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OZET

RSA TABANLI ATAKLARIN HESAPLAMALI ANALIZi

Mustafa KOCAKULAK

Bursa Teknik Universitesi
Fen Bilimleri Enstitiisii
Mekatronik Miihendisligi Ana Bilim Dali
Yiiksek Lisans Tezi
Dog. Dr. Turgay TEMEL

Haziran 2015, 45 Sayfa

Iki veya daha fazla asal saymin ¢arpimindan meydana gelen biiyiik bir saymin, asal
bilesenlerine ayristirilabilmesinin zorlugu esasina dayanan RSA sistemi, saglamis
oldugu giivenlik seviyesi ve anahtar paylasiminda getirdigi yeniliklerle kriptoloji
alaninda tartigmasiz bir dneme sahiptir. Mevcut algoritmanin beraberinde getirdigi
uzun anahtar boyutlari, gerektirdigi genis hafiza alan1 ve anahtar paylasiminin
dayandig1 ‘asal bilesenlere ayristirmanin zorlugu’ esasinin giivenlik agisindan
asilabilir olmasi, bu alanda mevcut RSA algoritmasinda degisiklikler yapmay1 ya da
RSA’y1 maksimum giivenlikle korumay1 saglayan onlemleri uygulama esnasinda
almayr gerekli kilmaktadir. Bu caligmada RSA algoritmasi birgok yoniiyle ele
alinacak, uygulanan bazi kriptanaliz yontemlerine kars1t RSA’ya maksimum giivenlik

saglayacak tedbirler gosterilecektir.

Anahtar Sozciikler: RSA, Carpanlara Ayirma, Anahtar Boyutu, Asimetrik Anahtar
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ABSTRACT

COMPUTATIONAL ANALYSIS OF RSA BASED ATTACKS

Mustafa KOCAKULAK

Bursa Technical University
Graduate School of Natural and Applied Science
Department of Mechatronics Engineering Program
Master of Science Thesis
Assoc. Prof. Dr. Turgay TEMEL

June 2015, 45 Pages

The RSA Algorithm has an indisputable importance in cryptology. RSA’s security
depends on the difficulty of factoring big composite number. This number is the
multiplication of two or more prime numbers and its factorization is nearly
infeasible. Since the existing RSA Algorithm needs long key sizes, requires big
memory spaces and also has the deficiency depending on a feasible but long
factorization principle, it seems necessary to make some changes or taking some
necessary precautions during the implementation of RSA in order to provide
maximum security level. In this thesis, RSA algorithm will be examined and
evaluated in detail. Moreover, some security precautions, that support RSA against
some applied cryptanalysis methods, will be indicated.

Key Words: RSA, Factorization, Key Size, Asymmetric-Key
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1. INTRODUCTION

Cryptology is the art of secret writing [1]. It is a set of cryptography and
cryptanalysis. Cryptography is used to write hidden messages and cryptanalysis is
used to analyze hidden messages and recover the original messages. More
specifically, cryptology is a way providing security and secrecy to any
communication between three main characters in any unsecure channel. These
characters are sender, receiver, and eavesdropper. In this unsecure (open to possible
attacks) communication channel, sender and receiver want to exchange information
securely and secretly. Up to this point, there is no need for cryptology but when
eavesdropper starts to listen to this channel to reach the secret information between
sender and receiver, cryptology’s importance for communication with the intended

receivers is realized.

For thousands of years, people always want to send messages which can only be read
by the intended receivers. Until 1980s, the message between the sender and the
receiver was carried by using symmetric-key cryptosystems [2]. With the increase in
the usage of computers and mobile devices, the usage area of cryptology has
enlarged dramatically. The increase in computer usage, have made the
interconnections via networks between computers very important. When people
started to have their private computers and use them to send and to receive
information, their awareness and needs to protect their data and resources have
increased profoundly. At this moment, the modern cryptology has arisen. After
1980s, with Diffie-Hellman Algorithm and the Rivest-Shamir-Adleman Algorithm,
RSA, people have met asymmetric-key cryptosystems [3].

RSA Algorithm has an indisputable importance in cryptology. It is one of the most
widely known and used asymmetric-key cryptosystem [4]. Since the existing RSA
Algorithm needs long key sizes and has the deficiency depending on a feasible but
long factorization principle, it seems necessary to make some changes or taking some
necessary precautions during the implementation of RSA to provide maximum
security level. The objectives of this thesis are emphasizing the mathematical logic
behind RSA Algorithm, implementation of RSA Algorithm up to on 2048-bit with
and without padding, realizing the effect of bit length on the success of given some

well-known factorization algorithms.



2. MATHEMATICAL CRYPTOGRAPHY

In order to understand the mathematical ideas underlying symmetric-key
cryptography and asymmetric-key cryptography, it is necessary to explain the
number theory and emphasize the importance of algebra on algorithms because most

of the public-key algorithms are based on modular arithmetic [5].
2.1. Number Theory and Algebra

The set of integers, denoted by Z, contains all numbers with no fraction from
negative infinity to positive infinity. These integers are used in binary operations in
cryptography. The binary operations used in cryptography are addition,
multiplication and subtraction. Each of these operations takes two inputs and creates
one output. Since division gets two inputs (dividend and divisor) and creates two
outputs (remainder and quotient) instead of one output, division operation is not
categorized as binary operation. Although division algorithm is not classified as
binary operation, it is used in cryptology and it has a vital role in asymmetric-key

cryptosystems.
2.1.1. Divisibility and Greatest Common Divisor

Division algorithm implies that when an integer is divided by a positive integer, there
is a quotient and a remainder. Suppose that a is an integer and d is a positive integer,
then there are unique integers, g and r, where 0 <r <d, a =d *q + r. a is called
the dividend, d is called the divisor, g is called the quotient and ris called the
remainder. Now suppose that x and y are integers and n is a positive integer, then
x is congruent to y modulo n if n|(x — y). The notation x = y (mod n) implies that
x is congruent to y modulo n. Instead of equality operator, =, congruence operator,
=, is always used to indicate congruence. The difference between these two operators

is that while equality operator is one-to-one, the congruence operator is many-to-one.

Division operator’s usage in cryptography is various and not limited. For example,
primality testing and finding greatest common divisor processes require division
operator. A positive integer greater than 1 is prime number if its only divisors are 1
and itself. The greatest common divisor of two positive integers, a and b, is indicated

by gcd (a, b) and it equals to the largest integer that can divide both integers.



12

Common Divisors

Figure 2.1 The common divisors of 12 and 10

As seen in Figure 2.1, the common divisors of 12 and 10 are 1 and 2. The greatest

common divisor for 12 and 10, gcd (12,10) is 2 since 2 > 1.

The integers a and b are relatively prime which is known also as co-prime if and
only if gcd(a, b) = 1. Owing to finding out that whether two numbers have common
divisor or not, some of asymmetric-key cryptography algorithms can be applied
correctly such as RSA Algorithm.

2.1.2. Primality and Testing

A Primality Test is an algorithm that is used to find out whether or not given number
is prime (p € N and p > 2). An integer n is a prime if and only if n has two divisors
1 and itself, n. There are infinite numbers of prime numbers in a set P where
P ={2,3,57,11,13, ... }. In order to find primes, the wrong way is generate random
numbers and then try to factor them. It can be too time consuming. The correct way
can be generating random numbers and test their primality. If any number passes
some primality tests, then it is likely to be prime number. But if it fails one of
primality test, it is definitely composite number [6]. Trial Division Test, Fermat’s
Test and Miller Rabin Test are widely known and used testing methods [7].

2.1.3. Euler’s Phi Function

Euler Function is known as Euler’s Phi Function or Euler’s Totient Function [8].

