T.C. DICLE ÜNIVERSITESI FEN BILIMLERI ENSTITÜSÜ

Schottky Diyotlar ve Bazı Elektriksel Parametrelerinin İncelenmesi

Ercan KENANOĞLU

YÜKSEK LİSANS TEZİ (FİZİK ANABİLİM DALI)

> DİYARBAKIR Ağustos-2006

T.C		
DİCLE ÜNİVERSİTESİ		
FEN BİLİMLERİ ENSTİTÜSÜ MÜD	FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ	
<u>DİYARBAKIR</u>	DİYARBAKIR	
Ercan KENANOĞLU tarafından yapılan "Schottky Parametrelerinin İncelenmesi " konulu bu çalışma , jürim Dalında <u>YÜKSEK LİSANS</u> tezi olarak kabul edilmiştir <u>Jüri Üyesinin</u> <u>Ünvanı Adı Soyadı</u> Başkan: Prof. Dr. Tahsin KILIÇOĞLU Üye : Prof. Dr. Şemsettin OSMANOĞLU Üye : Yrd. Doç. Dr. Zahir DÜZ Tez Savunma Sınavı Tarihi: 22/08/2006	Diyotlar ve Bazı Elektriksel niz tarafından Fizik Anabilim	
Yukarıdaki bilgilerin doğruluğunu on 12./09/.2006 M. H. Stire Prof. Dr. Neamettin Pirinççio ENSTITE-MÜBÜRÜ (MÜHÜR)	aylarım. SLU	

İÇİNDEKİLER

TEŞEKKÜR	I
AMAÇ	II
ÖZET	.III
SUMMARY	.IV
1. GİRİŞ	1
2. METAL-YARIİLETKEN KONTAKLAR	4
2.1 Giriş	4
2.2 Metal p-Tipi Yarıiletken Doğrultucu Kontaklar	4
2.3 Metal/p-Tipi Yarıiletken Omik (Schottky) Kontaklar	6
2.4 Metal- p- Tipi Yarıiletken – Metal Yapısı	7
2.5 Schottky Engel Yüksekliği Üzerine Etkiler	8
2.6 Schottky Diyotlarda Termoiyonik Emisyonla Akım İletimi	. 10
2.7 MIS (Metal Insulator Semiconductor) Schottky Diyotlarda İdealite Faktörü	
İfadeleri	. 14
2.8 Metal Yarıiletken Kontaklarda Yalıtkan Tabaka Potansiyel Dağılımının Diyot	
Karakteristiklerine Etkisi	. 17
2.9 Cheung Fonksiyonları Ve Schottky Diyot Karakteristiklerinin Belirlenmesi	. 21
2.10. Metal - Yarıiletken Schottky Diyotlarında Arayüzey Tabakası ve Arayüzey	
Hallerinin Etkileri	. 23
3.DENEY SİSTEMİ, NUMUNE HAZIRLANMASI VE ÖLÇÜMLER	. 25
3.1 Giriş	. 25
3.2 Numune Hazırlanması ve Temizlenmesi	. 25
3.3 Schottky Diyotlarının Yapılması	. 26
3.4 Ölçme ve Değerlendirme İşlemleri	. 28
4. SONUÇ VE TARTIŞMA	. 38
5. KAYNAKLAR	. 40
6. ŞEKİLLER DİZİNİ	. 43
7. ÖZGEÇMİŞ	. 44

TEŞEKKÜR

Dicle Üniversitesi Fen Bilimleri Enstitüsü'ne yüksek lisans tezi olarak sunduğum bu çalışma sayın Prof. Dr. Tahsin KILIÇOĞLU danışmanlığında yürütülmüştür. Çalışma boyunca verdiği destek ve katkılarından dolayı kendilerine teşekkürü borç bilirim.

Laboratuar çalışmalarım sırasında yardımını esirgemeyen sayın Yrd. Doç. Dr. M. Enver Aydın ve Yrd. Doç. Kemal Akkılıç'a teşekkür ederim. Ayrıca çalışmalarım boyunca manevi desteklerini her zaman hissettiğim yüksek lisans arkadaşlarıma ve aileme de teşekkürü borç bilirim.

AMAÇ

Schottky engel yüksekli diyotlar yarıiletken devre elemanları teknolojisinde önemli bir yere sahiptirler. Bilindiği gibi bu diyotların imal şekillerinden biriside yarıiletken dilimleri üzerine metal nokta kontaklardır. Yarıiletken dilimleri üzerine yapılan nokta kontakların idealite faktörleriyle engel yükseklikleri diyottan diyota farklılık gösterir. Bu farklılığın sebebi yarıiletkene katkılandırılan malzemenin yarıiletkene homojen bir şekilde dağılmayışı ve yüzey hazırlama esnasındaki uzaysal homojenliğin sağlanamasıdır.

Bilindiği gibi son yıllarda organik maddeler yarıiletken teknolojisinde önemli yer edinmiş ve bu organik maddelerle oluşturulan diyotların elektriksel karakteristiklerini incelenmesi kaçınılmaz olmuştur. Bu çalışmadaki amacımız laboratuar ortamında imal ettiğimiz p-Si/Quercetin/Al diyotumuzun doğrultucu özelliğini ve idealite faktörü, engel yüksekliği, seri direnci, arayüzey durum yoğunluğu gibi elektriksel karakteristiklerini incelemektir.

ÖZET

Bu çalışmada, (100) yönelimine sahip, özdirenci 1-10Ωcm olan p-Si kristalleri kullanıldı. Etil alkolde Quercetin çözülerek hazırlanan 8.27×10⁻⁶M'lık çözeltiden p-Si üzerine damlatılarak ve çözücünün buharlaştırılması p-Si/Quercetin/Al Schottky engel diyotu oluşturuldu. p-Si/Quercetin/Al Schottky engel diyotumuzun elektronik ve arayüzey durum yoğunluk dağılım özellikleri oda sıcaklığında akım-gerilim (I-V)' den elde edildi. (I-V) grafiğinden bu yapının doğrultucu özellik gösterdiği görüldü.

lnI-V grafiği kullanılarak idealite faktörü 1,49 ve engel yüksekliği 0.84eV olarak hesaplandı. Cheung fonksiyonları kullanılarak diyotumuz için dV/d(lnI)-I ve H(I)-I grafikleri çizildi. dV/d(lnI)- I grafiğinden seridirenç 3,23M Ω ve idealite faktörü 1,68 olarak hesaplandı. H(I)-I grafiğinden seri direnç 3,24M Ω ve engel yüksekliği 0,82eV olarak hesaplandı.

Diyotumuzun (I-V) verileri kullanılarak arayüzey durum yoğunluklarının enerji dağılımları hesaplandı. Arayüzey durum yoğunluğu N_{ss} (0,652-*Ev*) eV için 5,012x10¹³cm⁻²eV⁻¹ ile (0,762-*Ev*) eV için 3,206x10¹²cm⁻²eV⁻¹ olarak hesaplandı. Arayüzey durum yoğunluklarının üstel bir şekilde band ortasından valans bandın tepesine doğru arttığı görüldü.

SUMMARY

In this study, (100) oriented and 1-10 Ω cm p-Si crystals have been used. p-Si/Quercetin/Al Schottky barrier diodes have been fabricated by adding 8.27×10^{-6} M solutions of the Quercetin in etanol on top of p-Si substrates and then evaporating the solvent. The electronic and interface state density distribution properties were obtained from the current–voltage (I–V) of p-Si/ Quercetin /Al Schottky barrier diode (SBD) at room temperature. From the I-V graphics seen that this structure showed rectifying behavior.

İdeality factor and barrier height were calculated by InI-V graph plots as 1.49, 0.84 eV. dV/d(lnI)-I and H(I)-I graphics drawed by using Cheung functions. Series resistance and ideality factor were calculated as $3.23M\Omega$, 1.68 respectively by using dV/d(lnI)-I graphics. Series resistance and barrier height calculated $3.24M\Omega$, 0.82eV respectively by using H(I)-I graphics.

Energy distributions of interface state densities of our diode were calculated using I-V data. Interface state densities, N_{ss} were calculated $5.012 \times 10^{13} \text{ cm}^{-2} \text{eV}^{-1}$ for (0.652 - Ev) eV ve $3.206 \times 10^{12} \text{ cm}^{-2} \text{eV}^{-1}$ for (0.762 - Ev) eV. The interface state densities have exponential rises with bias from the mid-gap towards the top of the valence band.

1.1 GİRİŞ

Metal ve yarıiletkenlerin elektriksel iletkenlik özelliklerinden yararlanmak, onlara uygun kontaklar uygulayarak elektronik devrelerde kullanmak yolundaki ilk ciddi araştırma, 1874 'lü yıllarda Braun tarafından yapılmıştır (1). Çağdaş elektronikte metal-yarıiletken kontaklar önemli rol oynayan devre elemanlarıdır. Elektronik sanayiinde, bu devre elemanlarından, daha çok, mikrodalga kanştırıcı dedektorleri, hızlı anahtar (switching) uygulamaları, varaktörler (kapasiteleri uygulanan gerilimle değişen kondansatörler) ve Schottky engel tabakalı alan etkili transistörleri olarak faydalanılmaktadır. İlk önceleri radyo detektörü, daha sonraları radar detektörü ve mikrodalga diyodu olarak geliştirilmiştir. Marconi' nin 1895' li yıllarda tele-komünikasyona ait deneylerini Braun göz önünde bulundurarak, nokta kontak MS (Metal-Yariiletken) dogrultucularını detektör olarak kullanmıştır. İkinci Dünya Savaşı döneminde, mikrodalga radarlarının gelişmesiyle nokta kontak diyotlari, daha çok frekans dönüştürücüsü olarak ve mikrodalga detektör diyodu olarak kullanmıştarır (2). Baird 1964 yılında Metalyariiletken (MS) alan etkili transistörü buldu. MS yapıların karakteristikleri sıcaklığın bir fonksiyonu olarak ölçülerek, sıcaklığın tayininde kullanılmıştır (3).

