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ÖZET 

ÖNGÖRÜLEN BİR GÖREV SIRASINDA EN AZ ENERJİ SARFİYATI İÇİN 

İKİ SERBESTLİK DERECELİ BİR MANİPÜLATÖRÜN OPTİMUM 

KONUMUNUN TAYİNİ 

Mehmet Beşir KOPMAZ 

Bursa Teknik Üniversitesi 

Fen Bilimleri Enstitüsü 

Mekatronik Mühendisliği Bölümü 

Yüksek Lisans Tezi 

Yrd. Doç. Dr. İsmail BÜTÜN 

Mart 2016, 47 Sayfa 

Geçen birkaç on yılda robot manipülatörler verimli, hassas ve hızlı üretime olan devasa 

katkılarından ötürü seri üretimin vazgeçilemez unsuru haline gelmiştir. Öte yandan, 

enerjinin verimli kullanımının sınırlı enerji kaynakları ve bunların jeopolitik 

konumlarından ötürü birinci sanayi devriminden bugüne ana meselelerden biri olduğu 

iyi bilinen bir gerçektir. Enerjinin en büyük kullanıcılarından birinin imalat sanayi 

olduğu göz önüne alındığında üretim araçlarının ve bu bağlamda özellikle robotların 

zaman ve enerji bakımından optimal kullanımının önemi kolayca kavranabilir. Bu 

sebepten robotbilimde muhtelif kısıtlara maruz yörünge planlama başlığı altında ilgi 

çekici bir araştırma alanı ortaya çıkmıştır. Bu tez de verilen bir görev ve yörünge için 

enerji sarfiyatını en aza indirmeyle alakalıdır. Bu araştırma enerji sarfiyatını yeri 

belirlenmiş bir yörüngeye göre manipülatöre uygun bir yer bularak minimum yapmayı 

hedeflemesiyle önceki çalışmalardan farklılık arz etmektedir. Bu çalışmada 

yörüngelerin doğru parçaları şeklinde olduğu kabul edilmiştir. Ayrıca düzgün 

kinematik karakteristikleri olan sikloidal ve 3-4-5 polinom tipinde iki farklı hareket 

kanunu kullanılmaktadır. Sayısal sonuçlar manipülatör için enerji sarfiyatını minimum 

edecek tarzda her halükarda optimal bir konum bulmanın mümkün olduğunu ve 3-4-5 

polinom hareket kanununun daha az enerji sarfiyatı sağladığını açıkça göstermektedir. 

Anahtar Sözcükler: İki uzuvlu düzlemsel manipülatör, minimum enerji sarfiyatı, bir 

manipülatörün optimal konumu  
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ABSTRACT 

DETERMINATION OF THE OPTIMAL LOCATION OF A 2-DOF 

MANIPULATOR FOR MINIMAL ENERGY CONSUMPTION DURING A 

PREDEFINED TASK 

Mehmet Beşir KOPMAZ 
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Graduate School of Natural and Applied Sciences 

Department of Mechatronics Engineering 

Master of Science Thesis 

Asst. Prof. Dr. İsmail BÜTÜN 

March 2016, 47 Pages 

In the past several decades, robot manipulators have been indispensable part of serial 

production due to their huge contribution to the efficient, accurate and rapid 

manufacturing. On the other hand, it is a well-known fact that the efficient use of 

energy has been the main challenge from the first industrial revolution to date due to 

limited energy resources and their geo-political locations on the world. Considering 

that one of the largest consumers of energy is manufacturing industry, the importance 

of time- and energy-optimal usage of production machinery, specifically in this context 

can be well figured out. For this reason, in the field of robotics, an interesting research 

area has emerged under the headline of trajectory planning subject to different 

constraints among which time-optimal, energy-optimal or smooth (jerk- and 

impact-free) path tracking can be mentioned at first glance. This thesis is concerned 

with minimizing the energy consumption for a given task and trajectory. The present 

study differs from the previous work in that energy consumption is minimized by 

obtaining an appropriate location for the manipulator with respect to the trajectory 

fixed in the world coordinates. In this work, trajectories are assumed to be straight-

lines. Besides, two different motion programs known with their smooth kinematic 

characteristics are tested, which are the cycloidal and the 3-4-5 polynomial motion 

programs. Numerical results obviously demonstrate that obtaining an optimal location 

for the manipulator regarding the use of minimal energy is possible, and the 3-4-5 

polynomial motion program provides less energy consumption levels. 
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1. INTRODUCTION 

In the past several decades, robots have become indispensable part of production lines 

due to their huge contribution to the efficient, accurate and rapid manufacturing. As a 

consequence of this, the trajectory planning subject to different constraints emerged as 

a new research area. Among them, time-optimal, energy-optimal or jerk-free trajectory 

planning can be mentioned at first glance. No doubt, energy resources and their 

efficient use have been the main challenge since the first industry revolution going 

back to the mid-19th century. Considering that one of large consumers of energy is 

manufacturing industry, the importance of time- and energy-optimal usage of robots 

can be well figured out. Although the subject has a long history extending to 1990’s, 

it is still on the focus of researchers as the extensive literature on the subject indicates. 

However, to the author’s knowledge, papers on energy-optimal path planning mostly 

deal with the problems in which starting, final and intermediate points of possible 

trajectory are given while the robot stands fixed. Some of the relevant papers develop 

and propose new methods that include almost all the parameters from the physical to 

control-related ones. These methods usually lead to fairly sophisticated optimization 

problems. 

 This thesis is concerned with the energy consumption of a 2-DoF planar manipulator. 

However, the present study differs from the previous work mainly in its conceptual 

novel approach. In this work, the position of production line is assumed to be stationary 

while the location of the manipulator can be changed in such a manner that the energy 

expenditure is reduced. In some sense, an inverse problem compared to the present 

literature is posed. Hence, the main purpose of this work is to find the suitable location 

of the manipulator for a predefined task so that the energy consumption be minimum. 

To make the proposed novel approach easily understandable, effects such as control 

parameters, damping, etc. are not considered. The numerical results obtained show that 

energy-optimal location is feasible for manipulators to be used in fixed production 

lines. The content of the work is limited with the solution of this problem for a 2-DoF 

planar manipulator. 
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2. LITERATURE SEARCH 

As emphasized in the introduction, minimal energy based trajectory planning 

continues to be dealt with by researchers. As an indicator of this, here, some 

mentioning-worth publications from the old to the recent ones will be referred to. In 

[1], Kopmaz et al. investigated the problem of finding an energy-optimal parabolic 

trajectory for a certain task which has some kinematic constraints in the start and end 

point of the trajectory. They used a finite number of trajectories which are defined with 

a parabolic equation on a pre-determined plane within the work space of a 6-DoF 

revolute manipulator, and showed that it is possible to find such a trajectory. Diken 

studied a similar problem in [2] using a sinusoidal path. Alshahrani et al. treated the 

problem of finding optimal trajectory function for minimum energy requirements of 

spherical robot, [3]. They assumed that the object to be manipulated follows a straight 

line in the work space. They choose three different displacement functions: simple 

harmonic, cycloidal and 3-4-5 polynomial. Compared to the energy consumption for 

bang-bang parabolic blend type displacement and cubic segment functions, the authors 

find out that cycloidal and 3-4-5 polynomial functions are tracked with more energy 

consumption while they provide a smooth running for the robot. If the energy 

consumption is the prime concern and the travel time is short, cubic segment trajectory 

is the best choice. Saramago et al. dealt with obtaining a trajectory subject to additional 

constraints for a PUMA-like robot such that a hybrid objective function consisting of 

weighted actuator powers and end effector grasping energy takes a minimum value, 

[4]. In [5], Verscheure et al. handled the problem of time-energy optimal path tracking. 