This function is showed by ®(n) and defined as the number of positive integers less

3



than n and relatively prime to n. The set of integers contains all integer numbers with
no fraction from negative infinity t positive infinity is denoted by Z, where Z,, is
defined as the set of integers {0,1,2,...,n — 1}, Euler Function makes us know that

how many numbers in this set are relatively prime to n.

Let n = 5,then the associated set is Zs = {0,1,2,3,4}. Firstly, gcd(i,n) must be

calculated for every integer i from 0 to n — 1 must be calculated.
gcd(0,5) =5
gcd(1,5) = 1 (1 and 5 are co-prime)
gcd(2,5) = 1 (2 and 5 are co-prime)
gcd(3,5) = 1 (2 and 5 are co-prime)
gcd(4,5) = 1 (2 and 5 are co-prime)

Therefore, since n =5, Zs=1{0,1,2,3,4} and for i={1,2,3,4},gcd(i,n) =1,
®(5) = 4. Euler Theorem may be used easily to reduce large powers modulo n.
Since ®(n) equals to the number of positive integers less than n that are co-prime

with n, it states that if n is a positive integer and a co-prime with n, then
a®®™ =1 (modn) (2.1)

For Euler’s Totient Function, ®(n), there are also some other useful cases that

makes its calculation faster:

e Forall ®(n), if nis prime then,
d(n)=n-1 (2.2)
e |If gcd(n,m) = 1 then,
d(m xn) = d(m) * d(n) (2.3)
e Ifpisprimeandn # 1, then
d(PM) =p"—p"t (2.4)

In Figure 2.2, the red points indicate the value of Euler Phi Function for the varying
values from 0 to 30. The nearest red points to blue points indicate the validity of
Equation 2.2.
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Figure 2.2 The distribution of Euler Phi Function from 0 to 30.

Euler’s Phi Function is very crucial for asymmetric-key cryptography, especially for
RSA [9]. In order to calculate Euler’s Phi Function quickly, the factorization of n
must be known. It is one of the most important points for RSA because if the
factorization of a number n is known then, it is possible to compute Euler’s Phi
Function and decrypt the cipher-text [10]. If the factorization is not known, then Phi

Function cannot be computed hence the cipher-text cannot be decrypted.
2.1.4. Fermat’s Little Theorem

Fermat’s Little Theorem is also known that this theorem is a special case of Euler’s

Theorem. Fermat’s Theorem states that if a is an integer and p is a prime, then:
a’~1 =1 (mod p) (2.5)

Fermat’s Little Theorem is useful for primality testing and in many aspects of
asymmetric-key cryptography [11]. Fermat’s Little Theorem is useful in computing
the remainders modulo p large powers of integers. To visualize the importance of
Fermat’s Little Theorem for computing the remainders modulo p large powers of

integers, let’s solve 7221 modulo 11.



By using Fermat’s Little Theorem, we know that 71171 = 710 = 1 (mod 11). Since
(71%)* = 1(mod 11) for every positive integer, k, 7221 = (710)22 x 71 = 122 «
7'(mod 11) = 7(mod 11) = 7. As seen by this example, Fermat’s Little Theorem
is useful in doing exponentiations modulo an integer is needed. Alternative form of

Fermat’s Little Theorem is
a? = a (mod p) (2.6)

where for every integer a,p must be prime. The difference between two forms of
Fermat’s Theorem is that aP = a(mod p) form does not require that a relatively

prime to p while a?P~! = 1 (/mod p) requires.
2.2. Cryptography and Cryptanalysis

Cryptology is a set of cryptography and cryptanalysis as seen in Figure 2.3.

Cryptology

Cryptography Cryptanalysis

Figure 2.3 Classification of cryptology

In cryptology, Alice, Bob and Eve are three characters used in any information
exchange scenario. Alice is the person who needs to send secure data. Bob is the
recipient of the data. Eve is the person who somehow disturbs the communication
between Alice and Bob by intercepting messages. The original message before being

encrypted is known as plain-text.
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Figure 2.4 Communication over an unsecure channel

The original message after being encrypted is known as cipher-text. Encryption is
known as a process of changing original text into cipher-text. Decryption is known as
a process of changing cipher-text into original text. Algorithms used in decryption or
encryption are known as cipher. A key is defined as a number that the cipher
(encryption or decryption) operates on [12]. In every encryption process while
encrypting any message, the following materials are necessary: an encryption
algorithm, a plain-text and an encryption key. In every decryption process while
decrypting any message, a decryption algorithm, a cipher-text and a decryption key
are required. In cryptography terminology, the plain-text is denoted by x, the cipher-

text is denoted by y, the encryption key and decryption key are denoted by K [13].
2.2.1. Cryptography and Keys

In cryptography, there are three types of keys that we deal with: the secret-key, the
public-key and the private-key. The secret-key is the shared-key used in symmetric-
key cryptography. The other keys, the private-key and the public-key are used in
asymmetric-key cryptography.

2.2.2. Symmetric-Key Cryptography

Symmetric-key cryptography is sometimes referred as secret-key cryptography. It is
more historical form of cryptography in which a single key is used to decrypt and

encrypt a message. In symmetric-key cryptography, the same key is used by both

7



parties that is why it called symmetric-key. The logic behind the symmetric-key
cryptography relies on the shared key agreement between the sender and the receiver.
The sender and the receiver agree on a key and use it for encryption and decryption
of the message. Nobody else other than them knows this shared key. Shortly, the key
is shared and single. As seen in Figure 2.5, K is used as a single key for encryption

and decryption by both sides.

Eavesdropper

{ Eve

_ L p .
Alice | Eneryption : { y . Decryption | Bob
b — X

Sender K Receiver

Key Generator
[ Secure Channel |
L |

Secure Channel

Figure 2.5 Symmetric-key cryptosystem

2.2.3. Asymmetric-Key Cryptography

In asymmetric-key cryptography, there are two keys: a private-key and a public-key.
The private-key is kept by the receiver. The public-key is announced to the public. In
asymmetric-key encryption / decryption, the public-key that is used for encryption is
different from the private-key that is used for decryption. That is why it is known as
asymmetric-key cryptography. The public-key is available to the public; the private-
key is available only to an individual. The private-key is always linked
mathematically to the public-key. Therefore, it is always possible to attack a public-

key system by deriving the private-key from the public-key.
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Figure 2.6 Asymmetric-key cryptosystem

2.2.4. Comparison of Symmetric-Key and Asymmetric-Key Cryptography

The main advantage of symmetric-key cryptography is its speed [14]. It is faster than
asymmetric-key cryptography. The main disadvantage of symmetric-key
cryptosystems is key management and distribution [15]. Since the number of the
required keys increases with the number of network population, key management
and distribution becomes problematic issue for symmetric-key algorithms. Key
management is necessary to use keys securely. For asymmetric-key, there is no need
for exchanging keys, thus there is not any key distribution problem. The main
disadvantage is its speed. Since long key sizes needed, the usage of asymmetric-key
in any system makes process slower [16]. For example, for RSA Algorithm, the main
disadvantage is that it requires long key sizes in order to provide good security.
Therefore, RSA is not suitable for encrypting the large texts and it is usually used for

key exchange.
2.2.5. Key Management for Symmetric-Key Cryptography

Key distribution is the function that delivers a key to a sender and a receiver to make

them able to exchange encrypted data securely. The security of distribution of keys

9



depends on some protocols and mechanisms. For symmetric encryption, a sender and
a receiver must share the same key and this key must be protected from third parties
and also distributed keys must be changed and destroyed in frequent periods. The
frequent key changes and key destruction have crucial importance to decrease the
amount of data obtained by attacker. For symmetric encryption, the number of keys
depends on the number of people in a communication network. The number of
required keys is

