

COMPUTATIONAL ANALYSIS OF RSA BASED ATTACKS

Mustafa KOCAKULAK

 Master of Science Thesis

 Department of Mechatronics Engineering

Assoc. Prof. Dr. Turgay TEMEL

2015

 T.R

BURSA TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND

APPLIED SCIENCES

COMPUTATIONAL ANALYSIS OF RSA BASED ATTACKS

 MASTER OF SCIENCE THESIS

Mustafa KOCAKULAK

 Department of Mechatronics Engineering

BURSA

June 2015

 MASTER OF SCIENCE THESIS EXAMINATION RESULT FORM

The thesis entitled “COMPUTATIONAL ANALYSIS OF RSA BASED

ATTACKS” completed by “Mustafa KOCAKULAK” under supervision of “Assoc.

Prof. Turgay TEMEL” has been reviewed in terms of scope and quality and

approved as a thesis for the degree of Master of Science.

Jury Members

Assoc. Prof. Turgay TEMEL …………..

(Bursa Technical University, Department of Mechatronics Engineering)

Prof. Nurettin ACIR …………..

(Bursa Technical University, Department of Electrical-Electronic Engineering)

Asst. Prof. İsmail BÜTÜN …………..

(Bursa Technical University, Department of Mechatronics Engineering)

Date of Examination: 11/06/2015

Director of Graduate School of Natural and Applied Sciences

Prof. Nurettin ACIR …/06/2015 …………..

DECLARATION ON PLAGIARISM

I hereby declare that this thesis is the result of my own independent scholarly work,

and that in all cases material from the work of others is acknowledged, and

quotations and paraphrases are clearly indicated. No material other than listed has

been used. I am aware of what constitutes an act of plagiarism and understand that

my thesis will be rejected if found to contain any instance of plagiarism.

Student Name and Surname: Mustafa KOCAKULAK

Signature:

ACKNOWLEDGEMENTS

This thesis has been conducted, under the supervision of Assoc. Prof. Turgay

TEMEL, for the master program: Mechatronics Engineering.

The main reason for choosing the topic of “Computational Analysis of RSA Based

Attacks” is because RSA have been important and indisputable for cryptology and

web since it was proposed in 1977. Although the RSA public-key algorithm was

proposed and developed in 1977, it has been widely used in a variety of computer

security applications. It is still contemporary and it has wide usage. But its widely

usage does not make us evaluate the RSA algorithm as a perfect algorithm for

public-key cryptography. Throughout the research, I have learned more about the

public-key algorithms, the RSA algorithm, attacks against RSA’s security and RSA

applications in Java.

The completion of that master thesis would not have been feasible without the help

of my supervisor. For that reason, I want to express my deepest gratitude to my

supervisor Assoc. Prof. Turgay TEMEL who has been very helpful and patient in

guiding me throughout the research process. His guidance and experience played an

important role in the improvement of my thesis. I would like to thank my thesis

committee members for all of their guidance through this process.

Lastly, I would like to thank my parents Fatma KOCAKULAK and İbrahim

KOCAKULAK and also my sisters for their support and deepest love. Their

encouragement and love enabled me to overcome difficulties that I faced.

Mustafa KOCAKULAK

v

TABLE OF CONTENTS

Page

Outer Cover

Inner Cover

Master of Science Thesis Examination Result Form

Declaration on Plagiarism

Acknowledgements

Table of Contents v

List of Figures vii

List of Tables ix

List of Symbols and Acronyms x

Özet xi

Abstract xii

1. INTRODUCTION 1

2. MATHEMATICAL CRYPTOGRAPHY 2

 2.1 Number Theory and Algebra 2

 2.1.1 Divisibility and Greatest Common Divisor 2

 2.1.2 Primality and Testing 3

 2.1.3 Euler’s Phi Function 3

 2.1.4 Fermat’s Little Theorem 5

 2.2 Cryptography and Cryptanalysis 6

 2.2.1 Cryptography and Keys 7

 2.2.2 Symmetric-Key Cryptography 7

 2.2.3 Asymmetric-Key Cryptography 8

 2.2.4 Comparison of Symmetric-Key and Asymmetric-Key Cryptography 9

 2.2.5 Key Management for Symmetric-Key Cryptography 9

 2.2.6 Key Exchange and Diffie-Hellman Algorithm 11

vi

 Page

3. RSA (Rivest-Shamir-Adleman) ALGORITHM 12

 3.1 Simple RSA Example 12

 3.1.1 The Relation between e, d and Euler’s Phi Function 14

 3.1.2 Prime Numbers and Prime Number Generation 15

 3.1.3 Attacks on RSA 15

 3.1.4 RSA Implementation Hints 18

 3.2 Cryptology and Java 19

 3.2.1 BigInteger Class 19

 3.2.2 Random Class and SecureRandom Class 20

 3.2.3 Symmetric Cases of Plain-text and Cipher-text for RSA 24

4. IMPLEMENTATION of RSA in JAVA 26

 4.1 Cryptography for RSA 26

 4.1.1 Implementation of RSA without Padding 26

 4.1.2 Implementation of RSA with Padding 30

 4.2 Cryptanalysis for RSA with Factorization Methods 32

 4.2.1 Brute-Force Factorization Attack 32

 4.2.2 Pollard-Rho Factorization Attack 33

 4.2.3 Fermat Factorization Attack 33

 4.2.4 KNJ Factorization Attack 34

 4.2.5 Comparison and Result 34

5. SUMMARY AND CONCLUSION 42

REFERENCES 43

CURRICULUM VITAE 45

vii

LIST OF FIGURES

Page

Figure 2.1 The common divisors of 12 and 10 3

Figure 2.2 The distribution of Euler Phi Function from 0 to 30 5

Figure 2.3 Classification of cryptology 6

Figure 2.4 Communication over an unsecure channel 7

Figure 2.5 Symmetric-key cryptosystem 8

Figure 2.6 Asymmetric-key cryptosystem 9

Figure 2.7 Key distribution for symmetric-key cryptosystem 10

Figure 3.1 The one to one matching of cipher-text values and plain-text values 14

Figure 3.2 The generated prime numbers with key size = 7 bits 15

Figure 3.3 The histogram of p values generated by Random class 22

Figure 3.4 The histogram of q values generated by Random class 22

Figure 3.5 The histogram of N values generated by Random class 23

Figure 3.6 The histogram of p values generated by SecureRandom class 23

Figure 3.7 The histogram of q values generated by SecureRandom class 23

Figure 3.8 The histogram of N values generated by SecureRandom class 24

Figure 3.9 The distribution of the cases where plain-text equals to cipher-text 25