Metal-Yariiletken dogrultucu kontakların teorik olarak izahı, bu yapıların pratikte uygulamalarından çok sonradır. İlk defa Schottky, metal-vakum sistemlerde imaj kuvvetten dolayı engel alçalmasını buldu (4). Bundan yaklaşık 50 yıl sonra da 1964'te metal yarıiletken kontaklarda, Sze ve arkadaşları tarafından bu durum doğrulanabilmiştir (5). 1930'lu yıllarda enerji engelinden taşıyıcı difüzyonu olayını esas alan doğrultma teorisi Schottky ve Spenke tarafından geliştirilmiştir (6). Bir yıl sonra Wilson MS diyotlar için, kuantum mekaniksel tünekleme teorisini geliştirmiş ve doğrultma için ters polariteyi açıklamıştır (7). Crowel ve Sze, Schottky'nin diffüzyon ve Bethe'nin termoiyonik emisyon teorilerini, tek bir teori (Emisyon-Diffüzyon teorisi) olarak ortaya koymuşlardır (8) .Schottky diyotlar üzerinde daha sonraki yıllarda bir çok çalışmalar yapılmıştır. Örneğin, Covvley ve Sze farklı metallerle yapılan Schottky diyotların engel yüksekliklerinin bu kontak metallerinin iş fonksiyonlarına bağlılığını araştırmışlar ve yarıiletken yüzeyindeki yüzey hallerinden dolayı Schottky engel yüksekliğinin metalin iş fonksiyonundan bağımsız olduğu sonucuna varmışlardır (9). Card ve Rhoderick arayüzey hal yoğunluğu belirleyip, arayüzey hal yoğunluğunun ve arayüzey tabakasının I-V karakteristiklerinin idealite faktorü üzerine etkilerini açıklamışlardır (10). Chattopadyay ve Kumar Metal SiO2-p-Si Schottky engel diyotlarında, arayüzey tabakasının tuzak yoğunluğunu ve boş uzay yük yoğunluğunu değerini farklı bir metod kullanarak hesaplamışlardır (11). Engel yüksekliğinin inhomojenliğinden dolayı bu iki parametrenin diyottan diyota farklılık gösterebileceği, Mönch tarafından ortaya atılmıştır (12). Chattopadhyay ve Daw MIS diyotlarının I-V ve C-V karekteristiklerini diyotların engel yüksekliğinin oksit kalınlığına bağımlılığının Cowley ve Sze' nin engel yüksekliği modeline uyduğunu bulmuşlar ve arayüzeyde oluşan oksit tabakasının kalınlığına göre, engel yüksekliğinin değişimini incelemişlerdir (13). Tseng ve Wu arayüzey tabakası ve arayüzey hallerinin Schottky kontaklanı davranışı üzerine etkilerini araştınp uygulanan voltajın bir fonksiyonu olarak arayiizey hallerenin isgal edilmesini tartışmışlardır. İdeal olmayan I-V karakteristiklerinden yarıiletken bant arahğındaki arayüzey hallerinin yogunluk dalğılımını elde etmişlerdir (14). Tseng ve Wu arayüzey hallerinin Schottky kontaklarının I-V ve C-V davranısı üzerine etkilerini inceleyip, bu karakteristiklerden arayüzey hallerinin, enerji dağılımını ve arayüzey hallerinin sığasını hesaplamışlardır (15). Horvath, Card ve arkadaşlarının çalışmalarından bağımsız olarak onların analizlerini ters beslem I-V karakteristiklerine genişleterek arayüzey hallerinin enerji dağılımını incelemiştir (16). Türüt ve Sağlam Au-Sb/Al Schottky divodlarının I-V, C-V, C²-V grafiklerindeki non-lineerliğin arayüzev hallerinin artık sığası ile izah edilebileceğini göstermişlerdir (17). Wu n-p tipi yarıiletkenlerden yapılan Schottky diyotlarının yüzey yükünü ve arayüzeyde düşen voltajı gözönünde bulundurarak Cowley ve Sze'nin arayüzey tabaka teorisini geliştirmiş ve sabitleşmiş pozitif yüzey yük [fixed-charge] artışının potansiyel engelini düşürdüğünü ve arayüzey tabakasında düşen voltajın, doğru beslem I-V karakteristiklerinin idealite faktörünü arttırdığını bulmuştur (18). Ikama ve çalışma arkadaşı Si Schottky barrier diyodlarında akım-voltaj karakteristiklerini farklı sıcaklıklarda [300-420 K] Schottky engeli için teklif ettikleri bir arayüzey tabaka modeli ile incelemişlerdir (19). İdeal ve ideal olmayan diyotlar için Cheung tarafından doğru beslem I-V karakteristikleri kullanarak Schottky diyotlarda engel yüksekliği, idealite faktörü ve seri direnci hesaplamak için farklı bir hesaplama modeli daha ileri sürülmüstür (20). Türüt ve arkadaşları Al/n-Si Schottky diyodlarında non-ideal doğru beslem akım-voltaj ve ters beslem kapasite-voltaj karakteristiklerine arayüzey hallerinin yük davranışının etkisini inceleyip, ters beslem C-V karakteristikleri üzerine arayüzey tabakası ve yükleriyle beraber inversion [tersinim] tabakası ve yüklerinin etkisinin de varlığını göstermişlerdir (21). Wu ve Yang metal - yarıiletken kontaklarda arayüzey kapasitesinin yeni bir teorisini teklif etmişler ve arayüzey hallerinin yoğunluk dağılımının ancak arayüzey tabakasının hesaba katılmasıyla gerçek bir şekilde

belirlenebileceğini ispata çalışmışlardır (22). Chattopadhyay metal-yarıiletken kontağın akım-voltaj karakteristikleri üzerine lokalize olmuş ayrık [discrete] hallerin rolünü teorik olarak incelemiş ve bu lokalize olmuş hallerden dolayı, logaritmik akım-voltaj karakteristiklerin non-lineer davrandığını belirlemiştir. Böylece non-lineerliğin sıcaklığa, lokalize olmuş hallerin enerji ve yoğunluğuna karşı hassas olduğunu hesaplama ve grafiklerle sergilemiştir (23). Szatkowski ve Sieranski, Cowley ve Sze tarafından geliştirilen teoriyi, arayüzey yükünü dahil etmek suretiyle, genişletmişlerdir. Böylece, farklı frekanslardaki C-V karakteristiklerinden arayüzey yoğunluğunu ve engel yüksekliğini belirlemişlerdir (24). Kılıçoğlu ve Asubay Au/n-Si/Au-Sb ile oluşturdukları schottky diyotlarda oksit tabakasının idealite faktörü, engel yüksekliği, arayüzey durumları üzerine etkisini incelemişlerdir (25). Karataş ve Türüt Au/n-GaAs ile oluşturdukları schottky diyotlarda arayüzey dağılımlarını incelemişlerdir (26). Aydın ve Arkadaşları Pb/p-Si Schottky kontaklarda nötral bölgenin direncinin arayüzey durumları hesabı üzerindeki önemini belirtmişlerdir (27). Çetinkara ve arkadaşları Au/n-Si Schottky diyotlarında, kontaktan önce yüzeyde oluşan doğal oksidin diyot karakteristikleri üzerine etkisini araştırmışlardır (28).

Son 30 yıldır polimer olan (29,30,35) ve polimer olmayan (31-34) organik maddelerle elde edilen devre elamanları bir çok araştırmacının ilgi odağı olmuştur ve bu organik maddelerle elde edilen bir çok devre elemanları günümüz teknolojisinde kullanılmaya başlanmıştır. Polimerik olmayan organik maddeler kararlılıklarından dolayı, elektronikte önemli bir yer edinmeye başlamıştır (31-34). Forrest ve arkadaşları (31) ve Antohe ve arkadaşları (34) polimerik olmayan organik maddelerin yarıiletken üzerine süblimleştirilmesi ile ince organik film elde etmişler ve bu yapı üzerine farklı metaller buharlaştırarak elde ettikleri MIS yapıların idealite faktörlerini ve engel yüksekliklerini hesaplamışlardır. Aydın ve arkadaşları n-Si üzerine β -karoten çözeltisi ekleyip, daha sonra çözücüyü buharlaştırıp, yarıiletken üzerinde ince polimerik olmayan organik film elde etmek suretiyle MIS yapı elde etmis bu yapının idealite faktörü ve engel yüksekliklerini ve bu yapının arayüzey durumlarını incelemişlerdir (32). Temirci ve Çakar Cu/ rhodamine101/p-si ile oluşturdukları schottky diyotların I-V ve C-V karakteristiklerini incelemişlerdir (33). Çakar ve arkadaşları (pyronine-B)/p-silisyum/Sn ile oluşturdukları schottky diyotların elektriksel karakteristiklerini incelemişlerdir (35). Tüm bu çalışmalarda polimerik olmayan organik maddelerle elde edilen metal-yarıiletken yapıların doğrultucu özelliğe sahip oldukları gösterilmiştir

Quercetin $C_{15}H_{14}O_9$ molekül formülüne sahip bir organik maddedir. Doğa'da en çok soğan kabuğu, yeşil çay, elma da bulunur. Kolesterolü düşürücü etkisi ve vücudun hormonal dengesini düzenleyici etkisinden dolayı pek çok hastalığın tedavisinde tıp ve ilaç sektöründe yaygın olarak kullanılmaktadır. Bu çalışmada (100) yönelimli 1-10Ωcm özdirence sahip p-Si yarıiletkeni üzerine etil alkol (C₂H₅OH) 'de çözülen quercetin çözeltisinden 15µL damlatıldı. Daha üzerine Al buharlaştırılarak 1mm çapında (7,85×10⁻³cm²) diyotumuzu imal ettik ve elde etiğimiz p- Si/Quercetin/Al diyotumuzun I-V ölçümlerinden elde ettiğimiz veriler kullanılarak idealite faktörü, engel yüksekliği, seri direnç ve arayüzey durumları hesaplandı.

2. METAL YARIİLETKEN KONTAKLAR

2.1 Giriş

Schottky diyotların karakteristik parametrelerinin anlaşılabilmesi, yalıtkan ve yarıiletken kristallerin iletkenlik özelliklerinin araştırılabilmesinin bir yolu da kristale uygun kontaklarm uygulanabilmesidir. Kontak, kristal ile kristale uygulanacak olan kontak malzemesinin en az direncle temas etmeleridir. Kontağın ideal olması kontak malzemelerinin yüzeylerinin temiz ve pürüzsüz olmasıyla doğrudan ilişkilidir. Kontak haline getirilen maddeler arasında, elektrokimyasal potansiyelleri aynı düzeye gelinceye kadar bir yük alışverişi olur (36). Metal-yarıiletken kontaklar, metalin ve yarıiletkenin iş fonksiyonlarına (Φ_m , Φ_s) bağh olarak, omik ve doğrultucu kontak (Schottky kontak) olmak uzere iki kisimda incelenir. p-tipi yariletken kontaklarda $\Phi_m < \Phi_s$ ise, doğrultucu kontak, eğer $\Phi_m > \Phi_s$ ise, omik kontak olusur. n-tipi yarıiletken kontaklarda ise $\Phi_m > \Phi_s$ durumunda doğrultucu kontak ve eğer $\Phi_m < \Phi_s$ durumunda ise omik kontak oluşur.

2.2 Metal/ p-tipi Yarıiletken Doğrultucu Kontaklar

Bir metal, bir yarıiletken ile kontak haline getirildiğinde, bu iki madde arasında yüklerin yeniden dağılımı vuku bulur. Yük dağılımı, her iki maddenin Fermi seviyeleri (elektrokimyasal enerji) aynı düzeye gelinceye kadar devam eder ve denge durumuna ulaşılır. Bir metal yarıiletken kontakta yük taşıyıcıları (boşluk ve elektronlar) bir doğrultudan diğer doğrultuya göre daha kolay geçebiliyorsa, bu bir doğrultucu kontaktır. Dolayısıyla doğrultucu kontakta bir doğrultudaki akım diğer doğrultuya göre

daha kolay geçer. Φ_m ; metalin iş fonksiyonu Φ_s ; yarıiletkenin iş fonksiyonu ve E_s ise valans bandının tepesi ile vakum seviyesinin tabanı arasındaki fark olsun. Eğer $\Phi_m < \Phi_s$ ise kontak doğrultucu, $\Phi_m > \Phi_s$ ise kontak omik olacaktır.