Nx(N—-1)
2

(2.7)

where N equals to the number of people in the network [17]. As shown in Figure 2.7,

if there are 2 people in the network, the required key is w = ZZLI = 1. When
NeW-D) % = 3 and when 4 people in the

there are 3 people in the network,

N*(N—1) _ 4x3

network, —

=6 keys are required. When the network population

increases, as it is seen, the number of required keys increases and key management

becomes more difficult.

n 1. KEY E
1. KEY

B

3. KEY 2. KEY

Figure 2.7 Key distribution for symmetric-key cryptosystem

For asymmetric-key cryptography, key management is easier. Since in asymmetric-

key cryptography, everybody has only one public-key and one private-key, the

10



number of required keys is regardless of the population of the network and it is fixed.
Therefore, key management for asymmetric-key cryptography is not as hard as key

management for symmetric-key cryptography.
2.2.6. Key Exchange and Diffie-Hellman Algorithm

Diffie-Hellman Algorithm was the first public-key algorithm found in 1976. The idea
behind Diffie-Hellman Algorithm is to generate a private-key that can later be used
for communication [18]. Diffie-Hellman is known as a simple asymmetric-key
algorithm for key exchange. This protocol enables two users to establish a public-key

scheme based on discrete logarithm.

Two people, let’s say the sender and the receiver, can use this algorithm to generate a
secret key for key distribution. First, sender and receiver agree on large prime

numbers n and g such that g is primitive mod n. They perform the following steps:

1. The sender chooses a large integer x and sends the receiver, a = g* mod n.

2. Similarly, the receiver chooses a large integer y and sends the sender,
b =g"modn

3. The sender computes k from b that the receiver sent where k = b* mod n

4. Similarly the receiver computes k' = a” mod n.

Both k and k' are equal to g*¥ mod n. Any person listening to the conversation
would only know n, g, a and b. They cannot recover x and y because of the Discrete

Logarithm Problem. The security lies on choosing large values of n and g.

11



3. RSA (Rivest-Shamir-Adleman) ALGORITHM

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman introduced a cryptographic
algorithm, RSA, which is named for the first letter in each of its inventors’ last name
[19]. RSA’s motivation is Diffie-Hellman Algorithm which describes the idea of
such an algorithm that enables public-key cryptosystem. Here are the steps of RSA
Algorithm:

e The first step of RSA Algorithm is to select two different prime numbers, p
and q.

e The second step is the calculation of n where N = p * gq.

e The calculation of ®(N) = (p — 1) * (q — 1) is the third step.

e As a fourth step, an integer e is selected as a public-key which is co-prime
with ®(N).

e Finally, the inverse of e modulus ®(N) is taken to produce d, the private-

key. By using e and d modulus N, the encryption and decryption are done.

In the RSA Algorithm, the public-key includes two numbers N and e, while the
private-key is N together with a different number d. Given a numerical message M is

encrypted by

M - Mé(mod N) =C (3.2)
Similarly an encrypted message C is decrypted by the message

C - C*modN)=M (3.2)

For the implementation of RSA, the number N is a product of two large prime
numbers p and q. If you know p and g you can obtain d from e. As N is a part of the
public-key and it is the multiplication of p and g, then in principle it is possible to

factorize N to find p and q.
3.1. Simple RSA Example
Here are the steps of example RSA:

e Find two primes p and q.

e We will choose p = 11 and g = 5.

12



We define N =p+xg=55andk = (p—1) * (g — 1) = 40.
Find a random integer e which is co-prime with k where k = 23 x5
We can choose e = 7, since gcd(7,40) = 1.
Take your message M, encode it as whole number inthe range 0 < M < N. If
your message is too long, then break the message into blocks in this range.
The message M is encrypted into the C in the range 0 < C < n under the rule

C = M€ (mod N)
Compute the unique whole number d such that de = 1(mod k) and d is in
the range 1 < d < k because e and k are co-prime, we can make sense of
d = e~ In our example, e = 7 and k = 40, we can do this by trial and error
and we find d = 23

7% 23 =161 = 1(mod k)

Given the encrypted message C, this can be decrypted back into the message
M by taking

M = C% (mod N)
Take the previous value of N = 55,k = 40,e = 7 and d = 23.
Suppose our message assigned as M = 13.
In order to encode it, we must calculate the value of C:

C = M¢(mod n) = 137 (mod 55)

13%2 = 169 = 3 * 55 + 4 = 4 (mod 55)
C=132%132%132%13 =4 x4 x4 % 13 = 64 % 13 = 7 (mod 55)
Decoding € = 7, we should obviously get M = 13. In this example M is

given by
M = C%(mod n) = 7?3 (mod 55)
Since 72 = 49 = —6 (mod 55),

7% = (7%)3 = (—=6)3 = —216 = 4 (mos55)
=7%%7%%7%%7%x7% %7 (mod 55)
=4%4%4%(—6)*(—6)*7
=64x6x6%x7
=54 %42
=—1%x42
= —42 = 13 (mod 55)
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3.1.1. The Relation between e, d and Euler’s Phi Function

Modular arithmetic is known as clock arithmetic. All we know clock starts from 12
and ends with 12. The space of clockisOto N — 1=11 where N = 12.{0,1,2,3,4,5,
6,7,8,9,10,11} is the space of clock and 0 is congruent with 12. Suppose the time
12 o’clock right now. 3 hours later, it will be 3. However, 15 hours later, it will be 3,
too. This equality or congruence is the result of working in modulus 12 where 15=3
mod 12. Suppose your clock starts from 12 and it is in modulus 12 but it does not
increase by 1 each time. It increases by 2 each time. Then, its space gets narrow and
becomes {0, 2, 4, 6, 8, 10} where 0 is congruent with 12. If it increases by 3 each
time, then its space gets narrow and becomes {0, 3, 6, 9} where 0 is congruent with
12. If it increases by 5 each time, then its space does not change. But the order of the
space becomes {0, 5, 10, 3, 8,1, 6, 11, 4, 9, 2, 7}. If it increases by 7 each time, then
its space length does not change again. But the order the space becomes {0, 7, 2, 9, 4,
11,6, 1, 8, 3, 10, 5}.

As seen above, if the incremental value is co-prime with modulus, N, 12, the result
space does not get narrow and the space does not change. When it is co-prime with
N, then you will use every number exactly once before returning to starting value 12.
However, when the incremental value is not co-prime with N, 12, the result space

gets narrow.

For RSA, the relation between e, d and Euler’s Phi Function can be explained by
using clock arithmetic. Since M¢ = C(mod N) and C* = M(mod N), for every
distinct message value, M, each message value has exactly one and unique

corresponding cipher value, C in mod N owing to being co-prime with phi(N).

Message 1 2 3 4 5 6 7 8 9 10
Cipher 1 8 27 31 26 18 13 17 3 10
Message 11 12 13 14 15 16 17 138 19 20
Cipher 11 12 19 5 9 4 29 24 48 14
Message 21 22 23 24 25 26 27 28 29 30
Cipher 21 22 23 30 16 20 15 7 2 6
Message 31 32

Cipher 25 32

Figure 3.1 The one to one matching of cipher-text values and plain-text values
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For example, fore =3, N =33,q9 =3, p =11, M = [(1) to (32)], Phi(N) = 20, for
every distinct message value of M, there is exactly one and unique corresponding
cipher-text value as seen in Figure 3.1. As shown, for all different message values
from 1 to N-1, the corresponding cipher-texts are unique and different. There is no

repetition.
3.1.2. Prime Numbers and Prime Number Generation

An integer n is a prime if and only if n has two divisors 1 and itself, n. There are

infinitely many prime numbers in a set P where P = {2,3,5,7,11,13, ... }.

