karışım yaklaşık olarak 45 °C ile 50 °C arasına kadar soğumaya bırakılıp ve son konsantrasyonu 0,3 μ L/mL olacak şekilde 8 μ L Etidyum Bromür eklenmiş, daha sonra agaroz jel kasete yüklenerek 35- 60 dakika boyunca donması için bekletilmiş daha sonra taraklar çıkarılmış ve jel, 1x TAE buffer bulunan elektroforez tankına yerleştirilmiştir.

Bakteri İzolatlarının Dizi Analizi

Klonlaması yapılan örneklerin PCR ürünleri hizmet alımı ile sekans analizine gönderilmiş, buradan elde edilen veriler (sekans dizi sonuçları) National Center for Biotechnology Information (NCBI) üzerinden BLAST edilerek hangi türe veya türlere yakınlık gösterdiği belirlenmiştir. Sekans analiz sonuçları EMBL, GenBank, DDBJ Basic Local Alignment Search Tools (BLAST) programı ile karşılaştırmalı olarak analiz edilmiştir (Altschul *et al.* 1990).

3.2.6. İzolatların Total Ksilanaz Aktivitesinin Belirlenmesi

Bakteri izolatlarının enzim aktivitelerinin belirlenmesi amacı ile sıvı besi yerinde geliştirilen kültürlerden 1,5 mL ependorf tüplerine alınarak 12000 rpm'de 5 dk. boyunca santrifüj edilmişlerdir. Santrifüj sonunda ependorf tüplerinin süpernatant kısmından 0.5 ml'lik kısmı alınarak, aynı oranda % 1'lik kısılan çözeltisiyle Hungate tüpünde

karıştırılmıştır. Daha sonra 1 saat boyunca 65 °C'de bekletilmiştir. Sürenin bitiminde Hungate tüpünün üzerine 1'er ml DNS çözeltisi eklenerek reaksiyon işleminin durdurulması sağlanmıştır. Daha sonra 5 dk. boyunca sıcak su banyosunda tutulmuş ve üzerlerine 5 ml kadar dH₂O ilave edilmiştir. Distile su ilave edilen tüpler ters düz edilerek karıştırılmış ve akabinde spektrofotometrik ölçüm yapan nanodrop cihazı ile 540 nm dalga boyunda O.D. yoğunlukları ölçülmüştür. Aktivitesi yüksek olan bakterilerden ksilanaz enzimi rekombinant olarak üretilmiştir.

3.2.7. Rekombinant Ksilanaz Üretilmesi

3.2.7.1. Biyoinformatik Analizler

Çalışma kapsamında klonlanarak rekombinant protein olarak üretilecek 1,4-βendo ksilanaz geninin çeşitli *Bacillus* türlerinin genomunda belirlenmesi, belirlenen aday genin diğer organizmalardaki genler ile benzerliklerinin ortaya konması, *E. coli*'de heterolog protein ekspresyonunun gerçekleştirilmesi amacıyla yapılan klonlama çalışmalarında kullanılacak primer DNA dizilerinin belirlenebilmesi için NCBI Genbank gibi veri tabanları ile BLAST, ClustalW, WebCutter gibi çeşitli temel biyoinformatik araçlardan yararlanılmıştır.

Aday genlerin tayini için 1,4- β -endo ksilanaz enziminin rekombinant olarak üretilebilmesi amaçlandığından, *Bacillus* türleri seçilmiştir. Organizmanın genomunda yer alan 1,4- β -endo ksilanaz enzimini kodlayan protein ve DNA dizilerine NCBI veri tabanından ulaşılmıştır.

Primer dizilerin tasarımı; belirlenen aday genin PCR ile çoğaltılması amacıyla kullanılan primer DNA'ların tasarımı için;

- İlk olarak aday gen dizileri Webcutter ile restriksiyon kesim analizine alınmış ve gen bölgesini kesmeyen restriksiyon enzimleri belirlenmiştir.
- ii) Sonrasında bu enzimlerden pET 16b vektörünün çoklu klonlama bölgesinde bulunanlar primer dizilere eklenerek primer dizilerin tasarımı gerçekleştirilmiştir.

Tasarlanan primerler BLAST ile analiz edilmişlerdir. PCR reaksiyonlarında kullanılan primer DNA dizileri Çizelge 3.3.'de gösterilmiştir.

Gen	Primer Adı	Primer DNA dizisi	Restriksiyon Enzimi	Bç. Uzunluğu	Tm
1,4-β- endo ksilana	F- Ksilanaz	<mark>GTCGAG</mark> ATGAAA AAATTACTTGTT GTCTTA	SalI	27	57°C
Z	R- Ksilanaz	<mark>AAGCTT</mark> TCAAAC AAGGAAAATATC TCCAAA	HindIII	28	61°C

Çizelge 3.3 Aday genlerin PCR amplifikasyonunda kullanılan primer DNA dizileri

* sarı ile gösterilen kısımlar restriksiyon tanıma bölgelerini göstermektedir.

3.2.7.2. 1,4-β-endo Ksilanaz Proteinlerine Ait Genlerin Klonlanması

Çizelge 3.3.'de belirlenmiş olan genler PCR ile amplifiye edilerek PCR amplikonları taşıyıcı vektörlere ve ardından *E. coli*'ye aktarılmıştır. Bu amaçla ilk olarak genomik DNA izolasyonu Chong (2001)'dan alınan metoda göre gerçekleştirilmiştir. Elde edilen gDNA kalıp olarak kullanılarak aday genlerin amplifikasyonu yukarıda belirtilen primerler kullanılarak gerçekleştirilmiştir. PCR ürünleri % 1'lik agaroz jelde analiz edilmiş ve ilgili genlere ait istenen büyüklükteki DNA bantları jelden kesilip saflaştırılmıştır. Elde edilen amplikonlar TA klonlama ile pGEMT-Easy vektörüne ve ardından *E. coli* DH5- α konakçısına ısı şoku ile aktarılmıştır. Belirlenen pozitif klonlardan saflaştırılan plazmit DNA'lar XbaI ve KpnI enzimleri ve primer DNA'lar üzerinde tanıma dizileri bulunan uygun restriksiyon enzimleri ile kesim reaksiyonuna alınmış ve saflaştırılmıştır. Restriksiyon analizi sonucunda belirlenen plazmit DNA'lar dizi analizi ile kontrol edilmiş ve pozitif klonlar belirlenmiştir. Dizi analizi işlemi hizmet alımı şeklinde gerçekleştirilmiştir.

Kullanılan Vektörler

Bacillus türlerinden 1,4- β -endo ksilanaz geninin klonlanması amacı ile pGEMT-Easy vektörü (Promega), rekombinant protein ifadesi için ise pET 16b vektörü (Qiagen) kullanılmıştır (Şekil 3.3). pGEMT-Easy vektörünün klonlama bölgesine sarkık timin bazları oturtulmuş ve plazmitde bulunan 3' uçlarındaki fosfatlar çıkartılmıştır. Buradaki amaç plazmitin ligasyon aşamasında halkasal yapı alması engellenerek klonlama olasılığının arttırılmasıdır. Klonlama bölgesi plazmit üzerinde β -galaktosidaz enzimini üreten lac-Z geni içerisine yerleştirilmiştir. Bu sonuçla pozitif klonların seçilmesi ve kolonilerdeki mavi-beyaz seleksiyon seçimi bu farklılığa göre yapılmıştır (Ozic 2012).

Şekil 3.3 Çalışmada kullanılan vektörler, A: pGEMT-Easy Vektörü (Promega); B: pET 16b Vektörü (Novagen)

PCR Reaksiyonu Sonucu Oluşan Ürünün Ligasyonu

Ligasyon, plazmit içeriğinde bulunan Timin (T) nükleotitleri ile PCR ile ürün amplifikasyonu yapıldığında Taq polimeraz enziminin ürünün uçlarına eklediği Adenin (A) nükleotidinin bir araya gelmesi ile T-A klonlanması olayı temeline dayanmaktadır. PCR ürünlerine A ekleme reaksiyonu: 1 µL 10x tampon, 1 µL 25 mM MgCl₂, 0,5 µL 2.5 µM dATP, 6.5 µL PCR ürünü, 1 µL Taq DNA Polimeraz ile hazırlanan karışım 70°C 'de 30 dk. inkübe edildikten sonra PCR ürünü ligasyon için hazırlanmıştır. Ligasyon aşamasında belirtildiği gibi pGEMT Easy vektörü kullanılmıştır (Şekil 3.4). Bu vektörler projeler ile hizmet alımı şeklinde elde edilmişlerdir. Ligasyon için gerekli olan bileşenler, miktarları ve insert oranı firma tarafından gönderilen uygun protokole göre uygulanmıştır.

Reaksiyonda; 2x Rapid Ligation Bufer 5 μ L, pGEM-T Easy Vektör 1 μ L, İnsert X μ L, T4 DNA Ligaz (5u/ μ L) 1 μ L, Deiyonize su 10 μ L'ye tamamlanmıştır. Reaksiyonun tamamlanma süresi ve ortam sıcaklığı, 16 °C'de 24 saattir (Ozic 2012).

Şekil 3.4 pGEM-T Easy Vektör Sistemi

E. coli (Kompetent) Suşlarının Tranformasyonu

-80°C' de muhafaza edilen kompetent hücreler çıkarılmış ve buz üzerinde yaklaşık 5 dk. bekletilmiştir. Ligasyon aşamasında elde edilen ürün daha önceden temin edilmiş olan kompetent hücrenin üzerine aktarılmış ve buz üzerinde yaklaşık 30 dk. boyunca bekletilmiştir. Bu süre zarfı sonucunda buz üzerinden alınan örnekler 42 °C'ye ayarlanan ısı bloğuna 1 dk.ısı şokuna bırakılmıştır. Süre sonunda ısı bloğuna alınan örnekler tekrar buz üzerine alınmış ve buzda 3 dk. bekletilmiştir. Süre sonunda üzerine 500 µL LB eklenmiş ve 37 °C'de 35 dk. inkübe edilmiştir. Süre sonunda 10000 rpm'de 2 dk. boyunca santrifüj edilmiştir. Besiyerlerinin ekimi yapılacağı petriler 40'ar µL X-Gal ile muamele edilmiştir. Tüp içerisinde süpernatanttan 50 µL kalacak şekilde süpernatant uzaklaştırılmıştır. Pelet 50 µL içerisinde çözülmüş, sonra LB-agar-ampisilin - XGal içeren besi ortamına alınmış ve bir gece 37 °C'de inkübe edilmiştir. Yapılan bu transformasyon basamağından sonra oluşacak olan mavi-beyaz kolonilerden beyaz renkli olan koloniler seçilerek alınmıştır. Aseptik koşullar altında öze yardımıyla alınarak, önceden hazırlanmış olan 40 µL X-Gal içeren LB Agar Amfisilin (100 µg/µL) petrilerine çizgi ekimleri yapılmıştır. İşlemde arta kalan öze uçlarındaki amfisilinli 100 ml sıvı besiyeri içeren erlenlere alınmıştır. X-Gal içeren LB Agar amfisilin petrileri ve LB besiyerleri 37 °C'de bir gece inkübe edilmiştir (Ozic 2012).

Plazmid İzolasyonu

Elde edilen beyaz kolonilerden plazmit izolasyonu yapmadan önce koloniler 1 gece boyunca 120 rpm'de 37°C'de ampisilin (100 $\mu g/\mu L$) içeren LB agar besi yerinde büyütülmüştür. Daha sonra besiyerleri falkon tüplerine transfer edilmiş ve 8000 rpm'de 5 dk. santrifüje tabi tutulmuştur. Elde edilen süpernatant uzaklaştırılmıştır üzerlerine pH'ı 8.0 olan 1000 µL 50 mM Tris-HCl ilave edilmiştir. Vorteks yardımı ile elde edilen peletler çözündürülmüş ve ependorf tüplerine transfer edilerek 1 dk. boyunca 8000 rpm'de santrifüj edilmiştir. Bakteri peletinin parçalanmasında ise 150 µL Lizozim-Tris ve pH'1 8.0 olan 20 µL 0.5 M EDTA karıştırılarak pelet üzerine aktarılmış ve pelet solüsyonda çözündürülmüştür. Çözündürülen pelet 30 dk. boyunca buz üzerinde inkübe edilmiştir. Plazmit DNA'sının çöktürülmesi aşamasında ise her bir tüpe 400 µL 0.2 M NaOH ve 1:1 oranında % 1'lik SDS eklenmiş ve 5 dk. buzda inkübe edilmiştir. Bu süreç zarfı sonunda pelete 300 µL 7.5 M amonyum asetat eklenmiştir. Tüpler nazikçe ters düz edilerek 10 dk. boyunca buzda inkübe edilmiştir. Bu aşamadan sonra çöken plazmitin saflaştırılması için süre sonunda tüpler buzdan alınarak 8000 rpm'de 15 dakika boyunca santrifüj edilmiş ve süpernatant kısmı yeni ependorflara aktarılmıştır. Fenol-kloroform uygulama aşamasında süpernatantın üzerine 800 µL fenol: kloroform: izoamilalkol (25: 24: 1) eklenmiştir. Çalkalamalı tabla üzerinde 5 dakika karıştırılan tüpler 8000 rpm'de 2 dk santrifüj yapılmıştır. Oluşan üç fazdan plazmit içeren en üst faz yeni bir ependorfa alınmış ve üzerine hacminin 0.6 katı kadar 2-Propanol ilave edilmiştir. Nazikçe karıştırılan tüpler 15 dk. oda sıcaklığında inkübe edilerek 8000 rpm'de 10 dk santrifüj yapılmıştır. Süpernatant uzaklaştırılarak kurutulan pelet üzerine 200 µL 0.3 M NaOAc eklenmiş ve çözündürülmüştür. Tüpe 400 µL absolut etanol ilave edilmiş ve -20 °C'de gece boyunca inkübasyonu sağlanmıştır. Daha sonra 8000 rpm'de 10 dakika santrifüj edilmiş, süpernatant uzaklaştırılmış ve pelet kurumaya bırakılmıştır. Pelet üzerine 30 µL TE ilave edilmiş ve -20 °C'de muhafaza edilmiştir (Ozic 2012).

Plazmitin Restriksiyon Enzimleriyle Kesimi

Plazmitlerin istenilen DNA bölgesini içerip içermediğinin kontrolü için bu bölgeye özel restriksiyon enzimleriyle (XbaI ve KpnI) kesimi sağlanmıştır. Kullanılan kesim reaksiyonu; 1 μ L (Fermentas XbaI ve KpnI 10,000 u/ml) enzimi,1 μ L 10X enzim tamponu, 1 μ L Plazmit (1.380 ng/ μ L) ve 7 μ L H₂O'dan meydana gelmektedir. Karışımı hazırlanan reaksiyon tüpü 37 °C'de 16 saat inkübasyona bırakılmıştır. Kesime uğrayan ve içinde klonlanmış DNA parçası içerenler "pozitif koloni" olarak tanımlanmıştır (Ozic 2012).

PCR Ürünlerinin Jelden Saflaştırılması

Jelde yürütülen örneğe ait ürünün oluşturduğu bant büyüklüğü uygun marker yardımı ile tespit edilmiştir. Beklenen marker büyüklüğündeki bant, UV ışık altında jelden dikkatlice kesilerek alınmış ve İnvitrogen PureLink Quick Gel Extraction Kit protokolü uygulanarak saflaştırma işlemi yapılmıştır.

3.2.7.3. 1,4-β-endo Ksilanaz Enzimine Ait Proteininin *E. coli*'de Heterolog Protein Olarak Üretilmesi, Saflaştırılması ve Karakterizasyonu

Çalışmada elde edilen pozitif klonlarda enzimlerin üretilmesi, saflaştırılmaları ve enzimatik karakterizasyonları yapılmıştır. Moleküler klonlama işlemleri sonucunda elde edilen pozitif klonlardan enzimlerin saflaştırılması için klonlar amfisilin (0,1 mg/ml) içeren LB ortamında 37 °C'de OD₆₀₀ değeri 0,6-0,8 değerine gelinceye kadar inkübe edilmiş ve ardından IPTG ile indüklenerek (yaklaşık 3 saat) proteinin aşırı şekilde ifade edilmesi sağlanmıştır. İnkübasyon sonrasında hücrelerden toplam protein izolasyonu ve bunu takiben de Nikel afinitesi ile 6X-His takısına sahip rekombinant proteinlerin saflaştırılması gerçekleştirilmiştir. Histidin takısına sahip rekombinant proteinlerin saflaştırılmasında yüksek miktarda ve yüksek saflıkta ürün elde edilebildiği için Nikel afinitesi ile saflaştırma tercih edilmiştir (Steinert *et al.* 1997). Saflaştırma sonrasında elde edilen proteinlerin başarılı bir şekilde ifade edilip edilmedikleri ve saflaştırılan proteinin moleküler ağırlığı SDS-PAGE ile analiz edilmiştir. Ayrıca Western blot tekniği kullanılarak saflaştırılan proteinin histidin takısına sahip olup olmadığı Anti-His antikoru ile teyit edilmiştir.

Ksilanazın E. coli'de Rekombinant Olarak Üretilmesi ve Saflaştırılması

Rekombinant proteinin üretilmesi aşaması ksilanazın ekspresyon plazmitine aktarılması, proteinin izolasyonu, saflaştırma ve SDS Page aşamalarından oluşmaktadır. Rekombinant proteinlerin ifadesi amacıyla kullanılan pET 16b vektörü *E. coli*'de yüksek miktarda protein ifadesi için oluşturulmuş bir vektördür. Vektör yapısında yüksek translasyon için sentetik bir ribozom bağlanma bölgesi yer almaktadır. Ayrıca vektör üretilen rekombinant proteinlerin saflaştırılması amacıyla N terminalde altı adet histidin artığına, birçok restriksiyon enziminin tanıma dizilerinin yer aldığı çoklu klonlama bölgesine ve amfisilin direnç bölgesine sahiptir.

Protein İzolasyonu Aşaması

Elde edilen beyaz kolonilerden yani pozitif kolonilerden 10 ml'lik kültür amfisilinli LB besi yerine aktarılmış ve 16 saat boyunca inkübe edilmiştir, bu sürenin sonunda 0.1 M IPTG (izopropil- beta- D- thiogalaktopiranosit) 100 μ L eklenmiş ve 3 saatlik süreç boyunca saat başı hücreler alınmıştır. Alınan hücreler 6000 rpm'de 15 dk. boyunca santrifüj edilmiş ve 1 ml TES (100 mM Tris HCL pH: 7.5, 100 mM EDTA ve 100 mM NaCl ile 50 ml) ile yıkanmışlardır. Daha sonra aynı santrifüj koşullarında tekrar peletlenmiş ve 180 μ L TES ile çözündürülmüştür. Bu örneklere 10 mg/ml lizozimden 0.02 gr lizozim ve 50 mM TrisHCL ve pH:8 ile çözündürülüp distile su eklenerek 2 ml'ye tamamlanmıştır. Daha sonra 2 μ L ve 10 μ L deterjan kokteyli 150 μ L Tween 20 ile 150 μ L Triton x100 eklenmiş ve 20 dk. buz üzerinde inkübe olması sağlanmıştır. İnkübasyon sonrası 50 μ L 50 mM Tris HCL, 0.8 μ L Endonükleaz ve 1.5 μ L 1 M MgCl₂ eklenip 20 dk. oda koşullarında bekletilmiştir. Bu aşamadan sonra iki kez tekrarlı olmak kaydıyla, -80°C'de 20 dk. tutulan karışım oda koşullarında bekletilmiştir. Elde edilen karışım soğutmalı santrifüjde +4 °C'de yaklaşık 12000 rpm'de 15 dk. boyunca santrifüj edilip süpernatant kısmı farklı bir ependorfa alınıp saflaştırma işlemine geçilmiştir.

Saflaştırma Aşaması

Saflaştırma aşamasında ksilanazı tanıyan ve tutan saflaştırma boncuğu kullanılmıştır. Bu boncuk Ni-NTA agarose (QIAGEN Kat. no: 30230) Histidin affinitesine yatkınlık göstererek bunları tutan boncuklardır (Şekil 3.6). Bu boncuklar pET16b içinde 6X His'lere affinite duymaktadır. Ni-NTA agarose'dan 120 µL alınıp soğutmalı santrifüjde +4°C'de 3,000 rpm'de 5 dk. boyunca santrifüje tabi tutulmuştur. Ni-NTA agarozları kitte belirtildiği gibi Buffer C; 8 M urea, 100 mM NaH₂PO₄ ve 10 mM Tris HCl ile pH:6.3 olacak şekilde 1.000 ml tamamlanır. Daha sonra 3 dk. boyunca karıştırıcı tabla üzerinde karıştırıldıktan sonra 3,000 rpm'de 5 dk. santrifüj edilmiştir. Bu işlem 3 defa tekrarlanmıştır. Protein süpernatantları Ni-NTA agarose boncukları ile karıştırıldıktan sonra gece boyunca +4 °C'de karıştırıcı tabla üzerinde bekletilmiştir. Bu sürecin ardından örnekler +4 °C'de 3,000 rpm'de 5 dk. boyunca santrifüj edilmiştir. Santrifüj sonrası elde edilen pelet 500 µL Buffer C (Ni-NTA için) ve 1X PBS ile yıkanmış, 3 dk. boyunca karıştırıcı üzerinde çalkalandıktan sonra 3,000 rpm'de 5 dk. boyunca santrifüj edilmiştir. Bu işlem 5 defa tekrarlanmıştır. Son santrifüj ile birlikte süpernatant atıldıktan sonra 100 µL Leamli buffer (250 µL 0.5 M Tris HCl (pH:6.8), 200 μ L % 20 SDS, 200 μ L Gliserol, 100 μ L β -merkaptoetanol, az miktarda Bromfenol blue eklenmiş ve dH₂O ile 1 ml'ye tamamlanır) eklenmiş ve 10 dk. boyunca kaynatılmıştır. Bu aşamadan sonra örneklerden 10 µL SDS-Page jeline yüklenmiştir (Ozic 2012).

Şekil 3.4 Ni-NTA Agarose Boncuk Sistemi (Chao et al. 2017), Anonim 2017

SDS Page Aşaması

SDS Page de kullanılan jel sistemi Bio-RAD firması tarafından temin edilmiştir. Biyoteknolojik çalışmalarda sıklıkla kullanılan SDS-PAGE proteinlerin molekül ağırlıklarını belirlemek amacı ile kullanılan jel elektroforezidir. Deterjan türevi olan sodyum dodesil sülfat (SDS) proteinlerin yapısının bozulmasını sağlar. Yürütme tamponu (Running buffer) ve ayırma tamponu olmak üzere iki farklı tampon kullanılmıştır. Yürütme tamponu; Hazırlanışı itibari ile % 10'luk hazırlanacak şekilde, 3.3 ml % 30 Bisakrilamid, 2.5 ml 1.5 M Tris HCl (pH:6,8), 0.1 ml % 10 SDS, 4.1 ml dH₂O, 5 μ L TEMED ve 50 μ L amonyom persülfat ile hazırlanmıştır. Ayırma tamponu (Stacking buffer) ise; yine % 10'luk hazırlanacak şekilde 1.7 ml % 30 Bis-akrilamid, 2.5 ml 0.5 M Tris HCl (pH:6,8), 0.1 ml % 10 SDS, 5.7 ml dH₂O, 10 μ L TEMED (N,N,N',N'tetrametiletilendiamin) ve 50 μ L amonyom persülfat ile süspanse edilmiştir. Bu tamponlar aracılığı ile hazırlanan jele örnekten 10 μ L yüklenmiş ve 80 V'da 2 saat yürütülmüştür ve renkli özelliğe sahip olan Kaleidoscope prestained standards (Bio-RAD, Kat. no:161-0324) markırı kullanılmıştır.

Rekombinant Olarak Üretilen Ksilanazın Western Blot Analizi

Western blot; spesifik antikorlar ile jel elektroforezinin rezolüsyonunu bir araya getirerek kullanan analiz metodudur. Çalışmada üretilen proteinin doğru protein olup olmadığını ve miktarı tespit etmek amacıyla bu yöntem kullanılmıştır.

SDS-Page'e yüklenen jeller öncelikle yıkama tamponu (3 gr TrisHCL, 14.4 gr glisin, 200 ml methanol, dH₂O ile 1,000 ml tamamlanmıştır) içinde 30 dk. boyunca karıştırıcı üzerinde tutulmuştur. mA değerinin hesaplanmasında ise Alan x 0,8 = ?mA formülüne 24 mA'lık bir değer bulunmuştur. Çalışmada Sigma Proteo qwest kiti kullanılmıştır. Blotma işleminin ardından ise membranlar kit içeriğinde toz halinde olan ve 500 ml distile su ile hazırlanan TBST ile 1 dk. boyunca yıkanmış ve süre sonunda TBST süzülerek atılmıştır. Süzülen membran üzerine kit içerisinde bulunan bloker çözeltisi aktarılmış ve 30 dk. boyunca karıştırıcı üzerinde etkin temas olması için karıştırılmıştır. Ni-NTA kullanılarak saflaştırılan membran için anti-Histidin antikoru (Mouse monoklonal antibody Anti-His6 (Roche, Kat. no: 135508)) ve 30 dk. boyunca

karıştırıcı üzerinde etkin temas olması için karıştırılmıştır. Süre sonunda TBST ile membranlar 1 dk. boyunca karıştırıcı üzerinde yıkanmış ve TBST süzülerek atılmış ve ikinci bloklama aşamasına geçilmiştir. Tekrar western bloker çözeltisi eklenmiş ve 30 dk boyunca karıştırıcıda bekletilmeden ikincil antikor (Anti-mouse IgG (Sigma, Kat.no: A5225) 1:1000 ile muamele edilmiştir. Bu membranlar süre sonunda 5'er dk. boyunca 5'er kez TBST tamponu ile yıkanmıştır. Uzaklaştırılan TBST'den sonra membranlar ikinci bir plastik boyama tankına aktarılmış ve üzerlerine 4-kloro-1-naftol eklenerek 15 dk boyunca bekletilmiştir. Bantlaşmalar belirginleşince tampondan alınmış, dH₂O ile yıkanarak, kurutulmuştur. Kurutulan membranlar UV fotometrede beyaz ışıkta görüntülenmiştir.

3.2.7.4. ANADOLUCA Yöntemi ile Enzimin Kafeslenmesi

Say et al. (2015) tarafından patentlenen ANADOLUCA yöntemi; biyoteknoloji, genetik ve moleküler biyoloji gibi alanlarda elde edilen ürünlerin kararlılık ve etkinliğini geliştiren bir yöntem olup, oligomerlerin, enzimlerin, aminoasitlerin ve bunun gibi biyoteknolojik ürünlerin; rutenyum tabanlı, ışığa duyarlı, konjugasyonunu ve çapraz bağlanmasını kurgulayan bir yöntemdir. Bu yöntemde çeşitli yapıların etrafı rutenyum tabanlı aminoasit monomerleri ile kuşatarak çapraz bağlı yapılar sayesinde moleküllerin; aktiviteleri, kararlılıkları, duyarlılıkları ve yeniden kullanılabilirliklerinin arttırılması sağlanmaktadır. Bu yöntem ile enzimin kuşaklanmasından sonra enzimin geniş pH, sıcaklık ve tekrar tekrar kullanımında aktivitesinin daha geniş ve etkin bir biçimde uzun soluklu kalması sağlanmaktadır (Say et al. 2015). Çalışmada 45 mL distile suda çözünen 0.5 gr PVA (Poly vinil alkol), mikro emülsiyon sistem ile hazırlanmıştır. 20 µL ksilanaz enzimi 10 µL MATry-Ru (biyr)₂ – MATyr (Methacroyl Tyrosine- Metracroyl Tyrosine ruthenium (II) ile 20 dk. boyunca karıştırılarak üzerine hazırlanmış PVA (Poly Vinil Alkol) çözeltisinden 15 mL eklenmiştir. Başlatma solüsyon 0.02 gr APS (Amonyun Persulfate) ve 45 mL distile su ile çözündürülmüş ve reaksiyon karışımından 5 mL eklenerek gün ışığında Nitrojenli azot atmosferi altında 48 saat boyunca karıştırılmıştır. Ksilanaz nanopartikülleri tepkime çözeltisinden 6000 rpm'de 10 dk. santrifüjlenerek ayrılmış ve reaksiyona girmeyen maddeler distile su ile yıkanarak uzaklaştırılmıştır.

3.2.7.5. Ksilanaz Enziminin Aktivitesinin Tayini

Enzim Aktivite Tayinini Etkileyen Faktörlerin Ölçümü

a. pH Değerinin Aktiviteye Etkisi

Farklı pH aralıklarında ksilanaz enziminin aktivite testlerinin yapılması amacı ile çeşitli tamponlar kullanılmıştır. Enzimin pH 4.0 ile 5.5 arasındaki aktivitesinin tespiti için sitrat tamponu (0.2 M sitrik asit ve 0.2M Na₂HPO₄.7H₂O ve distile su), pH 6.0 ile 8.0 arasındaki aktivitesinin tespiti için Sodyum-Fosfat tamponu (0.2M NaH₂PO₄ ile 0.2M Na₂HPO₄.7H₂O ve distile su) kullanılmıştır. pH 8.5-10.0 arasındaki aktivitenin tespiti için de Glisin-NaOH tamponu (0.2M Glisin ile 0.2M NaOH ve distile su) kullanılmıştır. Hazırlanan her bir tampon içerisinde farklı pH değerlerinde enzimlerin aktivite ölçümleri hesaplanmıştır (Temizkan ve Arda, 2004).

b. Sıcaklık Seviyesinin Aktiviteye Etkisi

Elde edilen enzimin aktivitesi için uygun sıcaklık aralıklarının belirlenmesi amacıyla farklı sıcaklık değerlerinde (37 °C, 40 °C, 45 °C, 50 °C, 60 °C, 70 °C, 80 °C, ve 90 °C'lik aralıklarda) aktivite testleri yapılmıştır. 0.5 ml enzim ve aynı hacimde substrat karışımı enzim aktivite test metodu ile belirtilen sıcaklıklarda 1 saat inkübe edildikten sonra karışıma 1.5 ml DNS eklenip 5 dk. boyunca kaynar su banyosunda bekletilmiştir. Daha sonra 550 nm dalga boyunda O.D. değerleri belirtenmiştir.

c. Substrat Miktarının Aktiviteye Etkisi

Elde edilen enzimin substrat miktarına dayalı olarak aktivitesini tespit etmek için farklı yoğunluklarda hazırlanan ksilan (% 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) ependorflara aktarılmış, uygun pH ve sıcaklık değerlerinde 1 saatlik aralıklarla enzim aktivitesi ölçülmüştür.

d. Metal İyonlarının Aktiviteye Etkisi

Metal iyonlarının aktiviteye etkisinin belirlenmesi amacı ile MgSO₄, CuSO₄, CaCl₂, ZnSO₄, ve FeSO₄² içeren çözeltiler kullanılmıştır. Uygun pH ve sıcaklık değerlerinde 5 mM, 0,01 mL metal iyonu çözeltisi 0.5 ml örnek ile muamele edilmiştir. 15 dk boyunca ön inkübasyona bırakılarak örneklere uygun substrat ilave edilmiş ve optimum sıcaklıkta 60 dk.inkübe edilmiştir. İnkübasyon sonunda 550 nm dalga boyunda absorbans değerleri belirlenmiştir. (Aygan ve Arıkan, 2009).

V_{max} ve K_m Değerinin Hesaplanması

B. subtilis'ten elde edilen ve saflaştırılan rekombinant ve rekombinant nano ksilanaz enzimlerinin V_{max} ve K_m değerleri 5 farklı substrat yoğunluğuna karşı ölçülmüştür. Substratın farklı konsantrasyonlarında (% 0,5, % 1, % 1,5, % 2, % 2,5, % 3, % 3.5 ve % 4 ksilan) hazırlanan enzimler optimum pH ve sıcaklıkta (75 °C ve pH=7'de) inkübe edilerek 540 nm'de spektrofotometrik absorbans değerleri ölçülmüştür. Lineveawer-Burk grafikleri belirlenerek elde edilen veriler neticesinde K_m ve V_{max} değerleri hesaplanmıştır.

4. ARAŞTIRMA BULGULARI

4.1. Sıcak Su Kaynaklarının Kimyasal Analiz Sonuçları

Toplanan su örneklerinin kimyasal analizleri, pH, iletkenlik, NO₃, NH₄, NO₂, Fe, Al, Cu, Pb ve S rapor edilmiştir. Analiz sonuçları içilebilir su kaynakları ve genel kaplıcalardaki referans aralıkları ile karşılaştırmalı olarak verilmiştir (Çizelge 4.1).

Çizelge 4.1 Su örneklerinin kimyasal analizi (Aksoy *et al.* 2009) (İSKİ, Su Kalite Raporları)

Sıcak Su Kaynakları	рН	İletkenlik (mS/cm)	NO ₂ (mg/lt)	NH4 (mg/lt)	NO ₃ (mg/lt)	Fe (mg/lt)	Al (mg/lt)	Cu (mg/lt)	Pb (mg/lt)	S (mg/lt)
İçilebilir Su Değer	6,5- 9,5	<2500	<0,5	<0,5	45-50	<0,2	<0,2	<0,05	<0,01	<0,01
Sinifiari Genel Kaplicalar	7,79	1,899	0,007	2,15	38,5	0,377	0,09	0,5	1,69	0,02
Pasinler	6,94	3,177	0,378	1,06	0	0,749	0	0	0,860	0,03
Dargeçit	6,90	1,782	0,613	2,39	2,5	>1,000	0,134	8,26	>1,000	0,039
Güçlükonak	7,90	1,146	0,375	>2,58	0	0,925	0,50	3,19	>1,000	0,027
Hısta	9,1	942,9	0,390	>2,58	0	1,099	0,4	1,81	>1,000	0,029
Hasanabdal	6,2	5,158	0,395	0,008	0	0,389	0,181	0	0,666	0,021
Davut	8,5	1,551	0,254	2,01	0	0,611	0,17	0	0,728	0,019
Köprü	7,4	2,254	0,273	0,79	0	0,817	0,23	0	0,454	0,017

4.2. Bakteri İzolatlarının Gelişim Sıcaklıkları

İzolatlar farklı sıcaklık (40 °C, 55 °C, 65 °C, 70 °C, 75 °C, 85 °C ve 90 °C) değerlerinde inkübe edilerek sonuçlar değerlendirilmiştir (Çizelge 4.2). Çalışma kapsamında yüksek sıcaklığa adapte olan bakteri izolatları tercih nedeni olduğundan, bundan sonraki aşamalarda yüksek sıcaklık değerlerinde üreyebilme yeteneğine sahip izolatlar üzerinden çalışmalar devam ettirilmiştir.

	Sıcaklık Değerleri (°C)							
İzolatların Kodu	40	55	65	70	75	85	90	
BTX1,BTX2,BTX3,BTX4,BTX5,								
BTX6 ,BTX7,BTX8, BTX9, BTX10,								
BTX11, BTX12,BTX13, BTX14, BTX15,								
BTX16, BTX17,BTX18, BTX19, BTX20,								
BTX21, BTX22,BTX23, BTX24, BTX25,								
BTX26, BTX27, BTX28, BTX29, BTX30,	+	+	+	+	+	+	-	
BTX31, BTX32, BTX33, BTX34, BTX35,								
BTX36,BTX51, BTX52, BTX53, BTX54,								
BTX55, BTX60, BTX61, BTX62, BTX63,								
BTX64, BTX65, BTX66, BTX67, BTX79,								
BTX80, BTX81, BTX82, BTX83								
BTX37, BTX38, BTX39, BTX40,BTX41,								
BTX42,BTX43,BTX44,BTX45,BTX46,								
BTX47,BTX47,BTX49,BTX50,BTX58,								
BTX59,BTX68,BTX69,BTX70,BTX71,	+	+	+	+	+	-	-	
BTX72,BTX73,BTX74,BTX75,BTX76,								
BTX77,BTX78								
BTX56,BTX57	+	+	+	+	-	-	-	

Çizelge 4.2 Bakteri izolatlarının gelişim sıcaklık değerleri

4.3. Bakterileri İzolatlarının Tanısı

4.3.1. Morfolojik Tanılama

İzole edilen bakteri izolatları saf kültür olarak geliştirildikten sonra mikroskobik olarak incelenerek hücre morfolojileri tespit edildi. İzole edilen bakterilerin büyük bir çoğunluğu basil, tek bir türün ise (BTX16 izolatının) cocobasil olduğu tespit edilmiştir. Yapılan morfolojik incelemelerde hücrelerin bazılarının zincir formunda olduğu belirlenmiştir (Çizelge 4. 3).

Bakteri izolatlarının gram boyama sonucunda elde edilen mikroskop görüntüleri Şekil 4.1'de gösterilmiştir. Gram boyama testleri sonucunda izole edilen toplam 83 bakteriden 14 türün Gram (-), diğerlerinin Gram (+) olduğu tespit edilmiştir. Yine 26 izolatın endospor oluşturmadığı, 57 izolatın tamamının ise endospor oluşturduğu belirlenmiştir. İzolatların morfolojik test sonuçları Çizelge 4.3'de özetlenmiştir.

Şekil 4.1 Gram Boyama; A: Davut çamur kaynağı, B: Pasinler su kaynağı

İzolat Kodu	Lokasyon	Hücre morfolojisi	Zincir Oluşumu	Endospor	Gram Testi
BTX1	Ağrı/Davut	Basil	+	+	+
BTX2	Ağrı/Davut	Basil	+	+	+
BTX3	Ağrı/Davut	Basil	-	+	+
BTX4	Ağrı/Davut	Basil	-	+	+
BTX5	Ağrı/Davut	Basil	-	+	+
BTX6	Ağrı/Davut	Basil	+	+	+
BTX7	Ağrı/Davut	İnce Basil	+	+	+
BTX8	Ağrı/Davut	Basil	+	+	+
BTX9	Ağrı/Davut	Basil	-	+	+
BTX10	Ağrı/Davut	Basil	+	+	+
BTX11	Ağrı/Davut	Basil	/	+	+
BTX12	Ağrı/Davut	Basil	+	+	+
BTX13	Ağrı/Davut	Basil	+	+	+
BTX14	Ağrı/Davut	Basil	+	+	+
BTX15	Ağrı/Davut	Basil		+	+
BTX16	Ağrı/Davut	Coco Basil		+	+
BTX17	Davut	Basil	-	+	+
BTX18	Davut	Basil	-	-	-
BTX19	Davut	Basil	+	+	+
BTX20	Davut	Basil	+	+	+
BTX21	Davut	Basil	+	+	+
BTX22	Davut	Basil	-	+	+
BTX23	Davut	Basil	+	+	+
BTX24	Davut	Basil	-	+	+
BTX25	Davut	Basil	-	-	-
BTX26	Davut	Basil	+	+	+
BTX27	Davut	Basil	+	+	+
BTX28	Davut	Basil	-	+	+
BTX29	Davut	Basil	+	+	+
BTX30	Davut	Basil	+	+	+
BTX31	Davut	Basil	-	+	+
BTX32	Davut	Basil	+	+	+
BTX33	Davut	Basil	+	+	+
BTX34	Davut	Basil	+	+	+

Ç izelge 4.3 Bakter	izolatlarının	morfolojik test	sonuçları
----------------------------	---------------	-----------------	-----------

İzolat	Lokasyon	Hücre Morfolojisi	Zincir Oluşumu	Endospor	Gram Testi
Kodu	·	9	,	•	
BTX35	Davut	Basil	+	+	+
BTX36	Davut	Basil	-	+	+
BTX37	Pasinler	Basil	-	+	+
BTX38	Pasinler	Basil	-	+	+
BTX39	Pasinler	Basil	+	+	+
BTX40	Pasinler	İnce Basil	+	+	+
BTX41	Pasinler	Basil	+	+	+
BTX42	Pasinler	Basil	-	+	+
BTX43	Pasinler	Basil	+	+	+
BTX44	Pasinler	Basil		+	+
BTX45	Pasinler	Basil	+	+	+
BTX46	Pasinler	Basil	+	+	+
BTX47	Pasinler	Basil	+	+	+
BTX48	Pasinler	Basil			_
BTX49	Pasinler	Basil		+	+
BTX50	Pasinler	Basil	_		-
BTX51	Hısta	Basil		+	+
BTX52	Hısta	Basil	+	+	+
BTX53	Hısta	Basil	+	+	+
BTX54	Hısta	Basil	+	+	+
BTX55	Hısta	Basil	-	+	+
BTX56	Güçlükonak	Basil	+	+	+
BTX57	Güçlükonak	Basil	-	+	+
BTX58	Dargeçit	Basil	-	-	-
BTX59	Dargeçit	Basil	+	+	+
BTX60	Hısta	Basil	+	+	+
BTX61	Hısta	Basil	-	-	-
BTX62	Davut	Basil	+	+	+
BTX63	Köprü	Basil	+	+	+
BTX64	Köprü	Basil	-	+	+
BTX65	Köprü	Basil	+	+	+
BTX67	Köprü	Basil	+	+	+
BTX68	Pasinler	Basil	+	+	+
BTX69	Pasinler	Basil	-	+	+
BTX70	Pasinler	Basil	+	+	+
BTX71	Pasinler	Basil	-	+	+

Çizelge 4.3 (Devam) Bakteri izolatlarının morfolojik test sonuçları

İzolat Kodu	Lokasyon	Hücre Morfolojisi	Zincir Oluşumu	Endospor	Gram Testi
BTX72	Pasinler	Basil	+	+	+
BTX73	Pasinler	Basil	+	+	+
BTX74	Pasinler	Basil	+	+	+
BTX75	Pasinler	Basil	-	+	+
BTX76	Pasinler	Basil	-	+	+
BTX77	Pasinler	Basil	-	-	-
BTX78	Pasinler	Basil	-	-	-
BTX79	Köprü	Basil	+	+	+
BTX80	Köprü	Basil	+	+	+
BTX81	Köprü	Basil	+	+	+
BTX82	Köprü	Basil	+	+	+
BTX83	Köprü	Basil	+	+	+

Çizelge 4.3 (Devam) Bakteri izolatlarının morfolojik test sonuçları

4.3.2. Moleküler Tanılama

Bakterilerin moleküler tanılaması için 16S rRNA gen bölgesi amplifiye edilerek baz dizisi çıkarılmıştır. Bu amaçla öncelikle genomik DNA izolasyonu, 16S rRNA PCR, klonlama, sekanslama ve sekans verilerinin karşılaştırıması yapılarak türler tanılanmıştır.

Genomik DNA' nın Elde Edilmesi

Çalışmada izole edilen bakterilerin tamamının genomik DNA'ları izole edilerek DNA'ların konsantrasyonları spektrofotometrik olarak tespit edilmiş ve çalışma konsantrasyonu ayarlanmıştır (Ek 20). Genomik DNA izolasyonları sonucunda elde edilen DNA'lar 16S rRNA gen bölgelerine spesifik primerler ile çoğaltılarak PCR sonucu oluşan ürünler jel elektroforez ile görüntülenmiştir. PCR sonucu oluşan ürünler jel elektroforezinde yürütüldüğünde beklenen büyüklük olan 1300 baz çifti ürünlerin oluştuğu görülmüştür (Şekil 4.2).

