BURSA TEKNİK ÜNİVERSİTESİ & FEN BİLİMLERİ ENSTİTÜSÜ

ÇİNKO OKSİT ÜRETİMİ VE FOTOKATALİTİK AKTİVİTELERİNİN BELİRLENMESİ

YÜKSEK LİSANS TEZİ Muhammed İNAN

Kimya Mühendisliği Anabilim Dalı

EYLÜL 2019

BURSA TEKNİK ÜNİVERSİTESİ � FEN BİLİMLERİ ENSTİTÜSÜ

ÇİNKO OKSİT ÜRETİMİ VE FOTOKATALİTİK AKTİVİTELERİNİN BELİRLENMESİ

YÜKSEK LİSANS TEZİ

Muhammed İNAN (151080505)

Kimya Mühendisliği Anabilim Dalı

Tez Danışmanı: Dr. Öğr Üyesi Ertuğrul ERKOÇ

EYLÜL 2019

BTÜ, Fen Bilimleri Enstitüsü'nün 151080505 numaralı Yüksek Lisans Öğrencisi Muhammed İNAN, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "ÇİNKO OKSİT ÜRETİMİ VE FOTOKATALİTİK AKTİVİTELERİN BELİRLENMESİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :

Dr. Öğr. Üyesi Ertuğrul ERKOÇ Bursa Teknik Üniversitesi

Jüri Üyeleri :

Prof. Dr. Mehmet ÇOPUR Bursa Teknik Üniversitesi

Prof. Dr. Cengiz ÖZMETİN Balıkesir Üniversitesi

Savunma Tarihi : 06 Eylül 2019

FBE Müdürü :Doç. Dr. Murat ERTAŞBursa Teknik Üniversitesi

...../...../.....

İNTİHAL BEYANI

Bu tezde görsel, işitsel ve yazılı biçimde sunulan tüm bilgi ve sonuçların akademik ve etik kurallara uyularak tarafımdan elde edildiğini, tez içinde yer alan ancak bu çalışmaya özgü olmayan tüm sonuç ve bilgileri tezde kaynak göstererek belgelediğimi, aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim.

Öğrencinin Adı Soyadı: Muhammed İNAN

İmzası :

Aileme,

ÖNSÖZ

Lisansüstü eğitimim esnasında bilimsel ve fikri yönden sürekli desteklerini esirgemeyen ve bu çalışmayı tamamlamak için gereken her türlü imkanı hazırlayan değerli hocam Dr. Öğr. Üyesi Ertuğrul ERKOÇ'a,

Hayatım boyunca beni hep destekleyen aileme,

Lisansüstü çalışmalarım sırasında bana her zaman sabır ve anlayış gösterip destek olan Arş. Gör. Fatma DEMİRCİ'ye

Lisansüstü laboratuvar çalışmalarım esnasında yardımlarını ve desteklerini esirgemeyen Arş. Gör. Gözde GEÇİM'e ve Sinan DÖNMEZ'e

Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü ve Kimya Mühendisliği Bölümü hocalarına ve araştırma görevlilerine en samimi duygularımla teşekkür ederim.

Ağustos 2019

Muhammed İNAN

İÇİNDEKİLER

<u>Sayfa</u>

İÇİNDEKİLER	
KISALTMALAR	
ÇİZELGE LİSTESİ	
ŞEKİL LİSTESİ	•••••
ÖZET	•••••
SUMMARY	
1. GİRİŞ	•••••
2. TEORİK BİLGİLER	
2.1 Fotokimya	
2.1.1 Fotokimyasal reaksiyon mekanizması	
2.1.2 Fotokimyasal reaksiyonlar	
2.2 Fotokatalizör	
2.2.1 Fotokatalizör özellikleri	
2.2.2 Katalizörlerin sınıflandırılması	
2.2.3 Fotokatalitik aktivite	
2.2.4 Yarı iletken fotokatalizörler	
2.2.5 Çinko Oksit fotokatalizörü	
3. MATERYAL ve YÖNTEM	•••••
3.1 ZnO fotokatalizör sentezi materyalleri	
3.1.1 ZnO fotokatalizör sentezi	
3.1.2 ZnO sentezinde kullanılan ekipmanlar	
3.2 ZnO fotokatalizör numunelerinin fotokatalitik aktivitesinin in	celenmesi
3.2.1 Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR)	
3.2.2 Ultraviyole ve görünür bölge spektrofotometresi	
3.2.3 UV-VIS-NIR spektrofotometre	
4. DENEYSEL BULGULAR VE ANALİZ SONUÇLARI	••••••
4.1 FT-IR analizleri	
4.2 UV-VIS-NIR analizleri	
4.3 Band Aralıklarının hesaplanması	
4.4 UV-VIS analizleri	
4.5 Fotokatalitik aktivitelerin belirlenmesi	
5. SONUÇLAR	
KAYNAKLAR	

KISALTMALAR

CdS	: Kadminyum Silikat		
cm	: Santimetre		
CO ₂	: Karbon Dioksit		
Cu ₂ O	: Bakır Oksit		
Ef	: Bantlar arası boşluk		
eV	: Elektron Volt		
Fe ₂ O ₃	: Demir Oksit		
FT-IR	: Fourier Dönüşümlü Kızılötesi Spektroskopisi		
Hz : Hertz			
NaOH	: Sodyum Hidroksit		
Nm	: Nanometre		
O 2	: Oksijen		
PbS	: Galen		
Rpm	: Dakikadaki dönüş sayısı		
SnO ₂ : Kalay Oksit			
St	: Saat		
TiO ₂	2 : Titanyum Dioksit		
UV	: Ultra Viyole		
ZnAc	: Çinko Asetat Dihidrat		
ZnO	: Çinko Oksit		

SEMBOLLER

°C	: Santigrat derece
h+ DB	: Yarı iletkenin değerlik bandında meydana gelen (+) yüklü boşluklar
e-İB	: Yarı iletkenin iletkenlik bandında meydana gelen yükler
%	: Yüzde
μ	: Mikron
λ	: Dalga Boyu
θ	: Yansıma Açısı
α	: Absorbans katsayısı
hv	: Foton enerjisi

ÇİZELGE LİSTESİ

<u>Sayfa</u>

ŞEKİL LİSTESİ

<u>Sayfa</u>

Sekil 1.1 : UV ısıması altında varı iletken molekülde elektron aktarımı	1
Sekil 1.2 : İletken, valıtkan ve varı iletken maddelerin band eneriileri	2
Sekil 2.1 : Elektriksel ve manvetik alanların dikev vönelimli dalgalarını ve	
radvasvonun karakteristik dalga bovunu (λ) gösteren elektromanvetik dalga.	3
Sekil 2.2 : Elektomanyetik radvasyon ve dalga cesitleri	4
Sekil 2.3 : Fotokataliz vöntemi ile atık bertaraf prosesi	6
Sekil 2.4 : Cinko oksit molekül yapısı	10
Sekil 3.1 : Numune hazırlama seti	12
Sekil 3.2 : Santrifüj Cihazı	13
Sekil 3.3 : FT-IR Spektroskopisi sematik gösterimi	15
Sekil 3.4 : FT-IR cihazı	16
Sekil 3.5 : UV-VİS Spektrofotometresi şematik gösterimi	17
Sekil 3.6 : UV-VIS-NIR ölçüm mekanizması	17
Sekil 3.7 : UV-VIS-NIR spektrofotometre cihazi	18
Sekil 4.1 : Saf su çözücülü ZnO fotokatalizörleri FT-IR analizi	19
Şekil 4.2 : %25-75 Su-etanol çözücülü ZnO fotokatalizörleri FT-IR analizi	20
Şekil 4.3 : %50-50 Su-gliserin çözücülü ZnO fotokatalizörleri FT-IR analizi	20
Şekil 4.4 : 0,250 M NaOH ile sentzlenen ZnO fotokatalizörü FT-IR analizi	21
Şekil 4.5: 0,125 M NaOH ile sentezlenen ZnO fotokatalizörü FT-IR analizi	21
Şekil 4.6 : 0,0675 M NaOH ile sentezlenen ZnO fotokatalizörü FT-IR analizi	22
Şekil 4.7 : Ortam sıcaklığında sentezlenen ZnO fotokatalizörü FT-IR analizi	22
Şekil 4.8 : 40°C sıcaklıkta sentezlenen ZnO fotokatalizörü FT-IR analizi	23
Şekil 4.9 : 80°C sıcaklıkta sentezlenen ZnO fotokatalizörü FT-IR analizi	23
Şekil 4.10 : Saf su çözücülü ZnO UV-VIS-NIR grafiği	24
Şekil 4.11 : %25-75 Su-etanol çözücülü ZnO UV-VIS-NIR grafiği	25
Şekil 4.12 : %50-50 Su-gliserin çözücülü ZnO UV-VIS-NIR grafiği	25
Şekil 4.13 : 0,250 M NaOH ile sentezlenen ZnO UV-VIS-NIR grafiği	26
Şekil 4.14 : 0,125 M NaOH ile sentezlenen ZnO UV-VIS-NIR grafiği	26
Şekil 4.15 : 0,0675 M NaOH ile sentezlenen ZnO UV-VIS-NIR grafiği	27
Şekil 4.16 : 24°C sıcaklıkta sentezlenen ZnO UV-VIS-NIR grafiği	27
Şekil 4.17 : 40°C sıcaklıkta sentezlenen ZnO UV-VIS-NIR grafiği	28
Şekil 4.18 : 80°C sıcaklıkta sentezlenen ZnO UV-VIS-NIR grafiği	28
Şekil 4.19 : ZnO fotokatalizör band aralığı tespiti	30
Şekil 4.20 : 1 numaralı ZnO fotokatalizörü UV-VIS grafiği	31
Şekil 4.21 : 2 numaralı ZnO fotokatalizörü UV-VIS grafiği	31
Şekil 4.22 : 3 numaralı ZnO fotokatalizörü UV-VIS grafiği	32
Şekil 4.23 : 4 numaralı ZnO fotokatalizörü UV-VIS grafiği	32
Şekil 4.24 : 5 numaralı ZnO fotokatalizörü UV-VIS grafiği	33
Şekil 4.25 : 6 numaralı ZnO fotokatalizörü UV-VIS grafiği	33
Şekil 4.26 : 7 numaralı ZnO fotokatalizörü UV-VIS grafiği	34

Şekil 4.27 : 8 numaralı ZnO fotokatalizörü UV-VIS grafiği	34
Şekil 4.28 : 9 numaralı ZnO fotokatalizörü UV-VIS grafiği	35
Şekil 4.29 : 10 numaralı ZnO fotokatalizörü UV-VIS grafiği	35
Şekil 4.30 : 11 numaralı ZnO fotokatalizörü UV-VIS grafiği	36
Şekil 4.31 : 12 numaralı ZnO fotokatalizörü UV-VIS grafiği	36
Şekil 4.32 : 13 numaralı ZnO fotokatalizörü UV-VIS grafiği	37
Şekil 4.33 : 14 numaralı ZnO fotokatalizörü UV-VIS grafiği	37
Şekil 4.34 : 15 numaralı ZnO fotokatalizörü UV-VIS grafiği	38
Şekil 4.35 : 16 numaralı ZnO fotokatalizörü UV-VIS grafiği	38
Şekil 4.36 : 17 numaralı ZnO fotokatalizörü UV-VIS grafiği	39
Şekil 4.37 : 18 numaralı ZnO fotokatalizörü UV-VIS grafiği	39
Şekil 4.38 : 22 numaralı ZnO fotokatalizörü UV-VIS grafiği	40
Şekil 4.39 : 23 numaralı ZnO fotokatalizörü UV-VIS grafiği	40
Şekil 4.40 : 24 numaralı ZnO fotokatalizörü UV-VIS grafiği	41
Şekil 4.41 : Reaksiyon hız sabiti grafiği	42
Şekil A.1: 1 Numaralı numune reaksiyon hız sabiti	49
Şekil A.2 : 2 Numaralı numune reaksiyon hız sabiti	50
Şekil A.3 : 3 Numaralı numune reaksiyon hız sabiti	51
Şekil A.4 : 4 Numaralı numune reaksiyon hız sabiti	52
Şekil A.5 : 5 Numaralı numune reaksiyon hız sabiti	53
Şekil A.6 : 6 Numaralı numune reaksiyon hız sabiti	54
Şekil A.7 : 7 Numaralı numune reaksiyon hız sabiti	55
Şekil A.8 : 8 Numaralı numune reaksiyon hız sabiti	56
Şekil A.9 : 9 Numaralı numune reaksiyon hız sabiti	57
Şekil A.10 : 10 Numaralı numune reaksiyon hız sabiti	58
Şekil A.11 : 11 Numaralı numune reaksiyon hız sabiti	59
Şekil A.12 : 12 Numaralı numune reaksiyon hız sabiti	60
Şekil A.13 : 13 Numaralı numune reaksiyon hız sabiti	61
Şekil A.14 : 14 Numaralı numune reaksiyon hız sabiti	62
Şekil A.15 : 15 Numaralı numune reaksiyon hız sabiti	63
Şekil A.16 : 16 Numaralı numune reaksiyon hız sabiti	64
Şekil A.17: 17 Numaralı numune reaksiyon hız sabiti	65
Şekil A.18 : 18 Numaralı numune reaksiyon hız sabiti	66
Şekil A.19 : 22 Numaralı numune reaksiyon hız sabiti	67
Şekil A.20 : 23 Numaralı numune reaksiyon hız sabiti	68
Şekil A.21 : 24 Numaralı numune reaksiyon hız sabiti	69

