

T. C.

İSTANBUL 29 MAYIS ÜNİVERSİTESİ

SOSYAL BİLİMLER ENSTİTÜSÜ

ÇEVİRİBİLİM ANABİLİM DALI

CREATING A STATISTICAL BASED AUTOMOTIVE

ORIENTED MACHINE TRANSLATION ENGINE

(YÜKSEK LİSANS TEZİ)

Alper ÇALIK

Danışman:

Prof. Dr. Işın ÖNER

İSTANBUL

2019

T. C.

İSTANBUL 29 MAYIS ÜNİVERSİTESİ

SOSYAL BİLİMLER ENSTİTÜSÜ

ÇEVİRİBİLİM ANABİLİM DALI

CREATING A STATISTICAL BASED AUTOMOTIVE

ORIENTED MACHINE TRANSLATION ENGINE

(YÜKSEK LİSANS TEZİ)

Alper ÇALIK

Danışman:

Prof. Dr. Işın ÖNER

İSTANBUL

2019

T. C.

İSTANBUL 29 MAYIS ÜNİVERSİTESİ

SOSYAL BİLİMLER ENSTİTÜSÜ MÜDÜRLÜĞÜNE

Çeviribilim Anabilim Dalı, Çeviribilim Bilim Dalı’nda 010516YL04 numaralı

Alper ÇALIK’ın hazırladığı “Creating a Statistical Based Automotive Oriented

Machine Translation Engine” konulu yüksek lisans tezi ile ilgili tez savunma

sınavı, 13.09.2019 günü saatleri arasında yapılmış, sorulan sorulara alınan cevaplar

sonunda adayın tezinin başarılı olduğuna oy birliği ile karar verilmiştir.

Prof. Dr. Işın ÖNER

İstanbul 29 Mayıs Üniversitesi

(Tez Danışmanı ve Sınav Komisyonu Başkanı)

Prof. Dr. Ayşe Banu KARADAĞ

Yıldız Teknik Üniversitesi

Dr. Öğr. Üyesi Nilüfer ALİMEN

İstanbul 29 Mayıs Üniversitesi

BEYAN

Bu tezin yazılmasında bilimsel ahlak kurallarını uyulduğunu, başkalarının

eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta

bulunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, tezin

herhangi bir kısmının bu üniversite veya başka bir üniversitede başka bir tez

çalışması olarak sunulmadığını beyan ederim.

Alper ÇALIK

13.09.2019

iv

ÖZ

Bu tezin, çeviribilim öğrencileri, çevirmen adayları veya çevirmenler ile makine çevirisi

konusunda temel düzeyde bilgi edinmek isteyen kişiler için İngilizce – Türkçe dil

çiftinde makine çevirisi çıktılarının gösterildiği bir kaynak olması amaçlanmaktadır.

Tez kapsamında otomotiv odaklı istatistiksel tabanlı makine çevirisi motoru

geliştirilerek, motorun oluşturulma adımları ve motoru oluştururken karşılaşılabilecek

sorunlar açıklanmıştır. İstatistiksel Makine Çevirisi motorunun İngilizce – Türkçe dil

çiftinde nasıl işlediğini görmek isteyen kişiler, sürecin aşamalarına ilişkin bilgiler ve

görseller bulabileceklerdir. İstatistiksel Makine Çevirisi motorunun oluşturulması için

gerekli teknik adımları içeren bu çalışmanın gelecekte iş bulma kaygısı olan öğrenciler

için faydalı bir kaynak olması beklenmektedir. Tezde kullanılan veriler sınırlı

olduğundan, yüksek kaliteli makine çevirisi çıktısı elde etme amacı güdülmemiştir.

Anahtar Sözcükler:

 Teknoloji, Makine Çevirisi, İstatistiksel Makine Çevirisi, Nöral Makine Çevirisi

v

ABSTRACT

This thesis is intended to be a source showing the machine translation outputs in the

English - Turkish language pair for translation studies students, candidate translators,

translators, and those who wish to obtain basic knowledge of machine translation.

Within the scope of the thesis, the development of the automotive-oriented statistical-

based machine translation engine, the steps of creating the engine and the problems that

may be encountered while creating the engine are explained. Those who want to see

how the Statistical Machine Translation engine works in the English - Turkish language

pair will be able to find both information and illustrations regarding the stages of the

process. This study which covers the steps of creating the Statistical Machine

Translation engine is expected to be a useful resource for students who are concerned

about finding jobs in the future. Since the data used in the thesis is limited, it is not

intended to obtain high quality machine translation output.

Key words:

Technology, Machine Translation, Statistical Machine Translation, Neural Machine

Translation

ACKNOWLEDGEMENTS

First, I would like to express my deepest and sincerest appreciation to my supervisor

Prof. Dr. Işın ÖNER, the Head of Translation Studies Department, for teaching me what

translation studies means, and for always forcing me for the better. Her insistence to

always get the best led me to update my thesis constantly and make it more

understandable and acceptable.

I also would like to thank Prof. Dr. Ayşe Banu KARADAĞ for her academic and moral

support and keen eye for detail. Her critics helped me to find new ideas regarding my

thesis, and changed my perspective.

I also would like to thank Asst. Prof. Nilüfer ALİMEN, for helping to make the things

easier in this process.

I owe my greatest thanks to my brother Bekir DİRİ for his support. Without him, I

would not be able to study on my thesis with passion. He always encouraged me to go

on studying, and helped with any kind of problem I encountered.

Also, I owe a debt of gratitude to dear Selçuk ÖZCAN, who is one of the best machine

translation engine experts I have ever known. His support, even in his busiest days,

made me feel relaxed when I descended into desperation.

TABLE OF CONTENTS

TEZ ONAY SAYFASI………………………………………....…………….………... ii

BEYAN .. iii

ÖZ .. iv

ABSTRACT .. v

ACKNOWLEDGEMENTS ... vi

LIST OF ABBREVIATIONS ... vii

LIST OF FIGURES ... viii

1 GENERAL SCOPE ... 1

1.1 Theoretical Framework ... 3

1.2 General Information on Computer Aided Translation (CAT) Tools 4

1.3 General Information on Machine Translation .. 5

2 THE TRANSFORMATION OF TRANSLATOR .. 7

2.1 Translator 1.0 .. 9

2.2 Translator 2.0 .. 10

2.3 Translator 3.0 .. 10

2.4 Translator 4.0 .. 11

3 MACHINE TRANSLATION ... 13

3.1 The History of Machine Translation ... 13

3.2 Rule Based Machine Translation .. 14

3.3 Statistical Machine Translation (SMT) ... 15

3.4 Neural Machine Translation (NMT) ... 15

3.5 Differences between SMT and NMT .. 16

3.6 Differences between SMT and RBMT ... 17

3.7 Corpus ... 18

3.7.1 Technical Translation ... 18

3.7.2 Automotive Texts ... 19

4 CREATING A STATISTICAL MACHINE TRANSLATION ENGINE 20

4.1 Ethical Considerations .. 20

viii

4.2 Linux-Ubuntu Installation ... 20

4.3 Moses .. 21

4.3.1 Installing Moses ... 22

4.4 Preparing the Data .. 28

4.4.1 (Pre)Alignment ... 28

4.4.2 GIZA++ ... 31

4.4.3 Running the GIZA++ ... 33

4.4.4 Training the Engine ... 38

5 EVALUATION .. 41

6 CONCLUSION .. 47

REFERENCES ... 49

ÖZGEÇMİŞ .. 60

LIST OF ABBREVIATIONS

BLEU (Bilingual Evaluation Understudy)

CAT (Computer Assisted Translation)

HTS (Human Translated Sentence)

MT (Machine Translation)

MTS (Machine Translated Sentence)

MTSBS (Machine Translated Sentence BLEU Score)

NMT (Neural Machine Translation

QA (Quality Assurance)

RBMT (Rule-Based Machine Translation)

SMT (Statistical Machine Translation)

ST (Source Text)

TM (Translation Memory)

LIST OF FIGURES

Figure 1: The Game Changers of 2016 (Source: https://blog.taus.net/the-game-

changers-of-

2016?fbclid=IwAR0IagI9v0tDmgnE181Ai2YXdIQ7kXX76fWdwXYnPOuKifGVl

gV3 Qsz24sA)

Figure 2: A screenshot from Linux terminal showing the installation command is

working

Figure 3: A screenshot from Linux terminal to continue the process

Figure 4: Raw alignment example from AbbyAligner

Figure 5: Aligned segment examples from AbbyAligner

Figure 6: Variable adding example

Figure 7: Undefined character example

Figure 8: An example from Linux terminal showing the file creation is successful

Figure 9: An example from Linux terminal showing the command is working

Figure 10: An example from Linux terminal showing how to initiate the engine

Figure 11: An example from Linux terminal showing the best translation result

1 GENERAL SCOPE

The aim of this thesis is to provide information on the steps of creating statistical

machine translation engine. With the technological developments, translation industry

started to change and new terms like computer aided translation (CAT) tools, quality

assurance (QA) tools, term-banks, machine translation, translation memory (TM), etc.

came into prominence. Since these terms were unusual to the most of the people in the

field who were used to do translation with traditional methods when mentioned for the

first time, it took time for these people to get used to these new terms. We can still see

translators who reject to use CAT tools or QA tools and claim that any CAT tool cannot

do what a human translator does. But in this century, the requirements of the translation

sector change rapidly in line with the skills of the translators. Instead of an ordinary

human translator, translators who keep abreast of technological developments become

more preferable. Machine translation engines are one of these technological

developments because it is commonly discussed if the machine translation replaces

human translators. Based on these discussions I decided to study on machine translation

and create a statistical base machine translation engine. In this thesis, the technical steps

of creating a domain specific SMT engine are showed. An open source statistical

machine translation system, Moses, was used to create SMT engine. The codes are

adapted, and explained accordingly. The reason why I chose to work on this topic is that

resources on using Moses system are not enough. Because, the manual of Moses

suppose that users have basic knowledge of coding. So, I explained the codes to make

creating the engine easier for the user.