An objective function in which time does not appear explicitly is used. Through a 

nonlinear change of variables, the problem is transformed into a convex optimal 

control problem. De Santos et al. studied the energy required for six-legged robots 

which use alternating tripod gaits, and present a method aiming at reducing this energy 

need, [6]. Chen and Liao developed a hybrid strategy for the time- and energy-efficient 

trajectory planning for a 6-6 parallel platform, [7]. To this end, they proposed a cost 

function which consists of weighted functions of the consumed energy and time. In 

order to ensure the practical feasibility of the planned optimal trajectory, they took the 

physical constraints imposed by the parallel platform and actuator mechanism on the 

motion of the platform. The authors used the particle swarm optimization algorithm to 

obtain a crude estimate of the global optimal trajectory which is then supplied to the 
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conjugate gradient optimization method. They showed that this hybrid strategy 

outperforms the standalone particle swarm technique. In [8], Gasparetto et al. 

addressed the general problem of trajectory planning in Robotics. They give an 

overview of the most important methods proposed in the relevant literature especially 

to generate collision-free paths. In this work, it is expressed that the minimum time 

trajectory planning is very significant but this criterion certainly does not exhaust the 

possible applications or respond to all needs. In this context, the trajectory planning 

based on energy criteria has many interesting aspects. Such a planning produces 

smooth trajectories being easier to track and reduce the stresses to the actuators and 

the manipulator structure. In addition to that this approach allows energy saving which 

is very important for the cases in which energy source is limited like robotic 

applications for underwater exploration in military tasks. Gregory et al., [9], 

investigated the issue of energy-optimal trajectory planning for robot manipulators 

with holonomic constraints. The authors employ a methodology to transform a 

variational problem with constraints to the one with no constraints. Hence, the problem 

take the form of an optimal control problem. They solved the problem on a simple 

SCARA robot which is a 2-DoF planar manipulator. They found solutions for different 

constraint types. In [10], Pellicciari et al. proposed a novel method implementable on 

both serial and parallel robots to minimize energy consumption which works in pick-

and-place mode, and the trajectories of which are given by their starting, final and 

intermediate points. Mohammed et al. developed a different approach to minimize 

energy consumption. They carried out three scenarios with and without payload, and 

compared the results with those of commercial simulation software of the robot of 

interest. They developed a model searching the location of the energy-optimal path, 

[11]. Fung and Cheng dealt with a trajectory planning problem. They used the basic 

criterion of minimum absolute input energy (MAIE) to find the sought trajectory. The 

motion programs they used are parabolic blends, cycloidal, zero-jerk and polynomial 

ones. The polynomial was chosen of 12nd degree. The coefficients of this polynomial 

are obtained such that all the boundary conditions for the remaining three different 

trajectory profiles are satisfied. Then, energy consumptions for each profile are 

compared with each other. The authors use the real-coded genetic algorithm to find the 

energy optimal-polynomial for each case, [12]. Paes et al. determined the system 

parameters of an industrial ABB robot experimentally to find its energy efficient 

trajectories for a certain task. As a small case study, a typical pick-and-place maneuver 
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is both time- and energy-optimized. The authors subsequently compared these optimal 

trajectories to several straight-forward trajectories that are indicative for rotor 

operations in industry. To this end, they used the ACADO toolkit, an algorithm 

collection for automatic control and dynamic optimization. They proposed a non-

invasive identification strategy for industrial robots, [13]. 

All the works mentioned above demonstrate that the energy consumption of robot 

manipulators will be a crucial topic in production activities when the issue of energy 

saving is considered to be of increasing significance. For this reason, in this thesis, 

energy optimization in manipulators are handled in a different way. For the case to be 

studied here, the trajectory is assumed to be a straight-line. However, for speed profile, 

two different functions are employed provided that they have same kinematic 

constraints. In contrast with the previous work, the energy-optimal location of the 

manipulator is sought under the assumption that the manipulation path is fixed in the 

world coordinates. Simulations and computational results show that there exist such 

optimal locations. For this purposes, a 2-DoF planar manipulator is considered. The 

choice of such a manipulator is only for simplicity because the first aim is to show how 

to work the methodology presented here. Firstly, an inverse kinematic analysis will be 

done. Meanwhile, the trial trajectories will be defined with its all kinematic parameters 

in such a manner that they are within the work space of the manipulator. Subsequently, 

for possible configurations of the robot, the energy consumption will be computed for 

different speed and acceleration profiles and constraints. Finally, the numerical results 

will be presented in graphics and commented. 
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3. INVERSE ANALYSIS 

We consider the manipulator shown in Figure 3.1. 

 

 

Figure 3.1 Manipulator of interest 

 

For a generic point 𝑃(𝑥, 𝑦) in the xy-plane, there exist two different configurations of 

the manipulator, which are indicated with the abbreviations 𝐶𝑂𝑁𝐹𝐼𝐺1 and 𝐶𝑂𝑁𝐹𝐼𝐺2 

in Figure 3.1 respectively. Furthermore, the straight-line SF is the trajectory to be 

followed by the end effector of the robot. Points S and F are the start and end points of 

the trajectory. 𝐿1 and 𝐿2 are the length of manipulator links. It is obvious that the work 

space is an annular region which is bounded by an outer circle with radius of 𝐿1 + 𝐿2 

and an inner circle with radius of |𝐿1 − 𝐿2|. In practice, this region may be slightly 

different from the theoretical one due to physical constraints. In Figure 3.1, 𝜃1 and 𝜃2 

are absolute rotation angles of two links in the world coordinates. However, the control 

angle of the second link is 𝜃21 in practical applications. 
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3.1. Position Analysis 

From Figure 3.1, the following equations are easily written: 

 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃2 = 𝑥 (3.1a) 

 𝐿1 sin 𝜃1 + 𝐿2 sin 𝜃2 = 𝑦 (3.1b) 

First, angle 𝜃1 is to be formulated. Therefore, the terms including 𝜃2 are left alone on 

the right side of the equations. 

 𝐿2 cos 𝜃2 = 𝑥 − 𝐿1 cos 𝜃1 (3.2a) 

 𝐿2 sin 𝜃2 = 𝑦 − 𝐿1 sin 𝜃1 (3.2b) 

Taking square of both sides and adding side by side, the equation below is obtained: 

 𝐿2
2 = 𝑥2 + 𝑦2 + 𝐿1

2 − 2𝑥𝐿1 cos 𝜃1 − 2𝑦𝐿1 sin 𝜃1 (3.3a) 

Rearranging 3.3a it we obtain: 

 −2𝑥𝐿1 cos 𝜃1 − 2𝑦𝐿1 sin 𝜃1 + 𝑥
2 + 𝑦2 + 𝐿1

2 − 𝐿2
2 = 0 (3.3b) 

Let us define: 

 

𝑎 ≔ −2𝑥𝐿1 

𝑏 ≔ −2𝑦𝐿1 

𝑐 ≔ 𝑥2 + 𝑦2 + 𝐿1
2 − 𝐿2

2  

𝜆 ≔ tan
𝜃1
2

 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

As is well-known from trigonometry, the following relationships exist: 

 cos 𝜃1 =
1 − 𝜆2

1 + 𝜆2
 (3.5a) 

 sin 𝜃1 =
2𝜆

1 + 𝜆2
 (3.5b) 

Using (3.4) and (3.5) in (3.3b) one finds: 

 (1 − 𝜆2)𝛼 + 2𝑏𝜆 + (1 + 𝜆2)𝑐 = 0 (3.6a) 

or 

 (𝑐 − 𝑎)𝜆2 + 2𝑏𝜆 + (𝑐 + 𝑎) = 0 (3.6b) 
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Now, similar to the first three of (3.4), we define 

 

𝐴 ≔ 𝑐 − 𝑎 

𝐵 ≔ 𝑏 

𝐶 ≔ 𝑐 + 𝑎 

(3.7a) 

(3.7b) 

(3.7c) 

Substituting (3.7) in (3.6) gives the equation 

 𝐴𝜆2 + 2𝐵𝜆 + 𝐶 = 0 (3.8) 

the roots of which are 

 𝜆1 =
−𝐵 − √𝐵2 − 𝐴𝐶

𝐴
 (3.9a) 

 𝜆2 =
−𝐵 + √𝐵2 − 𝐴𝐶

𝐴
 (3.9b) 

respectively. Hence we have two distinct values for 𝜃1: 

 𝜃1,1 = 2 tan−1 𝜆1 (3.10a) 

 𝜃1,2 = 2 tan−1 𝜆2 (3.10b) 

where the second subscript refers to these distinct values of 𝜃1, which implies that 

these exist two possible configurations of the robot to reach point 𝑃. From equation 

(3.2), the variants of 𝜃2 can be found as follows: 

 sin 𝜃2,𝑖 =
𝑦 − 𝐿1 sin 𝜃1,𝑖

𝐿2
,     𝑖 = 1,2 (3.11a) 

 cos 𝜃2,𝑖 =
𝑥 − 𝐿1 cos 𝜃1,𝑖

𝐿2
,     𝑖 = 1,2 (3.11b) 

Which of these alternatives are used depends on the assembly of robot in the beginning. 