Figure 4.1 The key generation screen for RSA without padding 27

Figure 4.2 The encryption screen for RSA without padding 28

Figure 4.3 The decryption screen for RSA without padding 29

Figure 4.4 The vulnerability of RSA to Cipher-Text-Only attack 30

Figure 4.5 The implementation of RSA with padding 31

Figure 4.6 Pseudo-code for Brute-Force factorization 32

Figure 4.7 Pseudo-code for Pollard-Rho factorization 33

Figure 4.8 Pseudo-code for Fermat factorization 33

Figure 4.9 Pseudo-code for KNJ factorization 34

Figure 4.10 Iterations of factorization methods for varying small N values 35

Figure 4.11 Iterations of factorization methods for varying bigger N values 35

viii

Page

Figure 4.12 Parallel computing of elapsed times for 4 factorization methods 36

Figure 4.13 Elapsed factorization time values of 4 factorization methods 37

Figure 4.14 Elapsed factorization time values of Brute-Force vs Fermat 38

Figure 4.15 Elapsed factorization time values of Brute-Force vs Pollard-Rho 38

Figure 4.16 Elapsed factorization time values of Brute-Force vs KNJ 39

Figure 4.17 Elapsed factorization time values of KNJ vs Fermat 39

Figure 4.18 Elapsed factorization time values of KNJ vs Pollard-Rho 40

Figure 4.19 Elapsed factorization time values of Pollard-Rho vs Fermat 40

ix

LIST OF TABLES

Page

Table 3.1 Generated key pair values by using Java’s Random class 21

Table 3.2 Generated key pair values by using Java’s SecureRandom class 22

Table 4.1 Mean value of elapsed times of each factorization method 36

Table 4.2 Generated sample RSA key pairs for comparison of elapsed times 37

x

LIST OF SYMBOLS AND ACRONYMS

Symbols Definition

C cipher-text

d private exponent of RSA

e public exponent of RSA

gcd greatest common divisor

K the encryption or the decryption key in terminology

M message

N component of private-key or public-key of RSA

 set of natural numbers

p one of large primes of RSA

P plain-text

Phi(N) Euler’s Phi function

q one of large primes of RSA

r remainder

x plain-text in terminology

y cipher-text in terminology

 set of integers

 set of positive integers from 0 to n-1

 Euler’s Totient function

Acronyms Definition

API American Standard Code for Information Interchange

ASCII American Standard Code for Information Interchange

JCA Java Cryptography Architecture

JCE Java Cryptographic Extension

RNG Random Number Generator

RSA Rivest-Shamir-Adleman Algorithm

xi

ÖZET

RSA TABANLI ATAKLARIN HESAPLAMALI ANALİZİ

Mustafa KOCAKULAK

Bursa Teknik Üniversitesi

Fen Bilimleri Enstitüsü

Mekatronik Mühendisliği Ana Bilim Dalı

Yüksek Lisans Tezi

Doç. Dr. Turgay TEMEL

Haziran 2015, 45 Sayfa

İki veya daha fazla asal sayının çarpımından meydana gelen büyük bir sayının, asal

bileşenlerine ayrıştırılabilmesinin zorluğu esasına dayanan RSA sistemi, sağlamış

olduğu güvenlik seviyesi ve anahtar paylaşımında getirdiği yeniliklerle kriptoloji

alanında tartışmasız bir öneme sahiptir. Mevcut algoritmanın beraberinde getirdiği

uzun anahtar boyutları, gerektirdiği geniş hafıza alanı ve anahtar paylaşımının

dayandığı ‘asal bileşenlere ayrıştırmanın zorluğu’ esasının güvenlik açısından

aşılabilir olması, bu alanda mevcut RSA algoritmasında değişiklikler yapmayı ya da

RSA’yı maksimum güvenlikle korumayı sağlayan önlemleri uygulama esnasında

almayı gerekli kılmaktadır. Bu çalışmada RSA algoritması birçok yönüyle ele

alınacak, uygulanan bazı kriptanaliz yöntemlerine karşı RSA’ya maksimum güvenlik

sağlayacak tedbirler gösterilecektir.

Anahtar Sözcükler: RSA, Çarpanlara Ayırma, Anahtar Boyutu, Asimetrik Anahtar

xii

ABSTRACT

COMPUTATIONAL ANALYSIS OF RSA BASED ATTACKS

Mustafa KOCAKULAK

Bursa Technical University

Graduate School of Natural and Applied Science

Department of Mechatronics Engineering Program

Master of Science Thesis

Assoc. Prof. Dr. Turgay TEMEL

June 2015, 45 Pages

The RSA Algorithm has an indisputable importance in cryptology. RSA’s security

depends on the difficulty of factoring big composite number. This number is the

multiplication of two or more prime numbers and its factorization is nearly

infeasible. Since the existing RSA Algorithm needs long key sizes, requires big

memory spaces and also has the deficiency depending on a feasible but long

factorization principle, it seems necessary to make some changes or taking some

necessary precautions during the implementation of RSA in order to provide

maximum security level. In this thesis, RSA algorithm will be examined and

evaluated in detail. Moreover, some security precautions, that support RSA against

some applied cryptanalysis methods, will be indicated.

Key Words: RSA, Factorization, Key Size, Asymmetric-Key

1

1. INTRODUCTION

Cryptology is the art of secret writing [1]. It is a set of cryptography and

cryptanalysis. Cryptography is used to write hidden messages and cryptanalysis is

used to analyze hidden messages and recover the original messages. More

specifically, cryptology is a way providing security and secrecy to any

communication between three main characters in any unsecure channel. These

characters are sender, receiver, and eavesdropper. In this unsecure (open to possible

attacks) communication channel, sender and receiver want to exchange information

securely and secretly. Up to this point, there is no need for cryptology but when

eavesdropper starts to listen to this channel to reach the secret information between

sender and receiver, cryptology’s importance for communication with the intended

receivers is realized.

For thousands of years, people always want to send messages which can only be read

by the intended receivers. Until 1980s, the message between the sender and the

receiver was carried by using symmetric-key cryptosystems [2]. With the increase in

the usage of computers and mobile devices, the usage area of cryptology has

enlarged dramatically. The increase in computer usage, have made the

interconnections via networks between computers very important. When people

started to have their private computers and use them to send and to receive

information, their awareness and needs to protect their data and resources have

increased profoundly. At this moment, the modern cryptology has arisen. After

1980s, with Diffie-Hellman Algorithm and the Rivest-Shamir-Adleman Algorithm,

RSA, people have met asymmetric-key cryptosystems [3].

RSA Algorithm has an indisputable importance in cryptology. It is one of the most

widely known and used asymmetric-key cryptosystem [4]. Since the existing RSA

Algorithm needs long key sizes and has the deficiency depending on a feasible but

long factorization principle, it seems necessary to make some changes or taking some

necessary precautions during the implementation of RSA to provide maximum

security level. The objectives of this thesis are emphasizing the mathematical logic

behind RSA Algorithm, implementation of RSA Algorithm up to on 2048-bit with

and without padding, realizing the effect of bit length on the success of given some

well-known factorization algorithms.

2

2. MATHEMATICAL CRYPTOGRAPHY

In order to understand the mathematical ideas underlying symmetric-key

cryptography and asymmetric-key cryptography, it is necessary to explain the

number theory and emphasize the importance of algebra on algorithms because most

of the public-key algorithms are based on modular arithmetic [5].

2.1. Number Theory and Algebra

The set of integers, denoted by , contains all numbers with no fraction from

negative infinity to positive infinity. These integers are used in binary operations in

cryptography. The binary operations used in cryptography are addition,

multiplication and subtraction. Each of these operations takes two inputs and creates

one output. Since division gets two inputs (dividend and divisor) and creates two

outputs (remainder and quotient) instead of one output, division operation is not

categorized as binary operation. Although division algorithm is not classified as

binary operation, it is used in cryptology and it has a vital role in asymmetric-key

cryptosystems.

2.1.1. Divisibility and Greatest Common Divisor

Division algorithm implies that when an integer is divided by a positive integer, there

is a quotient and a remainder. Suppose that is an integer and is a positive integer,

then there are unique integers, and where is called

the dividend, is called the divisor, is called the quotient and is called the

remainder. Now suppose that and are integers and is a positive integer, then

 is congruent to modulo if The notation implies that

 is congruent to modulo Instead of equality operator, congruence operator,

 is always used to indicate congruence. The difference between these two operators

is that while equality operator is one-to-one, the congruence operator is many-to-one.