In the first chapter, information on the theoretical framework of the study will be

outlined. The departure point is Antony Pym’s article about the shifting from translation

competence to translator competence. Then, general information on computer aided

translation tools and machine translation will be summarized in the following parts.

In the second chapter, information about industrial revolutions will be given and

the impact of these revolutions on translation industry will be clarified briefly.

Translators will be named as Translator 1.0, Translator 2.0, etc. depending on the period

they are in. What Industry 1.0, 2.0, etc. means for a translator will be explained briefly.

2

The third chapter is dedicated to general information on machine translation, the

history of machine translation, machine translation engine types such as rule based,

statistical and neural, the differences between these types was given to make the reader

familiar with these types. Additionally, the corpus which was used to create the

statistical machine translation engine will be demonstrated and general information on

technical translation, and automotive texts which creates the corpus, will be given.

The fourth chapter will give an outline of creating a statistical machine

translation engine. Moreover, the ethical considerations about the data usage will be

discussed. Then, the installation process of Linux-Ubuntu, which is required to use

Moses, the open source machine translation engine which is used to create our statistical

machine translation engine, will be illustrated. In this core chapter, the steps of creating

SMT engine including the preparation of data, for example alignment process will be

exemplified.

In this study readers can find answers to the following questions: What is the

machine translation? What are the types of machine translation engines? What are the

differences between statistical machine translation, neural machine translation and rule-

based machine translation? How can corpus be created to be used for statistical machine

translation engine? What does BLEU score mean? What are the steps of creating a

statistical machine translation engine?

First of all, I need to state the reason why I chose this topic. I am still a member

of the Translation and Interpretation Students of Turkey Platform where we discuss on

the topics related to translation studies, translators, the developments in translation

technologies and whatever we wish to know on translation. We, there, share our ideas

and organize events covering all kinds of issues. Recently, I have realized that the

number of the questions about the future of translation, translators and machines have

been increasing day by day. Then we have organized a meeting at Trakya Üniversitesi

addressing the freshmen and sophomores. We discussed on these questions and I

noticed that most of the students were afraid of the future of translation as they think

that the machines will take care of everything. I felt that there was something wrong and

most of the students know almost nothing about these kinds of developments, and their

effects. Who knows maybe they are right but they still should stay up to date with these

improvements. They should at least try to learn how the machine works and how they

3

can benefit from it instead of escaping from contributing the field. I decided to do

something to encourage them and started to this study. The aim of this study is not to

overcome the concerns of the students. The aim is to show the technical part of creating

a statistical based machine translation engine. Additionally, the installation manual of

Moses (the open source SMT toolkit) is not clear enough to be understood by everyone.

So, I explained the steps of creating SMT engine in a simpler way.

1.1 Theoretical Framework

In this study my departure point in terms of theoretical framework will be Anthony

Pym’s “Redefining Translation Competence in an Electronic Age. In Defence of a

Minimalist Approach” article. Pym states different notions of translation competencies

in his article by saying that:

So “competence” cannot be confused with questions of professional

qualifications, no matter how much teachers like myself might worry

about training students for the workplace. This makes sense, since

qualifications change with technology and social demands, bringing in

bundles of history that are simply too big for the eternal generalities of a

science. Then again, if the science is supposed to help train translators,

and translators are going to be employed for whatever competence they

acquire, surely we cannot just remain silent about what the market

requires? (Pym 2003, 482).

As Pym stated in his article, there is a shifting from translation competence to

translator’s competence and the market requires so many new skills. These skills

include mainly the use of technology, and subsequently CAT tools, Quality Assurance

(QA) tools and MT. New job definitions have been started to given to translators. For

example, translators are now asked to align the bilingual files in a way the data can be

transferred to the MT engine and post-edit these data and also ensure performing quality

checks on these data. The reason behind this is to create a project based engines and to

reduce the number of people involved in this translation process and to make more

profit for translation companies in short terms. This seems something disadvantageous

for translators but it may turn into an advantage. In my thesis I will also try to find

answers to following questions: Is it possible for translators to turn the technological

4

improvements, especially machine translation, into an advantage for themselves? Is it

possible for a translator who knows very little about technology to create MT engines?

What kind of data can be used to create an SMT engine? What are the limitations on the

data usage (are there any limitations that prevent us from using each kind of data?) etc.

1.2 General Information on Computer Aided Translation (CAT) Tools

In 1990s, with the opportunity to access to cheaper and smaller computers, and

proliferation of the internet usage, computers became one of the most important parts of

our lives (Schumacher and Morahan 2001, 96). As mentioned in the previous chapter of

this study, this situation has affected the translation studies and the sector. Since then,

studies for developing aiding tools for translation have been one of the main concerns of

the sector. People involved in the sector have been trying to make the translation

process easier and cheaper for both customers and translators. To achieve this, the

companies developed so many software called CAT (Computer Assisted Translation)

tools. These CAT tools can be used both online and offline and can be evaluated under

two headings, cloud-based and desktop tools.

Cloud-Based tools like SmartCAT, Nubuto, Memsource, etc. are the systems

that provide the users an account by which they can see the text to be translated in

segmented form, translation memory (if any), term list (if any) and mostly use

integrated spell checker and also consistency checker in the cloud. Any user can access

to his/her translation task via these kinds of tools by entering their usernames and

passwords. These tools save the approved segments automatically and keep them in the

cloud. Some of these tools have also desktop versions, for example Memsource desktop.

The user can also work offline and do translation in these kinds of desktop tools, and

these tools synchronize the translation task with the cloud version. All of these tools

save the approved segments and keeps it in the respective translation memory for the

future references. When the user uses this translation memory for any other projects in

future s/he will be able to see the old translated sentences and if there is a match

between the old and new texts the tool matches these automatically. This provides users

a quick reference to the terms or words s/he used before for the translation of the

5

respective source text and gives a result depending on the matching percentage of two

similar sentences so that the translator does not have to translate the sentences s/he

translated before or just needs to edit a fuzzy-matching sentence.

Computer-Based CAT tools are mostly used offline but can be connected to

clients’ or companies’ servers to be able to benefit from the translation memories which

clients or companies provide. So, these tools can be classified both as hybrid and as

offline. In case of any system breakdown, the saved data (translation memory, glossary,

any unsaved segments, the final document) can be lost. However, hybrid computer-

based CAT tools can send the data to the clients’ or companies’ servers so that hybrid

solutions prevent data loss. These are the tools that user does not need internet

connection to perform translation task. Users can work on it offline and these kinds of

programs also provide users a segmented screen like cloud based systems. These tools

are very similar to the cloud based ones but all of the translation works are stored in the

computer and in case you have any problems with your computer it means you also

have problems with your translation task and you cannot access to the translation files.

1.3 General Information on Machine Translation

Machine translation (MT) is an automated translation process in which human

translators are not involved. In this process, computer software is used to translate a text

from one natural language (such as English) to another (such as Turkish). Till the

invention of the computers, it was not possible to mention the automation processes for

translation. Translations were made manually by human translators since translators did

not have the chance to use electronic devices to help them for their translation tasks but,

with the technological developments, they also started to benefit from the aiding tools

like CAT tools and also automated systems like MT. A translator using an MT engine

just puts the source to be translated in the source text part of MT engine and gets a result

without any intervention to the text. It is not what I try to say whether the result is

correct or enough to be used but how the system works. As a contemporary topic, we, as

translators, editors, academicians and translation studies students, all need to be aware

of this automated process since it is shaking the translation industry.

6

7

2 THE TRANSFORMATION OF TRANSLATOR

With the technological developments, the world has been changing, and people feel

these changes in every field of life. The century we are in now shows these changes’

biggest ones since the technological developments have reached a level that almost

every day new things come to our lives. This is because the communication with people

all over the world is now quite easy and people can show their inventions or studies to

the world in a few seconds via internet. From the invention of the steam engine to the

invention of telephone and telegram; from the invention of first micro-computer to the

wide-spread usage of internet, we see that technology has been developing day by day

and all of these revolutions are named like Industry 1.0, Industry 2.0, Industry 3.0 and

Industry 4.0.

Industry 1.0 dates back to 1800s, and in that century, with the development of

water and steam powered machines to aid workers, new job titles like owners, managers

and employees serving customers have come to the fore instead of working areas and

narrower job titles.

Following the 1800s, in the 20th century, electricity became the main source of

power since it is easier to use compared to water and steam-powered systems. This

allowed machines to be able to be designed with their own power sources, and made

them more portable. And also management programs were developed so that facilities

had chance to increase their effectiveness and efficiency. So, the beginning of this

century is called Industry 2.0 age.

Industry 3.0 is the age that electronic devices were invented and manufactured to

make it possible for more fully automate individual machines to supplement or replace

operators. In this period software systems were developed to benefit from electronic

hardware. To enable humans to plan, schedule and track product flows through the

enterprise, planning tools replaced material planning systems. Because of the will of

cutting the costs, installation of products were conducted in low cost countries such as

China and this created a supply chain. To manage this supply chain the requirement of

using supply chain management software became a must. The last decades of 20th

century involve these developments, and this period is called Industry 3.0 age.