2 3 5 7 11 13 17
19 23 29 31 37 41 43
47 53 39 61 67 71 73
79 a3 a9 97 101 103 107

109 113 127

Figure 3.2 The generated prime numbers with key size=7 bits

As it is seen in Figure 3.2, prime numbers does not follow any linear pattern. There is
not any function that gives all prime numbers from 2 to positive infinity. In order to
find prime numbers, the wrong way is generate random numbers and then try to
factor them. It can be time consuming. The correct way can be generating random
numbers and test their primality. Although finding a formula or pattern to list all
prime numbers from 0 to positive infinity is not feasible yet, classifying prime
numbers after generating them by using primality tests is possible. Prime numbers
can be categorized as Sophie-Germain Primes, Safe Primes and Strong Primes.
Sophie-Germain Prime is a prime number p such that 2 xp + 1 is also prime

number. Safe Prime is a prime number g such that 2 xp + 1 = q where p is also

prime. Strong Prime is a prime number g such that g = pT_l is prime, pT“ is prime,

q7—1 is prime and p is also prime.
3.1.3. Attacks on RSA

In cryptography, encryption aims at providing security and secrecy to any

communication between the sender and the receiver. While providing security,
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encryption or encryption-like transformations of information often uses some

mechanisms like enciphering, digital signature and access control against the

cryptographic attacks. These attacks are classified as passive or active attacks [20]. If

attacks are used to access and to obtain information for eavesdropping on or

monitoring, these attacks are passive attacks. Passive attacks are generally very

difficult to detect because these attacks do not involve any alteration of information.

If attacks involve some modification of information, these attacks are classified as

active attacks and it is difficult to prevent active attacks.

Some of popular attacks on RSA can be listed as below:

Cyclic Attack
If the sender and the receiver do not take care in determining their keys, the
attacker can intercept the encrypted message sent by the sender to the
receiver. Suppose RSA variables of our system are p =3, g =17, N = 51,
®(N)=32,e=3,d=11, M =5, and C = 23. The cipher-text starts with
23. By attempting to crack it by using cyclic attack, the attacker can find d, p
and q values.

Encrypt(23) = 233 (mod 51) = 29

Encrypt(29) = 293 (mod 51) = 11

Encrypt(11) = 113 (mod 51) =5=M
(This is the original message encrypted by the sender)
Encrypt(5) = 53 (mod 51) =23 =C
(This is the original cipher — text decrypted by the receiver)

As it is shown, the attacker reached the values of p, g, and d by the cycling

re-encryption.

Low-Encryption Exponents Attack

For small values of e and for small values of the plain-text, by taking the e‘"
root of the cipher-text over the integers, the cipher-text can be easily
decrypted. In order to improve the system performance, e can be chosen as
small as possible but it leads to some security leaks [21]. The smallest
possible value for e is 3 but to avoid some certain attacks the value 216 + 1 =

65537 is recommended.
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Forward Search Attack

For this attack, if message space is not wide and also if the attacker can
predict the message, the attacker can decrypt the cipher-text by encrypting all
possible messages until he obtains a match with the cipher-text [22].

Common Modulus Attack
For this attack, allowing two different receivers to share the same modulus N
for RSA can lead to Common Modulus Attack. Thus, for RSA, modulus N

should not be used by more than one communication [23].

Low Decryption Exponents Attack
To improve the performance of RSA decryption, the d value can be chosen as
small rather than a large number. Indeed, small d value improves the system

performance dramatically but the system become vulnerable to attacks [24].

Chosen Cipher-Text Attack

A Chosen Cipher-Text Attack is an attack where the cryptanalyst chooses a
cipher-text and let it decrypt. From some pairs of cipher-text and decrypted
cipher-texts, he obtains information about key or about the message. Since
m1€ * m2¢ = (m1 * m2)¢ is mathematically valid, the Chosen Cipher-Text
Attack can be possible where m1 is chosen as small number and sent by the

attacker. Since m1 is small, it can be analyzed easily.

Brute-Force Attack

A Brute-Force Attack involves trying all possible public-key and private-keys
until finding the right ones. The attacker tries all possible public-key and
private-key combinations. RSA with short key size is vulnerable against this

attack. However, Brute-Force Attack is useless for long key sizes.
Cipher-Text Only Attack

For this attack, the attacker knows only the cipher-text and he tries to recover

the plain-text by using cipher-text by trial and error.
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e Factorization Attack
The security of RSA is based on the idea that the modulus is so large that is
not possible to factor it in a short time. The sender selects p and g and he
calculates N = p * g where N is public. Although N is public, p and g are
private. Since e is also public and e *x d = 1 (mod ®(N)), any attacker who
knows p and g values, can calculate d value which is used to decrypt any
encrypted message. In this thesis, some of Factorization Attacks like Brute-
Force Attack, Fermat Attack, Pollard-Rho Attack and KNJ Attack will be

examined in detail.
3.1.4. RSA Implementation Hints

Here are the recommended hints that increase the security level of RSA

implementation:

e p and g should not be very small. Since N=p=*q, N can be easily
factorized if p and g values are both small.

e Primes p and g should not be too far from each other. If one of them is too
small, it makes factoring of n easier.

e p and g primes can be selected from “Strong Primes” where (p — 1) and
(q — 1) have large prime factors. This can make factorization process of N
more complex.

e ¢ and d should not be very small. Let’s describe a simplified version RSA
encryption. As emphasized before, in any encryption operation, the main
objective of the attacker is to recover the message from the cipher-text. In
order to reduce the load of exponentiation in RSA, one may prefer to use a
small value of private-key or public-key values rather than a random value.
For small private-key values, RSA system becomes vulnerable to attacks.

e e and d values should not be equal, where e # d. Since decryption process is
the inverse of encryption process, e and d should not be equal. If they are
equal, encrypted value of plain-text can be recovered easily.

e The most frequently selected e values are e = 3,e = 17,e = 216 + 1 [25].
These 3 different e values have a common feature. They have only 2 times 1
bits in their binary representation. Therefore, total number of multiplications

needed to perform exponentiation is minimized.
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e = 00000011 =3
e = 00010001 =17
e = 1000 0000 0000 0001 = 216 + 1

e For RSA system, the public-key is (N, e). The private-key is (N, d). These
integers need to be very large to avoid easy factorization of N. Since the
maximum integer type value generated in Java is 31 bits, it corresponds to
231 — 1 =12147483647. In order to generate numbers bigger than
2147483647, Java uses Biglinteger instead of using Integer class.

3.2. Cryptology and Java

A cryptographic Application Programming Interface (API) enables a programmer to
implement cryptographic techniques. There are few cryptography APIs like Java
Cryptography Architecture (JCA), Microsoft Cryptography API, Bouncy Castle
Crypto API and Linux Kernel Cryptographic API [26]. These API’s scopes are very
wide. Some API’s are written only for one language and others are written for more
than languages. Java is a popular and multi-platform language that wide-spreads the
usage of cryptography to almost every systems. A Java framework that provides a
cryptographic API is built by Java Cryptography Architecture (JCA) and the Java
Cryptographic Extension (JCE) [27]. These architecture and extensions enable users
to use any cryptographic concept without to worry about the underlying details.
Although there are a lot of providers out there already, | implemented my own
cryptographic service provider by using Sun’s JCA and JCE. | specifically used 3

different packages javax.crypto, javax.crypto.interfaces and javax.crypto.spec.
3.2.1. Biglnteger Class

The security of RSA depends on N, p, and q. If these values are sufficiently large,
the RSA system is sufficiently secure. For commercial applications, N is typically
chosen to be usually 1024 bits and for more critical applications, it is chosen as 2048
bits [28]. Since N = p * g and p and q values are generally chosen as equally long
such as B bits long, the length of N is 2B bits. Therefore, integer or long types
become useless for creating such a long keys. Therefore, programmers choose to use

big number libraries. Java uses Biglnteger class. Biginteger provides analogues to all
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of Java’s primitive integer operators and some methods. Moreover, Biglnteger
provides some pre-defined methods like primality testing and greatest common

divisor. These methods make easy to implement cryptographic operations in Java.
3.2.2. Random Class and SecureRandom Class

The security of many cryptographic systems depends on the generation of
unpredictable variables where these variables must be of sufficient size and random.
The randomness means that the probability of any particular value being selected for
any variable must be sufficiently small and equally probable [29]. Random numbers
are extremely useful in cryptography in RSA Algorithm implementation especially

while deciding on p, g and d values for encryption and decryption.

