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ÖZET 

RSA TABANLI ATAKLARIN HESAPLAMALI ANALİZİ 

 

Mustafa KOCAKULAK 

 

Bursa Teknik Üniversitesi 

Fen Bilimleri Enstitüsü 

Mekatronik Mühendisliği Ana Bilim Dalı 

Yüksek Lisans Tezi 

Doç. Dr. Turgay TEMEL 

Haziran 2015, 45 Sayfa 

 

İki veya daha fazla asal sayının çarpımından meydana gelen büyük bir sayının, asal 

bileşenlerine ayrıştırılabilmesinin zorluğu esasına dayanan RSA sistemi, sağlamış 

olduğu güvenlik seviyesi ve anahtar paylaşımında getirdiği yeniliklerle kriptoloji 

alanında tartışmasız bir öneme sahiptir. Mevcut algoritmanın beraberinde getirdiği 

uzun anahtar boyutları, gerektirdiği geniş hafıza alanı ve anahtar paylaşımının 

dayandığı ‘asal bileşenlere ayrıştırmanın zorluğu’ esasının güvenlik açısından 

aşılabilir olması, bu alanda mevcut RSA algoritmasında değişiklikler yapmayı ya da 

RSA’yı maksimum güvenlikle korumayı sağlayan önlemleri uygulama esnasında 

almayı gerekli kılmaktadır. Bu çalışmada RSA algoritması birçok yönüyle ele 

alınacak, uygulanan bazı kriptanaliz yöntemlerine karşı RSA’ya maksimum güvenlik 

sağlayacak tedbirler gösterilecektir. 

 

Anahtar Sözcükler: RSA, Çarpanlara Ayırma, Anahtar Boyutu, Asimetrik Anahtar 
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ABSTRACT 

COMPUTATIONAL ANALYSIS OF RSA BASED ATTACKS 

 

Mustafa KOCAKULAK 

 

Bursa Technical University 

Graduate School of Natural and Applied Science 

Department of Mechatronics Engineering Program 

Master of Science Thesis 

Assoc. Prof. Dr. Turgay TEMEL 

June 2015, 45 Pages 

 

The RSA Algorithm has an indisputable importance in cryptology. RSA’s security 

depends on the difficulty of factoring big composite number. This number is the 

multiplication of two or more prime numbers and its factorization is nearly 

infeasible. Since the existing RSA Algorithm needs long key sizes, requires big 

memory spaces and also has the deficiency depending on a feasible but long 

factorization principle, it seems necessary to make some changes or taking some 

necessary precautions during the implementation of RSA in order to provide 

maximum security level. In this thesis, RSA algorithm will be examined and 

evaluated in detail. Moreover, some security precautions, that support RSA against 

some applied cryptanalysis methods, will be indicated. 

 

Key Words: RSA, Factorization, Key Size, Asymmetric-Key 
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1. INTRODUCTION 

Cryptology is the art of secret writing [1]. It is a set of cryptography and 

cryptanalysis. Cryptography is used to write hidden messages and cryptanalysis is 

used to analyze hidden messages and recover the original messages. More 

specifically, cryptology is a way providing security and secrecy to any 

communication between three main characters in any unsecure channel. These 

characters are sender, receiver, and eavesdropper. In this unsecure (open to possible 

attacks) communication channel, sender and receiver want to exchange information 

securely and secretly. Up to this point, there is no need for cryptology but when 

eavesdropper starts to listen to this channel to reach the secret information between 

sender and receiver, cryptology’s importance for communication with the intended 

receivers is realized. 

For thousands of years, people always want to send messages which can only be read 

by the intended receivers. Until 1980s, the message between the sender and the 

receiver was carried by using symmetric-key cryptosystems [2]. With the increase in 

the usage of computers and mobile devices, the usage area of cryptology has 

enlarged dramatically. The increase in computer usage, have made the 

interconnections via networks between computers very important. When people 

started to have their private computers and use them to send and to receive 

information, their awareness and needs to protect their data and resources have 

increased profoundly. At this moment, the modern cryptology has arisen. After 

1980s, with Diffie-Hellman Algorithm and the Rivest-Shamir-Adleman Algorithm, 

RSA, people have met asymmetric-key cryptosystems [3]. 

RSA Algorithm has an indisputable importance in cryptology. It is one of the most 

widely known and used asymmetric-key cryptosystem [4]. Since the existing RSA 

Algorithm needs long key sizes and has the deficiency depending on a feasible but 

long factorization principle, it seems necessary to make some changes or taking some 

necessary precautions during the implementation of RSA to provide maximum 

security level. The objectives of this thesis are emphasizing the mathematical logic 

behind RSA Algorithm, implementation of RSA Algorithm up to on 2048-bit with 

and without padding, realizing the effect of bit length on the success of given some 

well-known factorization algorithms. 
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2. MATHEMATICAL CRYPTOGRAPHY 

In order to understand the mathematical ideas underlying symmetric-key 

cryptography and asymmetric-key cryptography, it is necessary to explain the 

number theory and emphasize the importance of algebra on algorithms because most 

of the public-key algorithms are based on modular arithmetic [5]. 

2.1. Number Theory and Algebra 

The set of integers, denoted by  , contains all numbers with no fraction from 

negative infinity to positive infinity. These integers are used in binary operations in 

cryptography. The binary operations used in cryptography are addition, 

multiplication and subtraction. Each of these operations takes two inputs and creates 

one output. Since division gets two inputs (dividend and divisor) and creates two 

outputs (remainder and quotient) instead of one output, division operation is not 

categorized as binary operation. Although division algorithm is not classified as 

binary operation, it is used in cryptology and it has a vital role in asymmetric-key 

cryptosystems.  

2.1.1. Divisibility and Greatest Common Divisor 

Division algorithm implies that when an integer is divided by a positive integer, there 

is a quotient and a remainder. Suppose that   is an integer and   is a positive integer, 

then there are unique integers,   and    where                   is called 

the dividend,   is called the divisor,   is called the quotient and   is called the 

remainder. Now suppose that   and   are integers and   is a positive integer, then 

  is congruent to   modulo   if           The notation             implies that 

  is congruent to   modulo    Instead of equality operator,    congruence operator, 

   is always used to indicate congruence. The difference between these two operators 

is that while equality operator is one-to-one, the congruence operator is many-to-one. 