Division operator’s usage in cryptography is various and not limited. For example,

primality testing and finding greatest common divisor processes require division

operator. A positive integer greater than 1 is prime number if its only divisors are 1

and itself. The greatest common divisor of two positive integers, and is indicated

by and it equals to the largest integer that can divide both integers.

3

Figure 2.1 The common divisors of 12 and 10

As seen in Figure 2.1, the common divisors of 12 and 10 are 1 and 2. The greatest

common divisor for 12 and 10, is 2 since .

The integers and are relatively prime which is known also as co-prime if and

only if Owing to finding out that whether two numbers have common

divisor or not, some of asymmetric-key cryptography algorithms can be applied

correctly such as RSA Algorithm.

2.1.2. Primality and Testing

A Primality Test is an algorithm that is used to find out whether or not given number

is prime and . An integer is a prime if and only if has two divisors

1 and itself, There are infinite numbers of prime numbers in a set where

 . In order to find primes, the wrong way is generate random

numbers and then try to factor them. It can be too time consuming. The correct way

can be generating random numbers and test their primality. If any number passes

some primality tests, then it is likely to be prime number. But if it fails one of

primality test, it is definitely composite number [6]. Trial Division Test, Fermat’s

Test and Miller Rabin Test are widely known and used testing methods [7].

2.1.3. Euler’s Phi Function

Euler Function is known as Euler’s Phi Function or Euler’s Totient Function [8].

This function is showed by and defined as the number of positive integers less

4

than and relatively prime to The set of integers contains all integer numbers with

no fraction from negative infinity positive infinity is denoted by , where is

defined as the set of integers , Euler Function makes us know that

how many numbers in this set are relatively prime to .

Let then the associated set is Firstly, must be

calculated for every integer from 0 to must be calculated.

 (1 and 5 are co-prime)

 (2 and 5 are co-prime)

 (2 and 5 are co-prime)

 (2 and 5 are co-prime)

Therefore, since and for

 Euler Theorem may be used easily to reduce large powers modulo

Since equals to the number of positive integers less than that are co-prime

with it states that if is a positive integer and a co-prime with then

 (2.1)

For Euler’s Totient Function, , there are also some other useful cases that

makes its calculation faster:

 For all if is prime then,

 (2.2)

 If then,

 (2.3)

 If is prime and then

 (2.4)

In Figure 2.2, the red points indicate the value of Euler Phi Function for the varying

values from 0 to 30. The nearest red points to blue points indicate the validity of

Equation 2.2.

5

Figure 2.2 The distribution of Euler Phi Function from 0 to 30.

Euler’s Phi Function is very crucial for asymmetric-key cryptography, especially for

RSA [9]. In order to calculate Euler’s Phi Function quickly, the factorization of

must be known. It is one of the most important points for RSA because if the

factorization of a number is known then, it is possible to compute Euler’s Phi

Function and decrypt the cipher-text [10]. If the factorization is not known, then Phi

Function cannot be computed hence the cipher-text cannot be decrypted.

2.1.4. Fermat’s Little Theorem

Fermat’s Little Theorem is also known that this theorem is a special case of Euler’s

Theorem. Fermat’s Theorem states that if is an integer and is a prime, then:

 (2.5)

Fermat’s Little Theorem is useful for primality testing and in many aspects of

asymmetric-key cryptography [11]. Fermat’s Little Theorem is useful in computing

the remainders modulo large powers of integers. To visualize the importance of

Fermat’s Little Theorem for computing the remainders modulo p large powers of

integers, let’s solve .

6

By using Fermat’s Little Theorem, we know that . Since

 for every positive integer,

 As seen by this example, Fermat’s Little Theorem

is useful in doing exponentiations modulo an integer is needed. Alternative form of

Fermat’s Little Theorem is

 (2.6)

where for every integer must be prime. The difference between two forms of

Fermat’s Theorem is that form does not require that relatively

prime to while requires.

2.2. Cryptography and Cryptanalysis

Cryptology is a set of cryptography and cryptanalysis as seen in Figure 2.3.

Figure 2.3 Classification of cryptology

In cryptology, Alice, Bob and Eve are three characters used in any information

exchange scenario. Alice is the person who needs to send secure data. Bob is the

recipient of the data. Eve is the person who somehow disturbs the communication

between Alice and Bob by intercepting messages. The original message before being

encrypted is known as plain-text.

Cryptology

Cryptography Cryptanalysis

7

Figure 2.4 Communication over an unsecure channel

The original message after being encrypted is known as cipher-text. Encryption is

known as a process of changing original text into cipher-text. Decryption is known as

a process of changing cipher-text into original text. Algorithms used in decryption or

encryption are known as cipher. A key is defined as a number that the cipher

(encryption or decryption) operates on [12]. In every encryption process while

encrypting any message, the following materials are necessary: an encryption

algorithm, a plain-text and an encryption key. In every decryption process while

decrypting any message, a decryption algorithm, a cipher-text and a decryption key

are required. In cryptography terminology, the plain-text is denoted by , the cipher-

text is denoted by , the encryption key and decryption key are denoted by [13].

2.2.1. Cryptography and Keys

In cryptography, there are three types of keys that we deal with: the secret-key, the

public-key and the private-key. The secret-key is the shared-key used in symmetric-

key cryptography. The other keys, the private-key and the public-key are used in

asymmetric-key cryptography.

2.2.2. Symmetric-Key Cryptography

Symmetric-key cryptography is sometimes referred as secret-key cryptography. It is

more historical form of cryptography in which a single key is used to decrypt and

encrypt a message. In symmetric-key cryptography, the same key is used by both

8

parties that is why it called symmetric-key. The logic behind the symmetric-key

cryptography relies on the shared key agreement between the sender and the receiver.

The sender and the receiver agree on a key and use it for encryption and decryption

of the message. Nobody else other than them knows this shared key. Shortly, the key

is shared and single. As seen in Figure 2.5, is used as a single key for encryption

and decryption by both sides.

Figure 2.5 Symmetric-key cryptosystem

2.2.3. Asymmetric-Key Cryptography

In asymmetric-key cryptography, there are two keys: a private-key and a public-key.

The private-key is kept by the receiver. The public-key is announced to the public. In

asymmetric-key encryption / decryption, the public-key that is used for encryption is

different from the private-key that is used for decryption. That is why it is known as

asymmetric-key cryptography. The public-key is available to the public; the private-

key is available only to an individual. The private-key is always linked

mathematically to the public-key. Therefore, it is always possible to attack a public-

key system by deriving the private-key from the public-key.

9

Figure 2.6 Asymmetric-key cryptosystem

2.2.4. Comparison of Symmetric-Key and Asymmetric-Key Cryptography

The main advantage of symmetric-key cryptography is its speed [14]. It is faster than

asymmetric-key cryptography. The main disadvantage of symmetric-key

cryptosystems is key management and distribution [15]. Since the number of the

required keys increases with the number of network population, key management

and distribution becomes problematic issue for symmetric-key algorithms. Key

management is necessary to use keys securely. For asymmetric-key, there is no need

for exchanging keys, thus there is not any key distribution problem. The main

disadvantage is its speed. Since long key sizes needed, the usage of asymmetric-key

in any system makes process slower [16]. For example, for RSA Algorithm, the main

disadvantage is that it requires long key sizes in order to provide good security.

Therefore, RSA is not suitable for encrypting the large texts and it is usually used for

key exchange.