For RSA, picking a number in predetermined bit length seems simple. However, if
you need truly random numbers which are equally probable, the task is quite
complex. Up to now, some robust techniques to generate random numbers are
developed. Since computer’s all actions are predictable and deterministic, generating
random numbers truly is not possible. But generating pseudo random numbers and

getting close to generate random numbers is possible.

Java’s Random class provides some methods to generate pseudo random numbers.
This class uses a 48 bit seed [30]. This seed is very vital to generate the key. The
seed is to generate the random algorithm to avoid being deterministic. If any pattern
in the seed is caught, this pattern can / will propagate itself in the key. In the design
of random generator, the most important feature to consider and not to neglect is that
the random bit generator should not be observed and manipulated. The natural source
of randomness of random bit generators is subject to affect by external factors and
malfunction. Since Random class uses the system clock to generate the seed, the
generated numbers can be reproduced easily by the attacker if he knows the time
when the seed was generated. However, SecureRandom class of Java uses the
random data from operating system and uses that data to generate the seed. Since
generated seed uses a random data in SecureRandom class rather than a pseudo
random data, this feature makes the usage of SecureRandom class in cryptography
more appropriate than Random class because SecureRandom class produces non

deterministic output instead of deterministic output.
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In order to indicate the effect of random number generator (RNG) in the
implementation of RSA Algorithm in Java, during the creation of RSA key pairs, the
following experiment was done. The RSA Algorithm was implemented in 2 different
Java projects. The first project uses Random class and the second project uses
SecureRandom class as a random number generator for the creation of p and q.
Every line of code, except the line of random number generator class type, used in
these 2 projects are identical. The histograms of the RSA Algorithm’s variables p, q
and N indicate the effect of RNG on the generated key pairs.

Table 3.1 Generated key pair values by using Java’s Random class

p q N e d
19 17 323 73 217
17 19 323 215 71
31 23 713 323 47
19 31 589 517 493
23 29 667 45 397
23 31 713 277 193
31 19 589 401 101
23 29 667 213 509
31 19 589 127 523
31 17 527 101 461

In this experiment, the distribution of corresponding p, g, and N values for these two
classes were saved and examined. Random class and SecureRandom class were set to
generate 5 bit long p and g values. Therefore, the calculated N value can be utmost
10 bit long. With the analysis of the experiment, the behavior of used random

generator class were estimated and experienced.

21




Table 3.2 Generated key pair values by using Java’s SecureRandom class

p q N e d

19 23 437 145 325
19 17 323 205 229
29 17 493 303 207
29 19 501 73 145
17 31 527 397 133
31 17 527 149 29
31 19 589 413 17
23 29 667 327 535
17 31 527 311 71
31 29 899 289 529
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Figure 3.3 The histogram of p values generated by Random Class
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Figure 3.4 The histogram of g values generated by Random Class
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Figure 3.8 The histogram of N values generated by SecureRandom Class

When Random class of the Java used instead of SecureRandom class for number
generation, the N values’ distribution does not seem equally likely. However,
SecureRandom can be labeled as “True Random Generator” owing the distribution of
N values of it shown in Figure 3.8. Since N values created by Random class are not
equally probable, the Random class cannot be classified as truly random as it is
expected. Beyond being truly random generator, SecureRandom class provides more
various N values to be used in encryption and decryption processes. In Figure 3.5,
there are 5 different N values generated by Random class. However, in Figure 3.8,
there are 8 different N values generated by SecureRandom class. The difference
between the numbers of generated different N values, indicates the positive effect of

SecureRandom class for random number generation in Java.
3.2.3. Symmetric Cases of Plain-text and Cipher-text for RSA

The principle of encryption and decryption for RSA depends on the public-key pair
(e,N) and private-key pair (d, N). The cipher-text is found by the formula C =
M®mod N and the plain-text is found by the formula M = C% mod N. While
implementing RSA encryption, for some M values from 1 to N — 1, the plain-text
can be equal to the cipher-text. Although the case where C = M is against the spirit
of encryption (hiding information), it is still possible to meet such cases. In order to

visualize these kinds of cases in RSA, Figure 3.9 can be examined.
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(P, q. N) = (5, 7, 35) (p. q, N} =(5, 5, 25)
(e,d,Phi[N)) =(7, 7, 24) {e,d,Phi{N)]) =(3,11, 16)
{(p, 9, N) =(7, 5, 35)
{e,d,Phi(N]}) = (5,5,24)
(p, q, N) =(7,7,49) (p.q, N)=(7,7, 49)
(e,d,Phi(N}) =(29,5,36) {e,d,Phi{N]}) = (31,7,36)

Figure 3.9 The distribution of the cases where plain-text equals to cipher-text

For p=5o0rp=7 andq =5o0r q =7, related private-key and public-key pairs
were created and messages from 1 to N were encrypted according to the principles of
RSA with the indicated public-key and private-key pairs. The cases where plain-text
equal to cipher-text indicated by red boxes in Figure 3.9. During this experiment, the
symmetry between positions of message values of red boxes was observed. If you
examine one of these 5 different cases, the distribution of red boxes from 1 to N and
the distribution of red boxes from N to 1 are symmetric. Moreover, the summation of
the value of symmetric red boxes is equal to N. Due to the fact that with the increase
in the value of p and q values, the number of red boxes, where the plain-text equal to

cipher —text, decreases, | emphasized only limited number of p, g, N pairs.
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4. IMPLEMENTATION of RSA in JAVA

RSA Algorithm for cryptography consists of three main stages: Key Generation
Stage, Encryption Stage and Decryption Stage. Therefore, RSA was implemented in
Java by considering these 3 stages. Key Generation Stage is the process of generating
keys for cryptography. Keys, generated in this stage, are used to encrypt the plain-
text in Encryption Stage and used to decrypt the cipher-text in Decryption Stage.
Encryption Stage is the process of encoding messages in such a way that only
authorized people can understand it. By encryption, the message is converted into
cipher-text. Decryption Stage is the process of decoding the cipher-text to get the

original message.
4.1. Cryptography for RSA

There are four different screens for the users who want to implement RSA in Java.
These screens are “Generate RSA Keys”, “Generate Manual Keys”, “Encrypt
Message” and “Decrypt Message” screens. The first two screens are for generating
RSA’s public-key and RSA’s private-key. The third screen is for encrypting an

inputted message and the fourth screen is for decrypting a resulting cipher-text.
4.1.1. Implementation of RSA without Padding