Şekil 4.2 İzolatların PCR ürünlerinin elektroforez jel sonucu

16S rRNA PCR ürünlerinin Klonlanması

Elde edilen izolatların tanılanmasında evrensel olarak kabul gören ve kullanılan 16S rRNA gen bölgelerinin baz diziliminde öncelikle daha net ve kayıpların engellenmesi için klonlama işlemi yapılması önem arz etmektedir. Bu amaçla çalışmada izolatların kompetent *E. coli*'ye klonlama işlemi gerçekleştirilmiştir. İzolatlar daha sonra ligasyon ve transformasyon işlemlerine tabii tutularak, IPTG ve X-gal içeren besi ortamından mavi beyaz seleksiyon seçimi ile beyaz koloniler seçilmiştir. Daha sonra DNA markırında yaklaşık olarak 1300 bç büyüklüğündeki bandı veren en parlak koloni seçilerek antibiyotikli besi yerine ekimi yapılarak jelden ekstrakte edilmiştir. Ekimi yapılan kültürlerden plazmit izolasyonları yapılarak elde edilen ürünlerin hizmet alımı ile sekans analizleri gerçekleştirilmiştir.

Örneklerin Dizi Analiz Sonuçları

PCR sonucu elde edilen ürünler klonlanarak sekans analizleri gerçekleştirilmiş ve sekans analizleri sonucunda 5 farklı *Bacillus* türü tanılanmıştır. Tanılanan türlerin sekans analiz sonuçları Çizelge 4.4'de gösterilmektedir.

İzolatın	Tanı Sonucu	Genbank	Benzerlik	Baz
Kodu		Numarası	Oranı	Uzunluğu
BTX1	Bacillus subtilis	MH101281	%99	1397 (bç)
BTX2	Bacillus subtilis	MH101282	%99	1387 (bç)
BTX3	Bacillus subtilis	MH101283	%99	1385 (bç)
BTX4	Bacillus subtilis	MH101284	%99	1389 (bç)
BTX5	Bacillus subtilis	MH101285	%99	1386 (bç)
BTX6	Bacillus subtilis	MH101286	%99	1384 (bç)
BTX7	Bacillus subtilis	MH101287	%99	1382 (bç)
BTX8	Bacillus subtilis	MH101288	%99	1381 (bç)
BTX9	Bacillus subtilis	MH101289	%99	1386 (bç)
BTX10	Bacillus subtilis	MH101290	%99	1386 (bç)
BTX11	Bacillus subtilis	MH101291	%99	1380 (bç)
BTX12	Bacillus subtilis	MH101292	%99	1386 (bç)
BTX13	Bacillus subtilis	MH101293	%99	1385 (bç)
BTX14	Bacillus subtilis	MH101294	%99	1383 (bç)
BTX15	Bacillus subtilis	MH101295	%99	1387 (bç)
BTX22	Bacillus subtilis	MH101296	%99	1388 (bç)
BTX23	Bacillus subtilis	MH101297	%99	1384 (bç)
BTX24	Bacillus subtilis	MH101298	%99	1384 (bç)
BTX25	Bacillus subtilis	MH101299	%99	1387 (bç)
BTX26	Bacillus subtilis	MH101300	%99	1384 (bç)
BTX27	Bacillus subtilis	MH101301	%99	1383 (bç)
BTX28	Bacillus subtilis	MH101302	%99	1386 (bç)
BTX30	Bacillus subtilis	MH101303	%99	1384 (bç)
BTX31	Bacillus subtilis	MH101304	%99	1384 (bç)
BTX32	Bacillus subtilis	MH101305	%99	1384 (bç)
BTX33	Bacillus subtilis	MH101306	%99	1391 (bç)
BTX34	Bacillus subtilis	MH101307	%99	1380 (bç)
BTX35	Bacillus subtilis	MH101308	%99	1387 (bç)
BTX48	Bacillus subtilis	MH101309	%99	1384 (bç)
BTX60	Bacillus subtilis	MH101310	%99	1384 (bç)
BTX61	Bacillus subtilis	MH101311	%99	1384 (bç)
BTX78	Bacillus subtilis	MH101312	%99	1394 (bç)
BTX81	Bacillus subtilis	MH101313	%99	1387 (bç)
BTX16	Bacillus licheniformis	MH101314	%98	1417 (bç)
BTX17	Bacillus licheniformis	MH101315	%98	1410 (bç)
BTX18	Bacillus licheniformis	MH101316	%98	1411 (bç)

Çizelge 4.4 İzolatların sekans analiz sonuçları

İzolatın Kodu	Tanı Sonucu	Genbank Numarası	Benzerlik Oranı	Baz Uzunluğu
BTX19	Bacillus licheniformis	MH101317	%98	1414 (bç)
BTX20	Bacillus licheniformis	MH101318	%98	1413 (bç)
BTX21	Bacillus licheniformis	MH101319	%98	1416 (bç)
BTX29	Bacillus licheniformis	MH101320	%98	1410 (bç)
BTX36	Bacillus licheniformis	MH101321	%98	1410 (bç)
BTX37	Bacillus licheniformis	MH101322	%98	1413 (bç)
BTX38	Bacillus licheniformis	MH101323	%98	1419 (bç)
BTX39	Bacillus licheniformis	MH101324	%98	1415 (bç)
BTX40	Bacillus licheniformis	MH101325	%98	1418 (bç)
BTX41	Bacillus licheniformis	MH101326	%98	1411 (bç)
BTX82	Bacillus licheniformis	MH101327	%98	1409 (bç)
BTX53	Bacillus thuringiensis	MH101328	%100	873 (bç)
BTX54	Bacillus thuringiensis	MH101329	%100	868 (bç)
BTX55	Bacillus thuringiensis	MH101330	%100	866 (bç)
BTX56	Bacillus thuringiensis	MH101331	%100	866 (bç)
BTX57	Bacillus thuringiensis	MH101332	%100	866 (bç)
BTX58	Bacillus thuringiensis	MH101333	%100	878 (bç)
BTX59	Bacillus thuringiensis	MH101334	%100	864 (bç)
BTX72	Bacillus thuringiensis	MH101335	%100	867 (bç)
BTX73	Bacillus thuringiensis	MH101336	%100	862 (bç)
BTX79	Bacillus thuringiensis	MH101337	%100	867 (bç)
BTX42	Geobacillus kaustophilus	MH101338	%98	1415 (bç)
BTX43	Geobacillus kaustophilus	MH101339	%98	1411 (bç)
BTX44	Geobacillus kaustophilus	MH101340	%98	1410 (bç)
BTX45	Geobacillus kaustophilus	MH101341	%98	1409 (bç)
BTX46	Geobacillus kaustophilus	MH101342	%98	1418 (bç)
BTX47	Geobacillus kaustophilus	MH101343	%98	1410 (bç)
BTX49	Geobacillus kaustophilus	MH101344	%98	1410 (bç)
BTX50	Geobacillus kaustophilus	MH101345	%98	1414 (bç)
BTX51	Geobacillus kaustophilus	MH101346	%98	1412 (bç)
BTX52	Geobacillus kaustophilus	MH101347	%98	1410 (bç)
BTX69	Geobacillus kaustophilus	MH101348	%98	1408 (bç)
BTX70	Geobacillus kaustophilus	MH101349	%98	1410 (bç)
BTX71	Geobacillus kaustophilus	MH101350	%98	1413 (bç)
BTX77	Geobacillus kaustophilus	MH101351	%98	1410 (bç)

Çizelge 4.5 (Devam) İzolatların sekans analiz sonuçları

İzolatın Kodu	Tanı Sonucu	Genbank Numarası	Benzerlik Oranı	Baz Uzunluğu
BTX80	Geobacillus kaustophilus	MH101352	%98	1408 (bç)
BTX62	Bacillus coagulans	MH101353	%98	1339 (bç)
BTX63	Bacillus coagulans	MH101354	%98	1352 (bç)
BTX64	Bacillus coagulans	MH101355	%98	1343 (bç)
BTX65	Bacillus coagulans	MH101356	%98	1346 (bç)
BTX66	Bacillus coagulans	MH101357	%98	1347 (bç)
BTX67	Bacillus coagulans	MH101358	%98	1343 (bç)
BTX68	Bacillus coagulans	MH101359	%98	1343 (bç)
BTX74	Bacillus coagulans	MH101360	%98	1355 (bç)
BTX75	Bacillus coagulans	MH101361	%98	1341 (bç)
BTX76	Bacillus coagulans	MH101362	%98	1350 (bç)
BTX83	Bacillus coagulans	MH101363	%98	1343 (bç)

Çizelge 4.6 (Devam) İzolatların sekans analiz sonuçları

Sekans analiz sonuçlarına göre BTX1, BTX2, BTX3, BTX4, BTX5, BTX6, BTX7, BTX8, BTX9, BTX10, BTX11, BTX12, BTX13, BTX14, BTX15, BTX22, BTX23, BTX24, BTX25, BTX26, BTX27, BTX28, BTX30, BTX31, BTX32, BTX33, BTX34, BTX35, BTX48, BTX60, BTX61, BTX78, BTX81 kodlu izolatların yapılan BLAST analizi sonucunda B. subtilis türüne benzerlik gösterdiği anlaşılmıştır (Ek 1, Ek 2, Ek 3). B. subtilis 16S rRNA geninin dizisi EK 21'de gösterilmiştir. BTX16, BTX17, BTX18, BTX19, BTX20, BTX21, BTX29, BTX36, BTX37, BTX38, BTX39, BTX40, BTX41 ve BTX82 kodlu izolatların yapılan BLAST analizi sonucunda B. licheniformis türüne benzerlik gösterdiği anlaşılmıştır (Ek 4, Ek 5, Ek 6). B. licheniformis 16S rRNA geninin dizisi EK 22'de gösterilmiştir. BTX53, BTX54, BTX55, BTX56, BTX57, BTX58, BTX59, BTX72, BTX73 ve BTX79 kodlu izolatların yapılan BLAST analizi sonucunda B. thuringiensis türüne benzerlik gösterdiği anlasılmıştır (Ek 7, Ek 8, Ek 9). B. thuringiensis 16S rRNA geninin dizisi EK 23'de gösterilmiştir. BTX42, BTX43, BTX44, BTX45, BTX46, BTX47, BTX49, BTX50, BTX51, BTX52, BTX69, BTX70, BTX71, BTX77 ve BTX80 kodlu izolatların yapılan BLAST analizi sonucunda G. kaustophilus türüne benzerlik gösterdiği anlaşılmıştır (Ek 10, Ek 11, Ek 12). G. kaustophilus 16S rRNA geninin dizisi EK 24'de gösterilmiştir. BTX62, BTX63, BTX64, BTX65, BTX66, BTX67, BTX68, BTX74, BTX75, BTX76 ve BTX83 kodlu izolatların yapılan BLAST analizi sonucunda *B. coagulans* türüne benzerlik gösterdiği anlaşılmıştır (Ek 13, Ek 14, Ek 15). B. coagulans 16S rRNA geninin dizisi EK 25'de gösterilmiştir.

4.4. İzolatların Total Ksilanaz Aktivitesi

Elde ettiğimiz izolatların ksilanaz aktivitelerinin belirlenmesi amacı ile yapılan spektrofotometrik ölçüm sonuçları Çizelge 4.5'de (Ek 16'da izolat kodları ile birlikte) verilmiştir. İzolatlara ait aktivite tablosu ise EK 16'da gösterilmiştir. Total ksilanaz aktiviteleri incelendiğinde *B. subtilis* BTX6 örneğinin ksilanaz aktivitesinin diğer türlere göre daha fazla olduğu görülmüştür. Elde edilen bu sonuçlardan sonra çalışmada rekombinant enzim üretmek amacıyla *B. subtilis* BTX6 kodlu izolatın ksilanazı seçilmiştir.

		6 Saat	12 saat	14 Saat	16 Saat	20 Saat	24 Saat	48 Saat	72 Saat	168 Saat		Sıra	6 Saat	12 saat	14 Saat	16 Saat	20 Saat	24 Saat	48 Saat	72 Saat	168 Saat
ĺ	1	0.021	0.022	0.148	0.07	0.377	0.115	0.205	0,181	0,258		1	0.021	0.022	0.148	0.07	0.377	0.115	0.205	0.181	0,258
1	2	0.009	0.127	0.082	0.068	0.436	0.03	0.084	0.005	0.268		2	0.009	0.127	0.082	0.068	0,436	0.03	0.084	0.005	0.268
1	3	0,104	0.219	0.137	0.074	0.317	0.098	0.098	0.041	0,766		3	0.104	0.219	0.137	0.074	0,317	0.098	0,098	0.041	0,766
1	4	0,059	0,129	0,172	0,07	0,266	0,055	0,069	0,022	0,612		4	0,059	0,129	0,172	0,07	0,266	0,055	0,069	0,022	0,612
Ĩ	5	0,024	0,064	0,071	0,025	0,315	0,02	0,062	0,003	0,24		5	0,024	0,064	0,071	0,025	0,315	0,02	0,062	0,003	0,24
1	6	0,023	0,014	0,079	0,092	0,131	0,021	0,08	0,237	0,282		6	0,023	0,014	0,079	0,092	0,131	0,021	0,08	0,237	0,282
	7	0,019	0,138	0,121	0,049	0,138	0,099	0,006	0,002	0,273	0.9										10-10-1-1-
	8	0,021	0,014	0,083	0,083	0,165	0,028	0,006	0,089	0,298	0,0	631 173									
	9	0,029	0,02	0,089	0,091	0,155	0,025	0,01	0,002	0,306	0,8						1				
	10	0,109	0,061	0,077	0,04	0,13	0,031	0,001	0,063	0,277	0,7	8					-				
	11	0,044	0,038	0,083	0,059	0,271	0,04	0,012	0,009	0,325	0,6						-11-	1			
	12	0,043	0,074	0,084	0,045	0,14	0,04	0,235	0,027	0,321	0,5	s						-2			
	13	0,037	0,025	0,081	0,294	0,148	0,026	0,061	0,009	0,308	0.4				٨		//				
	14	0,048	0,101	0,702	0,049	0,225	0,047	0,014	0,137	0,325	0,4			1				4			
	15	0,029	0,011	0,098	0,035	0,185	0,022	0,017	0,003	0,258	0,3	1					Ha				
	16	0,077	0,079	0,138	0,106	0,276	0,083	0,063	0,057	0,808	0,2	-	~		11	1	77				
	17	0,067	0,066	0,112	0,073	0,25	0,085	0,039	0,038	0,576	0,1	4	A C	A	XIV	1	1/	6			
	18	0,079	0,076	0,125	0,08	0,204	0,09	0,073	0,044	0,697	0	12			V		/				
	19	0,049	0,095	0,106	0,05	0,443	0,036	0,009	0,025	0,407		6 Saat 1	2 saat 14 Saa	t 16 Saat 20	Saat 24 Saa	48 Saat 72	Saat 168				
	20	0,095	0,067	0,208	0,161	0,187	0,105	0,063	0,048	0,716		(7)					Saat			1	
1	21	0,129	0,044	0,124	0,072	0,248	0,064	0,063	0,033	0,565		14								-	
	22	0,103	0,065	0,236	0,107	0,191	0,103	0,067	0,081	0,848		1,4									
	23	0,082	0,068	0,143	0,082	0,209	0,085	0,058	0,063	0,79		1,2			1				-6 Saat	-	
	24	0,088	0,054	0,127	0,111	0,173	0,076	0,046	0,049	0,716								_	12 sa at	5	
١.	25	0,09	0,078	0,143	0,095	0,269	0,085	0,049	0,092	0,799		1			1				14 Saat		
	26	0,091	0,073	0,17	0,105	0,286	0,09	0,051	0,056	0,815	-			3 A	110-			_	16 Saat	Y	
	27	0,097	0,084	0,139	1,22	0,2	0,088	0,039	0,046	0,814		0,8	A	1.1	11111				20 5		
	28	0,109	0,083	0,158	0,167	0,299	0,099	0,093	0,069	1,007		0.6	<u> </u>	INN					20 Saat	1	
	29	0,115	0,082	0,171	0,108	0,211	0,086	0,108	0,061	0,308				ALV.			a	_	24 Saat		
	30	0,097	0,084	0,145	0,099	0,224	0,087	0,05	0,147	0,909		0,4	1	11		2. 6	A		48 Saat		
	31	0,09	0,073	0,151	0,088	0,195	0,077	0,042	0,186	0,707			Maria	Na	1.10			-	72 Saat		
	32	0,105	0,096	0,257	0,108	0,2	0,089	0,06	0,068	0,879	_	0,2	AN	hit	100	THE	MIX	t _	168 Saat		
	33	0,112	0,081	0,157	0,101	0,193	0,126	0,063	0,052	0,811		0	A+LA	1 mm	and all	123-62	2 years				
	34	0,179	0,078	0,183	0,102	0,196	0,498	0,052	0,195	0,825		_	1 4 7 10:	3 16 19 22	25 28 31 34	37 40 43 46	49 52 55 58	61			
	35	0,103	0,089	0,148	0,109	0,217	0,161	0,06	0,054	0,809			1							2	
1	36		0 117	0.128	0.071	0 177	0.058	0.028	0.121	0 531											_

Çizelge 4.7 Farklı saatlerde türlere ait total ksilanaz aktivitesinin ölçümü

4.5. B. subtilis'ten Rekombinant Ksilanaz Üretilmesi

B. subtilis'ten Ksilanaz Geninin Klonlanması

B. subtilis'ten ksilanaz geninin üretilmesi için sırasıyla; gDNA' lardan ksilanaz genine ait bölgenin PCR ile amplifikasyonu, insertün ligasyonu, transformasyonu, plazmit izolasyonu, restriksiyon enzimleri ile insertü taşıyıp taşımadığının belirlenmesi ve insertün dizi analizi yapılarak klonlamanın tamamlanması işlemleri yapılmıştır. Bu kapsamda öncelikli olarak gDNA'lardan biyoinformatik analizler ile gene ait tasarlanan ksilanaz geni primerleri kullanılarak ksilanaz gen bölgeleri PCR ile çoğaltılmıştır (Şekil 4.3).

Şekil 4.3 Ksilanaz geninin PCR ampllifikasyon sonucunun agaroz jel görüntüsü (M:Marker)

Yapılan PCR çalışması sonucunda çoğaltılan gen bölgelerinin saf olarak eldesi için elektroforez üzerinden bantlar İnvitrogen (K210012) Quick Gel Extraction jel saflaştırma kiti kullanılarak saflaştırılmıştır. Saflaştırma işlemindeki temel hedef PCR işleminde kullanılan diğer kimyasalların ve atıkların saflaştırılmış olan jelde bulunmamasıdır. Bu amaçla beklenen bant tamamen diğer bantlardan arındırılmış olmaktadır. Bu aşamada öncelikle boş ependorfun hassas terazide darası alınmış olup daha sonra kesilen jelin ependorfa eklenmesiyle jelin ağırlığı belirlenmiştir. Bu işlemde boş ependorf tüpünün ağırlığı 1.04 gr gelirken, eklenen jel ile birlikte ependorf tüpünün total ağırlığı 1.54 gr gelmiştir. Buradan jelin ağırlığının 0.5 gr geldiği belirlenmiştir. Jel saflaştırma protokolü uygulanarak saflaştırılan bant Şekil 4.4' de gösterilmiştir.

Şekil 4.4 Ksilanaz geninin (Btx6 izolatı) jel saflaştırma sonucu. M: Marker (Mass Ruler 100bp.)

Agaroz jelden saflaştırılmış olan ürünün A ekleme reaksiyonu; Taq polimeraz enziminin ürünün uçlarına eklediği A reaksiyonuyla yapılmıştır. Daha sonra ligasyon aşamasında gerekli olan üründen 3 µL eklenmiş ve ligasyon işlemi gerçekleştirilmiştir. Transformasyon aşamasında oluşan mavi-beyaz kolonilerden ilgilenilen geni taşıyan beyaz koloniler seçilerek bunlardan plazmit izolasyonu yapılmıştır.

İzolasyonda PGEMTeasy vektörünün istediğimiz ksilanaz genini taşıyıp taşımadığını gözlemlemek amacı ile XbaI ve KpnI restriksiyon enzimleri ile kesim yapılmıştır. Restriksiyon enzimi ile kesim yapılan ürünlerden yaklaşık 3000 bç. büyüklüğündeki bandın PGEMTeasy vektörüne 1300 bç. büyüklüğündeki bandın ksilanaz genine ait olduğu görülmüştür (Şekil 4.5). Bu sonuçlar ksilanaz geninin başarılı bir şekilde klonlanmış olduğunu göstermektedir.

Şekil 4.5 Ksilanaz genini taşıyan PGEMTeasy plazmidinin kesim sonucu elde edilen agaroz jel görüntüsü. M: Lambda DNA/EcoRI /Hind III Marker, Ürünler; A: PGEMeasy plazmit bant büyüklüğü B: Ksilanaz geni bant büyüklüğü

Elde edilen ürün NCBI üzerinden değerlendirilmiş ve oluşan ürünün ksilanaz genine ait diziler olduğu sekans sonuçları ile belirlenmiştir. Elde edilen sekans verileri ve pikleri EK 26' da gösterilmiştir.

Ksilanazın Rekombinant Proteininin Ekspresyonu

His takısı (6x His) bulunan pET16b vektörü protein ekspresyonunda, ekspresyon vektörü olarak kullanılmıştır. Ksilanaz genini taşıyan insörtümüz pET16b vektörüne yerleştirilmiş, daha sonra *E. coli* Rosetta'ya aktarılmış ardından protein izolasyonu yapılmıştır. Elde edilen protein izolatları His affinitesi gösteren Nikel NTA bocukları bulunan agaroz ile 6x His histidin takılarını tutan Ni-NTA boncukları yardımı ile önce filtrede tutulmuş daha sonra kit solüsyonları ile enzim saflaştırılmıştır. Ni-NTA boncukları ile saflaştırılan enzimler belirlenmiştir. Şekil 4.6'da görüldüğü üzere saflaştırılan örnekler IPTG ile indüklenmelerine göre 1., 2. ve 3. saatler sonrasında sırası ile jele yüklenmiştir. 1. ve 2. saatlerde jele yüklenen proteinde bantlaşma çok az olarak görülürken, 3. saatte ise jelde protein bantlaşması net bir şekilde gözlenmiştir (Şekil 4.6

[1, 2 ve 3] ve Şekil 4.7 [1, 2 ve 3]). Bu sonuçlar bize 3. saat sonunda proteinin ekspresyonun başarılı bir şekilde olduğunu göstermiştir. Anti-His antikoru ile yapılan Western blot analizi ile SDS-PAGE sonucunu doğrulanmış ve saflaştırılan proteinin *B. subtilis*'e ait ksilanaz olduğu belirlenmiştir. Böylece ekspresyonun başarılı bir şekilde gerçekleştiği görülmüştür.

Şekil 4.6 Ni-NTA saflaştırılması sonucu oluşan SDS jelin görüntüsü. M: Marker (SDS-PAGE Molekülar Ağırlık Standartları Broad Range (Bio-RAD, Kat. no:161-0317)), 1: 1 Saat İndüklenmiş, 2: 2 Saat İndüklenmiş, 3: 3 Saat İndüklenmiş ve 4: Total Proteinin SDS Jel Görüntüsü.

Şekil 4.7 Rekombinant ksilanaz proteininin Western Blot Analizi ile görüntülenmesi. M: Marker (Kaleidoscope Pretained Standarts BİORAD), 1: 1 Saat İndüklenmiş, 2: 2 Saat İndüklenmiş, 3: 3 Saat İndüklenmiş ve 4: Total Protein Antihistidin ve İkincil Antikor ile yapılan Western Blot görüntüleri

4.6. Anadoluca Metoduyla Enzimin Kafeslenmesi

Zeta Boyut Analizi

1000 ppm olarak hazırlanan rekombinant ksilanaz enzimi (Şekil 4.8) ve rekombinant nano ksilanaz (Şekil 4.9) ultrasonik su banyosunda dağıtıldıktan sonra zeta cihazında boyut analizi yapılmıştır. Şekil 4.8'de ve Şekil 4.9'da görüldüğü gibi enzimin boyutları sırası ile ortalama 400,3 nm ve 422,6 nm olarak ölçülmüştür.

Şekil 4.8 Rekombinant Ksilanaz Zeta Boyut Analizi

Şekil 4.9 Rekombinant Nano Ksilanaz Zeta Boyut Analizi

CD Spektroskopisi

Rekombinant Ksilanaz ve Rekombinant Nano Ksilanaz'nin CD spektroskopileri Şekil 4.10 ve Şekil 4.11'de belirtilmiştir. Şekil 4.10'de görüldüğü üzere, rekombinant ksilanazın yapısı CD analiziyle değerlendirildiğinde, spektrumdaki 190-200 nm de gelen pozitif pik ve 200-205 nm'de gelen negatif pik yapıdaki α heliks katlanmalarını, 210-220 nm'deki pik β katlanmasını ifade etmektedir. Ayrıca; 230-240 nm arasındaki bölgede rastgele katlanmaların olduğu görülmektedir. 350 nm'de gelen pozitif bant ise yapıdaki aromatik aminoasitlerin varlığını göstermektedir. Ksilanazın sekonder yapı analizi için karakteristik piklerin belirli bölgelerde gelmiş olması CD spektrumunun yapı analizinde kullanılabilirliğini göstermektedir.

Şekil 4.11'de görülen rekombinant Nano Ksilanazın yapısının CD spektrumuna bakıldığında, 190-210 nm arasındaki pozitif pik ve 210-221 nm arasındaki negatif pik α heliks yapısını ve 220-230 nm arasındaki negatif bant β -katlanmasını göstermektedir. Bunun yanında, 232 nm'deki bant yapıdaki rastgele katlanmaları ifade etmektedir. Nano yapının CD spektrumunda görülen 320-340 nm arasındaki yayvan bant protein yapısındaki aromatik proteinleri işaret etmektedir. Belirtilen aralıklarda karakteristik piklerin gelmesi nano yapıda da protein yapısının bozunmadığını göstermektedir.

Şekil 4.10 Rekombinant Ksilanaz'ın CD Spektroskopisi

Şekil 4.11 Rekombinant Nano Ksilanaz'ın CD Spektroskopisi

4.7. Rekombinant Ksilanaz ve Nano Ksilanaz Enzimlerinin Aktivitesinin Belirlenmesi

a) Değişen pH düzeyinin Ksilanaz aktivitesine etkisi

Enzim aktivitesi sonucunda yüksek aktivite gösteren *B. subtilis* türü izolatından saflaştırılan ksilanaz enzimi rekombinant olarak ve aynı enzim rekombinant nano enzim olarak üretilmiştir. Her iki enzim aktivitesi farklı pH aralıklarında değerlendirilmiş ve optimum pH'larının 7.0 olduğu tespit edilmiştir (Şekil 4.12).

Şekil 4.12 Rekombinant Ksilanaz ve Rekombinant Nano Ksilanaz enziminin optimum aktivite gösterdiği pH

b) Sıcaklık Seviyesinin Aktiviteye Etkisi

Rekombinant ve rekombinant nano ksilanaz olarak *B. subtilis*'den üretilen enzimin yapılan farklı sıcaklık (37 °C, 40 °C, 45 °C, 50 °C, 60 °C, 70 °C, 80 °C ve 90 °C) aralıklarındaki ve optimum pH'da (pH 7.0) aktivite testi sonucunda, optimum enzim aktivitesinin rekombinant ksilanaz enzimi için 68 °C (Şekil 4.13), rekombinant nano ksilanaz için ise 75 °C olduğu tespit edilmiştir (Şekil 4.14).

Şekil 4.13 Rekombinant Ksilanaz enziminin optimum aktivite gösterdiği sıcaklık

Şekil 4.14 Rekombinant Nano Ksilanaz enziminin optimum aktivite gösterdiği sıcaklık

c) Substrat Miktarının Aktiviteye Etkisi

Rekombinant ve rekombinant nano ksilanaz olarak *B. subtilis*'den üretilen enzimin yapılan farklı substrat yoğunluklarındaki aktivite testleri sonucunda, optimum enzim aktivitesi rekombinant enzim için % 3 konsantrasyonda 1802 U/mg, rekombinant nano enzim için ise optimum konsantrasyon yoğunluğu % 3.5'da 1898 U/mg olarak ölçülmüştür. Çalışma sonucunda enzim üretimi için en uygun yoğunluk konsantrasyonunun rekombinant enzim için % 3, rekombinant nano enzim için ise % 3,5 olduğu tespit edilmiştir (Şekil 4.15, Şekil 4.16).

Şekil 4.15 Rekombinant Ksilanaz enziminin optimum aktivite gösterdiği substrat konsantrasyonu

Şekil 4.16 Rekombinant Nano Ksilanaz enziminin optimum aktivite gösterdiği substrat konsantrasyonu

d) Metal İyonlarının Aktiviteye Etkisi

Çalışmada rekombinant ksilanaz ve rekombinant Nano ksilanaz enzim aktivitesine etki eden metal iyonlarının, 0,01 mL'lik konsantrasyonlarında rekombinant ksilanaz için MgSO₄'ın % 80, CuSO₄'ın % 57, CaCl₂'ın % 74, ZnSO₄'ın % 5 ve FeSO₄²'ın % 72 oranında aktivitede artışa neden olduğu belirlenmiştir (Şekil 4.17). Rekombinant Nano ksilanaz enzimi için ise MgSO₄'ın % 85, CuSO₄'ın % 71, CaCl₂'ın % 85, ZnSO₄'ın % 50 ve FeSO₄²'ın % 94 oranlarında aktivitede artışa neden olduğu tespit edilmiştir (Şekil 4.18).

Şekil 4.17 Metal iyonlarının rekombinant Ksilanaz enzimine etki grafiği

Şekil 4.18 Metal iyonlarının rekombinant Nano Ksilanaz enzimine etki grafiği

Vmax ve Km Değerinin Hesaplanması

Ksilanaz enziminin V_{max} ve K_m değerleri % 1'lik ksilan substratı kullanılarak belirlenmiştir. 5 farklı konsantrasyondaki ölçümler sonucunda grafik değerleri belirlenmiş ve aktivitenin substrat mikratındaki değişimleri gözlemlenmiştir. Grafikten elde edilen verilerden yararlanılarak Lineweaver Burke denklemi ile rekombinant enzim ve rekombinant nano enzimler için V_{max} ve K_m değerleri ölçülmüştür (Şekil 4.19, Şekil 4.20). Rekombinant enzim için V_{max} değeri 5,691 (EU/mL. dk.), K_m değeri ise 2,298 (mM), Rekombinant nano enzim için ise V_{max} değeri 6,195 (EU/mL. dk.), K_m değeri ise 2,402 (mM) olarak belirlenmiştir.

Şekil 4.19 *B. subtilis*'den elde edilen rekombinant Ksilanazın Lineweaver Burke denklemi ile K_m ve V_{max} değerinin ölçülmesi

Şekil 4.20 *B. subtilis*'den elde edilen rekombinant Nano Ksilanazın Lineweaver Burke denklemi ile K_m ve V_{max} değerinin ölçülmesi

5. TARTIŞMA ve SONUÇ

Bu çalışmada Doğu ve Güneydoğu Anadolu bölgesindeki sıcak su kaynakları ile bu kaynakların yakınındaki çamur örneklerinden izole edilen bakterilerin, morfolojik ve moleküler yöntemlerle tanılanması, optimum gelişme koşullarının tespit edilmesi, özellikle termofilik özellik gösteren izolatların seçilerek ksilanaz enzim aktivitesinin belirlenmesi, aktivitesi yüksek izolatlardan enzimin rekombinant olarak üretilmesi amaçlanmıştır. Enzimin rekombinant olarak üretilmesi için öncelikle izolatların enzim aktivitesi ölçülmüş, yüksek aktivite gösteren izolat bu amaçla tercih edilmiştir. Ksilanaz enzimini kodlayan genler biyoinformatik araçlarla tespit edildikten sonra vektörler vasıtasıyla konakçılara aktarılıp, konakçıda proteinin ekspresyonu ve böylelikle enzimin üretimi gerçekleştirilmiştir. Say ve arkadaşları (2015) tarafından patentlenen ANADOLUCA yöntemi ile enzim kafeslenerek daha aktif, kararlı, geniş pH aralıklarına sahip, yüksek sıcaklık değerlerinde bile tekrar tekrar kullanımı mümkün olacak şekilde enzimin ticari olarak kullanılabilirliği belirlenmiştir. Böylelikle bugün piyasada olan ve yüksek sıcaklıklara uyum sağlayamayan birçok enzim yerine, sanayi ve biyoteknolojik çalışmalarda daha çok tercih edilerek kullanılacak bir nano enzimin ticari olarak üretimiinin önü açılmıştır.

Çalışma kapsamında alınan su örneklerinin kimyasal analiz değerleri incelendiğinde; Aksoy *et al.* (2009) yapmış oldukları çalışmada; Balçova bölgesindeki termal su kaynaklarını incelemiş yapılan inceleme sonucunda alınan tüm örneklerin iletkenlik değerlerinin 1000 (mS/cm)' nin üzerinde olduğu ve pH ve kimyasal içeriklerinin ortalamasının ise pH için 7.89, Bakır (Cu) da 17.14, Demir (Fe) de 0.377, Kurşun (Pb) da 1.69, Nitrat (NO₃⁻¹) da 38.5, Amonyum (NH₄⁺¹) da 2.15 ve Nitrit (NO₂⁻¹) de ise 0.007 olduğunu bildirmişlerdir. Negri *et al.* (2018) yaptıkları bir çalışmada Coastal ve Aysen termal su kaynaklarından elde ettikleri suların kimyasal testleri sonucunda iletkenlik değerinin bölgelere göre farklılık gösterdiğini Coastal termal kaynaklardan elde ettikleri sularda iletkenliğin 1000 (mS/cm)'in üzerinde olduğunu ve pH değerinin ise 6,4 ile 8,4 arasında değiştiğini, Aysen termal kaynaklarından elde ettikleri suların alınan ise iletkenlik değerinin 1000 (mS/cm)' nin altında olduğunu, pH'nın ise 7,9 ile 9,6 arasında değiştiğini tespit etmişlerdir. Çalışmamızda ise sadece Hısta termal kaynağından alınan numunelerde iletkenliğin 942,9 (mS/cm) ve pH değerinin 9,1 olduğu, diğer kaynakların tümünde iletkenliğin 1000 (mS/cm)'nin üzerinde, pH'nın ise 6,9 ile 8,5 arasında değiştiği

belirlenmiştir. Alınan kaynakların pH ortalamasının 7.3, kimyasal içeriklerinin ortalamasının ise, Bakır (Cu) da 2.02, Demir (Fe) de 0.931, Kurşun (Pb) da 1.12, Nitrat (NO_3^{-1}) da 0.41, Amonyum (NH_4^{+1}) da 2.043 ve Nitrit (NO_2^{-1}) de ise 0.381 olduğu tespit edilmiştir. Bu sonuçlara göre bölgesel olarak sularda kimyasal verilerin değişkenlik gösterdiği ve çalışmamızda diğer literatüre paralel olarak termal su kaynaklarının iletkenlik ve pH değerinin içilebilir su kaynaklarına göre daha yüksek olduğunu söylemek mümkündür.

Gelişen ve sürekli büyüyen dünyada biyoteknolojik yatırımların ve ihtiyaçların giderek artması, endüstriyel enzimlerin gerekliliğini arttırmıştır. Dünyada enzim üretimi konusunda çok az ülkenin kendi üretim çemberi bulunmakta ve bu ürettikleri ürünleri dünya pazarında satmaktadır. Bu sebeple bir enzimin sanayi ve endüstride kullanımı maliyetinin düşük olması, tekrar tekrar kullanılabilirliği, aktivitesinin yüksekliği, ekstrem koşullara dayanabilirliği büyük önem arz etmektedir (Sarıkaya, 1995). Özellikle endüstri ve sanayi alanında kullanılan, geniş bir alana sahip olan enzimlerin birçoğu bakterilerden temel almaktadır. Bitkisel veya hayvansal kaynaklı enzimlere göre daha ucuz ve daha verimli olan mikroorganizma kökenli enzimlerin elde edilme aşamaları da çok daha kolay ve uygun olabilmektedir. Bunun yanında endüstri alanında enzimlerin kullanılabilmesi için bu mikrobiyal kaynaklı enzimlerin zararlı etkilerinin de olmaması gerekmektedir (Wiseman and Dalton 1987). Mikrobiyal kaynaklı enzimler, özellikle de ekstremofil organizmalardan elde edilen enzimler bugün pek çok alanda yaygın bir şekilde kullanılmaktadır. Ekstremofil organizmalar ortamın pH, sıcaklık ve diğer olumsuz faktörlerinden etkilenmeyeceğinden bunların üretmiş olduğu enzimlerin kararlılıkları ve aktiviteleri de oldukça yüksek olmaktadır. Termofilik organizmalar da ekstrem şartlara uyum sağlamış mikroorganizmalar olduğundan elverişsiz koşullarda bile kullanılabilir çeşitlilikte ürünler oluşturabilmektedirler. Termofil organizmalardan selülaz, ksilanaz, katalaz, laktaz, lipaz, sükraz, pullunaz, pektinaz, amilaz, proteaz ve bunun gibi birçok enzim saflaştırılarak ticari olarak üretilmektedir. Bu enzimler tekstil, gıda, deterjan, sanayi, içecek sektörü ve en önemlisi sağlık alanı gibi birçok alanda yaygın olarak da kullanılmaktadır (Niehaus et al. 1999). Bu çalışmada izole edilen bakteriler de termofilik özelliklerinden dolayı oldukça kararlı yapıda, yüksek sıcaklık ve ekstrem koşullarda çalışabilen enzimler olması nedeniyle avantajlı konumda değerlendirilmiştir. Bu nedenle çalışmada; endüstri alanında sıklıkla kullanılan ve aranan enzim olan ksilanaz enzimi

üzerine odaklanılmış ve piyasada ticari olarak kullanılabilecek daha yüksek verimli ksilanazların elde edilmesi sağlanmıştır.

Sıcak su kaynakları yanında pek çok ortamdan da izole edilebilen *Bacillus* türleri enzim üretimi açısından büyük önem arz etmektedir. *Bacillus* türleri proteolitik ve karbohidratazların etkin kaynaklarının başında yer almakta ve özellikle nişasta, ekmek, meyve suyu, kâğıt ağartma ve bira yapımı gibi birçok alanda enzim ihtiyacını karşılamaktadır. Bu nedenle *Bacillus* türlerinin sentezledikleri birçok enzim sanayide oldukça farklı pek çok alanda kullanılmaktadır (Niehaus *et al.* 1999). Endüstride yaygın şekilde kullanılan enzimlerin en önemlilerinden biri olan ksilanazın üretiminde her ne kadar bazı funguslar kullanılsa da bakterilerin özellikle de *Bacillus* türlerinin büyük önem arz ettiği bilinmektedir (Gomes *et al.* 2017). *B. cereus* (Roy ve Rowshanul, 2009), *Bacillus sp.* (Hiremath vd. Patil, 2011), *B. subtilis, B. licheniformis* ve *Geobacillus thermodenitrificans* gibi pek çok *Bacillus* türetinin ksilanaz ürettiği bilinmektedir (Guo *et al.* 2012). *B. subtilis* ticari olarak üretilen ksilanaz enzimi için en çok tercih edilen termofilik *Bacillus* türüdür (Banka *et al.* 2014). Literatürde verilen bu bilgilerle paralel olacak şekilde bizim çalışmamızda da *B. subtilis* izolatı en yüksek aktivite gösteren tür olarak tespit edilmiş olup çalışmalar bu tür üzerinden yürütülmüştür.

Çalışmada termal su kaynaklarından alınan örneklerden bakteriyel izolasyonlar yapılarak tanılanmıştır. Bakterilerin tanılanmasında morfolojik özellikler yanında organizmalar arasında ki filogenetik ilişkileri açığa çıkaran 16S rDNA bilgilerine dayanılarak da filogenetik tanılama yapılmıştır. Bakterilerin genomlarında bazı bölgeler özel olarak korunmuş bölgeler olarak bilinmektedir. Bu bölgeler ribozomun küçük alt birimini oluşturan 16s rRNA, 23s rRNA ve 5s rRNA bölgeleridir. Bakterilerde özellikle bu bölgelerden 16s rRNA bölgesi bakteriler arasındaki çeşitliliğin belirlenmesinde kilit rol oynamaktadır. Aynı zamanda filogenetik sınıflandırmanında temelinde bu korunmuş bölgelerdeki diziliş farklılıkları model olarak kullanılmaktadır (Tortoli 2003). Bu nedenle 16s rRNA geni, bakteriler arasındaki çeşitlilik ve evrimsel bağlantının çözümlenmesi aşamasında birçok çalışmada araştırmacılar tarafından kullanılmaktadır (Harmsen and Karch 2004). Bu dizilerin tanılama ve filogenetik sınıflandırmada önemli yer almasının sebebi, bu korunmuş bölgelerin mutasyonlara kapalı olması ve ender durumlarda meydana gelebilecek olası mutasyonların ise çoğunlukla hızlı bir şekilde düzeltilmesi temeline dayanmaktadır. Aynı zamanda bakteriler arasında bu bölgelerin korunur olmalarından dolayı tüm bakterilerde ortak alan olarak tanımlanmakta ve bu ortak alanlar içerisindeki değişimler bakterilerin tanılanması ve birbirleri ile benzerlik ve farklılıklarının tespit edilmesine imkân sağlamaktadır (Woese 1987). Bu amaçla, 16s rRNA gen bölgesinin evrensel primerlerle PCR amplifikasyonu sonucunda elde edilen genlerin baz dizilimleri analiz edilerek var olan türler ile karşılaştırılmakta ve böylece bakterilerin tür tanısı yapılarak filogenetik olarak sınıflandırılmaktadır (Hakovirta et al. 2016). 16S rRNA bölgelerinin tanılamada başarılı olduğuna dair pek çok çalışma yapılmıştır. Bavykin et al. (2004) yapmış oldukları çalışmada B. cereus grupları arasındaki farklılıkları belirlemek için 183 türün 16s rRNA bölgelerini, 74 türün de 23s rRNA bölgesinin dizisini analiz etmişlerdir. Çalışma sonucunda Bacillus anthracis'in B. cereus grubundaki diğer mikroorganizmalardan (B. cereus, B. thuringiensis ve B. mycoides) ayırımında bu yöntemlerin etkili olduğunu vurgulamışlardır. Hakovirta et al. (2016) benzer şekilde yapmış oldukları çalışmada farklı bölgelerden elde ettikleri 50 farklı izolatın 16s rRNA genlerinin analizi ile B. cereus grubu, bunların da; B. anthracis, B. cereus, B. mycoides ve B. thuringiensis izolatlarından oluştuğunu tespit etmişlerdir (Hakovirta et al. 2016). Bu çalışmada da bakterilerin tür tanılarında 16s rRNA gen bölgesi hedef alınarak tanılamalar gerçekleştirilmiştir. Çalışmamızda izole edilen bakterilerden gDNA izolasyonları yapılarak türlerin 16s rRNA dizi sekansları yapılmıştır. Bu sekans sonucu elde edilen diziler NCBI (National Center for Biotechnology Information) veri tabanında taranarak bakterilerin tanıları gerçekleştirilmiştir. Buna göre çalışmamızda 5 farklı tür (B. coagulans, B. licheniformis, B. subtilis, B. thuringiensis ve Geobacillus kaustophilus türleri) tanılanmıştır. Yalnız B. thuringiensis (BTX53, BTX54, BTX55, BTX56, BTX57, BTX58, BTX59, BTX72, BTX73, BTX79) olarak tanımlanmış ve termofilik özellik göstermiş bu izolatların yüksek sıcaklıklarda elde edilmiş olması literatür bilgileriyle örtüsmemektedir. Termofilik B. thuringiensis izolatları varlığı belirlenmemiştir. Bu kapsamda bu 10 izolatın yeniden değerlendirilmesi uygun görülmüştür.