8

Today, 21st century is called as internet of things (IOT) age. Industry 4.0 mainly

covers artificial intelligence, robotic issues and fully automated systems where

machines take care of most of the tasks instead of people. Industry 4.0 combines

information technologies (IT) with manufacturing. The developments within the

Industry 4.0 help people to track their manufacturing activities, project details, etc. in

real time. It uses cyber-physical systems to manage processes without human

intervention. (Source: http://www.apics.org/apics-for-individuals/apics-magazine-

home/magazine-detail-page/2017/09/20/industry-1.0-to-4.0-the-evolution-of-smart-

factories (accessed March 14, 2019)).

I, in my thesis, try to classify the technological developments in translation

industry and reflections of these developments on translators. So I categorize translators

as translator 1.0, 2.0, 3.0 and 4.0 depending on the requirements of a specified period

for translators. It is not claimed that this classification for translators corresponds to the

very period of Industry 1.0, 2.0, 3.0 and 4.0. It is just about the technological

developments in translation industry and refers to the translators. In the illustration

below, the technological developments in time can be seen.

http://www.apics.org/apics-for-individuals/apics-magazine-home/magazine-detail-page/2017/09/20/industry-1.0-to-4.0-the-evolution-of-smart-factories
http://www.apics.org/apics-for-individuals/apics-magazine-home/magazine-detail-page/2017/09/20/industry-1.0-to-4.0-the-evolution-of-smart-factories
http://www.apics.org/apics-for-individuals/apics-magazine-home/magazine-detail-page/2017/09/20/industry-1.0-to-4.0-the-evolution-of-smart-factories
http://www.apics.org/apics-for-individuals/apics-magazine-home/magazine-detail-page/2017/09/20/industry-1.0-to-4.0-the-evolution-of-smart-factories

9

Figure 1 The Game Changers of 2016 (Source: https://blog.taus.net/the-game-

changers-of-

2016?fbclid=IwAR0IagI9v0tDmgnE181Ai2YXdIQ7kXX76fWdwXYnPOuKifGVl

gV3Qsz24sA (accessed January 15, 2019));

2.1 Translator 1.0

It was 1960s... An office room… A few tables... Fasit typewriters...

Typewriter erasers... Manila folders... In them, translation and original

text files are filed… Dictionaries…Papers, placed between folios... On

them, in addition to the dictionary, vocabulary entries, and their usages

are written.

A few translators… College graduate or language proficient…

Perhaps the not even a college graduate but loving the translation job,

believe in developing his/her grammar through translation… Phone…

Fax... Accounts held in a notebook…1

In 1960s, not only in Turkey, in the world standard that I tried to

describe a translation agency. (Öner 2006, 234)

1 Unless otherwise stated, all translations are mine.

https://blog.taus.net/the-game-changers-of-2016?fbclid=IwAR0IagI9v0tDmgnE181Ai2YXdIQ7kXX76fWdwXYnPOuKifGVlgV3Qsz24sA
https://blog.taus.net/the-game-changers-of-2016?fbclid=IwAR0IagI9v0tDmgnE181Ai2YXdIQ7kXX76fWdwXYnPOuKifGVlgV3Qsz24sA
https://blog.taus.net/the-game-changers-of-2016?fbclid=IwAR0IagI9v0tDmgnE181Ai2YXdIQ7kXX76fWdwXYnPOuKifGVlgV3Qsz24sA
https://blog.taus.net/the-game-changers-of-2016?fbclid=IwAR0IagI9v0tDmgnE181Ai2YXdIQ7kXX76fWdwXYnPOuKifGVlgV3Qsz24sA

10

In her article, Öner summarizes the situation of translation agencies and translators in

1960s. As can be understood from the article, translators were not graduated from

translation and interpretation departments, translation tasks were undertaken by college

graduates or people speaking a foreign language, and also these translators were using

typewriters. At that time, out of the ordinary, the translation process, from translating a

text to hold accounts, seemed running manually, in non-digital media. Translators did

not have any computers in their agency, they did not use CAT tools, they all were

unaware of the systems or did not use any of them like MT, TM, electronic dictionaries,

term-bases. I prefer to call these kinds of translators as Translator 1.0 since they are at

the very beginning of the technological developments.

2.2 Translator 2.0

In 1980s there were still not ground-breaking developments in translation industry, and

the main focus of the industry was on paper, and glossaries were used. The computers

were not fully included in translation process. The language combinations were not that

much. But in 1990s, the access to cheaper computers and the widespread usage of

internet led translators somewhere else. With the entering of localization into our lives,

digital platforms replaced the papers, and software replaced documents, TMs and

terminology software started to be used, the number of language combinations

increased. People who involved the translation process were obliged to keep pace with

these developments and use the software, TMs and terminology software, etc. Then they

turned into Translator 2.0, who uses technology for the translation tasks.

2.3 Translator 3.0

When it was 2000s with the effect of globalization, and other technological

developments, the number of the language combinations was increased, and to cater the

translation needs translation process started to transform into a faster process that

electronic corpus, faster internet access, computers which are connected to network,

term-banks, etc. came into prominence. Öner, summarizes the situation as follows:

11

2000s... A company building... Networks, dozens of computers are

connected... Fast internet access via different channels... Electronic

library... Consisting of dictionaries, encyclopedias... Data banks...

Computer aided translation tools... Project management tools...

Breaking down the translations undertaken by the company, showing

what phase the project is in, which translators are working on which

projects…

Translators, all of them are graduates; moreover, most of them are

translation department graduates, engineers. Working as a project

manager, language engineer, quality control specialist… (Öner 2006,

234).

As can be understood from her article, people who were involved in translation

process were using computer aided translation tools; project management tools, and new

job definitions like project manager, language engineer, quality control specialist

became a part of translation process. So, using CAT tools or other software required

new skills for people who were involved the translation process, and translators had to

gain these new skills. Then they turned into being Translator 3.0.

2.4 Translator 4.0

When we consider the transformation of the translator from past to now, today, it is at a

level that even the discussions about the machines replacing human translators have

come to the scene. Translators need to gain new skills beyond translating or using CAT

tools. They need to learn how to post-edit a translation retrieved from a machine

translation engine, or translation agencies are developing customer oriented machine

translation engines for the big volume projects so that they can make profit by

decreasing the number of translators involved in the translation process. These agencies

try to make the machine translation engines handle at least 30-40% of the translation

task, and pay translators for just 60-70% of the document to be translated. When a one-

million- words project is considered, it means 300-400 thousands of words that the

machine translation engine is expected to handle. This seems of course disadvantageous

for translators since the need for translators decreases. But when we consider the

machine translation engine creation phases, these translators can handle different tasks.

So as to create the data to train an engine, translation agencies still need human

12

translators. Translators who improve themselves in terms of the requirements to create

data, and learn the background of an MT engine can still work under a different job

definition. This definition might be language engineer, post-editor, etc.

13

3 MACHINE TRANSLATION

Machine translation systems date back to World War II. For military purposes machine

translation engine was built during that time. Then, it has been developed, and different

machine translation systems have been used. The examples of machine translation

engine systems are rule based, statistical and neural. Each of them has different way of

learning and working.

3.1 The History of Machine Translation

The technology has always been the determinant for people and also for governments in

the history. From invention of the wheel to contemporary advances, the technology has

become the most important part of our lives. The technological developments have a big

effect on each discipline from religion to health and so on. One of these disciplines is

Translation Studies, and as the participants of this discipline we feel the effect of these

developments deeply.

Translation is as old as the history itself and all kinds of developments in the

history have been felt in translation too. From the invention of the computer to the

neural-based systems, translation has felt the effects of these developments. These

effects started to be felt in translation industry with the first computer’s, ENIAC’s,

invention. It was built during World War II for military purposes and became the

departure point of so many advances. After the building of this general purpose

computer, the developments on the computer science got faster and for the military’s

intelligence purposes the translation was tried to be made a part of the computational

systems as people thought that providing intelligence from the opponent will be possible

via computers with the integration of translation systems to computers. From that time

the researchers shifted their focus to find a way to make the translation possible by

using computers. With this object in mind the Statistical Machine Translation idea was

put forward. Studies on creating a system that understands a foreign language and

decodes its structure to give meaningful words or sentences had started.

After these historical developments, in 1980s, people felt the impact of

technology on translation industry more deeply. After that, the aiding tools like

14

Translation Memories (TM), still widely used in translation industry, have been created.

Beside this, the CAT (Computer Assisted Translation) tools were started to be

developed. In 1990s, globalization and prevalence of the internet provided people to

access cheap and powerful computers and subsequently the developments in the field of

Translation Technologies increased. We can give the developments in SMT (Statistical

Machine Translation), firstly mentioned in 1949, and also NMT (Neural Machine

Translation) as examples. We felt the impact of these developments the most in 2016

with the introduction of the Google Translate’s NMT engine. After that time people

started to think if the machine replaces the human translator or not (cf. Öner Bulut,

2019). In the next chapters, I will give basic information on SMT and NMT, and also

try to explain the possible effects of MT on human translators. And finally I will explain

the steps of creating an SMT engine. (Source:

https://kantanmtblog.com/2013/07/12/the-history-of-mt-pt-1/, (accessed February 14,

2019)).

3.2 Rule Based Machine Translation

The Rule Based Machine Translation is a system which contains monolingual, bilingual

texts and so many grammar rules, lexicon and software programs for processing of these

rules, and gives a translation suggestion in line with these rules, lexicon and texts given

to engine. Linguistic rules are collected and processed in analysis, transfer and

generation stages. The machine is trained via so many grammatical rules of the

respective source and target languages. Then, machine processes these rules and puts

the given words in order and gives a result. When big volume of data is used, the result

retrieved from these machines are generally not useful when compared to SMT since

there are countless grammar rules of a language. Of course it is possible to teach the

engine all of these rules but its costs are really high and it is a long process. To create a

RBMT engine the data needed is less than SMT or NMT. By teaching linguistic rules

and using dictionaries a small scale RBMT can be created, but this may not be enough

to give fluent results. Creating a RBMT requires linguistic expertise to be able to

https://kantanmtblog.com/2013/07/12/the-history-of-mt-pt-1/

15

introduce the linguistic rules to the engine. (Source:

https://kantanmtblog.com/2014/02/13/rbmt-vs-smt/, (accessed February 14, 2019)).