Şimdi birinci durumu göz önüne alalım. Yani $\Phi_m < \Phi_s$ olsun. Oda sıcaklığında akseptörlerin hepsi iyonize olmuş olsun. Kontaktan önce, (Şekil 2.1a) Yarıiletkenin Fermi seviyesi metalın Fermi seviyesinden $\Phi_s - \Phi_m$ kadar aşağıdadır.Kontaktan sonra, metal ve yarıiletkenin Fermi seviyeleri aynı hizaya gelinceye kadar metalden yarıiletkene elektron akışı meydana gelir.

Şekil 2.1 Metal p-tipi yarıiletken doğrultucu kontağın enerji-bant diyagramı a)Kontaktan önce, b) Kontaktan sonra termal dengede, c)V≠ 0 olması durumunda

Bunun neticesinde yarıiletkenin tarafındaki holler, bu elektronlardan dolayı iyonize olurlar. Yarıiletkenin yüzey tabakasındaki bu negatif yüklü iyonize olmuş akseptörler d kalınlığındaki bir uzay yük tabakası içerisinde dağılır. Yarıiletken gövdedeki enerji seviyeler $\Phi_s - \Phi_m$ kadar yükseldiğinden, yarıiletken tarafındaki holler için yüzey engeli;

$$eV_{dif} = \Phi_s - \Phi_m \tag{2.1}$$

olur. Burada V_{dif}, difüzyon potansiyelidir. Yarıiletken içerisindeki bu potansiyel, metalin yüzeyine göre alınır. Kontağın metal tarafındaki holler için engel yüksekliği;

$$e\Phi_b = E_s - \Phi_m \tag{2.2}$$

olur. Termal uyarılmadan dolayı, yarıiletkendeki bazı holler potansiyel engelini aşacak kadar enerji kazanıp, metalin içine geçebilir. Aynı şekilde metalde termal olarak oluşan bazı holler de engeli aşacak kadar enerji kazanıp, yarıiletken içine geçebilirler. Böylece kontakta engelden geçen zıt yönlü iki I₀ akım oluşur. Eğer yarıiletkene bir V gerilimi uygulanırsa Şekil 2.4b soldan sağa akan hol akımı değişmez, fakat sağdan sola akan hol akımı exp(eV/kT) çarpanı kadar değişir. Bundan dolayı yarıiletkendeki enerji seviyelerinin tümü eV kadar düşer ve buna bağlı olarak sağdan sola (yarıiletkenden metale) geçen holler için engel yüksekliği eV kadar azalır. Netice olarak sağdan sola akım) pozitif olarak kabul edilirse, karakteristik akım;

$$I = I_0 \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$$
(2.3)

olacaktır. Bu da bir doğrultucu kontaktır.

2.3. Metal /p-Tipi Yarıiletken Omik Kontaklar

 $\Phi_{\rm m} > \Phi_{\rm s}$ durumunu dikkate alalım. Şekil 2.2a ' da görüldüğü gibi yarıiletkenin Fermi seviyesi metalin Fermi seviyesinden $\Phi_{\rm m} - \Phi_{\rm s}$ kadar yukarıdadır. Kontaktan sonra bir yük alışverişi olacaktır. Yarıiletkendeki elektronlar, geride bir pozitif yüzey yükü (hollerden dolayı) bırakarak ve metal tarafında bir negatif yüzey yükünü oluşturarak metal tarafına akarlar buna bağlı olarak yarıiletkendeki Fermi seviyesi Şekil 2.2b ' de görüldüğü gibi $\Phi_{\rm m} - \Phi_{\rm s}$ kadar aşağı düşer. Hol konsantrasyonunun artmasından dolayı, yarıiletken yüzeyi daha fazla p-tipi olur. Elektronlar, metalden yarıiletkendeki boş durumlara kolayca geçebilirler. Bu yük hareketi, hollerin yarıiletkenden metale akışına karşılık gelir. Metal tarafına geçen holler (yüksek elektron konsantrasyonundan dolayı) hemen nötralize olurlar. Ters beslem durumunda, metalin iletkenlik bandında termal olarak oluşan holler de kolay bir şekilde yarıiletken tarafına geçebilirler. Böyle her iki doğrultuda akımı kolayca geçirebilen kontaklar, omik kontaklar olarak bilinirler.

2.4.Metal/ p- Tipi Yarıiletken – Metal Yapısı

Metal-p tipi yarıiletken-metal(P⁺PM) yapısı, p-tipi yarıiletkenin bir yüzeyine boşluk bakımından çok zengin P⁺P omik kontağı ile diğer yüzeyine uygulanan pM doğrultucu kontağından meydana gelir. Termal dengede böyle bir yapının enerji bant diyagramı Şekil 2.3' de görülmektedir

 P^+ omik kontak tarafına V>0 olacak şekilde bir gerilim uygulandığında, yapı doğru beslemde olur. P^+ tarafına V<0 olacak şekilde bir gerilim uygulandığında, yapı ters beslemde olur. P^+PM yapısı, diyot özelliğine sahip bir yapıdır. Böyle bir yapı kısaca yarıiletken diyot olarak adlandırılır. Şekil 2.3' de görüldüğü gibi holler için engel yüksekliği $e\Phi_{po}=eV_d+E_F$ 'ye eşittir.

Şekil 2.3 P+PM yarıiletken diyot yapısının termal dengede enerji-bant diyagramı

2.5. Schottky Engel Yüksekliği Üzerine Etkiler

İdeal bir metal-yarıiletken kontakta engel yüksekliği,

$$\Phi_{\rm b} = \Phi_{\rm m} - \chi_{\rm s} \tag{2.4}$$

ile verilir. Bu ifadede Φ_m , kontak metalin iş fonksiyonu, χ_s , yarıiletkenin elektron yatkınlığıdır (iletkenlik bandının tabanı ile vakum seviyesi arasındaki enerji farkı). Bazı

etkiler (2.4) eşitliği ile verilen Schottky engel yüksekliğinde sapma meydana getirebilir. Bunlardan birisi katotta emisyon akımının, artan alan kuvvetiyle artmasıdır. Bu etki, Schottky etkisi olarak bilinir ve katodun iş fonksiyonunun, yüzey alan kuvvetine bağlı olduğunu ifade eder. Metalden x uzaklığında, dielektrikteki bir elektron, elektrik alanı oluşturacaktır. Alan çizgileri, metal yüzeyine dik ve metal yüzeyinden içeriye doğru x mesafede lokalize olan +e imaj yükü ile aynı olacaktır. İmaj yükü ile Coulomb etkileşmesinden dolayı elektron üzerine etkiyen kuvvete de imaj kuvveti denir ve

$$\mathbf{F} = \frac{-e^2}{4\pi\varepsilon_s (2x)^2} = -\mathbf{e}\mathbf{E}$$
(2.5)

olarak ifade edilir. Potansiyel ise,

$$-\Phi(\mathbf{x}) = + \int_{x}^{\infty} E d\mathbf{x} = \int_{x}^{\infty} \frac{e}{4\pi\varepsilon_{s} 4(\mathbf{x})^{2}} d\mathbf{x} = \frac{-e}{16\pi\varepsilon_{s} \mathbf{x}}$$
(2.6)

olarak bulunabilir. Burada x, integral değişkeni ve $x = \infty$ için potansiyeli sıfır kabul ettik. Dış elektrik alan sıfır iken potansiyel, (2.6) ifadesiyle verilmiştir. Eğer dış alan sıfırdan farklı ise, o zaman ilave bir terim gelir ve (2.6) ifadesi şöyle olur.

$$-\Phi(\mathbf{x}) = \frac{-e}{16\pi\varepsilon_s x} - \mathbf{E}\mathbf{x}$$
(2.7)

olur. (2.6) eşitliği x' in küçük değerleri için geçerliliğini kaybeder ve x sıfıra giderken - $\Phi(x) \rightarrow \infty$ ' a yaklaşır. Eşitlikteki ikinci terim dış alandan dolayı potansiyel engelindeki düşme miktarını ifade eder. Potansiyel engelinin bu düşmesi, Schottky etkisi ya da imaj kuvvet etkisiyle düşmesidir. Schottky engel düşmesini $\Delta \Phi$,

$$\frac{d[e\Phi(x)]}{dx} = 0 \tag{2.8}$$

şartından maksimum engelin konumu, Xm' i şu şekilde elde ederiz.

$$X_{m} = \sqrt{\frac{e}{16\pi\varepsilon_{s}E}}$$
(2.9)

2.6. Schottky Diyotlarda Termoiyonik Emisyonla Akım İletimi

Schottky kontaklarda bir potansiyel engeli üzerinden elektron taşınması işlemi termoiyonik alan emisyon teorisi ile açıklanmaktadır. Sıcak bir yüzeyden termal enerjileri nedeniyle taşıyıcıların salınması olayı termoiyonik emisyon olarak bilinir. Metal-yarıiletken Schottky diyotlarda termoiyonik emisyon teorisi; taşıyıcıların termal enerjileri nedeniyle potansiyel engelini aşarak yarıiletkenden metale veya metalden yarıiletkene geçmesidir.

Şekil 2.4. Düz beslem altındaki metal yarıiletken Schottky kontakta imaj azalma etkisine ait enerji-bant diyagramı

Schottky diyotlarda akım çoğunluk taşıyıcıları tarafından sağlanır. Metal/n-tipi yarıiletken Schottky diyotlarda elektronlar, metal/p-tipi yarıiletken Schottky diyotlarda ise holler akımı sağlar. Termoiyonik emisyon teorisi oluşturulurken, Maxwell-Boltzman yaklaşımının uygulanabilmesi ve termal denge durumunun olaydan etkilenmemesi için, doğrultucu kontağa ait potansiyel engelinin, kT enerjisinden daha büyük olduğu ve arınma bölgesindeki taşıyıcı çarpışmaların çok küçük olduğu kabul edilmektedir. Şekil 2.4 'de V_a büyüklüğünde düz beslem gerilimi uygulanmış bir Schottky kontak görülmektedir. Burada J_{s→m} yarıiletkenden metale doğru akan akım yoğunluğu ve J_{m→s} ise metalden yarıiletkene doğru olan akım yoğunluğudur. J_{s→m} akım yoğunluğu, x yönünde ve engeli aşabilecek büyüklükte hızlara sahip elektronların konsantrasyonunun bir fonksiyonudur. Bu nedenle,

$$\mathbf{J}_{\mathrm{s}\to\mathrm{m}} = e \int_{E_c}^{\infty} v_x dn \tag{2.10}$$