Division operator’s usage in cryptography is various and not limited. For example, 

primality testing and finding greatest common divisor processes require division 

operator. A positive integer greater than 1 is prime number if its only divisors are 1 

and itself. The greatest common divisor of two positive integers,   and    is indicated 

by           and it equals to the largest integer that can divide both integers.  
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Figure 2.1 The common divisors of 12 and 10 

 

As seen in Figure 2.1, the common divisors of 12 and 10 are 1 and 2. The greatest 

common divisor for 12 and 10,             is 2 since    .  

The integers   and   are relatively prime which is known also as co-prime if and 

only if             Owing to finding out that whether two numbers have common 

divisor or not, some of asymmetric-key cryptography algorithms can be applied 

correctly such as RSA Algorithm.  

2.1.2. Primality and Testing 

A Primality Test is an algorithm that is used to find out whether or not given number 

is prime      and     . An integer   is a prime if and only if   has two divisors 

1 and itself,    There are infinite numbers of prime numbers in a set   where 

                   . In order to find primes, the wrong way is generate random 

numbers and then try to factor them. It can be too time consuming. The correct way 

can be generating random numbers and test their primality. If any number passes 

some primality tests, then it is likely to be prime number. But if it fails one of 

primality test, it is definitely composite number [6]. Trial Division Test, Fermat’s 

Test and Miller Rabin Test are widely known and used testing methods [7]. 

2.1.3. Euler’s Phi Function 

Euler Function is known as Euler’s Phi Function or Euler’s Totient Function [8]. 

This function is showed by      and defined as the number of positive integers less 
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than   and relatively prime to    The set of integers contains all integer numbers with 

no fraction from negative infinity   positive infinity is denoted by  , where    is 

defined as the set of integers               , Euler Function makes us know that 

how many numbers in this set are relatively prime to  . 

Let      then the associated set is                 Firstly,          must be 

calculated for every integer   from 0 to     must be calculated. 

           

           (1 and 5 are co-prime) 

           (2 and 5 are co-prime) 

           (2 and 5 are co-prime) 

           (2 and 5 are co-prime) 

Therefore, since                     and for                         

        Euler Theorem may be used easily to reduce large powers modulo    

Since      equals to the number of positive integers less than   that are co-prime 

with    it states that if   is a positive integer and a co-prime with    then 

                                  (2.1) 

For Euler’s Totient Function,     , there are also some other useful cases that 

makes its calculation faster: 

 For all       if   is prime then, 

                                     (2.2) 

 If            then, 

                                                                                         (2.3) 

 If   is prime and      then 

                                                                                                 (2.4) 

In Figure 2.2, the red points indicate the value of Euler Phi Function for the varying 

values from 0 to 30. The nearest red points to blue points indicate the validity of 

Equation 2.2. 
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Figure 2.2 The distribution of Euler Phi Function from 0 to 30. 

 

Euler’s Phi Function is very crucial for asymmetric-key cryptography, especially for 

RSA [9]. In order to calculate Euler’s Phi Function quickly, the factorization of   

must be known. It is one of the most important points for RSA because if the 

factorization of a number   is known then, it is possible to compute Euler’s Phi 

Function and decrypt the cipher-text [10]. If the factorization is not known, then Phi 

Function cannot be computed hence the cipher-text cannot be decrypted.  

2.1.4. Fermat’s Little Theorem 

Fermat’s Little Theorem is also known that this theorem is a special case of Euler’s 

Theorem. Fermat’s Theorem states that if   is an integer and   is a prime, then: 

                                                                                                                (2.5) 

Fermat’s Little Theorem is useful for primality testing and in many aspects of 

asymmetric-key cryptography [11]. Fermat’s Little Theorem is useful in computing 

the remainders modulo   large powers of integers. To visualize the importance of 

Fermat’s Little Theorem for computing the remainders modulo p large powers of 

integers, let’s solve               .  
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By using Fermat’s Little Theorem, we know that                     . Since 

                 for every positive integer,                        

                        As seen by this example, Fermat’s Little Theorem 

is useful in doing exponentiations modulo an integer is needed. Alternative form of 

Fermat’s Little Theorem is  

                                                                                                                  (2.6) 

where for every integer     must be prime. The difference between two forms of 

Fermat’s Theorem is that             form does not require that   relatively 

prime to   while                requires. 

2.2. Cryptography and Cryptanalysis 

Cryptology is a set of cryptography and cryptanalysis as seen in Figure 2.3.  

 

Figure 2.3 Classification of cryptology 

 

In cryptology, Alice, Bob and Eve are three characters used in any information 

exchange scenario. Alice is the person who needs to send secure data. Bob is the 

recipient of the data. Eve is the person who somehow disturbs the communication 

between Alice and Bob by intercepting messages. The original message before being 

encrypted is known as plain-text.  

Cryptology 

Cryptography Cryptanalysis 



7 

 

 

Figure 2.4 Communication over an unsecure channel 

 

The original message after being encrypted is known as cipher-text. Encryption is 

known as a process of changing original text into cipher-text. Decryption is known as 

a process of changing cipher-text into original text. Algorithms used in decryption or 

encryption are known as cipher. A key is defined as a number that the cipher 

(encryption or decryption) operates on [12]. In every encryption process while 

encrypting any message, the following materials are necessary: an encryption 

algorithm, a plain-text and an encryption key. In every decryption process while 

decrypting any message, a decryption algorithm, a cipher-text and a decryption key 

are required. In cryptography terminology, the plain-text is denoted by  , the cipher-

text is denoted by  , the encryption key and decryption key are denoted by   [13]. 

2.2.1. Cryptography and Keys 

In cryptography, there are three types of keys that we deal with: the secret-key, the 

public-key and the private-key. The secret-key is the shared-key used in symmetric-

key cryptography. The other keys, the private-key and the public-key are used in 

asymmetric-key cryptography.  