Adıgüzel *et al.* (2009) yaptıkları çalışmada Türkiye'deki çeşitli termal su kaynaklarından izole ettikleri izolatları 16s rRNA dizi analizleri kullanarak tanılamışlardır. Çalışmalarının sonucunda elde ettiği izolatların *Geobacillus*, *Anoxybacillus* ve *Bacillus sp.* izolatlarına % 97- 99 oranında yakınlık gösterdiklerini bildirmişlerdir. Acar (2009) yapmış olduğu çalışmasında, Van Hasanabdal sıcak su kaynaklarından çeşitli bakteri izolasyonları yapmış ve elde ettiği bakterilerin 16s rRNA

gen dizisini PGEMT vektörüyle *E.coli*'ye transforme etmiştir. *E. coli*'ye klonlanan dizilerin sekans analizi sonucunda, izole edilen türlerin *B. licheniformis, Brevibacillus brevis, Geobacillus pallidus, Brevibacillus borstelensis* ve *B. pumilus* olduğunu bildirmiştir. Bizim çalışmamızda da aynı bölgeden alınan örneklerden yapılan izolasyonlar sonucunda *B. licheniformis* türü belirlenmiş, diğer belirtilen türlere ise rastlanmamıştır. Pirinccioglu (2010) yapmış olduğu çalışmasında Dargeçit ve Güçlükonak bölgesindeki termal su kaynaklarından elde ettiği su ve çamur örneklerinden yapılğı izolasyonlar sonucunda tanılama aracı olarak 16s rRNA gen bölgelerini sekanslamış ve sekans analizi sonucunda *Geobacillus* cinsine ait izolatlar tanılamıştır. Bizim çalışmamızda da benzer şekilde Dargeçit ve Güçlükonak bölgesinden alınan izolatların 16s rRNA gen bölgesinin sekans analizi sonucunda *Geobacillus kaustophilus* türüne % 100 benzerlik gösterdiği belirlenmiştir. Çalışmamızda;

Bakteri tanılamalarının ardından, izolatlar arasında ksilanaz enzimi için aktivite testleri gerçekleştirilmiş olup yapılan testler sonucunda *B. subtilis* BTX6 izolatının diğer türlere nazaran daha yüksek aktivite gösterdiği belirlenmiş ve çalışmaya bu izolat ile devam edilmiştir (Çizelge 4.5). Ağrı Diyadin'den izole edilen ve ekstrem şartlarda üreyebilme yeteneğine sahip olan *B. subtilis* izolatının Gram +, sporlu ve hücre morfolojisinde de basil şeklinde zincirler oluşturduğu tespit edilmiştir (Çizelge 4.3). Çalışmanın bir sonraki aşamasında enzim aktivitesi yüksek olan *B. subtilis* BTX6' dan ksilanaz geni alınarak rekombinant olarak üretilmiştir. Bu amaçla klonlama vektörü olarak PGEMTeasy, plazmit izolasyon aşamasında restriksiyon enzimi olarak XbaI ve KpnI (Fermentas 10,000 u/ml), konakçı olarak ise *E.coli* DH5- α ırkı kullanılmıştır. Ekspresyon aşamasında ise restriksiyon enzimi olarak SalI ve HindIII, vektör olarak pET 16b vektörü, konakçı olarak da *E. coli* Rosetta ırkı kullanılmıştır. Rekombinant olarak üretilen enzim SDS PAGE ve Western Blot ile analiz edilmiş, SDS PAGE sonucunda enzimin 71 kDa olduğu tespit edilmiştir.

Yang *et al.* (1988) yaptıkları çalışmada, *B. polymyxa*'dan elde ettikleri ksilanaz geninden rekombinant ksilanaz enzimi üretmek için öncelikle, restriksiyon enzimleri olarak EcoRI, HindIII, ve BamHI kullanmışlardır. Klonlama vektörü olarak pBR322 ve konakçı olarak da *E. coli* kullanmışlardır. Ekspresyon vektörüne aktarılan insört BamHI-EcoRI restriksiyon enzimleri aracılığı ile pUCl9 vektörüne aktarılmış ve *E. coli*'de protein saflaştırılması yapılmıştır. Bai *et al.* (2015) yapmış oldukları çalışmada bazı alkalifik *Bacillus* türlerinde ksilanaz enzimini elde etmek istemişlerdir. Klonlama aşamasında izole edilen ksilanaz geni klonlama vektörü olan pUC18' in defosforile BamHI bölgesine lige edilerek *E. coli* DH5α'ya transforme edilmiştir. Ekspresyon aşamasında ise Rekombinant plazmid izole edilmiş, ilgili gen bölgesi pET28a-xyn11A vektörüne lige edilmiş ardından da *E. coli* BL21 (DE3)' ye transforme edilip protein üretimi sağlanmıştır. Saflaştırılan enzimin SDS-PAGE' deki moleküler ağırlığının 27 ile 43 kDa arasında olduğu bildirilmiştir. Zafar *et al.* (2016) yapmış oldukları bir çalışmada; *B. licheniformis* 9945A'nın ksilanaz genini (xynA) klonlamışlardır. Burada pET-22b'nin (+) vektörünün NdeI ve HindIII bölgelerinde lige edilmiş sonrasında *E. coli* BL21(DE3) konakçısında üremeleri sağlanmıştır. *E. coli* BL21 ekpresyon konakçısında ise protein üretimi yapılmıştır. Saflaştırılmış ksilanazın moleküler ağırlığı, SDS-PAGE ile belirlenmiş ve 23 kDa olarak bildirilmiştir.

Sunna and Antranikian (1997) yapmış oldukları çalışmada; *B. subtilis* izolatlarından elde edilen ksilanaz enzimlerinin moleküler ağırlıklarının yaklaşık olarak 8 ile 145 kDa arasında değişkenlik gösterdiğini bildirmişlerdir. *Bacillus* türlerindeki ksilanaz enziminin moleküler ağırlıkları ile yapılan çalışmalarda genellikle farklı değerlerde sonuçlar rapor edilmiştir (Kulkarni vd., 1999). Sa Pereira *et al.* (2002) bazı *B. subtilis* izolatlarından elde edilen ksilanaz enziminin molekül ağırlığını 340 kDa olarak bildirmişlerdir. Ryan *et al.* (2003) yapmış oldukları çalışmada, *Penicillium capsulatum* fungusundan izole edilen ksilanaz enziminin moleküler ağırlığının 22 kDa, *Aspergillus fumigatus*'dan elde edilen enzim ise 212 kDa moleküler ağırlığınıda olduğunu belirtmişlerdir. Lama *et al.* (2004) çalışmış oldukları bazı *Bacillus sp.* izolatlarının moleküler ağırlığının 24 ile 45 kDa arasında değiştiğini bildirmişlerdir. Aygan (2008)'da yapmış olduğu çalışmasında bazı *Bacillus* türlerinden elde edilen ksilanaz enziminin moleküler ağırlığının 26 kDa enziminin moleküler ağırlığının 108, 95, 80 ve 68 kDa olarak bildirmiştir. Bu veriler ksilanaz enziminin moleküler ağırlığının farklı türlerde hatta aynı tür içerisinde bile farklılıklar gösterebildiğini izah etmiştir.

Çolak (2011) çalışmasında Kitosan immobilizasyonu ile saflaştırılan paraoksonaz enzimini immobilize ederek enzimin bağlanma yüzdesini % 68, katalatik etki değerini ise 3,2229 olarak belirlemiştir. K_m ve V_{max} miktarları Lineweaver-Burk ile hesaplandığında; Paraoksonaz enziminin saf halinin 1,067 mM ve 125 U/ml dakika, immobilize enzimin ise 1,755 mM ve 181 U/ml dakika olarak belirlemiştir. Saf enzim ve immobilize paraoksonaz enziminin benzer optimum (25-45 °C) ve pH (7.0) değerler gösterdiğini belirtmiştir.

Çalışmamızda rekombinant olarak üretilen enzimi nano rekombinant bir enzim olarak üretmek suretiyle kontrollü, üretimi kolay, kararlı, maliyeti düşük ürün elde edilmesi sağlanmıştır. Bu amaçla rekombinant teknoloji ile elde edilen ürün ANADOLUCA metodu ile nanobiyokonjugat halinde sentezlenmiş ve böylelikle nanoksilanaz'in uzun süre ve dış ortam koşullarına dayanabilirliği ve uzun soluklu kullanılabilirliği sağlanmıştır. Zeta boyut analizinde rekombinant olarak üretilen nanoksilanazın boyutunun 422,6 nm olduğu görülmüştür. Karşılaştırmada rekombinant ksilanaz proteinin boyutunun 400,3 nm olduğu belirlenmiştir. CD spektrumlarına bakıldığında α -heliks yapıları ve β katlanmaları ile nano yapıya ait aromatik yapı bantları gözlenmiş ve bundan dolayı ikincil yapısının korunduğu ve aktif kaldığı gözlenmiştir. Yine ANADOLUCA yöntemi ile kafeslenen rekombinant nano enzim, rekombinant enzim ile kıyaslanmış benzer pH (7.0) ve substrat konsantrasyonlarına sahip oldukları, sıcaklık değerinde ise rekombinant enzimin optimum sıcaklık değerinin 68°C, rekombinant nano enzimin ise optimum sıcaklık eğerinin 75°C olduğu belirlenmiştir. Çalışmamızda rekombinant enzim için Vmax değeri 5,691 (EU/mL. dk.), Km değeri ise 2,298 (mM), Rekombinant nano enzim için ise V_{max} değeri 6,195 (EU/mL. dk.), K_m değeri ise 2,402 (mM) olarak belirlenmiştir. Bunun yanında metal iyonlarına karşı ise rekombinant nano enzimin daha fazla aktivite gösterdiği görülmüştür.

Abdel-Naby (1993) yapmış oldukları çalışmada; Aspergillus niger NRC 107'dan elde edilen ksilanaz ve β -ksilosidaz enzimlerinin çeşitli taşıyıcılar üzerinde fiziksel adsorpsiyon, kovalent bağlama, iyonik bağlama ve tuzaklanma gibi farklı immobilizasyon yöntemleri ile immobilize edilmiştir. Hareketsizleştirilmiş enzimler, tanen-kitosan üzerinde fiziksel adsorpsiyon, Dowex-50W üzerine iyonik bağlanma, kitosan boncuklarında glutaraldehit ile kovalent bağlanma ve poliakrilamid içerisine enjekte etme yoluyla en yüksek aktiviteleri elde etmişlerdir. İmmobilize olmayan ksilanazın optimum reaksiyon sıcaklığı, immobilizasyon sonrası 50 °C'den 52.5 °C -65°C'ye çıkarken, immobilize β -ksilosidazın reaksiyon sıcaklığının 45 °C'den 50-60 °C'ye ulaştığını bildirmişlerdir.

Dusterhoft et al. (1997) yaptıkları çalışmada; pH 7.0'de Sulfolobus solfataricus'tan elde ettikleri ksilanaz enziminin optimum aktiviteye sahip olduğunu, Breccia et al. (1998) B. amyloliquefaciens'den izole edilen ksilanaz enziminin optimum aktivitesini çeşitli pH aralıkları ve sıcaklıklarda örneğin; pH 9.0'da % 71 oranında, pH 10,0'da ise % 43'e kadar koruduğunu, Dhillon et al. (2000) B. circulans ksilanaz enzimlerinin 50 °C'de, pH 8.0' de 10 dk. boyunca orijinal aktivitesinin % 60'a kadar korunduğunu, Cordeiro et al. (2002) ksilanaz enziminin optimum aktivite gösterdiği pH aralığının çeşitli termofilik Bacillus sp. türlerinde pH 6.5-7.0 arasında olduğunu ve aktivitenin pH 7.0 ve üzerinde gittikçe düştüğünü, Waino and Ingvorsen (2003) Humicola insolens'ten elde edilen ksilanaz enziminin optimum çalışma ve aktivite değerinin pH 6.0-6.5 aralığında olduğunu, Cannio et al. (2004) Halorhabdus utahensis izolatından elde ettikleri ksilanaz enziminin optimum aktivitesinin pH 7.0'de olduğunu, Kumar et al. (2004) alkali ortamda yaşayan Bacillus'ların optimum aktivite gösterdiği değerin pH 8.0 olduğunu, Annamalai et al. (2009) nehir suyu kenarından izole ettikleri B. subtilis'den izole edilen ksilanazın 7.0-10.0 pH aralığında en yüksek enzim üretim seviyesine 36 ile 48. saatlerde ulaştığını, Kamble et al. (2012) termofilik ortamdan izole edilen bazı Bacillus türlerinde üretilen ksilanaz enziminin aktivite aralıklarının pH 6.0-10.0 değerleri arasında değiştiğini, İrfan et al. (2016) B. subtilis ve B. megaterium ksilanazlarının optimum aktivite gösterdikleri üreme periyodunun sırasıyla 48. ve 72. saatte gerçekleştiğini rapor etmişlerdir. Yapılan çalışmalarda farklı türler tarafından elde edilen ksilanazların Penicillium capsulatum türünde optimum pH değerinin 3.8, Fusarium proliferatum' da pH aralığının 5.0 - 5.5 ve Aspergillus fumigatus 'da pH aralığının ise 6.0 ile 6.5 arasında değiştiğini göstermişlerdir (Saha 2002; Anthony et al. 2003). Yine literatürde optimum aktivitenin farklı pH (5.0, 5.5, 5.6, 6.0, 6.5 ve 7.0) aralıklarında olduğu bazı Bacillus türleri de rapor edilmiştir (Gallardo et al. 2004; Avcioglu et al. 2005). Bunun yanında Bhakyaraj et al. (2014) çeşitli pH aralıklarında ksilanaz aktivitesi gösteren, hem asidik hem de nötr şartlarda yapısı bozulmadan kalan ksilanazlar bildirmişlerdir. Ammoneh et al. (2014) yapmış oldukları çalışmada; alkali ortamlarda enzimin kararlılığının yüklü aminoasit artıklarından kaynaklandığını bildirmişlerdir. Kararlı yapıdaki enzimlerde asidik yapılarında azalma, arjinin miktarında ise bir artış meydana geldiği bildirilmiştir. Yaptığımız çalışmada total aktivitede yüksek aktivite değeri gösteren B. subtilis BTX6 izolatının rekombinant ksilanaz ve aynı şekilde rekombinant nano ksilanazında optimum enzim aktivitesinin pH 7.0' de gerçekleştiği tespit edilmiş olup bu değer literatür bilgileriyle pek çok çalışmada benzer şekilde olduğu

görülmüştür. Çalışma sonucunda elde edilen enzimin bu sonuç itibari ile yem endüstrisinde, kâğıt endüstrisinde, ekmek yapımında ve diğer alanlarda da rahatlıkla uyum sağlayacak ideal pH özelliğinde olduğu düşünülmektedir.

Literatürde yapılan gözlemlerde ksilanaz enziminin aktivitesinin farklı sıcaklık skalalarında olduğu gözlemlenmiştir. Enzimler bazı proseslerde yüksek sıcaklıklarda ihtiyaç duyulması ve bu enzimlerinde bu yüksek sıcaklıklarda aktivite göstermeleri, ısıl işlem uygulanmaları gerektiren bazı çalışmalarda istenilen ve arzulanan durumlardır. Bu nedenle termofilik ortamda aktivite gösteren enzimler mezofilik olanlara göre daha çok tercih edilme nedeni olmuşlardır. Breccia et al. (1998) çalışmalarında Bacillus sp. izolatlarının ksilanaz enziminin optimum aktivite gösterdikleri sıcaklıkların 60 °C ile 80 °C arasında olduklarını, Cordeiro et al. (2002) 90 °C'de optimum ksilanaz aktivitesi gösteren termofilik bazı Bacillus sp. türleri olduğunu bildirmişlerdir. Yine bazı çalışmalarda halofilik bakterilerden elde edilen ksilanaz enzimlerinin yaklaşık olarak 50 °C ile 90 °C arasındaki sıcaklıklarda optimum aktivite gösterdikleri rapor edilmiştir (Dusterhoft et al. 1997; Wejse et al. 2003). Bazı mantar ve türevlerinde ise ksilanaz enziminin optimum aktivite gösterdiği sıcaklık değerinin 45 °C ile 60 °C arasında değiştiği rapor edilmiştir (Anthony et al. 2003; Ryan et al. 2003). Konsula and Liakopoulou-Kyriakides (2004) yapmış oldukları bir çalışmada; koyun sütünden orta derecede termofilik B. subtilis izolatları izole etmişlerdir. Elde ettikleri bu B. subtilis izolatından rekombinant hücre dışı a-amilaz üretmişlerdir. İn vitro ortamda bu enzimin pH 6.5'da ve 135 °C'de bile kalsiyum ve nişasta varlığında aktivite gösterdiğini tespit etmişlerdir. Termofilik ortamlardan izole edilen bazı Bacillus türlerinin 40 °C ile 60 °C arasındaki sıcaklıklarda optimum ksilanaz aktivitesi gösterdikleri bildirilmiştir (Bernier et al. 1983, Pham et al. 1998a; Lama et al. 2004; Poorna and Prema 2006, Guo et al. 2012, Kamble and Jadhav 2012, Ammoneh et al. 2014). Çalışmamızda ise B. subtilis izolatından elde edilen ksilanaz enziminin rekombinant ksilanaz ve rekombinant nano ksilanaz enzimlerinin yapılan farklı sıcaklık (37 °C, 40 °C, 45 °C, 50 °C, 60 °C, 70 °C, 80 °C ve 90 °C) aralıklarındaki aktivite testi sonucunda, optimum enzim aktivitesinin rekombinant ksilanaz enzimi için 68 °C'de, rekombinant nano ksilanaz için ise 75 °C'de olduğu belirlenmiştir. Bu sonuçlar literatüre bakıldığında bazı çalışmalara benzer niteliktedir. Ayrıca rekombinant nano ksilanaz formunda çok daha yüksek sıcaklıkta aktivite göstermesi bu metodun enzimlerin aktivitesini de ekstrem koşullara taşıdığını göstermiştir.

Yapılan bazı çalışmalarda, Bacillus türlerinde genel olarak HgCl2'nin inhibitör etkiye neden olduğu ve ksilanaz enziminin Hg⁺² iyonları tarafından inhibisyonunun nedenin ise Hg⁺² iyonlarının sistinin sülfidril grupları ile temas içerisinde olmasından kaynaklandığı bildirilmiştir (Khasin et al. 1993, Gessesse 1998, Faulet et al. 2006, Khandeparkar and Bhosle 2006, Gaur et al. 2015). Yine pek cok metal iyonlarının enzim aktivitesi üzerine etkileri (CaCl₂, MgCl₂, MgSO₄, ZnSO₄ ve CoCl₂ ve Mn⁺²) de pek çok araştırıcı tarafından araştırılmıştır (Khasin et al. 1993; Gessesse 1998; Annamalai et al. 2009; Gaur et al. 2015). Bazı çalışmalarda ksilanaz aktivitesinin Ca⁺² ve MgCl₂ ile etkileşimde inhibe oldukları bildirilmiştir (Gessesse 1998; Faulet et al. 2006). Bizim çalışmamızda rekombinant ksilanaz ve rekombinant Nano ksilanaz enzimlerinin MgSO₄, CuSO₄, CaCl₂, ZnSO₄ ve FeSO₄ gibi metal iyonlarının varlığında farklı tepkiler verdiği görülmüştür. Bu farklı tepkilerin metal iyonlarının rekombinant ksilanaz enzimi için MgSO₄ (% 80), CuSO₄ (% 57), CaCl₂ (% 74), ZnSO₄ (% 5) ve FeSO₄ (% 72), rekombinant nano ksilanaz enzimi için ise MgSO4 (% 85), CuSO4 (% 71), CaCl₂ (% 85), ZnSO₄ (% 50) ve FeSO₄ (% 94) farklı rölatif aktivite gösterdiği belirlenmiştir. Bu durumun sadece ksilanazın ksilan bağ alanına değil, substratın hidrolizi ile ilgili olan nonkatalitik ksilan bağlanma bölgesini de etkilemiş olmasından dolayı olabileceği rapor edilmiştir (Ratanakhanokchai et al. 1999). Yine çalışmamızın sonuçları incelendiğinde metal iyonlarının indirgeyici etkisinin rekombinant nano ksilanaz enzimlerinin aktiviteleri üzerinde etkili olmadığı ve rekombinant ksilanaz ile karşılaştırıldığında aktivitesinin arttığını söylemek mümkündür.

Ksilanaz enzimi ile ilgili yapılan çalışmalarda; Heck *et al.* (2002) *B. subtilis* BL53 izolatının 72 saatlik inkübasyonunun ardından ksilanaz aktivitesini 5.19 UI/mg olarak, Menon *et al.* (2010) saflaştırmış oldukları *B. pumilus* GESF1 ksilanazının aktivitesini 21.21 kat oranında yükselterek 112.42 U/mg olarak, Kapilan (2016) ise *B. subtilis* BS166 ksilanazının ham aktivite değerini 32.14, saflaştırılmış spesifik aktivite değerini ise 212.5 U/mg-1 olarak bildirmiştir. Yapmış olduğumuz çalışmada ise *B. subtilis* rekombinant nano ksilanazın spesifik aktivite değerini rekombinant olarak üretilen ksilanaza ve literatürde verilen değerlere göre oldukça yüksek olduğu (1898 U/mg) tespit edilmiştir. Dolayısıyla bu değerler göz önüne alınarak rekombinant nano ksilanazın, endüstriyel kullanım için oldukça uygun olduğunu söylemek mümkündür.

KAYNAKLAR

- Abdel-Naby, M.A., 1993. Immobilization of Aspergillus niger NRC 107 xylanase and βxylosidase, and properties of the immobilized enzymes. Applied Biochemistry and Biotechnology, 38 (1), 69-81.
- Abdulla, J.M., Rose, S.P., Mackenzie, A.M. and Pirgozliev, V.R., 2017. Feeding value of field beans (*Vicia faba* L. var. minor) with and without enzyme containing tannase, pectinase and xylanase activities for broilers. Archives of Animal Nutrition, 71 (2), 150-164.
- Acar, S., 2009. Hasanabdal Köyü Termal Tesislerinden Alınan Su Örneklerinden Gzole Edilen Termofilik Bakterilerin Moleküler Karakterizasyonu. Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
- Adiguzel, A., Ozkan, H., Baris, O., Inan, K., Gulluce, M. and Sahin, F., 2009. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. Journal of Microbiological Methods, 79 (3), 321-328.
- Aehle, W., 2007. Enzymes in industry: production and applications. John Wiley & Sons.
- Akcan, N., 2011. High level production of extracellular beta-galactosidase from *Bacillus licheniformis* ATCC 12759 in submerged fermentation. African Journal of Microbiology Research, 5 (26), 4615-4621.
- Aksoy, N., Simsek, C. and Gunduz, O., 2009. Groundwater contamination mechanism in a geothermal field: A case study of Balcova, Turkey. Journal of Contaminant Hydrology, 103 (1-2), 13-28.
- Alvarez-Cervantes, J., Dominguez-Hernandez, E.M., Mercado-Flores, Y., O'Donovan, A. and Diaz-Godinez, G., 2016. Mycosphere Essay 10: Properties and characteristics of microbial xylanases. Mycosphere, 7 (10), 1600-1619.
- Amerah, A.M., Romero, L.F., Awati, A. and Ravindran, V., 2017. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poultry Science, 96 (4), 807-816.
- Ammoneh, H., Harba, M., Akeed, Y., Al-Halabi, M., Bakri, Y., Isolation and identification of local *Bacillus* isolates from xylanase biosynthesis. Iranian Journal of Microbiology, 6(2): 127-132. 2014
- Anbarasan, S., Wahlstrom, R., Hummel, M., Ojamo, H., Sixta, H. and Turunen, O., 2017. High stability and low competitive inhibition of thermophilic *Thermopolyspora flexuosa* GH10 xylanase in biomass-dissolving ionic liquids. Applied microbiology and biotechnology, 101 (4), 1487-1498.
- Annamalai, N., Thavasi, R., Jayalakshmi, S. and Balasubramanian, T., 2009. Thermostable and alkaline tolerant xylanase production by *B. subtilis* isolated form marine environment. Indian Journal of Biotechnology, 8 (3), 291-297.
- Anthony, T., Raj, K.C., Rajendran, A. and Gunasekaran, P., 2003. High molecular weight cellulase-free xylanase from alkali-tolerant Aspergillus fumigatus AR1. Enzyme and Microbial Technology, 32 (6), 647-654.
- Avcioglu, B., Eyupoglu, B. and Bakir, U., 2005. Production and characterization of xylanases of a *Bacillus* strain isolated from soil. World Journal of Microbiology & Biotechnology, 21 (1), 65-68.
- Aygan A., Haloalkalofil *Bacillus* sp. İzolasyonu, Amilaz, Selülaz ve Ksilanaz Enzimlerinin Üretimi, Karakterizasyonu ve Biyoteknolojik Uygulamalarda Kullanilabilirliği, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 2008

- Ayhan, K., 2000. Gıdalarda Bulunan Mikroorganizmalar Gıda Mikrobiyolojisi ve Uygulamaları Ankara Üniversitesi Ziraat Fakültesi Gıda Mühendisliği Bölüm Yayını, 43-44. Sim Matbaacılık Ltd. Ankara.
- Ayyachamy, M. and Vatsala, T.M., 2007. Production and partial characterization of cellulase free xylanase by *B. subtilis* C 01 using agriresidues and its application in biobleaching of nonwoody plant pulps. Letters in Applied Microbiology, 45 (5), 467-472.
- Bai, W.Q., Xue, Y.F., Zhou, C. and Ma, Y.H., 2015. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic *Bacillus* sp SN5. Biotechnology and Applied Biochemistry, 62 (2), 208-217.
- Banka, A.L., Guralp, S.A. and Gulari, E., 2014. Secretory Expression and Characterization of Two Hemicellulases, Xylanase, and beta-Xylosidase, Isolated from *B. subtilis* M015. Applied Biochemistry and Biotechnology, 174 (8), 2702-2710.
- Battan, B., Dhiman, S.S., Ahlawat, S., Mahajan, R. and Sharma, J., 2012. Application of Thermostable Xylanase of *Bacillus pumilus* in Textile Processing. Indian Journal of Microbiology, 52 (2), 222-229.
- Bavykin, S.G., Lysov, Y.P., Zakhariev, V., Kelly, J.J., Jackman, J., Stahl, D.A. and Cherni, A., 2004. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of *Bacillus cereus* group microorganisms. Journal of Clinical Microbiology, 42 (8), 3711-3730.
- Beg, Q.K., Kapoor, M., Mahajan, L. and Hoondal, G.S., 2001. Microbial xylanases and their industrial applications: a review. Applied microbiology and biotechnology, 56 (3-4), 326-338.
- Bernard, K., Burdz, T., Wiebe, D., Balcewich, B.M., Zimmerman, T., Lagace-Wiens, P., Hoang, L.M.N. and Bernier, A.M., 2017. Characterization of isolates of Eisenbergiella tayi, a strictly anaerobic Gram-stain variable *Bacillus* recovered from human clinical materials in Canada. Anaerobe, 44, 128-132.
- Bernier, R., Desrochers, M., Jurasek, L. and Paice, M.G., 1983. Isolation and Characterization of a Xylanase from *Bacillus subtilis*. Applied and Environmental Microbiology, 46 (2), 511-514.
- Bhakyaraj, R., Isolation, production and characterization of xylanase from *Bacillus* sp. isolated from soil samples. International Journal of Advanced Multidisciplinary Research, 1(1): 41-51. 2014.
- Bilgehan, H., 1995, *Bacillus* Genusu: Klinik Mikrobiyolojik Tanı, Fakülteler Kitabevi, Barış Yayınları, 529-532, İzmir.
- Blanco, A., Vidal, T., Colom, J.F. and Pastor, F.I.J., 1995. Purification and Properties of Xylanase-a from Alkali-Tolerant *Bacillus sp* Strain Bp-23. Applied and Environmental Microbiology, 61 (12), 4468-4470
- Bocchini, D.A., Gomes, E. and Da Silva, R., 2008. Xylanase production by *Bacillus circulans* D1 using maltose as carbon source. Applied Biochemistry and Biotechnology, 146 (1-3), 29-37.
- Breccia, J.D., Sineriz, F., Baigori, M.D., Castro, G.R. and HattiKaul, R., 1998. Purification and characterization of a thermostable xylanase from *Bacillus amyloliquefaciens*. Enzyme and Microbial Technology, 22 (1), 42-49.
- Buchanan, R.E., 1994. An Aid to Formation of Bacterial Names Chemical Terminology and Microbiological Nomenclature. International Journal of Systematic Bacteriology, 44 (3), 588-590.
- Canakci, S., Kacagan, M., Inan, K., Belduz, A.O. and Saha, B.C., 2008. Cloning, purification, and characterization of a thermostable alpha-L-arabinofuranosidase

from *Anoxybacillus kestanbolensis* AC26Sari. Applied microbiology and biotechnology, 81 (1), 61-68.

- Cannio, R., Di Prizito, N., Rossi, M. and Morana, A., 2004. A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles, 8 (2), 117-124.
- Cano-Ramirez, C., Santiago-Hernandez, A., Rivera-Orduna, F.N., Pineda-Mendoza, R.M., Zunga, G. and Hidalgo-Lara, M.E., 2017. One-step zymogram method for the simultaneous detection of cellulase/xylanase activity and molecular weight estimation of the enzyme. Electrophoresis, 38 (3-4), 447-451.
- Çetinkaya, E., Ayhan, K., Mikrobiyolojide kullanılan bazı moleküler teknikler. Karaelmas Science and Engineering Journal, 2(1): 53-62. 2012.
- Chao, A., Jiang, N., Yang, Y., Li, H.Y. and Sun, H.Z., 2017. A Ni-NTA-based red fluorescence probe for protein labelling in live cells. Journal of Materials Chemistry B, 5 (6), 1166-1173.
- Chaudhary, H., Chaudhary, V., Kasana, H., Production and partial purification of xylanase from *Bacillus pumilus*. International Journal of Multidisciplinary Research and Development, 2(10): 396-400. 2015
- Chong, L., 2001. Molecular cloning A laboratory manual, 3rd edition. Science, 292 (5516), 446-446.
- Choudhury, B., Chauhan, S., Singh, S.N. and Ghosh, P., 2006. Production of xylanase of *Bacillus coagulans* and its bleaching potential. World Journal of Microbiology & Biotechnology, 22 (3), 283-288.
- Chutani, P. and Sharma, K.K., 2016. Concomitant production of xylanases and cellulases from *Trichoderma longibrachiatum* MDU-6 selected for the deinking of paper waste. Bioprocess and Biosystems Engineering, 39 (5), 747-758.
- Çolak U., Insan Serum Paraoksonaz Enziminin Kitosan Üzerine Immoblizasyonu ve Karakterizasyonu Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2011
- Collins, T., Gerday, C. and Feller, G., 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS microbiology reviews, 29 (1), 3-23.
- Con, A. H. ve Gökalp, H. Y. 1997. Gıda Mikrobiyolojisi. Pamukkale Üniversitesi Mühendislik Fakültesi Ders Notları Yayın no: 007, 23 s. Mühendislik Fakültesi Basım Ünitesi. Denizli.
- Cordeiro, C.A.M., Martins, M.L.L., Luciano, A.B. and da Silva, R.F., 2002. Production and properties of xylanase from thermophilic *Bacillus* sp. Brazilian Archives of Biology and Technology, 45 (4), 413-418.
- Damiano, V.B., Bocchini, D.A., Gomes, E. and Da Silva, R., 2003. Application of crude xylanase from *Bacillus licheniformis* 77-2 to the bleaching of eucalyptus Kraft pulp. World Journal of Microbiology & Biotechnology, 19 (2), 139-144.
- Davoodi, J., Wakarchuk, W.W., Surewicz, W.K. and Carey, P.R., 1998. Scan-rate dependence in protein calorimetry: The reversible transitions of *Bacillus circulans* xylanase and a disulfide-bridge mutant. Protein Science, 7 (7), 1538-1544.
- Dhillon, A. and Khanna, S., 2000. Production of a thermostable alkali-tolerant xylanase from *Bacillus circulans* AB 16 grown on wheat straw. World Journal of Microbiology & Biotechnology, 16 (4), 325-327.
- Dhillon, A., Gupta, J.K. and Khanna, S., 2000. Enhanced production, purification and characterisation of a novel cellulase-poor thermostable, alkalitolerant xylanase from *Bacillus circulans* AB 16. Process Biochemistry, 35 (8), 849-856.
- Dusterhoft, E.M., Linssen, V.A.J.M., Voragen, A.G.J. and Beldman, G., 1997. Purification, characterization, and properties of two xylanases from Humicola insolens. Enzyme and Microbial Technology, 20 (6), 437-445.

- Ekinci, A.P., Dincer, B., Baltas, N. and Adiguzel, A., 2016. Partial purification and characterization of lipase from *Geobacillus stearothermophilus* AH22. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (2), 325-331.
- Eren-Kıran Ö., Çömlekçioğlu,U., Dostbil N. 2006. Bazı Mikrobiyal Enzimler ve Endüstrideki Kullanım Alanları. KSÜ Fen ve Mühendislik Dergisi, 9 (1).
- Faulet, B.M., Niamke, S., Gonnety, J.T. and Kouame, L.P., 2006. Purification and biochemical properties of a new thermostable xylanase from symbiotic fungus, Termitomyces sp. African Journal of Biotechnology, 5 (3), 273-282.
- Fukusaki, E., Panbangred, W., Shinmyo, A. and Okada, H., 1984. The Complete Nucleotide-Sequence of the Xylanase Gene (Xyna) of *Bacillus pumilus*. Febs Letters, 171 (2), 197-201.
- Gallardo, O., Diaz, P. and Pastor, F.I.J., 2004. Cloning and characterization of xylanase A from the strain *Bacillus* sp BP-7: Comparison with alkaline pI-low molecular weight xylanases of family 11. Current Microbiology, 48 (4), 276-279.
- Gamerith, G., Groicher, R., Zeilinger, S., Herzog, P., Kubicek, C.P., 1992. Cellulase-Poor Xylanases Produced by Trichoderma reesei RUTC-30 on Hemicellulase Substrates. Appl Microbiol Biotechnol. 38: 315-322
- Gangadhar C vd. 2013. "Isolation and Characterization of B-Galactosidase Producing *B. subtilis* From Milk" World Journal of Pharmaceutical research Volume 3, Issue 1, 597-618. ISSN 2277 7105
- Garg, G., Mahajan, R., Kaur, A. and Sharma, J., 2011. Xylanase production using agroresidue in solid-state fermentation from *Bacillus pumilus* ASH for biodelignification of wheat straw pulp. Biodegradation, 22 (6), 1143-1154.
- Gaur, R., Tiwari, S., Rai, P. and Srivastava, V., 2015. Isolation, Production, and Characterization of Thermotolerant Xylanase from Solvent Tolerant *Bacillus vallismortis* RSPP-15. International Journal of Polymer Science.
- Gessesse, A., 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic *Bacillus* sp. Applied and Environmental Microbiology, 64 (9), 3533-3535.
- Gilbert, H.J. and Hazlewood, G.P., 1993. Bacterial Cellulases and Xylanases. Journal of General Microbiology, 139, 187-194.
- Gomes, K.D., Maitan-Alfenas, G.P., de Andrade, L.G.A., Falkoski, D.L., Guimares, V.M., Alfenas, A.C. and de Rezende, S.T., 2017. Purification and Characterization of Xylanases from the Fungus Chrysoporthe cubensis for Production of Xylooligosaccharides and Fermentable Sugars. Applied Biochemistry and Biotechnology, 182 (2), 818-830.
- Gong, W.L., Zhang, H.Q., Tian, L., Liu, S.J., Wu, X.Y., Li, F.L. and Wang, L.S., 2016. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis, 37 (12), 1640-1650.
- Güneri, K.G., Dağlıoğlu, O. 2008. Ksilanaz Enziminin Ekmek Yapımında Kullanımı. Türkiye 10. Gıda Kongresi; 21-23 Mayıs 2008, Erzurum.
- Guo, G., Liu, Z.C., Xu, J.F., Liu, J.P., Dai, X.Y., Xie, D.P., Peng, K.Q., Feng, X.Y., Duan, S.W., Zheng, K., Cheng, L.F. and Fu, Y.G., 2012. Purification and characterization of a xylanase from *B. subtilis* isolated from the degumming line. Journal of Basic Microbiology, 52 (4), 419-428.
- Hakovirta, J.R., Prezioso, S., Hodge, D., Pillai, S.P. and Weigel, L.M., 2016. Identification and Analysis of Informative Single Nucleotide Polymorphisms in 16S rRNA Gene Sequences of the *Bacillus cereus* Group. Journal of Clinical Microbiology, 54 (11), 2749-2756.

- Harmsen, D. and Karch, H., 2004. 16S rDNA for diagnosing pathogens: a living tree. Asm News, 70 (1), 19-24.
- Heck, J.X., Hertz, P.F., and Ayub, M.A.Z. Cellulase And Xylanase Production By Isolated Amazon *Bacillus* Strains Using Soybean Industrial Residue Based Solid-State Cultivation. Brazilian Journal of Microbiology 33:213-218. 2002.
- Hiremath, K.S., Patil, C.S., Isolation, production and characterization of alkalo thermostable xylanase from newly Isolated *Bacillus* sp. International Journal of Biotechnology Application, 3(1): 48-51. 2011.
- Hols, P., Ferain, T., Garmyn, D., Bernard, N. and Delcour, J., 1994. Use of Homologous Expression-Secretion Signals and Vector-Free Stable Chromosomal Integration in Engineering of *Lactobacillus plantarum* for Alpha-Amylase and Levanase Expression. Applied and Environmental Microbiology, 60 (5), 1401-1413.
- Honda, H., Kudo, T. and Horikoshi, K., 1985. Molecular-Cloning and Expression of the Xylanase Gene of Alkalophilic *Bacillus* sp Strain C-125 in *Escherichia-Coli*. Journal of Bacteriology, 161 (2), 784-785.
- Horikoshi, K. and Atsukawa, Y., 1973. Production of Enzymes by Alkalophilic Microorganisms .7. Xylanase Produced by Alkalophilic *Bacillus* No-C-59-2. Agricultural and Biological Chemistry, 37 (9), 2097-2103.
- Irfan, M., Asghar, U., Nadeem, M., Nelofer, R. and Syed, Q., 2016. Optimization of process parameters for xylanase production by *Bacillus* sp. in submerged fermentation. Journal of Radiation Research and Applied Sciences, 9 (2), 139-147.
- Jampaphaeng, K., Cocolin, L. and Maneerat, S., 2017. Selection and evaluation of functional characteristics of autochthonous lactic acid bacteria isolated from traditional fermented stinky bean (Sataw-Dong). Annals of Microbiology, 67 (1), 25-36.
- Jung, K.H. and Pack, M.Y., 1993. Expression of a *Clostridium thermocellum* Xylanase Gene in *B. subtilis*. Biotechnology Letters, 15 (2), 115-120.
- Kamble, R.D., Jadhav, A.R., Isolation, purification, and characterization of xylanase produced by a new species of Bacillusin solid state fermentation. International Journal of Microbiology, Article ID 683193, 8 pages. 2012.
- Kapilan, R., 2016. Characterisation of purified protease from *B. subtilis* BS166. Journal of the National Science Foundation of Sri Lanka, 44 (3), 243-248.
- Kaynar, P. and Beyatli, Y., 2008. Protein Profiles and Biochemical Characterizations of *Bacillus* sp. Strains Isolated from Fishes. Fresenius Environmental Bulletin, 17 (9a), 1316-1321.
- Kennedy, J.F. and Rehm, H.-J., 1987. Enzyme technology, 7. John Wiley & Sons.
- Khandeparkar, R.D.S. and Bhosle, N.B., 2006. Isolation, purification and characterization of the xylanase produced by Arthrobacter sp MTCC 5214 when grown in solid-state fermentation. Enzyme and Microbial Technology, 39 (4), 732-742.
- Khasin, A., Alchanati, I. and Shoham, Y., 1993. Purification and Characterization of a Thermostable Xylanase from *Bacillus stearothermophilus* T-6. Applied and Environmental Microbiology, 59 (6), 1725-1730.
- Kim, S.K., Chung, D., Himmel, M.E., Bomble, Y.J. and Westpheling, J., 2016. Heterologous expression of family 10 xylanases from *Acidothermus cellulolyticus* enhances the exoproteome of *Caldicellulosiruptor bescii* and growth on xylan substrates. Biotechnology for Biofuels, 9.
- Konsula, Z. and Liakopoulou-Kyriakides, A., 2004. Hydrolysis of starches by the action of an alpha-amylase from *B. subtilis*. Process Biochemistry, 39 (11), 1745-1749.
- Kulkarni, N., Shendye, A. and Rao, M., 1999. Molecular and biotechnological aspects of xylanases. FEMS microbiology reviews, 23 (4), 411-456.