şeklinde yazılabilir. Burada E_c metal içindeki termoiyonik emisyon için gerekli minimum enerji, v_x sürüklenme yönündeki hızdır. Artan elektron konsantrasyonu,

$$dn = g_c(E) f(E) d(E)$$
(2.11)

ile verilir. Burada $g_c(E)$, iletkenlik bandındaki hal yoğunluğu ve f(E), Fermi-Dirac ihtimaliyet fonksiyonudur. Maxwell-Boltzman yaklaşımı uygulanarak elektron konsantrasyonu için,

$$dn = \frac{4\pi (2m_n^*)^{\frac{3}{2}}}{h^3} \sqrt{E - E_c} \exp\left[\frac{-(E - E_f)}{kT}\right] dE$$
(2.12)

yazılabilir. (E-E_c) enerjisi serbest elektronun kinetik enerjisi olarak kabul edilirse bu durumda

$$\frac{1}{2}m_n^*v^2 = E - E_c \tag{2.13}$$

$$dE = m_n^* v dv \tag{2.14}$$

ve

$$\sqrt{E - E_c} = v \sqrt{\frac{m_m^*}{2}} \tag{2.15}$$

olur. Bu sonuçlar kullanılarak (2.12) ifadesi yeniden düzenlenirse

$$dn = 2\left(\frac{m_n^*}{h}\right)^3 \exp\left(\frac{-e\Phi_n}{kT}\right) \exp\left(\frac{-m_n^* v^2}{2kT}\right) 4\pi v^2 dv$$
(2.16)

elde edilir. Bu denklem, hızları v *ve* v + *dv* aralığında değişen elektronların sayısını verir. Hız, bileşenlerine ayrılırsa $v^2 = v_x^2 + v_y^2 + v_z^2$ şeklinde olur. Buradan (2.10) ifadesi

$$J_{s \to m} = 2e \left(\frac{m_n^*}{h}\right)^3 \exp\left(\frac{-e\Phi_b}{kT}\right) \int_{-\infty}^{\infty} v_x \exp\left(\frac{m_n^* v_x^2}{2kT}\right) dv_x \int_{-\infty}^{\infty} \exp\left(\frac{-m_n^* v_y^2}{2kT}\right) dv_y$$

$$x \int_{-\infty}^{\infty} \exp\left(\frac{-m_n^* v_z^2}{2kT}\right) dv_z$$
(2.17)

şeklinde yazılabilir. Ayrıca minimum vox hızı için,

$$\frac{1}{2}m_n^* v_{ox}^2 = e(V_{bi} - V_a)$$
(2.18)

yazılabilir. v_{ox} hızı, x doğrultusundaki harekette elektronun potansiyel engelini aşabilmesi için gerekli olan minimum hızdır. Bu durumda $v_x \rightarrow v_{ox}$ şartı için $\alpha = 0$ olur.

Yine
$$v_x dv_x = \left(\frac{2kT}{m_n^*}\right) \alpha d\alpha$$
 yazılabilir. (2.17) ifadesinde aşağıdaki değişken

değiştirmeleri yapılabilir.

$$\frac{-m_n^* v_x^2}{2kT} \equiv \alpha^2 + \frac{e(V_{bi} - V_a)}{kT}$$
(2.19a)

$$\frac{-m_n^* v_y^2}{2kT} = \beta^2$$
(2.19b)

$$\frac{m_n^* v_z^2}{2kT} \equiv \gamma^2 \tag{2.19c}$$

Bu ifadeler (2.17) denkleminde kullanılırsa,

$$J_{s \to m} = J_{x \to \infty} = 2e \left(\frac{m_n^*}{h}\right)^3 \left(\frac{2kT}{m_n^*}\right)^2 \exp\left(\frac{-e\Phi_{bn}}{kT}\right) \exp\left[\frac{e(V_{bi} - V_a)}{kT}\right]$$
$$x \int_{0}^{\infty} \alpha \exp(-\alpha^2) d\alpha \int_{-\infty}^{\infty} (-\beta^2) \int_{-\infty}^{\infty} (-\gamma^2) d\gamma \qquad (2.20)$$

Bu son ifadenin integrali alınırsa,

$$J_{s \to m} = \left(\frac{4\pi e m_n^* k^2}{h^3}\right) T^2 \exp\left[\frac{-e(\Phi_{bn} + V_{bi})}{kT}\right] \exp\left(\frac{eV_a}{kT}\right)$$
(2.21)

ya da,

$$J_{s \to \infty} = \left(\frac{4\pi e m_n^* k^2}{h^3}\right) T^2 \exp\left[\frac{-e\Phi_{bn}}{kT}\right] \exp\left(\frac{eV_a}{kT}\right)$$
(2.22)

olur. Şekil 2.3 de görüldüğü gibi $\Phi_n + V = \Phi_{bn}$ ve uygulama gerilimi sıfır olduğunda $J_{m \to s}$ ile $J_{s \to m}$ tam olarak aynıdırlar. Yani,

$$J_{m \to s} = \left(\frac{4\pi e m_n^* k^2}{h^3}\right) T^2 \exp\left[\frac{-e\Phi_{bn}}{kT}\right]$$
(2.23)

olur. Eklemdeki net akım yoğunluğu J = $J_{s \to m}$ - $J_{m \to s}$ olur. Daha açık ifadeyle net akım yoğunluğu

$$J = \left[A^* T^2 \exp\left(\frac{-e\Phi_{bn}}{kT}\right) \right] \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$
(2.24)

olur. Burada A* termoiyonik emisyonda etkin Richardson sabiti olup,

$$A^* = \frac{4\pi e m_n^* k^2}{h^3}$$
(2.25)

ile verilir. Genel bir durum için (2.24) ifadesi,

$$J = J_0 \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$
(2.26)

olarak yazılabilir. Burada J₀ ters doyma akım yoğunluğu olarak bilinir ve

$$J_0 = A^* T^2 \exp\left(\frac{-c\Phi_{bn}}{kT}\right)$$
(2.27)

şeklinde ifade edilir. Φ_{bn} Schottky engel yüksekliğinin imaj kuvveti nedeniyle azaldığı ve

 $\Phi_{bn} = \Phi_b - \Delta \Phi$ şekline verildiği dikkate alınarak (2.27) ifadesi yeniden

$$J_0 = A^* T^2 \exp\left(\frac{-e\Phi_b}{kT}\right) \exp\left(\frac{e\Delta\Phi}{kT}\right)$$
(2.28)

Şeklinde yazılır. Engel yüksekliğindeki $\Delta \Phi$ değişimi, artan elektrik alanla ya da artan ters beslem gerilimi ile artacaktır (37).

2.7.MIS (Metal Insulator Semiconductor) Schottky Diyotlarda İdealite Faktörü İfadeleri

Bardeen (38) modeline göre, bir metal ile bir yarıiletken kontak haline getirildikleri zaman meydana gelen arayüzey halleri, yarıiletken yüzeyi ile yalıtkan tabaka arasında lokalize olurlar. Bu yüzden metal ya da yarıiletkende elektrik alan yoksa, arayüzey tabakasındaki elektrik alan şiddeti, arayüzeydeki ve metal yüzeydeki yüklerle ilgilidir. Gauss kanununa göre,

$$\varepsilon_i E_i = Q_{ss} = -Q_m \tag{2.29}$$

yazılabilir. Burada E_i , arayüzey tabakasındaki elektrik alan şiddetidir. Normalde elektrik alan, Schottky engelinde vardır ve burada önemli olan da bu alanın engel yüksekliğini nasıl etkilediğini bilmektir. Eğer yarıiletken içinde bir E_s alanı varsa, bu durumda Gauss kanunu,

$$V_i = \frac{\delta}{\varepsilon_i} \left(\varepsilon_s E_{mak} + Q_{ss} \right) \tag{2.30}$$

şeklinde yazılır. Burada V_i arayüzey tabakasındaki potansiyel düşmesi, E_{max} ise E_s ' nin maksimum değeridir. n idealite faktörünün arayüzey parametrelerine (arayüzey hal yoğunluğu ve arayüzey tabaka kalınlığı) ve uygulama gerilimine bağlılığı incelenmiştir

(10,17,39). Bu yaklaşımda, öncelikle bütün arayüzey hallerinin metalle dengede olduğu dikkate alınmalıdır. Yarıiletkenin yüzey deplasyon tabakasının ve arayüzey tabakasının var olduğu bir durumda V uygulama gerilimi için

$$V = V_i + V_s \tag{2.31}$$

Yazılabilir. Burada V_s deplasyon tabakası nedeniyle meydana gelen gerilim değişimidir.
(2.24) ifadesi tekrar göz önüne alınacak olursa bu ifade açık olarak

$$I = AA^* T^2 \exp\left(\frac{-q\Phi_b}{kT}\right) \left[\exp\left(\frac{qV}{kT}\right) - 1\right]$$
(2.32)

Şeklinde yazılabilir. Bu ifadenin her iki tarafının tabii logaritması alınarak V ' ye göre türevi alınacak olursa

$$\frac{d\ln I}{dV} = \frac{1}{I}\frac{dI}{dV} = \frac{q}{kT}\left\{1 - \frac{d\Phi_b}{dV} + \left[\exp\left(\frac{qV}{kT}\right) - 1\right]^{-1}\right\}$$
(2.33)

olur. Düz beslem durumunda lnI-V grafiginin lineer kısmının eğimi idealite faktörünü verdiği için (2.33) denkleminden

$$n = \frac{q}{kT} \frac{dV}{d\ln I} = \frac{1}{(1 - \beta)}$$
(2.34)

ifadesi elde edilir. Burada $\beta = d\Phi_b / dV$ ' dir. Bu durumda idealite faktörü için

$$\frac{1}{n} = 1 - \frac{d\Phi_b}{dV} \tag{2.35}$$

yazılabilir. Schottky diyotlarda engel yüksekliği birinci derecede deplasyon bölgesindeki elektrik alana bağlı olduğu için, engel yüksekliği Φ_b yerine etkin engel

yüksekliği Φ_e olarak alınmalıdır. Etkin engel yüksekliği ifadesi ise

$$\Phi_e = \Phi_b + \left(\frac{d\phi_e}{dV}\right)V = \Phi_b + \beta V$$
(2.36)

ile verilir. Burada $d\Phi_e/dV$ etkin engel yüksekliğinin beslem gerilimine bağlı olarak değişimidir. Yine (2.35) ve (2.36) ifadelerinden görüleceği üzere $\beta = d\Phi / dV$ ' dir. Bu ifade dikkate alınarak (2.33)

$$I = I_0 \exp\left(\frac{-\beta q V}{kT}\right) \left[\exp\left(\frac{q V}{kT}\right) - 1\right]$$
(2.37)

şeklinde yeniden yazılabilir. Burada doyma akımı I₀

$$I_0 = AA^* T^2 \exp\left(\frac{-q\Phi_b}{kT}\right)$$
(2.38)

şeklinde verilir. Şayet $d\Phi/dV$ sabit ise idealite faktörü de sabittir. İdealite faktörünün birden büyük değerler alması, uygulama geriliminin sadece deplasyon tabakası üzerinde düşmediğini, ancak arayüzey tabakası, deplasyon tabakası ve gövde direnci arasında bölüşüldüğünü göstermektedir.