ÇİNKO OKSİT ÜRETİMİ VE FOTOKATALİTİK AKTİVİTELERİNİN BELİRLENMESİ

ÖZET

Yapısal boyutu 100 nanometrenin altında olan yapılara nanopartikül denir ve yapısal boyut olarak büyük olan malzemelere göre daha üstün ve çeşitli özellikler göstermektedir. Bu nanoyapılı malzemelerden yaygın olarak kullanılan titanyum dioksit (TiO₂)'dir. Nanopartiküller yarı iletken yapısı itibariyle günümüzde kozmetik, kimya, seramik ve cam sanayii, güneş pilleri, elektronik ve tekstil ile ilgili pek çok alanda kullanılmaktadır. Işığa karşı yüksek hassasiyete sahip olan nanopartiküller foto uyarılma ile ortama serbest elektron verir. Işık altında redoks reaksiyonlarının meydana gelmesine olanak sağlar. Bu malzemeler fotokatalizör olarak adlandırılır. Fotokataliz reaksiyonlarında ışık, reaksiyonun daha uygun koşullarda gerçekleşmesini sağlar. Fotokatalizörler homojen ve heterojen olmak üzere ikiye ayrılır. Heterojen fotokatalizörler genellikle sıvı ve gaz formunda bulunan kirletici unsurların giderilmesinde kullanılır. Reaksiyon sonunda kirletici unsurlar H₂O, CO₂ ve mineral tuzlar gibi zararsız yapılar haline dönüşür. Reaksiyondaki parçalanma sonucunda kalan TiO₂ 'in çözeltiden uzaklaştırmanın oldukça zor olması sebebiyle araştırmacılar farklı alternatif nanoyapılı malzemelere vönelmislerdir.

Alternatif olarak değerlendirilen bir yarı iletken metal malzemede çinko oksittir. Elektromanyetik spektrumun geniş bir aralığında yüksek geçirgenlik özelliği göstermesi, ucuz olması ve sağlığa zararlı olmaması sebebiyle üzerinde çalışılmaya uygun bulunmuştur. Çinko oksit heretojen bir fotokatalizördür ve fotokataliz reaksiyonu sonunda aynı kalması, düşük sıcaklık ve basınçta gerçekleşebiliyor olması ve fotokatalizörün güneş ışınlarıyla aktive olması sebebiyle maliyet avantajına sahiptir. Korozyona karşı direncinin yüksek olması sebebiyle uzun süre kullanılmasına imkan sağlar.Çinko oksit nanopartikülleri, kimyasal buhar biriktime, sol-jel, hidrotermal, termal ayrıştırma, sprey piroliz yöntemi, elektrokimysal çöktümr ve kimyasal çöktürme metodlarıyla üretilebilir.

Bu çalışmada kimyasal çöktürme metodu ekonomik ve üretim kolaylığı sebebiyle tercih edilmiştir. Çinko oksit ürünü, çinko asetat dihidrat ve sodyum hidroksit girdileri ile farklı sıcaklık, çözücü ve konsantrasyonlarda sentezlenmiştir. Sentezlenen numuneler santrifüjde çözücülerinden ayrılarak 3 kez saf su, 1 kez etanol ile yıkama yapılarak kurutma işlemine tabi tutulmuştur. Farklı sıcaklık, derişim ve çözücü ile elde edilen çinko oksit nanopartikül numunelerinin FT-IR, UV-VIS ve UV-VIS-NIR analizleri yapılarak bandlar arası boşluklar ve fotokatalitik aktivitelerinin belirlenmesi araştırılmıştır.

Anahtar kelimeler: Çinko Oksit, Fotokatalizör, Kimyasal Çöktürme, Fotokatalitik Aktivite

ZINC OXIDE PRODUCTION AND DETERMINATION OF PHOTOCATALYTIC ACTIVITIES

SUMMARY

Structures with a structural size of less than 100 nanometers are called nanoparticles and exhibit superior and varied properties over materials with large structural dimensions. Of these nanostructured materials, TiO2 is widely used. Due to its semiconductor structure, nanoparticles are used in many fields related to cosmetics, chemistry, ceramics and glass industry, solar cells, electronics and textiles. Nanoparticles, which have high sensitivity to light, give free electrons to the environment by photo excitation. It allows redox reactions to occur under light. These materials are called photocatalysts. In photocatalysis reactions, light allows the reaction to take place under more favorable conditions. The photocatalysts are divided into homogeneous and heterogeneous. Heterogeneous photocatalysts are generally used to remove contaminants in liquid and gaseous form. At the end of the reaction, the contaminants become harmless structures such as H2O, CO2 and mineral salts. As it is difficult to remove TiO₂ from the solution as a result of fragmentation in the reaction, researchers have turned to different alternative nanostructured materials.

Alternatively, another semiconductor metal considered is zinc oxide. It has been found suitable to be studied due to its high permeability in a wide range of electromagnetic spectrum, being inexpensive and not harmful to health. Zinc oxide is a heterogeneous photocatalyst and has a cost advantage due to the fact that the photocatalyst reaction remains the same at the end of the reaction, can occur at low temperature and pressure, and the photocatalyst is activated by solar radiation. Zinc oxide nanoparticles can be produced by chemical vapor deposition, sol-gel, hydrothermal, thermal decomposition, spray pyrolysis method, electrochemical precipitation and chemical precipitation methods.

In this study, chemical precipitation method was preferred because of its economic and ease of production. Zinc acetate dehydrates and sodium hydroxide inputs were synthesized at different temperatures, solvents and concentrations. The synthesized samples were separated from their solvents by centrifugation and washed 3 times with purified water and once with ethanol and dried. FT-IR, UV-VIS and UV-VIS-NIR analysis of zinc oxide nanoparticle samples obtained with different temperature, concentration and solvent were investigated to determine band gaps and photocatalytic activities.

Keywords: Zinc Oxide, Photocatalyst, Chemical Precipitation, Photocatalytic Activity

1. GİRİŞ

Fotokimya, fiziksel ve kimyasal indükleme proseslerinde fotonun soğurulmasıyla ilgilenen bilim dalıdır. Fotokimya, ağırlıklı olarak UV (λ 100 – 400 nm) ve görünür bölgede (λ 400 – 750 nm) dalga boylarında meydana gelen kimyasal tepkimeleri inceler.[1] Molekül, ışıktan bir foton soğurduğunda elektronik yapısı değişir ve diğer moleküllerden farklı tepki vermeye başlar. Bu moleküller "fotokatalizör" olarak adlandırılır. Işıktan soğurulan enerji sonucunda soğuran molekülün fotokimyası değişir. Molekülü temel durumuna getirmek işin soğurulan bu enerji ısı veya düşük enerjili ışık (florasan, fosfor ışıması) olarak molekülden uzaklaştırılır. Her molekül tipi soğurulan foton enerjisinden kurtulmak için farklı mekanizmalardan birini kullanır.[2]

Son yıllarda yarı iletken metal oksitlerin yüzeylerindeki ışıma kaynaklı tepkimeler incelenerek açıklanmak istenmektedir. Yarı iletkenler 1-3 eV bant boşluğuna sahip olup, bu enerji seviyesini aşan bir foton gönderildiğinde değerlik bandında bulunan elektron, iletim bandına atlar ve serbestlik kazanır. Şekil 1.1'de değerlik elektronundan iletim bandına geçiş aşaması gösterilmektedir.[3]

Şekil 1.1 : UV ışıması altında yarı iletken molekülde elektron aktarımı

Fotokataliz, heterojen ve homojen olmak üzere farklı tepkime ortamına sahip olması sebebiyle ikiye ayrılır. Tepkime tek fazda gerçekleşiyorsa homojen, fotokatalizörün yüzeyinde veya ara yüzeyde gerçekleşiyorsa heterojen fotokataliz olarak adlandırılır. Heterojen fotokatalizde reaksiyon hızı, yarı iletken bir metalin fotokatalizör olarak görev almasıyla artar. Bu tip tepkimeler genellikle sıvı ve gaz halde bulunan kirletici unsurların tam olarak ya da kısmen arındırılmasında kullanılır.[4]

Yalıtkan ve iletken maddeler arasında kalanlara yarı iletken madde denir ve dış ortamdan gelen etki sonucunda ortama iletken maddeye oranla daha az serbest elektron verirler. Bu serbest elektronlar iletim bandına yerleşirler. Şekil 1.2'de iletkenlik durumlarına göre malzemelerin bant boşlukları belirtilmiştir.[5]

Şekil 1.2 : İletken, yalıtkan ve yarı iletken maddelerin band enerjileri

2. TEORİK BİLGİLER

2.1 Fotokimya

Fotokimyanın temeli elektromanyetik ışımaya dayanır. Elektromanyetik radyasyon, birbirine dik açılarda uzayda hareket eden elektrik ve manyetik alan dalgalarından oluşur.[2] Şekil 2.1'de elektromanyetik dalga ve dalga boyu gösterilmektedir.

Şekil 2.1 : Elektriksel ve manyetik alanların dikey yönelimli dalgalarını ve radyasyonun karakteristik dalga boyunu (λ) gösteren elektromanyetik dalga

Elektromanyetik spektrum ise farklı foton enerjilerine sahip farklı ışık dalga boylarından oluşur. [2] Farklı ışık dalga boylarının bir araya gelmesiyle oluşan elektromanyetik spektrum şekil 2.2'de verilmiştir.

Şekil 2.2 : Elektomanyetik radyasyon ve dalga çeşitleri

Fotokimya, görünür bölge, ultraviyole (UV) ve kızılötesi bölgelerde meydana gelen kimyasal reaksiyonlarla ilgilenir. Fotokimya, molekülün bir fotonu soğurduğu zamanki enerjiyi kullanarak bir elektronunu daha yüksek bir enerji seviyesine taşımasına denir. Fotokimyanın tercih edilmesini başlıca sebepleri;

- Katalizörlerin maliyeti kısmen düşüktür
- Katalizörlerden bazıları çevreye zarar vermez.
- Katalizörlerden bazıları yeniden kullanılabilir
- Ortam sıcaklığında gerçekleşebilen tepkimelerdir
- Atmosferik basınç altında gerçekleşir
- Güneş ışınlarıyla fotokatalizör uyarılabilir [6]

2.1.1 Fotokimyasal reaksiyon mekanizması

Fotokimyasal tepkimeler, çinko oksit yarı iletkeninde içinde bulunduğu heterojen fotokatalizör ortamında çinko oksitin yüzeyinde gerçekleşir. Bu tepkime beş aşamadan oluşur;

- 1. Yarı iletken katalizör yüzeyine elektron hareketi
- 2. Katalizör yüzeyine reaksiyona girenlerin adsopbe olması
- 3. Yarı iletken metal yüzeyde fotokatalitik tepkime
- 4. Ara ürünlerin ayrışması
- 5. Ürünlerin ayrışması

Fotokatalitik tepkime fotokatalizör yüzeyinde meydana gelir ve tepkime girdileri önce yüzeyde adsroplanır ardından parçalanma ile sonlanır.