2.2.5. Key Management for Symmetric-Key Cryptography

Key distribution is the function that delivers a key to a sender and a receiver to make

them able to exchange encrypted data securely. The security of distribution of keys

10

depends on some protocols and mechanisms. For symmetric encryption, a sender and

a receiver must share the same key and this key must be protected from third parties

and also distributed keys must be changed and destroyed in frequent periods. The

frequent key changes and key destruction have crucial importance to decrease the

amount of data obtained by attacker. For symmetric encryption, the number of keys

depends on the number of people in a communication network. The number of

required keys is

 (2.7)

where equals to the number of people in the network [17]. As shown in Figure 2.7,

if there are 2 people in the network, the required key is

 . When

there are 3 people in the network,

 and when 4 people in the

network,

 keys are required. When the network population

increases, as it is seen, the number of required keys increases and key management

becomes more difficult.

Figure 2.7 Key distribution for symmetric-key cryptosystem

For asymmetric-key cryptography, key management is easier. Since in asymmetric-

key cryptography, everybody has only one public-key and one private-key, the

11

number of required keys is regardless of the population of the network and it is fixed.

Therefore, key management for asymmetric-key cryptography is not as hard as key

management for symmetric-key cryptography.

2.2.6. Key Exchange and Diffie-Hellman Algorithm

Diffie-Hellman Algorithm was the first public-key algorithm found in 1976. The idea

behind Diffie-Hellman Algorithm is to generate a private-key that can later be used

for communication [18]. Diffie-Hellman is known as a simple asymmetric-key

algorithm for key exchange. This protocol enables two users to establish a public-key

scheme based on discrete logarithm.

Two people, let’s say the sender and the receiver, can use this algorithm to generate a

secret key for key distribution. First, sender and receiver agree on large prime

numbers and such that is primitive mod . They perform the following steps:

1. The sender chooses a large integer and sends the receiver, .

2. Similarly, the receiver chooses a large integer and sends the sender,

3. The sender computes from that the receiver sent where

4. Similarly the receiver computes .

Both and are equal to . Any person listening to the conversation

would only know and They cannot recover and because of the Discrete

Logarithm Problem. The security lies on choosing large values of and

12

3. RSA (Rivest-Shamir-Adleman) ALGORITHM

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman introduced a cryptographic

algorithm, RSA, which is named for the first letter in each of its inventors’ last name

[19]. RSA’s motivation is Diffie-Hellman Algorithm which describes the idea of

such an algorithm that enables public-key cryptosystem. Here are the steps of RSA

Algorithm:

 The first step of RSA Algorithm is to select two different prime numbers,

and .

 The second step is the calculation of where

 The calculation of is the third step.

 As a fourth step, an integer is selected as a public-key which is co-prime

with

 Finally, the inverse of modulus is taken to produce , the private-

key. By using and , the encryption and decryption are done.

In the RSA Algorithm, the public-key includes two numbers and while the

private-key is together with a different number Given a numerical message is

encrypted by

 (3.1)

Similarly an encrypted message C is decrypted by the message

 (3.2)

For the implementation of RSA, the number is a product of two large prime

numbers and If you know and you can obtain from As is a part of the

public-key and it is the multiplication of and then in principle it is possible to

factorize to find and .

3.1. Simple RSA Example

Here are the steps of example RSA:

 Find two primes and .

 We will choose and

13

 We define and

 Find a random integer which is co-prime with where

 We can choose since .

 Take your message , encode it as whole number in the range If

your message is too long, then break the message into blocks in this range.

 The message is encrypted into the C in the range under the rule

 Compute the unique whole number such that and is in

the range because and are co-prime, we can make sense of

 In our example, and we can do this by trial and error

and we find

 Given the encrypted message , this can be decrypted back into the message

 by taking

 Take the previous value of and

 Suppose our message assigned as

 In order to encode it, we must calculate the value of

 Decoding we should obviously get In this example is

given by

Since

14

3.1.1. The Relation between e, d and Euler’s Phi Function

Modular arithmetic is known as clock arithmetic. All we know clock starts from 12

and ends with 12. The space of clock is 0 to =11 where .

 } is the space of clock and 0 is congruent with 12. Suppose the time

12 o’clock right now. 3 hours later, it will be 3. However, 15 hours later, it will be 3,

too. This equality or congruence is the result of working in modulus 12 where 15 3

mod 12. Suppose your clock starts from 12 and it is in modulus 12 but it does not

increase by 1 each time. It increases by 2 each time. Then, its space gets narrow and

becomes {0, 2, 4, 6, 8, 10} where 0 is congruent with 12. If it increases by 3 each

time, then its space gets narrow and becomes {0, 3, 6, 9} where 0 is congruent with

12. If it increases by 5 each time, then its space does not change. But the order of the

space becomes {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7}. If it increases by 7 each time, then

its space length does not change again. But the order the space becomes {0, 7, 2, 9, 4,

11, 6, 1, 8, 3, 10, 5}.

As seen above, if the incremental value is co-prime with modulus, , 12, the result

space does not get narrow and the space does not change. When it is co-prime with

 , then you will use every number exactly once before returning to starting value 12.

However, when the incremental value is not co-prime with , 12, the result space

gets narrow.

For RSA, the relation between , and Euler’s Phi Function can be explained by

using clock arithmetic. Since and , for every

distinct message value, , each message value has exactly one and unique

corresponding cipher value, in mod owing to being co-prime with phi().

Figure 3.1 The one to one matching of cipher-text values and plain-text values

15

For example, for e = 3, N = 33, q = 3, p = 11, M = [(1) to (32)], Phi(N) = 20, for

every distinct message value of M, there is exactly one and unique corresponding

cipher-text value as seen in Figure 3.1. As shown, for all different message values

from 1 to N-1, the corresponding cipher-texts are unique and different. There is no

repetition.

3.1.2. Prime Numbers and Prime Number Generation

An integer is a prime if and only if has two divisors 1 and itself, There are

infinitely many prime numbers in a set where .

Figure 3.2 The generated prime numbers with key size=7 bits

As it is seen in Figure 3.2, prime numbers does not follow any linear pattern. There is

not any function that gives all prime numbers from 2 to positive infinity. In order to

find prime numbers, the wrong way is generate random numbers and then try to

factor them. It can be time consuming. The correct way can be generating random

numbers and test their primality. Although finding a formula or pattern to list all

prime numbers from 0 to positive infinity is not feasible yet, classifying prime

numbers after generating them by using primality tests is possible. Prime numbers

can be categorized as Sophie-Germain Primes, Safe Primes and Strong Primes.

Sophie-Germain Prime is a prime number such that is also prime

number. Safe Prime is a prime number q such that where is also

prime. Strong Prime is a prime number q such that

 is prime,

 is prime,

 is prime and is also prime.

3.1.3. Attacks on RSA

In cryptography, encryption aims at providing security and secrecy to any

communication between the sender and the receiver. While providing security,

16

encryption or encryption-like transformations of information often uses some

mechanisms like enciphering, digital signature and access control against the

cryptographic attacks. These attacks are classified as passive or active attacks [20]. If

attacks are used to access and to obtain information for eavesdropping on or

monitoring, these attacks are passive attacks. Passive attacks are generally very

difficult to detect because these attacks do not involve any alteration of information.

If attacks involve some modification of information, these attacks are classified as

active attacks and it is difficult to prevent active attacks.

Some of popular attacks on RSA can be listed as below:

 Cyclic Attack

If the sender and the receiver do not take care in determining their keys, the

attacker can intercept the encrypted message sent by the sender to the

receiver. Suppose RSA variables of our system are

 and The cipher-text starts with

23. By attempting to crack it by using cyclic attack, the attacker can find ,

and values.