- Kumar, B.K., Balakrishnan, H. and Rele, M.V., 2004. Compatibility of alkaline xylanases from an alkaliphilic *Bacillus* NCL(87-6-10) with commercial detergents and proteases. Journal of Industrial Microbiology & Biotechnology, 31 (2), 83-87.
- Lama, L., Calandrelli, V., Gambacorta, A. and Nicolaus, B., 2004. Purification and characterization of thermostable xylanase and beta-xylosidase by the thermophilic bacterium *Bacillus thermantarcticus*. Research in Microbiology, 155 (4), 283-289.
- Lee, K.C., Arai, T., Ibrahim, D., Prawitwong, P., Lan, D., Murata, Y., Mori, Y. and Kosugi, A., 2015. Purification and Characterization of a Xylanase from the Newly Isolated *Penicillium rolfsii* c3-2(1) IBRL. BioResources, 10 (1), 1627-1643.
- Lin, S., Schraft, H., Odumeru, J.A. and Griffiths, M.W., 1998. Identification of contamination sources of *Bacillus cereus* in pasteurized milk. International Journal of Food Microbiology, 43 (3), 159-171.
- Menon, G., Mody, K., Keshri, J. and Jha, B., 2010. Isolation, Purification, and Characterization of Haloalkaline Xylanase from a Marine *Bacillus pumilus* Strain, GESF-1. Biotechnology and Bioprocess Engineering, 15 (6), 998-1005.
- Negri, A., Daniele, L., Aravena, D., Muñoz, M., Delgado, A. and Morata, D., 2018. Decoding fjord water contribution and geochemical processes in the Aysen thermal springs (Southern Patagonia, Chile). Journal of Geochemical Exploration, 185, 1-13.
- Niehaus, F., Bertoldo, C., Kahler, M. and Antranikian, G., 1999. Extremophiles as a source of novel enzymes for industrial application. Applied microbiology and biotechnology, 51 (6), 711-729.
- Outtrup, H. and Jorgensen, S.T., 2002. The importance of *Bacillus* species in the production of industrial enzymes. Applications and systematics of *Bacillus* and relatives, 206-218.
- Ozcelik, S., 1995. Genel Mikrobiyoloji, Isparta, 1-33s.
- Ozic, C., 2012 Bazı Orthrias (Çöpçü Balığı) Türlerinin Biyoinformatik ve Deneysel Karakterizyonu. Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Eskişehir
- Paul, J. and Varma, A.K., 1992. Glycoprotein Components of Cellulase and Xylanase Enzymes of a *Bacillus* sp. Biotechnology Letters, 14 (3), 207-212.
- Petti CA, Carroll KC. 2011 Procedures for the storage of microorganisms. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds). Manual of Clinical Microbiology. 10th ed., ASM Press, Washington D.C., p. 124-131
- Pham, P.L., Strehaiano, P. and Taillandier, P., 1998a. Effect of aeration on xylanase production by *Bacillus* sp. I-1018. Bioprocess Engineering, 18 (1), 41-43.
- Pham, P.L., Taillandier, P., Delmas, M. and Strehaiano, P., 1998. Optimization of a culture medium for xylanase production by *Bacillus* sp. using statistical experimental designs. World Journal of Microbiology & Biotechnology, 14 (2), 185-190.
- Pirinccioglu H. 2010. Dargeçit ve Güçlükonak sıcak su kaynaklarından termofilik bakteri izolasyonu ve tanımlanması. Dicle Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi
- Poorna, C.A. and Prema, P., 2006. Production and partial characterization of endoxylanase by *Bacillus pumilus* using agro industrial residues. Biochemical Engineering Journal, 32 (2), 106-112.
- Ratanakhanokchai, K., Kyu, K.L. and Tanticharoen, M., 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic *Bacillus* sp. strain K-1. Applied and Environmental Microbiology, 65 (2), 694-697.

- Roy, N., Rowshanul, H.M., Isolation and characterization of xylanase producing strain of *Bacillus cereus* from soil. Iranian Journal of Microbiology, 1(2): 4953. 2009.
- Ryan, S.E., Nolan, K., Thompson, R., Gubitz, G.M., Savage, A.V. and Tuohy, M.G., 2003. Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzyme and Microbial Technology, 33 (6), 775-785.
- Saha, B.C., 2002. Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochemistry, 37 (11), 1279-1284.
- Salles, B.C., Cunha, R.B., Fontes, W., Sousa, M.V. and Filho, E.X.F., 2000. Purification and characterization of a new xylanase from *Acrophialophora nainiana*. Journal of Biotechnology, 81 (2-3), 199-204.
- Sanghvi, G., Jivrajani, M., Patel, N., Jivrajani, H., Bhaskara, G.B., Patel, S., Purification and characterization of haloalkaline, organic solvent stable xylanase from newly isolated halophilic bacterium-OKH. International Scholarly Research Notices, Article ID: 198251, 10 pages. 2014.
- Sapre, M.P., Jha, H. and Patil, M.B., 2005. Purification and characterization of a thermoalkalophilic xylanase from *Bacillus* sp. World Journal of Microbiology & Biotechnology, 21 (5), 649-654.
- Sargın, S., Öngen G.(2003). Kanatlı Yemi Katkısı Olarak Kullanılan Ksilanaz Enziminin Katı Kültür Fermantasyon Yöntemi ile Üretiminde Ölçek Büyütme Çalışmalar. Ege Üniv. Ziraat Fak. Dergisi. 40 :3, 145-152.
- Sarıkaya, E., 1995. α-amilase üreten bazı *Bacillus* suşlarının gelişme parametreleri, enzim özellik ve üretim koşullarının optimizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi.
- Say, R., Unluer, O.B., Ersoz, A., Ozic, C. and Kilic, V., 2015. Reusable Nanocopy Machine Particles for the Replication of DNA. Biotechnology Progress, 31 (1), 119-123.
- Sharma, M., Mehta, S., Kumar, A., Purification and characterization of alkaline xylanase secreted from *Paenibacillus macquariensis*. Advances In Microbiology, 3: 32-41. 2013.
- Silo-Suh, L.A., Stabb, E.V., Raffel, S.J. and Handelsman, J., 1998. Target range of Zwittermicin A, an aminopolyol antibiotic from *Bacillus cereus*. Current Microbiology, 37 (1), 6-11.
- St John, Franz J., et al. "Crystallization and crystallographic analysis of Bacillus subtilis xylanase C." Acta Crystallographica Section F: Structural Biology and Crystallization Communications 65.5 (2009): 499-503.
- Steinert, R., Bettermann, H. and Kleinermanns, K., 1997. Identification of xylene isomers in high-pressure liquid chromatography eluates by Raman spectroscopy. Applied Spectroscopy, 51 (11), 1644-1647.
- Temîzkan, G., ve Arda. N.. 1999. Moleküler Biyolojide Kullanılan Yöntemler. İstanbul Üniversitesi, Biyoicknoloji ve Genetik Mühendisliği Araştırma ve Uygulama Merkezi (BİYOGEM) No; 1,236s.
- Tolan, J.S. and Collins, J., 2004. Use of xylanase in the production of bleached, unrefined pulp at Marathon Pulp Inc. Pulp & Paper-Canada, 105 (7), 44-46.
- Tortoli, E., 2003. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clinical Microbiology Reviews, 16 (2), 319-+.
- Turker C. 2014 α-amilaz enzimlerini üreten termofilik *Bacillus* suşlarının izolasyonu ve enzimlerin kısmi karakterizasyonu Fen Bilimleri Enstitüsü Osmaniye Korkut Ata Üniversitesi 2014 Osmaniye

- Turnbell, P. C. B. and Kramer. J. M., 1991, *Bacillus*: Manual of clinical Microbiology, Fifth Edition, Balows, A., Hauster, J. R., Herman, K. L., Isenberg, H. D. and Shadomy, H. J., American Society of Microbiology, Washington D. C., 296-303.
- Uchino, F. and Nakane, T., 1981. A Thermostable Xylanase from a Thermophilic Acidophilic *Bacillus* sp. Agricultural and Biological Chemistry, 45 (5), 1121-1127.
- Uchino, F. and Nakane, T., 1981. A Thermostable Xylanase from a Thermophilic Acidophilic *Bacillus* sp. Agricultural and Biological Chemistry, 45 (5), 1121-1127.
- Voget, S., Steele, H.L. and Streit, W.R., 2006. Characterization of a metagenome-derived halotolerant cellulase. Journal of Biotechnology, 126 (1), 26-36.
- Waino, M. and Ingvorsen, K., 2003. Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles, 7 (2), 87-93.
- Walia, A., Guleria, S., Mehta, P., Chauhan, A. and Parkash, J., 2017. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech, 7.
- Wejse, P.L., Ingvorsen, K. and Mortensen, K.K., 2003. Xylanase production by a novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme and Microbial Technology, 32 (6), 721-727.
- Wiseman, A. and Dalton, H., 1987. Enzymes Versus Enzyme-Mimetic Systems for Biotechnological Applications. Trends in Biotechnology, 5 (9), 241-244.
- Wiseman, A., 1983. Industrial Enzymology the Application of Enzymes in Industry Godfrey, T, Reichelt, J. Chemistry in Britain, 19 (5), 423-424.
- Woese, C.R., 1987. Bacterial Evolution. Microbiological Reviews, 51 (2), 221-271.
- Wolf, M., Geczi, A., Simon, O. and Borriss, R., 1995. Genes Encoding Xylan and Beta-Glucan Hydrolyzing Enzymes in *B. subtilis* - Characterization, Mapping and Construction of Strains Deficient in Lichenase, Cellulase and Xylanase. Microbiology-Uk, 141, 281-290.
- Wong, K.K.Y., Tan, L.U.L. and Saddler, J.N., 1988. Multiplicity of Beta-1,4-Xylanase in Microorganisms - Functions and Applications. Microbiological Reviews, 52 (3), 305-317.
- Wulf C., 1989, Anneliese Crueger. A Textbook of Industrial Microbiology., second edition. Biotechnology, Sinauer press.
- Yang, R.C.A., Mackenzie, C.R., Bilous, D., Seligy, V.L. and Narang, S.A., 1988. Molecular-Cloning and Expression of a Xylanase Gene from *Bacillus polymyxa* in *Escherichia coli*. Applied and Environmental Microbiology, 54 (4), 1023-1029.
- Yang, V.W., Zhuang, Z., Elegir, G. and Jeffries, T.W., 1995. Alkaline-active xylanase produced by an alkaliphilic *Bacillus* sp. isolated from kraft pulp. Journal of Industrial Microbiology, 15 (5), 434-441.
- Yasinok, A.E., Biran, S., Kocabas, A. and Bakir, U., 2010. Xylanase from a soil isolate, *Bacillus pumilus*: gene isolation, enzyme production, purification, characterization and one-step separation by aqueous-two-phase system. World Journal of Microbiology & Biotechnology, 26 (9), 1641-1652.
- Zafar, A., Aftab, M.N., Din, Z.U., Aftab, S., Iqbal, I., Shahid, A., Tahir, A. and ul Haq, I., 2016. Cloning, Expression, and Purification of Xylanase Gene from *Bacillus licheniformis* for Use in Saccharification of Plant Biomass. Applied Biochemistry and Biotechnology, 178 (2), 294-311.
- Zeikus, J.G., 1979. Thermophilic Bacteria Ecology, Physiology and Technology. Enzyme and Microbial Technology, 1 (4), 243-252.

- Zhan, Y.H., Sun, R.J., Sun, X.Y., Xu, Y., Hou, C.X., Huang, Y.Y., Jiang, D. and Weng, X.Y., 2017. Expression regulation of a xylanase inhibitor gene riceXIP in rice (*Oryza sativa L.*). Brazilian Journal of Botany, 40 (4), 983-991.
- Zheng, W., 2017. Enhancement of Heterogeneous Alkaline Xylanase Production in *Pichia pastoris* GS115. Green Energy and Sustainable Development I, 1864.
- http://www.rcsb.org/pdb/explore.do?structureId=4XV0 (Erişim Tarihi 03.01.2018 Saat: 17:05)

EKLER

EK 1. BLAST analiz sonucunda elde edilen türün *B. subtilis* türlerine yakınlıklarının gösterilmesi

	BLAST Results						
Edit and Resubmit Save Search Strategies > Formatting options > Download		You	he <u>Hov</u>	/ to read	this pa	g <u>e B</u>	last report des
Job title: Nucleotide Sequence (1384 letters)							
RID <u>8MXP1RBC015</u> (Expires on 02-20 14:03 pm)							
Query ID d Query_215901	Database Name nr						
Description None Molecule type nucleic acid	Description Nucleotide collection (nt) Program BLASTN 2.8.0+ b Citation						
Query Length 1384	riggin been coor y <u>chaon</u>						
Other reports: > Search Summary (Taxonomy reports) [Distance tree of results] [MSA viewer]							
⊕ Graphic Summary							
<u>Opescriptions</u>							
Sequences producing significant alignments: Select: <u>All None</u> Selected:0						_	
1 Annumente El composito A Gentrativ Orabilitez fuzience nes or leadure			Tabl	0	F		Q
Description		Max	score	Query	E value	Ident	Accession
Bacillus subtilis strain GOM7 16S ribosomal RNA gene, partial sequence							Accession
Bacillus siamensis strain LCX6 16S ribosomal RNA gene. partial sequence		2427	2427	100%	0.0	99%	MG725751.1
		2427 2174	2427 2174	100% 100%	0.0	99% 95%	MG725751.1 KY646078.1
Bacilus sp. KXJ22 16S ribosomal RNA gene, carital sequence		2427 2174 2174	2427 2174 2174	100% 100% 100%	0.0 0.0 0.0	99% 95% 95%	<u>MG725751.1</u> <u>KY646078.1</u> <u>KT201618.1</u>
Bacillus sp. KXJ22 16S ribosomal RNA gene, partial sequence Uncultured Bacillus sp. clone Jensh04 16S ribosomal RNA gene, partial sequence		2427 2174 2174 2174	2427 2174 2174 2174 2174	100% 100% 100% 100%	0.0 0.0 0.0 0.0	99% 95% 95% 95%	MG725751.1 KY646078.1 KT201618.1 KC597267.1
Bacillus sp. KXJ22 16S ribosomal RNA gene, partial sequence Uncultured Bacillus sp. clone Jerish04 16S ribosomal RNA gene, partial sequence Bacillus sp. M1(2010) strain M1 16S ribosomal RNA gene, partial sequence		2427 2174 2174 2174 2174 2174	2427 2174 2174 2174 2174 2174	100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0	99% 95% 95% 95%	MG725751.1 KY646078.1 KT201618.1 KC597267.1 GQ340518.1
Bacillus sp. KXJ22 16S ribosomal RNA gene, partial sequence Uncultured Bacillus sp. clone Jerish04 16S ribosomal RNA gene, partial sequence Bacillus sp. M1(2010) strain M1 16S ribosomal RNA gene, partial sequence Bacillus sp. CIFE. HT35 16S ribosomal RNA gene, partial sequence		2427 2174 2174 2174 2174 2174 2172	2427 2174 2174 2174 2174 2174 2172	100% 100% 100% 100% 100% 99%	0.0 0.0 0.0 0.0 0.0 0.0	99% 95% 95% 95% 95%	MG725751.1 KY646078.1 KT201618.1 KC597267.1 GQ340518.1 KM016989.1
Bacillus sp. KXJ22 16S ribosomal RNA gene, partial sequence Uncultured Bacillus sp. clone Jerish04 16S ribosomal RNA gene, partial sequence Bacillus sp. M1(2010) strain M1 16S ribosomal RNA gene, partial sequence Bacillus sp. CIFE. HT35 16S ribosomal RNA gene, partial sequence Bacillus sp. KID2 16S ribosomal RNA gene, partial sequence Bacillus sp. KID2 16S ribosomal RNA gene, partial sequence		2427 2174 2174 2174 2174 2174 2172 2172	2427 2174 2174 2174 2174 2174 2172 2170	100% 100% 100% 100% 99% 100%	0.0 0.0 0.0 0.0 0.0 0.0	99% 95% 95% 95% 95% 95%	MG725751.1 KY646078.1 KT201618.1 KC597267.1 GQ340518.1 KM016989.1 KM497526.1
Bacillus sp. KXJ22 16S ribosomal RNA gene, partial sequence Uncultured Bacillus sp. clone Jerish04 16S ribosomal RNA gene, partial sequence Bacillus sp. M1(2010) strain M1 16S ribosomal RNA gene, partial sequence Bacillus sp. CIFE, HT35 16S ribosomal RNA gene, partial sequence Bacillus sp. KID2 16S ribosomal RNA gene, partial sequence Bacillus sp. KID2 16S ribosomal RNA gene, partial sequence Bacillus sp. KID2 16S ribosomal RNA gene, partial sequence Bacillus sp. KID2 16S ribosomal RNA gene, partial sequence Bacillus sp. KID2 16S ribosomal RNA gene, partial sequence		2427 2174 2174 2174 2174 2172 2170 2170	2427 2174 2174 2174 2174 2174 2172 2170 21609	100% 100% 100% 100% 99% 100% 100%	0.0 0.0 0.0 0.0 0.0 0.0 0.0	99% 95% 95% 95% 95% 95%	MG725751.1 KY646078.1 KT201618.1 KC597267.1 GQ340518.1 KM016989.1 KM0497526.1 CP003783.1

EK 2. BLAST analizi sonucu *B. subtilis* 16S rRNA geninin benzerlik gösterdiği *B. subtilis* dizisi

Bacillu	is subtilis strain GOM7 16S ribosomal RNA gene, partial sequence
GenBank	MG725751 1
EASTA G	ranhine
10010 0	
<u>Go to:</u> 🖂	
LOCUS	MG725751 1492 bp DNA linear BCT 31-DEC-2017
DEFINITION	N Bacillus subtilis strain GOM7 16S ribosomal RNA gene, partial
	sequence.
ACCESSION	MG725751
VERSION	MG/25/51.1
KEYWORDS	Recillur subtilis
ORGANITS	bddiilus subtiils
ORGANIZO	Bacteria: Firmicutes: Bacilli: Bacillales: Bacillaceae: Bacillus.
REFERENCE	1 (bases 1 to 1492)
AUTHORS	Kongarasi,K., Karthik Sundaram,S., Sankar,R. and Muneeswaran,T.
TITLE	Bacillus subtilis strain GOM7 16S ribosomal RNA gene, partial
	sequence
JOURNAL	Unpublished
REFERENCE	2 (bases 1 to 1492)
AUTHORS	Kongarasi,K., Karthik Sundaram,S., Sankar,R. and Muneeswaran,T.
TITLE	Direct Submission
JOURNAL	Submitted (26-DEC-2017) MICROBIOLOGY, PSG CAS, CIVIL AERODROME
COMMENT	POST, COMPATORE, INTERNATIONAL 641014, INCLA
COMMENT	massemptroit actionation :: Sanger dideoxy sequencing
	##Assembly-Data-END##
FEATURES	Location/Qualifiers
sourc	te 11492
	/organism="Bacillus subtilis"
	/mol_type="genomic DNA"
	/strain="GOM7"
	/isolation_source="marine sediment"
	/db_xref="taxon: <u>1423</u> "
	/country="India: Gulf of Mannar"
	/collected.bw="Komparis" K"
	/idatified_by="Kongarasi K"
	/PCR primers="fwd name: 8F. fwd seo: agagtttgatcctggctcag.
	rev_name: 1541R, rev_seq: aaggaggtgatccagccgca"
rRNA	<1>1492
	/product="16S ribosomal RNA"
ORIGIN	
1	tggagtgggg ggctgctata catgcagtcg agcggacaga tgggagcttg ctccctgatg
61	ttagcggcgg acgggtgagt aacacgtggg taacctgcct gtaagactgg gataactccg
121	ggaaaccggg gctaataccg gatggttgtt tgaaccgcat ggttcaaca taaaaggtgg
181	cttcggctac cacttacaga tggacccgcg gcgcattagc tagttggtga ggtaacggct
301	tattaaggta atgatgtgta gttgattiga gagggtgatt ggttaattg ggattgagat arggreraga etertaergga ageragraat aggagatett ergeataga eraaantea
361	acegageaac geogegtgag tgatgaaggt ttteggateg taaagetet# tt#tta####
421	agaacaagta ccgttcgaat agggcggtac cttgacggta cctaaccaga aagccacggc
481	taactacgtg ccagcagccg cggtaatacg taggtggcaa gcgttgtccg gaattattgg
541	gcgtaaaggg ctcgcaggcg gtttcttaag tctgatgtga aagcccccgg ctcaaccggg
601	gagggtcatt ggaaactggg gaacttgagt gcagaagagg agagtggaat tccacgtgta

Ek 3. BLAST analizi sonucu *B. subtilis* olduğunu düşündüğümüz türün dizisi ile benzerlik gösterdiği *B. subtilis* dizinin hizalanması

Bacillus subtilis strain GOM7 16S ribosomal RNA gene, partial sequence Sequence ID: MG725751.1 Length: 1492 Number of Matchee: 1								
Range	1: 22 t	0 1385 GenB	ank Grapt	hics		West M	latch 🔺 Previous Match	
Score 2519	bits(13	64)	Expect 0.0	Identities 1364/1364/100%	.) G	iaps /1364(0%)	Strand Plus/Plus	
Query	1	ATGCAGTCG	AGEGGACA	SATEGGAGETTECTCCC	LGATGTTAGE	GEGGACGOGEGAGEA	68	
Sbjct	22	AtgeAgteg	AGCGGACA	GATGGGAGCTTGCTCCC	GATGTTAGCO	GCGGACGGGTGAGTA	81	
Query	61	ACACGTOGO	TAACCTGC	CTGTAAGACTGGGATAA	CTCCGGGAAAC	COOGOCTAATACCOG	128	
Sbjct	82	ACACGTOGG	TAACCTGC	CTGTAAGACTGGGATAA	CTCCGGGAAAAC	CGGGGGCTAATACCGG	141	
Query	121	ATGGTTGTT	TGAACCGC	ATGGTTCAAACATAAAA	GETEGCTTCEG	CTACCACTTACAGAT	180	
Sbjct	142	Atééttétt	TGAACCGC	ATGGTTCAAACATAAAA	seteecttcee	CTACCACTTACAGAT	201	
Query	181	GGACCCGCG	GCGCATTA	GCTAGTTGGTGAGGTAA		GGCAACGATGCGTAG	248	
Ouerv	262	CCGACCTGA	GAGOGTGA	TCGGCCACACTGGGGACT	SAGACACGEC		388	
Sbict	262	LLLLLLLL	GAGGETGA	TCGGCCACACTGGGACT	SAGACACGGC	CAGACTCCTACGGGA	321	
Query	301	GGCAGCAGT	AGGGAATC	TTCCGCAATGGACGAAA	STCTGACGGAG	CAACGCCGCGTGAGT	360	
Sbjct	322	GGCAGCAGT	AGGGAATC	TTCCGCAATGGACGAAA	STCTGACGGAG	CAACGCCGCGTGAGT	381	
Query	361	GATGAAGGT	TTCGGAT	CGTAAAGCTCTGTTGTT	AGGGAAGAACA	AGTACCGTTCGAATA	428	
Sbjct	382	ĠÆĠĂĂĠĠ†	ttt cööAt	cgtaaagctctgttgtt	AGGGAAGAACA	AGTACCGTTCGAATA	441	
Query	421	GGGCGGTAC	CTTGACGG	TACCTAACCAGAAAGCC	ACGECTAACTA	CGTGCCAGCAGCCGC	480	
Sbjct	442	GGGCGGTAC	TAGGTOOD	TACCTAACCAGAAAGCC	ACGGCTAACTA		581	
Shict	582			AAGEGTTGTCCGGAATT			561	
Query	541	TTTCTTAAG	TCTGATGT	GAAAGCCCCCGGCTCAA	CGGGGGAGGGT	CATTGGAAACTGGGG	688	
Sbjct	562	++++L+++AAG	CTGATG	GAAAGCCCCCGGCTCAA	CGGGGAGGG	CATTEGAAACTEGE	621	
Query	681	AACTTGAGT	GCAGAAGA	GGAGAGTGGAATTCCAC	STGTAGCGGTG	AAATGCGTAGAGATG	668	
Sbjct	622	AACTIGAGI	GCAGAAGA	GGAGAGTGGAATTCCAC	statAgeata	AAATGCGTAGAGATG	681	
Query	661	TGGAGGAAC	ACCAGTGG	CGAAGGEGACTCTCTGG	ICTGTAACTGA	CGCTGAGGAGCGAAA	728	
Sbjct	682	TGGAGGAAC	ACCAGTGG	CGAAGGCGACTCTCTGG	TCTGTAACTGA	CGCTGAGGAGCGAAA	741	
Query	721						788	
Ouerv	781	AGIGTIAGG	GGGTTTCC	GCCCCTTAGTGCTGCAG	CTAACGCATTA	AGCACTCOGCCTGGG	840	
Sbjct	882	AGIGHAGG	GGG	GCCCCTTAGTGCTGCAG		AGCACTCCGCCTGGG	861	
Query	841	GAGTACOGT	CGCAAGAC	TGAAACTCAAAGGAATT	SACGGGGGCCC	GCACAAGCGGTGGAG	988	
Sbjct	862	GAGTACOGT	CGCAAGAC	tgaaactcaaaggaatt	ACGGGGGCCC	GCACAAGCGGTGGAG	921	
Query	981	CATGTOGTT	TAATTCGA	AGCAACGCGAAGAACCT	TACCAGGTCTT	GACATCETETGACAA	968	
Sbjct	922	CATGTGGTT	TAATTCGA	AGCAACGCGAAGAACCT	TACCAGGTCT1	GACATCCTCTGACAA	981	
Query	961		AGGACGT	CCCCTTCGGGGGCAGAG	GACAGGTGG	GCATEGTTGTCGTCA	1020	
Ouerv	1821	GCTCGTGTC	CTGAGATG	TTGGGGTAAGTCCCCCA		CETTGATCTTATTIG	1080	
Sbjct	1842	ettere	CTGAGATG	TGGGGTAAGTCCCCCA	ACGAGCGCAAC	CCTTGATCTTATTTG	1101	
Query	1081	CCACCATTO	AGTTGGGC	ACTCTAAGGGGACTGCC	GGTGACAACCO	GAGGAAggggggggA	1140	
Sbjct	1102	CCACCATTC.	AGTTGGGC	ACTCTAAGGGGACTGCC	GTGACAACCO	GAGGAAGGGGGGGGA	1161	
Query	1141	GGAAAGCCA	AAAAATCC	AGGCGCCCTATGAACAG	GGGGGACACAC	TGGTTTAAATGGAGA	1200	
Sbjct	1162	ĠĠĂĂĂĠĊĊĂ	AAAAAtco	AGGCGCCCTATGAACAG	segéékékéké	téétttááátééááá	1221	
Query	1201	GaaaaaaaG	GGGGCGGA	AACCCGCGGGGGTTAGCC			1268	
Query	1261	GAGEGEAGT	CIGCAACT	CONCERNING AND A CONCER	ALCOLACCAA	ATCGCGGGATCAGCAT	1281	
Sbict	1282	GAGCGCAGT	CIGCAACT	CGACTGCGTGAAGCTGG	AA+CGC+AG+J	ATCGCGGATCAGCAT	1341	
Query	1321	eccecete	AATACGTT	CCCGGGCCTTGTACACA	COCCOTCA	1364		
Sbjct	1342	GCCGCGGTG	AA+Acg++	CCCGGGCCTTGTACACA	ccccccctcA	1385		

EK 4. BLAST analiz sonucunda elde edilen türün *B. licheniformis* türlerine yakınlıklarının gösterilmesi

			BLAST Results							
E	dit and Re	submit Save Search Strategies Formatting options Download			You	he How	/ to read	this pa	g <u>e B</u>	last report desci
Jo	b title: N	ucleotide Sequence (1410 letters)								
	Que Descri Molecule Query La	RID <u>8MY5ZWAR014</u> (Expires on 02-20 14:11 pm) ry ID 16(]Query_163841 ption None type nudeic acid ength 1410	Database Name Description Program	nr Nucleotide collection (nt) BLASTN 2.8.0+ ⊳ <u>Citation</u>						
	Other rep	orts: Search Summary [Taxonomy reports] [Distance tree of results] [MSA viewer]								
Ð	Graphic	Summary								
Θ	Descript	ions								
	Sequ	ences producing significant alignments:								
	Selec	t: <u>All None</u> Selected:0								
	1 Al	ignments 🗒 Download 👻 <u>GenBank Graphics</u> <u>Distance tree of results</u>								0
			Description		Max score	Total score	Query cover	E value	Ident	Accession
		tacillus licheniformis strain GINM-3 16S ribosomal RNA gene, partial sequence			2410	2410	99%	0.0	98%	KY492396.1
		tacillus licheniformis gene for 16S ribosomal RNA, partial sequence, strain: ND4			2410	2410	99%	0.0	98%	AB862128.1
		tacillus licheniformis partial 16S rRNA gene, strain ND4			2410	2410	99%	0.0	98%	HG796156.1
		tacillus licheniformis strain PG5 16S ribosomal RNA gene, partial sequence			2244	2244	96%	0.0	97%	HQ143565.1
		tacillus licheniformis strain GA1-17 16S ribosomal RNA gene, partial sequence			2244	2244	96%	0.0	97%	<u>AY162134.1</u>
		lacillus paralicheniformis strain SBP11 16S ribosomal RNA gene, partial sequence			2242	2242	96%	0.0	97%	KY630568.1
		lacillus paralicheniformis strain SBP15 16S ribosomal RNA gene, partial sequence			2241	2241	95%	0.0	97%	KY630572.1
		lacillus sp. Bac167R 16S ribosomal RNA gene, partial sequence			2241	2241	96%	0.0	97%	KP795830.1
		lacillus licheniformis strain BCL-8 16S ribosomal RNA gene, partial sequence			2241	2241	96%	0.0	97%	KM378594.1
		tacillus licheniformis strain SB-21 16S ribosomal RNA gene, partial sequence			2239	2239	96%	0.0	97%	MF321846.1
		tacillus licheniformis strain KJ2SK 16S ribosomal RNA gene, partial sequence			2239	2239	96%	0.0	97%	MF470191.1
		lacillus licheniformis strain BI_TC130 16S ribosomal RNA gene, partial sequence			2239	2239	96%	0.0	97%	KY575581.1
		tarillus licheniformis strain SRV-D 16S rihosomal RNA nene nartial semience			2239	2239	96%	0.0	97%	KY196419.1

EK 5. BLAST analizi sonucu *B. licheniformis* 16s rRNA geninin benzerlik gösterdiği *B. licheniformis* 16s rRNA dizisi

GenBank •	Send to: 👻	Change region shown
		change region shown
Bacillus licheniformis strain GINM-3 16S ribosomal RNA gene, partial seque	nce	Customize view
GenBank: KY492396.1		
FASTA Graphics		
	A	Analyze this sequence
<u>Go to:</u> 🕅	F	Run BLAST
1001/5 KV402205 1455 Hz DNA 1455-5 D5 00 000 2017		
LOCUS K1492390 1400 DP UNA INTER DC 02-AFK-201/	F	Pick Primers
partial sequence.	F	lightight Sequence Features
ACCESSION KY492396		ngingin coqueries i cataloc
VERSION KY492396.1	F	ind in this Sequence
KEYWORDS .		
SOURCE Bacillus licheniformis		
ORGANISM Bacillus inchenitormis	F	Related information
DEFEDENCE 1 (bases 1 to 1466)		
AITHORS Paritar's ad Joshi H.	1	axonomy
TITLE Glucose isomerase producing bacteria		
JOURNAL Unpublished		
REFERENCE 2 (bases 1 to 1466)	F	Recent activity
AUTHORS Parihar,S. and Joshi,H.		Turn Off Clear
TITLE Direct Submission	F	Beelling lighter Kernels sheels OlyM 2.400
JOURNAL Submitted (20-JAN-2017) Biotechnology, Mohanlal Sukhadia	E	Bacilius licheniformis strain Ginni-3 165
University, Vigyan Bhawan B Block MLSU, Udaipur, Rajasthan 313001, T-di		housonial RNA gene, partial sequen Nucleona
COMMENT ##Accombly_Data_CTADT##	-	Bacillus subtillis strain NG 05 16S ribosoma
Sequencing Technology :: Sanger dideoxy sequencing	_	RNA gene, partial sequence Nucleotid
##Assembly-Data-END##		Clearing purification and characterization of
FEATURES Location/Qualifiers		B-galactosidase from Bacillus lic PubMe
source 11466		p galactosidase nom bacillas ne
/organism="Bacillus licheniformis"	Ē	Cloning, sequencing and expression of the
/mol_type="genomic DNA"		xylanase gene from a Bacillus subtilis PubMe
/strain="GINM-3"		Genetics - Medical Microbiology
/isolation_source= soir sample		J Concluse meanur microbiology
/collected by="Sanjay Parihar"		See more.

EK 6. BLAST analizi sonucu *B. licheniformis* olduğunu düşündüğümüz türün dizisi ile benzerlik gösterdiği *B. licheniformis* dizinin hizalanması

 Bacillu	is lich	eniformis	strain GIN	IM-3 16S ribo	somal RNA	gene, partia	l sequ	lence	
Sequen	ce ID:	(Y49239)	6.1 Length:	1466 Number	of Matches: 1				
Range 1	l; 141 t	to 1004 <u>Ge</u>	nBank Graphi	<u>cs</u>			Next	Match 🔺 Previous Match	
Score 1596	bits(86	4)	Expect 0.0	Identities 864/864(100)%)	Gaps 0/864(0%)		Strand Plus/Plus	
Ouerv	1	ATGCTTGA	ATTGAACCGCA	IGGTTCAATTATA	AAAGGTGGCTTT	TAGCTACCACTT	ACAGA	60	
Sbjct	141	ATGCTTGA	ATTGAACCGCA	TGGTTCAATTATA	AAAGGTGGCTTT	TAGCTACCACTT	 ACAGA	200	
Query	61	TGGACCCO	GGGCGCATTA	GCTAGTTGGTGAG	GTAACGGCTCAC	CAAGGCAACGAT	GCGTA	120	
Sbjct	201	TGGACCCO	GGGCGCATTA	GCTAGTTGGTGAG	GTAACGGCTCAC	CAAGGCAACGAT	GCGTA	260	
Query	121	ĢĊĊĠĂĊĊŢ	GAGAGGGTGA	тсөөссасастөө	GACTGAGACACG	GCCCAAACTCCT	ACGGG	180	
Sbjct	261	GCCGACCT	GAGAGGGTGA	TCGGCCACACTGG	GACTGAGACACG	GCCCAAACTCCT	ACGGG	320	
Query	181	AGGCAGCA	GTAGGGAATC	TTCCGCAATGGAC	GAAAGTCTGACG	GAGCAACGCCGC	GTGAG	240	
Sbjct	321	AGGCAGCA	GTAGGGAATC	TTCCGCAATGGAC	GAAAGTCTGACG	GAGCAACGCCGC	GTGAG	380	
Query	241	TGATGAAG	GTTTTCGGAT	CGTAAAACTCTGT	TGTTAGGGAAGA	ACAAGTACCGTT	CGAAT	300	
Sbjct	381	TGATGAAG	GTTTTCGGAT	CGTAAAACTCTGT	TGTTAGGGAAGA	ACAAGTACCGTT	CGAAT	440	
Query	301	AGGGCGGT	ACCTTGACGG	ТАССТААССАБАА	AGCCACGGCTAA	ACTACGTGCCAGC	AGCCG	360	
Sbjct	441	AGGGCGGT	ACCTTGACGG	TACCTAACCAGAA	AGCCACGGCTAA	ACTACGTGCCAGC	AGCCG	500	
Query	361	CGGTAATA	CGTAGGTGGC	AAGCGTTGTCCGG	AATTATTGGGCG	TAAAGCGCGCGC	AGGCG	420	
Sbjct	501	CGGTAATA	ACGTAGGTGGC/	AAGCGTTGTCCGG	AATTATTGGGCG	TAAAGCGCGCGCG	AGGCG	560	
Query	421	GTTTCTT/	AGTCTGATGT	GAAAGCCCGCGGG		AGGGTCATTGGGA	AACTG	480	
Sbjct	561	dtttctt/	AGTCTGATGT	GAAAGCCCGCGGG	CTCAACCGGGGA	AGGGTCATTGGGA	AACTG	620	
Query	481	GGGAACTT	GAGTGCAGAA	GAGGGGAGTCGCA	ТТСССАССТСТА	ACCGGTGAAATGC	GTAGA	540	
Sbjct	621	GGGAACTT	GAGTGCAGAA	GAGGGGGAGTCGCA	TTCCCACGTGTA	ACCGGTGAAATGC	GTAGA	680	
Query	541	GATGTGGA	GGAACACCAG	TGGCGAAGGGCGA	стстстоотсто	TAACTGACGCTG	iaggçg	600	
Sbjct	681	GATGTGGA	AGGAACACCAG	TGGCGAAGGGCGA	ctctctdgtctd	TAACTGACGCTG	AGGCG	740	
Query	601	CGAAAGCO	TGGGGAGCGA	ACAGGATTAGATA	ссстобтавтсо	ACGCCGTAAACG	ATGAG	660	
sbjct	741	CGAAAGCO	TGGGGAGCGA	ACAGGATTAGATA	CCCTGGTAGTCC	ACGCCGTAAACG	ATGAG	800	
Query	661	TGCTAAGT	GTTAGAGGGT	TTCCGCCCTTTAG	TGCTGCAGCAAA	ACGCATTAAGCAC		720	
Sbjct	801	toctaagt	GTTAGAGGGT	ttccgccctttag	TGCTGCAGCAAA	ACGCATTAAGCAC	tcccc	860	
Query	721	CTGGGGAG	TACGGTCGCA	AGACTGAAACTCA	AAGGAATTGACG	GGGGGCCCGCACA	AGCGG	780	
Sbjct	861	CTGGGGAG	TACGGTCGCA	AGACTGAAACTCA	AAGGAATTGACG	GGGGCCCGCACA	AGCGG	920	
Query	781	TGGAGCAT	GTGGTTTAAT			AGGTCTTGACAT	CCTCT	840	
Sbjct	921	TGGAGCAT	dtggtttaat	TCGAAGCAACGCG	AAGAACCTTACC	AGGTCTTGACAT	ççtçt	980	

EK 7. BLAST analiz sonucunda elde edilen türün *B. thuringiensis* türlerine yakınlıklarının gösterilmesi

BLAST Results	Erzurum Teknik Üniversitesi	
Edit and Resubmit Save Search Strategies > Formatting options > Download	www.erzurum.ed <mark>u.tr/Me</mark> nu/52/fen-bilimler	ða <u>ge</u> <u>Blast report des</u>
Job title: Nucleotide Sequence (1341 letters)		
DTD 47580700114 (Evrovies on 01.05 22:10 nm)		
NLD <u>HEORECKNUH</u> (LAPIES OF 01-00 22.10 pm) Onew ID [d][Onev: 1/170/3		
Description None Description Nucleotide callection (nt)		
Molecule type mudeic acid Program BLASTN 2.7.1+ © Citation		
Query Length 1341		
Other reports: > Search Summary [Taxonomy reports] [Distance tree of results] [MSA viewer]		
B Graphic Summary		
D <u>Descriptions</u>		
Sequences producing significant alignments:		
Select All None Selected 0		
Alignments Download - GenBank Graphics Distance tree of results		0
Description	Max Total Query E	Ident Accession
u voor joor i	score score cover value)
Bacillus thuringiensis strain KNU-07, complete genome	2477 36901 100% 0.0	100% <u>CP016588.1</u>
Bacillus wiedmanni strain FSL W8-0169 16S ribosomal RNA, partial sequence	2471 2471 100% 0.0	99% <u>NR 152692.1</u>
Bacillus cereus strain MLY1 chromosome MLY1 0, complete sequence	2471 39120 100% 0.0	99% <u>CP024655.1</u>
Bacillus sp. strain C11 16S ribosomal RNA gene, partial sequence	2471 2471 100% 0.0	99% <u>MG461675.1</u>
Bacillus cereus strain HBL-Al chromosome, complete genome	2471 34511 100% 0.0	99% <u>CP023245.1</u>
Bacillus thuringiensis strain ATCC 10792. complete genome	2471 34501 100% 0.0	99% <u>CP020754.1</u>
Bacillus thuringiensis strain UFGS2 16S ribosomal RNA gene, partial sequence	2471 2471 100% 0.0	99% <u>MF526967.1</u>
Bacilus thuringiensis strain c25. complete genome	2471 34557 100% 0.0	99% <u>CP022345.1</u>
Bacillus cereus strain FORC. 047. complete genome	2471 34584 100% 0.0	99% <u>CP017060.1</u>
Bacilus cereus strain M13. complete genome	2471 32101 100% 0.0	99% <u>CP016360.1</u>
Bacillus cereus strain K8. complete sequence	2471 34551 100% 0.0	99% <u>CP016595.1</u>
Bacillus careus strain FORC. 048. complete genome	2471 34562 100% 0.0	99% <u>CP017234.1</u>
Bacillus careus strain D12 2, complete genome	2471 34562 100% 0.0	99% <u>CP016315.1</u>
Bacillus thuringiensis strain BM-8T15426, complete genome	2471 34472 100% 0.0	99% <u>CP020723.1</u>
Bacilus thuringiensis strain SCG04-02, complete genome	2471 34492 100% 0.0	99% <u>CP017577.1</u>

EK 8. BLAST analizi sonucu *B. thuringiensis* 16s rRNA geninin benzerlik gösterdiği *B. thuringiensis* 16s rRNA dizisi

GenBank 👻			Send to: 🕶				
Bacillus	s thuringiensis strain ł	KNU-07 chromosome, complete genome					
GenBank: C	P016588.1						
FASTA Gra	aphics						
<u>Go to:</u> ⊠							
LOCUS DEFINITION ACCESSION VERSION DBLINK	CP016588 5344151 bp Bacillus thuringiensis strain KN CP016588 CP016588.1 BioProject: <u>PRJNA330597</u>	DNA circular BCT 22-JUL-2016 NU-07, complete genome.					
	BioSample: SAMN05417762						
KEYWORDS SOURCE ORGANISM	Bacillus thuringiensis <u>Bacillus thuringiensis</u> Bacteria; Firmicutes; Bacilli; I Pacillus concernent	Bacillales; Bacillaceae; Bacillus;					
REFERENCE AUTHORS TITLE JOURNAL	Bacillus cereus group. 1 (bases 1 to 5344151) Park,GS., Hong,SJ., Jung,B.K. and Shin,JH. Complete genome sequence of Bacillusthuringiensis KNU-07 Unpublished						
REFERENCE AUTHORS TITLE JOURNAL	2 (bases 1 to 5344151) Park,GS., Hong,SJ., Jung,B.K. and Shin,JH. Direct Submission Submitted (20-JUL-2016) School of Applied Biosciences, Kyungpook National University, 80 Daehakro, Bukgu, Deagu, 41566, South of						
COMMENT	Korea Annotation was added by the NCB: Pipeline (released 2013). Infor found here: <u>https://www.ncbi.nl</u> Source bacteria available from : University. Collection number: I Sciences building #1, room 203,	I Prokaryotic Genome Annotation mation about the Pipeline can be <u>m.nih.gov/genome/annotation prok/</u> Shin's Lab, Kyungpook National KNU-07, Agriculture and Life Kyungpook National University.					
	<pre>##Genome-Assembly-Data-START## Assembly Method :: PacBio Genome Coverage :: 106x Sequencing Technology :: PacBio ##Genome-Assembly-Data-END##</pre>	SMRT analysis 2.3 v. HGAP 2					
	##Genome-Annotation-Data-START# Annotation Provider Annotation Date Annotation Pipeline	# :: NCBI :: 07/20/2016 13:57:47 :: NCBI Prokaryotic Genome Annotation Pineline					
	Annotation Method	:: Best-placed reference protein set: GeneMarkS+					
	Annotation Software revision	:: 3.3					
EK 9. BLAST analizi sonucu *B. thuringiensis* olduğunu düşündüğümüz türün dizisi ile benzerlik gösterdiği *B. thuringiensis* dizinin hizalanması