2.1.2 Fotokimyasal reaksiyonlar

Fotokimyasal reaksiyonlar daha yüksek aktivasyon değerine sahip reaksiyonların meydana gelmesini kolaylaştırır. Termal işlemlerle ulaşılamayan reaksiyonların oluşumunu kolaylaştırması sebebiyle avantaj sağlar. Fotokimyasal reaksiyonlara örnek olarak;

- Bitkilerin güneş ışığını kullanarak, CO₂ ve H₂O kullanarak O₂ ve glikoz oluşturması (Fotosentez)
- İnsan vücudunun güneş ışınları altında D vitamini sentezi
- Ateş böceğinin karın bölgesinde bulunan bir enzim vasıtasıyla ışık üretmesi
 [7]
- Polimerizasyon için serbest radikal oluşturulması için ışığın soğurulması
- Gözde bulunan ve karanlıkta görmeyi sağlayan rodopsinin fotokimyasal tepkimesi [8]

2.2 Fotokatalizör

Fotokatalizör, bazı tepkimelerde reaksiyonunun ışık tarafından hızlandırılmasını sağlayan maddelere denir. En bilinen örnek ise bitkilerde bulunan ve fotosentez reaksiyonunun gerçekleşmesini sağlayan klorofildir. Endüstride en yaygın fotokatalizör olarak TiO₂ (Titanyum dioksit) kullanılır. Tercih edilmesinin başlıca sebepleri ise ucuz olması, güçlü bir fotokatalizör olması ve reaksiyon sonucunda aynı şekilde kalmasıdır. Ayrıca titanyum dioksit kimyasal ve biyolojik olarak aktif değildir.

Fotokatalitik reaksiyonda, ışık enerjisi kullanılarak aktif hale gelen bir yarı iletkenin yüzeyindeki oksidasyon işlemidir. Genellikle ışık kaynağı olarak UV kullanılır. En yaygın kullanım alanlarından biri de atık sulardaki zararlı yapıların oksidasyon sonucu parçalanarak H₂O, CO₂ ve mineral tuzlar gibi zararsız yapılara dönüşmesidir. TiO₂ en yaygın fotokataliz olmasına rağmen son yıllarda ona olan ilgi azalmaya başlamıştır. Bunun başlıca sebebi ise parçalanma sonunda ortamda kalan TiO₂ 'in çözelti ortamında uzaklaştırmanın oldukça zor olmasıdır. Bu sorun ince film katalizörlerinin kullanılması ile aşılmaya başlanmıştır. Bu filmler suyu seven ve etkin

fotokatalitik özelliklerden dolayı nano boyuta sahip TiO₂ içeren ince filmler, koku oluşumunu önleme, self-cleaning, anti-fogging ve antibakteriyel özellikler kazanması sebebiyle tercih edilmektedir. Bu filmlerin yüzeyine UV ışını ile ışınlama gerçekleştiğinde yüzeyde bulunan safsızlıklar parçalanır ve yüzeyde film tabakası oluşturan H₂O sayesinde yüzeyden akarak ortamdan uzaklaştırılır. Yüzeylere uygulanacak kaplamalar ve boyalarla, çevreden biriken kirliliklerin zararlı atık oluştumadan parçalanması sağlanabilir.[9] Şekil 2.3'te fotokataliz yöntemi ile bertaraf prosesi mekanizması gösterilmektedir. Denklem 2.1'de bertaraf prosesi denklemi verilmiştir.

Şekil 2.3 : Fotokataliz yöntemi ile atık bertaraf prosesi

Organik kirlilik + O₂ \longrightarrow CO₂ + H₂O + Mineral asitler (2.1) TiO₂

2.2.1 Fotokatalizör özellikleri

Fotokataliz tepkimelerinde fotonlardan elde edilen enerjiyi kullanarak tepkimenin gerçekleşmesini sağlayan, tepkime sonucunda ortamdaki varlığını devam ettiren ya da tepkime içerisine katılabilen maddelere fotokatalizör denir. Tepkimelerde aktivasyonu kolaylaştırıcı etki yaparak tepkimenin daha makul şartlarda gerçekleşmesini sağlar. İdeal bir fotokatalizör farklı sentez metodları ile kolay elde edilebilir olmalıdır. Maliyet açısından ucuz olmasının yanı sıra çevreye zararlı etki bırakmamalıdır. Yüzey alanı geniş ve fotokatalitik aktivitesi yüksek olmasının yanında dış etki ve kimyasallardan etkilenmemelidir. Fotokatalizörün güneş ışınları ya da UV ışınları altında aktif olması kullanıcılarına en büyük ekonomik faydayı sağlar. Korozyana karşı dayanımının yüksek olması uzun süre kullanımı açısından önem taşır.

2.2.2 Katalizörlerin sınıflandırılması

Katalizörler tepkime ortamına göre homojen ve heterojen katalizörler olarak ikiye ayrılır. Homojen katalizörlerde tepkime tek fazda gerçekleşirken, heterojen katalizörlerde tepkime katalizör yüzeyinde ve ara yüzeyde meydana gelir.

Heterojen katalizörler geniş bant aralığı bulunan yarı iletken maddelerin sulu ortamda UV ya da güneş ışını ışınımı altında uyarılması yöntemi ile çalışır. [10] Heterojen fotokatalizörler gaz ve sıvı içerisindeki kirliliklerin parçalanması (atık sulardaki kirliliğin giderilmesi, tekstil boyamaları sonrası su arıtma, içme suyu eldesi vb), yüzey kirliliklerinin giderilmesi (kendi kendini temizleyen camlar), virüs ve bakterilerin nüfusunun azaltılması (ameliyathane, hastane uygulamaları) gibi birçok farklı alanda kullanılmaktadırlar.

Heterojen fotokataliz tepkimelerinde genellikle fotokatalizör olarak yarı iletken maddeler kullanılmaktadır. Yarı iletkenler, değerlik bandı ile iletkenlik bandı arasındaki mesafenin iletkene göre daha çok, yalıtkana göre daha az olan maddelere denir. Maddelerin yörüngelerinde bulunan elektronlar bir üst yörüngeye aktarımı için enerji gereklidir. Bu enerji ışık, termal ya da elektrik kaynaklı olabilir. Bant teorisi de tam olarak bu konuyu açıklığa kavuşturmaktadır. Bant teorisinde tüm maddeler bant enerji seviyelerinin bir fonksiyonu olarak tanımlanır. [11] Değerlik bandıda bulunan elektronlar dışarıdan bir etki vasıtasıyla iletkenlik bandına geçer. İletkenlin bandındaki elektronlar arası boşluklara yerleşirler.

Fotokatalizör olarak kullanılan yarı iletken metal oksitler ve nano parçacıkları günümüzde oldukça geniş bir kullanım alanına sahiptir. En çok tercih edilenler TiO₂, Fe₂O₃, SiO₂'dir. Kullanım alanları başlıca elektronik cihazlar, savunma sanayi, reaksiyon katalizi, atık su arıtımı, yüzey kaplamalarıdır. Nano boyutta olmalarının sağlamış olduğu yüksek yüzey alanı sayesinde heterojen katalizör olarak kullanımları artmıştır.

2.2.3 Fotokatalitik aktivite

Fotokatalitik aktivite, fotokatalitik tepkimelerin sahip oldukları kesin ya da dolaylı hız olarak tanımlanmıştır.[12] Fotokatalizörün aktivitesinin bağlı olduğu parametreler;

- Reaksiyon ortam sıcaklığı
- Kristal morfolojisi
- Yarı iletken metal iyonu miktarı, çeşidi ve oksitleri
- Ortam pH derecesi
- Fotokatalizöre etki eden ışın süresi ve şiddeti [13]

2.2.4 Yarı iletken fotokatalizörler

İletim ve değerlik bantları arasındaki boşluk yalıtkanlardan küçük, iletkenlerden büyük olan maddelere yarı iletken maddeler denir. Yarı iletken maddeler ısı, ışık yada farklı bir etki altında kaldığında değerlik bandındaki elektronlardan biri iletkenlik bandına geçer. Yarı iletken maddeler yapısal olarak kristal bir yapıya sahiptir. En bilinen yarı iletkenler germanyum, silikon, selenyum'dur. Özellikle elektrik ve elektronik sanayinde çok fazla kullanım alanları mevcuttur.

Yarı iletken maddelerin başlıca özellikleri;

- İletkenlik bakımından yalıtkan ile iletken maddelerin arasında yer alırlar
- Herhangi bir etki altında kalmadıkları durumlarda yalıtkandır
- Isı, ışık, manyetik etki veya gerilim altında iletkenlik kazanabilirler
- Etki ortadan kaldığında yeniden yalıtkan özellik göstermeye başlarlar.
- Kristal yapıdadırlar
- Yarı iletken maddelere katkı eklenerek iletkenlik özellikler arttırılabilir. [3]

Yarı iletken fotokatalizör olarak TiO₂, ZnO, Fe₂O₃, Cu₂O, SnO₂, PbS, CdS, gibi metal oksit ve sülfürler tercih edilmektedir. Bu maddelerin tercih edilme sebebi ise bant boşluk enerjilerinden kaynaklıdır. Bu enerji her yarı iletken maddeye has sabit bir değer olup, yarı iletken fotokatalizörün yüzeyi, değerlik ve iletkenlik bantları arasındaki boşluk gibi farklı parametrelere bağlıdır. Çizelge 2.1'de bazı fotokatalizörlerin bant enerjileri verilmiştir.[14]

Fotokatalizör	Bant Enerjisi	Fotokatalizör	Bant Enerjisi (eV)
	(eV)		
Si	1.17	ZnO	3.436
TiO ₂ (rutil)	3.1	TiO ₂ (anataz)	3.2
WO ₃	2.7	CdS	2.4
ZnS	3.7	SrTiO ₃	3.4
SnO_2	3.5	WSe_2	1.2
Fe_2O_3	2.2	α -Fe ₂ O ₃	3.1
PbS	0.286	PbSe	0.165
Cu ₂ O	2.172	ZrO_2	3.87

Çizelge 2.1 : Fotokatalizör Bant Enerjileri

2.2.5 Çinko Oksit fotokatalizörü

Çinko oksit hegzagonal kristal bir yapıda olan inorganik bir bileşiktir. Şekil 2.4'te çinko oksit moleküler yapısı gösterilmektedir.[15] Yaygın olarak boya, tekstil, kauçuk, pil, ilaç ve kozmetik, plastik, seramik ve cam, çimento gibi farklı birçok sektörde kullanılmaktadır. Çinko oksit fiziksel ve kimyasal bazı özellikleri çizelge 2.2'de verilmiştir.[16] Doğada mineral çinko oksit (zincite) doğal olarak bulunmasına rağmen çinko oksit genellikle sentetik olarak üretilmektedir. Sentetik çinko oksit başlıca üretim teknikleri;

- Kimyasal buhar biriktirme
- Sol-jel
- Hidrotermal
- Termal ayrıştırma
- Sprey Piroliz Yöntemi
- Elektrokimyasal çöktürme
- Kimyasal çöktürme

Kimyasal çöktürme prosesi ekonomik ve üretim kolaylığı açısından tercih sebebidir. [3]

Şekil 2.4 : Çinko oksit molekül yapısı

Özellikler	ZnO
Latis Parametresi, 300K	
a_0	0,3249
-c ₀	0,52069
$-c_0/a_0$	1,602
Yoğunluk (g/cm ³)	5,606
Sabit faz, 300k	Kahverengi, mineral
Erime Noktası (°C)	1975
Isıl İletkenlik (Wcm ⁻¹ C ⁻¹)	0.6, 1-1.2
Statik dielektrik sabiti	8.656
Kırılma İndisi	2.008
Bant Aralığı (RT)	3.370 eV
Bant Aralığı (4K)	3.437 eV
Uyarılmış Bağlanma Enerjisi (meV)	60
Electron etkin lütlesi	0.24
Serbest elektron hareketliliği 300K'de (cm ² /Vs)	200
Boşluk etkin ağırlık	0.59
Serbest boşluk hareketliliği 300K'de (cm ² /Vs)	5-50

3. MATERYAL ve YÖNTEM

3.1 ZnO fotokatalizör sentezi materyalleri

Bu çalışmada kimyasal çöktürme metodu ile çinko oksit sentezi gerçekleştirmek için kullanılan kimyasallar ve teknik özellikleri çizelge 3.1'de verilmiştir.