2.2.2. Symmetric-Key Cryptography 

Symmetric-key cryptography is sometimes referred as secret-key cryptography. It is 

more historical form of cryptography in which a single key is used to decrypt and 

encrypt a message. In symmetric-key cryptography, the same key is used by both 
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parties that is why it called symmetric-key. The logic behind the symmetric-key 

cryptography relies on the shared key agreement between the sender and the receiver. 

The sender and the receiver agree on a key and use it for encryption and decryption 

of the message. Nobody else other than them knows this shared key. Shortly, the key 

is shared and single. As seen in Figure 2.5,   is used as a single key for encryption 

and decryption by both sides.  

 

Figure 2.5 Symmetric-key cryptosystem 

 

2.2.3. Asymmetric-Key Cryptography 

In asymmetric-key cryptography, there are two keys: a private-key and a public-key. 

The private-key is kept by the receiver. The public-key is announced to the public. In 

asymmetric-key encryption / decryption, the public-key that is used for encryption is 

different from the private-key that is used for decryption. That is why it is known as 

asymmetric-key cryptography. The public-key is available to the public; the private-

key is available only to an individual. The private-key is always linked 

mathematically to the public-key. Therefore, it is always possible to attack a public-

key system by deriving the private-key from the public-key. 



9 

 

 

Figure 2.6 Asymmetric-key cryptosystem 

 

2.2.4. Comparison of Symmetric-Key and Asymmetric-Key Cryptography 

The main advantage of symmetric-key cryptography is its speed [14]. It is faster than 

asymmetric-key cryptography. The main disadvantage of symmetric-key 

cryptosystems is key management and distribution [15]. Since the number of the 

required keys increases with the number of network population, key management 

and distribution becomes problematic issue for symmetric-key algorithms. Key 

management is necessary to use keys securely. For asymmetric-key, there is no need 

for exchanging keys, thus there is not any key distribution problem. The main 

disadvantage is its speed. Since long key sizes needed, the usage of asymmetric-key 

in any system makes process slower [16]. For example, for RSA Algorithm, the main 

disadvantage is that it requires long key sizes in order to provide good security. 

Therefore, RSA is not suitable for encrypting the large texts and it is usually used for 

key exchange. 

2.2.5. Key Management for Symmetric-Key Cryptography 

Key distribution is the function that delivers a key to a sender and a receiver to make 

them able to exchange encrypted data securely. The security of distribution of keys 
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depends on some protocols and mechanisms. For symmetric encryption, a sender and 

a receiver must share the same key and this key must be protected from third parties 

and also distributed keys must be changed and destroyed in frequent periods. The 

frequent key changes and key destruction have crucial importance to decrease the 

amount of data obtained by attacker. For symmetric encryption, the number of keys 

depends on the number of people in a communication network. The number of 

required keys is  

                                                                
       

 
                                                     (2.7) 

where   equals to the number of people in the network [17]. As shown in Figure 2.7, 

if there are 2 people in the network, the required key is 
       

 
 

   

 
  . When 

there are 3 people in the network, 
       

 
 

   

 
   and when 4 people in the 

network, 
       

 
 

   

 
   keys are required. When the network population 

increases, as it is seen, the number of required keys increases and key management 

becomes more difficult. 

 

Figure 2.7 Key distribution for symmetric-key cryptosystem 

 

For asymmetric-key cryptography, key management is easier. Since in asymmetric-

key cryptography, everybody has only one public-key and one private-key, the 
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number of required keys is regardless of the population of the network and it is fixed. 

Therefore, key management for asymmetric-key cryptography is not as hard as key 

management for symmetric-key cryptography. 

2.2.6. Key Exchange and Diffie-Hellman Algorithm 

Diffie-Hellman Algorithm was the first public-key algorithm found in 1976. The idea 

behind Diffie-Hellman Algorithm is to generate a private-key that can later be used 

for communication [18]. Diffie-Hellman is known as a simple asymmetric-key 

algorithm for key exchange. This protocol enables two users to establish a public-key 

scheme based on discrete logarithm. 

Two people, let’s say the sender and the receiver, can use this algorithm to generate a 

secret key for key distribution. First, sender and receiver agree on large prime 

numbers   and   such that   is primitive mod  . They perform the following steps: 

1. The sender chooses a large integer   and sends the receiver,           . 

2. Similarly, the receiver chooses a large integer   and sends the sender, 

          

3. The sender computes   from   that the receiver sent where            

4. Similarly the receiver computes            . 

Both   and    are equal to          . Any person listening to the conversation 

would only know       and    They cannot recover   and   because of the Discrete 

Logarithm Problem. The security lies on choosing large values of   and    
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3. RSA (Rivest-Shamir-Adleman) ALGORITHM 

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman introduced a cryptographic 

algorithm, RSA, which is named for the first letter in each of its inventors’ last name 

[19]. RSA’s motivation is Diffie-Hellman Algorithm which describes the idea of 

such an algorithm that enables public-key cryptosystem. Here are the steps of RSA 

Algorithm: 

 The first step of RSA Algorithm is to select two different prime numbers,   

and  .  

 The second step is the calculation of   where         

 The calculation of                  is the third step.  

 As a fourth step, an integer   is selected as a public-key which is co-prime 

with        

 Finally, the inverse of   modulus      is taken to produce  , the private-

key. By using   and            , the encryption and decryption are done.   

In the RSA Algorithm, the public-key includes two numbers   and    while the 

private-key is   together with a different number    Given a numerical message   is 

encrypted by 

                                                                                                         (3.1) 

Similarly an encrypted message C is decrypted by the message 

                                                                                                         (3.2) 

For the implementation of RSA, the number   is a product of two large prime 

numbers   and    If you know   and   you can obtain   from    As   is a part of the 

public-key and it is the multiplication of   and    then in principle it is possible to 

factorize   to find   and  . 

3.1. Simple RSA Example 

Here are the steps of example RSA:   

 Find two primes   and  .  

 We will choose      and       
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 We define          and                    

 Find a random integer   which is co-prime with   where        

 We can choose      since            . 

 Take your message  , encode it as whole number in the range        If 

your message is too long, then break the message into blocks in this range. 