Şimdi (2.35) ifadesi ve $(d\Phi_b / dV = d\Phi / dV) = (dV_i / dV)$ eşitliği dikkate alınırsa (2.30) denkleminin uygulama gerilimine göre türevi alınarak,

$$\left(1-\frac{1}{n}\right) = \frac{dV_i}{dV} = \frac{\delta}{\varepsilon_i} \left(\varepsilon_s \frac{dE_{mak}}{dV} + \frac{dQ_{ss}}{dV}\right)$$
(2.39)

ifadesi elde edilir. (2.32) ifadesi kullanılarak

$$\frac{dE_{\max}}{dV} = \frac{dE_{\max}}{dV_s} \left(1 - \frac{dV_i}{dV}\right) = \frac{1}{nW} = \frac{1}{W} \frac{dV_s}{dV}$$
(2.40)

elde edilir.

$$\frac{dQ_{ss}}{dV} = \frac{dQ_{sa}}{dV_i} \frac{dV_i}{dV} = -qN_{sa} \left(1 - \frac{1}{n}\right)$$
(2.41)

ile verilmektedir. Yine burada w = $(2\epsilon_i V_d/qN_d)^{1/2}$ yarıiletkendeki deplasyon tabakası kalınlığıdır. Q_{sa} ve N_{sa} sırasıyla metalle denge durumunda olan arayüzey yük yoğunluğu ve arayüzey hal yoğunluğu, N_d yarıiletkendeki donor konsantrasyonu ve V_d ise

diffüzyon potansiyelidir.(2.41) ifadesi, metalle dengede olan işgal edilmiş arayüzey hallerindeki değişimi verir ve metalin Fermi seviyesine göre hallerin enerjisindeki değişim olan dV_i ile belirlenir. Bu yüzden (dQ_{sa} / dV_i)= -qN_{sa} eşitliği yazılabilir. (2.40)ve (2.41) ifadeleri (2.39) ' da yerine yazılacak olursa

$$\left(1 - \frac{1}{n}\right) = \frac{\delta}{\varepsilon_i} \left[\frac{\varepsilon_s}{nw} - qN_{sa}\left(1 - \frac{1}{n}\right)\right]$$
(2.42)

ve buradan

$$n=1+\frac{\delta\varepsilon_s}{w(\varepsilon_s+\delta qN_{sa})}$$
(2.43)

elde edilir. Bu sonuç arayüzey hallerinin metalle dengede olduğu durum için elde edilmiştir. Arayüzey hallerinin yarıiletkenle denge durumunda olması halinde, arayüzey hal yük yoğunluğu Q_{sb} ve arayüzey hal yoğunluğu N_{sb} alınarak, (2.41)ifadesi

$$\frac{dQ_{ss}}{dV} = \frac{dQ_{sb}}{dV_s} \frac{dV_s}{dV} = \frac{qN_{sb}}{n}$$
(2.44)

şeklinde yazılabilir. (2.44) ifadesi, yarıiletkenle dengede olan işgal edilmiş arayüzey hallerindeki değişimi verir ve yarıiletkenin Fermi seviyesine göre, hallerin enerjisindeki değişim olan dV_s ile belirlenir. Bu yüzden (dQ_{sb} / dV_s)=qN_{sb} eşitliği yazılabilir.(2.40) ve (2.44) ifadeleri (2.39) ' da yerine yazılacak olursa

$$\left(1 - \frac{1}{n}\right) = \frac{\delta}{\varepsilon_i} \left[\frac{\varepsilon_s}{nw} + \frac{qN_{sb}}{n}\right]$$
(2.45)

ve buradan

$$n=1+\frac{\delta}{\varepsilon_{i}}\left[\frac{\varepsilon_{s}}{w}+qN_{sb}\right]$$
(2.46)

elde edilir.

2.8. Metal Yarıiletken Kontaklarda Yalıtkan Tabaka Potansiyel Dağılımının Diyot İdealite Faktörüne Etkisi

Yarıiletkenin içinde elektrik alanı, yarıiletkenin dielektrik sabitiyle doğru ve oksit tabakasının dielektrik sabitiyle ters orantılı olduğu Gauss kanunundan bilinir. Arayüzeyde bir arayüzey yük yoğunluğunun olması halinde durum farklıdır. Böyle bir yük yoğunluğu, arayüzey hallerinde net bir yükün veya yarıiletkenin yüzeyinde toplanan hareketli yükler olarak ortaya çıkabilir (40).

p-tipi MIS diyodun şeması Şekil 2.3 'de gösterilmiştir. Burada oksit tabakası boyunca düşen potansiyel V_i olup V_D düfüzyon potansiyelidir. İdealite faktörü *n* nın bir V doğru beslem halinde, düfüzyon potansiyeli ile bağıntısı

$$n = -\frac{\Delta V}{\Delta V_D} \tag{2.47}$$

bağıntısı ile verilir. Burada ΔV_D uygulanan V geriliminin bir sonucu olarak yüzey potansiyelindeki değişme miktarıdır. İdeal durumda bu eşitlik bire eşittir. Bu eşitliği $\Delta V = \Delta V_D + \Delta V_i$ kullanarak

$$\frac{1}{n(V)} = -\frac{dV_D}{dV} = 1 + \frac{dV_i}{dV}$$
(2.48)

elde edilir. Metal üzerindeki yüzey yükü için Gauss kanunu uygulanırsa

$$\Delta V_i = -\frac{\delta}{\varepsilon_i} \Delta Q_{sc} \tag{2.49}$$

eşitliği elde edilir. Nötrallık şartını göz önünde bulundurularak

$$Q_m + Q_{sc} + Q_{ss} = 0 \tag{2.50}$$

yazılabilir. Burada Q_m metalin yükü, Q_{ss} arayüzey hallerinde mevcut net yük Q_{sc} arınma bölgesinde iyonize olmuş donorlardan dolayı oluşan yüktür. Böylece yukarıdaki denklem

$$\Delta V_{\vec{I}} = \frac{\delta}{\varepsilon_{\vec{I}}} \left(\Delta Q_{ss} + \Delta Q_{sc} \right) \tag{2.51}$$

şeklini alır. Son denklemin türevi alınırsa

$$\frac{dV_i}{dV} = \frac{\delta}{\varepsilon_i} \left(\frac{dQ_{sc}}{dV_D} \frac{dV_D}{dV} + \frac{dQ_{ss}}{dV} \right)$$
(2.52)

elde edilir. Arınma bölgesi yaklaşımından dolayı

$$\frac{dQ_{sc}}{dV_D} = \frac{\varepsilon_s}{d}$$
(2.53)

eşitliği yazılabilir. Burada d arınma bölgesi genişliğidir. Arayüzey halleri iki alt grup halinde incelenebilir. Arayüzey halleri metal ve yarıiletkenle dengelenir. Bu arayüzey hallerine sırasıyla N_{sa} ve N_{sb} diyebiliriz.

Metal ile dengedeki arayüzey halleri için, yük değişimi metaldeki Fermi enerjisine göre arayüzey hallerin enerjisindeki değişim ile tayin edilir. Bu değişim dV_i 'dir. Böylece,

$$\frac{\partial Q_{ss}}{\partial V_D} = -eN_{sa} \tag{2.54}$$

olur. Yarıiletken ile dengedeki haller için işgal değişimi yarıiletkendeki Fermi enerjisine göre hallerin enerjisindeki değişim ile tayin edilir. Bu durumda

$$\frac{\partial Q_{ss}}{\partial V_D} = -eN_{sb} \tag{2.55}$$

olur. Bu genelleştirilirse

$$\frac{dQ_{ss}}{dV} = \frac{\partial Q_{ss}}{\partial V_D} \frac{dV_D}{dV} + \frac{\partial Q_{ss}}{\partial V_i} \frac{dV_i}{dV}$$
(2.56)

olarak yazılabilir. Bu son denklemi (2.46) denkleminde yerine yazılırsa

$$n = 1 + \frac{\left(\delta / \varepsilon_{i}\right)\left[\left(\varepsilon_{s} / d\right) + eN_{sb}\right]}{1 + \left(\delta / \varepsilon_{i}\right)eN_{sa}}$$
(2.57)

ifadesi elde edilir. Arayüzey halleri potansiyel dağılımını etkilemeyecek kadar küçük ise

son bağıntı

$$n = 1 + \frac{\delta \varepsilon_s}{d\varepsilon_i}$$
(2.58)

eşitliğine indirgenir. Arayüzey hallerinin tümünün metalle dengede olduğu durum için $N_{sb} \rightarrow 0$ olur. Böylece son denklem

$$n = 1 + \frac{\delta \varepsilon_s}{d(\varepsilon_i + \delta e N_{sa})}$$
(2.59)

şekline dönüşür. Arayüzey hallerinin hepsinin yarıiletken ile dengede olduğu durum için $N_{sa} \rightarrow 0$ olur. Böylece

$$n = 1 + \frac{\delta}{\varepsilon_i} \left(\frac{\varepsilon_s}{d} + eN_{sa} \right)$$
(2.60)

şekline indirgenir. Bu, kalın oksit tabakaları içindir. Arayüzey hallerinin metalle dengede olduğu durum için oksit tabakası kalınlığı daha incedir (40).İdealite faktörü n' nin değeri, uygulanan voltajın tamamıyla arınma bölgesinde (Schottky Bölgesi) düşmemesinden dolayı ideal değerinden (birden) daha büyüktür. İdealite faktörünün değeri doğru beslem lnI-V grafiğinin doğru kısmının eğiminden bulunabilir. Denklem (2.64) de voltaja bağlı Φ_b 'nın yerine Φ_e etkin engel yüksekliğinin idealite bağımlılığı da göz önüne alınarak

$$\frac{d\Phi_e}{dV} = \beta = 1 - \frac{1}{n} \tag{2.61}$$

olarak bulunur (40). Burada β , Φ_e nün voltaj katsayısıdır. Bundan dolayı etkin engel yüksekliği;

$$\Phi_e = \Phi_B + \beta (V - IR_s) \tag{2.62}$$

ile verilir. Bununla beraber, MIS diyot için n idealite faktörü Card ve Rhoderick[10],

tarafından verilenden büyüktür ve

$$n = 1 + \frac{\delta}{\varepsilon_i} \left(\frac{\varepsilon_s}{d} + q^2 N_{ss} \right)$$
(2.63)

ile verilir. Bir *n* tipi yarıiletkende, yarıiletkenin yüzeyinde iletkenlik bandının tabanına göre arayüzey hal enerjisi E_{ss}

$$E_c - E_{ss} = q\Phi_e - qV \tag{2.64}$$

Benzer şekilde, bir p tipi yarıiletkende, yarıiletkenin yüzeyinde iletkenlik bandının tabanına göre arayüzey hal enerjisi E_s

$$E_{ss} - E_v = q\Phi_e - qV \tag{2.65}$$

denklemi ile verilir (41).