 

3.2. Velocity Analysis 

Derivation of equations (3.1) with respect to time will give the angular velocities of 

the links in the world coordinates: 

 −𝐿1 sin 𝜃1 𝜃̇1 − 𝐿2 sin 𝜃2 𝜃̇2 = 𝑥̇ (3.12a) 

 𝐿1 cos 𝜃1 𝜃̇1 + 𝐿2 cos 𝜃2 𝜃̇2 = 𝑦̇ (3.12b) 
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Let us rewrite equation (3.12) in the matrix form: 

 [
−𝐿1 sin 𝜃1 −𝐿2 sin 𝜃2
𝐿1 cos 𝜃1 𝐿2 cos 𝜃2

] [
𝜃̇1
𝜃̇2
] = [

𝑥̇
𝑦̇
] (3.13) 

Using Cramer Method the following expressions are obtained: 

 𝜃̇1 =
cos 𝜃2

sin(𝜃2 − 𝜃1)

𝑥̇

𝐿1
+

sin 𝜃2
sin(𝜃2 − 𝜃1)

𝑦̇

𝐿1
 (3.14a) 

 𝜃̇2 =
cos 𝜃1

sin(𝜃2 − 𝜃1)

𝑥̇

𝐿2
+

sin 𝜃1
sin(𝜃2 − 𝜃1)

𝑦̇

𝐿2
 (3.14b) 

where 𝑥̇ and 𝑦̇ are the components of the end point in x- and y-direction. 

 

3.3. Acceleration Analysis 

Taking time derivatives of equations (3.12) gives the equations needed to find angular 

accelerations: 

 −𝐿1 cos 𝜃1 𝜃̇1
2 − 𝐿1 sin 𝜃1 𝜃̈1 − 𝐿2 cos 𝜃2 𝜃̇2

2 − 𝐿2 sin 𝜃2 𝜃̈2 = 𝑥̈ (3.15a) 

 −𝐿1 sin 𝜃1 𝜃̇1
2 + 𝐿1 cos 𝜃1 𝜃̈1 − 𝐿2 sin 𝜃2 𝜃̇2

2 + 𝐿2 cos 𝜃2 𝜃̈2 = 𝑦̈ (3.15b) 

Let us put equation (3.15) into the matrix form: 

 [
−𝐿1 sin 𝜃1 −𝐿2 sin 𝜃2
𝐿1 cos 𝜃1 𝐿2 cos 𝜃2

] [
𝜃̈1
𝜃̈2
] = [

𝑥̈ + 𝐿1 cos 𝜃1 𝜃̇1
2 + 𝐿2 cos 𝜃2 𝜃̇2

2

𝑦̈ + 𝐿1 sin 𝜃1 𝜃̇1
2 + 𝐿2 sin 𝜃2 𝜃̇2

2
] (3.16) 

For simplicity, let the followings be defined: 

 
𝛾1 ≔ 𝑥̈ + 𝐿1 cos 𝜃1 𝜃̇1

2 + 𝐿2 cos 𝜃2 𝜃̇2
2 

𝛾2 ≔ 𝑦̈ + 𝐿1 sin 𝜃1 𝜃̇1
2 + 𝐿2 sin 𝜃2 𝜃̇2

2 

(3.17a) 

(3.17b) 

Then we obtain the angular accelerations as follows: 

 𝜃̈1 =
cos 𝜃2

sin(𝜃2 − 𝜃1)

𝛾1
𝐿1
+

sin 𝜃2
sin(𝜃2 − 𝜃1)

𝛾2
𝐿1

 (3.17a) 

 𝜃̈2 =
cos 𝜃1

sin(𝜃2 − 𝜃1)

𝛾1
𝐿2
+

sin 𝜃2
sin(𝜃2 − 𝜃1)

𝛾2
𝐿2

 (3.17b) 

With these formulas obtained, the inverse kinematic analysis of the manipulator has 

been completed.  
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4. DEFINITION OF TASK AND SEARCHING OPTIMAL TRAJECTORY 

In this work, it is assumed that the task to be executed by the considered planar 

manipulator is to carry a body of mass 𝑚 in the end effector from a starting point 𝑆 to 

a final point 𝐹 along a straight line of length 𝐿 in 𝑇 seconds. However, different motion 

programs, i.e. different velocity and acceleration profiles, can be tested. In all cases, 

kinematic constraints at point 𝑆 and point 𝐹 will be held same. For a trajectory of 

certain length 𝐿, once a starting point within the workspace of manipulator, in our 

study on the x-axis specifically, is chosen the limit values of the direction angle of 

trajectory 𝜑 are to be obtained. Let the initial value of this angle be 𝜑𝑖𝑛𝑖𝑡. It is found 

such that the final point of the first trial trajectory stay on the outer boundary of 

workspace, which is a circle of radius 𝐿1 + 𝐿2. Similarly, the final value of 𝜑, i.e. 𝜑𝑓𝑖𝑛, 

is obtained considering that the final point of trajectory must stay either on the x-axis 

or, in the most critical case, on the inner boundary of the workspace, which is a circle 

of radius |𝐿1 − 𝐿2|. Since the workspace is an annular region being symmetric with 

respect to the x-axis, it is sufficient to confine all the search activity only in the upper 

semi-plane. Again, for a given length of trajectory, observing the constraint that the 

final point of trajectory must be on the outer boundary of workspace, the final or 

minimum value that 𝑥𝑆 can take is calculated. Note that the coordinates of all starting 

points are in the form of (𝑥𝑆, 0), in other saying, the ordinates of those points will be 

taken zero without loss of generality. According to what is just mentioned, given the 

length of trajectory 𝐿 and the abscissa of starting point 𝑥𝑆, 𝑥𝑆𝑓𝑖𝑛  must be determined 

first. Recall that the initial value of 𝑥𝑆 is same for all trajectory lengths and equal to 

𝐿1 + 𝐿2. Then, for a chosen 𝑥𝑆, the limit values of direction angle 𝜑, i.e. 𝜑𝑖𝑛𝑖𝑡 and 

𝜑𝑓𝑖𝑛, have to be obtained. Once the initial trial trajectory is defined, for each 𝜑 value 

which is increased with a certain increment, say 1°, the energy consumption can be 

computed for each trajectory having the same starting point. Afterwards, among these 

trial trajectories, the one on which minimal energy is spent is selected as the optimal 

one. Assuming that this optimal trajectory is fixed in the space, the root point of the 

manipulator is determined. It is worth noting for the completeness of the study that 

any point on any radius within the annular region can be taken as starting point 𝑆 

during the execution of task. 
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Figure 4.1 Geometric definition of trajectory 

 

Before giving the details of the strategy of searching trial trajectories, it will be 

explained how to describe a generic trajectory in the following. As is well-known, the 

equation of a straight line in the xy-plane as follows: 

 𝑦 = 𝑚𝑥 + 𝑛 (4.1) 

where 

 
𝑚 ≔ tan𝜑 =

𝑦𝐹 − 𝑦𝑆
𝑥𝐹 − 𝑥𝑆

 

𝑛 ≔ 𝑦𝑆𝑥𝐹 − 𝑦𝐹𝑥𝑆 

(4.2a) 

(4.2b) 

with (𝑥𝑆, 𝑦𝑆) and (𝑥𝐹 , 𝑦𝐹) being the coordinates of points 𝑆 and 𝐹 respectively. 

Defining a unit vector 𝐮 will be useful for future calculations: 

 𝐮 ≔ cos𝜑 𝐢 + sin𝜑 𝐣 (4.3) 

The position vector of any point on the trajectory will be as below: 

 𝐫 ≔ 𝐫𝑆 + 𝑠 𝐮,       0 ≤ 𝑠 ≤ 𝐿 (4.4) 
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where 𝒓𝑆 is the position vector of starting point 𝑆, i.e. 

 𝐫𝑆 ≔ 𝑥𝑆 𝐢 + 𝑦𝑆 𝐣 (4.5) 

and 𝑠 is the distance travelled by the end effector from starting point 𝑆 at any time 𝑡. 

It is obvious that 𝑠 = 𝑠(𝑡) and the form of relation between 𝑠 and 𝑡 depends on the 

motion program used, see Figure 4.1. 