 The message   is encrypted into the C in the range       under the rule 

             

 Compute the unique whole number   such that             and   is in 

the range       because   and   are co-prime, we can make sense of 

       In our example,     and       we can do this by trial and error 

and we find      

                  

 Given the encrypted message  , this can be decrypted back into the message 

  by taking  

             

 Take the previous value of               and        

 Suppose our message assigned as        

 In order to encode it, we must calculate the value of    

                        

                          

                                           

 Decoding       we should obviously get       In this example   is 

given by  

                         

Since                    
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3.1.1. The Relation between e, d and Euler’s Phi Function 

Modular arithmetic is known as clock arithmetic. All we know clock starts from 12 

and ends with 12. The space of clock is 0 to    =11 where     .              

             } is the space of clock and 0 is congruent with 12. Suppose the time 

12 o’clock right now. 3 hours later, it will be 3. However, 15 hours later, it will be 3, 

too. This equality or congruence is the result of working in modulus 12 where 15 3 

mod 12. Suppose your clock starts from 12 and it is in modulus 12 but it does not 

increase by 1 each time. It increases by 2 each time. Then, its space gets narrow and 

becomes {0, 2, 4, 6, 8, 10} where 0 is congruent with 12. If it increases by 3 each 

time, then its space gets narrow and becomes {0, 3, 6, 9} where 0 is congruent with 

12. If it increases by 5 each time, then its space does not change. But the order of the 

space becomes {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7}. If it increases by 7 each time, then 

its space length does not change again. But the order the space becomes {0, 7, 2, 9, 4, 

11, 6, 1, 8, 3, 10, 5}.  

As seen above, if the incremental value is co-prime with modulus,  , 12, the result 

space does not get narrow and the space does not change. When it is co-prime with 

 , then you will use every number exactly once before returning to starting value 12. 

However, when the incremental value is not co-prime with  , 12, the result space 

gets narrow.  

For RSA, the relation between  ,   and Euler’s Phi Function can be explained by 

using clock arithmetic. Since             and            , for every 

distinct message value,  , each message value has exactly one and unique 

corresponding cipher value,   in mod   owing to being co-prime with phi( ).  

 

Figure 3.1 The one to one matching of cipher-text values and plain-text values 
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For example, for e = 3, N = 33, q = 3, p = 11, M = [(1) to (32)], Phi(N) = 20, for 

every distinct message value of M, there is exactly one and unique corresponding 

cipher-text value as seen in Figure 3.1. As shown, for all different message values 

from 1 to N-1, the corresponding cipher-texts are unique and different. There is no 

repetition. 

3.1.2. Prime Numbers and Prime Number Generation 

An integer   is a prime if and only if   has two divisors 1 and itself,    There are 

infinitely many prime numbers in a set   where                    . 

 

Figure 3.2 The generated prime numbers with key size=7 bits 

 

As it is seen in Figure 3.2, prime numbers does not follow any linear pattern. There is 

not any function that gives all prime numbers from 2 to positive infinity. In order to 

find prime numbers, the wrong way is generate random numbers and then try to 

factor them. It can be time consuming. The correct way can be generating random 

numbers and test their primality. Although finding a formula or pattern to list all 

prime numbers from 0 to positive infinity is not feasible yet, classifying prime 

numbers after generating them by using primality tests is possible. Prime numbers 

can be categorized as Sophie-Germain Primes, Safe Primes and Strong Primes. 

Sophie-Germain Prime is a prime number   such that       is also prime 

number. Safe Prime is a prime number q such that         where   is also 

prime. Strong Prime is a prime number q such that   
   

 
 is prime,  

   

 
 is prime, 

   

 
 is prime and   is also prime.  

3.1.3. Attacks on RSA 

In cryptography, encryption aims at providing security and secrecy to any 

communication between the sender and the receiver. While providing security, 
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encryption or encryption-like transformations of information often uses some 

mechanisms like enciphering, digital signature and access control against the 

cryptographic attacks. These attacks are classified as passive or active attacks [20]. If 

attacks are used to access and to obtain information for eavesdropping on or 

monitoring, these attacks are passive attacks. Passive attacks are generally very 

difficult to detect because these attacks do not involve any alteration of information. 

If attacks involve some modification of information, these attacks are classified as 

active attacks and it is difficult to prevent active attacks. 

Some of popular attacks on RSA can be listed as below: 

 Cyclic Attack 

If the sender and the receiver do not take care in determining their keys, the 

attacker can intercept the encrypted message sent by the sender to the 

receiver. Suppose RSA variables of our system are                  

                         and       The cipher-text starts with 

23. By attempting to crack it by using cyclic attack, the attacker can find   ,   

and   values. 

                            

                            

                              

                                                       

                            

                                                             

As it is shown, the attacker reached the values of p   , and   by the cycling 

re-encryption. 

 

 Low-Encryption Exponents Attack 

For small values of   and for small values of the plain-text, by taking the     

root of the cipher-text over the integers, the cipher-text can be easily 

decrypted. In order to improve the system performance,   can be chosen as 

small as possible but it leads to some security leaks [21]. The smallest 

possible value for   is 3 but to avoid some certain attacks the value       

      is recommended. 
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 Forward Search Attack 

For this attack, if message space is not wide and also if the attacker can 

predict the message, the attacker can decrypt the cipher-text by encrypting all 

possible messages until he obtains a match with the cipher-text [22]. 

 

 Common Modulus Attack 

For this attack, allowing two different receivers to share the same modulus   

for RSA can lead to Common Modulus Attack. Thus, for RSA, modulus   

should not be used by more than one communication [23]. 

 

 Low Decryption Exponents Attack 

To improve the performance of RSA decryption, the   value can be chosen as 

small rather than a large number. Indeed, small   value improves the system 

performance dramatically but the system become vulnerable to attacks [24]. 

 

 Chosen Cipher-Text Attack 

A Chosen Cipher-Text Attack is an attack where the cryptanalyst chooses a 

cipher-text and let it decrypt. From some pairs of cipher-text and decrypted 

cipher-texts, he obtains information about key or about the message. Since 

                 is mathematically valid, the Chosen Cipher-Text 

Attack can be possible where    is chosen as small number and sent by the 

attacker. Since    is small, it can be analyzed easily. 