3.3 Statistical Machine Translation (SMT)

Statistical Machine Translation is a system that finds the most probable translation of a

foreign language that was introduced to the machine via monolingual and bilingual

parallel corpus. We give so many parallel texts to the engine to get the translation of a

sentence or a word; and the engine provides us the most probable translation in relation

with the given text. While training the engine the bilingual corpus needs to be

segmented and aligned to ensure that engine can learn the translation of the source text.

This seems similar with the Translation Memories which are widely used in translation

industry. But the main difference between the TM and engine is that TM gives us the

existing matches and when there is a big change in the source we get no result, but the

engine gives us the most probable result by using n-gram method. N-gram method is a

probability of guessing the word sequence according to the data given to the engine (cf.

Clark, n.d.). So as to n-gram model to function, the text given to the machine must be

aligned and cleaned. This process is explained in the alignment part. To create an SMT

engine there is no need to be a language expert since there is no need to teach the engine

any rule to get a translation result. A well-trained SMT engine provides fluent

translation results and is better in terms of terminological consistency. When it does not

provide fluent translation result it is easier for post-editor to detect the error and correct

it than NMT. NMT engines provide logical translation results even if it is not correct.

For post-editors dealing with the NMT engine output, it is not possible to see the error

without checking the source text. This is the main reason why I work on SMT engine.

3.4 Neural Machine Translation (NMT)

NMT is a system that learns and performs translations via encoding – decoding systems

(cf. Bahdanau and et al., 2014) and gives logical translation results depending on the

bilingual data given to it. Apart from SMT there is no need to parsing the sentence in

NMT as NMT systems examine the full context of a sentence and try to create more

https://kantanmtblog.com/2014/02/13/rbmt-vs-smt/

16

fluent and meaningful sentences. It converts the source words into numeric

representations and creates target words. In NMT there is no need to give monolingual

data to the engine but parallel data must be given in higher amounts for higher quality.

NMT outputs are meaningful words or sentences that they give very good results in

general but in specific domains well- trained SMT engines still work better when

compared to SMT (with the same amount of data). To create an NMT engine the data

needed are millions of segments to start. It is of course possible to collect such a big

volume of data and make it ready for NMT engine but this is a really long lasting

process when compared to SMT engine. In addition, NMT engine outputs are

meaningful sentences and it is hard to find out the errors without checking the source

text. So, a post-editor needs to check the source text because mechanical QA tools are

not enough to identify the errors. When we check on Google Translate, after the

launching of it in 2016 the speculations that claimed that NMT translates everything

arose since it makes great job especially in English – Turkish language combination, the

results we get are mostly meaningful and linguistically correct. This makes it difficult to

realize if there is an error in the target.

3.5 Differences between SMT and NMT

To mention the basic differences between SMT and NMT engines, it can be said that the

main difference between SMT and NMT is the readability and fluency of the output.

The NMT engines give more logical outputs as they deal with the full context although

it is not correct. There is no need to give monolingual data to NMT but SMT needs

monolingual data. For more specific domains, SMT can be considered as better than

NMT as NMT needs much more data than SMT. When the training data is not similar

with the text to be translated, NMT works better as it will give logical outputs (of course

when enough data is given). Although giving logical, linguistically correct outputs

seems one of the biggest advantages for NMT, it is going to be harder to detect the

errors when the training stage of the engine is considered. Although QA tools can be

used to detect the errors of an SMT engine output, it is not possible for NMT engine

17

outputs. For training of an NMT engine the data needed is at least 20 times higher than

SMT. Omniscien Technologies2 states that:

Typical SMT engine will range in data size from 1-8 million segments,

with a large engine as much as 20 million segments. On the other hand, a

typical NMT engine starts at 20 million segments of in-domain data and

goes up into hundreds of millions of segments. Few client companies

have ever had anywhere near these volumes of data. In 10+ years of

business, we have only encountered perhaps 3 or 4 companies with such

volumes. (Source: https://omniscien.com/migrate-from-smt-to-nmt/

(accessed April 25, 2019)).

Due to these restrictions I have opted to create an SMT engine and show how it can be

created.

3.6 Differences between SMT and RBMT

Rule Based Machine Translation engine can provide high quality outputs even in small

scale projects (in terms of the volume of data given to the engine) when all the rules of

the languages are taught well, but the time needed to teach all the rules to the engine is

quite long and the expenses are really high. When it is considered that languages are

living things, the rules are continuously changing and for each change the engine needs

to be updated when it is necessary. To update the engine, even to teach the engine the

basic rules, a language expert is needed. SMT engines learn from the data given to it

and give similar outputs to the training data without learning any of linguistic rules. Due

to the long-lasting and costly training stage of RBMT engines, SMT engines are much

more preferred because bilingual data can be retrieved from internet although it is still

long- lasting process to make it ready to give the engine. To sum up due to the high

costs, long time requirement and need for a language expert to create a RBMT engine,

the SMT is one step forward when compared to RBMT. Moreover, getting the data for

SMT engines is possible thanks to the fact that internet secures SMT engines’ position

against RBMT.

2 Omniscien Technologies is a leading global supplier of high-performance and secure high-quality

Language Processing, Machine Translation (MT) and Machine Learning technologies and services for

content intensive applications (Source: https://omniscien.com/more/about/, (Accessed April 25, 2019)).

https://omniscien.com/more/about/
https://omniscien.com/more/about/

18

3.7 Corpus

The documents I used to create an SMT engine are user manuals which should be dealt

with under the title of technical translation. I have been working as a freelance translator

for 7 years and my specialization area is technical translation. So I chose user manuals

as the data, and also due to the restricted volume of data I can use for creating an SMT,

it will be hard to get a result from the engine for other text types like literary texts.

Before starting to create a SMT engine let’s check briefly what technical translation is,

and automotive texts mean.

3.7.1 Technical Translation

“In the early 1990s, the growth of the internet has made it much easier for software

publishers to distribute and market their products in other countries” (Esselink 2000, 5).

This was, of course, not only the case for software publishers but also for the other

producers who wanted to sell their products in different countries. The producers knew

that they should reach to the target customers somehow to market their products. To do

this, they had to make their products attractive to the customers in a way that this would

not be possible without making the purpose, function, manual of the respective product

understandable for the customers who did not speak the same language with them. To

achieve this, they localized the respective content of the products such as user manuals,

advertising texts, etc. All of these kinds of texts can be regarded under the title of

technical translation. Briefly, what is technical translation?

A technical translation is a type of specialized translation involving the

translation of documents produced by technical writers, or more

specifically, texts that relate to technological subject areas or texts that

deal with the practical application of scientific and technological

information (Source: https://www.technitrad.com/what-is-technical-

translation/, (accessed 23 May, 2019)).

https://www.technitrad.com/what-is-technical-translation/
https://www.technitrad.com/what-is-technical-translation/

19

3.7.2 Automotive Texts

Automotive sector has been growing day by day and the need for the vehicles increases

with it. With the globalization impact, companies have been forced to open new

facilities in different countries to meet the requirements of their customers from all over

the world. This spill-over effect also brings the translation need to address different

language speaking customers into the forefront. From the beginnings of 2000s,

automotive companies have been asking the translation companies for creating machine

translation engines to reduce the translation costs. Yamagata, a localization company

founded in Japan, revealed a case with Honda in which the company was asked for

developing an MT system in order to help Honda for reducing translation costs, and

giving quick responses to the customers’ needs. The Honda also asked the company for

the system to be fully integrated with their IT systems (Source:

https://www.youtube.com/watch?v=aIxI8mGbNuY, (accessed, June 3, 2019)). This is

just a simple example that proves the need for MT systems for huge volumes of texts

and demand of the customers. Increasing number of automotive and new systems,

integrated with autos, will keep pushing the need for new translations up. So, companies

tend to use MT systems instead of human translations. By taking this factor into

consideration as well as the other factors like my field of interest, I have chosen to use

automotive texts in my study.

https://www.youtube.com/watch?v=aIxI8mGbNuY

20

4 CREATING A STATISTICAL MACHINE TRANSLATION

ENGINE

In order to create a machine translation engine, we need a big corpus. To create this

corpus, online sources can be used but to me, without the permission of the owner of

data, it is not ethical to benefit from the online sources. In this chapter, ethical

considerations, Linux-Ubuntu installation, Moses installation, preparing the data,

GIZA++ and engine training steps are explained.

4.1 Ethical Considerations

As mentioned before the main requirement to create an SMT engine is data. But first of

all we have to know if we can use any data related to domain we will work on. There

are millions of words and their translations in the internet which can be accessible by

anyone. Can we use these data as we wish? I reckon, the answer to this question is

absolutely no. Because the data’s being open to everyone in the internet does not mean

that the owner of the data allow everyone to use his/her words as they want. So it will

not be ethical for us to use any data even if it is open source. Before we use them, we

need to get permission from the owner of the data.

4.2 Linux-Ubuntu Installation

As mentioned in the previous pages, we need Linux operating system to use Moses for

creating an engine. In this part, the steps of installing Linux operating system are

explained. First of all, I need to state that we may use various operating systems such as

Windows, Linux, MacOS. We can install these operating systems to our computers

from beginning but if we use any of these and do not want to remove it from our

computer and install a new operating system we can prefer to install a virtual machine

tool so that we can use two different operating systems in our computer at the same

time. The operating system of my computer is Windows 10 and I need to install Linux-

Ubuntu to setup Moses on. As I did not want to remove Windows from my computer I

installed Virtual Tool Box and setup the Ubuntu. In this part I will explain how to install

Ubuntu and the figures can also be seen at the Appendix part.