Kimyasal	Kimyasal	Molekül	Saflık (%)
	Formülü	Ağırlıkları	
		(gr/mol)	
Çinko Asetat	ZnAc	219,5	98
Sodyum	NoOH	40.0	99
Hidroksit	NaOII	40,0	
Su	H ₂ O	18,0	99
Etanol	C ₂ H ₅ OH	46,1	99
Gliserin	$C_3H_8O_3$	92,1	99
Rodamin	$C_{28}H_{31}C_1N_2O_3$	479,0	99

Çizelge 3.1 : Kimyasallar ve teknik özellikleri

3.1.1 ZnO fotokatalizör sentezi

ZnO fotokatalizörü sentezi kimyasal çöktürme yöntemi kullanılarak sentetik olarak elde edilmiştir. Çinko asetat dihidrat (ZnAc) ve sodyum hidroksit (NaOH) reaksiyon girdileri olarak kullanılmıştır. Tepkime sonucunda çinko oksit (ZnO) fotokatalizörü ve su (H₂O) elde edilmiştir. Kimyasal çöktürme işleminde gerçekleşen tepkime denklem 3.1 ve denklem 3.2'de verilmiştir.

$$Zn(CH_3COO)_2 + 2 NaOH \rightarrow Zn(OH)_2 + 2CH_3COONa$$
 (3.1)

$$Zn(OH)_2 \rightarrow ZnO + H_2O$$
 (3.2)

3.1.2 ZnO sentezinde kullanılan ekipmanlar

Numuneler 0,125 M çinko asetat çözeltisi ile farklı derişimlerdeki NaOH çözeltisi kullanılarak elde edilmiştir.

250 ml * 0,125
$$\frac{mol}{1L}$$
 * 219,5 $\frac{g}{1 mol}$ * $\frac{1 L}{1000 ml}$ = 6,859 g Çinko Asetat

0.125 M olarak hazırlanan ZnAc çözeltisi 750 rpm de 30 dakika boyunca karıştıktan sonra 5 ml/dakika olacak şekilde NaOH çözeltisi eklenmiştir. Çinko asetatın saf su içerisindeki çözünürlüğü 25°C'de 434,78 g/L olarak belirtilmiştir.[17] Numune hazırlama seti şekil 3.1'de, numune içerikleri çizelge 3.2'de gösterilmektedir.

Şekil 3.1 : Numune hazırlama seti

Numune	ZnAc	NaOH	Çözücü	Sıcaklık
Numarası Konsantrasyonu		Konsantrasyonu		[°C]
	[M]	[M]		
1	0,125	0,25	Saf Su	24
2	0,125	0,125	Saf Su	24
3	0,125	0,0675	Saf Su	24
4	0,125	0,25	Saf Su	40
5	0,125	0,125	Saf Su	40
6	0,125	0,0675	Saf Su	40
7	0,125	0,25	Saf Su	80
8	0,125	0,125	Saf Su	80
9	0,125	0,0675	Saf Su	80
10	0,125	0,25	%25-75 Su-Etanol	24
11	0,125	0,125	%25-75 Su-Etanol	24
12	0,125	0,0675	%25-75 Su-Etanol	24
13	0,125	0,25	%25-75 Su-Etanol	40
14	0,125	0,125	%25-75 Su-Etanol	40
15	0,125	0,0675	%25-75 Su-Etanol	40
16	0,125	0,25	%25-75 Su-Etanol	80
17	0,125	0,125	%25-75 Su-Etanol	80
18	0,125	0,0675	%25-75 Su-Etanol	80
19	0,125	0,25	%50-50 Su-Gliserin	24
20	0,125	0,125	%50-50 Su-Gliserin	24
21	0,125	0,0675	%50-50 Su-Gliserin	24
22	0,125	0,25	%50-50 Su-Gliserin	40
23	0,125	0,125	%50-50 Su-Gliserin	40
24	0,125	0,0675	%50-50 Su-Gliserin	40
25	0,125	0,25	%50-50 Su-Gliserin	80
26	0,125	0,125	%50-50 Su-Gliserin	80
27	0,125	0,0675	%50-50 Su-Gliserin	80

Çizelge 3.2 : Numune içerikleri

ZnO fotokatalizör reaksiyonu sonucu elde edilen numuneler karanlık bir ortamda çökelmeye bırakılmıştır. Nüve NF 1200 santifüj makinasında 10 dakika boyunca santrifüjleme işlemi 7500 devir/dakika hızla gerçekleştirilerek çözücülerinden ayrılması sağlanmıştır. Çöken numuneler 3 kez saf su ve 1 kez etanol ile yıkanmıştır. Bu işlem sonucunda 25, 26 ve 27 numaralı çözeltilerden ayrım iyi olmadığı için yeniden santrifüj işlemi yapılarak santrifüj süresi 20 dakika ve devri 8000 devir/dakika hıza çıkarılmasına rağmen 80°C sıcaklıkta %50-50 su-gliserin çözeltisinden ayrım gerçekleşmemiştir. Şekil 3.2'de kullanılan santrifüj makinası gösterilmştir.

Şekil 3.2 : Santrifüj Cihazı

ZnO numuneleri santrifüj işleminden sonra 65°C etüvde 14 saat, 150°C etüvde 4 saat kurutularak numuneler çözücülerinden uzaklaştırılmıştır.

Etüvde kurutma işlemi sona erdiğinde katı halde ZnO fotokatalizör numuneleri elde edilmiştir. 19-20-21 numaralı numuneler (24°C ve %50-50 su-gliserin) jelimsi kıvamda etüvden çıkmış olup, etüvdeki kurutma süresi 12 saat uzatılmış fakat çözücü ZnO fotokatalizöründen uzaklaştırılamamıştır. Düşük sıcaklarda sentezlenen ZnO fotokatalizörleri kristal parçalarının küçük olması, kristal kafesin tamamlanamaması ve çok sayıda elektron boşluğu olması santrifüjleme yapılırken merkez kaç kuvvetinden fazla etkilenmemeleri sebebiyle iyi ayrım yapılamamıştır. [18]

25-26-27 numaralı numunelerde ise 80°C sıcaklıkta sentezlenen ZnO moleküllerinin kristal büyümesi hızlı olduğu için yüzey aktivitesi ve yüzey alanı kaybı daha fazla

olur. Böylece kristal kafeste boş yerler azalır ve kristal tane büyümesi aktivasyon enerjisi artar. [18] Numunelerdeki gliserinin uzaklaştırılamama sebebi yıkamanın yetersiz yapılmasıdır.

Numune	Numune Ağırlığı		
Numarası	[g]		
1	2 205		
l	2,285		
2	1,500		
3	0,745		
4	2,341		
5	1,500		
6	0,577		
7	2.287		
8	1,100		
9	0,491		
10	2,243		
11	1,788		
12	1,096		
13	2,574		
14	1,633		
15	1,169		
16	2,291		
17	1,228		
18	0,970		
19	Numune elde edilemedi (Jelimsi kıvamda)		
20	Numune elde edilemedi (Jelimsi kıvamda)		
21	Numune elde edilemedi (Jelimsi kıvamda)		
22	1,794		
23	1,655		
24	0,244		
25	Numune elde edilemedi (Santifüjde çözücü-ZnO ayrışmamıştır)		
26	Numune elde edilemedi (Santifüjde çözücü-ZnO ayrışmamıştır)		
27	Numune elde edilemedi (Santifüjde çözücü-ZnO ayrışmamıştır)		

Cizelge 3.3 : Elde edilen numune miktarları

3.2 ZnO fotokatalizör numunelerinin fotokatalitik aktivitesinin incelenmesi

Sentezlenen ZnO fotokatalizörlerin aktivitesinin incelenmesi için Rodamin B boyar maddesi ile denemeler yapılmıştır. 9.74 x 10⁻⁶M derişimindeki Rodamin B 30 dakika karanlık ortamda 800 rpm hzunda sabit olarak karıştırılmasından sonra 3 saat boyunca UV ışını altında ve her 30 dakikada bir numune 5 mililitrelik şırıngalar ile çözelti içerisinden numune alınmıştır. Alınan numuneler 0,45 µm filtreden geçirilerek toplanmış ve ZnO fotokatalizörlerinin aktiviteleri UV-VİS cihazında absorbans ölçümleri yapılarak incelenmiştir.

3.2.1 Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR)

FT-IR analizi organik bileşiklerin aynı olup olmadığının tespit edilmesinde ve organik bileşikleri içindeki fonksiyonel grupların belirlenmesi için kullanılır.

IR spectrumunda soğurma yerine ye ekseninde % transmittans değerleri verilerek x ekseninde ise dalga boyu ve dalga sayısı verilerek hangi dalga boyunda en yüksek transmittans değeri elde edildiği incelenir. Kimyasal bileşiklerin çeşitli dalga boylarında IR ışınlarla soğurulması sebebiyle UV-VİS spektrumunda ayrılır. Her fonksiyonel grup farklı dalga sayılarında pik verir.

FT-IR yönteminde IR ışınları difraksiyon prizmaları ile farklı frekanstaki IR ışınlarına çevrilmektedir. FT-IR cihazları çok kısa bir zamanda yüksek hassasiyette analiz elde edilmesine imkân sağlar. [19]

Şekil 3.3 : FT-IR Spektroskopisi şematik gösterimi

Şekil 3.3'te FT-IR spektroskopisi şematik gösterimi verilmiştir.[20] Bu sistemde zamana bağlı dedektör sonuçları Fourier Transformation uygulanarak yatay eksende dalga sayısı ve düşey eksende tranmittans değerleri bulunan grafikler elde edilir. Bu çalışmada şekil 3.4.'te gösterilen Nicolet iS50 FT-IR cihazı kullanılmıştır.

Şekil 3.4 : FT-IR cihazı

3.2.2 Ultraviyole ve görünür bölge spektrofotometresi

Bu spectrofotometre hem görünür bölge hem de UV bölgesinde ölçüm yapmak amacıyla kullanılır. İki farklı ışık kaynağı kullanılır ve bu ışık demetleri bir prizmaya gönderilerek içerdiği farklı dalga boylarına ayrılır. Her bir tek dalgaboyu ışın (monokromotik) bir ayna ile ikiye ayrılır. Bu ışın demetlerinden bir tanesi yalnızca çöcüzü içeriğine sahip UV geçirgenliği olan bir küvetten geçirilir. Diğer demet ise ölçümü yapılması istenen çözücüden geçirilir. İlk ışın demeti kalibrasyonu sağlarken ikinci demette ise sadece numuneden kaynaklı etkileşim incelenmektedir.

Çözücü küvetinden geçen ışın demetine I₀, numune çözeltisinden geçene ise I olarak isimlendirdiğimizde I₀-I sıfır değeri olursa cihazda herhangi bir değer gözlenmez. Eğer numune içeren çözelti herhangi bir dalga boyunda soğurma meydana getirirse o zaman I₀ ve I arasında farklılık oluşur ve cihazda soğurma değerine karşı dalga boyu olacak şekilde grafik oluşur. Işığın çözelti içerisinden geçen miktarı (Transmittans T= I/ I₀) soğurma miktarı ise (Absorbans A= log I₀/I) olarak ifade edilir. Alınan ölçün sağlıklı olması için tranmittansın dedektör tarafından kolay okunabilmesi gerekmektedir. Bu sebeple düşük konsantrasyondaki çözeltilerde bu analizi yapmak daha doğru sonuçlar elde etmeyi sağlar. UV-VİS spektrofotometresinin şematik gösterimi şekil 3.5.'te verilmektedir.[21] Bu çalışmada Rodamin B ve ZnO sıvı çözeltileri Agilent Cary 60 UV-VIS cihazında incelenmiştir.

Şekil 3.5 : UV-VİS Spektrofotometresi şematik gösterimi

3.2.3 UV-VIS-NIR spektrofotometre

UV-VIS-NIR spektrofotometre cihazı UV (200 - 400 nm), görünür bölge (400 – 800 nm) ve yakın infrared bölgede toplam (800 -3300 nm) aralığında analiz yapmaya olanak verir. Bu cihazda 3 bölgede ölçüm için 3 adet dedektör bulunmaktadır. Katı numunelerde ölçüm yapılmasına olanak sağlar. Şekil 3.6'da uv-vis-nır spektrofotometresinin ölçüm mekanizması verilmiştir.[22]

Şekil 3.6 : UV-VIS-NIR ölçüm mekanizması

Bu çalışmada şekil 3.7. de gösterilen Shimadzu UV- 3600 cihazından elde edilen grafikler kullanılmıştır. Bu çalışmada nano yapılı ZnO katı numuneleri incelenmiştir.