Now, possible trial trajectories will be discussed. The longest possible trajectory is 

shown in Figure 4.2. Accordingly, its length is as follows: 

 𝐿𝑚𝑎𝑥 = 2√(𝐿1 + 𝐿2)2 − (𝐿1 − 𝐿2)2 = 2√4 𝐿1𝐿2 = 4√𝐿1𝐿2 (4.6) 

 

 

Figure 4.2 The longest possible trajectory 

 

The length of trial trajectories cannot be greater than this value. Obviously, there exists 

only one trajectory whose length is 𝐿𝑚𝑎𝑥. Now, three cases for the interval of 𝑥𝑆 values 

are distinguished depending upon the length of trajectory: 

CASE 1: 𝐿 = 𝐿𝑚𝑎𝑥 

 𝑥𝑆𝑖𝑛𝑖𝑡 = 𝑥𝑆𝑓𝑖𝑛 = 𝐿1 + 𝐿2 (4.7) 
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CASE 2: 𝐿𝑚𝑎𝑥 2⁄ < 𝐿 < 𝐿𝑚𝑎𝑥 

 

𝑥𝑆𝑖𝑛𝑖𝑡 = 𝐿1 + 𝐿2 

𝑥𝑆𝑓𝑖𝑛 = √(𝐿1 + 𝐿2)
2 + 𝐿2 − 2(𝐿1 + 𝐿2)𝐿 cos [sin−1 (

𝐿1 − 𝐿2
𝐿1 + 𝐿2

)] 

(4.8a) 

(4.8b) 

CASE 3: 𝐿 ≤ 𝐿𝑚𝑎𝑥 2⁄  

 
𝑥𝑆𝑖𝑛𝑖𝑡 = 𝐿1 + 𝐿2 

𝑥𝑆𝑓𝑖𝑛 = |𝐿1 − 𝐿2| 

(4.9a) 

(4.9b) 

Similar to the above case study, for a certain length of trajectory and given 𝑥𝑆 value, 

the main and subcases are distinguished to determine the interval of 𝜑 values: 

CASE 1: 𝐿 = 𝐿𝑚𝑎𝑥 

 𝜑𝑖𝑛𝑖𝑡 = 𝜑𝑓𝑖𝑛 = 𝜋 − sin
−1 (

𝐿1 − 𝐿2
𝐿1 + 𝐿2

) (4.10) 

CASE 2: 𝐿𝑚𝑎𝑥 2⁄ ≤ 𝐿 < 𝐿𝑚𝑎𝑥 

 

𝜑𝑖𝑛𝑖𝑡 = 𝜋 − cos
−1 [

𝐿2 + 𝑥𝑆
2 − (𝐿1 + 𝐿2)

2

2 𝐿 𝑥𝑆
] 

𝜑𝑓𝑖𝑛 = 𝜋 − sin−1 (
𝐿1 − 𝐿2
 𝑥𝑆

) 

(4.11a) 

(4.11b) 

CASE 3: 2 𝐿2 < 𝐿 < 𝐿𝑚𝑎𝑥 2⁄  

 

𝜑𝑖𝑛𝑖𝑡 = 𝜋 − cos−1 [
𝐿2 + 𝑥𝑆

2 − (𝐿1 + 𝐿2)
2

2 𝐿 𝑥𝑆
] 

𝛼 ≔ cos−1 (
𝐿1 − 𝐿2
𝑥𝑆

) 

𝜑𝑓𝑖𝑛 =

{
 

 𝜋 − (
𝜋

2
− 𝛼) , 𝑥𝑆 sin 𝛼 ≤ 𝐿

𝜋 − cos−1 [
𝐿2 + 𝑥𝑆

2 − (𝐿1 − 𝐿2)
2

2 𝐿 𝑥𝑆
] , 𝑥𝑆 sin 𝛼 > 𝐿

 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 
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CASE 4: 𝐿 ≤ 2 𝐿2 

Subcase 4.1: 𝐿1 + 𝐿2 − 𝑥𝑆 ≥ 𝐿 

 

𝜑𝑖𝑛𝑖𝑡 = 0 

𝜑𝑓𝑖𝑛 = {

𝜋, 𝑥𝑆 − (𝐿1 − 𝐿2) ≥ 𝐿

𝜋 − cos−1 [
𝐿2 + 𝑥𝑆

2 − (𝐿1 − 𝐿2)
2

2 𝐿 𝑥𝑆
] , 𝑥𝑆 − (𝐿1 − 𝐿2) < 𝐿

 

(4.13a) 

(4.13b) 

(4.13c) 

Subcase 4.2: 𝐿1 + 𝐿2 − 𝑥𝑆 < 𝐿 

 

𝜑𝑖𝑛𝑖𝑡 = 𝜋 − cos−1 [
𝐿2 + 𝑥𝑆

2 − (𝐿1 + 𝐿2)
2

2 𝐿 𝑥𝑆
] 

𝜑𝑓𝑖𝑛 = {

𝜋, 𝑥𝑆 − (𝐿1 − 𝐿2) ≥ 𝐿

𝜋 − cos−1 [
𝐿2 + 𝑥𝑆

2 − (𝐿1 − 𝐿2)
2

2 𝐿 𝑥𝑆
] , 𝑥𝑆 − (𝐿1 − 𝐿2) < 𝐿

 

(4.13d) 

(4.13e) 

(4.13f) 

The computational procedure will work in the following way: 

1. Choose a length of trajectory 𝐿 noting it must be smaller than or equal to 𝐿𝑚𝑎𝑥. 

2. From the formulas (4.7) to (4.9), use the appropriate one for the chosen length, 

and find 𝑥𝑆𝑓𝑖𝑛. 

3. Determine that the interval of 𝑥𝑆 will be divided to how many subinterval.  The 

step size ∆𝑥 between successive starting points can be found dividing the 

interval |𝑥𝑆𝑓𝑖𝑛 − 𝑥𝑆𝑖𝑛𝑖𝑡| by 𝑛𝑥𝑆. The number of starting points to be used during 

computation is then (|𝑥𝑆𝑓𝑖𝑛 − 𝑥𝑆𝑖𝑛𝑖𝑡| ∆𝑥⁄ ) + 1. 

4. For a starting point chosen, use the appropriate one between formulas (4.10) to 

(4.13) to obtain then interval of direction angle 𝜑 for the starting point chosen 

and the given length. 

5. Find the number of straight-lines in the bunch of trial trajectories dividing the 

interval |𝜑𝑓𝑖𝑛 − 𝜑𝑖𝑛𝑖𝑡| by ∆𝜑. Hence, the number of these points equals to 

(|𝜑𝑓𝑖𝑛 − 𝜑𝑖𝑛𝑖𝑡| ∆𝜑⁄ ) + 1. 

6. For each of trial trajectories, compute the energy consumption and store them. 

7. Repeat the procedure for other starting points. 

8. Obtain the trajectory for which minimum energy is consumed. 
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9. Plot all relevant graphics, e.g. displacement, angular velocities and 

accelerations, actuator torques, energy consumption curves for the 

energy-optimal trajectory. 

Usually in the practice, repositioning of a production or assembly line is quite difficult. 

If a robot arm is to be introduced into such a production line, then the only alternative 

is to find such an appropriate location for the robot that the energy consumption during 

that pre-defined operation be minimal.  In this case, especially for the trajectory 

discussed here, a new coordinate system is defined as shown in Figure 4.3 to fix the 

location of the robot with respect to the trajectory, or in some sense, production line. 

In this new coordinate system, the position of the root of robot arm can be obtained 

just using the starting point 𝑥𝑆 and the orientation angle 𝜑 of the energy-optimal 

trajectory. Consequently, these coordinates are obtained as follows: 

 
𝑋 = −𝑥𝑆 cos 𝜑 

𝑌 = 𝑥𝑆 sin𝜑 

(4.14a) 

(4.14b) 

 

 

Figure 4.3 New coordinate system with respect to minimal energy trajectory 
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5. KINEMATIC CONSTRAINTS, VELOCITY AND ACCELERATION 

FUNCTIONS 

The kinematic constraints are given below: 

 𝑎𝑡   𝑡 = 0,     𝑠(0) = 0,    𝑠̇(0) = 0,     𝑠̈(0) = 0 (5.1a) 

 𝑎𝑡   𝑡 = 𝑇,     𝑠(𝑇) = 𝐿,    𝑠̇(𝑇) = 0,     𝑠̈(𝑇) = 0 (5.1b) 

where 𝑠, 𝑠̇ and 𝑠̈ show the displacement on the trajectory, its first time derivative and 

its second time derivation respectively. Kinematic constraints are given by equations 

(5.1) imply that the motion at the beginning and at the end must be impact- and 

jerk-free. In this work, two different displacement functions will be used. One of them 

is a cycloidal displacement function while the other is a 3-4-5 polynomial. 