E DOW	iloau v	Centralik Craphics sonroy. E value						
Bacillus thuringiensis strain KNU-07, complete genome Sequence ID: <u>CP016588.1</u> Length: 5344151 Number of Matchee: 15								
Range	1: 48173	3 to 49513 GenBank Graphics Text Mate	ch 🔺 Previo					
Score		Expect Identities Gaps 5	Strand					
24771	oits(134	1) 0.0 1341/1341(100%) 0/1341(0%) F	Plus/Plus					
Feature	es: <u>FRNA</u>	-16S ribosomal RNA						
Query Sbjct	1 48173	TTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTGTCCCACCTTAGGCGGCT TTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCTGTCCCACCTTAGGCGGCT	60 48232					
Query	61	GGCTCCATAAAGGTTACCCCACCGACTTCGGGTGTTACAAACTCTCGTGGTGTGACGGGC	120					
Sbjct	48233	GGCTCCATAAAGGTTACCCCACCGACTTCGGGTGTTACAAACTCTCGTGGTGTGACGGGC	48292					
Query	121	GETGTGTACAAGGECCEGGAACGTATTCACCGCGGCATGCTGATCCGCGATTACTAGCGA	180					
Query	181	TTCCAGCTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGAGAACGGTTTTATGAGA	240					
Sbjct	48353	TTCCAGCTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGAGAACGGTTTTATGAGA	48412					
Query	241	TTAGCTCCACCTCGCGGTCTTGCAGCTCTTTGTACCGTCCATTGTAGCACGTGTGTAGCC	300					
Sbjct	48413	TTAGCTCCACCTCGCGGTCTTGCAGCTCTTTGTACCGTCCATTGTAGCACGTGTGTAGCC	48472					
Query	381	CAGGTCATAAGGGGCATGATGATTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGG	368					
Query	361	CAGTCACCTTAGAGTGCCCAACTTAATGATGGCAACTAAGATCAAGGGTTGCGCTCGTTG	428					
Sbjct	48533	CAGTCACCTTAGAGTGCCCAACTTAATGATGGCAACTAAGATCAAGGGTTGCGCTCGTTG	48592					
Query	421	CGGGACTTAACCCAACATCTCACGACACGAGGTGACGACAACCATGCACCACCTGTCACT	480					
Sbjct	48593	CGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACT	48652					
Query	481	CTGCTCCCGAAGGAGAAGACCCTATCTCTAGGGTTTTCAGAGGATGTCAAGACCTGGTAAG	48712					
Query	541	GTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGGCCCCCGTCAA	688					
Sbjct	48713	GTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAA	48772					
Query	681	TTCCTTTGAGTTTCAGCCTTGCGGCCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAACT	668					
Sbjct	48773	TTCCTTTGAGTTTCAGCCTTGC6GCCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAACT	48832					
Query	48833	TEAGLACT AAAGGGCGGGAAACCCC CTAALACTTAGCACT CATCGTT TACGGCG I GGACTA	728 48892					
Query	721	CCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTACAGACC	780					
Sbjct	48893	CCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTACAGACC	48952					
Query	781	AGAAAGTCGCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACAT	840					
Sbjct	48953	AGAAAGTCGCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACAT	49812					
Sbjct	49813	GGAATTCCACTTTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGACCCTCCACGGTT	49872					
Query	901	GAGCCGTGGGCTTTCACATCAGACTTAAGAAACCACCTGCGCGCGC	968					
Sbjct	49873	GAGCCGTGGGCTTTCACATCAGACTTAAGAAACCACCTGCGCGCGC	49132					
Query	961	TTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGG	1828					
Ouerv	49133	CTTTCTGSTTAGGTACCGTCAGGTGCTGGCTGCTGGCGCGCGCGCGCG	1888					
Sbjct	49193	CTTTCTGGTTAGGTACCGTCAAGGTGCCAGCTTATTCAACTAGCACTTGTTCTTCCCTAA	49252					
Query	1081	CAACAGAGTTTTAEGAECCGAAAGECTTCATCAETCACGEGGEGTTGETCCGTCAGAETT	1148					
Sbjct	49253	CAACAGAGTTTTACGACCCGAAAGCCTTCATCACTCACGCGGCGTTGCTCCGTCAGACTT	49312					
Query Sbjct	1141 49313	TCGTCCATTGCGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAG	1200 49372					
Query	1201	TCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTACGCATCGTTGCCTTGGTGAGCCGTT	1260					
Sbjct	49373	tcccAgtgtggccgAtcAcccctctcAggtcggctAcgcAtcgttgccttggtgAgccgtt	49432					
Query	1261	ACCTCACCAACTAGCTAATGCGACGCGGGTCCATCCATAAGTGACAGCCGAAGCCGCCTT	1320					
Sbjet	49433	ALCITCACCAACTAGCGAACGCGGGGTCCATCCATAAGTGACAGCCGAAGCCGCCTT TCAATTTCGAACCATGCGGTT 1341	49492					
Sbjct	49493	TCAATTTCGAACCATGCGGTT 49513						

EK 10. BLAST analiz sonucunda elde edilen türün *Geobacillus kaustophilus* türlerine yakınlıklarının gösterilmesi

nd Resubmit Save Search Strategies > Formatting options > Download		You	ibe <u>How</u>	<u>r to read</u>	<u>l this pa</u>	<u>ge B</u>	<u>ast report de</u>
le: Nucleotide Sequence (1406 letters)							
RID <u>8MYKESMA014</u> (Expires on 02-20 14:19 pm) Query ID Icl[Query_124963 Description None Recule type nucleic acid ery Length 1406	Database Name nr Description Nucleotide collection (nt) Program BLASTN 2.8.0+ ⊳ <u>Citation</u>						
er reports:							
phic Summary							
criptions							
0							
sequences producing significant alignments:							
Sequences producing significant alignments: Select: <u>All None</u> Selected:0							
Sequences producing significant alignments: Select: <u>All None</u> Selected:0 If Alignments III Download & <u>GenBank Graphics Distance tree of results</u>							¢
Sequences producing significant alignments: Select: <u>All None</u> Selected:0 Alignments Download & <u>GenBank Graphics Distance tree of results</u> Description		Max score	Total score	Query cover	E value	Ident	¢ Accession
Sequences procucing significant alignments: Select <u>All None</u> Selected 0 Alignments Download GenBank Graphics Distance tree of results Description Geobacilus kaustochius strain YE5-1016-404 185 ribosomal RNA gene, partial sequence		Max score 2370	Total score 2370	Query cover 99%	E value 0.0	Ident 98%	C Accession
Sequences producing significant alignments: Select <u>All None</u> Selected:0 Alignments Download Centiant Graphics Distance tree of results Ceobacilus kaustophius strain YE5-1016-404 16S ribosomal RNA gene, cartial sequence Bacillus I caldobritus strain NEB114 chromosome, complete genome		Max score 2370 2348	Total score 2370 21087	Query cover 99% 99%	E value 0.0	ldent 98% 97%	C Accession WG456829.1 CP025074.1
Sequences producing significant alignments: Select: <u>All None</u> Selected:0 Alignments Download GenBank Graphics Distance tree of results Description Geobacillus kaustophilus strain YE5-1016-404 16S ribosomal RNA gene, cartial sequence Bacillus i caldolyticus strain NEB114 chromosome complete genome Geobacillus subternateus subso, aromatichorans strain Manikaran-199 15S ribosomal RNA gene, cartial sequence		Max score 2370 2348 2348	Total score 2370 21087 2348	Query cover 99% 99% 99%	E value 0.0 0.0 0.0	Ident 98% 97%	C Accession MG456829.1 CP025074.1 MF965134.1
Sequences producing significant alignments: Select: <u>All None</u> Selected:0 Alignments Download Central Graphics Distance tree of results Ceobacilus kaustophilus strain YE5-1016-404 16S ribosomal RVA gene, cartial sequence Bacillus: Caldobricus strain NEB414 chromosome.complete genome Geobacilus subterraneus subsp. aronetic/vorans strain Manikaran-099 16S ribosomal RVA gene, cartial sequence Geobacilus kaustophilus strain Manikaran-099 16S ribosomal RVA gene, cartial sequence Geobacilus kaustophilus strain Manikaran-099 16S ribosomal RVA gene, cartial sequence		Max score 2370 2348 2348 2348	Total score 2370 21087 2348 2348	Query cover 99% 99% 99%	E value 0.0 0.0 0.0 0.0	Ident 98% 97% 97%	C Accession MG456829.1 CP025074.1 MF965133.1
Sequences producing significant alignments: Select: <u>All None</u> Selected:0 Alignments Download Certificant Control Co		Max score 2370 2348 2348 2348 2348 2348	Total score 2370 21087 2348 2348 2348	Query cover 99% 99% 99% 99%	E value 0.0 0.0 0.0 0.0 0.0	ldent 98% 97% 97% 97%	C Accession MG456829.1 CP025074.1 MF965133.1 MF965133.1 MF965133.1
Sequences producing significant alignments: Select: <u>All None</u> Selected:0 Alignments Download Certificant Control Co		Max score 2370 2348 2348 2348 2348 2348 2348	Total score 2370 21087 2348 2348 2348 2348	Query cover 99% 99% 99% 99% 99%	E value 0.0 0.0 0.0 0.0 0.0 0.0	ldent 98% 97% 97% 97% 97%	C Accession <u>VG456829.1</u> <u>VG456829.1</u> <u>VF965134.1</u> <u>VF965133.1</u> <u>VF965133.1</u> <u>VF965139.1</u>
Sequences procuarg significant alignments: Select <u>All None</u> Selected 0 Select <u>All None</u> Selected 0		Max score 2370 2348 2348 2348 2348 2348 2348 2348 2348	Total score 2370 21087 2348 2348 2348 2348 2348	Query cover 99% 99% 99% 99% 99%	E value 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ldent 98% 97% 97% 97% 97% 97%	CP025074.1 MF965133.1 MF965133.1 MF965109.1 CP017071.1
Sequences procuents significant alignments: Select <u>All None</u> Selected 0 Select <u>All None</u> Selected 0 Select <u>All None</u> Selected 0 Secondulus kaustochius strain YE5-1016-404 16S ribosomal RNA gene, cartial sequence Bacillus laustochius strain NEB414 chromosome complete genome Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Manikaran-099 16S ribosomal RNA gene, cartial sequence Geobacillus kaustochius strain Kart 2051, complete genome Geobacillus kaustochius strain KCTC 3570, complete genome Geobacillus kaus		Max score 2370 2348 2348 2348 2348 2348 2348 2348 2348	Total score 2370 21087 2348 2348 2348 2348 2348 23387 23387	Query cover 99% 99% 99% 99% 99% 99%	E value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ldent 98% 97% 97% 97% 97% 97%	CP025074.1 MF965133.1 MF965133.1 MF965131.1 MF965109.1 CP017071.1 CP017071.1 CP017035.1
Sequences producing significant alignments: Select <u>All None</u> Selected 0 Alignments Download Center <u>All None</u> Selected 0 Ceobacilus kaustophius strain YE5-1016-404 16S ribosomal RNA gene, partial sequence Eacilus ladobificus strain NEB114 chromosome complete genome Geobacilus kaustophius strain Manikaran-0990 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0990 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0990 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0990 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0990 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus kaustophius strain Manikaran-0997 16S ribosomal RNA gene, partial sequence Geobacilus sequence		Max score 2370 2348 2348 2348 2348 2348 2348 2348 2348	Total score 2370 21087 2348 2348 2348 2348 23387 23399 2348	Query cover 99% 99% 99% 99% 99% 99%	E value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ldent 98% 97% 97% 97% 97% 97% 97%	CP025074.1 MF965133.1 MF965133.1 MF965133.1 CP017071.1 CP017071.1 CP014335.1 IN692241.2
Sequences producing significant alignments: Select: <u>All None</u> Selected:0 Alignments Download Centeria Graphics Distance tree of results Ceobacilus kaustophilus strain YE5-1016-404 163 ribosomal RNA gene, cartial sequence Bacillus l caldolyticus strain NEB114 chromosome, complete genome Geobacillus kaustophilus strain Manikaran-4992 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4992 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4992 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4992 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4997 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4997 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4997 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4997 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4997 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4997 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-4997 165 ribosomal RNA gene, cartial sequence Geobacillus thermolevorans strain KCTC 3570, comolete genome Geobacillus callus operations strain RNA gene, cartial sequence Geobacillus sequence Legatilis sequence		Max score 2370 2348 2348 2348 2348 2348 2348 2348 2348	Total score 2370 21087 2348 2348 2348 2348 2348 23387 23399 2348 2348	Query cover 99% 99% 99% 99% 99% 99% 99%	E value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ldent 98% 97% 97% 97% 97% 97% 97% 97%	CP025074.1 MF965133.1 MF965131.1 MF965131.1 MF965109.1 CP017071.1 CP014335.1 JN692241.2 KF439702.1
Sequences producing significant alignments: Select: <u>All None</u> Selected 0 Alignments: Download Centers Crashing Selected 0 Ceobacilus kaustophilus strain YE5-1016-404 165 ribosomal RNA gene, cartial sequence Beadlus l caldolyticus strain NEB114 chromosome. complete genome Geobacillus kaustophilus strain NEB114 chromosome. complete genome Geobacillus kaustophilus strain Manikaran-1992 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-1992 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-1992 165 ribosomal RNA gene, cartial sequence Geobacillus kaustophilus strain Manikaran-1992 165 ribosomal RNA gene, partial sequence Geobacillus kaustophilus strain Manikaran-1995 165 ribosomal RNA gene, partial sequence Geobacillus kaustophilus strain Manikaran-1996 165 ribosomal RNA gene, partial sequence Geobacillus thermoleovorans strain FLAT-291. complete genome Geobacillus sustophilus strain RNA gene, qartial sequence Geobacillus sustophilus attrain Annikaran-1997. 165 ribosomal RNA gene, partial sequence Geobacillus sustophilus strain RNA gene, qartial sequence Geobacillus sustophilus strain RNA gene, qartial sequence Geobacillus sustophilus strain RNA gene, qartial sequence Geobacillus sustophilus strain Annikaran-1997. 165 ribosomal RNA gene, qartial sequence Geobacillus sustophilus strain RNA gene, qartial sequence Geobacillus sustophilus strain Annikaran-1997. Cartial sequence Geobacillus sustophilus strain Annikaran-1997. 165 ribosomal RNA gene, qartial sequence Geobacillus sustophilus strain Annikaran-1997. Cartial sequence Geobacillus sustophilus strain Annikaran-1997. Cartial sequence Geobacillus sustophilus strain Annikaran-1997. Cartial sequence Geobacillus sustophilus strain Annikaran-1997. Cartial sequence Geobacillus sustophilus strain Annikaran-1997. Cartial sequence Geobacillus sustophilus strain Annikaran-1997. Cartial sequence Geobacillus sustophilus strain Annikaran Annikaran-1997. Cartial sequence Geobacillus		Max score 2370 2348 2348 2348 2348 2348 2348 2348 2348	Total score 2370 21087 2348 2348 2348 2348 2348 23387 23399 2348 2348 2348	Query cover 99% 99% 99% 99% 99% 99% 99% 99%	E value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ldent 98% 97% 97% 97% 97% 97% 97% 97%	CP025074.1 MF965134.1 MF965133.1 MF965133.1 MF965109.1 CP017071.1 CP014335.1 IN692241.2 KF439702.1 KC252972.1

EK 11. BLAST analizi sonucu *Geobacillus kaustophilus* 16s rRNA geninin benzerlik gösterdiği *G. kaustophilus* 16s rRNA dizisi.