Şekil 3.7 : UV-VIS-NIR spektrofotometre cihazı

4. DENEYSEL BULGULAR VE ANALİZ SONUÇLARI

4.1 FT-IR analizleri

ZnO fotokatalizör numuneleri FT-IR spektrometrede analiz edildi. Elde edilen datalar çözelti, stokiyometri ve çözücü parametlerine göre şekil 4.1 ile şekil 4.9 arasındaki grafikler yardımıyla incelenmiştir. Saf su çözücüsü kullanılarak 80°C sıcaklıkta sentezlenen ZnO fotokatalizörlerinin grafikleri, 40°C ve ortam sıcaklığında hazırlanan numunelere kıyasla farklılılar tespit edilmiştir. 4 numaralı ZnO fotokatalizör numunesi ise tam olarak pik oluşturmamakla beraber 80°C sıcaklıkta sentezlenen ZnO fotokatalizörler grafiklerine yakın bir değer ortaya koymuştur.

Şekil 4.1 : Saf su çözücülü ZnO fotokatalizörleri FT-IR analizi

Şekil 4.2 : %25-75 Su-etanol çözücülü ZnO fotokatalizörleri FT-IR analizi

0,125 M ZnAc ve 0,250 M NaOH kullanılarak ortam sıcaklığında %25-75 su-etanol çözücüsü ile hazırlanan ZnO fotokatalizörü aynı şartlarda 40°C ve 80°C ve değişik stokiyometride hazırlanan türevlerine göre oluşturduğu piklerde ZnAc kaynaklı asetat iyonları ve türevleri (ZnAc, C₂H₃NaO₂) olduğu düşünülmektedir.

Şekil 4.3 : %50-50 Su-gliserin çözücülü ZnO fotokatalizörleri FT-IR analizi

Şekil 4.4 : 0,250 M NaOH ile sentzlenen ZnO fotokatalizörü FT-IR analizi

13 numaralı 40°C sıcaklık ve %25-75 su-etanol çözücüsü ile hazırlanan ZnO fotokatalizörü aynı stokiometride sentezlenen türevlerine göre farklılık gösterdiği tespit edilmiştir. Şekil 4.2 ile kıyaslandığında 13 numaralı numunenin yapısında safsızlıklar tespit edilmiştir.

Şekil 4.5 : 0,125 M NaOH ile sentezlenen ZnO fotokatalizörü FT-IR analizi

8 numaralı 80°C ve %100 su çözücüsü ile sentezlenen ZnO fotokatalizörünün grafiği türevlerine kıyasla farklılık göstermektedir. 23 numaralı 40°C ve %50-50 su-gliserin çözücüsüyle sentezlenen ZnO fotokatalizörü anlamlı grafik oluşturmamıştır.

Şekil 4.6 : 0,0675 M NaOH ile sentezlenen ZnO fotokatalizörü FT-IR analizi

9 numaralı 80°C ve %100 saf su çözücüsü ile sentezlenen ZnO fotokatalizörünün oluşturduğu grafik türevlerine kıyasla farklılık göstermektedir. 24 numaralı 40°C ve %50-50 su-gliserin çözücüsü ile sentezlenen ZnO fotokatalizörü 9 numaralı ZnO fotokatalizörüne benzer bir grafik oluşturmaktadır.

Şekil 4.7 : Ortam sıcaklığında sentezlenen ZnO fotokatalizörü FT-IR analizi

1 ve 10 numaralı ZnO fotokatalizörleri benzer nitelikte grafik oluşturmuşlardır. Bu numuneler 0,250 M NaOH kullanılarak sentezlenmiştir.

Şekil 4.8: 40°C sıcaklıkta sentezlenen ZnO fotokatalizörü FT-IR analizi

4 numaralı ZnO Fotokatalizör numunesi 0,250 M NaOH kullanılarak sentezlenmiş olup, 0,125 M ve 0,0675 M NaOH ile sentezlenen ZnO fotokatalizöründen farklı bir grafik oluşturmuştur.

Şekil 4.9 : 80°C sıcaklıkta sentezlenen ZnO fotokatalizörü FT-IR analizi 80°C sıcaklıkta sentezlenen 17-18 numaralı ZnO numuneleri benzer özellik göstermektedir. NaOH molaritesi yüksek olan 16 numaralı numunede pik değerleri

17-18 numaralı numunelere kıyasla keskinliğinin azaldığı tespit edilmiştir. Yapısındaki safsızlıkların daha az olduğu kanatine varılmıştır. Ayrıca %100 saf su çözeltisi ile sentezlenen ZnO numunelerinde pik gözlenmemiştir. Bu numunelerde o organik yapıların oluşmadığı anlaşılmaktadır.

4.2 UV-VIS-NIR analizleri

UV, görünür bölge ve yakın infrared bölgede yapılan analiz sonuçları çözücü, sıcaklık ve stokiyometri açısından ayrı ayrı değerlendirilmiştir. Değerlendirmeler şekil 4.10 ile 4.39 arasında buluna grafikler üzerinden yapılmıştır.

Şekil 4.10 : Saf su çözücülü ZnO UV-VIS-NIR grafiği

2 numaralı ZnO fotokatalizörü UV bölgede türevlerine kıyasla daha yüksek transmittans değeri gösterirken, 8 numaralı ZnO fotokatalizörü görünür bölgede daha düşük transmittans değerine sahiptir.

Şekil 4.11 : %25-75 Su-etanol çözücülü ZnO UV-VIS-NIR grafiği

10 numaralı ZnO fotokatalizörü görünür bölgenin sonunda ve yakın infrared bölgenin başladığı noktada türevlerine kıyasla daha düşük transmittans değerine ulaşmıştır. Numune 16'da ise görünür bölgede daha uzun bir dalga boyu içerisinde tranmittans değerini maksimuma ulaştığı tespit edilmiştir.

Şekil 4.12 : %50-50 Su-gliserin çözücülü ZnO UV-VIS-NIR grafiği

%50-50 Su-gliserin çözücü kullanılan ZnO fotokatalizörleri uv-vis grafikleri kendi içlerinde tutarlı olmalarına rağmen farklı çözücü kullanılan ZnO numunelerine kıyasla anlamlı bir bilgi edinmeyi zorlaştırmaktadır.

Şekil 4.13: 0,250 M NaOH ile sentezlenen ZnO UV-VIS-NIR grafiği

Aynı stokiyometriye sahip ZnO fotokatalizörlerinden ortam scıaklığında ve saf su çözücülü olan 1 numaralı numune türevlerine kıyasla daha yüksek transmitans değerine daha düşük dalga boyunda ulaşmaktadır.

Şekil 4.13 ve 4.14 incelendiğinde 0,125 M NaOH ile sentezlenen ZnO numuneleri 0,250 M türevlerine göre yüksek transmittans değerine sahip oldukları anlaşılmaktadır.

Şekil 4.15: 0,0675 M NaOH ile sentezlenen ZnO UV-VIS-NIR grafiği

Saf su çözücülü 80°C sıcaklıkta sentezlenen ZnO fotokatalizörlerinin transmitter değerlerinin diğer stokiyometride sentezlenenlere oranla daha düşük olduğu tespit edilmiştir.

Şekil 4.16 : 24°C sıcaklıkta sentezlenen ZnO UV-VIS-NIR grafiği

1 numaralı saf su çözücü ile sentezlen ZnO fotokatalizörü 10 numaralı %25 saf su %75 etanol çözücü ile sentezlenen ZnO numunesi kıyasla daha yüksek transmittans değerine sahip olduğu tespit edilmiştir.

Şekil 4.17 : 40°C sıcaklıkta sentezlenen ZnO UV-VIS-NIR grafiği

13 numaralı 0,250 M NaOH kullanılarak sentezlenen ZnO fotokatalizörü şekil 4.13'te gösterilen 10 numaralı 0,250 M NaOH kullanılarak sentezlenen ZnO fotokatalizörüne benzer bir grafik ortaya koymaktadır.

Şekil 4.18 : 80°C sıcaklıkta sentezlenen ZnO UV-VIS-NIR grafiği

80°C sıcaklıkta sentezlenen ZnO fotokatalizörlerinin, ortam sıcaklığında ve 40°C sentezlenen türevlerine göre daha düşük transmittans değerine sahip olduğu belirlenmiştir.

4.3 Band Aralıklarının hesaplanması

UV-VIS analizlerinden elde edilen datalar ile band aralıkları Tauc ve Davis Mott denklemleri kullanılarak hesaplanabilir.

$$(\mathbf{\alpha}\mathbf{h}\mathbf{v})^{\mathbf{n}} = \mathbf{K}\left(\mathbf{h}\mathbf{v} - \mathbf{E}\mathbf{g}\right) \tag{4.1}$$

Denklem 4.1'de α aborbans katsayısı, *hv* foton enerjisi, n değeri direkt malzemeler için 2, endirekt malzemeler için ½ olarak alınır.Yarı iletken metaller için n ½ olarak alınmıştır. K enerji bağımsız sabitini, Eg ise optik bant aralığını temsil eder.

Denklem 4.2 ve 4.3'te gösterilen Max Plunk kuantum kuramını kullanarak foton enerjisi hesaplanır.

$$\mathbf{Eg} = \mathbf{hv} \tag{4.2}$$

$$\boldsymbol{v} = \frac{c}{\lambda} \tag{4.3}$$

Denklem 4.3'te h plank sabiti, v olay foton sıklığı, c ışık hızı, λ dalga boyunu ifade eder. Plank sabiti h = 6.62×10^{-34} Js ve ışık hızı c = $2,999 \times 10^8$ m/s olarak denklem 4.3'te yerine konduğunda;

$$Eg = \frac{19.854 \, x \, 10^{-26} Jm}{\lambda} \tag{4.4}$$

Denklem 4.4'te Joule ile eV dönüşümü yapılırsa (1 eV= 1,602 x10⁻¹⁹ J) ve 1 m= 10^9 nm olarak yerine konduğunda

$$Eg = \frac{1240 \text{ eV nm}}{\lambda} \tag{4.5}$$

Denklem 4.5'te bant aralığı, λ dalga boyuna bağlı bir değer olarak hesaplanabilir. λ dalga boyu nm cinsinden değere sahip olduğu için Eg değeri eV birimine sahip olur. Tauc denklemi x ekseni değeri hesaplanmış olur.

Tauc denkleminde $(\alpha hv)^n$ olarak ifade edilen hv foton enerjisi üzerinden α absorbans katsayısı absorbans dataları kullanılarak denklem 4.6'da verilen Beer Lambert's kanunu ile hesaplanabilir.[23]

$$\frac{\mathbf{I}}{\mathbf{I}_0} = \mathbf{e}^{-\alpha \mathbf{L}} \tag{4.6}$$

 I_0 giren foton yoğunluğu, I iletilen ışığın yoğunluğunu ifade etmektedir. L ise absorbans yapılan yolun uzunluğunu temsil etmektedir. Beer Lambert's denklemi her iki taraftan log'ya alınıp (-) ile çarpıldığında

$$\log(\frac{I_0}{I}) = \alpha L \log(e) \tag{4.7}$$

Denklem 4.7'de bulunan absorbans değeri A= $log(\frac{I_0}{I})$, log (e) = 0,4343 ve aborbans yol uzunluğu 1 cm alındığında

$$\alpha = 2.303 x A (cm^{-1})$$
(4.8)

Denklem 4.8'de bulunan değer denklem 4.1'de yerine konulursa

$$(\alpha hv)^n = (2.303Ahv)^n$$
 (4.9)

Tauc grafiği y ekseni değeri hesaplanmış olur. Çizilen grafiğin en yatay eksene en dik olan noktasından y eksenine bir doğru çizilerek band aralık değeri saptanır.

Şekil 4.19 : ZnO fotokatalizör band aralığı tespiti

Şekil 4.19'da gösterilen grafikte eğimin en yüksek olduğu noktadan grafikten y ekseninde teğet çekilirse ilgili numunenin band aralığı bulunmaktadır.

UV-VIS-NIR analizleri sonucu hesaplanan bant enerji değerleri çizelge 4.1'de verimiştir. %50-50 su-gliserin çözücülü ZnO numunelerinin bant enerjilerinin türevlerine göre daha yüksek oldukları tespit edilmiştir.