Consequently, the displacement, velocity and acceleration functions are as follows: 

Cycloidal Motion: 

 

𝑠(𝑡) = 𝐿 (
𝑡

𝑇
−
1

2𝜋
sin

2𝜋𝑡

𝑇
) 

𝑠̇(𝑡) =
𝐿

𝑇
(1 − cos

2𝜋𝑡

𝑇
) 

𝑠̈(𝑡) =
2𝜋𝐿

𝑇2
sin

2𝜋𝑡

𝑇
 

(5.2a) 

(5.2b) 

(5.2c) 

3-4-5 Polynomial Motion: 

 

𝑠(𝑡) = 𝐿 [6 (
𝑡

𝑇
)
5

− 15 (
𝑡

𝑇
)
4

+ 10 (
𝑡

𝑇
)
3

] 

𝑠̇(𝑡) =
𝐿

𝑇
[30 (

𝑡

𝑇
)
4

− 60 (
𝑡

𝑇
)
3

+ 30 (
𝑡

𝑇
)
2

] 

𝑠̈(𝑡) =
𝐿

𝑇2
[120 (

𝑡

𝑇
)
3

− 180 (
𝑡

𝑇
)
2

+ 60 (
𝑡

𝑇
)
1

] 

(5.3a) 

(5.3b) 

(5.3c) 
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6. EQUATIONS OF MOTION 

This section is devoted to deriving equations of motion by using Lagrangian approach. 

As is well-known, the first step of this approach is to obtain kinetic and potential 

energy terms of the system. Hence the linear velocities of certain system points like 

center of gravities and joints. These points are 𝐺1, 𝐴1, 𝐺2 and 𝐵 (see Figure 3.1). 

Velocity of point 𝐺1: 

 
𝐯𝐺1 = 𝜃̇1  𝐤 𝑥 (𝑟𝐺1 cos 𝜃1 𝐢 + 𝑟𝐺1 sin 𝜃1 𝐣) 

= −𝑟𝐺1 sin 𝜃1 𝜃̇1 𝐢 + 𝑟𝐺1 cos 𝜃1 𝜃̇1 𝐣 (6.1) 

where 𝑟𝐺1 = 𝑂𝐺1
̅̅ ̅̅ ̅ and 𝜃̇1𝐤 is the angular velocity of link 1. From (6.1) one obtains: 

 𝐯𝐺1
2 = 𝐯𝐺1 ⋅  𝐯𝐺1 = 𝑟𝐺1

2  𝜃̇1
2 (6.2) 

Velocity of point 𝐴: 

 
𝐯𝐴 = 𝜃̇1  𝐤 𝑥 (𝐿1 cos 𝜃1 𝐢 + 𝐿1 sin 𝜃1 𝐣) 

= −𝐿1 sin 𝜃1 𝜃̇1 𝐢 + 𝐿1 cos 𝜃1 𝜃̇1 𝐣 (6.3) 

From (6.3) we find: 

 𝐯𝐴
2 = 𝐯𝐴 ⋅  𝐯𝐴 = 𝐿1

2  𝜃̇1
2 (6.4) 

Velocity of point 𝐺2: 

 

𝐯𝐺2 = 𝐯𝐴 + 𝐯𝐺2 𝐴⁄  

𝐯𝐺2 𝐴⁄ = 𝜃̇2  𝐤 𝑥 (𝑟𝐺2 cos 𝜃2 𝐢 + 𝑟𝐺2 sin 𝜃2 𝐣) 

= −𝑟𝐺2 sin 𝜃2 𝜃̇2 𝐢 + 𝑟𝐺2 cos 𝜃2 𝜃̇2 𝐣 

𝐯𝐺2 = −(𝐿1 sin 𝜃1 𝜃̇1 + 𝑟𝐺2 sin 𝜃2 𝜃̇2) 𝐢

+ (𝐿1 cos 𝜃1 𝜃̇1 + 𝑟𝐺2 cos 𝜃2 𝜃̇2) 𝐣 

(6.5) 

(6.6) 

(6.7) 

Similarly, from (6.7) one finds: 

 𝐯𝐺2
2 = 𝐯𝐺2 ⋅  𝐯𝐺2 = 𝐿1

2  𝜃̇1
2 + 𝑟𝐺2

2  𝜃̇2
2 + 2 𝐿1  𝑟𝐺2 cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 (6.8) 
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Velocity of point 𝐵: 

 

𝐯𝐵 = 𝐯𝐴 + 𝐯𝐵 𝐴⁄  

𝐯𝐵 𝐴⁄ = 𝜃̇2  𝐤 𝑥 (𝐿2 cos 𝜃2 𝐢 + 𝐿2 sin 𝜃2 𝐣) 

= −𝐿2 sin 𝜃2 𝜃̇2 𝐢 + 𝐿2 cos 𝜃2 𝜃̇2 𝐣 

𝐯𝐵 = −(𝐿1 sin 𝜃1 𝜃̇1 + 𝐿2 sin 𝜃2 𝜃̇2) 𝐢   

+ (𝐿1 cos 𝜃1 𝜃̇1 + 𝐿2 cos 𝜃2 𝜃̇2) 𝐣 

(6.9) 

(6.10) 

(6.11) 

Taking square of |𝐯𝐵| yields: 

 𝐯𝐵
2 = 𝐯𝐵 ⋅  𝐯𝐵 = 𝐿1

2  𝜃̇1
2 + 𝐿2

2  𝜃̇2
2 + 2 𝐿1  𝐿2 cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 (6.12) 

Kinetic energy of link 1: 

 

𝑇1 =
1

2
𝐼𝐺1𝜃̇1

2 +
1

2
𝑚1  𝑣𝐺1

2  

=
1

2
𝐼𝐺1𝜃̇1

2 +
1

2
𝑚1  𝑟𝐺1

2 𝜃̇1
2 

=
1

2
(𝐼𝐺1 +𝑚1  𝑟𝐺1

2 ) 𝜃̇1
2 (6.13) 

According to the parallel-axes theorem we can define: 

 𝐼1,𝑂 ≔ 𝐼𝐺1 +𝑚1  𝑟𝐺1
2  (6.14) 

where 𝐼1,𝑂 is the mass moment of inertia of link 1 about the axis through the joint at 

𝑂. 

Kinetic energy of link 2: 

 

𝑇2 =
1

2
𝐼𝐺2 𝜃̇2

2 +
1

2
𝑚2  𝑣𝐺2

2  

=
1

2
𝐼𝐺2 𝜃̇2

2 +
1

2
𝑚2[𝐿1

2  𝜃̇1
2 + 𝑟𝐺2

2  𝜃̇2
2] + 2 𝐿1  𝑟𝐺2 cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 (6.15) 

Here we also define: 

 𝐼2,𝐴 ≔ 𝐼𝐺2 +𝑚2  𝑟𝐺2
2  (6.16) 

where 𝐼2,𝐴 is the mass moment of inertia of link 2 about the axis through the joint at 𝐴. 
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Consequently, equation (6.15) can be written as follows: 

 𝐼2 =
1

2
𝐼2,𝐴  𝜃̇2

2 +
1

2
𝑚2  𝐿1

2  𝜃̇1
2 +𝑚2  𝐿1  𝑟𝐺2 cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 (6.17) 

Kinetic energy of the object of mass 𝑚 carried with end effector: 

 𝑇𝑚 =
1

2
𝑚 𝑣𝐵

2 =
1

2
𝑚[𝐿1

2  𝜃̇1
2 + 𝐿2

2  𝜃̇2
2] + 𝑚 𝐿1  𝐿2 cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 (6.18) 

Virtual works of actuator torques: 

Actuator 1: 

 𝛿𝑊1 = 𝐌𝟏 ⋅ 𝛅𝛉𝟏 = 𝑀1  𝐤 ⋅ 𝛿𝜃1  𝐤 = 𝑀1  𝛿𝜃1 (6.19) 

Actuator 2: 

 

𝛿𝑊2 = 𝐌𝟐 ⋅   (𝛅𝛉𝟐 − 𝛅𝛉𝟏) 

= 𝑀2  𝐤 ⋅   (𝛿𝜃2  𝐤 − 𝛿𝜃1  𝐤) 

= 𝑀2 𝛿𝜃2 −𝑀2 𝛿𝜃1 (6.20) 

Total virtual work: 

 
𝛿𝑊 = 𝛿𝑊1 + 𝛿𝑊2 

= (𝑀1 −𝑀2) 𝛿𝜃1 +𝑀2𝛿𝜃2 (6.21) 

Total kinetic energy: 

 

𝑇 = 𝑇1 + 𝑇2 + 𝑇𝑚 

=
1

2
𝐼1,𝑂  𝜃̇1

2 +
1

2
𝐼2,𝐴  𝜃̇2

2 +
1

2
𝑚2  𝐿1

2  𝜃̇1
2                 

+ 𝑚2  𝐿1  𝑟𝐺2 cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2                   

+
1

2
𝑚[𝐿1

2  𝜃̇1
2 + 𝐿2

2  𝜃̇2
2] + 𝑚 𝐿1𝐿2 cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 

(6.22) 

or rearranging we find: 