 

 Brute-Force Attack 

A Brute-Force Attack involves trying all possible public-key and private-keys 

until finding the right ones. The attacker tries all possible public-key and 

private-key combinations. RSA with short key size is vulnerable against this 

attack. However, Brute-Force Attack is useless for long key sizes. 

 

 Cipher-Text Only Attack 

For this attack, the attacker knows only the cipher-text and he tries to recover 

the plain-text by using cipher-text by trial and error. 
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 Factorization Attack 

The security of RSA is based on the idea that the modulus is so large that is 

not possible to factor it in a short time. The sender selects   and   and he 

calculates       where   is public. Although   is public,   and   are 

private. Since   is also public and                 , any attacker who 

knows   and   values, can calculate   value which is used to decrypt any 

encrypted message. In this thesis, some of Factorization Attacks like Brute-

Force Attack, Fermat Attack, Pollard-Rho Attack and KNJ Attack will be 

examined in detail. 

3.1.4. RSA Implementation Hints 

Here are the recommended hints that increase the security level of RSA 

implementation: 

   and   should not be very small. Since      ,    can be easily 

factorized if   and   values are both small. 

 Primes   and   should not be too far from each other. If one of them is too 

small, it makes factoring of   easier. 

   and   primes can be selected from “Strong Primes” where       and 

      have large prime factors. This can make factorization process of    

more complex. 

   and   should not be very small. Let’s describe a simplified version RSA 

encryption. As emphasized before, in any encryption operation, the main 

objective of the attacker is to recover the message from the cipher-text. In 

order to reduce the load of exponentiation in RSA, one may prefer to use a 

small value of private-key or public-key values rather than a random value. 

For small private-key values, RSA system becomes vulnerable to attacks. 

   and   values should not be equal, where    . Since decryption process is 

the inverse of encryption process,   and   should not be equal. If they are 

equal, encrypted value of plain-text can be recovered easily. 

 The most frequently selected   values are                  [25]. 

These 3 different   values have a common feature. They have only 2 times 1 

bits in their binary representation. Therefore, total number of multiplications 

needed to perform exponentiation is minimized. 
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 For RSA system, the public-key is (    . The private-key is      . These 

integers need to be very large to avoid easy factorization of  . Since the 

maximum integer type value generated in Java is 31 bits, it corresponds to 

                  In order to generate numbers bigger than 

2147483647, Java uses BigInteger instead of using Integer class. 

3.2. Cryptology and Java 

A cryptographic Application Programming Interface (API) enables a programmer to 

implement cryptographic techniques. There are few cryptography APIs like Java 

Cryptography Architecture (JCA), Microsoft Cryptography API, Bouncy Castle 

Crypto API and Linux Kernel Cryptographic API [26]. These API’s scopes are very 

wide. Some API’s are written only for one language and others are written for more 

than languages. Java is a popular and multi-platform language that wide-spreads the 

usage of cryptography to almost every systems. A Java framework that provides a 

cryptographic API is built by Java Cryptography Architecture (JCA) and the Java 

Cryptographic Extension (JCE) [27]. These architecture and extensions enable users 

to use any cryptographic concept without to worry about the underlying details. 

Although there are a lot of providers out there already, I implemented my own 

cryptographic service provider by using Sun’s JCA and JCE. I specifically used 3 

different packages javax.crypto, javax.crypto.interfaces and javax.crypto.spec. 

3.2.1. BigInteger Class 

The security of RSA depends on  ,  , and  . If these values are sufficiently large, 

the RSA system is sufficiently secure. For commercial applications,   is typically 

chosen to be usually 1024 bits and for more critical applications, it is chosen as 2048 

bits [28]. Since       and   and   values are generally chosen as equally long 

such as B bits long, the length of   is 2B bits. Therefore, integer or long types 

become useless for creating such a long keys. Therefore, programmers choose to use 

big number libraries. Java uses BigInteger class. BigInteger provides analogues to all 
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of Java’s primitive integer operators and some methods. Moreover, BigInteger 

provides some pre-defined methods like primality testing and greatest common 

divisor. These methods make easy to implement cryptographic operations in Java.  

3.2.2. Random Class and SecureRandom Class 

The security of many cryptographic systems depends on the generation of 

unpredictable variables where these variables must be of sufficient size and random. 

The randomness means that the probability of any particular value being selected for 

any variable must be sufficiently small and equally probable [29]. Random numbers 

are extremely useful in cryptography in RSA Algorithm implementation especially 

while deciding on p, q and d values for encryption and decryption. 

For RSA, picking a number in predetermined bit length seems simple. However, if 

you need truly random numbers which are equally probable, the task is quite 

complex. Up to now, some robust techniques to generate random numbers are 

developed. Since computer’s all actions are predictable and deterministic, generating 

random numbers truly is not possible. But generating pseudo random numbers and 

getting close to generate random numbers is possible.  

Java’s Random class provides some methods to generate pseudo random numbers. 

This class uses a 48 bit seed [30]. This seed is very vital to generate the key. The 

seed is to generate the random algorithm to avoid being deterministic. If any pattern 

in the seed is caught, this pattern can / will propagate itself in the key. In the design 

of random generator, the most important feature to consider and not to neglect is that 

the random bit generator should not be observed and manipulated. The natural source 

of randomness of random bit generators is subject to affect by external factors and 

malfunction. Since Random class uses the system clock to generate the seed, the 

generated numbers can be reproduced easily by the attacker if he knows the time 

when the seed was generated. However, SecureRandom class of Java uses the 

random data from operating system and uses that data to generate the seed. Since 

generated seed uses a random data in SecureRandom class rather than a pseudo 

random data, this feature makes the usage of SecureRandom class in cryptography 

more appropriate than Random class because SecureRandom class produces non 

deterministic output instead of deterministic output. 
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In order to indicate the effect of random number generator (RNG) in the 

implementation of RSA Algorithm in Java, during the creation of RSA key pairs, the 

following experiment was done. The RSA Algorithm was implemented in 2 different 

Java projects. The first project uses Random class and the second project uses 

SecureRandom class as a random number generator for the creation of   and    

Every line of code, except the line of random number generator class type, used in 

these 2 projects are identical. The histograms of the RSA Algorithm’s variables  ,   

and   indicate the effect of RNG on the generated key pairs. 