Deney No	Bant Enerjisi (eV)	Deney No	Bant Enerjisi (eV)	Deney No	Bant Enerjisi (eV)
1	2,9963	8	3,0425	15	3,0136
2	3,0047	9	3,0496	16	2,9789
3	2,9978	10	2,9997	17	3,0193
4	3,0405	11	3,0237	18	3,0197
5	3,0449	12	3,0130	22	3,2935
6	3,0092	13	2,9991	23	3,2989
7	3,0299	14	3,0225	24	3,3271

Çizelge 4.1 : ZnO fotokatalizörü band aralıkları

4.4 UV-VIS analizleri

Uv-vis cihazı ile tüm numunelerin karanlık ortamda ve her 30 dakikada bir 3 saat boyunca alınan numune örnekleri incelenmiştir. Şekil 4.21 ile Şekil 4.41 arasındaki grafikler her numune için hazırlanan uv-vis görünümleri verilmiştir. Şekillerin y ekseninde absorbans (cm⁻¹), x ekseninde dalga boyu (nm) yer almaktadır.

Şekil 4.20 : 1 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.21 : 2 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.22 : 3 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.23 : 4 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.25 : 6 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.27 : 8 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.28 : 9 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.29: 10 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.31 : 12 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.33 : 14 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.35 : 16 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.37 : 18 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.39 : 23 numaralı ZnO fotokatalizörü UV-VIS grafiği

Şekil 4.40 : 24 numaralı ZnO fotokatalizörü UV-VIS grafiği

4.5 Fotokatalitik aktivitelerin belirlenmesi

Şekil 4.3'te verilen ZnO fotokatalizörlerinin dalga boyu – absorbans ilişkisinden yola çıkılarak Rodamin B – ZnO çözeltisinin maksimum pik değerlerinin 524 nm olduğu tespit edilmiştir. Karalık ortamda 30 dakika boyunca karıştıktan sonraki rodamin B konsantrasyonu (C₀)hesaplanmıştır.

$$Co = \frac{0,00070 \text{ gram}}{0,150 \text{ litre}} x \frac{1 \text{ mol}}{479,01 \text{ gram}} = 0,00000974 \frac{\text{mol}}{\text{litre}}$$
(4.10)

Hazırlanan rodamin B çözeltisin 0,1 gram ZnO fotokatalizörü eklenerek fotokatalitik reaksiyonların gerçekleşmesi sağlanmıştır. C_0 ile Ct arasındaki ilişkiden yola çıkılarak ln Ct/C₀ değeri hesaplanmıştır. -Ln Ct/C₀ ve zaman grafiği çizilerek fotokatalitik reaksiy/onun hız sabiti, doğrunun eğimi olarak hesaplanmıştır. [24].

Şekil 4.41 : Reaksiyon hız sabiti grafiği

Şekil 4.43'de doğrunun eğimi olan y, aynı zamanda reaksiyon hız sabitini ifade etmektedir. Bu fotokatalitik reaksiyonun hızı k=0,0158 dk⁻¹ olarak hesaplanmıştır. Tüm sentezlenen ZnO fotokatalizörleri için fotokatalitik aktivite hesaplaması yapılarak çizelge 4.2'de verilmiştir. Tüm numuneler için yapılan hesaplamalar Ek A'da bulunmaktadır.

Deney No	ZnAc (M)	NaOH (M)	Çözücü	Sıcaklık (°C)	Rodamin B (Gram)	Reaksiyon Hız Sabiti k
1	0,125	0,250	Saf Su	Ortam	0,00076	0,0100
2	0,125	0,125	Saf Su	Ortam	0,00078	0,0408
3	0,125	0,0675	Saf Su	Ortam	0,00079	0,0182
4	0,125	0,25 0	Saf Su	40	0,00067	0,0107
5	0,125	0,125	Saf Su	40	0,00071	0,0330
6	0,125	0,0675	Saf Su	40	0,00079	0,0093
7	0,125	0,25 0	Saf Su	80	0,00074	0,0104
8	0,125	0,125	Saf Su	80	0,00075	0,0275
9	0,125	0,0675	Saf Su	80	0,00075	0,0158
10	0,125	0,250	%25-75 Su-Etanol	Ortam	0,00077	0,0183
11	0,125	0,125	%25-75 Su-Etanol	Ortam	0,00076	0,0192
12	0,125	0,0675	%25-75 Su-Etanol	Ortam	0,00069	0,0179
13	0,125	0,25 0	%25-75 Su-Etanol	40	0,00070	0,0183
14	0,125	0,125	%25-75 Su-Etanol	40	0,00074	0,0208
15	0,125	0,0675	%25-75 Su-Etanol	40	0,00072	0,0233
16	0,125	0,25 0	%25-75 Su-Etanol	80	0,00071	0,0097
17	0,125	0,125	%25-75 Su-Etanol	80	0,00071	0,0140
18	0,125	0,0675	%25-75 Su-Etanol	80	0,00074	0,0181
22	0,125	0,250	%50-50 Su-Gliserin	40	0,00073	0,0006
23	0,125	0,125	%50-50 Su-Gliserin	40	0,00071	0,00009
24	0,125	0,0675	%50-50 Su-Gliserin	40	0,00071	0,0011

Çizelge 4.2 : ZnO fotokatalizör reaksiyon hız sabitleri

Rodamin B dönüşüm yüzdesi absorplanan maddenin zaman göre değeri Abs (t) ve ilk durumdaki absorpsiyon değeri Abs (0) değeri arasındaki aşağıdaki denklem ile hesaplanmaktadır. Hesaplanan dönüşüm yüzdeleri çizelge 4.3.'te verilmiştir.

% $D \ddot{o} n \ddot{u} \ddot{s} \ddot{u} m = \frac{Abs(0) - Abs(t)}{Abs(0)} x \mathbf{100}$ (4.11)

Deney No	NaOH (M)	Çözücü	Sıcaklık (°C)	Rodamin B (Gram)	Reaksiyon Hız Sabiti	Dönüşüm %
1	0,250	Saf Su	Ortam	0,00076	0,0100	83,969
2	0,125	Saf Su	Ortam	0,00078	0,0408	99,795
3	0,0675	Saf Su	Ortam	0,00079	0,0182	97,340
4	0,250	Saf Su	40	0,00067	0,0107	86,176
5	0,125	Saf Su	40	0,00071	0,0330	99,482
6	0,0675	Saf Su	40	0,00079	0,0093	82,008
7	0,250	Saf Su	80	0,00074	0,0104	86,562
8	0,125	Saf Su	80	0,00075	0,0275	99,099
9	0,0675	Saf Su	80	0,00075	0,0158	95,308
10	0,250	%25-75 Su-Etanol	Ortam	0,00077	0,0183	98,134
11	0,125	%25-75 Su-Etanol	Ortam	0,00076	0,0193	93,818
12	0,0675	%25-75 Su-Etanol	Ortam	0,00069	0,0179	97,073
13	0,250	%25-75 Su-Etanol	40	0,00070	0,0183	97,017
14	0,125	%25-75 Su-Etanol	40	0,00074	0,0208	99,219
15	0,0675	%25-75 Su-Etanol	40	0,00072	0,0233	99,304
16	0,250	%25-75 Su-Etanol	80	0,00071	0,0097	83,878
17	0,125	%25-75 Su-Etanol	80	0,00071	0,0140	93,038
18	0,0675	%25-75 Su-Etanol	80	0,00074	0,0181	95,162
22	0,250	%50-50 Su-Gliserin	40	0,00073	0,0006	1,700
23	0,125	%50-50 Su-Gliserin	40	0,00071	0,00009	2,052
24	0,0675	%50-50 Su-Gliserin	40	0,00071	0,0011	15,861

Çizelge 4.3 : Rodamin B dönüşüm oranları

5. SONUÇLAR

Bu tez çalışmasında nano boyuttaki ZnO fotokatalizörlerinin en uygun maliyet ve yüksek reaksiyon verimliliği elde edilecek şekilde sentezlenebilmesi için farklı parametreler üzerinden deneyler gerçekleştirilmiştir. Farklı NaOH derişimi, sıcaklık ve çözücü kullanılarak en efektif ZnO fotokatalizörü elde edilmeye çalışılmıştır. Bu kapsamda maliyet açısından en uygun olan kimyasal çöktürme yöntemi ile ZnO sentezlenmiştir. Sentezlenen ZnO fotokatalizörleri FT-IR, UV-VIS ve UV-VIS-NIR analizleri yapılarak nano parçacıkların yapıları analiz edilmiştir. ZnO fotokatalizlerinin reaksiyon hızları ve kirletici olarak kullanılan Rodamin B boyar maddesinin giderimini ifade eden % dönüşün oranları belirlenmiştir.

Yapılan deney ve toplanan verilerin analizleri neticesinde 0,125M ZnAc ve 0,125M NaOH karışımının saf su çözeltisinin kimyasal çöktürme metodu ile ortam sıcaklığında reaksiyonundan elde edilen ZnO fotokatalizörü 0,0408 dk⁻¹ reaksiyon hız sabiti ve % 99,795 dönüşüm oranı ile en verimli ZnO fotokatalizörü olarak belirlenmiştir.

ZnAc – NaOH stokiyometrisinin 1-1 (0,125M - 0,125M) oranında olduğu katalizörler 1-1/2 (0,125M - 0,0675) ve 1-2 (0,125M - 0,250M) oranındaki çözeltilerden elde edilen katalizörlere göre hem % dönüşüm hem de hız sabiti değerleri daha yüksektir.

Sıcaklığın % dönüşüm ve reaksiyon hızı üzerindeki etkisine bakacak olursak çözelti olarak saf suyun kullanıldığı numunelerde ortam sıcaklığında sentezlenen fotokatalizörler daha yüksek dönüşüm ve hız sabitine sahiptir. %25-75 su-etanol kullanılarak hazırlanan çözeltilerde ise 40°C sıcaklıkta sentezlenen numuneler daha verimli bir performans göstermiştir. %50-50 su-gliserin kullanılarak sentezlenen fotokatalizörlerden yeterli verim alınamamıştır.

Çözücünün reaksiyon hızı ve % dönüşüme etkisi incelendiğinde, çözücü olarak su ve %25-75 su-etanol kullanılan numunelerdeki birbirine yakın olmasına rağmen su çözücüsünün daha verimli bir performans sergilediği tespit edilmiştir. Ayrıca maliyet ve kullanım kolaylığı açısından suyun tercih edilmesi daha uygun olacaktır.

FT-IR analizi sonuçlarını daha iyi değerlendirebilmek için saf Na ve Zn tayini için ICP-OES analizi yapılarak karşılaştırma yapılabilir. SEM ve XRD analizleri yapılarak molekül morfolojisi bilgi edinilebilir.

Piyasada kullanılan ticari ZnO temin edilerek FT-IR UV-VIS ve UV-VIS-NIR analizleri yapılarak sonuçları kimyasal çöktürme metodu ile sentezlenen ZnO fotokatalizörleri ile karşılaştırılarak aradaki farklılıkların sebepleri tartışılaiblir.

KAYNAKLAR

[1] **IUPAC**, (1997), Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Online corrected version: (2006–) "photochemistry".

[2] Turro, N.J. (1991). "Modern Molecular Photochemistry".

[3] **Özbay, E.** (2014). "Çinko Oksit Nanopartiküllerini Üretimi, Karakterizasyonu Ve Fotokatalitik Uygulamaları" (Yüksek Lisans Tezi), Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.

[4] **Goel, M. & Ferronato, C.** (2010) The remediation of waste water containing 4chlorophenol using integrated photocatalytic and biologicaltreatment, Journal of Photochemistry and Photobiology B, 981-6.

[5] **Mumcu, T.** (2013) "Bisfenol-a' nın nano-tio2 ile fotokatalitik parçalanması ve yıkım ürünlerinin belirlenmesi" (Yüksek Lisans Tezi), İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.

[6] **Chiron, S. & Fernandez-Alba, A. & Rodriguez, A. & Garcia-Calvo, E.** (2000) "Pesticide chemical oxidation: State-of-the-art", Wat. Res., 34, 2 366-377.

[7] Saunders, D.S. (2002) Insect clocks, Elsevier, ISBN 0-444-50407-9 p. 179.

[8] **Dugave, C.** (2006) "Cis-trans isomerization in biochemistry", Wiley-VCH, ISBN 3-527-31304-4 p. 56.

[9] **Mylonas A., & Papaconstantinou E.,** (1994), Photocatalytic degradation of chlorophenols to CO2 and HCl with polyoxotungstates in aqueous solution, Journal of Molecular Catalysis, 92, 261-267.

[10] Wintgens, T. & Salehi, F. & Hochstrat, R. & Melin, T. (2008), Water Sci. *Technol.* 57, 99-107.

[11] Lubkin, G.B., (1996), Power applications of high temperature superconductors, Physics today, 49, 48-51.

[12] Kaneko, M., & Okura, I., (2002), Photocatalysis: science and technology, Springer, Tokyo/Berlin, ISBN: 354-0434-739, 29-33.