21

First of all, download the virtual machine tool from

https://www.oracle.com/tr/virtualization/virtualbox/ website. Then, download the

Linux- Ubuntu setup file (ISO file) from https://ubuntu-tr.net/ website. Click on the

virtual machine setup file to install. Select the type of operating system as Ubuntu by

typing Ubuntu in the operating system type field and click next. Give a name to virtual

machine and click next. Select the RAM size depending on the features of the computer,

and click next. Select the VDI (Virtual Disk Image) from the virtual disk creation

wizard screen. Then virtual disk storage details screen will be opened and select the

dynamically allocated option from the screen. Then, click on the create option to create

the virtual machine. Now virtual machine is installed and ready to install Ubuntu. Click

on the devices option from the upper part of the screen and select, CD/DVD devices

option and upload the ISO file which was downloaded before. From the opened screen,

select the language, and click on install Ubuntu option then, next. Designate the time-

zone and click next. Now Ubuntu will be installed on the virtual machine and Moses

can be downloaded and installed.

4.3 Moses

There are many systems, both cloud and desktop, to help creating an SMT engine like

KantanMT, Mtradumatica, etc. but the most foremost of these systems is Moses.

KantanMT, MTradumatica are the systems which were created by using Moses as base.

Since all of the systems are reproduced by using Moses as the base, I have chosen to

work on the main system (Moses) to create an SMT engine. Moses is an open source

SMT system that ensures individual users to create their own SMT engines just by

preparing their parallel texts (source and translation) (Koehn 2018, 11). It provides a

substructure to create an engine and help users to train their engines in line with the data

they have. Moses system is a project3 developed by Philipp Koehn, computer scientist,

academician in Edinburgh University and machine translation researcher, and his

fellows. They also wrote a manual on how to use Moses system and gave the necessary

3 Koehn, Philipp. 2018. "The Moses decoder was supported by the European Framework 6 projects

EuroMatrix, TC-Star, the European Framework 7 projects EuroMatrixPlus, Let’s MT, META-NET and

MosesCore and the DARPA GALE project, as well as several universities such as the University of

Edinburgh, the University of Maryland, ITC-irst, Massachusetts Institute of Technology, and others."

22

codes to install and start Moses. These codes can be used to create individual SMT

engine by using our own parallel corpus. In the next section I will share these codes and

show how the individual translation model can be created. The initial step is to create an

SMT engine by using our own parallel corpus (automotive texts). Before installing

Moses, I must specify that all of the codes to install Moses are obtained from the

manual of Moses, and http://achrafothman.net/site/how-to-install-moses-statistical-

machine-translation-in-ubuntu/, (accessed June 15, 2019) web site, and adapted

accordingly.

4.3.1 Installing Moses

First of all, in order to download and install Moses, the terminal needs to be opened.

Then, the necessary codes need to be entered to start to create the SMT engine on the

computer. Necessary codes will be given one by one. Firstly, a workplace needs to be

created on the computer to ensure all the necessary files and packages are saved in it. To

do this, “mkdir smt” code needs be entered. This will create a folder named “smt” on

the home page. Then “cd smt” code needs to be entered so that all the required packages

will be saved in the file. These packages are Ubuntu packages required to create Moses

engine.

To install these packages, the code that needs to be written is “sudo apt-get

install build- essential git-core pkg-config automake libtool wget zlib1g-dev python-dev

libbz2-dev”. After writing this code the system will ask for password. The password

here is what is designated to start to the operating system, Ubuntu. Note that due to the

security issues of the system, what is written to enter the password cannot be seen in the

system. So that, when the password is written it is needed to press the enter button

although there is nothing on the screen. Then the system will install the required

packages for Ubuntu. The screen will be as below.

http://achrafothman.net/site/how-to-install-moses-statistical-machine-translation-in-
http://achrafothman.net/site/how-to-install-moses-statistical-machine-translation-in-
http://achrafothman.net/site/how-to-install-moses-statistical-machine-translation-in-ubuntu/

23

Figure 2 A screenshot from Linux terminal showing the installation command is

working

While the system is installing the required packages it will stop and ask for

permission to use disk space. To allow it, Y, should be written as the answer to the

question “Do you want to continue? [Y/N]. The figure is below. Once “Y” is written the

system will go on downloading and installing the packages.

Figure 3 A screenshot from Linux terminal to continue the process

From now on the terminal will remember and not ask for password again. Then,

necessary packages need to be downloaded by typing the code “sudo apt-get install

(here, the name of the package is written)”, for example “sudo apt-get install g++”. The

24

necessary packages are “g++”, “subversion”, “git”, “git automake”, “git libtool”, “git

libtool zlib1g-dev”, “git libtool libboost-all-dev”, “git libtool libbz2-dev”, “git libtool

liblzma-dev”, “git libtool python-dev”, “git libtool graphviz”, “git libtool

imagemagick”, “git libtool make”, “git libtool cmake”, “git libtool autoconf”, “git

libtool doxygen” and “libsoap-lite-perl”.

The necessary packages like GIZA++4 and IRSTLM5 should be downloaded as

shown in the next steps. The necessary codes to download GIZA++ are “git clone

https://github.com/moses-smt/giza-pp.git”, “cd giza-pp”, “make” respectively. After

downloading and installing processes are completed, GIZA++ binaries need to be

copied to Moses Decoder. The necessary codes to do this are “cd ../mosesdecoder”,

“mkdir tools”, “cp ../giza-pp/GIZA++-v2/GIZA++ ../giza-pp/GIZA++-v2/snt2cooc.out

../giza- pp/mkcls-v2/mkcls tools”, “cd ..”, respectively. In the next step, the language

model should be installed. To do this, firstly, the IRSTLM should be downloaded and

unzipped to the home directory. The IRSTLM can be downloaded from the website

https://sourceforge.net/projects/irstlm/files/irstlm/irstlm-5.80/irstlm-

5.80.08.tgz/download. After it is downloaded and unzipped to the home directory, it

needs to be compiled. To do this, the necessary codes are, “mkdir irstlm”, “cd irstlm-

5.80.08”, “cd trunk”, “./regenerate-makefiles.sh”, “./configure –prefix=/smt/irstlm”

(here, the smt is the folder that is created in the beginning, if any other folder name was

given, then that should be written instead of smt). After entering this code, the

necessary codes to install the IRSTLM are “make install”, “cd ..”, “cd ..”. Now it is time

to install the boost6 manually. “Boost provides free peer-reviewed portable C++ source

libraries” (Source: https://www.boost.org/, (accessed May 15, 2019)). In order to

prevent any Moses compilation failure, the boost needs to be installed manually.

4 GIZA++ is an automatic word alignment tool that trains the parallel corpus several iterations from two

directions (source to target language and vice-versa) (Word Alignment Using GIZA++ on Windows,

Liang Tian, Fai Wong, Sam Chao, 369, 2015).
5 Federico, M., N. Bertoldi and M. Cettolo. 2008. IRSTLM (IRST Language Modeling) is a toolkit that

features algorithms and data structures suitable to estimate, store, and access very large LMs, IRST

Language Modeling ToolkitVersion 5.20.00USER MANUAL.
6 Boost is a set of libraries for the C++ programming language that provide support for tasks and

structures such as linear algebra, pseudorandom number generation, multithreading, image processing,

regular expressions, and unit testing, (Source: https://www.ace-net.ca/wiki/Boost_C%2B%2B, (Accessed

April, 15, 2019)).

https://github.com/moses-smt/giza-pp.git
https://sourceforge.net/projects/irstlm/files/irstlm/irstlm-5.80/irstlm-5.80.08.tgz/download
https://sourceforge.net/projects/irstlm/files/irstlm/irstlm-5.80/irstlm-5.80.08.tgz/download
https://www.boost.org/

25

The necessary codes to install the boost manually are “wget”,

“https://dl.bintray.com/boostorg/release/1.64.0/source/boost_1_64_0.tar.gz”, “tar zxvf

boost_1_64_0.tar.gz”, “cd boost_1_64_0/” , “./bootstrap.sh”, “./b2 –layout=system

link=static install || echo FAILURE”, “cd ..”. This lasts a little bit long depending on the

features of the computer. Once this step is completed, the CMPH2.07 needs to be

installed. “wget”,”http://www.achrafothman.net/aslsmt/tools/cmph_2.0.orig.tar.gz”, “tar

zxvf cmph_2.0.orig.tar.gz”, “cd cmph-2.0/”, “./configure”, “make”, “make install” are

the codes necessary to install the CMPH2.0. Then, XML-RPC needs to be downloaded

via entering the codes, “wget http://www.achrafothman.net/aslsmt/tools/xmlrpc-

c_1.33.14.orig.tar.gz”, “tar zxvf xmlrpc-c_1.33.14.orig.tar.gz”, “cd xmlrpc-c-1.33.14/”,

“./configure”, “make”, “make install”, “cd ..”. Last but not least, to install Moses, “cd

mosesdecoder”, “make -f contrib/Makefiles/install-dependencies.gmake”, “./bjam –

with- boost=../boost_1_64_0 –with-cmph=../cmph-2.0 –with-irstlm=../irstlm” are the

necessary codes. This will last approximately 1 hour, of course depending on the

features of the computer used, and internet speed. After the completion of installation, it

is time to prepare the data and train the SMT engine. Note that Moses is installed in smt

folder. To sum up, the codes below are used respectively:

To create a folder and save the files in it, enter:

• mkdir smt

• cd smt

To install the respective Ubuntu packages, enter:

• sudo apt-get install build- essential git-core pkg-config automake libtool

wget zlib1g-dev python-dev libbz2-dev

To install the necessary packages, enter:

• sudo apt-get install (the name of the package is written here without

bracket)

Packages are:

• g++

• subversion

7 Cmph is a free minimal perfect hash C library, providing several algorithms in the literature in a

consistent, ease to use, API, (Source: https://sourceforge.net/projects/cmph/, (Accessed April 15, 2019)).

https://dl.bintray.com/boostorg/release/1.64.0/source/boost_1_64_0.tar.gz
http://www.achrafothman.net/aslsmt/tools/cmph_2.0.orig.tar.gz
http://www.achrafothman.net/aslsmt/tools/xmlrpc-c_1.33.14.orig.tar.gz
http://www.achrafothman.net/aslsmt/tools/xmlrpc-c_1.33.14.orig.tar.gz
https://sourceforge.net/projects/cmph/,

26

• git

• git automake

• git libtool

• git libtool zlib1g-dev

• git libtool libboost-all-dev

• git libtool libbz2-dev

• git libtool liblzma-dev

• git libtool python-dev

• git libtool graphviz

• git libtool imagemagick

• git libtool make

• git libtool gmake

• git libtool autoconf

• git libtool doxygen

• libsoap-lite-perl

To install GIZA++, enter:

• git clone https://github.com/moses-smt/giza-pp.git

• cd giza-pp

• make

To copy the binaries, enter:

• cd ../mosesdecoder

• mkdir tools

• cp../giza-pp/GIZA++-v2/GIZA++../giza-pp/GIZA++-

v2/snt2cooc.out../giza- pp/mkcls-v2/mkcls tools

• cd..

To download the IRSTLM, go to:

• https://sourceforge.net/projects/irstlm/files/irstlm/irstlm-5.80/irstlm-

5.80.08.tgz/download

To compile the IRSTLM, enter:

• mkdir irstlm

• cd irstlm- 5.80.08

https://github.com/moses-smt/giza-pp.git
https://sourceforge.net/projects/irstlm/files/irstlm/irstlm-5.80/irstlm-5.80.08.tgz/download
https://sourceforge.net/projects/irstlm/files/irstlm/irstlm-5.80/irstlm-5.80.08.tgz/download

27

• cd trunk

• ./regenerate-makefiles.sh

• ./configure –prefix=/smt/irstlm

• make install

• cd..

To install and compile the boost, enter:

• wget

https://dl.bintray.com/boostorg/release/1.64.0/source/boost_1_64_0.tar.gz

• tar zxvf boost_1_64_0.tar.gz

• cd boost_1_64_0/

• ./bootstrap.sh

• ./b2 –layout=system link=static install || echo FAILURE

To install and compile CMPH, enter:

• cd..

• wget http://www.achrafothman.net/aslsmt/tools/cmph_2.0.orig.tar.gz

• tar zxvf cmph_2.0.orig.tar.gz”, “cd cmph-2.0/

• ./configure

• make

• make install

To install and compile XML-RPC, enter:

• wget http://www.achrafothman.net/aslsmt/tools/xmlrpc-

c_1.33.14.orig.tar.gz

• tar zxvf xmlrpc-c_1.33.14.orig.tar.gz

• cd xmlrpc-c-1.33.14/

• ./configure

• make

• make install

• cd ..

To install Moses, enter:

• cd mosesdecoder

https://dl.bintray.com/boostorg/release/1.64.0/source/boost_1_64_0.tar.gz
http://www.achrafothman.net/aslsmt/tools/cmph_2.0.orig.tar.gz
http://www.achrafothman.net/aslsmt/tools/xmlrpc-%20%20c_1.33.14.orig.tar.gz
http://www.achrafothman.net/aslsmt/tools/xmlrpc-%20%20c_1.33.14.orig.tar.gz

28

• make -f contrib/Makefiles/install-dependencies.gmake

• ./bjam –with- boost=../boost_1_64_0 –with-cmph=../cmph-2.0 –with-

irstlm=../irstlm

 This will take a little bit longer depending on the internet speed and features of

the computer used. Once the installation is completed, Moses will be ready to be

trained.

4.4 Preparing the Data

This section will provide information on how to do (pre-) alignment, GIZA++ and how

to train the engine in the following subsections

4.4.1 (Pre)Alignment

The main requirement to create an SMT engine is of course bilingual data. The data

used to create an engine must be aligned before given to the engine otherwise the engine

cannot recognize the source text and its meaning, target text. This alignment process is

just to be sure that the source and target sentences are in the same lines. After the

alignment process is completed, the source and target texts should be saved in .txt

format, separately (one .txt file will include the English sentences, and the other will

include Turkish sentences). The actual alignment will be conducted by GIZA++ in the

training phase after the necessary codes are entered. The detailed information on what

GIZA++ is and how it can be installed is given in the Installing Moses part.

The engine will recognize the source and its translation and align them according

to its own algorithms. In order to ensure that the machine can recognize the

corresponding sentences, and align the sentences by itself via GIZA++, variables are

added to the segments and its corresponding translation (target). Variables are the tags

added to the beginning of the source and target texts. The same variables are added to

the beginning of two corresponding sentences and the built-in alignment tool recognizes

the source sentence and its translation via these tags. These variables specify what the

translation of the source sentence is in the target .txt file. In short, this alignment step

29

can be considered as preparation phase for actual alignment step. Once the necessary

variables are added to the segments, the machine can recognize the bilingual segments.

For this study, I have approximately 600,000 words of source text (English) and

the Turkish translation of the source. To align the source and target texts sentence by

sentence, different alignment tools can be used. The tool aligns the source and target

according to its own algorithms but before we add variables to the files, the (pre)aligned

sentences must be checked by a human since there may be some misalignments as we

can see in the figure below. In addition, we need to clean the data to be used for the

engine. So that, following the alignment step, the data is checked for mechanical errors

like punctuation, spelling, missing numbers, etc. After that, the necessary corrections

are made by a human to ensure the correct data is given to the engine. The alignment

examples can be seen in the figures below. In the first figure, the raw source and target

data that was not aligned and was not cleaned is shown. In the second one, the aligned

sentences can be seen. It is the machine translation engine creators’ responsibility to

ensure the correctness of the lines to be able to make it possible for the engine to learn

in a correct way and to get higher quality results. So, lines need to be checked one by

one until we make sure that target line (translation) corresponds the source line.

30

 Figure 4 Raw alignment example from AbbyAligner

The Figure 4 shows the output that the alignment tool gives according to its own

algorithms. So the segments need to be checked if there is any misalignment. When the

segments are checked it is seen that some of the source and target segments do not

correspond. For example, in 460th segment, it is seen that the source is empty but the

target is “Tekerlek frenlerinin aşınmaması için retarder ve egzoz frenini kullanın”. But,

the source needs to be “Use retarder and exhaust brake to save the wheel brakes”, the

467th segment. These two segments should be aligned by a human to provide correct

parallel data. There is another example in the figure below that all of the segments are

aligned by a human. Additionally, the empty lines need to be deleted before given to the

engine.

31

Figure 5 Aligned segment examples from AbbyAligner

Once this (pre)alignment step is completed, GIZA++ is needed to align the

segments for Moses. This (pre)alignment step is for cleaning and aligning the raw data.

4.4.2 GIZA++

GIZA++ is an alignment tool that creates bilingual files that are compatible with Moses.

Once the GIZA++ is installed, the data should be in a format that GIZA++ can

recognize. To ensure this, variables must be added to the beginning of each segment. An

MS Excel file can provide adding variables accordingly. To do this, $1, $2 and more (as

many as needed) variables should be added until the end of the segments, for example

$50,000 for the segment 50,000. When the first a few variables are added to the left

column of the source segments, they can be drawn to the end of the MS Excel

document, and MS Excel will add the rest of the variables by itself. The same procedure

should be done for the target segments. After the completion of adding variable step for

both source and target, the MS Excel document should be as figure below.

32

Figure 6 Variable adding example

By the way, undefined characters should be spotted and cleaned to achieve

higher quality MT output. An example to the undefined characters is shown in the

figure below.

33

Figure 7 Undefined character example

These characters should be detected and changed accordingly. Ctrl + find option

will help to see all of these characters. After this step is completed, the document needs

to be made prepared to be recognized by GIZA++. Notepad++ can be used to make

necessary formatting operations on the file. The segments should be justified left. To be

able to ensure this, once the file is opened via Notepad++, the tab needs to be deleted.

First, ctrl + find should be opened and then, regular expression option needs to be

selected. In the next step, the necessary code to delete the tab needs to be written and

replaced with $1. ^([^\t]*?)\t is the necessary code to delete the tab. Afterwards, the

source and target text need to be saved as plain text separately. I named the source file

as EN and the target as TR. If any other file name is used, the codes to run GIZA++

should be changed accordingly. Now, the data is ready to be recognized by GIZA++.