In the key generation screen as shown in Figure 4.1. p, q,N,®(N),e and d values
are generated or calculated according to the selected key size. The key size can be
the values from 4 to 2048 in bits. The key values can be generated randomly or can
be generated manually by using “Create Manual Keys” option. In Figure 4.1, 32 bits
is chosen as a bit length of p and g values. Firstly, p and g values are generated.
With the multiplication of these values, N value is calculated as 64 bits long.
Required data values, ®(N), e, and d values, are created according to the scenario of
RSA Algorithm. After completing key generation step, user becomes able to encrypt
any plain-text and decrypt any cipher-text by using generated or calculated RSA data

values.
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.| RSA Algorithm Im e

rGenerate RSA Keys rCreate Manual Keys |/EIIC.I'ﬂ}t Message rDecnrpt Message |

First Prime Number(p): 2420053213 132 |v|| Generate |
Second Prime Number(g): 3147920597 Generate
N=p*q: 7618157135517645161

Calculate
Phi(n) = (p-1)(g-1): 7618157129949662352
Encryption Exponent(e): 3069313775 Generate

Decryption Exponent(d):  302059924174261207

Show RSA Variables |

- 2420053213
a= 3147920597
= 7618157135517645161
Phi= 7618157129949662352
o= 3069318775
d= 302059924174261207

Reset All RSA Variables

Figure 4.1 The key generation screen for RSA without padding

In the encryption screen, the input plain-text is converted into corresponding
numerical ASCII value where ASCII is the abbreviation of American Standard Code
for Information Interchange. ASCII allows any text to be represented numerically. In
order to generate cipher-text, each character of plain-text, whether letter, number,
punctuation mark or space character, is converted into their numerical ASCII values
by one by. These numeric values are processed according to RSA implementation
steps. Resulting values for each character are concatenated to compose cipher-text.
As seen in Figure 4.2, the plain-text is “Mustafa KOCAKULAK?”. 32 bits long p and
q values and 64 bits long N value were generated and calculated in Figure 4.1. These

key values were used to create cipher-text in Figure 4.2.
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|- RA Algorithm Implet =

rGenerate RSA Keys |/ Create Manual Keys |/ Encrypt Message |/ Decrypt Message |

Plain Text
Mustafa KOCAKULAK

Encrypt

Cipher Text

6341486898402745809556774629271701062933383216620972390614763166587954316993607
9801837150126088381722758793582465060798018371501260882705462354551785050440199
3714634150941111031524084808109637540063464726996247295293970589793605440199371
4634150941506954367967468610410321528079972168327295293970589793605440199371463

4150941

Figure 4.2 The encryption screen for RSA without padding

In the decryption screen, the encrypted values of each character of the plain-text
were converted into decrypted numeric values. These numeric values were converted
into their ASCII values. After completion of decryption process, the original plain-

text was recovered as seen in Figure 4.3.
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| - [ ——

rGenerate R5A Keys r Create Manual Keys r Encrypt Message |/ Decrypt Message

Cipher Text
6341486898402745809556774629271701062933383216620972390614763166587954316993607
9B801837150126088381722758793582465060798018371501260882705462354551785050440199
3714634150941111031524084808109637540063464726996247295293970589793605440199371
46341509415069543679674686194103215280799721683272952093970589793605440199371463
4150941

Decrypt

Plain Text
Mustafa KOCAKULAK

Figure 4.3 The decryption screen for RSA without padding

In decryption screen, since the attacker knows only the cipher-text, he can try to
recover the plain-text by Cipher-Text-Only Attack. The attacker looks for finding a
pattern in the cipher-text. Since any pattern in cipher-text can / will propagate itself
in the key, he decrypts the cipher-text. In Figure 4.4, plain-text is “Mustafa
KOCAKULAK?” and it contains repetitive ‘K’ letter. Due to not using padding
feature, cipher-text contains propagating encrypted ‘K’ values which corresponds to
‘4401993714634150941°. The frequent propagation of this numeric value makes the
attacker able to decrypt the cipher-text.
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[ Generate RSA Keys | Create Manual Keys : Encrypt Message _' Decrypt Message _

Cipher Text

63414868984027458095567 T46202T1701062933383216620972390614763166587954316993607

9801837150126088381722758793582465060798018371501260882705462354551785050440180
i 09411110315240848081096375400634647269962472952093970589793605

463412084 150695436796746861941032152807997216832729529309705897936054404 002 71482
415

Decrypt

Plain Text
Mustafa KOCAKULAK

Figure 4.4 The vulnerability of RSA to Cipher-Text-Only Attack

The recovery from cipher-text to plain-text is the sign of vulnerability of the RSA
system to the Cipher-Text-Only Attacks. In order not to scarify the system security,
padding must be applied to the RSA algorithm implementation. Thus, recovery from

cipher-text to plain-text is avoided.
4.1.2. Implementation of RSA with Padding

Up to this section, encryption and decryption process of RSA were examined.
However, encryption or decryption process of RSA is not as vital as padding process.
Padding is an armoring process of plain-text during the encryption and it is not an
optional process for RSA. Padding is necessary for RSA against certain attacks and
to enable the plain-text to be reconstructed after encryption [31]. Since the basic
principle of any cipher is to confuse hackers and never to establish a pattern that can

be broken, padding has an indisputable importance for RSA implementation for
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secure communication supply [32]. Due to the fact that attackers look for finding any

propagation in cipher-text to recover plain-text from cipher-text, padding is one of

the most used precautions to avoid such a security leak.

Padding ciphers work on fixed-sized output. As an example of RSA Implementation

with padding, 512 bits long p and g were used. In encryption process, plain-texts are

encrypted usually in groups of bits. These groups of bits are blocks. If a plain-text is

less than block size, then it must be padded with additional data. A constant byte is

added to the end of the message to make its length equal to the block size. Therefore,

the message length must be known before applying required padding.

I

Create p
Create g
N=pxq

Phi (M

Find e
Key Length

[512 v

OAEP

RSA Algorithm Implementaty = i e |

J06409726231817623993152960050489670065199473236486691460274776661736865420027934253484779

194157239089029955760145512879435265498464132566500692410513939238898621535764787592939173

150231549191947267217802100364009528754158448501864987150671421691058149158836710228347767

1496645838710994880645006274340845931874948426988776032798827157904226621940439828381923816

104198235764515211184709796026134512774525160770480154692149970341494042745341898532616769

390791693667 386506872798611668225893413093861395981200168318746232260431015971869902224505

RSA Padding Option  (®) RSA with OAEP (_) RSA without OAEP | Encrypt | | Decrypt | | Delete |

Enter Your Message to Encrypt

11062015

Encryption of Your Message

249458360868927719332320995089203610620790930198231079031399
875883081739170979584109572715682079690580309709201799155436
548630079245111239541133082853279507363317458179283258751711
284633411377741649283202954041416606251530130660118024480593
0E7777287141809528611516938876 16393749563 141784623765619770005205476

Decryption of Your Message

11062015

Figure 4.5 The implementation of RSA with padding

Since 512 bits is commonly used key lengths for RSA, the ASCII value of plain-text

was padded and RSA encryption was done by using 512 bits long key pairs. As seen

in Figure 4.5, the plain-text is “11062015”. Not containing any repetitive sequence in
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the cipher-text can be evaluated as a complexity or positive effect of padding on
encryption. Therefore, the corresponding cipher-text in Figure 4.5 is more complex
and more secure if it is compared with cipher-text created by RSA without padding.
The attackers cannot find any repetitive sequence in the cipher-text owing to padding
effect. However, Implementing RSA without padding sacrifices the security due to
the possibility of propagating some sequences in the cipher-text.

4.2. Cryptanalysis for RSA with Factorization Methods

Generally, cryptanalytic attacks rely on the basis of the algorithm and general
features of plain-text. For RSA, the security of algorithm depends upon N which is
the multiple of p and q. Finding the value of p and g is known as factorization which
is the inverse process of multiplication. Factorization of N is easy for small N values
but for great numbers, it is very problematic. Here are four different factorization
methods for cryptanalysis of N value of RSA as: Brute-Force Factorization, Pollard-
Rho Factorization, Fermat Factorization and KNJ- Factorization. These methods are
good at factorization of N up to for limited number of bits due to the limitation of

processors of computers.