As it is shown, the attacker reached the values of p , and by the cycling

re-encryption.

 Low-Encryption Exponents Attack

For small values of and for small values of the plain-text, by taking the

root of the cipher-text over the integers, the cipher-text can be easily

decrypted. In order to improve the system performance, can be chosen as

small as possible but it leads to some security leaks [21]. The smallest

possible value for is 3 but to avoid some certain attacks the value

 is recommended.

17

 Forward Search Attack

For this attack, if message space is not wide and also if the attacker can

predict the message, the attacker can decrypt the cipher-text by encrypting all

possible messages until he obtains a match with the cipher-text [22].

 Common Modulus Attack

For this attack, allowing two different receivers to share the same modulus

for RSA can lead to Common Modulus Attack. Thus, for RSA, modulus

should not be used by more than one communication [23].

 Low Decryption Exponents Attack

To improve the performance of RSA decryption, the value can be chosen as

small rather than a large number. Indeed, small value improves the system

performance dramatically but the system become vulnerable to attacks [24].

 Chosen Cipher-Text Attack

A Chosen Cipher-Text Attack is an attack where the cryptanalyst chooses a

cipher-text and let it decrypt. From some pairs of cipher-text and decrypted

cipher-texts, he obtains information about key or about the message. Since

 is mathematically valid, the Chosen Cipher-Text

Attack can be possible where is chosen as small number and sent by the

attacker. Since is small, it can be analyzed easily.

 Brute-Force Attack

A Brute-Force Attack involves trying all possible public-key and private-keys

until finding the right ones. The attacker tries all possible public-key and

private-key combinations. RSA with short key size is vulnerable against this

attack. However, Brute-Force Attack is useless for long key sizes.

 Cipher-Text Only Attack

For this attack, the attacker knows only the cipher-text and he tries to recover

the plain-text by using cipher-text by trial and error.

18

 Factorization Attack

The security of RSA is based on the idea that the modulus is so large that is

not possible to factor it in a short time. The sender selects and and he

calculates where is public. Although is public, and are

private. Since is also public and , any attacker who

knows and values, can calculate value which is used to decrypt any

encrypted message. In this thesis, some of Factorization Attacks like Brute-

Force Attack, Fermat Attack, Pollard-Rho Attack and KNJ Attack will be

examined in detail.

3.1.4. RSA Implementation Hints

Here are the recommended hints that increase the security level of RSA

implementation:

 and should not be very small. Since , can be easily

factorized if and values are both small.

 Primes and should not be too far from each other. If one of them is too

small, it makes factoring of easier.

 and primes can be selected from “Strong Primes” where and

 have large prime factors. This can make factorization process of

more complex.

 and should not be very small. Let’s describe a simplified version RSA

encryption. As emphasized before, in any encryption operation, the main

objective of the attacker is to recover the message from the cipher-text. In

order to reduce the load of exponentiation in RSA, one may prefer to use a

small value of private-key or public-key values rather than a random value.

For small private-key values, RSA system becomes vulnerable to attacks.

 and values should not be equal, where . Since decryption process is

the inverse of encryption process, and should not be equal. If they are

equal, encrypted value of plain-text can be recovered easily.

 The most frequently selected values are [25].

These 3 different values have a common feature. They have only 2 times 1

bits in their binary representation. Therefore, total number of multiplications

needed to perform exponentiation is minimized.

19

 For RSA system, the public-key is (. The private-key is . These

integers need to be very large to avoid easy factorization of . Since the

maximum integer type value generated in Java is 31 bits, it corresponds to

 In order to generate numbers bigger than

2147483647, Java uses BigInteger instead of using Integer class.

3.2. Cryptology and Java

A cryptographic Application Programming Interface (API) enables a programmer to

implement cryptographic techniques. There are few cryptography APIs like Java

Cryptography Architecture (JCA), Microsoft Cryptography API, Bouncy Castle

Crypto API and Linux Kernel Cryptographic API [26]. These API’s scopes are very

wide. Some API’s are written only for one language and others are written for more

than languages. Java is a popular and multi-platform language that wide-spreads the

usage of cryptography to almost every systems. A Java framework that provides a

cryptographic API is built by Java Cryptography Architecture (JCA) and the Java

Cryptographic Extension (JCE) [27]. These architecture and extensions enable users

to use any cryptographic concept without to worry about the underlying details.

Although there are a lot of providers out there already, I implemented my own

cryptographic service provider by using Sun’s JCA and JCE. I specifically used 3

different packages javax.crypto, javax.crypto.interfaces and javax.crypto.spec.

3.2.1. BigInteger Class

The security of RSA depends on , , and . If these values are sufficiently large,

the RSA system is sufficiently secure. For commercial applications, is typically

chosen to be usually 1024 bits and for more critical applications, it is chosen as 2048

bits [28]. Since and and values are generally chosen as equally long

such as B bits long, the length of is 2B bits. Therefore, integer or long types

become useless for creating such a long keys. Therefore, programmers choose to use

big number libraries. Java uses BigInteger class. BigInteger provides analogues to all

20

of Java’s primitive integer operators and some methods. Moreover, BigInteger

provides some pre-defined methods like primality testing and greatest common

divisor. These methods make easy to implement cryptographic operations in Java.

3.2.2. Random Class and SecureRandom Class

The security of many cryptographic systems depends on the generation of

unpredictable variables where these variables must be of sufficient size and random.

The randomness means that the probability of any particular value being selected for

any variable must be sufficiently small and equally probable [29]. Random numbers

are extremely useful in cryptography in RSA Algorithm implementation especially

while deciding on p, q and d values for encryption and decryption.

For RSA, picking a number in predetermined bit length seems simple. However, if

you need truly random numbers which are equally probable, the task is quite

complex. Up to now, some robust techniques to generate random numbers are

developed. Since computer’s all actions are predictable and deterministic, generating

random numbers truly is not possible. But generating pseudo random numbers and

getting close to generate random numbers is possible.

Java’s Random class provides some methods to generate pseudo random numbers.

This class uses a 48 bit seed [30]. This seed is very vital to generate the key. The

seed is to generate the random algorithm to avoid being deterministic. If any pattern

in the seed is caught, this pattern can / will propagate itself in the key. In the design

of random generator, the most important feature to consider and not to neglect is that

the random bit generator should not be observed and manipulated. The natural source

of randomness of random bit generators is subject to affect by external factors and

malfunction. Since Random class uses the system clock to generate the seed, the

generated numbers can be reproduced easily by the attacker if he knows the time

when the seed was generated. However, SecureRandom class of Java uses the

random data from operating system and uses that data to generate the seed. Since

generated seed uses a random data in SecureRandom class rather than a pseudo

random data, this feature makes the usage of SecureRandom class in cryptography

more appropriate than Random class because SecureRandom class produces non

deterministic output instead of deterministic output.

21

In order to indicate the effect of random number generator (RNG) in the

implementation of RSA Algorithm in Java, during the creation of RSA key pairs, the

following experiment was done. The RSA Algorithm was implemented in 2 different

Java projects. The first project uses Random class and the second project uses

SecureRandom class as a random number generator for the creation of and

Every line of code, except the line of random number generator class type, used in

these 2 projects are identical. The histograms of the RSA Algorithm’s variables ,

and indicate the effect of RNG on the generated key pairs.