2.9 Cheung Fonksiyonları ve Schottky Diyot Karakteristiklerinin Belirlenmesi

Metal - yarıiletken kontak yapısının doğru beslem I-V karakteristikleri yardımı ile Schottky diyot parametrelerinin hesaplanmasında Cheung, tarafından farkh bir model sunuldu. Termoiyonik emisyondan bulunan J akım yoğunlugu, diyodun "A" etkin alanıyla çarpılırsa, diyottan geçen toplam akım.

$$I = A \cdot J = \left[AA^* T^2 \exp\left(\frac{-e\Phi_b}{kT}\right) \right] \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$
(2.66)

olarak verilir.Bu ifadede $eV_a \gg kT$ ise, 1 ihmal edilebilir. Pratikte uygulanan voltajın tümü arınma bölgesinde düşmediğinden, ideal durumdan sapmalar olacaktır. Bu ideal durumdan sapmaları da ifade edebilmek için ,birimsiz bir sabit olan n, idealite faktörünün de hesaba katılması gerekir.Bu durumda akım denklemi,

$$I = A J = \left[A A^* T^2 \exp\left(\frac{-e\Phi_b}{kT}\right) \right] \left[\exp\left(\frac{eV_a}{kT}\right) \right] \left[\exp\left(\frac{eV_a}{kT}\right) \right]$$
(2.67)

şekline dönüşür. Burada uygulanan V_a voltajının IR_s kadarı seri direnç üzerinde düşeceği için V_a yerine V_a - IR_s alınırsa (2.67) ifadesi,

$$I = A J = \left[A A^* T^2 \exp\left(\frac{-e\Phi_b}{kT} \right) \right] \left[\exp\left(\frac{e(V_a - IR_s)}{nkT} \right) \right]$$
(2.68)

şeklinde yazılabilir. Bu son eşitliğin tabii logaritması alını
p V_{a} 'ya göre çözümü yapılırsa,

$$V_a = \left(\frac{nkT}{e}\right) \ln\left(\frac{I}{AA^*T^2}\right) + n\Phi_b + IR_s$$
(2.69)

elde edililebilir. (2.69) eşitliğinin lnI'ya göre diferansiyeli alınırsa,

$$\frac{dV_a}{d(\ln I)} = \frac{nkT}{e} + IR_s \tag{2.70}$$

elde edilir. (2.52) eşitliğinde dV/d(lnI) 'nın I'ya göre grafiği bir doğrudur ve bu doğrunun eğimi R_s seri direncini verir. Bu doğrunun düşey ekseni kestiği noktadan n idealite faktörü bulunur. Φ_b engel yüksekliği ise ,

$$H(I) = V_a - \left(\frac{nkT}{e}\right) \ln\left(\frac{I}{AA^*T^2}\right)$$
(2.71)

şeklinde tanımlanan H(I) değişim fonksiyonu yardımı ile bulunabilir.(2.69)ve (2.70) eşitliklerinden,

$$H(I) = n\Phi_b + IR_s \tag{2.72}$$

şeklinde yazılabilir. H(I)-I grafiği çizilecek olursa elde edilecek doğrunun eğimi R_s seri direncini verecektir. Bu doğrunun H(I) eksenini kestiği noktadan Φ_b engel yüksekliği bulunacaktır (20).

2.10. Metal - Yarıiletken Schottky Diyotlarında Arayüzey Tabakası ve Arayüzey Hallerinin Etkileri

Tanım olarak bir arayüzey durumu yarıiletken ile metal arasında girilebilir bir enerji seviyesidir. Arayüzey durumları donor veya akseptör tipte olabilirler. Donor tipte enerji düzeyi dolu iken yüksüz, boşken pozitif yüklüdür. Akseptör tipte enerji düzeyi dolu iken negatif yüklü, boşken yüksüzdür. İletim veya değerlik bandı ile yük değiştokuşu yapabilen arayüzey durumları yarıiletken ile metal arasındaki arayüzey yakınında yer alır (42). Schottky - Mott teorisine göre Schottky diyotlarında engel yüksekliği, metalin iş fonksiyonu ile yarıiletkenin iş fonksiyonu arasındaki farka eşittir. Bu nedenle potansiyel engel yüksekliğin metalin iş fonksiyonu ile orantılı olduğu kabul edilir (8-11). Barden, yarıiletken üzerinde yüzey halleri konusunda yaptığı çalışmalarda n - tipi bir yarıiletken ile doğrultucu kontak haline getirilen bir metalin p - tipi için omik kontak oluşturması gerekirken doğrultucu kontak da oluşturabileceğini açıkladı. Yüzey halleri yarıiletkenin içini metalden perdeleyerek engel yüksekliğinin beklenen değerden daha değişik olmasına sebep olur.

Söz konusu modelde de yarıiletken ile metal arasında yüzey hazırlama şartlarına bağlı olarak bir yalıtkan arayüzey tabakası oluşabilir (8-11,40,43). Arayüzey hallerine aşağıda sıralanan durumlarda rastlanabilir.

1) Metal ile kontaktan önce yarıiletken ve vakum seviyesi ara yüzeyinde mevcut olan asal yüzey halleri olarak rastlanabilir. Bu durum genel olarak yarıiletken kristalin periyodik yapısının yüzeyde keskin bir şekil de son bulmasıyla ortaya çıkar (8,9,40,43). 2) Yariiletken metal ile kontak haline getirildikten sonra yariiletkenle arayüzey tabakası arasında lokalize olmuş asal olmayan arayüzey halleri şeklinde de rastlanılabilir. Bu hal genel olarak kontak yapılan yariiletken yüzeylerin yeterince temiz olmayışı durumunda yüzeyde biriken yabancı atomların varlığından dolayı oluşur (8-11,40,43).

3) Kontak yapan metal ve yarıiletkenin yüzey tabakasında bulunan kusur ve safsızlıklardan oluşan asal olmayan yüzey halleridir. Bu haller, yarıiletkenin yüzeyine metal buharlaştırıldıktan sonra, yarıiletkenin ince bir tabakasıyla metalden ayrılırlar. Böylece bu hallerin yarıiletkenle dengede olduğu kabul edilir (8-11,40,43).

Uygulamalarda en çok rastlanan arayüzey halleri bunlardır. Bu arayüzey halleri Schottky diyot karakteristiklerinin beklenenden farklı çıkmasına, deneysel ve teorik sonuçların farklılıklar göstermesine sebep olurlar.

Schottky engel diyotlarını ideallikten uzaklaştıran başka bir etkende, metal ve yarıiletken arasında ince bir oksit tabakasının oluşmasıdır (8-11,40,43). Kontak metali ile yarıiletken yüzeyi arasındaki kimyasal reaksiyonlardan da ortaya çıkabilir. Bazen metal temiz yarıiletkenin yüzeyine buharlaştırıldığı zaman metal ve yarıiletken arasında kimyasal bir reaksiyon oluşur. Bu reaksiyonlardan dolayı arayüzeyde yeni bir arayüzey tabakası oluşabilir. Bu tabaka boyunca potansiyel düşmesinden dolayı ısıl dengedeki sıfır beslem engel yüksekliğinin ideal bir Schottky diyotunkinden daha düşük olması gibi bir etki meydana gelir. Bu etkiler Schottky diyotların C-V ve I-V karakteristiklerin bazı değişmelerine sebep olur . Bu ideallikten sapmalar doğru beslem I-V karakteristiklerinde idealite faktörü ile ifade edilir (40,43,44). Ters beslem I-V karakteristiklerinde artan uyarlama voltajıyla ters beslem akımı artar ve doyma akımı gözlenmez.

Arayüzey halleri, ancak düşük frekanslarda alternatif akım sinyallerine cevap verdiklerinden dolayı [dolup boşaldıklarından], yüksek frekanslarda değil düşük frekanslarda (v < 1 MHz) engel sığasına katkıda bulunurlar.

Düşük frekanslarda; arayüzey tabakası sığası Schottky engel sığası ile seri, arayüzey hallerinin sığası ise Schottky engel sığası ile paralel kabul edilir. Arayüzey tabakasının sığası o kadar büyüktür ki Schottky engel sığasına olan katkısı ihmal edilir (35,45).

3.DENEY SİSTEMİ, NÜMUNE HAZIRLANMASI VE ÖLÇÜLER

3.1. Giriş

Bu bölüm, p-Si/Quercetin/Al Schottky diyotlarının yapımı için gerekli malzeme, numune hazırlanması, temizlenmesi ve yapımını içerir. Yapılan numunelerin parametrelerinin ölçümünde kullanılan aletler ve teknikler bu bölümde yer almaktadır.

3.2. Numune Hazırlanması ve Temizlenmesi

Bu çalışmada (100) doğrultusunda büyütülmüş, özdirenci $\rho = 1-10 \Omega$ -cm olan p-Si kullanılmıştır. Diyot yapımında iyi netice alınabilmesi için, kullanılacak numunenin yüzeyinin organik ve mekanik kirlerden arınmış olması gerekir. Bunun için bizim kullandığımız numunenin yüzey parlatılması fabrikasyon olarak yapıldığı da dikkate alınarak, mekanik olarak parlatılmaya gerek kalmaksızın hemen kimyasal temizleme işlemi yapıldı. Numunenin kimyasal temizlemesinde aşağıdaki işlem takip edildi..

- 1) Aseton'da ultrasonik olarak 10 dakika yıkandı.
- 2) Metanol'da ultrasonik olarak 10 dakika yıkandı.
- 3) Deiyonize su ile iyice yıkandı.
- 4) RCA1 ($H_2O:H_2O_2:NH_3;6:1:1$) 'de 60 ⁰C'de10 dakika kaynatıldı.
- 5) Seyreltik HF (H₂O:HF;10:1) ile 30 saniye yıkandı.
- 6) RCA2 (H₂O:H₂O₂:HCl;6:1:1) 'de 60 0 C'de 10 dakika kaynatıldı.
- 7) Deiyonize su ile iyice yıkandı.
- 8) Seyreltik HF (H₂O:HF;10:1) ile 30 saniye yıkandı.
- 9) 15-20 dakika akan deiyonize su içerisinde yıkandı.
- 10) Azot gazı (N₂) ile kurutuldu.

Ayrıca buharlaştırmada kullanılacak metaller, metanolda 5 dakika ultrasonik olarak yıkandı

Numunenin önce mat (parlatılmamış) tarafına omik kontak yapılması gerekir. Bunun için önce ısıtıcı pota % 10 seyreltiklikte HCl ile yıkanıp, deiyonize su ile iyice temizlenip kurutuldu.

Şekil 3.1. Omik kontak termal işlemi için fırın ve kontrol ünitesi şeması

Sonra numuneler kimyasal olarak (RCA) temizlendikten ve numunenin mat tarafına buharlaştırılacak metal (Al) kimyasal olarak temizlenip ısıtıcının üzerine bırakıldıktan sonra numune, daha önce çalıştırılıp vakum işlemi için hazır hale getirilen ünitenin içerisine yerleştirildi. Vakum işlemi neticesinde basınç 10⁻⁵Torr değerine düstükten sonra, daha önceden ısıtıcı üzerine verlestirilen % 99.99 saflıkta alüminyum (Al) buharlaştırıldı. Bir müddet bekledikten sonra ters işlem yapılarak vakum cihazına hava verildi ve numune vakum cihazından cıkarılarak kimyasal olarak temizlenmis quartz potanın içine yerleştirilerek, daha önce yakılarak 570°C 'ye ayarlanan fırında 3 dakika tavlandı. Tavlama için kullanılan fırının seması Sekil 3.1. 'de görülmektedir. Böylece omik kontak işlemi tamamlanmış oldu. Hazırlanmış olan bu omik kontaklı numunelerin ön yüzeylerindeki doğal oksit tabaka HF/H₂0 (1:10) çözeltisi kullanılarak söküldü ve saf suda 30 sn bekletildi. 8.27×10^{-4} M yoğunluğa sahip etil alkol(C2H5OH)' hazırlanmış çözeltiden 15µL damlatıldı ve buharlaşması de Oercetin cözülerek beklendi. Bu yapılar üzerine Al buharlaştırılarak yarıçapları 1mm olan (diyot alanı =7.85 x 10^{-3} cm²) p-Si/Ouercetin/Al divotumuzu elde ettik.