4.2.1. Brute-Force Factorization Attack

l.letN=pxq
2.Forpfrom2toN
if{p divides N)
return p;
else
return 1;

Figure 4.6 Pseudo-code for Brute-Force factorization

Brute-Force Attack is not analyzing the cryptographic algorithm, but trying many
permutations of keys until some information is recovered from the plaintext [33].
Trying to divide N by every number between 1 to VN is the simplest and the longest
way of obtaining p and g values. It is known as Brute-Force Factorization and shown

in Figure 4.6.
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4.2.2. Pollard-Rho Factorization Attack

l.letN=pxq

2. Let A=2, B=2

3.do
A=AxA
A=A+1
BE=BxB
E=B+1
E=BxB
BE=B+1

while(gcd(N, A-B)==1)
4, return gcd(N, A-B);

Figure 4.7 Pseudo-code for Pollard-Rho factorization [34]

Pollard-Rho Factorization, factorize the N by using 2 different variables. By using a
loop and these 2 variables, algorithm checks the divisibility of N. After completion
of each iteration, these variables and their changing value makes the algorithm reach

the factor of N as shown in Figure 4.7.

4.2.3. Fermat Factorization Attack

letN=pxq

. Compute A = Math.ceil{Math.sqrt(N))
. Compute Ax A

. ComputeB=AxA-N

5. while(B % {Math.sqrt(B))!=0)
A=A+1;

F T

B=Ax A-N;
6. Return A - (Math.sqrt{B)).

Figure 4.8 Pseudo-code for Fermat factorization [35]

Fermat Factorization is a good technique if p and g have equal distance from v/N.

Fermat Factorization depends on the difference of two squares as seen in Figure 4.8.
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4.2.4. KNJ Factorization Attack

l.letN=pxq
2. Compute A = Math.floor{Math.sqri(N))
3. Check if (A % 2==0)
4. A=A+l
5. Check if A's primality (If it is prime)
6. ComputeB=N/A
7. Check if B is integer
8. return A
9. B is not integer
A=A-2
10. A=A-2, A-4, A6, ..., 7,5, 3.
11. Repeat step 5- to step 10 until B is integer

Figure 4.9 Pseudo-code for KNJ factorization [36]

KNJ-Factorization works well if p or q is close to v/N. Algorithm starts checking the

numbers from V/N to 1 instead of starting checking from 1 to N as seen in Figure 4.9.
4.2.5. Comparison and Result

For varying N values, the iteration numbers for 4 different factorization methods:
Brute-Force Factorization, Pollard-Rho Factorization, Fermat Factorization and KNJ
Factorization are shown in figures from Figure 4.10 to Figure 4.11. These figures
were drawn by using JFreeChart library. In these figures, it is clearly seen that
iteration number for Brute-Force Factorization in all cases, is much greater than other
factorization methods’ iteration number. As N increases, the efficiency of Brute-
Force Attack decreases. As p and g values are close to VN in these figures, the
efficiency of other 3 methods increases and iteration numbers for these methods
decrease. For example, for N = 35, p =5 and g = 7. As seen, p and q values are
close to V35 = 6. Except Brute-Force, iteration numbers for all 3 factorization are
low owing to close position of p and g values. Although iteration numbers are close
each other for the methods other than Brute-Force, the most effective one is Fermat
since p and g have nearly equal distance to VN as seen in Figure 4.10 and 4.11. For
greater values of N, the difference between the iteration numbers of factorization

methods increases.
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Figure 4.10 Iterations of factorization methods for varying small N values
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Figure 4.11 Iterations of factorization methods for varying bigger N values
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After comparison of iteration numbers of 4 factorization methods, comparison of
elapsed time values of 4 factorization methods was done. In order to compare the
elapsed time values for the factorization of varying N values, 15 specific N values

with different bit length, were created as shown in Table 4.1.

Table 4.1 Generated sample RSA key pairs for comparison of elapsed times

Size of N (bit) (p, q, N)
16 (137, 193, 26441)
18 (439, 281, 123359)
20 (661, 613, 405193)
22 (1619, 1831, 2964389)
24 (2617, 2473, 6471841)
26 (4447, 7669, 34104043)
28 (11399, 8861, 101006539)
30 (30631, 20719, 634643689)
32 (36299, 36997, 1342954103)
34 (87257, 115811, 10105320427)
36 (311341, 400949, 124831862609)
38 (648191, 953917, 618320414147)
40 (1909283, 1431737, 2733591114571)
42 (2206783, 3986351, 8797011618833)
44 (5310313, 8243899, 43777684030387)

For each factorization method, 15 different N were factored 1000 times. These
factorizations were done simultaneously by using parallel computing logic as shown

in Figure 4.12.

1. lkeration

Brute-Force Fermat KNJ Pollard-Rho

2_Iteration

|¢

Brute-Force Fermat KNJ Pollard-Rho

4
s ]

3. lteration

Brute-Force Fermat KNJ Pollard-Rho

1000. lkeration
Brute-Force Fermat KNJ Pollard-Rho

Figure 4.12 Parallel computing of elapsed times for 4 factorization methods
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For 4 different factorization methods and for 15 different N values, 4 x 15 x 1000 =

60000 different time values were obtained and saved in txt files. After creating

datasets for 4 factorization methods, these 60000 time values were processed in

Matlab. Firstly, the mean values of 1000 elapsed time of each N value, for each

factorization method, were calculated. It is shown in Table 4.2. These mean values

were used to generate the plots from Figure 4.13 to Figure 4.19.

Table 4.2 Mean value of elapsed times of each factorization method

N{bit)| 4 18 0 | 2 24 % | 2 30 £ 34 3 38 20 £ 4
Methods
Bru(tn‘i';;ocgce 03519 | 04388 | 03120 | 03899 | 0.3658 | 5.4706 | 13602 | 13.7103 | 0.4516 | 30.6785 | 70.7839 | 51.6306 | 278.6109 | 328.4548 | 409.5940
Fermat . ies | pa T 2 moan cre | mgazam | an e | <1510 | 49a nmas | 2am 2 -
o) 03352 | 04616 | 03485 | 03638 | 0.3676 | 5.6095 | 14600 | 13.7833 | 0.4376 | 29.9377 | 70.0776 | 52.1192 | 274.0746 | 327.3019 | 400.0254
msec
KNJ ] ] 1 1. ] . .
(msec) 03289 | 05101 | 03548 | 03785 | 03567 | 54332 | 12777 | 13.6844 | 0.4705 | 30.6712 | 687191 | 509743 | 2733747 | 327.5804 | 398.7826
Pollard-Rho | 43365 | 04131 | 03288 | 03856 | 03816 | 5.4527 | 13101 | 13.6676 | 0.4984 | 303033 | 70.7733 | 52.4225 | 274.0078 | 337.5512 | 400.0443
(msec)
3
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Figure 4.13 Elapsed factorization time values of 4 factorization methods
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Figure 4.14 Elapsed factorization time values of Brute-Force vs Fermat
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Figure 4.15 Elapsed factorization time values of Brute-Force vs Pollard-Rho
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Figure 4.18 Elapsed factorization time values of KNJ vs Pollard-Rho
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Although elapsed time values for Fermat is less than other factorization methods as

seen in Figure 4.13, it is not easy to comment on other methods’ elapsed time

efficiency. Therefore, time values versus N values for varying N values were plotted

in pairs from Figure 4.14 to Figure 4.19. In these figures, elapsed time values for all

factorization methods are nearly identical except some small differences. The reasons

for obtaining nearly identical plots for 4 different factorization methods can be listed

as follows:

In order to propose smoothness in the test architecture, hardware should not
be effective parameter to compare the efficiency of factorization methods.
However, in our experiment, we did not focus on this issue because of the
fact that running time of any algorithm depends on more than one parameter.
Thus, to compare efficiency of factorization methods, depending only on
their hardware dependent elapsed time values does not seem possible.