Table 3.1 Generated key pair values by using Java’s Random class

p q N e d

19 17 323 73 217

17 19 323 215 71

31 23 713 323 47

19 31 589 517 493

23 29 667 45 397

23 31 713 277 193

31 19 589 401 101

23 29 667 213 509

31 19 589 127 523

31 17 527 101 461

In this experiment, the distribution of corresponding , and values for these two

classes were saved and examined. Random class and SecureRandom class were set to

generate 5 bit long and values. Therefore, the calculated value can be utmost

10 bit long. With the analysis of the experiment, the behavior of used random

generator class were estimated and experienced.

22

 Table 3.2 Generated key pair values by using Java’s SecureRandom class

p q N e d

19 23 437 145 325

19 17 323 205 229

29 17 493 303 207

29 19 501 73 145

17 31 527 397 133

31 17 527 149 29

31 19 589 413 17

23 29 667 327 535

17 31 527 311 71

31 29 899 289 529

Figure 3.3 The histogram of p values generated by Random Class

Figure 3.4 The histogram of q values generated by Random Class

23

Figure 3.5 The histogram of N values generated by Random Class

Figure 3.6 The histogram of p values generated by SecureRandom Class

Figure 3.7 The histogram of q values generated by SecureRandom Class

24

Figure 3.8 The histogram of N values generated by SecureRandom Class

When Random class of the Java used instead of SecureRandom class for number

generation, the values’ distribution does not seem equally likely. However,

SecureRandom can be labeled as “True Random Generator” owing the distribution of

 values of it shown in Figure 3.8. Since values created by Random class are not

equally probable, the Random class cannot be classified as truly random as it is

expected. Beyond being truly random generator, SecureRandom class provides more

various values to be used in encryption and decryption processes. In Figure 3.5,

there are 5 different values generated by Random class. However, in Figure 3.8,

there are 8 different values generated by SecureRandom class. The difference

between the numbers of generated different values, indicates the positive effect of

SecureRandom class for random number generation in Java.

3.2.3. Symmetric Cases of Plain-text and Cipher-text for RSA

The principle of encryption and decryption for RSA depends on the public-key pair

 and private-key pair . The cipher-text is found by the formula

 and the plain-text is found by the formula While

implementing RSA encryption, for some values from 1 to , the plain-text

can be equal to the cipher-text. Although the case where is against the spirit

of encryption (hiding information), it is still possible to meet such cases. In order to

visualize these kinds of cases in RSA, Figure 3.9 can be examined.

25

Figure 3.9 The distribution of the cases where plain-text equals to cipher-text

For and , related private-key and public-key pairs

were created and messages from 1 to were encrypted according to the principles of

RSA with the indicated public-key and private-key pairs. The cases where plain-text

equal to cipher-text indicated by red boxes in Figure 3.9. During this experiment, the

symmetry between positions of message values of red boxes was observed. If you

examine one of these 5 different cases, the distribution of red boxes from 1 to and

the distribution of red boxes from to 1 are symmetric. Moreover, the summation of

the value of symmetric red boxes is equal to Due to the fact that with the increase

in the value of and values, the number of red boxes, where the plain-text equal to

cipher –text, decreases, I emphasized only limited number of pairs.

26

4. IMPLEMENTATION of RSA in JAVA

RSA Algorithm for cryptography consists of three main stages: Key Generation

Stage, Encryption Stage and Decryption Stage. Therefore, RSA was implemented in

Java by considering these 3 stages. Key Generation Stage is the process of generating

keys for cryptography. Keys, generated in this stage, are used to encrypt the plain-

text in Encryption Stage and used to decrypt the cipher-text in Decryption Stage.

Encryption Stage is the process of encoding messages in such a way that only

authorized people can understand it. By encryption, the message is converted into

cipher-text. Decryption Stage is the process of decoding the cipher-text to get the

original message.

4.1. Cryptography for RSA

There are four different screens for the users who want to implement RSA in Java.

These screens are “Generate RSA Keys”, “Generate Manual Keys”, “Encrypt

Message” and “Decrypt Message” screens. The first two screens are for generating

RSA’s public-key and RSA’s private-key. The third screen is for encrypting an

inputted message and the fourth screen is for decrypting a resulting cipher-text.

4.1.1. Implementation of RSA without Padding

In the key generation screen as shown in Figure 4.1. and values

are generated or calculated according to the selected key size. The key size can be

the values from 4 to 2048 in bits. The key values can be generated randomly or can

be generated manually by using “Create Manual Keys” option. In Figure 4.1, 32 bits

is chosen as a bit length of and values. Firstly, and values are generated.

With the multiplication of these values, value is calculated as 64 bits long.

Required data values, and values, are created according to the scenario of

RSA Algorithm. After completing key generation step, user becomes able to encrypt

any plain-text and decrypt any cipher-text by using generated or calculated RSA data

values.

27

Figure 4.1 The key generation screen for RSA without padding

In the encryption screen, the input plain-text is converted into corresponding

numerical ASCII value where ASCII is the abbreviation of American Standard Code

for Information Interchange. ASCII allows any text to be represented numerically. In

order to generate cipher-text, each character of plain-text, whether letter, number,

punctuation mark or space character, is converted into their numerical ASCII values

by one by. These numeric values are processed according to RSA implementation

steps. Resulting values for each character are concatenated to compose cipher-text.

As seen in Figure 4.2, the plain-text is “Mustafa KOCAKULAK”. 32 bits long and

 values and 64 bits long value were generated and calculated in Figure 4.1. These

key values were used to create cipher-text in Figure 4.2.

28

Figure 4.2 The encryption screen for RSA without padding

In the decryption screen, the encrypted values of each character of the plain-text

were converted into decrypted numeric values. These numeric values were converted

into their ASCII values. After completion of decryption process, the original plain-

text was recovered as seen in Figure 4.3.

29

Figure 4.3 The decryption screen for RSA without padding

In decryption screen, since the attacker knows only the cipher-text, he can try to

recover the plain-text by Cipher-Text-Only Attack. The attacker looks for finding a

pattern in the cipher-text. Since any pattern in cipher-text can / will propagate itself

in the key, he decrypts the cipher-text. In Figure 4.4, plain-text is “Mustafa

KOCAKULAK” and it contains repetitive ‘K’ letter. Due to not using padding

feature, cipher-text contains propagating encrypted ‘K’ values which corresponds to

‘4401993714634150941’. The frequent propagation of this numeric value makes the

attacker able to decrypt the cipher-text.

30

Figure 4.4 The vulnerability of RSA to Cipher-Text-Only Attack

The recovery from cipher-text to plain-text is the sign of vulnerability of the RSA

system to the Cipher-Text-Only Attacks. In order not to scarify the system security,

padding must be applied to the RSA algorithm implementation. Thus, recovery from

cipher-text to plain-text is avoided.

4.1.2. Implementation of RSA with Padding

Up to this section, encryption and decryption process of RSA were examined.

However, encryption or decryption process of RSA is not as vital as padding process.

Padding is an armoring process of plain-text during the encryption and it is not an

optional process for RSA. Padding is necessary for RSA against certain attacks and

to enable the plain-text to be reconstructed after encryption [31]. Since the basic

principle of any cipher is to confuse hackers and never to establish a pattern that can

be broken, padding has an indisputable importance for RSA implementation for

31

secure communication supply [32]. Due to the fact that attackers look for finding any

propagation in cipher-text to recover plain-text from cipher-text, padding is one of

the most used precautions to avoid such a security leak.

Padding ciphers work on fixed-sized output. As an example of RSA Implementation

with padding, 512 bits long and were used. In encryption process, plain-texts are

encrypted usually in groups of bits. These groups of bits are blocks. If a plain-text is

less than block size, then it must be padded with additional data. A constant byte is

added to the end of the message to make its length equal to the block size. Therefore,

the message length must be known before applying required padding.