Sequence GenBank: MG458829 1 FASTA Graphics Go to C DOUS MG458829 1469 bp DNA linear BCT 25-NOV-2017 DFFINITURY Geobacillus kaustophilus strain YES-1016-404 165 ribosomal RNA gene, partial sequence. VFRSION MG458829 VFRSION MG458829 VFRSION MG458829 URG502 Geobacillus kaustophilus ONGANLSY Geobacillus kaustophilus ONGANLSY Geobacillus kaustophilus ONGANLSY Geobacillus kaustophilus ONGANLSY Geobacillus thermoleovorans group. RFFRENCE (bases 1 to 1460) AUTHORS Rawat,S. and Ranawat,P. TITLE Direct Submission JOURNAL Submitted (07-NOV-2017) Microbiology, HNB Garhwal University, Scinger (Gerbacillus; Geobacillus thermoleovorans group. RFFRENCE (bases 1 to 1460) AUTHORS Rawat,S. and Ranawat,P. TITLE Direct Submission JOURNAL Submitted (07-NOV-2017) Microbiology, HNB Garhwal University, Scinger (Gerbacillus; Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //on_type="genoid DNA" //stain="Geobacillus kaustophilus" //stain="Geopacid" Stains" Source 11469 //stain="Geopacid" Stains" //stain="Geopacid" Stains" //stains="Geobacid" Stains" //stains="Geobacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains="Geopacid" Stains" //stains" /stains="Geopacid" Stains" //sta	Geoba	Geobacillus kaustophilus strain YE5-1016-404 16S ribosomal RNA gene, partial									
GenBank: MG456829.1 FAST Graphics Goto C LOCUS MG456829 1469 bp DNA linear BCT 25-NOV-2017 DFFNRTION MG55829.1 KEVMONDS - SOURCE Geobacillus kaustophilus Geabacillus kaustophilus Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Geobacillus, Kaustophilus Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Geobacillus, Kaustophilus Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Geobacillus, Kaustophilus ONGANLISM Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Geobacillus; Geobacillus krautophilus ONGANLISM Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Geobacillus; Geobacillus krautophilus ONGANLISM Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Geobacillus; Geobacillus krautophilus; JOURNAL Smart,S. and Ramawat;P. TITLE Direct Submission JOURNAL Submitted (07-NOV-2017) Microbiology, HNB Garhwal University, Srinagar (Garhwal), Utranakhand 2401/4, India COMENT Massembly-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MAssembly-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASsembly-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASsembly-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sanger dideoxy sequencing #MASSEMD:-Data-BANTHW Sequencing Technology :: Sang	sequer	e									
EASTA Graphics Go to: @	GenBank: N	456829.1									
Coice C LOOUS MG456829 1469 bp DNA linear BCT 25-MOV-2017 DEFINITION Geobacillus kaustophilus strain VES-1016-404 165 ribosomal RNA gene, partial sequence. VERSION MG456829.1 VERSION MG456829.1 SOURCE Geobacillus kaustophilus Geobacillus kaustophilus Bateria; Firmitores; Bacilli; Bacillaes; Bacillaceae; Geobacillus kaustophilus Bateria; Firmitores; Bacilli; Bacillaes; Bacillaceae; Geobacillus kaustophilus Bateria; Firmitores; Bacilli; Bacillae; Bacillaes; AUTHONS Rawar,S. and Ranawar,P. TITLE Direct Submission JOUNNL Submitted (07-NOV-2017) Microbiology, HNB Garhwal University, Scingger (Generality)-Ota-START## Sequencing Technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy sequencing technology :: Sanger dideoxy	FASTA Gr	hios									
<pre>LODUS MC456829 1469 bp DNA linear BCT 25-MCV-2017 DFFINITION Geobacillus kaustophilus strain VE5-1016-404 165 ribosomal RNA gene, partial sequence. ACCESSION MC456829.1 VENTOM MC456829.1 VENTOM MC456829.1 VENTOM MC456829.1 VENTOM MC456829.1 VENTOM MC456829.1 VENTOM MC456829.1 VENTOM MC456829.1 VENTOM MC456829.1 VENTOM VENTOM: VENTOM: VES-1016-404 165 ribosomal RNA gene, partial sequence. Geobacillus kaustophilus GORGMISM Geobacillus kaustophilus GORGMISM Geobacillus kaustophilus USDETCH Submission JOURNAL Submitted (07-MOY-3017) Microbiology, HAB Garhwal University, Sringer (Gerhand), Uttarakhad 246174, India COMMENT MEASEBU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequencing mmassebU-Ota-SIANTHM Sequencing Technology :: Sanger didexy sequenci</pre>	Go to: 🖂										
<pre>LOOUS M045829 1469 bp DNA linear BCT 25-M0V-2017 DFTNITION M045829 VERSION M045829.1 KEWORDS . SOURCE Geobacillus kaustophilus GROAMING Geobacillus kaustophilus GROAMING Geobacillus kaustophilus GROAMING Geobacillus kaustophilus GROAMING Geobacillus kaustophilus GROAMING Ecobacillus hermoleovorans group. HEFERENCE 1 (bases 1 to 1469) AUTHONS Rawt,5, and Kanawat,P. TITLE Direct Submission JOURNAL Submitted (07-MOV-2017) Microbiology, HNB Garhwal University, Sringar (Garhwal), Uttarakhand 246174, India COMMENT #Assembly-Onta-SIANT## Sequencing Technology :: Sanger dideoxy sequencing #M54EBBJy-Onta-SIANT## Sequencing Technology :: Sanger dideoxy sequencing #M54EBBJy-Onta-SIANT## FEATURES Location/Qualifiers source 1, 1.469 //roginism='Geobacillus kaustophilus" //rol_type="genomic CNA" //stain="YE5-IBL-444" //isolation_source="hot water spring" //ollection_date='17-Jun-2015" //collection_date='17-Jun-2015" //collection_date='17-Jun-2015" //collection_gengacc aaatggagc ttgttggt ttggttagg grggagggt 11 acatggagg cgagggcca aaatggagg cgggtaac (cggggaca 11 acatggaag cggagggacc aaatggagc tggtgggacgggt cagggtcatt 121 accggataac accggagaccg garggatct tcgggaaac gggggacgat 121 accggataac accggagaccg garggatct tcggggacac gggggctaat 121 accggataac accggagaccg garggatct tcgggataac ggrggacagg 241 gggtggacg cgaagggttgacggcc cagggtagg gggggcggg 241 gggtgggg cgaaggggt tgacggcc cagggtagg gggggggg 241 gggtgggg cgaaggggt tgacggcc cagggtagat accggggaca gggggaccgg 351 gggggaga gagggccttg gggggaggg gggggggggg</pre>	0010.0										
<pre>ArctestIow modSegsD ArctestIow ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD VFRSIOM ModSegsD AuthODS Rearts, S and Ranawar, P. TITLE Direct Submission DOURNAL Submitted (07-NOV-2017) Microbiology, HMB Garhwal University, Scharger (Garhwal), Uttrahahnd 2461/4, India COMMENT #RASEmbly-Data-SIANT## Sequencing Technology :: Sanger dideoxy sequencing #RASEmbly-Data-SIANT## Sequencing Technology :: Sanger dideoxy sequencing #RASEmbly-Data-END## FEATURES Location/Qualifiers source 11469 //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing #Masembly-Data-END## //organism=Technology :: Sanger dideoxy sequencing //organism=Technology :: Sanger dideoxy sequencing //organism=Technology :: Sanger dideoxy sequencing //organism=Technology :: Sanger dideoxy sequencing //organism=Technology :: Sanger dideoxy sequencing //organism=Technology :: Sanger dideoxy sequencing</pre>	DEETNITION	46456829 1469 bp DNA linear BCT 25-NOV-2017 Sephacillus kaustophilus strain VE5-1016-404 165 ribosomal RNA									
<pre>ACCESSION Mod5829 VERSION Mod5829.1 KEYWORDS . Geobacillus kaustophilus GRGAMISM Geobacillus kaustophilus GRGAMISM Geobacillus kaustophilus Bacteria; Finefuctes; Bacilli; Bacillales; Bacillaceae; Geobacillus; Geobacillus thermoleovorans group. REFERENCE 1 (bases 1 to 1469) AUTHORS Rawat,S. and Ranawat,P. TITLE Direct Submitsion JOUNNL Submitte(07-NNV-2417) Microbiology, HNB Garhwal University, Srinagam (Garhwal), Uttarakhand 246174, India COMENT Massembi/-Data-SIANTHM Sequencing Technology :: Sanger dideoxy sequencing Massembi/-Data-EAROHM FEATURES Location/Qualifiers source 11469 //organism="Geobacillus kaustophilus" //organism="Geobacillus kaustophilus" //organism="Geobacillus kaustophilus" //ol.yen="genomic NM" //stoino_source="Not water spring" //db_xref="taxon:1462" //collecting date="17-Jun-2015" //collect</pre>	DEFINITION	zene, partial sequence.									
<pre>VMDState SWORDS SOURCE Geobacillus kaustophilus GRAAMISM Bacteria; Firmicutes; Bacill; Bacillales; Bacillaceae; Geobacillus; Geobacillus; Geobacillus thermoleovorans group. HEFERENCE 1 (bases 1 to 1460) AUHHORS Rawats, and Ranawat, P. TILE Direct Submission Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-bata-SLAHI#F Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-bata-SLAHI#F Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-bata-SLAHI#F Source 11469 /organism="Geobacillus kaustophilus" //mol_type="genomic DWA" //strain="YES-IBIG-444" //isolation_source="hot water spring" //db_xref="taxon:1662" /country="India: Uttarakhand, Uttarkashi district, Yamunotri" //collection_dualifiers Source 11469 //roganism="Geobacillus kaustophilus" //collection_diste="17-Jun-2015" //c</pre>	ACCESSION	46456829									
SURCE Geobacillus kaustophilus GROAMISM Geobacillus kaustophilus GROAMISM Geobacillus kaustophilus Bacteria; Firmiutes; Bacilli; Bacillales; Bacillaceae; Geobacillus; Geobacillus thermolecvorans group. REFERENCE 1 (bases to 1460) AUTHORS Rawat, S. and Ranwart, P. TITLE Direct Submission JOURNAL Submitted (07-NOV-2007) Microbiology, HMB Garhwal University, Srinagar (Garhwal), Uttarakhand 246174, India COMMENT mRASsembly-Data-SIART## Sequencing Technology :: Sanger dideoxy sequencing mRASsembly-Data-SIART## Sequencing Technology :: Sanger dideoxy sequencing mRASsembly-Data-SIART## FEATURES Location/Qualifiers source 11460 /organism="Geobacillus kaustophilus" //mol_type="genomic DNA" //strain="VES-1016-404" //strain="VES-1016-404" //strain="VES-1016-404" //country="India: Uttarakhand, Uttarkashi district, Yamuotri" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //dentified_by="S. Rawat & P. Ranwat" //identified_by="S. Rawat & P. Ranwat" //identified_by="S. Rawat & P. Ranwat" //identified_by="S. Rawat & P. Ranwat" //identified_gagagec_cataggaccatagectgggatase tregggacaa cregggactaat 11 acatgraagt cgagaggcc aaatggage ttgtttgttagggagg cgagacggt 61 ggataacag tgggcgacca tagggcgaca tgggcagac ggagagcat 21 gcggatagg cggagaggc attggtctgtt ggtgagagg cgcgagaggaggaggaggaggaggaggaggaggaggagga	VERSION	6456829.1									
ORGANISM Geobacillus kaustophilus Batteria; Firmicutes; Bacill; Bacillaes; Geobacillus; Geobacillus thermoleovorans group. REFERENCE 1 (bases 1 to 1469) AUTHONS Submitted (02-NWV-2017) Microbiology, HMB Garhwal University, Srinagar (Garhwal), Uttarakhand 246174, India COMMENT FfAssembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-SNAP# FEATURES Location/Qualifiers source 1.1469 //organism="Geobacillus kaustophilus" //mol_type="genomic UNA" //stolation_source="hot water spring" //db_tyref="taxon:ide_" //country="India: Uttarakhand, Uttarkashi district, Vamuotri" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //collection_date=17-Jun-2015" //digetgrapage gaggcgcc caatcgggac catgggcgcc caggcgcgc 1 acatgcaagt cgaggggac aaatcggac tggctaggac cgggcggcggcggcggcggcggcggcggcggcggcggc	SOURCE	Seobacillus kaustophilus									
Bacteria; Firmicutes; Bacilli; Bacillaces; Geobacilus; Geobacilus; Geobacilus; HenenGeovoras group. HEFERENCE 1 (bases 1 to 1460) AUTHORS Remark, And Ranawat, P. TITLE Direct Submission JOUNNAL Submitted (07-NOV-2017) Microbiology, HNB Garhwal University, Scinager (Garhwal), Uttarakhand 245174, India COMMENT #MASSembly-Data-STANT## Sequencing Technology :: Sanger dideoxy sequencing #MASSembly-Data-ENDUM FEATURES Location/Qualifiers Source 11469 //organism="Geobacillus kaustophilus" //mol_type="genomic DNA" //strain="YE5-1016-484" //isolation_Source="hot water spring" //db_xref="taxon:2462" //country="India: Uttarakhand, Uttarkashi district, Yamuotri" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Dy="P. Ranawat" //collected Scieggeage cogggeatast 11 aceggraage coggagecc aateggage tigetciggeatast 121 aceggraad cogaggagec gateggect tigetciggat tiggeage cogggetast 121 aceggraad cogaggage coggategget tigetciggat aggecagec coggagetast 121 aceggraad coggagges coggaget tiggetcigga aggecagec coggagetast 121 aceggraage coggagec attagetcig tiggegageage coggacateccc 321 acegggages geneticgge attagetcig tiggegage geneticce 331 acegggages geneticgge attagetcig tiggeage aggecageccg 341 agecggette taagetcigg agtractca cogggageage coggecitast 341 aceggeages geneticgge aggeagecce coggecitast taggecgage aggecgecce 341 agecggette taagetcigg aggeagege geneticse coggeageage coggecitast 341 aceggeages degragegge geneticse coggeages cogge taageage geneticse 341 agecggette taagetcigg aggeagege geneticse distaggeage geneticse 341 agecggette taagetcigg aggeageage coggetta taggecgga acecceg 341 agecggette taagetcigg aggeageage coggetta taggecgga aceccegi aggeageace 341 agecggette taagetcigg aggeageage coggetta coggeage cogg	ORGANISM	Seobacillus kaustophilus									
<pre>NEFERENCE 1 (bases 1 to 1469) AUTHORS Rawat, 5. and Ranawat, P. TITLE Direct Submission JOURNAL Submitted (07-NOV-2017) Microbiology, HWB Garhwal University, Srinagar (Garhwal), Uttarakhand 246174, India COMMENT mixsembly-Data-SIANTH Sequencing Technology :: Sanger dideoxy sequencing mixasembly-Data-SIANTH Sequencing Technology :: Sanger dideoxy sequencing mixasembly-Data-CMDH FEATURES Location/Qualifiers source 11469 /organism="Geobacillus kaustophilus" //mol_type="geomatic UNA" /strain="YE5-1016-404" /isolation_source="hot water spring" /db_yref="taxon:1462" /country="India: Uttarakhand, Uttarkashi district, Yamuntri" /ideitified_by="F. Ranawat" /ideitified_by="S. Rawat & P. Ranawat" /ideitified_by="S. Rawat & P. Ranawat" /ideitified_by="S. Rawat & P. Ranawat" /product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgageggac caaatcggage ttgctctggt ttggtagg gcggacgggt 31 acatggraagt cgageggac caatcggage ttgctctggt ttggtaggagac cgagecgt 32 acgggagea gcagtggac caatcggaget caatgggata gcgtcacta aggcggacgt 32 acgggagea gcagtgggact gccgcaag accgggataat 121 accgggagea gcagtggttagggtaggggccggaaggggt 331 acgggagea gcagtgggage tgaccggcca catgggata ggeggccttg 341 gcgtagcgg gcgggaget ggacggac caatgggat tggtggaag gggccgtt 342 lgcgtagcgg gcgggage ggacgcca catgggaget gaggagegg 343 acggggggg ggagtgggaget ggacggcca catgggagat aggccgcg 344 aggcggttc ttaagttggg ggagagcc caggggaat tagggagag gggccgtt 343 acggggage gcgfgggga gggatctcca ggggaagggggggatat 344 aggcggttc ttaagttgg ggagagcc cagggagat tagtgggaga gggccgt 344 aggcggtt cttaagttgg ggagagcc cagggagat tagtggagag gaggccgt 344 aggcggttc ttaagttggg gggagagc gggagttcaa ggggagagg gggagtcag 344 aggcggttc ttaagttgg ggagagag ggggattccac ggggagagg gggattcag 345 tggagaggg gggagaga cagggaga ggggattcag gtgaggggg 346 tcggggggat agggggga accggcca aggtgagag ggggctttgg gcggaagggg 347 tggagaggt gggagaga caggtagaa cagggtgaa cagggaga accgggaga accgggaga accgg 348 tcggagagg gggaggggggggggggggadtcaca ggggggga accggc 349 tggagaggt gggagaga cagggtgaact caaggggaga accgggaga accgggaga accgggaga accgg</pre>		Jacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Geobacillus: Geobacillus thermologyonane group									
AUTHORS Remit 5. and Ranawat, P. TITLE Direct Submitted (07-MOV-2017) Microbiology, HNB Garhwal University, Sringger (Garhwal), Uttarakhand 245174, India COMMENT missembly-Data-STARTH# Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-STARTH# Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-STARTH# FEATURES Location/Qualifiers source 11469 //onganism="Geobacillus kaustophilus" //mol_type="genonic ONA" //solation_source="hot water spring" //db_xref="taxon:1462" //country="India: Uttarakhand, Uttarkashi district, Vammotri" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_date="17-Jun-2015" //collection_garggacc asatcggaget ttgctcggt ttggtcagcg gcggacgggt 61 gagtaacagt gggcgacca asatcggaget ttgctcggt ttggtcagcg gcggacgggt 61 gagtaacagt gggcggacca asatcggaget ttgctcggt ttggtcagcg gcggacggt 61 gagtaacagt gcgcgggacca atacggaget gggcggatac tcgggaaac cggagtcaat 121 accggataac accgaagacc gcatgggcgt tggtcggacca gggcgcgtt 121 accggataac accgaagagcc gcatggggt gggcggacc gggacgggt gggcgggt 121 gcgaagggg cggggggg tggccggra cggggaggag gggcgggt 121 gcgaagggg cggggggg gggcggta cgggggagg gggcggt 121 gcgaagggg gcgggggg gggcggga cgggacgga gggcggg 121 gcgaagggc gcgggggg gggcgggagg gggcgggacggagg gggcggg 121 ggaaaggc gcgggggg gggcggga gggacgga cgggcggg	REFERENCE	(bases 1 to 1469)									
<pre>TILE Direct Submission JOURNAL Submitted (07-NOV-2017) Microbiology, HWB Garhwal University, Srinagar (Garhwal), Uttarakhand 246174, India COMMENT ##Assembly-Data-SIART## EQUMENT ##Assembly-Data-SIART## FEATURES Location/Qualifiers source 11460 //organism="Geobacillus kaustophilus" //organi</pre>	AUTHORS	Rawat,S. and Ranawat,P.									
Johnal Sumitteb (0/H00/201) Hittototogy, Med Garman Guiversity, Srinagar (Garwal), Utarakhand 20174, India COMMENT ##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-ENDU# FEATURES Location/Qualifiers source 11469 /organism="Geobacillus kaustophilus" //mol_type="genomic DNA" //strain="YES-H016-404" //isolation_source="hot water spring" //db_yref="taxon:1462" //collected_by="P. Ranawat" //collected_by="P. Ranawat" //collected_by="P. Ranawat" //collected_by="P. Ranawat" //identified_by="S. Rawat & Ranawat" //identified_by="S. Rawat & Ranawat" //identified_by="S. Rawat & Ranawat" //identified_by="S. Rawat & Ranawat" //identified_by="S. Rawat & Ranawat & Ranawat & Ranawat & Ranawat & Ranawat & Ranawat & Ranawat & Ranaw	TITLE	Direct Submission									
COMMENT ##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-ENDU## FEATURES Location/Qualifiers source 11469 /organism="Geobacillus kaustophilus" /mol_type="genomic DNA" /staina"yES-DNG-404" /isolation_source="hot water spring" /db_xref="taxon:1462" /collection_date="low-anawat" /collected_by="P. Ranawat" /collected_by="P. Ranawat" /collected_by="P. Ranawat" /collected_by="P. Ranawat" /collected_by="P. Ranawat" /collected_by="P. Ranawat" /collected_by="P. Ranawat" /collected_by="S. Rawat & P. Ranawat" /collected_by="S. Rawat & P. Ranawat" /collected_by="Compared to the state of the state	JOURNAL	Sionagar (Garhwal). Uttarakhand 246174. India									
Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-ENDO# FEATURES Location/Qualifiers source 11469 //organism="Geobacillus kaustophilus" //mol_type="genomic DNA" //strain="YES-1016-404" //isolation_source="hot water spring" //db_xref="taxon:1462" //country="India: Uttarakhand, Uttarkashi district, Yamunotri" //collection_date="17-Jun-2015" //collectid_by="P. Ranawat" //collectid_by="S. Rawit & P. Ranawat" //col	COMMENT	##Assembly-Data-START##									
<pre>FATURES Location/Qualifiers Source 11469 /organism="Geobacillus kaustophilus" /mol_type="genonic DNA" /strain="VE5-1016-040" /isolation_source="how water spring" /db_xref="taxon:1462" /country="India: Uttarakhand, Uttarkashi district, Yamunotri" /collection_date="17-Jun-2015" /collection_date="17-Jun-2015" /collection_date="17-Jun-2015" /collection_by="P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /rRNA cl31469 /product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacgggt 61 gagtaacag tgggcaact gcccgaaga ccgggataac tccgggaaac cggagctaat 121 accggataa cacgaagacc catgggat ttggttgaagg cggcccca aggcgacgt 241 gcggagcgaag aggccttg ggtcgtaag cattgggaag ccgccgct 351 gtgagcgaag aggccttg ggtgtaag ctctgtgt ttggtrgagg gagcgccgt 481 agccggtta atacgtagg gggagcgt gcacgcca catgggagt tatgggcaag 661 gagaggaag tagtagga ggaagctaag gcgacttaac tagtggcag 362 ftgagtgaag aggcctta ggtgaagt ccgggaaa tatgggcggt 363 ftgagcgagt atacttagg ggtgaagt ccgtcggaaa gccgacggcg 364 agccggtta atactgagg gggagcgt gtccgcca catgggagt tatgggcag 366 ftggggaact tagtgtgg gggaccc ccggtaaat actgggaag 367 ftggggaat tagtgggggcg ggaggcggg ggaagtcac agggagag gagcgcgcg 367 ftgagagggg ggcggggg ggaggcgg ccgggaag agggcgggg 368 ftgagcgaga gagggagg ggaggcgg ccgggaag agggcggg 369 ftggggaat tagtgggggag ggaggcgg gagtcaca ggtgaaggaa aggcccgc 361 aggcggtta tacgtagg ggaggagg ggatcaca gtggagg aaggagag 360 ftggggaat taggtggag ggaggagg ggattcaca gtgtaagggaa aggccgg 372 gcgaaggg ggaagcacacg tggcgaagga ggagagagag ggagtcaca gcgcaagac gagacagg 373 gcgaaggt tggtaagg ccacggtaag caaggataga tacccggt aagcgataga 374 gggaaggt tggtaagg ccaaggataga taagcgcc gaaaaggat 372 gcgaaggt tggttoatt cgaaggaag ggagagaga aggagagag 374 gggaaggt tggttoatt gaagacag ggaggaag aggagagag 374 gcgaaaggt tggttoatt gaagacag gaggaaga aggacagga aggact gaagcacag 374 gcgaaaggt tggttoatt gaaggacag gagaaccag gcgaaaccag gagaaccag gagaaccag gagaaccag gagaaccag gagagacaga aggacagag 374 gcgaaaggt tggttoatt gaaggacag gagaaccag gagaa</pre>		Sequencing Technology :: Sanger dideoxy sequencing									
<pre>source 11469 /organism="Geobacillus kaustophilus" /mol_type="genomic_DNA" /strain="YE5-1016-404" /isolation_source="hot water spring" /db_xref="taxon:1462" /country="India: Uttarakhand, Uttarkashi district, Yamunotri" /collection_date="17-Jun-2015" /collected_by="P. Ranawat" /identified_by="5. Rawat & P. Ranawat" /identified_by="5. Rawat & P. Ranawat" /identified_by="5. Rawat & P. Ranawat" /identified_by="5. Rawat & P. Ranawat" /identified_by="5. Rawat & P. Ranawat" /identified_by="5. Rawat & P. Ranawat" /identified_by="5. Rawat & P. Ranawat" /identified_by="6. Rawat & P. Ranawat" // denti</pre>	FEATURES	Location/Oualifiers									
<pre>//rganism="Geobacillus kaustophilus" //mol_type="genomic DNA" //strain="YE5-1016-404" //isolation_source="hot water spring" //db_xref="taxon:1462" //country="India: Uttarakhand, Uttarkashi district, Yamunotri" //collection_date='17-Jun-2015" //collectid_by="P. Ranawat" //identified_by="S. Rawat & P. Ranawat" //identified_by="S. Ranawat" //iden</pre>	source	11469									
<pre>/mol_type='genomic DWA' /strain=''YES-1016-404" /isolation_source='hot water spring" /db_xref='taxon:1<u>462</u>" /country='India: Uttarakhand, Uttarkashi district, Vamunotri" /collection_date='17-Jun-2015" /collected_by='P. Ranawat" /identified_by='S. Rawat & P. Ranawat" cl1469 /product='165 ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacgggt 21 accggataac accgaagacc gcatggttt tggttgaag gcggaccttg gctgactat 121 accggataa cacgaagacc gcatggttt tggttgaag gcggaccggt 224 gcgtagccgg cctggagggg gacccacatgggatag tccgggaa gcggacggat 224 gcgtagccgg cctggagggg tgaccgac actgggatag ccggaag gcggacggt 236 gtgagcgag gcggtga cggtctca atggggaag gcgacgga gcggacggt 241 gcgtagccgg cgggggta cggtctac actgggaag ccggaaggcgga gcggacggt 241 gcggaaggg ggagtccg ggtgctaag cccggtaag acttcggaag gcggacgga 361 gtgagcgaag aaggccttg ggtcgtaag cctggtaga gcggacgga 361 gtgagcgga atactcgg ggtactta cgaggaaggc caggtcaat 242 gcgtagcgg gggggga ggtctca cgaggaag cctggtaat acggccag 361 gtgagcgga gaggggg ggactca cactgggaag cctggtaag acggcgga 361 gtgagcgga atactgaggg ggagcg tgccgaa gcctggaag gcggcggc 361 gtgagcgga gaggagga gggacgt ccgggatat ttggggaag acggcggc 361 gtgagcggg gggacgga gggacgaa cctggtaag acttgggaag gagcgcgg 361 ggagggga atactcgg ggtacta cgaggaaggc cgggt aaggcgg 361 ggagggga atactgag ggggaggg tgaccggaa gctggaag gagcgcgg 361 ggagaggg ggaaccaag ggggaggg ggatccac gtggaagg taatgggaa 361 ctgggggat tgatgag gaggagag ggaatccac gtgagagg taatggga 371 gcgaaagcg gggggacaa caggataga tacccggt taacgcg taaaggatg 372 gcgaaagcgt ggggagaaa caggataga tacccggt aaaggatg 373 ggcaaagg tgggagaaa caggataga tacccgga taagggagg cgacaccg 373 ggcaaagg tgggagaaa caggataga taccgga caaggatag 374 gtgcaagt ttggtgaagg ggcgaag ccaaggataga taccgga gaagacccg 372 gcaaagcgt ggggagaaa caggataga taccgga aaggatgg cgacaggtg 373 ggcaaagt tggttaat cgaaggagg cgaagact taccaggat aaggaggg 374 gcgaaaga tggcgaaa caggataga taccgga aaggataga cgacaccg 375 ggaaagg tggtaacta ggcggaag cgaagact taccaggatag 376 ggaaaga tggcgaag ggggaaccaa acaggataga cgacaccg 377 ggaa</pre>		/organism="Geobacillus kaustophilus"									
/ isolation_source="hot water spring" / isolation_source="hot water spring" / db_xref="taxon: <u>1462</u> " / country="India: Uttarkashi district, Yamunotri" / collection_date="17-Jun-2015" / collectid_by="\$. Ramaat" / identified_by="\$. Ramaat" / identified_by="\$. Ramaat" / identified_by="\$. Ramaat" / identified_by="\$. Ramaat" / product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgcttggt ttggtcagcg gcggacgggt 61 gagtaacacg tgggcgaacc agacggtttt tggttgaag gcggccttag 121 accggatagc ccgcgggcg ttagctagtt ggtggaag gcggacggg 241 gcggatggc ccgcggcg ttagctagtt ggtggaag gcggcgga 361 gtgagcgaag gaggtggg ggtgtaag cttgtgtg gggggagg gaggggg 421 ggaggggg ggcggta ggtactac gcgggacgat ttgggggaa gggcgggg 421 ggaggggg ggcggta ggtgtaag cttgtgtg gggggaggg gaggcggt 421 ggaggggg ggcggtg ggtgtaag cttgtggg gagcggg 431 accgcggta atagtaggg ggcggggg ggattcac ggggaggg gagtgcgg 431 agcgcggta ttagttagg gggagggg ggattcac ggggaggg tattgggaa 661 ggaggggg ggaggagg ggattcac ggggaagc ccggttaat atggggga 661 cggggggacaa cagggtagg ggagtgag ggattcac gtgtagggg gaatgcgt 661 ggaagtggg ggaggaa caggtagg ggagtag ggacgcg taaggagg 721 gcgaaagcg ggggggacaa caggattag tacctgga ggaggacg taaggga 721 gcgaaagcg gggggacaa caggattag tacctgga gtagcagg gaagcgta 721 gcgaaagcg gggggacaa caggattag tacccgg taagggaa gcaggg 721 gcgaaagt gggggacaa caggattag tacccgg taagggaa gcagggg 721 ggaaagtg ttgagggg caaccttt agtgcfgaa gtaaggta aggacgg 721 ggaaagtg tggggacaa caggattag tacccgg taacggga aggacgg 721 ggaaagtg ttgagggg caaccttt agtgcfgaa gtaagggt aaggattag 721 ggaaagtg tggggacaa caggattag tacccgg taacggga aggactg 721 gcaaagca ggggggacaa caggattag tacccgga taacggga aagacttcc 961 tgacaacca aagaattgg cgttcccct tcgggggaac gggtgacag gtggtgcatg		/mol_type="genomic DNA" /strain="VE5_1016_404"									
/db_xref="taxon: <u>1462</u> " /country="India: Uttarkahand, Uttarkashi district, Yamunotri" /collection_date="17-Jun-2015" /collectid_by="P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /indentified_by="S. Rawat & P. Ranawat" /product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgaeggacc aaatcggagc ttgcttggt ttggtcagg gcggacgggt 61 gagtaacag tgggcaacct gcccgcaaga ccgggataat tccgggaaac cggagctaat 121 accggataac accgaagacc gcatggtctt tggttgaaag gcggccttg gctgtcactt 181 gcggatggc ccgcggcgca ttagttagt ggtgaggaa cggctaact agggaggag 361 gtgagcgaag gaggtggg gaccgg gtctgaag ctcggtgaaa ggcgccggt 361 gtgagcgaag gaggtggg ggcggacgt gtgtcaaag ccgggtaat atgggggg gacggcg 361 gtgaggggg ggcggtga cggtacca catgggggagc caggtcgaat atgggggg gacggcg 361 gtgaggggg ggcggtga ggtacca catggggaggc tatgggag gacgcgcg 361 gtgaggggg ggcggtga ggtacca catggggaggc tatgggagg tatgggaga 361 gtgaggggg ggcggtga ggtacca catggggaggc tatgggag 361 gtgaggggg ggagggtg tggaaggct gtccggatat atgggggg tatgggag 361 gtgaggggg ggcggtga cggtacca catggggagg tatgggag 361 gtgagtggg ggacggt gggagggt ggagcgt gtgcgaag ccggtaat atgggggg 361 gtgaggggg gaggggg ggagggt ggagggg ggatcca cggtgaagg ccggc 361 ggaggggg gaggggg ggagggg ggadtcca cggggaggg tatggaa 361 ctgggggg atacgtagg ggaggagg ggagtccag tagggaggg tatggggg 371 gcgaaagcgt gggggacaa caggattag tacccggt aggcggt aaggatgg 371 ggaaagcgt gggggacaa caggattag tacccggt aaggatg 371 ggaaagcgt gggggcaaa caggattag tacccgg taacgga aagcatta 371 gcgaaagcgt gggggacaa caggattag tacccgg taacgga aagcattcg 371 gcgaaagcgt gggggcaaa caggattag tacccggt aaggatgg 371 gtgaaagt ttagagggt cacacctt agtgctgag ctaacgga aagcattac 371 gcgaaagcgt ggggcaaa caggattag tacctgg gaaggact taccaggt taccagcg 371 gtgaaagt ttgagggg cacacctt agtgctgag ctaacgga aagcattac 371 gtgaaactag tggtttaatt cgaagcag cgaggaact taccaggt tacaaccc 371 gtgaaactag tggttaatt cgaggcag cgagaacct accaggt aggggaact gaccct 371 gtgaaactag tggttaata caaaggaact aacgggaact taccaggt tacaaccc 371 throhor aaadatag cgaacca caaggatca agggtgacag gtggtgcatg		/isolation_source="hot water spring"									
/country="India: Uttarakhand, Uttarkashi district, Yamunotri" /collection_date="17-Jun-2015" /collected_by="P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacgggt 61 gagtacacg tgggcgacca gccggataat cccgggaaac cgggactaat 121 accggataac accgaagacc gccagggtctt tggttagaag gcggcctaat 121 accggataac accgaagagc gcagggtctt tggtgaggg cggcacggg 361 ggggaggga gcaggagg tgaccggcca cactgggata cggtcaacta aggcgacgga 361 gtgagcgga aggccgtag gggcgact ttccgca atggggaga gccggcgc 361 gggaggga aggccttg ggtcgtaaa ccgggataat attggggag aggccgcg 361 aggcggta tacgtagg ggcgacgt gtccggata atgggcgaa ggagccgc 361 aggcggta tacgtagg ggcgacgt gtccggata tatggggag aggccgcg 361 aggcggta tacgtagg ggcgacgt gtccggata tatgggcga aggccgcg 361 aggcggta tacgtagg ggcgacgt gtccggata tatgggcga aggcgcgc 361 aggcggta tacgtagg ggcgaggt gtccggata ccgggtaat atgggcga aggccgcg 361 aggcggta tacgtagg ggagggg ggaactca cggggaag cctggtgaaa aggcgccg 361 aggcggta ttggag aggcaggt gtccggaat attgggcg aaggcgcg 361 aggcggta ggtacgga agggaggg ggaatccaa cgtggaggg taatggaa 361 ctggggggat tgagggag ggaaccca gtgtaggg ggaatccaa cgtgaggg taatggaa 371 ggcaaagcg ggggagaa caggataga tacccggt attcgg agggggagg 371 ggaaagcgt ggggagcaa caggataga tacccggt gtaccggc taacggat 371 gtgaaaggt tgaggggt cacaccttt agtgctga agcactcg 371 gtgaaaggt tggggga caagcct agtgtaga taccggga agacatccg 371 gtgaaaggt tgggcgaag caggtaga tacccgga agaacttcg 371 gtgaaaggt tagggggt accaccttt agtgctga caagggat agcactcg 371 gtgaaacca gagattgg cgttacct caaggaat gacgggga agacatccg 371 gtgaaacca gagattgg cgttacct tcgggggac aggggga gggggg gggggacg 371 gtgaaacca gagattgg cgttacct tcgggggac aggggga aggcggg 371 gtgaaacca gagattgg cgttacct tcgggggac aggggga gggggga ggggggacg 371 gtgaaacca gagattgg cgttacct tcgggggac aggggga agggggg		/db_xref="taxon: <u>1462</u> "									
<pre>/collection_date="17-Jun-2015" /collected_by="P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /incollected_by="S. Rawat & P. Ranawat" /product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggac aaatcggagc ttgctctggt ttggtcagcg gcggagggt 61 gagtaacag tgggcaact gcccgcaaga ccgggataat tcgggaaac cggagctaat 121 accggataac accgaaggac gcatggttt tggtcaggtg gcgtgcact 181 gcggatgggc cgcggggca ttagtcagtt ggtggagtaa cggctcacca aggcgacgat 241 gcgtagccgg cctgagggg tgaccggcca cactgggat gagcacggc ccagactct 301 acggaagga gcggttgg ggtgtcaag tcgggaag ccgggagag gcggccggc 361 gtgagcgaag aggccttcg ggtgataag tccgggaag ccgggagag gcggccggc 361 aggcggta atacgtaggg ggcgggtg tgccggata atgggagaag gcggcggc 361 aggcggta tacgtaggg ggcgggcgt tgccggaat attggggagaa gggcgcgg 361 aggcggta tacgtaggg ggcgggcgt tgccggaat attgggcgaa 661 ctgggggat taagtaggg ggagggtg tgccggat ccggtaact acgtggagag 361 ctgggggagcaa caggtagga gagagagg ggaattcca gtggaggg aaaggcgta 361 aggcggtta ttagttgg tggcgagg ggattctctg ctgaaat atgggcgaa 361 ctggggagac ttaggtgag gaggagag ggaattcca gtgtagggg taaagggta 361 ctggggagacg gggggacaa caggttaga tacctgga taacgtgagga aggcggg 371 gcgaaagcgt ggggagcaa caggattaga tacctgga taacgcg taacggta 3781 gtgctaagt gttagaggg caaccctt agtgtgcag ttaacggcg taacggga 3781 gtgctaagt ttagggcga ggttaat caaaggatt gacacgcg 391 gtgaaacca aggattag tcaaagc ctacggga agggaga ggagaccg 391 gtgaaacca aggattgg cgttccctt tgggggac gaggtgacag gtgggccg 391 gtgaaacca aggattgg cgttccctt tgggggac agggtgacag gtggtgcag 391 gtgaaacca aggattgg cgttccctt tgggggac agggtgacag gtggtgcag 391 gtgaaacca aggattgg cgttccctt tcgggggac agggtgacag gtggtgcag 391 gtgaaacca aggattgg cgttcccct tcgggggac agggtgacag gtggtgcag 391 ttaacacca agaattgg cgttcccct tcggggac agggtgacag gtggtgcag 395 tgacacca agaattgg cgttcccct tcggggac agggtgacag gtggtgcag 395 tgacacca agaattgg cgttcccct tcggggac agggtgacag gtggtgcag 395 tgacacca agaattgg cgttcccct tcggggac agggtgacag gtggtgcag 395 tgacacca agaattgg cgttcccct tcggggac agggtgacag gtggtgcag 395 tgacacca agaat</pre>		/country="India: Uttarakhand, Uttarkashi district,									
/collected_by="P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /identified_by="S. Rawat & P. Ranawat" /product="16S ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacgggt 61 gagtaaccag tgggcaacct gcccgcaaga ccgggataac tccgggaaac cgggataat 121 accggataac accgaagacc gcatggtctt tggttgaagg gcggcttg gctgtcatt 181 gcggatggc cgcggcga ttagctagtg ggtggaggaa cggctaacca aggcgacgat 241 gcgtagccgg cctgagaggg tgaccggca catggggat aggcgcaag ccagactcct 391 acgggaaggac gcagtaggg atcttccga atggcgaaa gcctgacgga gcgacgccgc 361 gtgagcgaa aaggccttcg ggtcgtaaag ctctgttg agggacgaag gcgacgccgc 361 aggcggta tacgtaggg ggtgacggt cacggcaa cctgggat atgggggaa ggcgccgt 421 cgaagaggg ggcgggta cggtactac cagggaag cctggtaact acgggcaac 481 agccgggta tacgtaggg ggcagcgtt attgggaggta cggtactcag ggaaggcg 541 aggcggttc ttaagtcag tgggaagac cacggtaa ccggtaaat acgtggcag 661 ctggggat tgagtgaag aggagagg ggaattcac gtgaagg gaatgcgta 662 gagatgtga ggaacaccag tggcgaagg ggattcac gtgtagcgg taatggaag 781 gtgtaaagt ttgagggg cacacctt agaggaac tacggggat agacgcg 991 gtgaacatg tggttaat cgaagcaag ggagaact taccaggta agggggac gagatccc 961 tgacacca agagttgg cgttccctt tcgggggaa taccaggga aggcgcg taacggat 991 gtgaacatg tggttaat cgaagcaag cgaagacc taccaggta agggggac ggattcacc 961 tgacacca agagttgg cgttccctt tcgggggaa agggtgaac ggagaact taccaggta aggcggat agg 991 gtgaacatg tggttaat cgaagcaag cgaagacc taccaggat agggggac ggattcacc		/collection date="17-Jun-2015"									
/identified_by="S. Rawat & P. Ranawat" (1>1469 /product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacggt 121 accggataac accgaagacc gcatggttt tggttgaagg gcggccttg gctgtcactt 181 gcggatggc ccgcggcgca ttagctagtt ggtggagtaa cggccacca aggcgacgat 241 gcgtagccgg cctgagaggg tgaccggcca cartgggact gagacaggc ccagagtcat 301 acgggaggca gcagtaggg atcttccgca atggggaa gcctgacgg gcggccgt 421 gcgtagccgg gcgtgg gggcggtg aggcggcgt gagggaca gcgtaat atggggaa gcgcgcgc 361 gtagcgaag aaggccttcg ggtcgtaaag ctctgttgg agggacgag gcgcgcgc 421 cgaagaggg gcgcggtga cggtaccta cargggaag atctgggat atggggaa aggcgcgcg 421 agccgggta atacgtaggg ggcagcgt gtccggaat attgggcgaa agcgcgcg 421 agcggtgtc ttaagtcag gggagcag ggaatcca cggggaag aggcgcgt 422 cgaagagg gggagaa accgg ggaaggag ggaatcca cgtggagg aaagcgcgc 423 agccggta tagtaggg ggcaggag ggaatcca cgtgtag aggcggg 424 agccggta tagtaggg ggagaga ggaatcca cgtgtaggg taatggaa 641 aggcgggttc ttaagtcag tggcgaagg ggattcac gtgtagcgg gaatgcgt 642 aggcaggt ggggagaa caggtagg ggattag tacccg gtaacgg taatggaa 641 aggcgggat tgagtgaag gagagagg ggattcac gtgtagcgg taatggaa 641 aggcgggat tgagtgaag gagagagg ggattcac gtgtagcgt aagcggg 741 gtgcaagtg tggggagcaa caggttag tacccgg taacggt aagcagta 751 gtgaaagt tgaggggt caaccctt agtgcgaa tacccgg taacgga 761 tgacaacca agagttgg cgttaat cgaagaat gagagaac gagattac tacaggtt tgacaccc 961 tgacaacca agagttgg cgttccctt tgggggac agggtgacg gtggtgcag 1001		/collected_by="P. Ranawat"									
<pre>//rNNA (1.51495) //product="165 ribosomal RNA" ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacggt 61 gagtaacacg tgggcaacct gcccgcaaga ccgggataac tccgggaaac cggagctaat 121 accggataac accgaagacc gcatggtctt tggttgaaag gcggccttg gctgtcactt 181 gcggatgggc ccgcggcgca ttagctagtt ggtgaggtaa cggctaaca aggcgacgat 241 gcgtagccgg cctgagaggg tgaccggca catgggcgaa gcgtaggaggaggaggaggaggaggaggaggaggaggaggag</pre>	-014	/identified_by="S. Rawat & P. Ranawat"									
ORIGIN 1 acatgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacggt 61 gagtaacacg tgggcaacct gcccgcaaga ccgggataac tccgggaaac cggagctaat 121 accggataac accgaagacc gcatggttt tggtgaaga gcggcctttg gctgtcactt 181 gcggtaggcc ccgcggcgca ttagctagtt ggtgaggta cgggctacca aggcgacgat 241 gcgtagccgg cctgagaggg tgaccgcca cactgggact gagcacggc ccagactcct 301 acgggaaggca gcagtaggga atcttccgca atgggcgaa gccgacggacgat 421 gcgtagcgag acggtaggga actttccga atgggcgaag gccgcgcgc 361 gtgagcgaag aaggccttcg ggtcgtaaag cctggttgt aggggaggaa gggcgcggt 421 cgaagaggc ggcgcggtg cggtacctca cgaggaagcc ccggctaact acgtgccagc 481 agccgcggta atacgtaggg ggcgagcgt gtccggaat attgggaag 601 ctgggggat ttagtgcagg gagaggagc ggattcac gtgtagcgg gaattcac gtgtagcgg gaatggta 611 gagatgtgg gggagcaac gtggcgaggc ggctctttg gtcgcaagc acgcgc 721 gcgaaagcgt gggggagcaa caggataga tacctgg gtgtgtaga dcctgg aaacggta 721 gcgaaagcgt ggggagcaa caggataga tacctgg gtgtcgtag gaatccg gtaacggta aggcgcgg 721 gcgaaagcgt ggggagcaa caggataga tacctgg gtacctcg ctaaccgcg aaacgatga 781 gtgctaagt ttaggggggt ccaccctt agggcagact tcagggaat gacggcgc ggatcccg 901 gtggaacat gtggttaat cgaagaag gcgaagca gaggagac gaagacc cggcacagc 901 gtggaacat gtggttaat cgaagaag gcgaacct taccggt agggtgcacg 901 gtgaaacca agagattgg cgttcccct tcgggggga aggggacag gtggtgcatg	<u>rnna</u>	<1>1469 /product="16S ribosomal RNA"									
<pre>1 acatgcaagt cgagcggacc aaatcggagc ttgctctgg ttggtcagcg gcggacgggt 61 gagtaacacg tgggcaact gccgcaaga ccgggataac tcgggaaac cggagtaat 121 accggataac accgaagacc gcatggttt tggtgaaag gcggcttg gctgtcactt 181 gcggatgggc ccgggcgca ttagctagtt ggtggagtaa cggctcaca aggcgacgat 241 gcgtagccgg cctgagaggg tgaccggcca catggggat gagacacgg ccgagatcact 301 acgggaggca gcagtaggg atcttccgca atgggcgaa gccggcaga gcggcggga accgg gtgtgtaa gggacgaag gcgacgcgc 361 gtgagcgaag aaggcttg ggtgtaaag ctctgttg gaggacgaa gagcgccgt 421 cgaagaggc ggcggtga cggtactca cgaggaag ccggtaat atgtggcgaa atcgg ggcgaggt gtccggaag gaggacgaag gagcgcgg 481 agccggta atagtagg ggcgaggg ggaatcca cgggagat catgtggagg aaatgcgta 661 gagatgtgga ggaacacag tggcgaagg ggattcac gtgtagcggt aaaggcgta 721 gcgaaggg ggggagaa caggattag tacctgtag tccagccg taaacgatga 781 gtgctaagt ttaggggg ccaacctt agtgcgag tcaccgg caaaggg 901 gtggaacat tggggg cgttaat cgagggaac ggggtaca gaggtgaca gaggtgaca gaggtgaca gaggtgaca gaggtgaca gaggtgaac caaggtta gagggagac gagaacta taccaggt tgacagccc 961 tgacaacca agagattgg cgttcccct tcgggggac agggtgacag gggggacag ggggtgaca </pre>	ORIGIN	······									
 61 gagtaacacg tgggcaact gcccgcaaga ccggggataac tccggggataac tcggggctaat 121 accggataac accgaagacc gcatggttt tggtgaaag gcggccttg gctgtcactt 181 gcggatggg ccgggcga ttagttagtt ggtgagtaa cggctaaca aggcgagat 241 gcgtagccgg cctggaggg tgaccgcca catgggat gagacacgg ccagactct 301 acgggaggca gcagtaggg atttcccca aggggaggaa gccggcaga gcgacgccgc 361 gtgacggaa aaggcttcg ggtcgtaaag cttgttg agggacgaa gccgccgc 361 gtgacggag ggcggtga cggtactac aggggaggaa gccgccgc 361 gtgacggaa gaggcttcg ggtcgtaaag cttgttg agggacgaag gagcccgt 421 cgaagaggc ggcggtga cggtactac agggaagc ccggctaat actggccagc 481 agccgggta atacgtaggg ggcgagcgt gtccggaat attgggagga gagggcggg 541 aggcggttc ttaagttga tgtgaaagc cacggttaa ccgtggagg taatggaa 661 gagatgtga ggaacaccag tggcgaagc ggcttctgg atcacgga taacggag 721 gcgaaggt gggggacaa caggattag taccggtag tcacgcga taacggag 721 gcgaaggt gggggcaa aggggaga caccctt agtgctga taacggaa aggcaccgg 721 gcgaaggt tgagggg caa caggattag taccggc gaaaacccg 721 gcgaagt gggggcaa aggggaga cggaacct tagtgtag tacaggaa aggagag 721 gcgaagt tgagggg ccaacct agtgcgag tacacccg taacgga aggcagg 721 gcgaagt tggggg caa aggttaga tacctgg gagaacccgg 721 gcgaagt tgagggg caag ggctgaac caaggatt gacgggc gaaatcccg 721 gcgaagt tgagggg tacaccag ggctgaacc caaggatt gacgggc gaaatcccg 721 gcgaacgt tgagggg tacaccag ggctgaact caaggatt gacgggc gaaactccg 731 gtgcaact taggtggg ccgaag gcdaacct tacaggatt gacgggc gaaacccg 741 tacaatg tggtagggg ggcgcg ggaaccc agggaacc agggtgaac cgaagga 741 tacaacca aggattgg cgtccccct tcgggggaa ggggc cgacagg 741 tacaacca aggattgg cgtcccct tccggggaac agggtacag gtggtgaa 741 tacaacca agagttgg cgtcccct tccggggaa ggagaacc 741 tacaacca agagttgg cgtcccct tccggggaac gggtacag gggtgaacgg 741 tacaacca agagttgg cgtcaccct tacacgtc tacaggt tgacggc ggagaacc 741 tacaacca agagattgg cgtcaccacca cgggaa	1	stgcaagt cgagcggacc aaatcggagc ttgctctggt ttggtcagcg gcggacgggt									
181 geggatggge energegege tangetart ggraggtaa eggetaaca agegaegat 241 gegtageeg eergegege tangetart ggraggtaa eggetaaca agegaegat 241 gegtageeg eergegege tangetage atterege attegegegaa geegegege 361 gragegaa aageerteg ggregtaaag eertratig aggaegaag gaegeerege 421 egaagagge ggegeggg eggeagegt geegaeget gteeggaat attegegeg 421 egaagagge ggegeggg eggeageget gteeggaat attgggegaa ageerege 421 egaagagge ggegeggg eggeageget gteeggaat attgggegaa ageerege 421 egaagagge ggegeggg eggeageget gteeggaat attgggegaa ageerege 421 egaagagge ggegegegg eggeageget gteeggaat attgggegaa ageerege 421 aggeegta ategtagg ggeageege ggeageere erege 421 aggeegta etagetage ggeageget gteegaget attgggegaa 421 aggeegta etagetage ggeagegege ggeatere erege 421 aggeegte etaageteg ggeageege ggeatere erege 421 aggeegte etaageteg ggeagege ggaateere eregegege 421 aggeegteere eregegegegegegegeegeere 421 aggeegteere eregegegegegegeegeegeere 421 aggeegteere eregegegegegeegeere 421 aggeegteere eregegegegegegeegeere 421 aggeeggeare eregegegegegeere eregegegeere 421 aggeeggeare eregegegegegeegeere 421 aggeeggeere eregegegeegeere 421 aggeeggeere eregegegeegeere 421 aggeeggeere eregegegeegeere 421 aggeeggeere eregegegeere 421 aggeeggeere eregegeere 421 aggeeggeere eregegeere 421 aggeeggeere eregegeere 421 aggeere eregegeere eregegeere 421 aggeere eregegeere eregegeere eregegeere 422 aggeere eregegeere eregegeere eregeere 423 aggeere eregeere eregeere eregeere eregeere eregeere 424 aggeere erege	121	rtaacadg tgggdaaddt gdddgaaga ddgggataad todgggaaad oggagdtaat reeataad acceaaeadd gdateettt teetteaaae eceeddutte ectetoadt									
241 gcgtagccgg cctgaaggg tgaccgcca cactgggact gagacacgg ccagactcct 301 acgggagga gcagtaggga atttccgca atggggaa gcctgacgg gcgacgccgc 361 gtgacggag aaggccttg ggtcgtaag cttgttgt agggacgaag gagcgccgt 421 cgaagaggg ggcgggtg cggtactca cgaggaagc ccggctaat acgtgccagc 481 agccggta atacgtaggg gcgaggtt gtccggaat attgggggt aagcgccgc 541 aggcggttc ttaagtctg tgtgaaggc cacggctcaa ccgtggagg tcattggaa 601 ctgggggact tgagtgcagg agggagagc ggaattcac gtgtagcgg gaaatgcgt 721 gcgaaggt ggggagaaa caggataga taccttggt gtccggc ctaacgg 721 gcgaaggt gggggacaa caggataga tacctgtg gtccagc taacgga 781 gtgctaagt ttaggggg ccaaccctt agtgctgg ctaacgcg aaggagt catagga 841 cctggggat tagggggt caaccct agtgctga taccgggt aagactccg 941 gtggaacat gtgtttaat cgaagcaac gcaggaatt caacggt taccggc 941 tacaacca agagttgg cgttccctt togggggac agggtgacag ggggtgcag 941 tacaacca agagttgg cgttcccct tcgggggac agggtgacag gtggtgcag 941 tacaacca agagttgg cgttcccct tcgggggac agggtgacag gtggtgcag	181	zgatgggc ccgcggcgca ttagctagtt ggtgaggtaa cggctcacca aggcgacgat									
301 acgggagga gcagtaggg atcttcga atgggcgaa gcctgacgga gcgacgccgc 361 gtggacgag aaggccttcg ggtcgtaaag ctctgttgtg agggacgaag ggacgccgtt 421 cgaagaggg ggcgggtga cggtacta cgaggaagc ccggtaat atgggcgaa gacgccgt 481 agccgcggta atacgtaggg ggcgacgtt gtccggaatt atgggcgta aagcgccgc 541 aggcggttcc ttaagtctga tgtgaaagcc cacggctcaa ccgtggaggg tcattggaaa 601 ctgggggaat tgagtgcagg agaggaggc ggaattcac gtgtagcgg gaaatgcgta 661 gagatgtgg ggaacaccag tggcgaagg ggaattcac gtgtagcgg aaatgcgta 661 gagatgtgg ggaacaccag tggcgaagg ggattcat gtccagcat acgtggagg 721 gcgaaagcgt ggggagaaa caggataga taccttggta gtccacgccg taaacgatga 781 gtgctaagt gtagagggg ccaaccctt agtgctgcag ctaacgcga aagcatccg 841 cctggggagt acggccgaa ggctgaaact caaaggaatt gacgggggc cgcacaagcg 901 gtggaacatg tggtttaatt cgaagcaac gcaagaact taccaggtct tgcactccc 961 tgacaacca aggagttgg cgttccctt cggggggac agggtgacag gtggtgcag	241	gtagcogg cotgagaggg tgacoggoca cactgggact gagacaoggo ocagactoot									
421 cgaagaggc ggcgcggtga cggtactta cgaggaagc ccggtaat acgtgccag 481 agccgcggta atacgtaggg ggcgagcgt gtccggaat attgggcgta aagcgcgcg 541 aggcggttcc ttaagtctga tgtgaaagcc cacggctcaa ccgtggaggg tcattggaaa 601 ctgggggact tgagtgcagg agaggaggc ggaattcac gtgtagcgg gaaatgcgta 661 gagatgtgga ggaacaccag tggcgaagg ggattcac gtgtagcgg aaatgcgta 661 gagatgtgga ggaacaccag tggcgaagg ggattcac gtgtagcgg aaatgcgta 721 gcgaaagcg ggggagcaa caggattaga tacctggta gtccacgccg taaacgatga 781 gtgctaagt ttaagtggg gccaaa caggattaga tacctggta gacggg cgacaagcg 841 cctgggggat taggcgcaaa ggctgaaact caaaggaatt gacgggggc cgcacaagcg 901 gtggaacatg tggtttaatt cgaagcaacg cgaagaact taccaggtc tgacatccc 961 tgacaacca agagattggg cgttcccct tcggggggac agggtgacag gtggtgcatg	301	iggaggca gcagtaggga atottoogoa atgggogaaa gootgaogga gogaogoogo aaggaaag aaggoottog ggtogtaaag ototgttgtog aggaogooga gaggoogoogt									
481 agccgcggta atacgtaggg ggcgagcgtt gtccggaatt attgggcgta aagcgcgcgc 541 aggcggttcc ttaagtctga tgtgaaagcc cacggctcaa ccgtggaggg tcattggaaa 601 ctgggggact tgagtgcagg agaggaagc ggaattcac gtgtagcggt gaaatgcgta 661 gagatgtga ggaacaccag tggcgaaggc ggcttctcg cctgcaactg acgctgaggc 721 gcgaaagcgt ggggagcaaa caggattaga tacctggta gtccacgccg taaacgatga 781 gtgctaagtg ttagaggggt cacaccttt agtgctgrag ctaacgggat cagcaggg 841 cctggggagt acggccgcaa ggctgaaact caaaggaatt gacgggggc cgcacaagcg 901 gtggaacatg tggtttaatt cgaagcaacg cgaagaact taccaggtct tgacatccc 961 tgacaacca agagattggg cgttcccct tcggggggac agggtgacag gtggtgcatg	421	aagagggc ggcgcggtga cggtacctca cgaggaagcc ccggctaact acgtgccagc									
541 aggcggttcc ttaagtctga tgtgaaagcc cacggctcaa ccgtggaggg tcattggaaa 601 ctgggggact tgagtgcagg agaggaggc ggaattcac gtgtagcggt gaaatgcgta 661 gagatgtga ggaacaccag tggcgaaggc ggcttctcgg cctgcaactg acgctgaggc 721 gcgaaagcgt ggggagcaaa caggattaga tacctggta gtccacgccg taaacgatga 781 gtgctaagtg ttagaggggt cacaccttt agtgctgcag ctaacgggat aagcatccg 841 cctggggagt acggccgcaa ggctgaaact caaaggaatt gacgggggcc cgcacaagcg 901 gtggaacatg tggtttaatt cgaagcaacg cgaagaacct taccaggtct tgcatcccc 961 tgacaaccca agagattggg cgttcccct tcggggggac agggtgacag gtggtgcatg	481	cgcggta atacgtaggg ggcgagcgtt gtccggaatt attgggcgta aagcgcgcgc									
661 gagatgtga ggagacaccag tggcgaaggc ggatttag ccgcagtga gaatgegta 661 gagatgtga ggagacaccag tggcgaaggc ggcttctcgg ccgcaactg acgctgaggc 721 gcgaaaggcg ggggagcaaa caggattaga taccctggta gtccacgccg taacgatga 781 gtgctaagtg ttagaggggt cacaccttt agtgctgcag ctaacggcgt aagcactcg 841 cctggggagt acggccgcaa ggctgaaact caaaggaatt gacgggggcc cgcacaagcg 901 gtggaacatg tggtttaatt cgaagcaacg cgaagaacct taccaggtt tgacatcccc 961 tgacaacca agagattggg cgttcccct tcggggggac agggtgacag gtggtgcatg	541	goggtico ttaagtotga tgtgaaagoo caoggotcaa oogtggaggg toattggaaa									
721 gcgaaagcgt ggggagcaaa caggattaga taccctggta gtccacgccg taaacgatga 781 gtgctaagtg ttagaggggt cacaccctt agtgctgcag ctaacgcgat aagcactccg 841 cctggggagt acggccgcaa ggctgaaact caaaggaatt gacgggggcc cgcacaagcg 901 gtggaacatg tggtttaatt cgaagcaacg cgaagaacct taccaggtct tgacatcccc 961 tgacaacca agagattggg cgttcccct tcggggggac agggtgacag gtggtgcatg	661	seggeact teagtetage agaggaggage geteteteg cetgeagege gadargege									
781 gtgctaagtg ttagaggggt cacacccttt agtgctgcag ctaacgcgat aagcactccg 841 cctggggagt acggccgcaa ggctgaaact caaaggaatt gacgggggcc cgcacaagcg 901 gtggaacatg tggtttaatt cgaagcaacg cgaagaacct taccaggtct tgacatcccc 961 tgacaaccca agagattggg cgttcccct tcgggggggac agggtgacag gtggtgcatg	721	zaaagogt ggggagcaaa caggattaga taccctggta gtocacgcog taaacgatga									
901 gtggaacatg tggtttaatt cgaagcaacg cgaagaact taccaggtgt tgacatccc 961 tgacaacca agagattgg cgttcccct tcggggggac agggtgacag gtggtgcatg	781	<pre>staagtg ttagaggggt cacacccttt agtgctgcag ctaacgcgat aagcactccg</pre>									
961 tgacaaccca agagattggg cgttcccct tcggggggac agggtgacag gtggtgcatg	841 901	идаасате теритина ggcrgaaact саааggaart gacgggggcc сgcacaagcg eeaacate teetttaatt ceaagcaace ceaagaacct taccagetct teacatcccc									
	961	acaaccca agagattggg cgttccccct tcggggggac agggtgacag gtggtgcatg									
1021 grtgtcgtca gctcgtgtcg agatagttg ggttaagtcc cgcaacgagc gcaaccctcg	1021	igtogtoa gotogtgtog agatatgttg ggttaagtoo ogoaacgago goaacootog									
1001 CCCCLagCtg CCagCaCgaa ggtgggCaCt CtaaagggaC tgCcggCgaC aagtCggagg 1141 aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc tgggctacac acgtgctaca	1081	iciagiig coagoalgaa ggtgggoot ctaaagggac tgooggogac aagtoggagg getgggga tgaogtoaa toatoatgoo oottatgaco tgggotacao acgtgotaca									

EK 12. BLAST analizi sonucu *Geobacillus kaustophilus* olduğunu düşündüğümüz türün dizisi ile benzerlik gösterdiği *G.kaustophilus* dizinin hizalanması

Geobacillus kaustophilus strain YE5-1016-404 16S ribosomal RNA gene, partial sequence Sequence ID: MG456829.1 Length: 1469 Number of Matches: 1										
	Range	1: 23 t	o 1390 GenBa	ink Graphi	ics			Vext M	atch 🔺 Previous	Match
	Score		E	xpect	Identities		Gaps		Strand	-
	25271	orts(13	68) (0.0	1368/1368(1	100%)	0/1368(0	1%6)	Plus/Plus	-
	Query	1	ATCGGAGCTT	GETETGET	TTEGTCAECGEC	GGACGGGTGAGT/	AACACGTGGG	CAACCTGC	68	
	Sbjct	23	ATCGGAGCTT	GCTCTGGT	TTGGTCAGCGGC	GGACGGGTGAGT/	AACACGTGGG	CAACCTGC	82	
	Query	61		GGGATAAC	TCCGGGAAACCG	GAGCTAATACCG		AAGACCGC	128	
	Sbjct	83	CCGCAAGACC	GGGATAAC	TCCGGGAAACCG	GAGETAATACCG	GATAACACCG	AAGACCGC	142	
	Query	121							188	
	Ouerv	181	AGETAGTIGG	TGAGGTAA	CONCLARCANE	GEGAEGATGEGU	AGCEGGEETG	AGAGGETG	248	
	Shict	283	AGCTAGTTGG		COOCTCACCAAS	GEGAEGATGEGT		AGAGGETE	262	
	Ouerv	241	ACCEGCCACA	CTGGGACT	GAGACACGGCCC	AGACTCCTACGG	GAGGCAGCAG	TAGGGAAT	388	
	Sbjct	263	ACCEGCCACA	CTGGGACT	GAGACACGGCCC	AGACTCCTACGG	GAGGCAGCAG	AGGGAAT	322	
	Query	301	CTTCCGCAAT	GGGCGAAA	GCCTGACGGAGC	GACGCCGCGTGA	GCGAAGAAGG	CCTTCGGG	368	
	Sbjct	323	CTTCCGCAA	GGGCGAAA	GCCTGACGGAGC	GACGCCGCGTGA	GCGAAGAAGG	ccttceee	382	
	Query	361	TCGTAAAGCT	cietiete	AGGGACGAAGGA	GEGEEGTTEGAA	GAGGGCGGCG	CGGTGACG	428	
	Sbjct	383	TCGTAAAGCT	ctattata	AGGGACGAAGGA	GCGCCGTTCGAA	GAGGGCGGCG	CGGTGACG	442	
	Query	421	GTACCTCACG	AGGAAGCC	CCGGCTAACTAC	GTGCCAGCAGCC	GEGGTAATAE	GTAGGGGG	480	
	Sbjct	443	GTACCTCACG	AGGAAGCC	CCGGCTAACTAC	GTGCCAGCAGCC	GCGGTAATAC	GTAGGGGG	582	
	Query	481	CGAGCGTTGT	CCGGAATT	ATTGGGCGTAAA	GEGEGEGEAGGE	GGTTCCTTAA	GTCTGATG	540	
	Sbjct	503	CGAGCG11G1	ĊĊĠĠĂĂŤŤ	ATTGGGCGTAAA	GCGCGCGCAGGC	ĠĠŦŦĊĊŦŦĂĂ	<u>Ġ</u> ŧċŧĠĂŧĠ	562	
	Query	541	TGAAAGECCCA	CGGCTCAA	CCGTGGAGGGTC	ATTGGAAACTGG	GGGACTTGAG	TGCAGGAG	688	
	Sbjct	563	TGAAAGCCCA	CGGCTCAA	CCGTGGAGGGTC	ATTGGAAACTGG	GGGACTTGAG	TGCAGGAG	622	
	Query	681	AGGAGAGCGG		GTGTAGCGGTGA	AATGCGTAGAGA	IGTGGAGGAA		668	
	Sbjct	623	AGGAGAGCGG	AATTCCAC	GTGTAGCGGTGA	AATGCGTAGAGA	TGTGGAGGAA	CACCAGTG	682	
	Query	661							728	
	Ouerv	721	GGATTAGATA	CECTEGIA	GICCACGEEGIA	AACGATGAGLGC	TAAGTGTTAG	AGGGGTCA	742	
	Shirt	743			GICCACGCCGIA	AACGATGAGTGC			882	
	Ouerv	781	CACCCTTTAG	TGCTGCAG	CTAACGCGATAA	GCACTCCGCCTG	GGGAGTACGG	CCGCAAGG	840	
	Sbjct	883	CACCCTTTAG	IGCIGCAG	CTAACGCGATAA	deact codect of	GGAG ACGG	CCGCAAGG	862	
	Query	841	ствааастса	AAGGAATT	GACGGGGGGCCCG	CACAAGCGGTGG	AACATGTGGT	TTAATTCG	988	
	Sbjct	863	CTGAAACTCA	AAGGAATT	GACGGGGGGCCCG	CACAAGCGGTGG	AACATGTGGT	HAATTCG	922	
	Query	981	AAGCAACGCG	AAGAACCT	TACCAGGTCTTG	ACATCCCCTGAC	AACCCAAGAG	ATTEGECG	968	
	Sbjct	923	AAGCAACGCG	AAGAACCT	TACCAGGTCTTG	ACATCCCCTGAC	AACCCAAGAG	ATTGGGCG	982	
	Query	961	TICCCCCTIC	GEGEGEAC	AGGGTGACAGGT	GGTGCATGGTTG	TCGTCAGCTC	GTGTCGAG	1020	
	Sbjct	983	+++++++++++++++++++++++++++++++++++++++	GGGGGGAC	AGGGTGACAGGT	ddtdcAtedttd	tcgtcagctc	dtåtcdad	1842	
	Query	1821	ATATGTTGGG	TTAAGTCC	CGCAACGAGCGC	AACCETCGCCTC	TAGTTGCCAG	CACGAAGG	1080	
	Sbjct	1043	ATATGTTGGG	TTAAGTCC	CGCAACGAGCGC	AACCCTCGCCTC	TAGTTGCCAG	CACGAAGG	1182	
	Query	1881	TGGGCACTCT	AAAGGGAC	TGCCGGCGACAA	GTCGGAGGAAGG	IGGGGATGAC	GTCAAATC	1140	
	Sbjct	1103	TGGGCACTCT	AAAGGGAC	TGCCGGCGACAA	GTCGGAGGAAGG	TGGGGATGAC	GTCAAATC	1162	
	Query	1141				GIGCIACAATGG			1200	
	Suger	1201	ATCATGECCEC	GGGGGGGGGGG	ATCCCAAAAA	GIGCICICAGES		GETGEARE	1222	
	Shiet	1201							1282	
	Ouerv	1261	TEGECISCAT	GAAGECGG	AATCGCTAGTAA	TEGEGGATCASE	ATGCCGCGGT	GAATACGT	1328	
	Shict	1283	+LITT +LITT	GAAGCCGG		TCGCGGATCAGE	ATGCCGCCG	GAATACO	1342	
	Query	1321	TCCCGGGCCT	TGTACACA	CCGCCCGTCACA	CCACGAGAGCTT	GCAACA 13	68		
	Sbjct	1343	TCCCGGGCCT	IGTACACA	CCGCCCGTCACA	CCACGAGAGCTT	GCAACA 13	98		

EK 13. BLAST analiz sonucunda elde edilen türün *B. coagulans* türlerine yakınlıklarının gösterilmesi

	BLAST Results						
t and Resubmit Save Search Strategies Formatting options Download		You	ube <u>Ho</u> y	w to read	<u>l this pa</u>	ige E	Blast report
title: Nucleotide Sequence (1343 letters)							
RID 8MYXG11X015 (Expires on 02-20 14:24 pm) Query ID Idl Query_243945 Description Description None Molecule type nucleic add Query Length 1343 Molecule type None	Database Name nr Description Nucleotide collection (nt) Program BLASTN 2.8.0+ ⊳ <u>Citation</u>						
ther reports: >Search Summary [Taxonomy reports] [Distance tree of results] [MSA viewer]							
raphic Summary							
escriptions							
Alignments Download GenBank Graphics Distance tree of results	ription	Max	Total	Query	E	Ident	Accessir
Bacilius coagulans partial 16S rRNA gene, strain MTCC5260		2274	2274	100%	0.0	98%	FN675759.
Bacillus coagulans strain LBSC chromosome		1969	17636	100%	0.0	93%	CP022701.
Bacillus coagulans strain hstb-8 16S ribosomal RNA gene, partial sequence		100000				93%	KX822708.
		1969	1969	100%	0.0		
Bacillus sp. MC-02 gene for 16S ribosomal RNA, partial sequence		1969 1969	1969 1969	100% 100%	0.0	93%	AB849115.
Bacillus sp. MC-02 gene for 16S ribosomal RNA, partial sequence Bacillus coapulars gene for 16S rRNA, strain: T5		1969 1969 1969	1969 1969 1969	100% 100% 100%	0.0	93% 93%	<u>AB849115.</u> <u>AB240205.</u>
Bacillus so. MC-02 gene for 16S ribosomal RNA, partial sequence Bacillus coapulans gene for 16S rRNA, strain: T5 Bacillus so. IMM05 partial 16S rRNA gene, strain IMM05		1969 1969 1969 1965	1969 1969 1969 1965	100% 100% 100% 100%	0.0 0.0 0.0 0.0	93% 93% 93%	AB849115. AB240205. FR727705.
Bacillus so, MC-02 gene for 165 ribosomal RNA, gential sequence Bacillus coapulans gene for 165 rRNA strain: T5 Bacillus coapulans gene for 165 rRNA gene, strain IMM05 Bacillus coapulans strain R11 chromosome, complete genome		1969 1969 1969 1965 1964	1969 1969 1969 1965 19485	100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0	93% 93% 93% 93%	AB849115. AB240205. FR727705. CP026649.
Bacillus so. MC-02 gene for 165 ribosomal RNA, partial sequence Bacillus coagulans gene for 165 rRNA, strain 175 Bacillus so. IMM05 partial 165 rRNA gene, strain IMM05 Bacillus coagulans strain R11 chromosome, complete genome Uncultured Bacillus so, cione Eco 165 ribosomal RNA gene, partial sequence		1969 1969 1969 1965 1964 1964	1969 1969 1969 1965 1965 19485 1964	100% 100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0 0.0	93% 93% 93% 93% 93%	AB849115. AB240205. FR727705. CP026649. MG557779
Bacillus so. MC-12 gene for 165 ribosomal RNA, gential sequence Bacillus coaquians gene for 165 rRNA strain. T5 Bacillus coaquians strain 165 rRNA gene, strain MM05 Bacillus coaquians strain R11 chromosome. complete genome Uncultured Bacillus so. clone Boo 165 ribosomal RNA gene, partial sequence Bacillus coaquians strain RCCM203098 165 ribosomal RNA gene, partial sequence		1969 1969 1969 1965 1964 1964 1964	1969 1969 1969 1965 19485 19485 1964	100% 100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0 0.0 0.0	93% 93% 93% 93% 93%	AB849115. AB240205. FR727705. CP026649. MG557779 MF992239.
Bacillus co. MC-12 gene for 165 ribosomal RNA, gential seguence Bacillus coapulans gene for 165 rRNA strain T5 Bacillus coapulans strain R11 chromosome complete genome Uncultured Bacillus so, clone Eco 165 ribosomal RNA gene, partial seguence Bacillus coapulans strain RCCM203098 165 ribosomal RNA gene, partial seguence Bacillus coapulans strain disam16 165 ribosomal RNA gene, partial seguence		1969 1969 1965 1965 1964 1964 1964	1969 1969 1969 1965 19485 1964 1964 1964	100% 100% 100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	93% 93% 93% 93% 93% 93%	AB849115. AB240205. FR727705. CP026649. MG557779. MF992239. KX580387.
Bacillus co. MC-02 gene for 165 ribosomal RNA, gential sequence Bacillus coapulans gene for 165 rRNA, strain T5 Bacillus coapulans strain R11 chromosome.complete genome Lincutured Bacillus co. clone Boc 165 ribosomal RNA gene, sartial sequence Bacillus coapulans strain RCCM/203098 165 ribosomal RNA gene, sartial sequence Bacillus coapulans strain RCCM/203098 165 ribosomal RNA gene, sartial sequence Bacillus coapulans strain RCCM/203098 165 ribosomal RNA gene, sartial sequence Bacillus coapulans strain RCCM/203098 165 ribosomal RNA gene, sartial sequence Bacillus coapulans strain RCCM/203098 165 ribosomal RNA gene, sartial sequence Bacillus coapulans strain RCCM/203098 165 ribosomal RNA gene, sartial sequence Bacillus coapulans strain RCCM/203098 165 ribosomal RNA gene, sartial sequence		1969 1969 1969 1965 1964 1964 1964 1964 1964	1969 1969 1965 19485 19485 1964 1964 1964 19476	100% 100% 100% 100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	93% 93% 93% 93% 93% 93% 93%	AB849115. AB240205. FR727705. CP026649. MG557779 MF992239. KX580387. CP017888.
Bacillus co. MC-02 gene for 165 ribosomal RNA, partial sequence Bacillus coapulans gene for 165 rRNA, strain: T5 Bacillus coapulans strain R11 chromosome, complete genome Uncutured Bacillus co. done Eco 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain R11 chromosome, complete genome Uncutured Bacillus co. done Eco 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain RCCM203090 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain BC-MY1, complete genome Bacillus coapulans strain BC-MY1, complete genome Bacillus coapulans strain RC1 flos ribosomal RNA gene, partial sequence Bacillus coapulans strain RC-M203090 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain RC-M203090 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain RC-M203090 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain RC-M203090 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain RC-M203090 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain RC-M203090 165 ribosomal RNA gene, partial sequence Bacillus coapulans strain RC-M203090 165 ribosomal RNA gene, partial sequence		1969 1969 1969 1965 1964 1964 1964 1964 1964 1964	1969 1969 1965 19485 1964 1964 1964 19476 1964	100% 100% 100% 100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	93% 93% 93% 93% 93% 93% 93%	AB849115. AB240205: FR727705. CP026649. MG557779. MF992239. KX580387. CP017888. KX986311.