Şekil 3.2 Quercetin (3,3',4',5,7-pentahydroxyflavone) molekülünün şekli

3.4. Ölçme ve değerlendirme işlemleri

Laboratuar ortamında imal ettiğimiz p-Si/Quercetin/Al diyotunun I-V ölçümleri için "KEITHLEY 617 Electrometer" cihazı kullanılarak oda sıcaklığında alındı.

Metal-yariiletken kontaklarda thermoiyonik akım teorisine akım;

$$I = AA^* T^2 \exp\left(\frac{-q\Phi_b}{kT}\right) \left[\exp\left(\frac{qV}{kT}\right) - 1\right]$$
(3.1)

ile verilir. Bu ifadenin her iki tarafının tarafının tabii logaritması alınır ve V'ye göre diferansiyeli alınacak olursa

$$\frac{d\ln I}{dV} = \frac{1}{I}\frac{dI}{dV} = \frac{q}{kT}\left\{1 - \frac{d\Phi_b}{dV} + \left[\exp\left(\frac{qV}{kT}\right) - 1\right]^{-1}\right\}$$
(3.2)

ifadesi elde edilir.Düz beslem durumunda lnI-V grafiğinin lineer kısmının eğimi idealite faktörünü verdiği için (3.2) denkleminden

$$n = \frac{q}{kT} \frac{dV}{d\ln I} = \frac{1}{(1-\beta)}$$
(3.3)

denklem 3,3 elde edilir.

Burada q elektron yükü, k Boltzmann sabiti, T oda sıcaklığı 300 K olmak üzere lnI-V grafiğinin lineer kısmının eğiminden faydalanılarak idealite faktörü denklem (3.3) yardımı ile p-Si/Quercetin/Al diyotumuz için n= 1,49 olarak hesaplandı. .Schottky diyotlarda engel yüksekliği birinci derecede deplasyon bölgesindeki elektrik alana bağlı olduğu için, engel yüksekliği Φ_b yerine etkin engel yüksekliği Φ_e olarak alınmalıdır. Etkin engel yüksekliği ifadesi ise

$$\Phi_e = \Phi_b + \left(\frac{d\Phi_e}{dV}\right)V = \Phi_b + \beta V$$
(3.4)

ile verilir. Burada $d\Phi_e/dV$ etkin engel yüksekliğinin besleme gerilimine bağlı olarak değişimidir. Yine $\beta = d\Phi / dV$ olduğu göz önünde bulundurulursa thermoiyonik akım denklemi

$$I = I_0 \exp\left(\frac{-\beta q V}{kT}\right) \left[\exp\left(\frac{q V}{kT}\right) - 1\right]$$
(3.5)

şeklinde yeniden yazılabilir. Burada doyma akımı I₀

$$I_0 = AA^* T^2 \exp\left(\frac{-q\Phi_b}{kT}\right)$$
(3.6)

ile verilir. Denklem (3.6) 'nın her iki tarafının doğal logaritması alınarak Φ_b engel yüksekliği

$$q\Phi_{b} = kTIn\left(\frac{AA * T^{2}}{I_{0}}\right)$$
(3.7)

ifadesi elde edilir.

q elektron yükü, A diyotumuzun alanı (A=7.85 x 10^{-3} cm²), A^{*} Richardson sabiti (p-Si için 32 A/cm²K²), T oda sıcaklığı ve lnI-V grafiğinden faydalanılarak hesaplanan I₀=1.82958.10⁻¹⁰ A değeri kullanılarak denklem (3.7) den Φ_b engel yüksekliği 0,84eV olarak hesaplandı. lnI-V grafiği, idealite faktörü ve engel yüksekliği değerleri diyotumuzun doğrultucu özelliğe sahip olduğunu göstermiştir. Diyotumuz ideal diyot özelliği yerine MIS (Metal-Yalıtkan-Yarıiletken) özelliği göstermiştir.

Şekil 3.3 p-Si/Quercetin/Al diyotunun lnI-V grafiği

Seri direncin etkili olduğu non lineer bölgede termoiyonik emisyon teorisine göre akım;

$$I = A \cdot J = \left[AA^* T^2 \exp\left(\frac{-e\Phi_b}{kT}\right) \right] \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$
(3.8)

ile verilir. Bu ifadede $eV_a >> kT$ ise, 1 ihmal edilebilir, böylece akım denklemi;

$$I = A J = \left[A A^* T^2 \exp\left(\frac{-e\Phi_b}{kT}\right) \right] \left[\exp\frac{eV_a}{kT} \right]$$
(3.9)

şekline dönüşür. Burada uygulanan V_a voltajının IR_s kadarı seri direnç üzerinde düşeceği için V_a yerine V_a - IR_s alınırsa bu ifade;

$$I = A J = \left[A A^* T^2 \exp\left(\frac{-e\Phi_b}{kT} \right) \right] \left[\exp\left(\frac{e(V_a - IR_s)}{nkT} \right) \right]$$
(3.10)

şeklinde yazılabilir. Denklem (3.10)'un her iki tarafının doğal logaritması alınır V_a çekilir ise;

$$V_a = \left(\frac{nkT}{e}\right) \ln\left(\frac{I}{AA^*T^2}\right) + n\Phi_b + IR_s$$
(3.11)

ifadesi elde edilir ve bu ifadeninse lnI'ya göre türevi alınırsa;

$$\frac{dV_a}{d(\ln I)} = \frac{nkT}{e} + IR_s \tag{3.12}$$

ifadesi elde edilir. Bu denklemden faydalanılarak dV/d(lnI) 'nın I `ya karşı grafiği çizildi. dV/d(lnI)-I grafiğinin eğiminden seridirenç 3,23M Ω ve düşey ekseni kesiminden yararlanılarak idealite faktörü n=1,68 olarak hesaplandı.

 Φ_b engel yüksekliği hesabı için;

.

$$H(I) = V_a - \left(\frac{nkT}{e}\right) \ln\left(\frac{I}{AA^*T^2}\right)$$
(3.13)

şeklinde tanımlanan H(I) değişim fonksiyonu yardımı ile bulunabilir.(3.11)ve (3.12) eşitliklerinden,

$$H(I) = n\Phi_b + IR_s \tag{3.14}$$

şeklinde yazılabilir. H(I)-I grafiği çizilecek olursa elde edilecek doğrunun eğiminden R_s seri direnç 3,24M Ω olarak ve H(I) eksenini kestiği noktadan engel yüksekliği 0,82eV olarak hesaplandı.

Şekil 3.4 p-Si/Quercetin/Al diyotunun dV/d(lnI)- I grafiği

Şekil 3.5 p-Si/Quercetin/Al diyotunun H(I)-I grafiği

Arayüzey hallerinin yoğunluk dağılımını (enerji dağılımı) eğrileri aşağıdaki gibi elde edildi. Yarıiletken yüzeyde arayüzey hallerinin enerjisi E_{ss} , değerlilik bandının kenarı E_v 'ye göre

$$E_{ss} - E_v = q\Phi_e - qV \tag{3.15}$$

eşitliği ile verilir.

$$I = I_o \exp(\frac{qV}{nkT})$$
(3.16)

eşitliğinden her voltaja karşılık gelen n değerleri hesaplandı.. Bundan sonra

$$\frac{d\Phi_e}{dV} = \beta = 1 - \frac{1}{n} \tag{3.17}$$

ve

$$\Phi_e = \Phi_b + \beta V \tag{3.18}$$

eşitlikleri kullanılarak etkin engel yüksekliği hesaplanarak denklem (3.15)'da yerine yazılır.bu ifade de β parametresi, etkin engel yüksekliði ϕ_e 'nin voltaj katsayısıdır. Burada Φ_b için, diyodların doğru beslem I-V karakteristiklerinden elde edilen değerler kullanıldı. Doğru beslem durumunda, engel yüksekliği arayüzey tabakası ve arayüzey hallerinden dolayı voltaja bağlı olduğundan artan voltajla artmaktadır. Ayrıca N_{ss} değerleri için

$$N_{ss} = \frac{1}{e^2} [(n-1)\frac{\varepsilon_i}{\delta}]$$
(3.19)

eşitliği elde edilerek denklem (3.16)'dan elde edilen her n değerine karşılık gelen arayüzey hal yoğunlukları hesaplandı . Böylece uygulanan voltaja karşı N_{ss} değerleri elde edildi. (3.15) eşitliği kullanılarak gerilim $E_{ss}-E_v$ 'nin bir fonksiyonuna çevrildi. Burada ε_i arayüzey tabakasının dielektrik sabiti ($\varepsilon_i=4\varepsilon_o$), δ oksit tabakasının kalınlığı ($\delta=19$ Å) olmak üzere N_{ss}- ($E_{ss}-E_v$) grafiği çizildi.

Şekil 3.6 p-Si/Quercetin/Al diyotunun (Ess-Ev)- Nss grafiği

Nss değerleri (0.651- E_v) için 5,012.10¹³(eV⁻¹cm⁻²) ve (0.761- E_v) için 3,206.10¹² (eV⁻¹cm⁻²) olarak hesaplandı. Nss durum yoğunluğunun band ortasından değerlilik bandının tepesine doğru üstel olarak arttığı görüldü.

4. Sonuç ve Tartışma

Bu çalışmada, (100) yönelimine sahip, özdirenci 1-10 Ω cm olan p-Si kristali üzerine 8.27×10⁻⁴M yoğunluğa sahip etil alkol(C₂H₅OH)' de Qercetin çözülerek hazırlanmış çözeltiden 15µL damlatıldı ve buharlaşması beklendi. Bu yapılar üzerine Al buharlaştırılarak yarıçapları 1mm olan (diyot alanı A=7,85x10⁻³cm²) p-Si/Quercetin/Al diyotumuzu elde ettik. Çalışmamızın amacı laboratuar ortamında elde ettiğimiz diyotun elektriksel parametrelerini incelemek ve kontağımızın doğrultuculuğunu incelemekti.

Diyotumuzun lnI-V grafiği şekil 3.3'te verildi, grafik diyotun doğrultucu özelliğe sahip olduğunu göstermiştir. InI-V grafiği kullanılarak idealite faktörü 1.42, engel yüksekliği ise 0,84 eV olarak bulundu. Benzer çalışmalarda Forrest ve arkadaşları (46) Si/PTCDA/Sn MIS diyotlarının Φ_{h} ve n değerlerini sırasıyla 0.73 ve 2.0 olarak rapor etmiştir. Aydın ve arkadaşları (33) n-Si üzerine β-karoten cözeltisinin damlatılması ile elde edilen Au/ β -karoten/n-Si diyotlarının Φ_b ve n değerlerini sırasıyla 0.80 ve 1.32 olarak elde etmişlerdir. Diyotumuzun idealite faktörü göz önünde bulundurulduğunda p-Si ile Quercetin arasında oksit tabaka olduğunu göstermektedir. Oksit tabaka p-Si yüzeyine Quercetin çözeltisi damlatılmadan önce oluşmuş olabilir (29,34). Arayüzeylerdeki oksit tabaka yüzeyin hazırlanması ve metalin buharlaştırılması esnasında da oluşmuş olabilir (29,40,43). Si yüzeyi normal parlatma ve kimyasal aşındırma teknikleri ve buharlaştırma işlemi 10⁻⁵ Torr mertebesindeki bir vakum ortamda yapılıyor ise Si yüzeyinde ince bir oksit tabakanın oluşması kaçınılmazdır. Yeterince kalın arayüzey tabakada, arayüzey durumları inorganik yarıiletken (p-Si) ile dengededir ve metal ile etkileşmezler (25,40). p-Si/Quercetin/Al yapılarının arayüzey durumlarının ölçülebilirliği, doğal oksit tabaka ve quercetin tabakalarının dikkate alınmasını gerektirir (25).