 
𝑇 =

1

2
(𝐼1,𝑂 +𝑚2𝐿1

2 +𝑚𝐿1
2) 𝜃̇1

2 +
1

2
(𝐼2,𝐴 +𝑚𝐿2

2) 𝜃̇2
2

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 

(6.23) 
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Equation of Motion of Link 1: 

According to the Lagrangian mechanics, the equation of motion is given by the 

following formula: 

 
d

d𝑡
(
𝜕𝑇

𝜕𝜃̇1
) −

𝜕𝑇

𝜕𝜃1
= 𝑄1 (6.24) 

where 

 𝑄1 ≔ 𝑀1 −𝑀2 (6.25) 

Let us calculate the terms on the left side of equation (6.24): 

 
𝜕𝑇

𝜕𝜃̇1
= [𝐼1,𝑂 + (𝑚2 +𝑚) 𝐿1

2] 𝜃̇1 + (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̇2 (6.26) 

Therefore, 

 

d

d𝑡
(
𝜕𝑇

𝜕𝜃̇1
) = [𝐼1,𝑂 + (𝑚2 +𝑚) 𝐿1

2] 𝜃̈1

− (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇2
2

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̈2

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 

(6.27) 

and 

 

𝜕𝑇

𝜕𝜃1
= −(𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) (−1) 𝜃̇1𝜃̇2 

= (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 (6.28) 

 

Substituting equations (6.25), (6.27) and (6.28) in equation (6.24) yields 

 

𝑀1 −𝑀2 = [𝐼1,𝑂 + (𝑚2 +𝑚) 𝐿1
2] 𝜃̈1

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̈2

− (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇2
2 

(6.29) 
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Equation of Motion of Link 2: 

The Lagrangian form of the equation of motion for link 2 is as follows: 

 
d

d𝑡
(
𝜕𝑇

𝜕𝜃̇2
) −

𝜕𝑇

𝜕𝜃2
= 𝑄2 (6.30) 

where 

 𝑄2 ≔ 𝑀2 (6.31) 

Let us calculate the terms on the left side of equation (6.30): 

 
𝜕𝑇

𝜕𝜃̇2
= (𝐼2,𝐴 +𝑚 𝐿2

2) 𝜃̇2 + (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̇1 (6.32) 

Therefore 

 

d

d𝑡
(
𝜕𝑇

𝜕𝜃̇2
) = (𝐼2,𝐴 +𝑚 𝐿2

2) 𝜃̈2

− (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) (𝜃̇2 − 𝜃̇1) 𝜃̇1

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̈1 

= (𝐼2,𝐴 +𝑚 𝐿2
2) 𝜃̈2 + (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1

2

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̈1

− (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1𝜃̈2 

(6.33) 

and 

 
𝜕𝑇

𝜕𝜃2
= −(𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1𝜃̇2 (6.34) 

Substituting equations (6.31), (6.33) and (6.34) in (6.30), one obtains the following: 

 
𝑀2 = (𝐼2,𝐴 +𝑚 𝐿2

2) 𝜃̈2 + (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) 𝜃̈1

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1
2 

(6.35) 
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7. SOLVING EQUATION OF MOTION FOR ACTUATOR TORQUES 

The torque of actuator 1, 𝑀1, is obtained by adding equations (6.29) and (6.35) as 

follows: 

 

𝑀1 = [𝐼1,𝑂 + (𝑚2 +𝑚) 𝐿1
2 + (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1)]𝜃̈1

+ [𝐼2,𝐴 +𝑚 𝐿2
2 + (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1)]𝜃̈2

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1
2

− (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇2
2 

(7.1) 

Similarly, the torque of actuator 2, 𝑀2, is found by subtracting equation (6.29) from 

(6.35) and dividing each side of the resulting equation by 2 as follows: 

 

𝑀2 =
1

2
{[(𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1) − 𝐼1,𝑂 − (𝑚2 +𝑚) 𝐿1

2]𝜃̈1

+ [𝐼2,𝐴 +𝑚 𝐿2
2 − (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) cos(𝜃2 − 𝜃1)]𝜃̈2

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇1
2

+ (𝑚2𝐿1𝑟𝐺2 +𝑚 𝐿1𝐿2) sin(𝜃2 − 𝜃1) 𝜃̇2
2} 

(7.2) 
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8. CALCULATION OF ENERGY CONSUMPTION 

The energy consumed during a complete operation is given by the following formula: 

 𝐸 = ∫ |𝐌𝟏 ⋅  d 𝛉𝟏| + |𝐌𝟐 ⋅ (d 𝛉𝟐 − d 𝛉𝟏)|

𝒓𝑭

𝒓𝑺

 (8.1) 

where 𝐫𝐒 and 𝐫𝐅 denote the position vectors of the starting and final points of the 

trajectory, respectively. Explicitly expressed, these vectors are as follows: 

 
𝐫𝐒 = 𝑥𝑆  𝐢 + 𝑦𝑆  𝐣 

𝐫𝐅 = 𝑥𝐹  𝐢 + 𝑦𝐹  𝐣 

(8.2a) 

(8.2b) 

It should be noted that the following requirements are to be satisfied: 

 
 𝑥𝑆
2 + 𝑦𝑆

2 ≤ (𝐿1 + 𝐿2)
𝟐 

𝑥𝐹
2 + 𝑦𝐹

2 ≤ (𝐿1 + 𝐿2)
𝟐 

(8.3a) 

(8.3b) 

Furthermore, the following relationship exists: 

  𝐫𝐅 = 𝐫𝐒 + 𝐿 𝐮 (8.4) 

In terms of the components of position vectors 𝐫𝐒 and 𝐫𝐅, equation (8.4) can be written 

as below: 

 
 𝑥𝐹 = 𝑥𝑆 + 𝐿 cos𝜙 

 𝑦𝐹 = 𝑦𝑆 + 𝐿 sin𝜙 

(8.5a) 

(8.5b) 

The integral (8.1) can be calculated numerically after discretization of it. 
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9. NUMERICAL EXAMPLES 

To carry out the computational procedure explained in Chapters 4-8, a MATLAB code 

was developed. This chapter is devoted to some numerical examples which help 

understand the solution approach presented in this work. It is assumed that actuators 

provide torques needed every time in the examples. Control dynamics is not 

considered. Masses and inertia moments of actuators are also omitted for simplicity. 

For all numerical examples, the manipulator is assumed to have the following physical 

parameters: 

Link 1: 

𝐿1 = 0.4 𝑚 

𝑚1 = 4 𝑘𝑔 

𝑟𝐺1 = 0.5 𝐿1 = 0.2 𝑚 

𝐼𝐺1 = 𝑚1  𝐿1
2   12⁄ = 0.0533 𝑘𝑔-𝑚2 

𝐼1,𝑂 = 𝐼𝐺1 +𝑚1  𝑟𝐺1
2 = 0.2133 𝑘𝑔-𝑚2 

Link 2: 

𝐿2 = 0.2 𝑚 

𝑚2 = 2 𝑘𝑔 

𝑟𝐺2 = 0.5 𝐿2 = 0.1 𝑚 

𝐼𝐺2 = 𝑚2  𝐿2
2   12⁄ = 0.00167 𝑘𝑔-𝑚2 

Payload: 

𝑚 = 1 𝑘𝑔 

With these lengths of links, the length of longest possible trajectory becomes 

𝐿𝑚𝑎𝑥 = 4√𝐿1𝐿2 = 4√0.4 × 0.2 = 1.1314 𝑚 
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In this chapter, five examples will be given for the following cases: 

1. 𝐿 =  𝐿𝑚𝑎𝑥 

2. 𝐿𝑚𝑎𝑥 2⁄ < 𝐿 < 𝐿𝑚𝑎𝑥 

3. 𝐿 = 𝐿𝑚𝑎𝑥 2⁄  

4. 2 𝐿2 < 𝐿 < 𝐿𝑚𝑎𝑥 2⁄  

5. 𝐿 ≤ 2 𝐿2 

For each case, one numerical example is given. In each example, minimum values for 

cycloidal and 3-4-5 polynomial motion programs are calculated. Only figures of 

cycloidal motion program is provided since figures are very similar in both motion 

programs. 

Example 1: (𝐿 =  𝐿𝑚𝑎𝑥) 

Let 𝐿 =  𝐿𝑚𝑎𝑥 and 𝑇 = 1 second. As is known, there is only one solution to this case. 

Computer results are as follows: 

𝑥𝑆𝑖𝑛𝑖𝑡 = 𝑥𝑆𝑓𝑖𝑛 = 𝐿1 + 𝐿2 = 0.6 𝑚 

𝜑𝑖𝑛𝑖𝑡 = 𝜑𝑓𝑖𝑛 = 160.53° 

These values are common to the first and second configurations. 