4.4.3 Running the GIZA++

As mentioned before, to get aligned corpus, GIZA++ is needed. There are a few steps to

run the GIZA++ that first of all, the terminal is opened and user needs to navigate to the

.\giza-pp file and then GIZA++-v2 file. To do this, “cd smt”, “cd .\giza-pp”, “cd

34

GIZA++-v2” codes are written. When a cd code is written before a folder name, it

means that we are working on that respective folder. After the navigation to the

GIZA++-v2 folder via terminal, “./plain2snt.out [source_language_corpus]

[target_language_corpus]” code should be written. Since the source language corpus is

EN and the target language corpus is TR, this code should be written as “./plain2snt.out

EN TR” (without brackets). This code will generate vocabulary and sentence files in

GIZA++-v2 folder named after EN.vcb, TR.vcb and also EN_TR.snt, TR_EN.snt. Now

user needs to navigate to .\mkcls-v2\ folder. In order to achieve this user needs to get

back to the first folder. Writing just “cd” on the terminal will navigate user to the

previous folder. Then “cd .\mkcls-v2\” needs to be written. Then “./mkcls -pEN -

VEN.vcb.classes” and “./mkcls -pTR -VTR.vcb.classes” codes need to be written. This

will create EN.vcb.classes, EN.vcb.classes.casts, TR.vcb.classes and

TR.vcb.classes.casts files in the respective folder. Then we get back to GIZA++v2

folder via terminal as described above. Finally, “./GIZA++ -S EN.vcb –T TR.vcb –C

EN_TR.snt” code needs to be written. This code will finally create an actual.ti.ini file in

the directory and the screen will be as shown in the below figure (Source:

https://okapiframework.org/wiki/index.php/GIZA%2B%2B_Installation_and_Running_

Tutorial, (accessed, July 04, 2019))8.

Figure 8 An example from Linux terminal showing the file creation is successful

8 The codes are adapted by me accordingly.

35

To run GIZA++ enter:

• cd smt

• cd .\giza-pp

• cd GIZA++-v2

• ./plain2snt.out EN TR

• cd .\mkcls-v2\

• mkcls -pEN -VEN.vcb.classes

• ./mkcls -pTR -VTR.vcb.classes

• ./GIZA++ -S EN.vcb –T TR.vcb –C EN_TR.snt

Now a corpus needs to be created in the working directory. To do this, first of all

a corpus folder should be created to save respective files in it. To create a corpus folder,

“cd”, “mkdir corpus” are the necessary codes. Then, “cd corpus” code needs to be typed

to make it possible to save the files to save in it. If the data to be used is stored on the

web, “wget http://(the name of the website or wherever the files are stored)” should be

typed. If the files are stored in the computer memory then, the files need to be copied to

the corpus file. Alternatively, there are sample files which can be downloaded from

http://www.statmt.org/moses/download/sample-models.tgz website. These are the

prepared files for engine training. Once these sample files are extracted into the corpus

folder, the prepared source text can be copied into the already prepared news-

commentary-v8.fr-en.fr file and the target text can be copied into the already prepared

news-commentary-v8.fr-en.en file. Then the name of the files can be changed as

alper.tr-en.tr and alper.tr-en.en. In the next steps, tokenisation9, truecasing10 and

cleaning11 need to be performed before entering the training commands.

“~/smt/mosesdecoder/scripts/tokenizer/tokenizer.perl -l en < ~/corpus/alper.tr- en.tr

9 Tokenisation means that spaces have to be inserted between (e.g.) words and punctuation. (Koehn 2019,

36).
10 Truecasing means that the initial words in each sentence are converted to their most probable casing.

This helps reduce data sparsity (Koehn 2019, 36).
11 Cleaning is for removing long sentences and empty sentences as they can cause problems with the

training pipeline, and obviously mis-aligned sentences are removed (Koehn 2019,36).

http://www.statmt.org/moses/download/sample-models.tgz

36

 > ~/corpus/alper.tr-en.tok.tr” are the codes that should be typed together to

perform tokenisation. Here, alper.tr-en.en is the name of the source corpus file that is

going to be trained. This code will create a file in corpus folder named alper.tr.en.tok.tr

Then, “~/smt/mosesdecoder/scripts/tokenizer/tokenizer.perl -l en < ~/corpus/alper.tr-

en.en > ~/corpus/alper.tr-en.tok.en” codes need to be typed. This code will create an

alper.tr.en.tok.en file in the corpus folder. In the second step, to perform truecasing, the

necessary codes are "~/smt/mosesdecoder/scripts/recaser/train-truecaser.perl --model

~/corpus/truecase-model.en –corpus ~/corpus/alper.tr-en.tok.en" and then,

"~/smt/mosesdecoder/scripts/recaser/train-truecaser.perl --model ~/corpus/truecase-

model.tr –corpus ~/corpus/alper.tr-en.tok.tr". These codes will create alper.tr- en.true.tr

and alper.tr-en.true.en files in corpus folder. In the next step

“/mosesdecoder/scripts/recaser/truecase.perl \ --model ~/corpus/truecase-model.en \ <

~/corpus/alper.tr-en.tok.en \ > ~/corpus/alper.tr-en.true.en” and

“~/mosesdecoder/scripts/recaser/truecase.perl \ --model ~/corpus/truecase-model.tr \ <

~/corpus/alper.tr-en.tok.tr \ > ~/corpus/alper/tr-en.true.tr” codes are needed. These

codes will be typed one by one and will create two files in the corpus file named

truecase- model.en and truecase-model.tr. Lastly, to ensure that Moses to perform better

the length of the sentences should be limited. To limit the sentences, cleaning should be

performed. “~/mosesdecoder/scripts/training/clean-corpus-n.perl \ ~/corpus/alper.tr-

en.true fr en \ ~/corpus/alper/tr-en.clean 1 80” is the code to clean the corpus. Now our

corpus is ready to use but we need a language model. Language model is necessary to

obtain fluent output so it is built with the target language (in this study, it is Turkish

language). To create a language model “wget -O -

https://kheafield.com/code/kenlm.tar.gz |tar xz”, “mkdir kenlm/build”, “cd

kenlm/build”, “cmake..”, “make -j2” are the necessary codes.

https://kheafield.com/code/kenlm/, (accessed July 9, 2019). The files downloaded from

the website should be moved to mosesdecoder/bin folder. Now type cd .. and then,

“mkdir ~/lm”, “cd ~/lm”. Now we need an .arpa file, “~smt/mosesdecoder/bin/lmplz -o

3 <~/corpus/alper.tr-en.true.fr > alper.tr-en.arpa.fr” is the necessary code. Then, to

binarise the .arpa.tr file the necessary code is “~/smt/mosesdecoder/bin/build_binary

alper.tr-en.arpa.en alper.tr-en.blm.en” and “~/smt/mosesdecoder/bin/build_binary

alper.tr-en.arpa.fr alper.tr-en.blm.fr” are the necessary codes. In order to check the

https://kheafield.com/code/kenlm/

37

language model, “echo "Çıkış sinyali verilen değerden yüksek" |

~/kenlm/build/bin/query alper.tr-en.blm” code can be entered, or any sentences related

to the domain (the corpus that is created to be used for MT engine) can be entered. Once

this code is typed, the below screen will be appeared in the terminal.

Figure 9 An example from Linux terminal showing the command is working

To create a corpus folder in the working directory and save the training data

in it, enter:

• mkdir corpus

• cd corpus

To tokenize the files, enter:

• ~/smt/mosesdecoder/scripts/tokenizer/tokenizer.perl -l en <

~/corpus/training/alper.tr-en.en > ~/corpus/alper.tr-en.tok.en

• ~/smt/mosesdecoder/scripts/tokenizer/tokenizer.perl -l fr <

~/corpus/training/alper.tr-en.tr > ~/corpus/alper.tr-en.tok.tr

To truecase the files, enter:

• ~/smt/mosesdecoder/scripts/recaser/train-truecaser.perl --model

~/corpus/truecase-model.en -- corpus ~/corpus/alper.tr-en.tok.en

• ~smt/mosesdecoder/scripts/recaser/train-truecaser.perl --model

~/corpus/truecase-model.en -- corpus ~/corpus/alper.tr-en.tok.tr

• ~smt/mosesdecoder/scripts/recaser/train-truecaser.perl --model

~/corpus/truecase-model.fr -- corpus ~/corpus/alper.tr-en.tok.tr

• ~smt/mosesdecoder/scripts/recaser/truecase.perl --model ~/corpus/truecase-

model.en\< ~/corpus/alper.tr-en.tok.en \> ~/corpus/alper.tr-en.true.en

• ~smt/mosesdecoder/scripts/recaser/truecase.perl --model ~/corpus/truecase-

model.fr\< ~/corpus/alper.tr-en.tok.tr \> ~/corpus/alper.tr-en.true.tr

38

• To clean the data by limiting the sentence length to 80, enter:

~/mosesdecoder/scripts/training/clean-corpus-n.perl ~/corpus/alper.tr-en.true fr

en ~/corpus/alper.tr-en.clean 1 80

To create language model, enter:

• wget -O - https://kheafield.com/code/kenlm.tar.gz |tar xz

• mkdir kenlm/build

• cd kenlm/build

• cmake ..

• make -j2

• cd ..

• mkdir lm

• cd lm

• ~smt/mosesdecoder/bin/lmplz -o 3 <~/corpus/alper.tr-en.true.fr > alper.tr

en.arpa.fr ~/smt/mosesdecoder/bin/build_binary alper.tr-en.arpa.en alper.tr-

en.blm.en ~/smt/mosesdecoder/bin/build_binary alper.tr-en.arpa.fr alper.tr-

en.blm.fr

4.4.4 Training the Engine

Now it is time to train the engine. First of all we need to create a working folder by

typing “mkdir ~/working” and then, to save the working files in it, “cd ~/working”. In

order to start the training, “nohup nice ~/smt/mosesdecoder/scripts/training/train-

model.perl -root-dir train -corpus ~/corpus/alper.tr-en.clean -e en -f fr -alignment grow-

diag-final-and - reordering msd-bidirectional-fe -lm 0:3:$HOME/lm/alper.tr-en.blm.fr:8

-external-bin-dir ~/smt/mosesdecoder/tools >& training.out &” code needs to be typed.