Figure 4.5 The implementation of RSA with padding

Since 512 bits is commonly used key lengths for RSA, the ASCII value of plain-text

was padded and RSA encryption was done by using 512 bits long key pairs. As seen

in Figure 4.5, the plain-text is “11062015”. Not containing any repetitive sequence in

32

the cipher-text can be evaluated as a complexity or positive effect of padding on

encryption. Therefore, the corresponding cipher-text in Figure 4.5 is more complex

and more secure if it is compared with cipher-text created by RSA without padding.

The attackers cannot find any repetitive sequence in the cipher-text owing to padding

effect. However, Implementing RSA without padding sacrifices the security due to

the possibility of propagating some sequences in the cipher-text.

4.2. Cryptanalysis for RSA with Factorization Methods

Generally, cryptanalytic attacks rely on the basis of the algorithm and general

features of plain-text. For RSA, the security of algorithm depends upon which is

the multiple of and . Finding the value of and is known as factorization which

is the inverse process of multiplication. Factorization of is easy for small values

but for great numbers, it is very problematic. Here are four different factorization

methods for cryptanalysis of value of RSA as: Brute-Force Factorization, Pollard-

Rho Factorization, Fermat Factorization and KNJ- Factorization. These methods are

good at factorization of N up to for limited number of bits due to the limitation of

processors of computers.

4.2.1. Brute-Force Factorization Attack

Figure 4.6 Pseudo-code for Brute-Force factorization

Brute-Force Attack is not analyzing the cryptographic algorithm, but trying many

permutations of keys until some information is recovered from the plaintext [33].

Trying to divide by every number between 1 to is the simplest and the longest

way of obtaining and values. It is known as Brute-Force Factorization and shown

in Figure 4.6.

33

4.2.2. Pollard-Rho Factorization Attack

Figure 4.7 Pseudo-code for Pollard-Rho factorization [34]

Pollard-Rho Factorization, factorize the by using 2 different variables. By using a

loop and these 2 variables, algorithm checks the divisibility of N. After completion

of each iteration, these variables and their changing value makes the algorithm reach

the factor of as shown in Figure 4.7.

4.2.3. Fermat Factorization Attack

Figure 4.8 Pseudo-code for Fermat factorization [35]

Fermat Factorization is a good technique if and have equal distance from

Fermat Factorization depends on the difference of two squares as seen in Figure 4.8.

34

4.2.4. KNJ Factorization Attack

Figure 4.9 Pseudo-code for KNJ factorization [36]

KNJ-Factorization works well if or q is close to Algorithm starts checking the

numbers from to 1 instead of starting checking from 1 to as seen in Figure 4.9.

4.2.5. Comparison and Result

For varying values, the iteration numbers for 4 different factorization methods:

Brute-Force Factorization, Pollard-Rho Factorization, Fermat Factorization and KNJ

Factorization are shown in figures from Figure 4.10 to Figure 4.11. These figures

were drawn by using JFreeChart library. In these figures, it is clearly seen that

iteration number for Brute-Force Factorization in all cases, is much greater than other

factorization methods’ iteration number. As increases, the efficiency of Brute-

Force Attack decreases. As and values are close to in these figures, the

efficiency of other 3 methods increases and iteration numbers for these methods

decrease. For example, for , and As seen, and values are

close to . Except Brute-Force, iteration numbers for all 3 factorization are

low owing to close position of and values. Although iteration numbers are close

each other for the methods other than Brute-Force, the most effective one is Fermat

since and have nearly equal distance to as seen in Figure 4.10 and 4.11. For

greater values of , the difference between the iteration numbers of factorization

methods increases.

35

Figure 4.10 Iterations of factorization methods for varying small N values

Figure 4.11 Iterations of factorization methods for varying bigger N values

36

After comparison of iteration numbers of 4 factorization methods, comparison of

elapsed time values of 4 factorization methods was done. In order to compare the

elapsed time values for the factorization of varying values, 15 specific values

with different bit length, were created as shown in Table 4.1.

Table 4.1 Generated sample RSA key pairs for comparison of elapsed times

Size of N (bit) (p, q, N)

16 (137, 193, 26441)

18 (439, 281, 123359)

20 (661, 613, 405193)

22 (1619, 1831, 2964389)

24 (2617, 2473, 6471841)

26 (4447, 7669, 34104043)

28 (11399, 8861, 101006539)

30 (30631, 20719, 634643689)

32 (36299, 36997, 1342954103)

34 (87257, 115811, 10105320427)

36 (311341, 400949, 124831862609)

38 (648191, 953917, 618320414147)

40 (1909283, 1431737, 2733591114571)

42 (2206783, 3986351, 8797011618833)

44 (5310313, 8243899, 43777684030387)

For each factorization method, 15 different were factored 1000 times. These

factorizations were done simultaneously by using parallel computing logic as shown

in Figure 4.12.

Figure 4.12 Parallel computing of elapsed times for 4 factorization methods

37

For 4 different factorization methods and for 15 different values,

 different time values were obtained and saved in txt files. After creating

datasets for 4 factorization methods, these 60000 time values were processed in

Matlab. Firstly, the mean values of 1000 elapsed time of each N value, for each

factorization method, were calculated. It is shown in Table 4.2. These mean values

were used to generate the plots from Figure 4.13 to Figure 4.19.

Table 4.2 Mean value of elapsed times of each factorization method

Figure 4.13 Elapsed factorization time values of 4 factorization methods

15 20 25 30 35 40 45
10

-1

10
0

10
1

10
2

10
3

N (bits)

T
im

e
 (

m
s
e
c
)

Pollard-Rho

Brute-Force

KNJ

Fermat

38

Figure 4.14 Elapsed factorization time values of Brute-Force vs Fermat

Figure 4.15 Elapsed factorization time values of Brute-Force vs Pollard-Rho

15 20 25 30 35 40 45
10

-1

10
0

10
1

10
2

10
3

N (bits)

T
im

e
 (

m
s
e
c
)

Brute-Force

Fermat

15 20 25 30 35 40 45
10

-1

10
0

10
1

10
2

10
3

N (bits)

T
im

e
 (

m
s
e
c
)

Brute-Force

Pollard-Rho

39

Figure 4.16 Elapsed factorization time values of Brute-Force vs KNJ

Figure 4.17 Elapsed factorization time values of KNJ vs Fermat

15 20 25 30 35 40 45
10

-1

10
0

10
1

10
2

10
3

N (bits)

T
im

e
 (

m
s
e
c
)

Brute-Force

KNJ

15 20 25 30 35 40 45
10

-1

10
0

10
1

10
2

10
3

N (bits)

T
im

e
 (

m
s
e
c
)

KNJ

Fermat

40

Figure 4.18 Elapsed factorization time values of KNJ vs Pollard-Rho

Figure 4.19 Elapsed factorization time values of Pollard-Rho vs Fermat

15 20 25 30 35 40 45
10

-1

10
0

10
1

10
2

10
3

N (bits)

T
im

e
 (

m
s
e
c
)

KNJ

Pollard-Rho

15 20 25 30 35 40 45
10

-1

10
0

10
1

10
2

10
3

N (bits)

T
im

e
 (

m
s
e
c
)

Pollard-Rho

Fermat

41

Although elapsed time values for Fermat is less than other factorization methods as

seen in Figure 4.13, it is not easy to comment on other methods’ elapsed time

efficiency. Therefore, time values versus N values for varying N values were plotted

in pairs from Figure 4.14 to Figure 4.19. In these figures, elapsed time values for all

factorization methods are nearly identical except some small differences. The reasons

for obtaining nearly identical plots for 4 different factorization methods can be listed

as follows:

 In order to propose smoothness in the test architecture, hardware should not

be effective parameter to compare the efficiency of factorization methods.