 

Table 3.1 Generated key pair values by using Java’s Random class 

 

p q N e d 

19 17 323 73 217 

17 19 323 215 71 

31 23 713 323 47 

19 31 589 517 493 

23 29 667 45 397 

23 31 713 277 193 

31 19 589 401 101 

23 29 667 213 509 

31 19 589 127 523 

31 17 527 101 461 

 

In this experiment, the distribution of corresponding  ,    and   values for these two 

classes were saved and examined. Random class and SecureRandom class were set to 

generate 5 bit long   and   values. Therefore, the calculated   value can be utmost 

10 bit long. With the analysis of the experiment, the behavior of used random 

generator class were estimated and experienced. 
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 Table 3.2 Generated key pair values by using Java’s SecureRandom class 

 

p q N e d 

19 23 437 145 325 

19 17 323 205 229 

29 17 493 303 207 

29 19 501 73 145 

17 31 527 397 133 

31 17 527 149 29 

31 19 589 413 17 

23 29 667 327 535 

17 31 527 311 71 

31 29 899 289 529 

 

 

Figure 3.3 The histogram of p values generated by Random Class 

 

 

Figure 3.4 The histogram of q values generated by Random Class 
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Figure 3.5 The histogram of N values generated by Random Class 

 

 

Figure 3.6 The histogram of p values generated by SecureRandom Class 

 

 

Figure 3.7 The histogram of q values generated by SecureRandom Class 
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Figure 3.8 The histogram of N values generated by SecureRandom Class 

 

When Random class of the Java used instead of SecureRandom class for number 

generation, the   values’ distribution does not seem equally likely. However, 

SecureRandom can be labeled as “True Random Generator” owing the distribution of 

  values of it shown in Figure 3.8.  Since   values created by Random class are not 

equally probable, the Random class cannot be classified as truly random as it is 

expected. Beyond being truly random generator, SecureRandom class provides more 

various   values to be used in encryption and decryption processes. In Figure 3.5, 

there are 5 different   values generated by Random class. However, in Figure 3.8, 

there are 8 different   values generated by SecureRandom class. The difference 

between the numbers of generated different   values, indicates the positive effect of 

SecureRandom class for random number generation in Java. 

3.2.3. Symmetric Cases of Plain-text and Cipher-text for RSA 

The principle of encryption and decryption for RSA depends on the public-key pair 

      and private-key pair       . The cipher-text is found by the formula   

         and the plain-text is found by the formula             While 

implementing RSA encryption, for some   values from 1 to    , the plain-text 

can be equal to the cipher-text. Although the case where     is against the spirit 

of encryption (hiding information), it is still possible to meet such cases. In order to 

visualize these kinds of cases in RSA, Figure 3.9 can be examined.  
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Figure 3.9 The distribution of the cases where plain-text equals to cipher-text 

 

For            and           , related private-key and public-key pairs 

were created and messages from 1 to   were encrypted according to the principles of 

RSA with the indicated public-key and private-key pairs. The cases where plain-text 

equal to cipher-text indicated by red boxes in Figure 3.9. During this experiment, the 

symmetry between positions of message values of red boxes was observed. If you 

examine one of these 5 different cases, the distribution of red boxes from 1 to   and 

the distribution of red boxes from   to 1 are symmetric. Moreover, the summation of 

the value of symmetric red boxes is equal to    Due to the fact that with the increase 

in the value of   and   values, the number of red boxes, where the plain-text equal to 

cipher –text, decreases, I emphasized only limited number of       pairs.  
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4. IMPLEMENTATION of RSA in JAVA 

RSA Algorithm for cryptography consists of three main stages: Key Generation 

Stage, Encryption Stage and Decryption Stage. Therefore, RSA was implemented in 

Java by considering these 3 stages. Key Generation Stage is the process of generating 

keys for cryptography. Keys, generated in this stage, are used to encrypt the plain-

text in Encryption Stage and used to decrypt the cipher-text in Decryption Stage. 

Encryption Stage is the process of encoding messages in such a way that only 

authorized people can understand it. By encryption, the message is converted into 

cipher-text. Decryption Stage is the process of decoding the cipher-text to get the 

original message.  

4.1. Cryptography for RSA 

There are four different screens for the users who want to implement RSA in Java. 

These screens are “Generate RSA Keys”, “Generate Manual Keys”, “Encrypt 

Message” and “Decrypt Message” screens. The first two screens are for generating 

RSA’s public-key and RSA’s private-key. The third screen is for encrypting an 

inputted message and the fourth screen is for decrypting a resulting cipher-text.  

4.1.1. Implementation of RSA without Padding 

In the key generation screen as shown in Figure 4.1.               and   values 

are generated or calculated according to the selected key size. The key size can be 

the values from 4 to 2048 in bits. The key values can be generated randomly or can 

be generated manually by using “Create Manual Keys” option. In Figure 4.1, 32 bits 

is chosen as a bit length of   and   values. Firstly,   and   values are generated. 

With the multiplication of these values,   value is calculated as 64 bits long.  

Required data values,         and   values, are created according to the scenario of 

RSA Algorithm. After completing key generation step, user becomes able to encrypt 

any plain-text and decrypt any cipher-text by using generated or calculated RSA data 

values.  
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Figure 4.1 The key generation screen for RSA without padding 

 

In the encryption screen, the input plain-text is converted into corresponding 

numerical ASCII value where ASCII is the abbreviation of American Standard Code 

for Information Interchange. ASCII allows any text to be represented numerically. In 

order to generate cipher-text, each character of plain-text, whether letter, number, 

punctuation mark or space character, is converted into their numerical ASCII values 

by one by. These numeric values are processed according to RSA implementation 

steps. Resulting values for each character are concatenated to compose cipher-text. 