Diyotumuzun seri direnci ve bu bölgedeki idealite faktörü, engel yüksekliği gibi elektriksel parametreleri Cheung fonksiyonları ile tayin edildi.Şekil 3.4 diyotumuzun dV/d(lnI)- I grafiğini göstermektedir. Bu grafikten idealite faktörü 1.68 ve seri direnç

 $3,23M\Omega$ olarak hesaplandı .Şekil 3.5 diyotumuzun H(I)-I grafiği göstermektedir bu grafikten de engel yüksekliği 0,82eV ve seri direnç $3,24M\Omega$ olarak hesaplandı. Bu bölgede hesaplanan idealite faktörünün lineer bölgede' kinden büyük çıkması R_s seri direncinin etkisiden kaynaklandığı kanısına vardık. Seri direnç etkisi diyodu idealden uzaklaştırır.

Diyotumuzun arayüzey durumları lnI-V grafiği verirlerinden yararlanılarak elde edildi.Şekil 3.6 N_{ss} -(E_{ss} - E_v) grafiğini göstermektedir. N_{ss} değerleri (0.651- E_v) için 5,011.10¹³(eV⁻¹cm⁻²) ve (0.761- E_v) için 3,206.10¹² (eV⁻¹cm⁻²) olarak hesaplandı. N_{ss} durum yoğunluğunun band ortasından valans bandının tepesine doğru üstel olarak arttığı görüldü. Bu şekil literatürlerle uyum halindedir (25,35,45).

KAYNAKLAR

- (1) BRAUN, K.F., Physical Chemistry, 153, 556 (1874)
- (2) TORREY, H.C., WHİTMER C.A., Crystal Reectifers, Mc Graw Hill, (1948)
- (3) CHANDRA, M.M., PRASAD, M., J. Phys. State Solid. (A) 77, (1983)
- (4) SCHOTTKY, W., Phys. 215 (1914)
- (5) SZE, S.M., CROWELLAND, C.R., KOLİNG, D., J. Appl. Phys. 35, 2534 (1964)
- (6) SCHOTTKY, W., SPENKE, E., Wiss Veroff Semeis Werken 18, 225 (1939)
- (7) WILSON, A.H., Proc. R. Soc., London, Ser. A, 136, 487 (1932)
- (8) CROWELL, C.R., SZE, S.M. 1966, Current Transport in Metal-Semiconductor Barrier Diode <u>Solid St. Electron.</u>,9,1035
- (9) COWLEY, A.M., SZE, S.M., J. Appl. Phys. 36, 3212 (1965)
- (10) CARD, H.C., RHODERİCK, E.H., (1971). Studies of tunnel M O S diodes I.
- interface effects in Silicon Schottky diodes. J. Phys. D: Appl. Phys., 4,1589.
- (11) CHATTOPODHYAY, P., KUMAR, V., Solid- St. Electron. 3, 143 (1988)
- (12) MÖNCH, W. 1999, J. Vac. Sci. Tech. B 17 (4), (1867)
- (13) CHATTOPODHYAY, P., DAW, A.N., Solid-St. Electron. 29, 555 (1986)
- (14) TSENG, H.H., WU, C.Y., Solid-St. Electron. 30,(4) 383,(1987)
- (15) TSENG, H.H., WU, C.Y., <u>Solid-St. Electron.</u> 30,(4) 383,(1987)
- (16) HORVATH, J.Z., <u>J.Appl. Phys.</u>, 63(3),976(1988)
- (17) TÜRÜT, A., SAĞLAM, M.,(1992) Determination of the density of Si-Metal interface states and excess capacitance caused by them. Physica B, 179, 285-2.
- (18) WU, C.Y., J. Appl. Phys. 51(7), 3786(1980)
- (19) IKAMA, H., MAEDA, M., Jap. J. Appl. Phys. 30,19 (1991)
- (20) CHEUNG, S.K., CHEUNG, N.W., 1986. Extraclion of Schottky diode parameters from forward current-voltage characteristics. J.Appl.Phys., let., 49, 85-87.
- (21) TÜRÜT, A., SAĞLAM, M., EFEOĞLU, H., YALÇIN, N., YILDIRIM, M., ABAY, B., <u>Physica B</u>, 205,41(1995)
- (22) WU, X., YANG, E.S., J. Appl. Phys. 65,3560(1989)
- (23) CHATTOPODHYAY, P., Solid-State Electron., 37,1759(1994)
- (24) SZATKOWSKİ, J., SİERANSKİ, K., Solid-State Electron. 35, 1013(1992)

(25) KILIÇOĞLU, T., ASUBAY, S., 2005, The effect of native oxide layer on some electronic parameters of Au/n-Si/Au–Sb Schottky barrier diodes, <u>Physica B</u> 368, 58
(26) KARATAŞ, Ş., TÜRÜT, A., The determination of electronic and interface state density distributions of Au/n-type GaAs Schottky barrier diyodes, <u>Physica B</u>
(27) AYDIN, M.E., AKKILIÇ, K., KILIÇOĞLU, T., 2004, The importance of the neutral region resistance for the calculation of the interface state in Pb/p-Si Schottky contacts, Physica B, 352, 312-317

(28) ÇETİNKARA, H. A., SAĞLAM, M., TÜRÜT, A., YALÇIN, N., 1999, The effects of the time-dependent and exposure time to air on Au/epilayer n-Si Schottky diodes Eur.Phy.J.Ap., 6,89

(29) TÜRÜT, A., KÖLELİ, F., Semiconductive polymer-based Schottky diode, <u>J.</u> <u>Appl. Phys.</u> 72 (1992) 818.

(30) JONES, F.E., WOOD, B.P., MYERS, J.A., HAFER, C.D., LONERGAN, M.C., Current transport and the role of barrier inhomogeneities at the high barrier *n*-InP | poly(pyrrole) interface <u>J. Appl. Phys</u>. 86(1999)6431.

(31) FORREST, S.R., KAPLAN, M.L., SCHMİDT, P.H., FELDMANN, W.L., YANOWSKİ, E., <u>Appl. Phys. Lett.</u> 41 (1982) 90.

(32) AYDIN, M.E., KILIÇOĞLU,T., AKKILIÇ, K., HOŞGÖREN, H., 2006, The calculation of electronic parameters of an Au/ β -carotene/n-Si Schottky barrier diyote, <u>Physica B</u> 381, 113.

(33) TEMİRCİ, C., ÇAKAR, M., 2004, The current-voltage and capacitance-voltage charecteristics of Cu/rhodamine/p-Si contacts, <u>Physica B</u>, 454,458

(34) ANTOHE, S., TOMOZEİU, N., GOGONEA, S., <u>Phys. Stat. Sol</u>. (a) 125 (1991) 397.

(35) ÇAKAR, M., ONGANER Y., TÜRÜT A., 2002, The nonpolymeric organic compound (pyronine-B)/p-type silicon/Sn contact barrier devices, Synth. Met. 126, 213
(36) ZİEL, A.V., 1968. Solid State Physical Electronics, Prentice-Hall, Inc., Nevv-Jersey, P.97-245

(37) TEMİRCİ C., 2000, Dok. Tez. Ata. Üniv. Basımevi, ERZURUM

(38) BARDEEN, J., 1947, Surface state and rectification at a metal-semiconductor contact. <u>Phys. Rev.</u>, 71,717

(39) ANDREWS, J.M., LEPSELTER, M.P., 1970, Chemical Bonding and Structure of Metal-Semiconductor Interfaces, <u>Solid St. Electron</u>, 13, 1011

(40) RHODERİCK, E.H. and. WILLIAMS, R.H., 1988, Metal-semiconductor Contacts, Clarandon Press, Oxford University Press, p.20, 48

(41) CHATTOPADHYAY, P., 1996 Capacitance technique for determination of interface state density of a metal-semiconductor contac,t <u>Solid-State Electron</u>. 39, 1491
(42) KILIÇOĞLU, T., 1988, Anodik Oksitli Al/SiO₂/Si Yapılarının Elektronik Özelliklerinin İncelenmesi, Doktora Tezi, D. Ü. Fen Bilimleri Enstitüsü, Diyarbakır.
(43) CROWELL C.R., SZE, S.M. 1966, Current Transport in Metal-Semiconductor Barrier Diode <u>Solid St. Electron.</u>,9,1035

(44) CHATTOPADHYAY, P., SANYAL S,1995 Capacitance-voltage characteristics of Schottky barrier diode in the presence of deep-level impurities and series resistance, Applied Surface Science, 89, 205

(45) FORREST, S.R., KAPLAN, M.L., SCHMIDT, P.H, 1984, Organic-on-inorganic semiconductor contact barrier diodes. I. Theory with applications to organic thin films and prototype devices, 55, 1492

ŞEKİLLER DİZİNİ

Şekil 2.1 Metal p-tipi yarıiletken doğrultucu kontağın enerji-bant diyagramı Şekil2.2 Metal p-tipi yarıiletken kontağın enerji-bant diyagramı a)Kontaktan önce b) Kontaktan sonra ve termal dengede c) V≠0 olması durumunda

Şekil 2.3 P+PM yarıiletken diyot yapısının termal dengede enerji-bant diyagramı

Şekil 2.4. Düz beslem altındaki metal yarıiletken Schottky kontakta imaj azalma etkisine ait enerji-bant diyagramı

Şekil 3.1. Omik kontak termal işlemi için fırın ve kontrol ünitesi şeması

Şekil 3.2 Quercetin (3,3',4',5,7-pentahydroxyflavone) molekülünün şekli

Şekil 3.3 p-Si/Quercetin/Al diyotunun lnI-V grafiği

Şekil 3.4 p-Si/Quercetin/Al diyotunun dV/d(lnI)- I grafiği

Şekil 3.5 p-Si/Quercetin/Al diyotunun H(I)-I grafiği

Şekil 3.6 p-Si/Quercetin/Al diyotunun (Ess-Ev)- Nss grafiği

ÖZGEÇMİŞ

1981 yılında Diyarbakır da doğdum. İlk ve orta öğrenimi burada tamamladım. 1999 yılında D.Ü Fen Edeb. Fak Fizik Bölümünü kazandım ve 2003 yılında buradan mezun oldum. 2004 yılında D.Ü Fen Bilimleri Enstitüsü Fizik Bölümünde Tezli Yüksek Lisans yapmaya hak kazandım ve halen bu bölümün öğrencisiyim.