Minimum energy consumptions for the first configuration: 

𝑚𝑖𝑛(𝐸𝐶1) = 389.05 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶1) = 344.77 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 

Minimum energy consumptions for the second configuration: 

𝑚𝑖𝑛(𝐸𝐶2) = 32.61 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶2) = 29.37 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 

It is seen that the second configuration leads to the less consumption of energy for both 

motion programs. For each configuration of cycloidal motion program, how position 

coordinates, angular velocities, angular accelerations, actuator torques and actuator 

powers change versus time are shown in Figures 9.1-9.5 respectively. 
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Figure 9.1 Position angles of links in Example 1 (𝜃11 and 𝜃21 are position angles of 

link 1 and link 2 for the first configuration while 𝜃12 and 𝜃22 are position 

angles of link 1 and link 2 for the second configuration) 

 

 

Figure 9.2 Angular velocities of links in Example 1 (𝜃̇11 and 𝜃̇21 are angular velocities 

of link 1 and link 2 for the first configuration while 𝜃̇12 and 𝜃̇22 are angular 

velocities of link 1 and link 2 for the second configuration) 
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Figure 9.3 Angular accelerations of links in Example 1 (𝜃̈11 and 𝜃̈21 are angular 

accelerations of link 1 and link 2 for the first configuration while 𝜃̈12 and 

𝜃̈22 are angular accelerations of link 1 and link 2 for the second 

configuration) 

 

 

Figure 9.4 Actuator torques of links in Example 1 (𝑀11 and 𝑀21 are actuator torques 

of link 1 and link 2 for the first configuration while 𝑀12 and 𝑀22 are 

actuator torques of link 1 and link 2 for the second configuration) 
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Figure 9.5 Actuator powers of links in Example 1 (𝑃11 and 𝑃21 are actuator powers of 

link 1 and link 2 for the first configuration while 𝑃12 and 𝑃22 are actuator 

powers of link 1 and link 2 for the second configuration) 

 

Example 2: (𝐿𝑚𝑎𝑥 2⁄ < 𝐿 < 𝐿𝑚𝑎𝑥) 

Let 𝐿 =  0.8 𝐿𝑚𝑎𝑥 and 𝑇 = 1 seconds. 

Minimum energy consumptions for the first configuration: 

𝑚𝑖𝑛(𝐸𝐶1) = 36.24 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶1) = 32.96 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 

For both motion programs, the abscissa of starting point and the direction angle of the 

optimal trajectories are same, hence, these two trajectories are identical: 

𝑥𝑆,1 = 𝐿1 + 𝐿2 = 0.6 𝑚 

𝜑1 = 𝜑𝑖𝑛𝑖𝑡 = 138.96° 

Minimum energy consumptions for the second configuration: 

𝑚𝑖𝑛(𝐸𝐶2) = 16.54 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶2) = 14.69 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 
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Again, for both motion programs there exists only one trajectory. The abscissa of 

starting point and the direction angle of that trajectory are as follows: 

𝑥𝑆,2 = 0.4764 𝑚 

𝜑2 = 155.18° 

Also for this case, the second configuration should be preferred regarding energy 

consumption. 

Figures 9.6-9.10 depict the changes of positions, velocities, accelerations, torques and 

powers with respect to time. In Figure 9.11, we see how energy consumptions vary 

over direction angles. 

 

 

Figure 9.6 Position angles of links in Example 2 (𝜃11 and 𝜃21 are position angles of 

link 1 and link 2 for the first configuration while 𝜃12 and 𝜃22 are position 

angles of link 1 and link 2 for the second configuration) 
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Figure 9.7 Angular velocities of links in Example 2 (𝜃̇11 and 𝜃̇21 are angular velocities 

of link 1 and link 2 for the first configuration while 𝜃̇12 and 𝜃̇22 are angular 

velocities of link 1 and link 2 for the second configuration) 

 

 

Figure 9.8 Angular accelerations of links in Example 2 (𝜃̈11 and 𝜃̈21 are angular 

accelerations of link 1 and link 2 for the first configuration while 𝜃̈12 and 

𝜃̈22 are angular accelerations of link 1 and link 2 for the second 

configuration) 
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Figure 9.9 Actuator torques of links in Example 2 (𝑀11 and 𝑀21 are actuator torques 

of link 1 and link 2 for the first configuration while 𝑀12 and 𝑀22 are 

actuator torques of link 1 and link 2 for the second configuration) 

 

 

Figure 9.10 Actuator powers of links in Example 2 (𝑃11 and 𝑃21 are actuator powers 

of link 1 and link 2 for the first configuration while 𝑃12 and 𝑃22 are 

actuator powers of link 1 and link 2 for the second configuration) 
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Figure 9.11 Energy consumptions for both configurations in Example 2 

 

Example 3: (𝐿 = 𝐿𝑚𝑎𝑥 2⁄ ) 

Let 𝐿 =  0.5 𝐿𝑚𝑎𝑥 and 𝑇 = 1 seconds. 

Minimum energy consumptions for the first configuration: 

𝑚𝑖𝑛(𝐸𝐶1) = 9.58 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶1) = 8.48 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 

For both motion programs, energy-optimal trajectories are identical. The starting point 

and direction angle related to this trajectory are: 

𝑥𝑆,1 = 0.52 𝑚 

𝜑1 = 121.92° 

Minimum energy consumptions for the second configuration: 

𝑚𝑖𝑛(𝐸𝐶2) = 5.53 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶2) = 4.88 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 
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Again, there is one energy-optimal trajectory common to both motion programs. 

Characteristic parameters related to this trajectory are: 

𝑥𝑆,2 = 0.36 𝑚 

𝜑2 = 146.25° 

Figures 9.12-9.17 show the change of kinematic and kinetic parameters with time or 

direction angles. 

 

 

Figure 9.12 Position angles of links in Example 3 (𝜃11 and 𝜃21 are position angles of 

link 1 and link 2 for the first configuration while 𝜃12 and 𝜃22 are position 

angles of link 1 and link 2 for the second configuration) 
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Figure 9.13 Angular velocities of links in Example 3 (𝜃̇11 and 𝜃̇21 are angular 

velocities of link 1 and link 2 for the first configuration while 𝜃̇12 and 𝜃̇22 

are angular velocities of link 1 and link 2 for the second configuration) 

 

 

Figure 9.14 Angular accelerations of links in Example 3 (𝜃̈11 and 𝜃̈21 are angular 

accelerations of link 1 and link 2 for the first configuration as 𝜃̈12 and 

𝜃̈22 are angular accelerations of link 1 and link 2 for the second 

configuration) 
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Figure 9.15 Actuator torques of links in Example 3 (𝑀11 and 𝑀21 are actuator torques 

of link 1 and link 2 for the first configuration while 𝑀12 and 𝑀22 are 

actuator torques of link 1 and link 2 for the second configuration) 

 

 

Figure 9.16 Actuator powers of links in Example 3 (𝑃11 and 𝑃21 are actuator powers 

of link 1 and link 2 for the first configuration while 𝑃12 and 𝑃22 are 

actuator powers of link 1 and link 2 for the second configuration) 
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Figure 9.17 Energy consumptions for both configurations in Example 3 

 

Example 4: (2 𝐿2 < 𝐿 < 𝐿𝑚𝑎𝑥 2⁄ ) 

Let 𝐿 =  0.4 𝐿𝑚𝑎𝑥 and 𝑇 = 1 seconds. 

Minimum energy consumptions for the first configuration: 

𝑚𝑖𝑛(𝐸𝐶1) = 5.23 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶1) = 4.63 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 

As in previous cases, energy-optimal trajectories are identical for both motion 

programs. The starting point and direction angle related to this trajectory are: 

𝑥𝑆,1 = 0.52 𝑚 

𝜑1 = 130.89° 

Minimum energy consumptions for the second configuration: 

𝑚𝑖𝑛(𝐸𝐶2) = 3.44 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶2) = 3.03 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 
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The common energy-optimal trajectory has the following starting point and direction 

angle: 

𝑥𝑆,2 = 0.28 𝑚 

𝜑2 = 134.42° 

The second configuration seems to be more economical also for this case. The relevant 

graphics are Figures 9.18-9.23. 