As seen in Figure 4.2, the plain-text is “Mustafa KOCAKULAK”. 32 bits long   and 

  values and 64 bits long   value were generated and calculated in Figure 4.1. These 

key values were used to create cipher-text in Figure 4.2.  
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Figure 4.2 The encryption screen for RSA without padding 

 

In the decryption screen, the encrypted values of each character of the plain-text 

were converted into decrypted numeric values. These numeric values were converted 

into their ASCII values. After completion of decryption process, the original plain-

text was recovered as seen in Figure 4.3. 
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Figure 4.3 The decryption screen for RSA without padding 

 

In decryption screen, since the attacker knows only the cipher-text, he can try to 

recover the plain-text by Cipher-Text-Only Attack. The attacker looks for finding a 

pattern in the cipher-text. Since any pattern in cipher-text can / will propagate itself 

in the key, he decrypts the cipher-text. In Figure 4.4, plain-text is “Mustafa 

KOCAKULAK” and it contains repetitive ‘K’ letter. Due to not using padding 

feature, cipher-text contains propagating encrypted ‘K’ values which corresponds to 

‘4401993714634150941’. The frequent propagation of this numeric value makes the 

attacker able to decrypt the cipher-text.  
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Figure 4.4 The vulnerability of RSA to Cipher-Text-Only Attack 

 

The recovery from cipher-text to plain-text is the sign of vulnerability of the RSA 

system to the Cipher-Text-Only Attacks. In order not to scarify the system security, 

padding must be applied to the RSA algorithm implementation. Thus, recovery from 

cipher-text to plain-text is avoided. 

4.1.2. Implementation of RSA with Padding 

Up to this section, encryption and decryption process of RSA were examined. 

However, encryption or decryption process of RSA is not as vital as padding process. 

Padding is an armoring process of plain-text during the encryption and it is not an 

optional process for RSA. Padding is necessary for RSA against certain attacks and 

to enable the plain-text to be reconstructed after encryption [31]. Since the basic 

principle of any cipher is to confuse hackers and never to establish a pattern that can 

be broken, padding has an indisputable importance for RSA implementation for 
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secure communication supply [32]. Due to the fact that attackers look for finding any 

propagation in cipher-text to recover plain-text from cipher-text, padding is one of 

the most used precautions to avoid such a security leak.  

Padding ciphers work on fixed-sized output. As an example of RSA Implementation 

with padding, 512 bits long   and   were used. In encryption process, plain-texts are 

encrypted usually in groups of bits. These groups of bits are blocks. If a plain-text is 

less than block size, then it must be padded with additional data. A constant byte is 

added to the end of the message to make its length equal to the block size. Therefore, 

the message length must be known before applying required padding. 

 

Figure 4.5 The implementation of RSA with padding 

 

Since 512 bits is commonly used key lengths for RSA, the ASCII value of plain-text 

was padded and RSA encryption was done by using 512 bits long key pairs. As seen 

in Figure 4.5, the plain-text is “11062015”. Not containing any repetitive sequence in 
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the cipher-text can be evaluated as a complexity or positive effect of padding on 

encryption. Therefore, the corresponding cipher-text in Figure 4.5 is more complex 

and more secure if it is compared with cipher-text created by RSA without padding. 

The attackers cannot find any repetitive sequence in the cipher-text owing to padding 

effect. However, Implementing RSA without padding sacrifices the security due to 

the possibility of propagating some sequences in the cipher-text. 

4.2. Cryptanalysis for RSA with Factorization Methods 

Generally, cryptanalytic attacks rely on the basis of the algorithm and general 

features of plain-text. For RSA, the security of algorithm depends upon   which is 

the multiple of   and  . Finding the value of   and   is known as factorization which 

is the inverse process of multiplication. Factorization of   is easy for small   values 

but for great numbers, it is very problematic. Here are four different factorization 

methods for cryptanalysis of   value of RSA as: Brute-Force Factorization, Pollard-

Rho Factorization, Fermat Factorization and KNJ- Factorization.  These methods are 

good at factorization of N up to for limited number of bits due to the limitation of 

processors of computers.  

4.2.1. Brute-Force Factorization Attack 

 

Figure 4.6 Pseudo-code for Brute-Force factorization 

 

Brute-Force Attack is not analyzing the cryptographic algorithm, but trying many 

permutations of keys until some information is recovered from the plaintext [33]. 

Trying to divide   by every number between 1 to    is the simplest and the longest 

way of obtaining   and   values. It is known as Brute-Force Factorization and shown 

in Figure 4.6.  
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4.2.2. Pollard-Rho Factorization Attack 

 

Figure 4.7 Pseudo-code for Pollard-Rho factorization [34] 

 

Pollard-Rho Factorization, factorize the   by using 2 different variables. By using a 

loop and these 2 variables, algorithm checks the divisibility of N. After completion 

of each iteration, these variables and their changing value makes the algorithm reach 

the factor of   as shown in Figure 4.7. 

4.2.3. Fermat Factorization Attack 

 

Figure 4.8 Pseudo-code for Fermat factorization [35] 

 

Fermat Factorization is a good technique if   and   have equal distance from      

Fermat Factorization depends on the difference of two squares as seen in Figure 4.8. 
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4.2.4. KNJ Factorization Attack 

 

Figure 4.9 Pseudo-code for KNJ factorization [36] 

 

KNJ-Factorization works well if   or q is close to     Algorithm starts checking the 

numbers from    to 1 instead of starting checking from 1 to   as seen in Figure 4.9. 

4.2.5. Comparison and Result 

For varying   values, the iteration numbers for 4 different factorization methods: 

Brute-Force Factorization, Pollard-Rho Factorization, Fermat Factorization and KNJ 

Factorization are shown in figures from Figure 4.10 to Figure 4.11. These figures 

were drawn by using JFreeChart library. In these figures, it is clearly seen that 

iteration number for Brute-Force Factorization in all cases, is much greater than other 

factorization methods’ iteration number. As   increases, the efficiency of Brute-

Force Attack decreases. As   and   values are close to    in these figures, the 

efficiency of other 3 methods increases and iteration numbers for these methods 

decrease. For example, for     ,     and      As seen,   and   values are 

close to      . Except Brute-Force, iteration numbers for all 3 factorization are 

low owing to close position of   and   values. Although iteration numbers are close 

each other for the methods other than Brute-Force, the most effective one is Fermat 

since   and   have nearly equal distance to    as seen in Figure 4.10 and 4.11. For 

greater values of  , the difference between the iteration numbers of factorization 

methods increases.  
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Figure 4.10 Iterations of factorization methods for varying small N values 

 

 

Figure 4.11 Iterations of factorization methods for varying bigger N values 
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After comparison of iteration numbers of 4 factorization methods, comparison of 

elapsed time values of 4 factorization methods was done. In order to compare the 

elapsed time values for the factorization of varying   values, 15 specific   values 

with different bit length, were created as shown in Table 4.1. 