However, in our experiment, we did not focus on this issue because of the

fact that running time of any algorithm depends on more than one parameter.

Thus, to compare efficiency of factorization methods, depending only on

their hardware dependent elapsed time values does not seem possible.

 Since hardware problems causes to get nearly identical time plots for 4

factorization methods, comparing efficiency of factorization methods by

iteration numbers, with efficiency of factorization methods by elapsed time

values, does not gives exact and reliable results.

 While creating datasets for factorization methods, 1000 time values for each

N, were saved. Although the number of sample time values seems sufficient,

efficiency of this experiment could be increased by taking more sample time

values for each method. Thus, the calculated mean values for each

factorization method could be smoother.

 In this experiment, 15 different N values were factorized. The minimum N

size was 16 bits and maximum N size was 44 bits. Elapsed time values were

in millisecond level. Due to working with small N values and measuring

elapsed times for factorization with pre-defined Java method, nanoTime(),

comparing efficiency of factorization methods depending on their elapsed

time values should not be sufficient.

42

5. SUMMARY and CONCLUSION

In this work, RSA Algorithm has been studied in detail and it is critically analyzed.

This thesis presents on insight into the basics of cryptography and it explains RSA

Algorithm, RSA’s mathematical background and mathematical characteristics. The

deficiency in key management process of symmetric-key algorithms has been

examined clearly and the reason behind the necessity of invention of asymmetric-key

cryptosystems was explained. With a simple numeric RSA example, the key

generation, encryption and decryption processes of the algorithm are clearly

indicated. The relation between Euler’s Phi Function and prime numbers were

simulated with a graph. The common RSA attacks and the well-known hints to avoid

such RSA attacks were explained. By introducing Java classes for random number

generation, the effect of random number generators on RSA applications was proved.

The importance of SecureRandom class for obtaining true-random numbers was

realized for Java. The special cases where plain-text cannot be hidden and remains

equal to cipher-text were shown. The symmetry in distribution of such cases in a

sample encryption scenario was examined carefully.

Simulation results for cryptography and cryptanalysis have been obtained using

Eclipse and Java. From 4 bits to 2048 bits, RSA encryption without padding feature

has been implemented. For 512 bits key length, RSA with padding feature was

implemented. As a cryptanalysis, four different factorization attack algorithms which

are Brute-Force Factorization, Pollard-Rho Factorization, Fermat Factorization and

KNJ Factorization, were implemented in Java to indicate the importance of choosing

RSA variables according to indicated RSA hints. Comparison between the iteration

numbers of these attacks and elapsed time values of these attacks were made. The

efficiency of these attacks in cryptanalysis of RSA was indicated.

With choosing RSA as a subject of master thesis, I learned many useful theorems

like Euler’s Theorem, Fermat’s Little Theorem and Euclidean Theorem. I

implemented them in Java. I studied RSA Algorithm in detail and I critically

analyzed it. As a future work, proposing an effective factorization algorithm for RSA

and implementing it in Java can be listed. Moreover, proposing a new algorithm

which has less deficiency than RSA can be foreseen.

43

REFERENCES

[1] C. Kaufman, R. Perlman and M. Speciner, Network Security: Private

Communication in a Public World, The Second Edition, Prentice Hall, 2002, 41.

[2] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 3.

[3] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 3.

[4] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox

Pres Ltd, 2001, 416.

[5] C. Kaufman, R. Perlman and M. Speciner, Network Security: Private

Communication in a Public World, The Second Edition, Prentice Hall, 2002, 148.

[6] F. Kaderali, Foundation and Applications of Cryptology,2007, 59.

[7] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 188.

[8] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied

Crytopgraphy, The First Edition, CRC Press, 1996, 65.

[9] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 157.

[10] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 166.

[11] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 166.

[12] B. A. Forouzan, Data Communications and Networking, The Fourth Edition,

Mc Graw Hill Higher Education, 2007, 932.

[13] D. R. Stinson, Cryptography Theory and Practice, The Third Edition, Chapman

& Hall / CRC, 2003, 1.

[14] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied

Crytopgraphy, The First Edition, CRC Press, 1996, 32.

[15] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied

Crytopgraphy, The First Edition, CRC Press, 1996, 31.

[16] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied

Crytopgraphy, The First Edition, CRC Press, 1996, 32.

[17] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 151.

[18] R. Churchhouse, Codes and Ciphers Julius Ceaser, the Enigma and the Internet,

The First Edition, Cambridge University Press, 2001, 166.

44

[19] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 151.

[20] W. Stallings, Codes and Ciphers Julius Ceaser, the Enigma and the Internet, The

Fifth Edition, Prentice Hall, 2011, 15.

[21] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,

Mc Graw Hill Higher Education, 2007, 306.

[22] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,

Mc Graw Hill Higher Education, 2007, 308.

[23] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,

Mc Graw Hill Higher Education, 2007, 309.

[24] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,

Mc Graw Hill Higher Education, 2007, 308.

[25] C. Kaufman, R. Perlman and M. Speciner, Network Security: Private

Communication in a Public World, The Second Edition, Prentice Hall, 2002, 159.

[26] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox

Pres Ltd, 2001, 413.

[27] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox

Pres Ltd, 2001, 52.

[28] Butun I., Demirer M., A Blind Digital Signature Scheme Using Elliptic Curve

Digital Signature Algorithm, Turkish Journal of Electrical Engineering & Computer

Sciences, 2013, 21, 945-956.

[29] F. Kaderali, Foundation and Applications of Cryptology,2007, 72.

[30] Oracle, http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

[31] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox

Pres Ltd, 2001, 430.

[32] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, The First Edition, Springer, 2010, 192.

[33] R. Helton, J. Helton, Java Security Solutions, The First Edition, Wiley, 2002,

257.

[34] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,

Mc Graw Hill Higher Education, 2007, 271.

[35] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,

Mc Graw Hill Higher Education, 2007, 269.

[36] N. Lal., A. P. Singh., S. Kumar, Modified Trial Divison Algorithm Using KNJ-

Factorization Method to Factorize RSA Public Key Encryption, Wireless

Communication and Computing Indian Institute of Information Technology.

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

45

CURRICULUM VITAE

PERSONAL INFORMATION

Name and Surname : Mustafa KOCAKULAK

Birth Date and Place : 30.01.1989 - BURSA

Foreign Language : Advanced English, Basic German

E-mail : kocakulakmustafa@gmail.com

EDUCATIONAL STATUS

Degree Department University Name Graduation

B.S. Electrical & Electronics Engineering Bilkent University 2012

WORK EXPERIENCE

Year Firm/Corporation Enrollment

2015-February Bursa Technical University Research Assistant

2014 Litera Bilişim Grup LTD.ŞTİ Software Engineer

2012 E.R.P Yazılım Danışmanlık LTD.ŞTİ Project Engineer

2011 A Bilgi Teknolojileri LTD.ŞTİ Intern Engineering

2010 MAKO Elektrik A.Ş Intern Engineering

AWARDS

1. Graduated with 1# degree, Namık Kemal İlköğretim Okulu (2002-2003)

2. Semi-Finalist of Massachusetts Institute of Technology MIT Enterprise

Forum Turkey Innovation Competition (2012)

3. Finalist of “ TÜSİAD Bu Gençlikte İş Var” Innovation Competition (2013)

mailto:kocakulakmustafa@gmail.com