EK 14. BLAST analizi sonucu *B. coagulans* 16s rRNA geninin benzerlik gösterdiği *B. coagulans* 16s rRNA dizisi

Bacillu	s coagulans partial 16S rRNA gene strain MTCC5260					
Buoma		Customize view				
GenBank: F	Nb/5/59.1					
FASTA Gr	aphics					
<u>Go to:</u> ♥		Analyze this sequence Run BLAST				
LOCUS	FN675759 1412 bp DNA linear BCT 05-MAR-2010 Bacillus coagulans partial 165 rRNA gene, strain MTCC5260.	Pick Primers				
ACCESSION	FN675759	Highlight Sequence Features				
KEYWORDS		Find in this Sequence				
SOURCE ORGANISM	Bacillus coagulans <u>Bacillus coagulans</u>					
REFERENCE	Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus. 1	Related information				
AUTHORS TITLE	Ratna Sudha,M. Bacillus coagulans strain	Taxonomy				
JOURNAL	Unpublished					
REFERENCE	2 (bases 1 to 1412)					
AUTHORS	Sudha, R.	LinkOut to external resources				
JOURNAL	Direct Submission Submitted (01-MAR-2010) R&D. Unique biotech ltd. Plot-2, phase-2.	Ribosomal Database Project II	Ribosomal Database Project II			
	S.P.Biotech Park, A.P, 500078, INDIA		ecting			
FEATURES	Location/Qualifiers	SILVA SSU Database				
source	11412	[S	SILVA]			
	/organism="Bacillus coagulans"					
	/mol_type="genomic DNA"					
	/strain="MTCC5260"					
	/isolate="Unique IS-2"	Recent activity				
	/db_xref="taxon: <u>1398</u> "	Turn Off	Clear			
gene	<1>1412	Bacillus coagulans partial 16S rPNA ge	ano			
-0110	/gene="165 FRNA"	strain MTCC5260	cleotide			
<u>rrna</u>	<1.,>1412 / "165	Strain #1003200	me or other			
	/gene= 105 rnMA /product="165 ribosomal RNA"	Geobacillus kaustophilus strain PS9 16 ribosomal RNA gene, complete seguivo	5S cleotide			
URIGIN						

EK 15. BLAST analizi sonucu *B. coagulans* olduğunu düşündüğümüz türün dizisi ile benzerlik gösterdiği *B. coagulans* dizinin hizalanması

Bacillus coagulans partial 16S rRNA gene, strain MTCC5260											
Sequence	e ID: <u>FN67</u>	5759.1 Length:	1412 Number of Match	hes: 1							
Range 1:	351 to 13	09 GenBank Gra	phics	Vext	Match 🔺 Previous Match						
Score 1772 hit	te(959)	Expect	Identities 959/959(100%)	Gaps 0/959(0%)	Strand Dlug/Dlug						
Query 1					4 60						
SDjet 3	551 ATGG	ACGAAAGTCTGACG	GAGCAACGCCGCGTGAGTGAA	GAAGGEETTENEETTAAA	A 410						
Query 6					3 120 						
Suger 4		GITGCCGGGGGAAGA	ACAAGTGCCGTTCGAACAGGG		J 470						
Chiefy 1					180						
Ouery 1	191 CTCC	GGAATTATTGGGCG	TAAAGCGCGCGCAGCGCGCGGTT	CTTAAGTCTGATGTGAAAGCGT	7 340						
Shiet 5					500						
Ouery 2	041 TGCG	GETCAACCGCAAGC	SETCATTOGANACTOGGAGO	TTGAGTGCAGAAGAGGAGAG	7 390						
Shict 5					650						
Ouery 3	001 GGAA	TTCCACGTGTAGCG	GTGAAATGCGTAGAGATGTGG		369						
Sbict 6	51 GGAA	TTCCACGTGTAGCG	GTGAAATGCGTAGAGATGTGG	AGGAACACCAGTGGCGAAGG	710						
Ouery 3	361 GGCT	CTCTGGTCTGTAAC	TGACGCTGAGGCGCGAAAGCG	TGGGGAGCAAACCGGATTAG	A 420						
Sbjct 7	11 GGCT	CTCTGGTCTGTAAC	TGACGCTGAGGCGCGAAAGCG	TGGGGAGCAAACCGGATTAG	A 770						
Query 4	121 TTAA	CGTGGTAGTCCAAA	CGGAAAACAATAAGGGTAAAG	AATAAAAGGGTTTACGCCCT	T 480						
Sbjct 7	71 +++A	CGTGGTAGTCCAAA	CGGAAAACAATAAGGGTAAAG	AATAAAAGGGTTTACGCCCT	T 830						
Query 4	181 TATO	CTACAACTAACGCT	TTAACCACTTCGCCTGGGGGA	GTACGGCGCAAGGGTTAAAC	T 540						
Sbjct 8	331 TATG	CTACAACTAACGCT	TTAACCACTTCGCCTGGGGGA	GTACGGCGCAAGGGTTAAAC	T 890						
Query 5	541 AAAG	GAATTGACGGGGGC	CCCACAAGCGATGGAGACAAG	TGGTTTAATTCAAGCAACCG	4 600						
Sbjct 8	391 AAAG	GAATTGACGGGGGC	CCCACAAGCGATGGAGACAAG	TGGTTTAATTCAAGCAACCG	A 950						
Query 6	601 AGAA	CCTTACCAGGTCTT	GACATCGTCTGAAATCCCTGG	GGACAGGGCCTTCCCCTTCG	G 660						
Sbjct 9	951 AGAA	CCTTACCAGGTCTT	GACATCGTCTGAAATCCCTGG	GGACAGGGCCTTCCCCTTCG	5 1010						
Query 6	561 GGAC	AGAGTGACAGATGG	TGCATAGTTGTCGTCAGCTCG	TGTCGTGAGATGTTGGGTTA	4 720						
Sbjct 1	1011 GGAC	AGAGTGACAGATGG	TGCATAGTTGTCGTCAGCTCG	TGTCGTGAGATGTTGGGTTA	A 1070						
Query 7	21 GTCC	CGCAACGAGCGCAA	CCCTGACCTTAGTTGCCAGCA	TTCAGTTGGGCACTCTAAGG	T 780						
Sbjct 1	1071 ĠŤĊĊ	ĊĠĊĂĂĊĠĂĠĊĠĊĂĂ	ccctgaccttagttgccagca	ttcagttgggcactctaagg	T 1130						
Query 7	781 GACT	GCCGGGGGACAAACC	GGAGGAAGGTGGGGATGAGTC	AAATCATCATGCCCCTTATG	A 840						
Sbjct 1	131 ĠÁĊŤ	ĠĊĊĠĠĠĠĂĊĂĂĂĊĊ	ĠĠĂĠĠĂĂĠĠŦĠĠĠĠĂŦĠĂĠŦĊ	AAATCATCATGCCCCTTATG	Å 1190						
Query 8	341 CCTG	GGGTACACACGTGC	TACAATGGATGGTACAAAGGG	CTGCGAGACCGCGAGGTTAA	5 900 						
Sbjct 1	191 ČČŤĠ	GGGTÁCÁCÁCGTGC	TACAATGGATGGTÁCÁAÁGGG	CTGCGAGACCGCGAGGTTAA	G 1250						
Query 9	901 CCAA	TCCCAGAAGGCATT	CCCAGTTCGGATTGCAGGCTG	CAACCCGCCTGCATGAAGCC	959						
Sbjct 1	1251 ČĆÁÁ	TCCCAGAAGGCATT	CCCAGTTCGGATTGCAGGCTG	CAACCCGCCTGCATGAÁGCC	1309						

	6 Saat	12 Saat	14 Saat	16 Saat	20 Saat	24 Saat	48 Saat	72 Saat	168 Saat	Max
BTX 53	0,031	0,038	0,011	0,074	0,014	0,068	0,068	0,032	0,15	0,15
BTX 71	0,045	0,023	0,018	0,052	0,015	0,049	0,108	0,015	0,155	0,155
BTX 84	0,037	0,035	0,023	0,096	0,02	0,047	0,122	0,021	0,156	0,156
BTX 82	0,152	0,077	0,014	0,078	0,015	0,141	0,131	0,023	0,16	0,16
BTX 43	0,02	0,01	0,02	0,073	0,02	0,039	0,109	0,01	0,164	0,164
BTX 55	0,029	0,029	0,007	0,079	0,006	0,056	0,145	0,015	0,166	0,166
BTX 54	0,071	0,034	0,013	0,077	0,017	0,044	0,121	0,007	0,167	0,167
BTX 51	0,145	0,05	0,1	0,06	0,17	0,02	0,01	0,1	0,045	0,17
BTX 75	0,047	0,07	0,029	0,072	0,032	0,072	0,112	0,01	0,175	0,175
BTX 37	0,024	0,007	0,012	0,107	0,058	0,043	0,134	0,008	0,176	0,176
BTX 39	0,021	0,039	0,006	0,009	0,049	0,044	0,044	0,017	0,178	0,178
BTX 73	0,042	0,03	0,016	0,075	0,021	0,056	0,113	0,017	0,179	0,179
BTX 52	0,064	0,034	0,01	0,079	0,013	0,046	0,117	0,013	0,184	0,184
втх 70	0,056	0,024	0,028	0,078	0,021	0,039	0,112	0,016	0,185	0,185
BTX 62	0,031	0,03	0,017	0,075	0,026	0,07	0,109	0,012	0,186	0,186
BTX 68	0,034	0,026	0,016	0,08	0,02	0,044	0,145	0,009	0,188	0,188
BTX 56	0,037	0,046	0,022	0,075	0,014	0,047	0,112	0,014	0,189	0,189
BTX 42	0,02	0,029	0,007	0,083	0,055	0,049	0,136	0,012	0,193	0,193
BTX 65	0,044	0,022	0,02	0,079	0,023	0,081	0,124	0,022	0,193	0,193
BTX 61	0,037	0,009	0,009	0,094	0,043	0,053	0,112	0,034	0,197	0,197
BTX 64	0,028	0,032	0,016	0,081	0,041	0,052	0,135	0,028	0,198	0,198
BTX 38	0,024	0,074	0,004	0,038	0,05	0,171	0,107	0,006	0,199	0,199
BTX 40	0,028	0,016	0,014	0,051	0,016	0,081	0,138	0,016	0,199	0,199
BTX 57	0,043	0,092	0,015	0,074	0,057	0,081	0,12	0,016	0,2	0,2
BTX 67	0,025	0,021	0,007	0,088	0,019	0,04	0,206	0,017	0,191	0,206
BTX 72	0,029	0,03	0,035	0,079	0,023	0,047	0,117	0,016	0,213	0,213
BTX 83	0,084	0,033	0,027	0,074	0,022	0,052	0,121	0,023	0,215	0,215
BTX 44	0,065	0,028	0,005	0,078	0,013	0,043	0,109	0,01	0,216	0,216
BTX 80	0,043	0,051	0,036	0,106	0,022	0,109	0,127	0,023	0,22	0,22
BTX 81	0,06	0,049	0,01	0,101	0,137	0,04	0,22	0,027	0,171	0,22
BTX 77	0,042	0,033	0,029	0,091	0,029	0,045	0,122	0,029	0,227	0,227
BTX 79	0,036	0,03	0,026	0,089	0,027	0,061	0,129	0,022	0,228	0,228
BTX 76	0,045	0,027	0,015	0,085	0,023	0,041	0,124	0,016	0,232	0,232
BTX 58	0,029	0,005	0,022	0,053	0,021	0,051	0,109	0,017	0,233	0,233
BTX 63	0,033	0,023	0,035	0,077	0,029	0,236	0,112	0,017	0,189	0,236
BTX 74	0,057	0,038	0,024	0,085	0,028	0,196	0,115	0,014	0,248	0,248
BTX 78	0,036	0,066	0,016	0,093	0,023	0,038	0,12	0,022	0,248	0,248
BTX 15	0,029	0,011	0,098	0,035	0,185	0,022	0,017	0,003	0,258	0,258

EK 16. Farklı saat dilimlerinde örneklerin total ksilanaz aktivitesi

	6 Saat	12 Saat	14 Saat	16 Saat	20 Saat	24 Saat	48 Saat	72 Saat	168 Saat	Max
BTX 69	0,034	0,053	0,015	0,074	0,017	0,26	0,107	0,128	0,175	0,26
BTX 45	0,049	0,032	0,033	0,098	0,014	0,269	0,107	0,009	0,194	0,269
BTX 7	0,019	0,138	0,121	0,049	0,138	0,099	0,006	0,002	0,273	0,273
BTX 10	0,109	0,061	0,077	0,04	0,13	0,031	0,001	0,063	0,277	0,277
BTX 28	0,023	0,014	0,079	0,092	0,131	0,021	0,08	0,237	0,282	0,282
BTX 8	0,021	0,014	0,083	0,083	0,165	0,028	0,006	0,089	0,298	0,298
BTX 47	0,09	0,028	0,099	0,091	0,147	0,031	0,012	0,117	0,304	0,304
BTX 9	0,029	0,02	0,089	0,091	0,155	0,025	0,01	0,002	0,306	0,306
BTX 13	0,037	0,025	0,081	0,294	0,148	0,026	0,061	0,009	0,308	0,308
BTX 29	0,115	0,082	0,171	0,108	0,211	0,086	0,108	0,061	0,308	0,308
BTX 5	0,024	0,064	0,071	0,025	0,315	0,02	0,062	0,003	0,24	0,315
BTX 49	0,044	0,1	0,09	0,036	0,133	0,004	0,017	0,004	0,319	0,319
BTX 12	0,043	0,074	0,084	0,045	0,14	0,04	0,235	0,027	0,321	0,321
BTX 11	0,044	0,038	0,083	0,059	0,271	0,04	0,012	0,009	0,325	0,325
BTX 66	0,041	0,079	0,343	0,115	0,047	0,1	0,141	0,233	0,173	0,343
BTX 41	0,038	0,019	0,107	0,062	0,014	0,052	0,304	0,344	0,197	0,344
BTX 48	0,145	0,054	0,1	0,062	0,172	0,024	0,011	0,1	0,349	0,349
BTX 60	0,061	0,159	0,095	0,093	0,136	0,039	0,022	0,111	0,353	0,353
BTX 46	0,063	0,035	0,107	0,052	0,143	0,039	0,022	0,011	0,354	0,354
BTX 1	0,021	0,022	0,148	0,07	0,377	0,115	0,205	0,181	0,258	0,377
BTX 2	0,009	0,127	0,082	0,068	0,436	0,03	0,084	0,005	0,268	0,436
BTX 19	0,049	0,095	0,106	0,05	0,443	0,036	0,009	0,025	0,407	0,443
BTX 50	0,077	0,18	0,119	0,1	0,173	0,052	0,046	0,027	0,491	0,491
BTX 36	0,097	0,117	0,128	0,071	0,177	0,058	0,028	0,121	0,531	0,531
BTX 21	0,129	0,044	0,124	0,072	0,248	0,064	0,063	0,033	0,565	0,565
BTX 17	0,067	0,066	0,112	0,073	0,25	0,085	0,039	0,038	0,576	0,576
BTX 4	0,059	0,129	0,172	0,07	0,266	0,055	0,069	0,022	0,612	0,612
BTX 18	0,079	0,076	0,125	0,08	0,204	0,09	0,073	0,044	0,697	0,697
BTX 14	0,048	0,101	0,702	0,049	0,225	0,047	0,014	0,137	0,325	0,702
BTX 31	0,09	0,073	0,151	0,088	0,195	0,077	0,042	0,186	0,707	0,707
BTX 20	0,095	0,067	0,208	0,161	0,187	0,106	0,063	0,048	0,716	0,716
BTX 24	0,088	0,054	0,127	0,111	0,173	0,076	0,046	0,049	0,716	0,716
BTX 3	0,104	0,219	0,137	0,074	0,317	0,098	0,098	0,041	0,766	0,766
BTX 23	0,082	0,068	0,143	0,082	0,209	0,085	0,058	0,063	0,79	0,79
BTX 25	0,09	0,078	0,143	0,095	0,269	0,085	0,049	0,092	0,799	0,799
BTX 59	0,05	0,159	0,103	0,044	0,805	0,032	0,028	0,004	0,248	0,805
BTX 16	0,077	0,079	0,138	0,106	0,276	0,083	0,063	0,057	0,808	0,808
BTX 35	0,103	0,089	0,148	0,109	0,217	0,161	0,06	0,054	0,809	0,809
BTX 33	0.112	0.081	0.157	0.101	0.193	0.126	0.063	0.052	0,811	0.811

EK 16. (Devam) Farklı saat dilimlerinde örneklerin total ksilanaz aktivitesi

	6 Saat	12 Saat	14 Saat	16 Saat	20 Saat	24 Saat	48 Saat	72 Saat	168 Saat	Max
BTX 26	0,091	0,073	0,17	0,105	0,286	0,09	0,051	0,056	0,815	0,815
BTX 34	0,179	0,078	0,183	0,102	0,196	0,498	0,052	0,195	0,825	0,825
BTX 22	0,103	0,065	0,236	0,107	0,191	0,103	0,067	0,081	0,848	0,848
BTX 32	0,105	0,096	0,257	0,108	0,2	0,089	0,06	0,068	0,879	0,879
BTX 30	0,097	0,084	0,145	0,099	0,224	0,087	0,05	0,147	0,909	0,909
BTX 6	0,109	0,083	0,158	0,167	0,299	0,099	0,093	0,069	1,007	1,007
BTX 27	0,097	0,084	0,139	1,22	0,2	0,088	0,039	0,046	0,814	1,22

EK 16. (Devam) Farklı saat dilimlerinde örneklerin total ksilanaz aktivitesi

EK 17. BLAST analiz sonucunda elde edilen gen bölgesinin ksilanaz genine olan yakınlığının gösterilmesi

BLASTF	lesults		
nd Resubmit Save Search Strategies > Formatting options > Download		You Tube How to read this pa	ge <u>Blast report</u>
le: Nucleotide Sequence (1283 letters)			
RID 8MZ6W65F014 (Expires on 02-20 14:29 pm)			
Query ID ld Query_49231	Database Name nr		
Description None lecule type - nucleic acid	Program BLASTN 2.8.0+ >C	n (nt) itation	
ery Length 1283			
er reports: Desarch Summary [Taxonomy reports] [Distance tree of results] [MSA viewer]			
phic Summary			
criptions			
dequer les producting algument in dingrimments.			
Alignments Download - GenBank Graphics Distance tree of results			
Description		Max Total Query E score score cover value	Ident Accessi
Bacillus subbilis strain AK1 xylanase gene_complete cds		2156 2156 100% 0.0	97% <u>DQ21740</u>
Bacillus subtilis strain VV2, complete genome		1936 1936 98% 0.0	95% CP01767
Bacillus subtilis strain ge28, complete genome			
		1914 1914 98% 0.0	95% <u>CP02190</u>
Bacillus sp. YP1. complete genome		1914 1914 98% 0.0 1914 1914 98% 0.0	95% <u>CP02190</u> 95% <u>CP01001</u>
Bacillus so, YP1, complete genome Bacillus subtilis stain TLO3 diromosome, complete genome		1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0	95% <u>CP02190</u> 95% <u>CP01001</u> 94% <u>CP02325</u>
Bacillus so, YP1, complete genome Bacillus subtilis strain TLO3 chromosome, complete genome Bacillus subtilis strain DKU, NT, 03, complete genome		1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0 1916 1916 98% 0.0	95% <u>CP02190</u> 95% <u>CP01001</u> 94% <u>CP02325</u> 94% <u>CP02289</u>
Bacillus so. YFI. compilete genome Bacillus subtilis strain TLO3 chromosome, compilete genome Bacillus subtilis strain DKU, NT. 03. compilete genome Bacillus subtilis subsp. subtilis strain SRCM100033. compilete genome		1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0 1916 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0	95% CP02190 95% CP01001 94% CP02325 94% CP02289 94% CP02189
Bacillus su. YPI. compiete genome Bacillus subtilis strain TLO3 chromosome. compiete genome Bacillus subtilis strain DKU. NT. 03. compiete genome Bacillus subtilis subsp. subtilis strain SRCM100333. compiete genome Bacillus lichenformis strain SRCM101441. compiete genome		1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0	95% CP02190: 95% CP01001: 94% CP02325: 94% CP02189: 94% CP02189: 94% CP02189:
Bacillus subtilis strain TLO3 dromosome.complete genome Bacillus subtilis strain TLO3 dromosome.complete genome Bacillus subtilis strain DKU, NT_03.comolete genome Bacillus subtilis subsp. subtilis strain SRCM100333.complete genome Bacillus subtilis strain SRCM101441.comolete genome Bacillus subtilis strain HRBS-10TD/13.comolete genome		1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0	95% CP021907 95% CP01001- 94% CP02289 94% CP02289 94% CP02189 94% CP02150 94% CP02150
Bacillus subtilis strain TLO3 dhromosome compiete genome Bacillus subtilis strain TLO3 dhromosome compiete genome Bacillus subtilis strain DKU, NT_03, complete genome Bacillus subtilis subtilis strain SRCM101441, complete genome Bacillus subtilis strain HRBS-1017D113, complete genome Bacillus subtilis strain HRBS-1017D113, complete genome Bacillus subtilis strain GS 188 genome		1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0	95% CP02190: 95% CP01001- 94% CP02325 94% CP02325 94% CP02325 94% CP02189; 94% CP02189; 94% CP02150; 94% CP02150; 94% CP02150; 94% CP02239;
Bacillus so. YPI, complete genome Bacillus subtilis strain TLO3 chromosome, complete genome Bacillus subtilis strain DKU, NT, 03, complete genome Bacillus subtilis subso, subtilis strain SRCM100333, complete genome Bacillus subtilis strain SRCM101441, complete genome Bacillus subtilis strain SRCM10141, complete genome Bacillus subtilis strain GS 188 genome Bacillus subtilis subso, subtilis RCM1041, complete genome Bacillus subtilis subso, subtilis RCM10441, complete genome Bacillus subtilis subso, subtilis RCM10441, complete genome Bacillus subtilis subso, subtilis RCM10441, complete genome		1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1895 1895 98% 0.0	95% CP021903 95% CP010014 94% CP022257 94% CP022891 94% CP021892 94% CP021507 94% CP015223 94% CP022391 94% CP015223 94% CP022081 94% CP022082 94% CP022081
Bacillus so. YPI, complete genome Bacillus subtlis strain TLQ3 chromosome, complete genome Bacillus subtlis strain DKU, NT, Q3, complete genome Bacillus subtlis subtlis strain SRCM101441, complete genome Bacillus subtlis strain SRCM101441, complete genome Bacillus subtlis strain GS 188 genome Bacillus subtlis subtlis subtlis RCM1013, complete genome Bacillus subtlis subtlis subtlis subtlis frain HRES-10TD13, complete genome Bacillus subtlis subtlis subtlis subtlis subtlis frain HRES-10TD13, complete genome Bacillus subtlis subtlis subtlis subtlis frain GS 188 genome Bacillus subtlis subtlis subtlis RCM1041, complete genome Bacillus subtlis subtlis subtlis frain GS 188 genome Bacillus subtlis subtlis subtlis frain GS 188 genome	volein ilogo) genes, complete cds	1914 1914 98% 0.0 1914 1914 98% 0.0 1912 1912 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1906 1906 98% 0.0 1895 1895 98% 0.0 1895 1895 98% 0.0 1895 1895 98% 0.0	95% CP02190 95% CP01001 94% CP02325 94% CP02325 94% CP02389 94% CP02190 94% CP01522 94% CP01522 94% CP02299 94% CP02299 94% CP02299 94% CP02299

EK 18. BLAST analizi sonucu Ksilanaz gen dizisi

Bacillu	s subti	lis strain AK1 xylanase gene, complete cds						
GenBank: [DQ217402.1	1						
FASTA G	raphics							
Go to: 🖂	io to: 💌							
LOCUS DEFINITION	DQ217402 Bacillus	1250 bp DNA linear BCT 11-OCT-2005 subtilis strain AK1 xylanase gene, complete cds.						
ACCESSION	DQ217402	1						
KEYWORDS	00217462	.1						
SOURCE	Bacillus	subtilis						
ORGANISM	Bacillus	subtilis						
	Bacteria	; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus.						
AUTHORS	1 (bases Arumugam,	s 1 to 1250) ,P., Govindasamy,V., Revathy,G., Kalaichelvan,T. and						
	Arulmani	,М.						
TITLE	Sequence	of xylanase gene from Bacillus subtilis AK1						
REFERENCE	2 (bases	s 1 to 1250)						
AUTHORS	Arunugan,	,P., Govindasamy,V., Revathy,G., Kalaichelvan,T. and						
	Arulmani,	,М.						
TITLE	Direct Su	ubmission d (21 SED 2005) SAS in Peteru, University of Madeas, Swindy						
JOOKNAL	Campus, (Chennai. Tamilnadu 600 025. India						
FEATURES		Location/Qualifiers						
sourc	e	11250						
		/organism="Bacillus subtilis"						
		/mol_type="genomic DNA" /strain="AK1"						
		/db xref="taxon:1423"						
CDS		5781219						
		/codon_start=1						
		/transl_table=11 /medust="hulapace"						
		/protein id="ABA64459.1"						
		/translation="MFKFKKNFLVGLSAALMSISLFSATASAASTDYWQNWTDGGGIV						
		NAVNGSGGNYSVNWSNTGNFVVGKGWTTGSPFRTINYNAGVWAPNGDGYLTLYGWTRS						
		PLHRILCVDSWGTYRPTGTYKGTVKGDGGTYDIYTTTRYNAPSIDGDRTTFTQYWSVR OTYPPTGSNATTTESNAAMAUKSHGMULGSNUAVOAMATEGVOSSGSSNUTAU*						
ORIGIN		QLKKPTG2NRTTTF2NHVNAWK2HGMLG2NNRTQVNATEGTQ22G22NVTVW						
1	gggccgtcga	cgaattggag gctcggttac atcccacagt taccctgatt gtcaattctt						
61	ttttttttt	ttcagagccc tttcaaataa aaatcttgca acttctttgt aaaactgatc						
121	taagctatca	tcctcaaatt tttggtcaat aattctaatt gagcagttct ttcttagtat						
241	agacaagcgg	cagcaacaat gacttcacaa tetetaatat atateteett tatacgaaaa						
301	gatccaatgg	gaattcatta cagatattac tccatctgaa ttagaaacaa gaattgtgat						
361	cctgcgaaaa	aaggatcagg atatggtgga acaaggccac ttataatgca tttctaggta						
421	tttgtaattg	aattacaaat acttttaata tttgctcatg aattcgtgta ttatactgaa						
481	gggggacgatc	adaagettig gegilagiaa ilaadaalgi illaadigia laegagiget						
601	cttagttgga	ttatcggcag ctttaatgag tattagcttg ttttcggcaa ccgcctctgc						
661	agctagcaca	gactactggc aaaattggac tgatgggggc ggtatagtaa acgctgtcaa						
721	tgggtctggc	gggaactaca gtgttaattg gtctaatacc ggaaatttcg ttgttggtaa						
781	aggttggact	acaggttege cattlaggae gataaactat aatgeeggag ttigggegee						
901	atgtgtggat	tcatggggta cttataggcc caccggaacg tataaaggta ctgtaaaggg						
961	tgatggaggt	acatatgaca tatatacaac tacacgttat aacgcacctt ccattgatgg						
1021	cgatcgcact	acttttacgc agtactggag tgttcgtcag acgaagagac caactggaag						
1081	taacgctaca	atcacttica gcaatcatgt gaacgcatgg aagagccatg gaatgaatct						
1201	taacgtaaca	rgggerraic adgreatgge gacagaagga tarcaadgta grggaagtte						
	0	0.0.00 0000 0000						

Bacillus subtilis strain AK1 xylanase gene, complete cds Sequence ID: DQ217402.1 Length: 1250 Number of Matches: 1									
Range 1: 1 to 1250 GenBank Graphics									
Score			Expect	Identities	Gaps	Strand			
2309	bits(12	50)	0.0	1250/1250(100%)	0/1250(0%)	Plus/Plus			
Query Sbjct	1	GGGCCGTC	GACGAATT	GGAGGCTCGGTTACATCCCACAGTTA	CCCTGATTGTCAATTCEE CCCTGATTGTCAATTCET	60 60			
Query	61	ttttttct	ttttCAGA	GCCCTTTCAAATAAAAATCTTGCAAC	ттстттдтаааастдатс	120			
Sbjct	61	TTTTTTC	TTTTCAGA	GCCCTTTCAAATAAAAATCTTGCAAC	TTCTTTGTAAAACTGATC	120			
Sbjct	121	TAAGCTA	CATCCTCA	AATTTTTGGTCAATAATTCTAATTGA	SCAGTTCTTTCTTAGTA SCAGTTCTTTCTTAGTAT	180			
Query	181	ААССТТАА	TTGTTTC	TTCTTCAGTTCTTCATATTCTTCATA	AATTTGCTTCCCTTCATT	240			
Sbjct	181		4+6++++6	.++&++&&&++&+&+&+&+&+&	AY+++95++555++58++	240			
Query	241				АТСТССТТТАТАСБАААА	300			
Ouerv	301	GATCCAAT	IGGGAATTC	ATTACAGATATTACTCCATCTGAATT		360			
Sbjct	301	GATECAA	GGGAATTC	ATTACAGATATTACTCCATCTGAATT	AGAAACAAGAATTGTGAT	360			
Query	361	CCTGCGA4	AAAAGGAT	CAGGATATGGTGGAACAAGGCCACTT	ATAATGCATTTCTAGGTA	420			
Sbjct	361	cctecev	AAAAGGAT	·čáddatátodotodaáckádodockáctti	ATAATGCATTTCTAGGTA	420			
Query	421	TTTGTAAT	TGAATTAC	AAATACTTTTAATATTTGCTCATGAA	TTCGTGTATTATACTGAA	480			
Sbjct	421	TTTGTAA1	TGAATTAC	AAATACTTTTAATATTTGCTCATGAA	TTCGTGTATTATACTGAA	480			
Query Sbict	481 481	GGGGACG		TTTGGCGTTAGTAATTAAAAATGTTT	TAAATGTATACGAGTGCT TAAATGTATACGAGTGCT	540 540			
Query	541	GCCTCAAA	GTCGGAAA	AAATATTATAGGAGGTAACATATGTT	TAAGTTTAAAAAGAATTT	688			
Sbjct	541	GCCTCAA	GTCGGAAA	ааататтатаддаддтаасататдтт	taagtttaaaaagaattt	688			
Query	601		GATTATCG	GCAGCTTTAATGAGTATTAGCTTGTT		660			
Sbjct	601	CTTAGTTO	GATTATCG	GCAGCTTTAATGAGTATTAGCTTGTT	TTCGGCAACCGCCTCTGC	660			
Sbjct	661	AGCTAGCA		TGGCAAAATTGGACTGATGGGGGGCGG	TATAGTAAACGCTGTCAA	720			
Query	721	тессто	GCGGGAAC	TACAGTGTTAATTGGTCTAATACCGG	AAATTTCGTTGTTGGTAA	780			
Sbjct	721	teestcte	GCGGGAAC	tacagtgttaattggtctaataccgg	AAA+++cG++G++GG+AA	780			
Query	781	AGGTTGGA	ACTACAGGT	TCGCCATTTAGGACGATAAACTATAA	TGCCGGAGTTTGGGCGCC	840			
Sbjct	781	AGGTTGG/	ACTACAGGT	TCGCCATTTAGGACGATAAACTATAA	téccégAgtttégécécc	840			
Query	841 841	GAATGGCC		TTGACTTTGTATGGCTGGACGAGATC	GCCCCTTCATAGAATATT GCCCCTTCATAGAATATT	900 900			
Query	901	ATGTGTG	ATTCATGG	GGTACTTATAGGCCCACCGGAACGTA	TAAAGGTACTGTAAAGGG	960			
Sbjct	901	Atetetee	ATTCATES	GGTACTTATAGGCCCACCGGAACGTA	TAAAGGTACTGTAAAGGG	960			
Query	961	TGATGGAG	GTACATAT	GACATATATACAACTACACGTTATAA	CGCACCTTCCATTGATGG	1020			
Sbjct	961	töätööäö	GTACATAT	·ĠĂĊĂŦĂŦĂŦĂĊĂĂĊŦĂĊĂĊĠŦŦĂŦĂĂ	ŁĠĊĂĊĊŦŦĊĊĂŦŦĠĂŦĠĠ	1020			
Query	1021			ACGCAGTACTGGAGTGTTCGTCAGAC	GAAGAGACCAACTGGAAG	1080			
Ouerv	1021	TAACGCT	CAATCACT	TTCAGCAATCATGTGAACGCATGGAAC	SAGCCATGGAATGAATCT	1140			
Sbjct	1081	+AACGC+2	LAA+LAL+	++CAGCAATCATGTGAACGCATGGAA	GAGCCATGGAATGAATCT	1140			
Query	1141	GGGCAGTA	ATTGGGCT	TACCAAGTCATGGCGACAGAAGGATA	TCAAAGTAGTGGAAGTTC	1200			
Sbjct	1141	dddcAdt4	Attggggf	taccaagtcatggcgacagaaggata	teadagtagteggaagtte	1200			
Query Sbjct	1201 1201	TAACGTAA	ACAGTGTGG ACAGTGTGG	TAACAGATCATCCTTAATCAGGGGAT	CCGGGCCC 1250				

EK 19. BLAST Analizi Sonucu Ksilanaz Gen Dizisinin hizalanması

Örnek Adı	Abs260	Abs280	Abs230	260/280	260/230	Yoğ. (ng/ul)	Örnek Türü
D.S.1	8.486	4.522	3.708	1,88	2,29	424,2	dsDNA
D.S.2	0,813	0,48	0,552	1,69	1,47	40,6	dsDNA
D.S. A1	10.024	5.246	5.863	1,91	1,71	501,2	dsDNA
D.S. A2	4.756	2.516	2.484	1,89	1,91	237,7	dsDNA
D.C.1.1	8.959	4.722	4.757	1,9	1,88	447,9	dsDNA
D.C.1.2	17,09	9.911	10.328	1,72	1,65	854,5	dsDNA
D.C.2.1	2.799	1.954	4.068	1,43	0,69	139,9	dsDNA
D.C.2.2	10.809	5.989	4.981	1,8	2,17	540,4	dsDNA
D.C.3	11.294	6.726	6.553	1,68	1,72	564,7	dsDNA
D.C.5	10.583	6.158	5.667	1,72	1,87	529,2	dsDNA
D.C.AI	1.186	0,796	1.831	1,49	0,65	59,3	dsDNA
D.C.A2	13.048	7.921	7,95	1,72	1,72	082,4 261.5	dsDNA dsDNA
D.C.A3	3 3 2 3 2	2.885	3.279 2.114	1,01	1,0	166.1	dsDNA
DCA5	10 571	6.126	7 865	1,7	1,37	528 5	dsDNA
D.C.Nb.3.1	0.829	0.612	1.091	1.35	0.76	41.4	dsDNA
D.C.Nb.3.2	0.539	0.439	0.729	1.23	0.74	26.9	dsDNA
D.C.Nb.5.1	1.468	1.074	1.124	1.37	1.31	73.4	dsDNA
D.C.Nb.5.2	0.457	0.379	0.907	1,21	0.5	22.8	dsDNA
D.C.Lb.8	1.386	1.211	4.313	1,14	0,32	69,3	dsDNA
D.C.Nb.8	0,894	0,577	0,645	1,55	1,39	44,7	dsDNA
D.C.Lb.9	1.537	1.089	1.504	1,41	1,02	76,8	dsDNA
D.C.Lb.9.2	0,732	0,564	1.183	1,3	0,62	36,6	dsDNA
D.Nb.Alt.1	0,41	0,33	0,688	1,24	0,6	20,4	dsDNA
D.Nb.Alt.2	4.243	2.712	6.666	1,56	0,64	212,1	dsDNA
D.Nb.Alt.2.2	5.633	4.461	16.208	1,26	0,35	281,6	dsDNA
D.Nb.Alt.4	0,663	0,565	0,731	1,17	0,91	33,1	dsDNA
D.Lb.Alt.6	0,461	0,378	0,82	1,22	0,56	23	dsDNA
D.Lb.Alt.7.1	0,677	0,515	0,889	1,31	0,76	33,8	dsDNA
D.Lb.Alt.7.2	1.239	1.072	4.072	1,16	0,3	61,9	dsDNA
D.Lb.Ust.10.1	0,169	0,171	0,133	0,99	1,27	8,4	dsDNA
D.Lb.Ust.10.2	0,032	0,092	0,085	0,35	0,38	1,5	dsDNA
D.Lb.Ust.11.1	0,55	0,461	0,436	1,19	1,26	27,5	dsDNA
D.Lb.Ust.11.2	0,217	0,235	0,566	0,92	0,38	10,8	dsDNA
Dc.Nb.4	0,232	0,261	0,515	0,89	0,45	11,6	dsDNA
D.Lb.Alt 6	0,199	0,214	1.545	0,93	0,13	9,9	dsDNA
Pc.1	7.798	4.257	4.414	1,83	1,77	389,9	dsDNA