Since hardware problems causes to get nearly identical time plots for 4
factorization methods, comparing efficiency of factorization methods by
iteration numbers, with efficiency of factorization methods by elapsed time
values, does not gives exact and reliable results.

While creating datasets for factorization methods, 1000 time values for each
N, were saved. Although the number of sample time values seems sufficient,
efficiency of this experiment could be increased by taking more sample time
values for each method. Thus, the calculated mean values for each
factorization method could be smoother.

In this experiment, 15 different N values were factorized. The minimum N
size was 16 bits and maximum N size was 44 bits. Elapsed time values were
in millisecond level. Due to working with small N values and measuring
elapsed times for factorization with pre-defined Java method, nanoTime(),
comparing efficiency of factorization methods depending on their elapsed

time values should not be sufficient.
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5. SUMMARY and CONCLUSION

In this work, RSA Algorithm has been studied in detail and it is critically analyzed.
This thesis presents on insight into the basics of cryptography and it explains RSA
Algorithm, RSA’s mathematical background and mathematical characteristics. The
deficiency in key management process of symmetric-key algorithms has been
examined clearly and the reason behind the necessity of invention of asymmetric-key
cryptosystems was explained. With a simple numeric RSA example, the key
generation, encryption and decryption processes of the algorithm are clearly
indicated. The relation between Euler’s Phi Function and prime numbers were
simulated with a graph. The common RSA attacks and the well-known hints to avoid
such RSA attacks were explained. By introducing Java classes for random number
generation, the effect of random number generators on RSA applications was proved.
The importance of SecureRandom class for obtaining true-random numbers was
realized for Java. The special cases where plain-text cannot be hidden and remains
equal to cipher-text were shown. The symmetry in distribution of such cases in a

sample encryption scenario was examined carefully.

Simulation results for cryptography and cryptanalysis have been obtained using
Eclipse and Java. From 4 bits to 2048 bits, RSA encryption without padding feature
has been implemented. For 512 bits key length, RSA with padding feature was
implemented. As a cryptanalysis, four different factorization attack algorithms which
are Brute-Force Factorization, Pollard-Rho Factorization, Fermat Factorization and
KNJ Factorization, were implemented in Java to indicate the importance of choosing
RSA variables according to indicated RSA hints. Comparison between the iteration
numbers of these attacks and elapsed time values of these attacks were made. The
efficiency of these attacks in cryptanalysis of RSA was indicated.

With choosing RSA as a subject of master thesis, | learned many useful theorems
like Euler’s Theorem, Fermat’s Little Theorem and Euclidean Theorem. |
implemented them in Java. | studied RSA Algorithm in detail and | critically
analyzed it. As a future work, proposing an effective factorization algorithm for RSA
and implementing it in Java can be listed. Moreover, proposing a new algorithm

which has less deficiency than RSA can be foreseen.

42



REFERENCES

[1] C. Kaufman, R. Perlman and M. Speciner, Network Security: Private
Communication in a Public World, The Second Edition, Prentice Hall, 2002, 41.

[2] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 3.

[3] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 3.

[4] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox
Pres Ltd, 2001, 416.

[5] C. Kaufman, R. Perlman and M. Speciner, Network Security: Private
Communication in a Public World, The Second Edition, Prentice Hall, 2002, 148.

[6] F. Kaderali, Foundation and Applications of Cryptology,2007, 59.

[7] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 188.

[8] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied
Crytopgraphy, The First Edition, CRC Press, 1996, 65.

[9] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 157.

[10] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 166.

[11] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 166.

[12] B. A. Forouzan, Data Communications and Networking, The Fourth Edition,
Mc Graw Hill Higher Education, 2007, 932.

[13] D. R. Stinson, Cryptography Theory and Practice, The Third Edition, Chapman
& Hall / CRC, 2003, 1.

[14] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied
Crytopgraphy, The First Edition, CRC Press, 1996, 32.

[15] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied
Crytopgraphy, The First Edition, CRC Press, 1996, 31.

[16] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied
Crytopgraphy, The First Edition, CRC Press, 1996, 32.

[17] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 151.

[18] R. Churchhouse, Codes and Ciphers Julius Ceaser, the Enigma and the Internet,
The First Edition, Cambridge University Press, 2001, 166.

43



[19] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 151.

[20] W. Stallings, Codes and Ciphers Julius Ceaser, the Enigma and the Internet, The
Fifth Edition, Prentice Hall, 2011, 15.

[21] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,
Mc Graw Hill Higher Education, 2007, 306.

[22] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,
Mc Graw Hill Higher Education, 2007, 308.

[23] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,
Mc Graw Hill Higher Education, 2007, 309.

[24] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,
Mc Graw Hill Higher Education, 2007, 308.

[25] C. Kaufman, R. Perlman and M. Speciner, Network Security: Private
Communication in a Public World, The Second Edition, Prentice Hall, 2002, 159.

[26] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox
Pres Ltd, 2001, 413.

[27] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox
Pres Ltd, 2001, 52.

[28] Butun 1., Demirer M., A Blind Digital Signature Scheme Using Elliptic Curve
Digital Signature Algorithm, Turkish Journal of Electrical Engineering & Computer
Sciences, 2013, 21, 945-956.

[29] F. Kaderali, Foundation and Applications of Cryptology,2007, 72.

[30] Oracle, http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

[31] J. Garms, D. Somerfield, Professional Java Security, The First Edition, Wrox
Pres Ltd, 2001, 430.

[32] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, The First Edition, Springer, 2010, 192.

[33] R. Helton, J. Helton, Java Security Solutions, The First Edition, Wiley, 2002,
257.

[34] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,
Mc Graw Hill Higher Education, 2007, 271.

[35] B. A. Forouzan, Cryptography & Network Security, The Special Indian Edition,
Mc Graw Hill Higher Education, 2007, 269.

[36] N. Lal., A. P. Singh., S. Kumar, Modified Trial Divison Algorithm Using KNJ-
Factorization Method to Factorize RSA Public Key Encryption, Wireless
Communication and Computing Indian Institute of Information Technology.

44


http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

CURRICULUM VITAE

PERSONAL INFORMATION

Name and Surname : Mustafa KOCAKULAK

Birth Date and Place : 30.01.1989 - BURSA

Foreign Language : Advanced English, Basic German
E-mail : kocakulakmustafa@gmail.com

EDUCATIONAL STATUS

Degree Department University Name Graduation
B.S. Electrical & Electronics Engineering  Bilkent University 2012

WORK EXPERIENCE

Year Firm/Corporation Enrollment
2015-February Bursa Technical University Research Assistant
2014 Litera Bilisim Grup LTD.STI Software Engineer
2012 E.R.P Yazilim Damsmanhik LTD.STI  Project Engineer
2011 A Bilgi Teknolojileri LTD.STI Intern Engineering
2010 MAKO Elektrik A.S Intern Engineering
AWARDS

1. Graduated with 1# degree, Namik Kemal Ik gretim Okulu (2002-2003)

2. Semi-Finalist of Massachusetts Institute of Technology MIT Enterprise
Forum Turkey Innovation Competition (2012)

3. Finalist of “ TUSIAD Bu Genglikte Is Var” Innovation Competition (2013)

45


mailto:kocakulakmustafa@gmail.com