[13] **Sarıbel, M.**, (2017), SnO Nanopartiküllerinin Sentezi, Karakterizasyonu Ve Fotokatalitik Aktivitesinin İncelenmesi, (Yüksek Lisans Tezi), Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya,

[14] **Thiruvenkatachari, R., & Vigneswaran, S., & Moon, I. S.,** (2008), A review on UV/TiO2 photocatalytic oxidation process. Korean Journal of Chemical Engineering, 25, 64-72.

[15] **Hahn, Y.B.** (2011). Zinc oxide nanostructures and their applications, Korean Journal of Chemical Engineering, 28, 1797-1813.

[16] Vaseem, M., & Umar, A., & Hahn, Y. B., (2010), ZnO nanoparticles: Growth, properties, and applications ISBN: 1-58883-170-1 Volume 5, p 1-36.

[17] **European Chemicals Agency.** Erişim 15 Temmuz, 2019, https://echa.europa.eu/registration-dossier/-/registered-dossier/17716/4/9

[18] **Kumar,S. G. & Rao, K. S. R. K.** "Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications," *RSC Adv.*, vol. 5, no. 5, pp. 3306–3351, 2015.

[19] **Dokuz Eylül Üniversitesi , Malzeme ve Metalurji Mühendisliği,** IR spektroskopisi [PowerPoint slides]. Retrieved from http://web.deu.edu.tr/metalurjimalzeme/pdf/MMZ3015MalzemekarakterizasyonuII/ft ir.pdf

[20] **Harward University, Physical Chemistry Laboratory,** (2019), Fourier Transformation Infrared Spectroscopy [Pdf slides]. Retrieved from https://chem.libretexts.org/Courses/Howard_University/Howard%3A_Physical_Che mistry_Laboratory/14._Fourier_Transform_Infrared_Spectroscopy_(FTIR)

[21] **Balıkesir Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü.** UV-Visible Spektrofotometresi [Php slides]. Retrieved from

http://w3.balikesir.edu.tr/~hnamli/oya/uvvis/cihazcalisma.php

[22] UV-VIS-NIR Spectrophotometer (t.y.). Erişim 27 Temmuz 2019, https://www.lakeheadu.ca/centre/lucas/laboratories/luil/facilities/specs

[23] Li, X. & Zhu, H. & Wei, J. & Wang, K. & Xu, E. & Li, Z. & Wu, D. (2009) Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model, Applied Physics A, 97, 341-344. doi: 10.1007/s00339-009-5330-z

EKLER

EK A:

Denklem 4.10'da Çizelge 4.2'de gösterilen Rodamin B konsantrasyonları konularak C₀ değerleri hesaplanır. Çizelge A.1'de verilmiştir.

$$Co = \frac{0,00076 \text{ gram}}{0,150 \text{ litre}} x \frac{1 \text{ mol}}{479,01 \text{ gram}} = 0,0000106 \frac{\text{mol}}{\text{litre}}$$

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	C ₀ (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,586	0,000	1,000	0,000	10,600	0,000
30	0,413	29,437	0,705	0,348	7,483	3,117
60	0,296	49,516	0,504	0,683	5,363	5,237
90	0,254	56,563	0,433	0,835	4,602	5,998
120	0,170	70,945	0,290	1,236	3,080	7,520
150	0,144	75,460	0,245	1,404	2,609	7,991
180	0,094	83,969	0,160	1,830	1,701	8,899

Çizelge A.1	: Numune	1	verileri

Absorbans değeri olarak UV-VIS data setinin pik yaptığı 524 dalga boyundaki değerleri kullanımıştır.

% Dönüşüm =
$$\frac{\text{Abs 0} - \text{Abs t}}{\text{Abs 0}} x 100$$

Denkle 4.11 kullanılarak % dönüşüm oranı bulunmuştur. Ct/C_0 değeri t zamanındaki aborbans değerinin C_0 değerine oranlanmasıyla hesaplanmıştır. Bulunan değerlerin – ln'i alınarak tabloya eklenmiştir. Herhangi bir t zamanındaki Ct değerleri C_0 ile t zamanındaki absorbans değerinin çarpılarak, C_0 anındaki absorbans değerine bölünmesiyle bulunmuştur. C_0 -Ct değeri bozunan Rodamin B konsantrasyonunu ifade etmektedir.

Elde edilen verilerden $-\ln (Ct/C_0)$ ile t grafiği çizilir ve eğimin en yüksek olduğu bölgeden grafiğe paralel ve x eksenini kesecek şekilde doğru çizildiğinde doğrunun eğimi k hız sabitini verir. 1 numaralı numune için reaksiyon hız sabiti Şekil A.1'de gösterildiği gibi k=0,0100 dk⁻¹ olarak hesaplanmıştır.

Şekil A.1 : 1 Numaralı numune reaksiyon hız sabiti

2 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.2'de gösterilmektedir.

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	C ₀ (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,885	0,000	1,000	0,000	10,800	0,000
30	0,429	51,541	0,485	0,724	5,234	5,566
60	0,201	77,249	0,228	1,481	2,457	8,343
90	0,084	90,566	0,094	2,361	1,019	9,781
120	0,027	96,964	0,030	3,495	0,328	10,472
150	0,006	99,271	0,007	4,921	0,079	10,721
180	0,002	99,796	0,002	6,194	0,022	10,788

Çizelge A.2: Numune 2 verileri

Şekil A.2 : 2 Numaralı numune reaksiyon hız sabiti

Çizelge A.2'den alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.2'de gösterilmektedir. 2. numunenin hız sabiti k=0,0408 dk⁻¹ olarak bulumuştur. 3 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.3'te gösterilmektedir.

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	C ₀ (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,605	0,000	1,000	0,000	10,990	0,000
30	0,394	34,988	0,650	0,431	7,145	3,845
60	0,260	56,986	0,430	0,844	4,727	6,263
90	0,150	75,199	0,248	1,394	2,726	8,264
120	0,081	86,666	0,133	2,015	1,465	9,524
150	0,041	93,223	0,068	2,692	0,745	10,245
180	0,016	97,341	0,027	3,627	0,292	10,698

Çizelge A.3 : Numune 3 verileri

Şekil A.3 : 3 Numaralı numune reaksiyon hız sabiti

Çizelge A.3'ten alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.3'te gösterilmektedir.

3.	numunenin	hız	sabiti	k=0,0182	dk-1	olarak	bulumuştur.
				,			,

4 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.4'te gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/Co	$\ln (Ct/C_{o})$	C_0	C ₀ -Ct
t	Ausorballs	%		$-\operatorname{III}(\operatorname{CU}\operatorname{C0})$	(10^{-6})	(10^{-6})
0	0,786	0,000	1,000	0,000	9,320	0,000
30	0,577	26,595	0,734	0,309	6,841	2,479
60	0,444	43,509	0,565	0,571	5,265	4,055
90	0,327	58,405	0,416	0,877	3,877	5,443
120	0,230	70,761	0,292	1,230	2,725	6,595
150	0,152	80,707	0,193	1,645	1,798	7,522
180	0,109	86,177	0,138	1,979	1,288	8,032

Çizelge A.4 : Numune 4 verileri

Şekil A.4 : 4 Numaralı numune reaksiyon hız sabiti

Çizelge A.4'ten alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.4'te gösterilmektedir.

4. numunenin hiz sabiti $k=0,010^{7}$ dk ⁻¹ olarak b	oulumuştur.
---	-------------

5 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.5'te gösterilmektedir.

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	C_0 (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,753	0,000	1,000	0,000	9,880	0,000
30	0,253	66,443	0,336	1,092	3,315	6,565
60	0,079	89,476	0,105	2,252	1,040	8,840
90	0,015	97,943	0,021	3,884	0,203	9,677
120	0,010	98,569	0,014	4,247	0,141	9,739
150	0,006	99,227	0,008	4,863	0,076	9,804
180	0.004	99,482	0,005	5,263	0,051	9,829

Çizelge A.5 : Numune 5 verileri

Şekil A.5 : 5 Numaralı numune reaksiyon hız sabiti

Çizelge A.5'ten alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.5'te gösterilmektedir.

5. numunomin mz suoru k 0,0550 uk oluruk oulumuşte	5.	numunenin	hız	sabiti	k=0,0330	dk-1	olarak	bulumuştur.
--	----	-----------	-----	--------	----------	------	--------	-------------

6 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.6'da gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/Co	$-\ln (Ct/C_0)$	C ₀	C ₀ -Ct
t	rieboreuns	%	04 00	m (00 00)	(10^{-0})	(10^{-0})
0	0,816	0,000	1,000	0,000	10,990	0,000
30	0,632	22,496	0,775	0,255	8,518	2,472
60	0,493	39,632	0,604	0,505	6,634	4,356
90	0,366	55,136	0,449	0,802	4,931	6,059
120	0,286	64,911	0,351	1,047	3,856	7,134
150	0,197	75,856	0,241	1,421	2,653	8,337
180	0,147	82,008	0,180	1,715	1,977	9,013

Çizelge A.6 : Numune 6 verileri

Şekil A.6 : 6 Numaralı numune reaksiyon hız sabiti

Çizelge A.6'dan alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.6'te gösterilmektedir.

6. numunenin hız sabiti k=0,0093 dk⁻¹ olarak bulumuştur.

7 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.7'de gösterilmektedir.

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	C ₀ (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,785	0,000	1,000	0,000	10,300	0,000
30	0,642	18,114	0,819	0,200	8,434	1,866
60	0,468	40,375	0,596	0,517	6,141	4,159
90	0,339	56,806	0,432	0,839	4,449	5,851
120	0,248	68,399	0,316	1,152	3,255	7,045
150	0,162	79,325	0,207	1,576	2,129	8,171
180	0,105	86,563	0,134	2,007	1,384	8,916

Çizelge A.7 : Numune 7 verileri

Şekil A.7: 7 Numaralı numune reaksiyon hız sabiti

Çizelge A.7'den alınan –ln (Ct/C $_0$) verileri ile t grafiği Şekil A.7'de gösterilmektedir.

7. numunenin hız sabiti k=0,0104 dk^{-1} olarak bulumuştur.

8 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.8'de gösterilmektedir.

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	Ct (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,582	0,000	1,000	0,000	10,400	0,000
30	0,234	59,723	0,403	0,909	4,189	6,211
60	0,100	82,864	0,171	1,764	1,782	8,618
90	0,045	92,253	0,077	2,558	0,806	9,594
120	0,020	96,483	0,035	3,348	0,366	10,034
150	0,008	98,613	0,014	4,278	0,144	10,256
180	0,005	99,100	0,009	4,710	0,094	10,306

Çizelge A.8 : Numune 8 verileri

Şekil A.8: 8 Numaralı numune reaksiyon hız sabiti

Çizelge A.8'den alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.8'de gösterilmektedir.

8. numunenin hız sabiti k=0,0275 dk^{-1} olarak bulumuştur.

9 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.9'da gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/C ₀	-ln (Ct/C ₀)	C_0	C_0 -Ct
$\frac{\iota}{0}$	0 709	0.000	1.000	0.000	$\frac{(10^{-})}{10,700}$	$\frac{(10)}{0.000}$
30	0,497	29,955	0,700	0,356	7,495	3,205
60	0,319	55,025	0,450	0,799	4,812	5,888
90	0,212	70,080	0,299	1,207	3,201	7,499
120	0,128	82,020	0,180	1,716	1,924	8,776
150	0,061	91,446	0,086	2,459	0,915	9,785
180	0,033	95,308	0,047	3,059	0,502	10,198

Çizelge A.9 : Numune 9 verileri

Şekil A.9: 9 Numaralı numune reaksiyon hız sabiti

Çizelge A.9'dan alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.9'da gösterilmektedir.

9. numunenin hız sabiti k=0,0158 dk^{-1} olarak bulumuştur.
10 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.10'da gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/Co	$-\ln (Ct/C_0)$	C ₀	C ₀ -Ct
t	riosorouns	%	04 00	$\operatorname{III}\left(\operatorname{CU}\operatorname{CO}\right)$	(10^{-6})	(10^{-6})
0	0,922	0,000	1,000	0,000	10,990	0,000
30	0,569	38,230	0,618	0,482	6,789	4,201
60	0,384	58,361	0,416	0,876	4,576	6,414
90	0,240	73,994	0,260	1,347	2,858	8,132
120	0,139	84,973	0,150	1,895	1,652	9,338
150	0,080	91,347	0,087	2,447	0,951	10,039
180	0,017	98,134	0,019	3,982	0,205	10,785

Çizelge A.10 : Numune 10 verileri

Şekil A.10: 10 Numaralı numune reaksiyon hız sabiti

Çizelge A.10'dan alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.10'da gösterilmektedir.10. numunenin hız sabiti k=0,0183 dk⁻¹ olarak bulumuştur.