EK 20. İzolatların Total DNA yoğunluklarının Nanodrop Cihazı ile ölçüm sonuçları

						Yoğ.	Örnek
Örnek Adı	Abs260	Abs280	Abs230	260/280	260/230	(ng/ul)	Türü
Pc.6	2.361	1.386	1.389	1,7	1,7	118	dsDNA
Pc.Lb 4	0,813	0,607	1.918	1,34	0,42	40,6	dsDNA
Pc.Lb 5	0,697	0,575	1.783	1,21	0,39	34,8	dsDNA
Pc.Lb 6	2.348	1.781	5,51	1,32	0,43	117,3	dsDNA
Pc.Nb 7	0,749	0,651	1.596	1,15	0,47	37,4	dsDNA
P.Lb.Alt 1	0,402	0,389	0,923	1,03	0,44	20	dsDNA
P.Nb.Alt 3	0,223	0,23	0,691	0,97	0,32	11,1	dsDNA
P.C.A1	11,07	6.397	6.711	1,73	1,65	553,5	dsDNA
P.C.A2	10.994	5.727	6.069	1,92	1,81	549,7	dsDNA
P.C.A3	18.027	9.643	10.571	1,87	1,71	901,4	dsDNA
P.C.A4	7.649	4.077	3.878	1,88	1,97	382,4	dsDNA
P.K.A. Ust	0,163	0,172	0,146	0,95	1,12	8,1	dsDNA
P.C Ilk	8.882	5.041	4.652	1,76	1,91	444,1	dsDNA
H.C.1	6.216	3,35	3.307	1,86	1,88	310,8	dsDNA
H1sta 2	3.461	1.864	1.903	1,86	1,82	173	dsDNA
H.C.2.2	2.467	1.328	1.685	1,86	1,46	123,3	dsDNA
H.C.3	0,297	0,316	0,312	0,94	0,95	14,8	dsDNA
H.C.4	3.786	2.139	2.458	1,77	1,54	189,3	dsDNA
Guclu 1	1.067	0,742	1.416	1,44	0,75	53,3	dsDNA
Guclu 2	1.442	0,906	1.305	1,59	1,1	72,1	dsDNA
Dargecit 1	3.576	2.308	4.422	1,55	0,81	178,8	dsDNA
Dargecit 2	1.583	1.112	2.034	1,42	0,78	79,1	dsDNA
Hista 1	2.521	1.726	3.099	1,46	0,81	126	dsDNA
Hista 3	0,323	0,294	0,485	1,1	0,67	16,1	dsDNA
D.Nb.Alt 1	1.588	1.264	4.375	1,26	0,36	79,4	dsDNA
K.C. Nb 1	0,2	0,275	0,621	0,73	0,32	10	dsDNA
K.C. Nb 2	0,104	0,172	0,231	0,6	0,45	5,1	dsDNA
K.C. Nb 3	0,321	0,286	0,577	1,12	0,56	16	dsDNA
K.C. Nb 4	-0,042	0,076	-0,025	-0,55	1,68	-2,1	dsDNA
K.C. Nb 5	0,432	0,357	0,93	1,21	0,46	21,6	dsDNA
Pasin Su 1	0,539	0,33	0,531	1,63	1,02	26,9	dsDNA
Pasin Su 2	0,519	0,335	0,432	1,55	1,2	25,9	dsDNA
Pasin Su 3	0,446	0,247	0,188	1,81	2,37	22,3	dsDNA
Pasin Camur 4	1.098	0,631	0,75	1,74	1,46	54,9	dsDNA

EK 20. (Devam) İzolatların Total DNA yoğunluklarının Nanodrop Cihazı ile ölçüm sonuçları

						Yoğ.	Örnek
Örnek Adı	Abs260	Abs280	Abs230	260/280	260/230	(ng/ul)	Türü
Pasin Camur 4.2	6.676	3.639	3.221	1,83	2,07	333,7	dsDNA
Pasin Camur 5	0,699	0,383	0,379	1,83	1,84	34,9	dsDNA
Pasin Camur 6	0,495	0,285	0,272	1,74	1,82	24,7	dsDNA
Pasin Camur 7	0,576	0,338	0,226	1,7	2,55	28,8	dsDNA
Pasin Camur 2	2.056	1.123	0,953	1,83	2,16	102,8	dsDNA
Pasin Camur 3	10.539	5.889	6,36	1,79	1,66	526,9	dsDNA
Pasin Kanli Ag. Su	0,833	0,515	0,666	1,62	1,25	41,6	dsDNA
Kopru Su 1	0,55	0,302	0,333	1,82	1,65	27,5	dsDNA
Kopru Camur 2	1.131	0,713	0,94	1,59	1,2	56,5	dsDNA
Kopru Camur 3	0,626	0,347	0,512	1,8	1,22	31,3	dsDNA
Kopru Camur 4	0,614	0,365	0,693	1,68	0,89	30,6	dsDNA
Kopru Camur 5	0,7	0,379	0,866	1,85	0,81	34,9	dsDNA
Pasin Camur 4.2	6.676	3.639	3.221	1,83	2,07	333,7	dsDNA
Pasin Camur 5	0,699	0,383	0,379	1,83	1,84	34,9	dsDNA
Pasin Camur 6	0,495	0,285	0,272	1,74	1,82	24,7	dsDNA
Pasin Camur 7	0,576	0,338	0,226	1,7	2,55	28,8	dsDNA
Pasin Camur 2	2.056	1.123	0,953	1,83	2,16	102,8	dsDNA
Pasin Camur 3	10.539	5.889	6,36	1,79	1,66	526,9	dsDNA

EK 20. (Devam) İzolatların Total DNA yoğunluklarının Nanodrop Cihazı ile ölçüm sonuçları

EK 21. B. subtilis 16s rRNA baz dizisi

BTX1

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCCGGGCCTTGTACACCCCCCGTCACACCACGAG

BTX2,

ACGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAAC ACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTT AGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGG GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTG ACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGT ACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAA GTCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAG TATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACG CATTAAGCACTCCGCCTGGGGGGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGGCCCGCAC AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACA ATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC CTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGG CTATGAACAGGGGGGGACACCTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCC AACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGT AATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGC

BTX3,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGGGGCGAACACGGATTAGATACCCTGGTAGTA

BTX4,

TACGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAA CACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTT TGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGC TAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTG GGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCT GACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAG TACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGC CGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTA AGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGC GTATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAAC GCATTAAGCACTCCGCCTGGGGGGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGGCCCGCA CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAC AATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGGCATGGTTGTCGTCAGCTCGTGT CCTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTG CCTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGC CAACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAG TAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG CA

BTX5,

AAGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAAC ACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTT AGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGG GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTG ACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGT ACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAA GTCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAG TATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACG CATTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCAC AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACA ATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC CTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGG CTATGAACAGGGGGGGACACCTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCC AACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGT AATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCCCCCGTCACACCACGAG

BTX6,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX7,

ACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGT GGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGAAC CGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTT GGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACT GAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGACGG AGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTACCG TTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG TAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCT GATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGG AGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTC TCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTATG CCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACGCATT AAGCACTCCGCCTGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCC TAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCTGA GATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGCAC GAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAACC CACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATC GCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX8,

CATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTG GGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGAACC GCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTG GTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTG AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGACGGA GCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGT TCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGT AATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTG ATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGA GAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCT CTGGTCTGTAACTGACGCTGAGGAGGGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAGTATGC CACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACGCATTA AGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCT AGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCTGAG ATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGCACT ACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCG CGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX9,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAA

BTX10,

TGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACA CGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTG AACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTA GTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGG ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGA CGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTA CCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG CGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAG TCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAG AGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGA CTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGT ATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACGC ATTAAGCACTCCGCCTGGGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACA AGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAA TCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGGCATGGTTGTCGTCAGCTCGTGTCC TGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGG TATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCA ACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTA ATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCCCCCGTCACACCACGAGT

BTX11,

ACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGT GGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGAAC CGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTT GGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACT GAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGACGG AGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTACCG TTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG TAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCT GATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGG AGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTC TCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTATG CCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACGCATT AAGCACTCCGCCTGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCC TAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGGCATGGTTGTCGTCAGCTCGTGTCCTGA GATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGCAC GAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAACC CACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATC GCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACG

BTX12,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTATAGGGAAGAACAAGTA CCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG CGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAG TCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAG AGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGA CTCTCTGGTCTGTAACCTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAG TATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACG CATTAAGCACTCCGCCTGGGGGGGGGTCGCCAGGACTGAAACTCAAAGGAATTGACGGGGGCCCGCAC AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACA ATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC CTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGG CTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCC AACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGT AATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX13,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACCGGCTAACTACGTGCCAGCAGCCG CGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAG TCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAG AGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGA CTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGT ATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACGC ATTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACA AGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAA TCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCC TGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGG TATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCA ACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTA ATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX14,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAG CGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATC CTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCTG AGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGCA CCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX15,

ACGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAAC ACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTT AGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGG GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTG ACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGT ACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAA GTCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG TATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACG CATTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCAC AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACA ATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC CTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGG CTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCC AACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGT AATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCACCGCCCGTCACACCACGAGC

BTX22,

CGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACA CGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTG AACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTA GTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGG ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGA CGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTA CCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG CGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAG TCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAG AGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGA CTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGT ATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACGC ATTAAGCACTCCGCCTGGGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACA AGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAA TCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGGCATGGTTGTCGTCAGCTCGTGTCC TGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGG TATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCA ACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTA ATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCCCCCGTCACACCACGAGCA С

BTX23,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCGCCCGTCACACCACGAG

BTX24,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX25,

TACGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAA CACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTT TGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGC TAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTG GGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCT GACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAG TACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGC CGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCCGTAAAGGGCTCGCAGGCGGTTTCTTA AGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGC GACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTA GTATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAAC GCATTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCA CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAC AATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGGCATGGTTGTCGTCAGCTCGTGT CCTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTG CCTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGC CAACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAG TAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCGCCCGTCACACCACGAG

BTX26,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX27,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATC CTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCTG AGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGCA CCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX28,

AAGTACATGCAGTCGAGCGGACAGATGGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAAC ACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTT GAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCT AGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGG GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTG ACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGT ACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAA GTCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAG TATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACG CATTAAGCACTCCGCCTGGGGGGGGGTCGCCAGGACTGAAACTCAAAGGAATTGACGGGGGCCCGCAC AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACA ATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC CTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGG CTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCC AACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGT AATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX30,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX31,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX32,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX33,

GGGTACATGCAGTCGAGCGGACAGATGGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAAC ACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTT GAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCT AGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGG GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTG ACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGT ACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAA GTCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGGTAG TATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACG CATTAAGCACTCCGCCTGGGGGGGGGTCGCCAGGACTGAAACTCAAAGGAATTGACGGGGGCCCGCAC AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACA ATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC CTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGG CTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCC AACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGT AATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCGCCCGTCACACCACGAGT ACAA

BTX34,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACCGCCCGTCACACCA

BTX35,

ACCGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGCGGACGGGTGAGTAA CACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTT TGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGC TAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTG GGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCT GACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAG TACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGC CGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTA AGTCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGA AGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGC GACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTA GTATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAAC GCATTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGGCCCGCA CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAC AATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT CCTGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTG CCTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGC CAACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAG TAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX48,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX60,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX61,

GTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTGA ACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAG TTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGAC GGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTAC CGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC GGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT CTGATGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGGCCATTGGAAACTGGGGAACTTGAGTGCAGAAGA GGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGAC TCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGGGCGAACAGGATTAGATACCCTGGTAGTA TGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTAACGCA TTAAGCACTCCGCCTGGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAT CCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCCT GAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGGC ATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCAA CCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG

BTX78,

TAAATGTACATGCAGTCGAGCGGACAGATGGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGT AACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAG TTTGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTA GCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACAC TGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGT CTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACA AGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCA GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCT TAAGTCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCA GAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAG GCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGGAGCGAACAGGATTAGATACCCTGG TAGTATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTTCCCGCCCCTTAGTGCTGCAGCTA ACGCATTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCG CACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTG ACAATCCTAGAGATAGGACGTCCCCTTCGGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGT GTCCTGAGATGTTCGGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGT GCCCTATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAGGGGGGCGGAAACCCGCGGGGTTA GCCAACCCAACAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCT AGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACG AGAAAAA

BTX81

AGTACATGCAGTCGAGCGGACAGATGGGAGTTCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACA CGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTAAGTTTG GTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGG ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGACGAAAGTCTGA CGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAAGCTCTGTTGTTAGGGAAGAACAAGTA CCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG CGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAG TCTGATGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAG AGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGA CTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGT ATGCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTTCCCCGCCCCTTAGTGCTGCAGCTAACGC ATTAAGCACTCCGCCTGGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACA AGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAA TCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCC TGAGATGTTCGGGGGTAAGTCCCCCCAACGAGCGCAACCCTTGATCTTATTTTGCCACCATTCAGTTGGG TATGAACAGGGGGGACACACTGGTTTAAATGGAGAGAAAAAAAGGGGGGCGGAAACCCGCGGGGTTAGCCA ACCCACCAAAAATGTTCTCATTTTCGAGCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTA ATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGCC

EK 22. B. licheniformis 16s rRNA baz dizisi

BTX16,

TATATAGTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCCGCGGCGCACGGTTGAGTTACACGTG TGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACG GAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCG TTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG AGGGGAGTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGG TAGTCCACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCCTTTAGTGCTGCAGCAAA CGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCA CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAC AACCCCTAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCT CGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTT GGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCC CTTATGACCTGGGCTACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGC CAATCCCACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCT AGTAATCGCGGATCAGCAGGCCGCCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCC CCGGATCAAAAATTTTT

BTX17,

GTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCGCGGCGCACGGTTGAGTTACACGTGGGTAAA GTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGA GGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGGTGATCGGCCACACTGGGACTGAGA CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA CGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAA TAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC TGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGTCATTGGGAAACTGGGGAACTTGAGTGCAGAAGAGGGGA GTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACTC ACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCATT AAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCC TAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGTC GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAC TCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATG ACCTGGGCTACACACGTGCTACAATGGGCCAGAACAAAGGGGGCCAGCCGAAGCCGAGGCTAAGCCAATCC CACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGAT CAAAAATTT

BTX18,

AGTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCCGCGGCGCACGGTTGAGTTACACGTGGGTAA GGTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTG AGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAG ACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCA ACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGA ATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATA GTGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGGGGCATTGGGGAACTTGGGGAACTTGAGTGCAGAAGAGGGG AGTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACT CACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCAT TAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCC CTAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGT CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCA CTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTTAT GACCTGGGCTACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATC CCACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGA TCAAAAATTT

BTX19,

GTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGA GGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGGTGATCGGCCACACTGGGACTGAGA CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA CGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAA TAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC TGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGCATTGGGGAAACTGGGGAACTTGAGTGCAGAAGAGGGGA GTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACTC ACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCATT AAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCC TAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGTC GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAC TCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATG ACCTGGGCTACACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATCC CACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGAT CAAAAATTTTTTT

BTX20,

GTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCGCGGCGCACGGTTGAGTTACACGTGGGTAAA GTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGA GGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAGA CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA CGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAA TAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC TGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGCATTGGGGAAACTGGGGAACTTGAGTGCAGAAGAGGGGA GTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACTC ACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCATT AAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCC TAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGTC GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAC TCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATG ACCTGGGCTACACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATCC CACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGAT CAAAAAATTTT

BTX21,

CGCATGGTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGCGCATTAGCTAGT TGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACG GAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCG TTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG AGGGGAGTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGG TAGTCCACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAA CGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGGCCCGCA CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAC AACCCCTAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCT CGTGTCGTGAGATGTTGGGTTAAGTCCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTT GGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCC CTTATGACCTGGGCTACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGC CAATCCCACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCT AGTAATCGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCC CCGGATCAAAAATTT

BTX29,

GTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCGCGGCGCACGGTTGAGTTACACGTGGGTAAA GTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGA GGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAGA CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA CGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAA TAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC TGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGCATTGGGGAAACTGGGGAACTTGAGTGCAGAAGAGGGGA GTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACTC ACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCATT AAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCC TAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGTC GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAC TCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATG ACCTGGGCTACACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATCC CACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGAT CAAAAATTT

BTX36,

GTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGA GGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGGTGATCGGCCACACTGGGACTGAGA CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA CGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAA TAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC TGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGCATTGGGGAAACTGGGGAACTTGAGTGCAGAAGAGGGGA GTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACTC ACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCATT AAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCC TAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGTC GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAC TCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGGATGACGTCAAATCATCATGCCCCTTATG ACCTGGGCTACACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATCC CACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGAT CAAAAATTT
BTX37,

CCGGTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCGCGGCGCACGGTTGAGTTACACGTGGGT ATGGTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGG TGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTG AGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAG CAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTC GAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAA ATGTGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGTCATTGGGAAACTGGGGAACTTGAGTGCAGAAGAGG GGAGTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGA TCCACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGC ATTAAGCACTCCGCCTGGGGGGGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAAC CCCTAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGT GTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGG CACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTT ATGACCTGGGCTACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAA TCCCACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGT AATCGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCG GATCAAAAATTT

BTX38,

CGCATGGTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGCGCATTAGCTAGT TGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGA CTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACG GAGCAACGCCGCGTGAGTGATGAAGGTTTTCCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCG TTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG AGGGGAGTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGG TAGTCCACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAA CGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGGCCCGCA CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAC AACCCCTAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCT CGTGTCGTGAGATGTTGGGTTAAGTCCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTT GGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCC CTTATGACCTGGGCTACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGC CAATCCCACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCT AGTAATCGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCC CCGGATCAAAAATTTTTTT

BTX39,

ACACCGTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCGCGCGCACGGTTGAGTTACACGTGG GCATGGTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTT GGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGAC TGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGG AGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGT TCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGT TGATGTGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGCCATTGGGGAAACTGGGGAACTTGAGTGCAGAAGA GGGGAGTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGC AGTCCACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAAC GCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGGCCCGCAC AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACA ACCCCTAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTC GTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTG GGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCC TTATGACCTGGGCTACACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCC AATCCCACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTA GTAATCGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCC CGGATCAAAAATTT

BTX40,

GTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGA GGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGGTGATCGGCCACACTGGGACTGAGA CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA CGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAA TAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC TGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGCATTGGGGAAACTGGGGAACTTGAGTGCAGAAGAGGGGA GTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACTC ACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCATT AAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCC TAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGTC GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAC TCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGGATGACGTCAAATCATCATGCCCCTTATG ACCTGGGCTACACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATCC CACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAT CGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGAT САААААТТТААААААА

BTX41,

AGTCGAGCGGACAGATGGGAGCTTGCTCCCCTGATGTCCCCGCGGCGCACGGTTGAGTTACACGTGGGTAA GGTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTG AGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAG ACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCA ACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGA ATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATA GTGAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGGGGCATTGGGGAACTTGGGGAACTTGAGTGCAGAAGAGGGG AGTCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACT CACGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCAT TAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCC CTAGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGT CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCA CTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTTAT GACCTGGGCTACACGTGCTACAATGGGCAGAACAAAGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATC CCACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGA TCAAAAATTT

BTX82

GTTCAATTATAAAAGGTGGCTTTTAGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGA GGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAGA CACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGCAATGGACGAAAGTCTGACGGAGCAAC GCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAAT AGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACG GAAAGCCCGCGGGCTCAACCGGGGGGGGGGGGGGGCATTGGGGAAACTGGGGAACTTGAGTGCAGAAGAGGGGAG TCGCATTCCCCACGTGTACCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGGCGACTCT CGCCGTAAACGATCATGAGTGCTAAGTGTTAGAGGGTTTTCCGCCCTTTAGTGCTGCAGCAAACGCATTA AGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGG TGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCCT AGAGATAGGGCTTCCCCCTTCGGGGGGGCAGAGTGACAGGTGGTGCATGGTTTTGTCGTCAGCTCGTGTCG TGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACT CTAAGGTGACTGCCGGTGACAAACCGGAGGAAAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGA CCTGGGCTACACGTGCTACAATGGGCAGAACAAAGGGGGGCAGCGAAGCCGCGAGGCTAAGCCAATCCC ACAAAATTCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATC GCGGATCAGCAGGCCGCGGTGAGTAAGTGTAAGGGCTAACAACGCACCCGTAGAGCCTGATCCCCGGATC AAAATTT

EK 23. B. thuringiensis 16s rRNA baz dizisi

BTX53,

BTX54,

BTX55,

BTX56,

GGTATTGGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGA ATGGATTAAGAGCTTGCTCTTATGAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCATA AGACTGGGATAACTCCGGGAAACCGGGGGCTAATACCGGATAATATTTTGAACCGCATGGTTCGAAATTGA AAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCAC CAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTC CTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGGCCCAGACTC GACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGGCAACAGTGCTAGTTGAATAAGCTGGCACCTT GACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGGCCAGCAGCGCGCGGTAATACGTAGGTGGCAAGCG TTATCCGGAATTATTGGGCGTAAAACCGCGCGCGCGCGGGGGGGCGCAGGGGGAAGGCGAAGTGGGAAATCCATGGGGAGACCACGGCCACGGCGCAGGTGGCAAAGGGGAAAGTGGGAATTCCATGTGTAGCG GTGAAATGCGTAGAGATATGGAGGAACACCAGGGCGAAGGCGACTTTCTGGGTCTGTAACTGACACGGG GCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAG TGTTAGAGGGTTTCCGCCCTTTAGTGCTAAAT

BTX57,

BTX58,

BTX59,

GGTATTGGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGA ATGGATTAAGAGCTTGCTCTTATGAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCATA AGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAATATTTTGAACCGCATGGTTCGAAATTGA AAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCAC CAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTC CTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGCGAGACTC GACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGGCAACAGTGCTAGTTGAATAAGCTGGCACCTT GACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGGCAGCAGCGCGCGGTAATACGTAGGTGGCAAGCG TTATCCGGAATTATTGGGCGTAAAACCGCGCGCGCGCGGGGGGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTC AACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGGAAAGTGGAATTCCATGTGTAGCG GTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAG GCGCGAAAGCGTGGGGAGCCAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAG TGTTAGAGGGTTTCCGCCCTTTAGTGCTAAA

BTX72,

BTX73

BTX79

EK 24. Geobacillus kaustophilus 16s rRNA baz dizisi

BTX42,

AAATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCA AGACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTG AAAGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGCGCATTAGCTAGTTGGTGAGGTAACGG CTCACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCC CAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGC GTGAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGC GCGGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG ATTCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGC CTGCAACTGACGCTGAGGCGCGAAAGCGTGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGT AAACGATGAGTGCTAAGTGTTAGAGGGGGGTCACACCCTTTAGTGCTGCAGCTAACGCGATAAGCACTCCG CCTGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACAT GTGGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCAAGAGATT GGGCGTTCCCCCTTCGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGAT ATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCT AAAGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACC AAAAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCG GATCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACCCCCCGTCACACCACGAGAGCTTGC AACAAATTTTT

BTX43,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGATAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAA AGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTG AAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGA TCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAA CAAATTT

BTX44,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG CCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGACTTGAGTGCAGGAGAGAGGAGAGGGGGGGAAT TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGGCATGATGGTTGTCGTCAGCTCGTGTCGAGATAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAA AGGGACTGCCGGCGACAAGTCGGAGGAGGTGGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTG AAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGA TCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAA CAAATT

BTX45,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCAAGAGATTGGG CGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGATATG TTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAAA GGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTGG AGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGAT CAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAAC AAATT

BTX46,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG CCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGGACTTGAGTGCAGGAGAGAGGAGAGGGGGGGAAT TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGGCATGATGGTTGTCGTCAGCTCGTGTCGAGATAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAA AGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTG AAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGA TCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAA САААТТТТТАААА

BTX47,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGTCACACCCTTTAGTGCTGCAGCTAACGCGATAAGCACTCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGATAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAA AGGGACTGCCGGCGACAAGTCGGAGGAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTG AAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGA TCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAA CAAATT

BTX49,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG CCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGGACTTGAGTGCAGGAGAGAGGAGAGGGGGGGAAT TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGGCATGATGGTTGTCGTCAGCTCGTGTCGAGATAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAA AGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTG AAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGA TCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAA CAAATT

BTX50,

AATTATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCG CAAGACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGGAAGACCGCATGGTCTTTTGGT TGAAAGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGCGCATTAGCTAGTTGGTGAGGTAAC GGCTCACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGG CCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCC GCGTGAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGG GCGCGGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT GAATTCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTG GCCTGCAACTGACGCTGAGGCGCGAAAGCGTGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCC GTAAACGATGAGTGCTAAGTGTTAGAGGGGGTCACACCCTTTAGTGCTGCAGCTAACGCGATAAGCACTC CGCCTGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAAC ATGTGGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCAAGAGA TTGGGCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAG ATATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACT CTAAAGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGA CAAAAAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCG CGGATCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTT GCAACAAATT

BTX51,

CGATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCA AGACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTG AAAGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGG CTCACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCC CAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGC GTGAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGC GCGGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG GCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGACTTGAGTGCAGGAGAGAGGAGAGGGGGGGA ATTCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGC CTGCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGT AAACGATGAGTGCTAAGTGTTAGAGGGGGGTCACACCCTTTAGTGCTGCAGCTAACGCGATAAGCACTCCG CCTGGGGGGGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACAT GTGGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCAAGAGATT GGGCGTTCCCCCTTCGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGAT ATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCT AAAGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGGATGACGTCAAAAATCATCATGCCCCTTATGACC AAAAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCG AACAAATT

BTX52,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGATAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAA AGGGACTGCCGGCGACAAGTCGGAGGAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTG AAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGA TCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAA CAAATT

BTX69,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG CCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGGACTTGAGTGCAGGAGAGAGGAGAGGGGGGGAAT TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACATGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGATATGT TGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAAAG GGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTGGG GCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGATC AGCATGCCGCGGTGAATACGTTCCCCGGGGCCTTGTACACCGCCCGTCACACCACGAGAGCTTGCAACA ΔΑΤΤ

BTX70,

AACATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGC AAGACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTT GAAAGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACG GCTCACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGC CCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCG CGTGAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGG CGCGGCGCGGTGACGGTACCTCACGAGGAAGCCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA AGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGACTTGAGTGCAGGAGAGAGGAGAGCGGGG AATTCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGG CCTGCAACTGACGCTGAGGCGCGAAAGCGTGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCCG TAAACGATGAGTGCTAAGTGTTAGAGGGGGGTCACACCCTTTAGTGCTGCAGCTAACGCGATAAGCACTCC GCCTGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACA TGTGGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGAT TGGGCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGA TATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTC TAAAGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGGATGACGTCAAAAATCATCATGCCCCCTTATGAC AAAAAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGC GGATCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTG CAACAAATT

BTX71,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGATTTGCCGTTCGAAGAGGGCG CGGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG CCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGACTTGAGTGCAGGAGAGAGGAGAGGGGGGAA TTCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCC TGCAACTGACGCTGAGGCGCGAAAGCGTGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTA AACGATGAGTGCTAAGTGTTAGAGGGGGTCACACCCTTTAGTGCTGCAGCTAACGCGATAAGCACTCCGC CTGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGCCCGCACAAGCGGTGGAACATGT TTGGGCGTTCCCCCTTCGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAG ATATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACT CTAAAGGGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGGATGACGTCAAAAATCATCATGCCCCTTATGA CAAAAAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCG CGGATCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTT GCAACAAATT

BTX77,

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG TCCACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCT GCAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAA ACGATGAGTGCTAAGTGTTAGAGGGGGGCCACCCCTTTAGTGCTGCAGCTAACGCGATAAGCACCCCGCC TGGGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGT GGTTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCAAGAGATTGG GCGTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGATAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAA AGGGACTGCCGGCGACAAGTCGGAGGAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTG AAGCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGA TCAGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACACCGCCCGTCACACCACGAGAGCTTGCAA CAAATT

BTX80

ATCGGAGCTTGCTCTGGTTTTGGTCAGCGGCGGACGGGTGAGTAACACGTGGGGCAACCTGCCCCGCAAG ACCGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAACACCGAAGACCGCATGGTCTTTTGGTTGAA AGGCGGCCTTTGGCTGTCACTTGCGGATGGGCCCCCGGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCT CACCAAGGCGACGATGCGTAGCCCGGCCTGAGAGGGTGACCGGCCACACTGGGGACTGAGACACGGCCCA GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGGCGAAAGCCTGACGGAGCGACGCCGCGT GAGCGAAGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGACGAAGGAGCGCCGTTCGAAGAGGGCGC GGCGCGGTGACGGTACCTCACGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG CCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGACTTGAGTGCAGGAGAGGAGGAGCGGGGAATTC CACGTGTAGCGGTGAAATGCGTAGAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGCCTGC AACTGACGCTGAGGCGCGAAAGCGTGGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAAC GATGAGTGCTAAGTGTTAGAGGGGGGTCACACCCTTTAGTGCTGCAGCTAACGCGATAAGCACTCCGCCTG GGGAGTACGGCCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACATGTGG TTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTTGACATCCCCTGACAACCCCAAGAGATTGGGC GTTCCCCCTTCGGGGGGGACAGGGTGACAGGTGGTGCATGATGGTTGTCGTCAGCTCGTGTCGAGATATGT TGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTCTAGTTGCCAGCACGAAGGTGGGGGGCACTCTAAAG GGACTGCCGGCGACAAGTCGGAGGAAGGTGGGGATGACGTCAAAAATCATCATGCCCCTTATGACCTGGG GCCGCTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGATC AGCATGCCGCGGTGAATACGTTCCCGGGGCCTTGTACACCGCCGTCACACCACGAGAGCTTGCAACA ΔΔͲͲ

EK 25. B. coagulans 16s rRNA baz dizisi

BTX62,

ATGCAAGTCGTGCGGACCTTTAAAAAGCTTGCTTTAAAAAGGTTAGCGGCGGACGGGTGAGTAACACGTG GGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTTTCCCTC TGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCACATTGGG ACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACGAAAGTCT GACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAACAAGT GCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC AGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAGTGCAGAA GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG GCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGGAGCAAACCGGATTAGATTAACGTGGT AGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAACTAACGCTTT AACCACTTCGCCTGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGCCCCACAAGCGA TGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTGAAATCCC TGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGCTCGTGTC GTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATTCAGTTGGGG CACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCATGCCCCTTA TGACCTGGGGTACACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGCCAAT CCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGCTAGTAAT CGCGGATCA

BTX63,

ATGCAAGTCGTGCGGACCTTTTTAAAAAGCTTGCTTTTTAAAAAGGTTAGCGGCGGACGGGTGAGTAACA CGTGGGCAACCTGCCTGTAAGATCGGGGTAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTTTC CCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCATTAGC TAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCACAT TGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACGAAA GTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAAC AAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGC CTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAGTGC AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAA GGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGATTAACG TGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAACTAACG CTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCCCACAA GCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTGAAA TCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGCTCG TGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATTCAGTT GGGGCACTCTAAGGTGACTGCCGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCATGCCC CTTATGACCTGGGGTACACACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGC CAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGCTAG TAATCGCGGATCAAAAAAAAAA

BTX64,

ATGCAAGTCGTGCGGACCTTTTTAAAAAGCTTGCTTTTTAAAAAGGTTAGCGGCGGACGGGTGAGTAACA CGTGGGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTTTC CCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCATTAGC TAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCACAT TGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACGAAA GTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAAC AAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGC CTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAGTGC AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAA GGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGATTAACG TGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAACTAACG CTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCCCACAA GCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTGAAA TCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGCTCG TGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATTCAGTT GGGGCACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCATGCCC CTTATGACCTGGGGTACACACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGC CAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGCTAG TAATCGCGGATCA

BTX65,

ATGATGCAAGTCGTGCGGACCTTTTTAAAAAGCTTGCTTTTTAAAAAGGTTAGCGGCGGACGGGTGAGTA ACACGTGGGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTT TTCCCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCATT AGCTAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCA CATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACG AAAGTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAG AACAAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCC TTTCTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAATTGGGAGGCTTGAG TGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGC GAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGATTA ACGTGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAACTA ACGCTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGCCCCA CAAGCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTG AAATCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGC TCGTGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCCCAACCCCTGACCTTAGTTGCCAGCATTCA GTTGGGGCACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCATG AGCCAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGC TAGTAATCGCGGATCA

BTX66,

TAACACGTGGGCAACCTGCCTGTAAGATCGGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTT TTTTCCCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCA TTAGCTAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGC CACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGA CGAAAGTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGA AGAACAAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTG GCTTACTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGATACTGGGAGGCTTG AGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTG GCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGAT TAACGTGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAGGGTTTACGCCCTTTATGCTACAAC TAACGCTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCC CACAAGCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTC TGAAATCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCA GCTCGTGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATT CAGTTGGGGCACTCTAAGGTGACTGCCGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCA TAAGCCAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATC GCTAGTAATCGCGGATCAA

BTX67,

ATGCAAGTCGTGCGGACCTTTTTAAAAAGCTTGCTTTTTAAAAAGGTTAGCGGCGGACGGGTGAGTAACA CGTGGGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTTTC CCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCATTAGC TAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCACAT TGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACGAAA GTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAAC AAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGC CTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAGTGC AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAA GGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGATTAACG TGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCCTTTATGCTACAACTAACG CTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCCCACAA GCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTGAAA TCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGCTCG TGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATTCAGTT GGGGCACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCATGCCC CTTATGACCTGGGGTACACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGC CAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGCTAG TAATCGCGGATCA

BTX68,

ATGCAAGTCGTGCGGACCTTTTTAAAAAGCTTGCTTTTTAAAAAGGTTAGCGGCGGACGGGTGAGTAACA CGTGGGCAACCTGCCTGTAAGATCGGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTTTC CCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCATTAGC TAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCACAT TGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACGAAA GTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAAC AAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGC CTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAGTGC AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAA GGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGATTAACG TGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAACTAACG CTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCCCACAA GCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTGAAA TCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGCTCG TGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATTCAGTT GGGGCACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCATGCCC CTTATGACCTGGGGTACACACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGC CAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGCTAG TAATCGCGGATCA

BTX74,

GTAACACGTGGGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTT ATTAGCTAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGG CCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGG ACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGG AAGAACAAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGT GGCTTTCTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTT GAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGAAACACCAGT GGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGGAGCAAACCGGATTAGA TTAACGTGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAA CTAACGCTTTTACCACTTCGCCTGGGGGGAGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCC CCACAAGCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGT CTGAAATCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTC AGCTCGTGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCAT TCAGTTGGGGCACTCTAAGGTGACTGCCGGGGGACAAACCGGAGGAAGGTGGGGGATGAGTCAAATCATC TTAAGCCAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAAT CGCTAGTAATCGCGGATCAAAAAAA

BTX75,

ATGCAAGTCGTGCGGACCTTTTTAAAAAGCTTGCTTTTAAAAGGTTAGCGGCGGACGGGTGAGTAACACG TGGGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTTTCCC TCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCATTAGCTA GTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCACATTG GGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACGAAAGT CTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAACAA GTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGCAG TAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAGTGCAG AAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGG CGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGATTAACGTG GTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAACTAACGCT TTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCCCACAAGC GATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTGAAATC CCTGGGGGACAGGGGCCTTCCCCCTTCGGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGCTCGTG TCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATTCAGTTGG GGCACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGATGAGTCAAATCATCATGCCCCT TATGACCTGGGGTACACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGCCA ATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGCTAGTA ATCGCGGATCA

BTX76

TAACACGTGGGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGGCTAATACCGGATAGTTT TTTTCCCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCA TTAGCTAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGC CACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGA CGAAAGTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGA AGAACAAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTG GCTTTCTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTG AGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTG GCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGAT TAACGTGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAGGGTTTACGCCCCTTTATGCTACAAC TAACGCTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCC CACAAGCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTC TGAAATCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCA GCTCGTGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATT CAGTTGGGGCACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCA TAAGCCAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATC GCTAGTAATCGCGGATCAAA

BTX83

ATGCAAGTCGTGCGGACCTTTTTAAAAAGCTTGCTTTTTAAAAAGGTTAGCGGCGGACGGGTGAGTAACA CGTGGGCAACCTGCCTGTAAGATCGGGATAACGCCGGGAAACCGGGGGCTAATACCGGATAGTTTTTTC CCTCCGCATGGAGGAAAAAGGAAAGACGGCTTCTGCTGTCACTCCTCTGATGGGCCCGCGGCGCATTAGC TAGTTGGTGGGGTAACGGCTCACCAAGGGAACGATGCGTATCCGACCTGAGAGAGGGTGATCGGCCACAT TGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCCAAAATGTGGACGAAA GTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAAC AAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGC CTTAAGTCTGATGTGAAAATTCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAGTGC AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAA GGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAAGCGTGGGGAGCAAACCGGATTAGATTAACG TGGTAGTCCAAACGGAAAACAATAAGGGTAAAGAATAAAAGGGTTTACGCCCTTTATGCTACAACTAACG CTTTAACCACTTCGCCTGGGGGGGGTACGGCGCAAGGGTTAAACTAAAGGAATTGACGGGGGGGCCCCACAA GCGATGGAGACAAGTGGTTTAATTCAAGCAACCGAAGAACCTTACCAGGTCTTGATGACATCGTCTGAAA TCCCTGGGGACAGGGGCCTTCCCCCTTCGGGGACAGAGTGACAGATGGGTGCATAGTTGTCGTCAGCTCG TGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCCTGACCTTAGTTGCCAGCATTCAGTT GGGGCACTCTAAGGTGACTGCCGGGGGGACAAACCGGAGGAAGGTGGGGGGATGAGTCAAATCATCATGCCC CTTATGACCTGGGGTACACACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGC CAATCCCAGAAGGCATTCCCAGTTCGGATTTGCAGGCTGCAACCCGCCTGCATGAAGCCGGAATCGCTAG TAATCGCGGATCA

EK 26. B. subtilis Ksilanaz genine ait baz dizisi

TTTTCAGAGCCCTTTCAAATAAAAAAATCTTGCAACTTCTTTTGTAAAAACTGATCTAAGCTATCATCCT CAAATTTTTGGTCAATAATTCTAATTGAGCAGTTCTTTTCTTAGTATAACCTTAATTGTTTTTCTTCTTC AGTTCTTCATATTCTTCATAAATTTGCTTCCCTTCATTAGACAAGCGGCAGCAACAATGACTTCACAATC TCTAATATATATCTCCTTTATACGAAAAGATCCAATGGGAATTCATTTACAGATATTACTCCATCTGAAT TAGAAACAAGAATTGTGATCCTGCGAAAAAAGGATCAGGATATGGTGGAACAAGGCCACTTATAATGCAT TTCTAGGTATTTGTAATTGAATTACAAATACTTTTTTAATATTTTGCTCATGAATTCGTGTATTATACTGA AGGGGACGATCAAAAGCTTTGGCGTTAGTAATTAAAAATGTTTTTAAATGTATACGAGTGCTGCCTCAAA GTCGGAAAAAAATATTATAGGAGGTAACATATGTTTTAAGTTTAAAAAAGAATTTCTTAGTTGGATTATC GGCAGCTTTAATGAGTATTAGCTTGTTTTTCGGCAACCGCCTCTGCAGCTAGCACAGACTACTGGCAAAA ATTGGACTGATGGGGGGGGGGTATAGTAAACGCTGTCAATGGGTCTGGCGGGAACTACAGTGTTAATTGGT CTAATACCGGAAATTTCGTTGTTGGTAAAGGTTGGACTACAGGTTCGCCATTTAGGACGATAAACTATAA TGCCGGAGTTTGGGCGCCGAATGGCGATGGGTATTTTTGACTTTGTATGGCTGGACGAGATCGCCCCCTT CATAGAATATTATGTGTGGGATTCATGGGGTACTTATAGGCCCACCGGAACGTATAAAGGTACTGTAAAGG GTGATGGAGGTACATATGACATATATACAACTACACGTTATAACGCACCCCTTCCATTGATGGCGATCGC ACTACTTTTTACGCAGTACTGGAGTGTTCGTCAGACGAAGAGAGACCAACTGGAAGTAACGCTACAATCA CTTTCAGCAATCATGTGAACGCATGGAAGAGCCATGGAATGATGAATCTGGGCAGTAATTGGGCTTACCC AAGTCATGGCGACAGAAGGATATCAAAGTAGTGGAAGTTCTAACGTAATAACAGTGTGGTAACAGATCAT CCTTAATCAGGGGATCCGGGCCC

ÖZGEÇMİŞ

1. Adı Soyadı	: ORHAN ULUÇAY
2. Doğum Tarihi	: KARS - 17.02.1986
3. Unvanı	: Uzman
4. Çalıştığı Kurum	: Kafkas Üniversitesi – 2013
5. Lisans	: Kafkas Üniversitesi –Biyoloji - 2010
5. Yüksek Lisans	: Kafkas Üniversitesi – Moleküler Biyoloji – 2013
6. Yayınlar	

6.1. Uluslararası hakemli dergilerde yayınlanan makaleler (SCI, SSCI, Arts and Humanities)

-Bandyopadhyay, K.; Uluçay, O.; Şakiroğlu, M.; Udvardi, M.K.; Verdier, J. Analysis of Large Seeds from Three Different *Medicago truncatula* Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains. Int. J. Mol. Sci. 2016, 17, 1472.

6.2. Ulusal hakemli dergilerde yayınlanan makaleler

-Sakiroglu, M., D. Ilhan, M. Mavioglu Kaya, O. Demirozogul, O. Uluçay, and B. Eren. 2011. Moleküler Veriler Işığında Medicago Sativa L. Tür Kompleksinin Mevcut Durumu. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 4(1):32-42

6.3. Uluslararası bilimsel toplantılarda sunulan ve bildiri kitabında basılan bildiriler -6. Uluslararası Moleküler Biyoloji ve Biyoteknoloji Kongresi Doğal Ortamlardan Elde Edilen Çeşitli Termofilik Mikroorganizmaların Moleküler Tayini

7.Projeler

 Baklagillerde Tohum Büyüklüğü ve Protein İçeriğinin Genetik Kontrolü BAP2013-MMF-70 11.02.2012 - 11.02.2013

- Doğal ortamlardan elde edilen çeşitli *Bacillus* türlerinde 1,4-β-endo ksilenaz enziminin üretilmesi, saflaştırılması ve ticari kullanılabilirliği, *Bacillus*'dan endo 1,4-beta ksilanaz enziminin rekombinant ve yarı sentetik nanoenzim olarak üretimi) (2016- Devam)

8. Katıldığı Bilimsel Etkinlikler

-Mühendislik ve İlgili Disiplinlerde Araştırma Projesi Hazırlama Eğitimi. TÜBİTAK (BİDEB-2237). (Proje düzenleme Kurulu üyesi) 2014
-Disiplinler Arası Araştırma Projesi Hazırlama Eğitimi. TÜBİTAK (BİDEB-2237). (Proje düzenleme Kurulu üyesi) 2015