 

Table 4.1 Generated sample RSA key pairs for comparison of elapsed times 

 

Size of N (bit) (p, q, N) 

16 (137, 193, 26441) 

18 (439, 281, 123359) 

20 (661, 613, 405193) 

22 (1619, 1831, 2964389) 

24 (2617, 2473, 6471841) 

26 (4447, 7669, 34104043) 

28 (11399, 8861, 101006539) 

30 (30631, 20719, 634643689) 

32 (36299, 36997, 1342954103) 

34 (87257, 115811, 10105320427) 

36 (311341, 400949, 124831862609) 

38 (648191, 953917, 618320414147) 

40 (1909283, 1431737, 2733591114571) 

42 (2206783, 3986351, 8797011618833) 

44 (5310313, 8243899, 43777684030387) 

 

For each factorization method, 15 different   were factored 1000 times. These 

factorizations were done simultaneously by using parallel computing logic as shown 

in Figure 4.12.  

 

Figure 4.12 Parallel computing of elapsed times for 4 factorization methods  
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For 4 different factorization methods and for 15 different   values,               

      different time values were obtained and saved in txt files. After creating 

datasets for 4 factorization methods, these 60000 time values were processed in 

Matlab. Firstly, the mean values of 1000 elapsed time of each N value, for each 

factorization method, were calculated. It is shown in Table 4.2. These mean values 

were used to generate the plots from Figure 4.13 to Figure 4.19. 

 

Table 4.2 Mean value of elapsed times of each factorization method 

 

 

 

Figure 4.13 Elapsed factorization time values of 4 factorization methods 
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Figure 4.14 Elapsed factorization time values of Brute-Force vs Fermat 

 

Figure 4.15 Elapsed factorization time values of Brute-Force vs Pollard-Rho 
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Figure 4.16 Elapsed factorization time values of Brute-Force vs KNJ 

 

Figure 4.17 Elapsed factorization time values of KNJ vs Fermat 
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Figure 4.18 Elapsed factorization time values of KNJ vs Pollard-Rho 

 

Figure 4.19 Elapsed factorization time values of Pollard-Rho vs Fermat 
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Although elapsed time values for Fermat is less than other factorization methods as 

seen in Figure 4.13, it is not easy to comment on other methods’ elapsed time 

efficiency. Therefore, time values versus N values for varying N values were plotted 

in pairs from Figure 4.14 to Figure 4.19. In these figures, elapsed time values for all 

factorization methods are nearly identical except some small differences. The reasons 

for obtaining nearly identical plots for 4 different factorization methods can be listed 

as follows: 

 In order to propose smoothness in the test architecture, hardware should not 

be effective parameter to compare the efficiency of factorization methods. 

However, in our experiment, we did not focus on this issue because of the 

fact that running time of any algorithm depends on more than one parameter. 

Thus, to compare efficiency of factorization methods, depending only on 

their hardware dependent elapsed time values does not seem possible. 

 Since hardware problems causes to get nearly identical time plots for 4 

factorization methods, comparing efficiency of factorization methods by 

iteration numbers, with efficiency of factorization methods by elapsed time 

values, does not gives exact and reliable results. 

 While creating datasets for factorization methods, 1000 time values for each 

N, were saved. Although the number of sample time values seems sufficient, 

efficiency of this experiment could be increased by taking more sample time 

values for each method. Thus, the calculated mean values for each 

factorization method could be smoother. 

 In this experiment, 15 different N values were factorized. The minimum N 

size was 16 bits and maximum N size was 44 bits. Elapsed time values were 

in millisecond level. Due to working with small N values and measuring 

elapsed times for factorization with pre-defined Java method, nanoTime(), 

comparing efficiency of factorization methods depending on their elapsed 

time values should not be sufficient. 
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5. SUMMARY and CONCLUSION 

In this work, RSA Algorithm has been studied in detail and it is critically analyzed. 

This thesis presents on insight into the basics of cryptography and it explains RSA 

Algorithm, RSA’s mathematical background and mathematical characteristics. The 

deficiency in key management process of symmetric-key algorithms has been 

examined clearly and the reason behind the necessity of invention of asymmetric-key 

cryptosystems was explained. With a simple numeric RSA example, the key 

generation, encryption and decryption processes of the algorithm are clearly 

indicated. The relation between Euler’s Phi Function and prime numbers were 

simulated with a graph. The common RSA attacks and the well-known hints to avoid 

such RSA attacks were explained. By introducing Java classes for random number 

generation, the effect of random number generators on RSA applications was proved. 

The importance of SecureRandom class for obtaining true-random numbers was 

realized for Java. The special cases where plain-text cannot be hidden and remains 

equal to cipher-text were shown. The symmetry in distribution of such cases in a 

sample encryption scenario was examined carefully.  

Simulation results for cryptography and cryptanalysis have been obtained using 

Eclipse and Java. From 4 bits to 2048 bits, RSA encryption without padding feature 

has been implemented. For 512 bits key length, RSA with padding feature was 

implemented. As a cryptanalysis, four different factorization attack algorithms which 

are Brute-Force Factorization, Pollard-Rho Factorization, Fermat Factorization and 

KNJ Factorization, were implemented in Java to indicate the importance of choosing 

RSA variables according to indicated RSA hints. Comparison between the iteration 

numbers of these attacks and elapsed time values of these attacks were made. The 

efficiency of these attacks in cryptanalysis of RSA was indicated.  

With choosing RSA as a subject of master thesis, I learned many useful theorems 

like Euler’s Theorem, Fermat’s Little Theorem and Euclidean Theorem. I 

implemented them in Java. I studied RSA Algorithm in detail and I critically 

analyzed it. As a future work, proposing an effective factorization algorithm for RSA 

and implementing it in Java can be listed. Moreover, proposing a new algorithm 

which has less deficiency than RSA can be foreseen. 
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