11 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.11'de gösterilmektedir.

Zaman	A 1 1	Dönüşüm		1 (0)(0)	C_0	C ₀ -Ct
t	Absorbans	%	Ct/C_0	$-\ln(Ct/C_0)$	(10^{-6})	(10^{-6})
0	0,593	0,000	1,000	0,000	10,577	0,000
30	0,320	46,027	0,540	0,617	5,709	4,869
60	0,174	70,634	0,294	1,225	3,145	7,432
90	0,089	85,055	0,149	1,901	1,601	8,977
120	0,048	91,988	0,080	2,524	0,858	9,719
150	0,019	96,734	0,033	3,422	0,350	10,227
180	0.036	93,896	0,061	2,796	0,654	9,923

Çizelge A.11 : Numune 11 verileri

Şekil A.11 : 11 Numaralı numune reaksiyon hız sabiti

Çizelge A.11'den alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.11'de gösterilmektedir.11. numunenin hız sabiti k=0,0193 dk⁻¹ olarak bulumuştur.

12 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.12'de gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/Co	$\ln (Ct/C_{o})$	C_0	C ₀ -Ct
t	Ausoidans	%		$-\operatorname{III}(\operatorname{Ct}/\operatorname{C0})$	(10^{-6})	(10^{-6})
0	0,672	0,000	1,000	0,000	9,603	0,000
30	0,456	32,059	0,679	0,387	6,524	3,079
60	0,300	55,354	0,446	0,806	4,287	5,316
90	0,173	74,200	0,258	1,355	2,478	7,126
120	0,088	86,899	0,131	2,032	1,258	8,345
180	0.020	97.073	0,029	3,531	0,281	9,322

Çizelge A.12 : Numune 12 verileri

Şekil A.12: 12 Numaralı numune reaksiyon hız sabiti

Çizelge A.12'den alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.12'de gösterilmektedir.12. numunenin hız sabiti k=0,0179 dk⁻¹ olarak bulumuştur.

13 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.13'te gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/C ₀	$-\ln (Ct/C_0)$	C ₀	C ₀ -Ct
t		%			(10^{-0})	(10^{-0})
0	0,543	0,000	1,000	0,000	9,742	0,000
30	0,374	31,046	0,690	0,372	6,717	3,025
60	0,214	60,505	0,395	0,929	3,848	5,894
90	0,115	78,811	0,212	1,552	2,064	7,678
120	0,062	88,621	0,114	2,173	1,109	8,633
150	0,037	93,111	0,069	2,675	0,671	9,071
180	0,016	97,017	0,030	3,512	0,290	9,452

Çizelge A.13 : Numune 13 verileri

Şekil A.13 : 13 Numaralı numune reaksiyon hız sabiti

Çizelge A.13'ten alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.13'te gösterilmektedir.13. numunenin hız sabiti k=0,0183 dk⁻¹ olarak bulumuştur.

14 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.14'te gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/C ₀	-ln (Ct/C ₀)	C_0	C_0 -Ct
<u> </u>	0.00	70	1 000	0.000	(10)	(10)
0	0,326	0,000	1,000	0,000	10,299	0,000
30	0,256	21,345	0,787	0,240	8,101	2,198
60	0,120	63,317	0,367	1,003	3,778	6,521
90	0,104	68,204	0,318	1,146	3,275	7,024
120	0,035	89,272	0,107	2,232	1,105	9,194
150	0,024	92,565	0,074	2,599	0,766	9,533
180	0,003	99,220	0,008	4,854	0,080	10,219

Çizelge A.14 : Numune 14 verileri

Şekil A.14 : 14 Numaralı numune reaksiyon hız sabiti

Çizelge A.14'ten alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.14'te gösterilmektedir.14. numunenin hız sabiti k=0,0208 dk⁻¹ olarak bulumuştur.

15 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.15'te gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/Co	$-\ln (Ct/C_0)$	C ₀	C ₀ -Ct
t	71050104115	%	0000	$\operatorname{III}\left(\operatorname{CU}\operatorname{C0}\right)$	(10^{-6})	(10^{-6})
0	0,333	0,000	1,000	0,000	10,021	0,000
30	0,222	33,356	0,666	0,406	6,678	3,342
60	0,134	59,902	0,401	0,914	4,018	6,003
90	0,065	80,497	0,195	1,635	1,954	8,066
120	0,036	89,253	0,107	2,231	1,077	8,944
150	0,010	97,144	0,029	3,556	0,287	9,734
180	0,002	99,305	0,007	4,969	0,070	9,951

Çizelge A.15 : Numune 15 verileri

Şekil A.15 : 15 Numaralı numune reaksiyon hız sabiti

Çizelge A.15'ten alınan –ln (Ct/C₀) verileri ile t grafiği Şekil A.15'te gösterilmektedir.15. numunenin hız sabiti k=0,0233 dk⁻¹ olarak bulumuştur.

16 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.16'da gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/Co	$-\ln (Ct/C_0)$	C ₀	C ₀ -Ct
t	71050104115	%	0000	$\operatorname{III}\left(\operatorname{CU}\operatorname{C0}\right)$	(10^{-6})	(10^{-6})
0	0,320	0,000	1,000	0,000	9,881	0,000
30	0,342	-7,020	1,070	-0,068	10,575	-0,694
60	0,246	22,962	0,770	0,261	7,612	2,269
90	0,179	43,987	0,560	0,580	5,535	4,347
120	0,126	60,548	0,395	0,930	3,898	5,983
150	0,047	85,247	0,148	1,914	1,458	8,424
180	0,052	83,879	0,161	1,825	1,593	8,288

Çizelge A.16 : Numune 16 verileri

Şekil A.16 : 16 Numaralı numune reaksiyon hız sabiti

Çizelge A.16'dan alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.16'da gösterilmektedir.16. numunenin hız sabiti k=0,0097 dk⁻¹ olarak bulumuştur.

17 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.17'de gösterilmektedir.

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	C ₀ (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,510	0,000	1,000	0,000	9,881	0,000
30	0,288	43,665	0,563	0,574	5,567	4,315
60	0,279	45,442	0,546	0,606	5,391	4,490
90	0,142	72,209	0,278	1,280	2,746	7,135
120	0,105	79,515	0,205	1,585	2,024	7,857
150	0,066	86,987	0,130	2,039	1,286	8,596
180	0,036	93,039	0,070	2,665	0,687	9,194

Çizelge A.17 : Numune 17 verileri

Şekil A.17: 17 Numaralı numune reaksiyon hız sabiti

Çizelge A.17'den alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.17'de gösterilmektedir.17. numunenin hız sabiti k=0,0140 dk⁻¹ olarak bulumuştur.

18 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.18'de gösterilmektedir.

Zaman	Absorbans	Dönüşüm	Ct/Co	$-\ln (Ct/C_0)$	C ₀	C ₀ -Ct
t	rioborouns	%	04 00	$\operatorname{III}\left(\operatorname{CU}\operatorname{CO}\right)$	(10^{-6})	(10^{-6})
0	0,166	0,000	1,000	0,000	10,299	0,000
30	0,067	59,524	0,405	0,904	4,169	6,130
60	0,059	64,294	0,357	1,030	3,677	6,622
90	0,036	78,361	0,216	1,531	2,229	8,070
120	0,022	86,899	0,131	2,033	1,349	8,950
150	0,007	95,613	0,044	3,127	0,452	9,847
180	0,008	95,163	0,048	3,029	0,498	9,801

Çizelge A.18 : Numune 18 verileri

Şekil A.18 : 18 Numaralı numune reaksiyon hız sabiti

Çizelge A.18'den alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.18'de gösterilmektedir.18. numunenin hız sabiti k=0,0181 dk⁻¹ olarak bulumuştur.

22 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.19'da gösterilmektedir.

Zaman t	Absorbans	Dönüşüm %	Ct/C ₀	-ln (Ct/C ₀)	C ₀ (10 ⁻⁶)	C ₀ -Ct (10 ⁻⁶)
0	0,576	0,000	1,000	0,000	10,160	0,000
30	0,496	13,878	0,861	0,149	8,750	1,140
60	0,568	1,313	0,987	0,013	10,027	0,133
90	0,405	29,643	0,704	0,352	7,148	3,012
120	0,547	4,999	0,950	0,051	9,652	0,507
150	0,567	1,536	0,985	0,015	10,004	0,156
180	0,566	1,701	0,983	0,017	9,987	0,173

Çizelge A.19 : Numune 22 verileri

Şekil A.19: 22 Numaralı numune reaksiyon hız sabiti

Çizelge A.19'dan alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.19'de gösterilmektedir.22. numunenin hız sabiti k=0,0006 dk⁻¹ olarak bulumuştur.

23 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.20'de gösterilmektedir.

Zaman	Absorbans	Dönüşüm		$\ln (Ct/C_{\rm o})$	C_0	C ₀ -Ct
t	Absolutiis	%		$-\operatorname{III}(\operatorname{Ct/C0})$	(10^{-6})	(10^{-6})
0	0,668	0,000	1,000	0,000	9,881	0,000
30	0,683	-2,217	1,022	-0,022	10,101	-0,219
60	0,659	1,324	0,987	0,013	9,751	0,130
90	0,663	0,814	0,992	0,008	9,801	0,080
120	0,623	6,690	0,933	0,069	9,220	0,661
150	0,654	2,053	0,979	0,021	9,679	0,202
180	0.688	-3.001	1.030	-0.030	10.178	-0.296

Çizelge A.20 : Numune 23 verileri

Şekil A.20: 23 Numaralı numune reaksiyon hız sabiti

Çizelge A.20'den alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.20'de gösterilmektedir.23. numunenin hız sabiti k=0,00009 dk⁻¹ olarak bulumuştur.

24 numaralı numune verileri için yapılan hesaplamaların sonuçları Çizelge A.21'de gösterilmektedir.

Zaman	Absorbang	Dönüşüm	Ct/Co	$\ln (Ct/C_{o})$	\mathbf{C}_0	C ₀ -Ct
t	Ausorballs	%		$-\operatorname{III}(\operatorname{Ct}/\operatorname{C0})$	(10^{-6})	(10^{-6})
0	0,729	0,000	1,000	0,000	9,881	0,000
30	0,696	4,488	0,955	0,046	9,438	0,443
60	0,670	8,104	0,919	0,085	9,081	0,800
90	0,627	13,933	0,861	0,150	8,505	1,377
120	0,649	10,907	0,891	0,115	8,804	1,078
150	0,626	14,126	0,859	0,152	8,486	1,396
180	0.613	15.862	0.841	0.173	8.314	1.567

Çizelge A.21 : Numune 24 verileri

Şekil A.21 : 24 Numaralı numune reaksiyon hız sabiti

Çizelge A.21'den alınan $-\ln$ (Ct/C₀) verileri ile t grafiği Şekil A.21'de gösterilmektedir.24. numunenin hız sabiti k=0,0011 dk⁻¹ olarak bulumuştur.

Ad-Soyad	: Muhammed İNAN
Doğum Tarihi ve Yeri	: 22.08.1990 BURSA
E-posta	: muhammedinan@windowslive.com

ÖĞRENİM DURUMU:

ÖZGEÇMİŞ

- Lisans : 2014, İstanbul Teknik Ünivetsitesi, Kimya Metalurji Fakültesi, Kimya Mühendisliği
- Yüksek Lisans

MESLEKİ DENEYİM VE ÖDÜLLER:

:

- Şen-er Boya A.Ş. 09.2013 01.2014 Kalite Kontrol Laborantı
- Tugbay Tekstil 10.2014 05.2015 Üretim Mühendisi
- Farba Otomotiv Aydınlatma ve Plastik Fabrikaları 05.2015 07.2016 Proses Kaplama Mühendisi
- Petkim Petrokimya A.Ş. 07.2016 11.2017 İşletme Mühendisi
- Petkim Petrokimya A.Ş. 11.2017 ... İşletme Uzman Mühendisi

TEZDEN TÜRETİLEN ESERLER, SUNUMLAR VE PATENTLER:

- -

DİĞER ESERLER, SUNUMLAR VE PATENTLER:

•