 

 

Figure 9.18 Position angles of links in Example 4 (𝜃11 and 𝜃21 are position angles of 

link 1 and link 2 for the first configuration while 𝜃12 and 𝜃22 are position 

angles of link 1 and link 2 for the second configuration) 
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Figure 9.19 Angular velocities of links in Example 4 (𝜃̇11 and 𝜃̇21 are angular 

velocities of link 1 and link 2 for the first configuration while 𝜃̇12 and 𝜃̇22 

are angular velocities of link 1 and link 2 for the second configuration) 

 

 

Figure 9.20 Angular accelerations of links in Example 4 (𝜃̈11 and 𝜃̈21 are angular 

accelerations of link 1 and link 2 for the first configuration as 𝜃̈12 and 

𝜃̈22 are angular accelerations of link 1 and link 2 for the second 

configuration) 
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Figure 9.21 Actuator torques of links in Example 4 (𝑀11 and 𝑀21 are actuator torques 

of link 1 and link 2 for the first configuration while 𝑀12 and 𝑀22 are 

actuator torques of link 1 and link 2 for the second configuration) 

 

 

Figure 9.22 Actuator powers of links in Example 4 (𝑃11 and 𝑃21 are actuator powers 

of link 1 and link 2 for the first configuration while 𝑃12 and 𝑃22 are 

actuator powers of link 1 and link 2 for the second configuration) 
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Figure 9.23 Energy consumptions for both configurations in Example 4 

 

Example 5: (𝐿 ≤ 2 𝐿2) 

Let 𝐿 =  0.2 𝐿𝑚𝑎𝑥 and 𝑇 = 1 seconds. 

Minimum energy consumptions for the first configuration: 

𝑚𝑖𝑛(𝐸𝐶1) = 0.83 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶1) = 0.74 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 

The common energy-optimal trajectory has the following characteristic values: 

𝑥𝑆,1 = 0.52 𝑚 

𝜑1 = 130.3° 

Minimum energy consumptions for the second configuration: 

𝑚𝑖𝑛(𝐸𝐶2) = 0.59 𝑗𝑜𝑢𝑙𝑒𝑠  (Cycloidal motion program) 

𝑚𝑖𝑛(𝐸𝐶2) = 0.54 𝑗𝑜𝑢𝑙𝑒𝑠  (3-4-5 polynomial motion program) 
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For this configuration, the starting point’s abscissa and the direction angle of the 

trajectory are as follows: 

𝑥𝑆,2 = 0.44 𝑚 

𝜑2 = 67.19° 

The relevant graphics are presented in Figures 9.24-9.29. 

 

 

Figure 9.24 Position angles of links in Example 5 (𝜃11 and 𝜃21 are position angles of 

link 1 and link 2 for the first configuration while 𝜃12 and 𝜃22 are position 

angles of link 1 and link 2 for the second configuration) 
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Figure 9.25 Angular velocities of links in Example 5 (𝜃̇11 and 𝜃̇21 are angular 

velocities of link 1 and link 2 for the first configuration while 𝜃̇12 and 𝜃̇22 

are angular velocities of link 1 and link 2 for the second configuration) 

 

 

Figure 9.26 Angular accelerations of links in Example 5 (𝜃̈11 and 𝜃̈21 are angular 

accelerations of link 1 and link 2 for the first configuration as 𝜃̈12 and 

𝜃̈22 are angular accelerations of link 1 and link 2 for the second 

configuration) 
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Figure 9.27 Actuator torques of links in Example 5 (𝑀11 and 𝑀21 are actuator torques 

of link 1 and link 2 for the first configuration while 𝑀12 and 𝑀22 are 

actuator torques of link 1 and link 2 for the second configuration) 

 

 

Figure 9.28 Actuator powers of links in Example 5 (𝑃11 and 𝑃21 are actuator powers 

of link 1 and link 2 for the first configuration while 𝑃12 and 𝑃22 are 

actuator powers of link 1 and link 2 for the second configuration) 
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Figure 9.29 Energy consumptions for both configurations in Example 5 

 

For these five examples, the coordinates of the root of manipulator in the 

XY-coordinates fixed to the trajectories, provided that the starting points of all 

trajectories are coincided, are obtained as follows (Note that subscripts 1 and 2 refer 

to the first and second configurations and the relevant energy consumptions while 

superscripts denote the case number, see Ch. 4): 

The Coordinates of Root Location for Example 1: 

 
  𝑋1 = 𝑋1

1 = 𝑋2
1 = −𝑥𝑆 cos𝜑 = −0.6 cos(150.53°) = 0.56 𝑚 

𝑌1 = 𝑌1
1 = 𝑌2

1 = 𝑥𝑆 sin𝜑 = 0.6 cos(160.53°) = 0.1999 𝑚 
 

The Coordinates of Root Location for Example 2: 

 

  𝑋1
2 = −𝑥𝑆,1 cos𝜑1 = −0.6 cos(138.96°) = 0.4526 𝑚 

𝑌1
2 = 𝑥𝑆,1 sin𝜑1 = 0.6 cos(138.96°) = 0.3939 𝑚 

𝑋2
2 = −𝑥𝑆,2 cos𝜑2 = −0.4764 cos(155.18°) = −0.4324 𝑚 

𝑌2
2 = 𝑥𝑆,2 sin𝜑2 = 0.4764 cos(155.18°) = 0.1999 𝑚 
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The Coordinates of Root Location for Example 3: 

 

  𝑋1
3 = −𝑥𝑆,1 cos𝜑1 = −0.52 cos(121.92°) = 0.2749 𝑚 

𝑌1
3 = 𝑥𝑆,1 sin𝜑1 = 0.52 cos(121.92°) = 0.4414 𝑚 

𝑋2
3 = −𝑥𝑆,2 cos𝜑2 = −0.36 cos(146.25°) = −0.2993 𝑚 

𝑌2
3 = 𝑥𝑆,2 sin𝜑2 = 0.36 cos(146.25°) = 0.2000 𝑚 

 

The Coordinates of Root Location for Example 4: 

 

  𝑋1
4 = −𝑥𝑆,1 cos𝜑1 = −0.52 cos(130.89°) = 0.3404 𝑚 

𝑌1
4 = 𝑥𝑆,1 sin𝜑1 = 0.52 cos(130.89°) = 0.3931 𝑚 

𝑋2
4 = −𝑥𝑆,2 cos𝜑2 = −0.28 cos(134.42°) = 0.1959 𝑚 

𝑌2
4 = 𝑥𝑆,2 sin𝜑2 = 0.28 cos(134.42°) = 0.1999 𝑚 

 

The Coordinates of Root Location for Example 5: 

 

  𝑋1
5 = −𝑥𝑆,1 cos𝜑1 = −0.52 cos(130.3°) = 0.3363 𝑚 

𝑌1
5 = 𝑥𝑆,1 sin𝜑1 = 0.52 cos(130.3°) = 0.3966 𝑚 

𝑋2
5 = −𝑥𝑆,2 cos𝜑2 = −0.44 cos(67.19°) = −0.1706 𝑚 

𝑌2
5 = 𝑥𝑆,2 sin𝜑2 = 0.44 cos(67.19°) = 0.4056 𝑚 

 

These points are shown in Figure 9.30. Recall that, in this figure, the starting points of 

all trajectories are the origin of XY-coordinate system. 

 

Figure 9.30 The optimal loci of the root of manipulator in the XY coordinate system  
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10. CONCLUSION 

The present study has focused on finding the optimal location of a 2-DoF manipulator, 

which makes the energy consumption minimum. To this end, two different motion 

programs were used: The cycloidal and the 3-4-5 polynomial motion programs. The 

common characteristics of these two motion programs are the smooth variation of their 

speed and acceleration functions. 

Since it is assumed that 𝐿1 > 𝐿2, the manipulator considered has an annular 

workspace. In such a workspace, the maximum length that a trajectory in form of a 

straight-line can take is 𝐿𝑚𝑎𝑥 = 4√𝐿1𝐿2. In regard to the length of trial trajectories, 

there are four different cases: 𝐿 = 𝐿𝑚𝑎𝑥, 𝐿𝑚𝑎𝑥 2⁄ ≤ 𝐿 < 𝐿𝑚𝑎𝑥, 2 𝐿2 < 𝐿 < 𝐿𝑚𝑎𝑥 2⁄ , 

𝐿 ≤ 2 𝐿2. For each case, there exists a range of abscissa of starting points. Similarly, 

for a trajectory length and its starting point given, the orientation angle varies between 

certain limits. Numerical results obviously demonstrate that a trajectory with minimal 

energy consumption can be found for each of four cases mentioned before.  

The investigation of these energy-minimal trajectories was carried out in a coordinate 

system the origin of which is located at the root point of manipulator. However, when 

one wants to find the optimal location of the manipulator, another coordinate system 

in which the x-axis coincides with the direction of the energy-minimal trajectory must 

be used. In this thesis, actuators are assumed to provide necessary torques whenever 

needed, and their control is not considered. Consequently, future work can be focused 

on the control of actuators and extending the problem to 3D spatial robots. 
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