This code will create a moses.ini file in working/train/model folder. Now the system can

be checked. With the “~/smt/mosesdecoder/bin/moses -f

~/working/train/model/moses.ini” code the system can be initiated. Once this code is

typed, a few seconds later the text to be translated can be written to the terminal.

Without writing this code to initiate the system, it is not possible to obtain a result. The

below figures show us that without writing this code how the screen will be and after

writing this code how the system translates. To sum up, the codes below are used

respectively:

39

To train the engine, enter:

• mkdir ~/working

• cd ~/working

• nohup nice ~/smt/mosesdecoder/scripts/training/train-model.perl -root-dir train

-corpus ~/corpus/alper.tr-en.clean -e en -f fr -alignment grow-diag-final-and -

reordering msd-bidirectional-fe -lm 0:3:$HOME/lm/alper.tr-en.blm.fr:8 -

external-bin-dir ~/smt/mosesdecoder/tools >& training.out &

To initiate the engine, enter:

• ~/smt/mosesdecoder/bin/moses -f ~/working/train/model/moses.ini

Figure 10 An example from Linux terminal showing how to initiate the engine

40

Figure 11 An example from Linux terminal showing the best translation result

Since I have no commercial concern I do not expect to get higher quality results.

Here, my aim is to show how the MT engine works.

41

5 EVALUATION

This chapter will give information on the evaluations of the MT outputs. The evaluation

has been conducted via BLEU metrics, which will be briefed in the following section.

BLEU is an automated evaluation system that evaluates the MT output instead of

human. It evaluates the MT output according to the reference human translated text.

“The central idea behind the BLEU score is that the closer a machine translation is to a

professional translator, the better it is” (Papineni and et al., 2002, 311). Since the

evaluation of MT is long term task and it is expensive Papieni and et al. developed the

BLEU to contribute MT system developers. The higher scores mean the higher quality

of MT output compared to reference translation. So, the BLEU score just shows the

correlation between human translation and machine translation. Below I give examples

showing the human translation of a text, MT output and BLEU scores. The first

sentence is source text, the second one human translated sentence, the third one is

machine translated sentence and the last one is the machine translated sentence BLEU

score.

Examples:

ST HTS MTS MTSBS

safety precautions to

detect gas leakage in

a gas-fuelled vehicle

is a requirement

from the authorities

that is stated in ece

r110.

Güvenlik önlemleri Gaz

yakıtlı araçtaki gaz

kaçağını tespit etmek ECE

R110‘te belirtilen

yetkililerin getirdiği bir

gerekliliktir.

on güvenlik relates

yakıtlı scania kaçağını

to the detected ece

r110‘te specified

yetkililerin getirdiği a

gerekliliktir.

2.377053

the purpose of the

requirement is to

prevent safety-

critical situations as

far as possible.

Gerekliliğin amacı

güvenliği tehlikeye

düşürecek durumları

mümkün olduğunca

önlemektir.

gerekliliğin defect

güvenliği tehlikeye

düşürecek durumları

possible önlemektir.

1.304298

gas leakage is Gaz kaçağı gaz yakıt on leaks accelerator the 2.487097

42

detected by using 2

characteristics in the

gas fuel system: gas

pressure and mass

flow rate.

sistemindeki 2 özellik

kullanılarak tespit edilir:

gaz basıncı ve debi.

2 characteristic -

optimum edilir:

accelerator and debi.

if a leakage occurs,

the pressure will

drop and the system

will warn for a

leakage

Kaçak meydana gelirse

basınç düşer ve sistem

kaçak uyarısı verir.

kaçak occurs pressure

% 50 verir. system .

2.415965

visit a scania

workshop to have

the fuel system

repaired if the

symbol is displayed.

Sembol görüntülenirse

yakıt sisteminin

onarılması için bir Scania

servisini ziyaret edin.

.sembol previously the

onarılması, scania

times ziyaret edin.

2.910968

warning for gas

leakage can also be

displayed due to:

•the manual cock

has been opened.

Gaz kaçağı uyarısı şu

nedenlerle

görüntülenebilir: •manuel

musluk açılmıştır.

on leaks warning

default nedenlerle

görüntülenebilir:

•manuel musluk

açılmıştır.

2.190408

manual cocks are

closed at the same

time as the engine

consumes gas.

manuel musluklar tam

motor gaz tüketirken

kapanmıştır.

manual musluklar full

engine accelerator

tüketirken kapanmıştır.

3.314288

trying to start the

engine at the same

time as manual

cocks are closed.

manuel musluklar kapalı

olduğunda motoru

çalıştırmaya çalışılmıştır.

manual musluklar if

engine çalışılmıştır.

2.099844

filling fuel while the motor çalışırken yakıt engine fuel doldurma.

43

engine is running. doldurma.
11.909345

fitting external

components that are

not compatible with

scania’s systems.

Scania’nın sistemleriyle

uyumlu olmayan harici

bileşenler takma.

scania’nın systems

legal) takma.)

2.083626

if the warning is

displayed after

one of the above

activities has been

carried out, turn

the starter key to

the lock position

and wait for more

than 20 seconds so

that the vehicle is

switched off

completely and

then try to start it

again.

Yukarıdaki eylemlerden

biri gerçekleştirildikten

sonra uyarı

görüntülenirse, marş

anahtarını kilit

konumuna çevirin ve

araç tamamen kapalı

konuma gelene dek 20

saniyeden fazla bekleyip

yeniden çalıştırmayı

deneyin.

yukarıdaki

eylemlerden of the

warning

görüntülenirse, 1020

the of the off gelene

until 20 on bekleyip ,

çalıştırmayı deneyin.

1.676151

if the fuel system is

fault-free, the

warning should no

longer be shown.

Yakıt sisteminde arıza

yoksa uyarı artık

gösterilmeyecektir.

fuel system fault

warning

gösterilmeyecektir. :

5.594423

safety valves for

pressure drop in

the fuel system if

the fuel system

rapidly loses

pressure, for

example when a

fuel pipe breaks,

the safety valves

operate.

Yakıt sistemindeki

basınç düşüşü için

emniyet valfları Yakıt

sistemi hızlı bir şekilde

basınç kaybederse,

örneğin bir yakıt borusu

kırılırsa, emniyet valfı

çalışır.

fuel system drop ,

relief valves if a

pressure kaybederse,

a fuel kırılırsa, the

çalışır. .

4.259881

safety precautions

switches off the

flow of fuel from

Güvenlik önlemleri gaz

tüplerinden yakıt akışını

keser.

güvenlik relates

tüplerinden fuel do

keser.

2.985966

44

the gas bottles.

tow the vehicle to

a scania workshop

to have the fuel

system repaired if

this occurs.

Bunun meydana gelmesi

durumunda, yakıt

sisteminin onarılması

için aracı bir Scania

servisine çekin.

bunun of the if

durumunda,

onarılması the scania

servisine çekin.

3.256759

blown fuse

b350919 symbol

which indicates

that the fuse for

the gas tank

solenoid valve has

blown.

Atmış sigorta b350919

Gaz deposu solenoid

valfi sigortasının attığını

gösteren sembol.

atmış fuse b350919

on tank start to the

attığını sembol.

4.955971

renew the fuse if

the symbol is

displayed in icl.

ICL'de sembol

görüntüleniyorsa

sigortayı yenileyin.

icl'de symbol

görüntüleniyorsa

fuse yenileyin.

4.67329

vehicle gas and

safety action in

the event of fire

warning!

Araç gazı ve güvenlik

Yangın durumunda

yapılacaklar UYARI!

vehicle gas and

safety yangın

yapılacaklar uyari! 1

23.761019

in the event of

fire, switch off the

engine and

immediately

notify the fire

brigade that the

vehicle contains

vehicle gas and

what type of gas it

is.

Yangın durumunda,

motoru kapatın ve

aracın gaz içerdiğini ve

bunun hangi tip gaz

olduğunu yangın

ekibine hemen bildirin.

yangın durumunda,

start ; accelerator for

and of the = d fire

ekibine almost

bildirin.

1.562232

each gas tank has

safety valves that

open when the

pressure in the

tank gets too high.

Her bir gaz deposunun

depodaki basınç çok

yüksek seviyeye

eriştiğinde açılan

emniyet valfleri vardır.

limitation accelerator

tank tank is

eriştiğinde radio to

the valve vardır.

2.858684

45

As can be seen MT output, and BLEU scores differs for each sentence

depending on the data given to the engine and correlation of the reference translation

(human translation) to the corpus. When the higher amount of data is given to the

engine, the higher quality of results will be obtained. In this BLEU score metrics, the

score range is between 0-1 and this result score is presented as multiplied by 100. The

perfect match results are closer to 1 whereas the perfect mismatch results are closer to 0.

The higher BLEU scores show that they have higher quality compared to the reference

text. BLEU score uses n-grams to for both candidate translation (MT output) and

reference text (human translation). N-gram is a sequence of N words (Kumar, 2017,

Source: https://blog.xrds.acm.org/2017/10/introduction-n-grams-need/), (accessed, June

16, 2019)). N words indicates the number of words, for example, fuel tank (is a 2-gram),

tapered roller bearing (is a 3-gram), filling the fuel tank (4-gram). Depending on the

frequency of these words in the respective corpus, the score changes. Papieni and et al.

states in their paper titled as “BLEU: a Method for Automatic Evaluation of Machine

Translation” that:

The primary programming task for a BLEU implementor is to compare

n-grams of the candidate with the n-grams of the reference translation

and count the number of matches. These matches are position-

independent. The more the matches, the better the candidate translation

is. (Papieni, et al. 2002, 2)

This means that the BLEU score is related to count the number of matches, not the

fluency of the MT output. The metric that determines the BLEU score changes

depending on corpus which is used to create SMT engine. In the MT engine I created,

the BLEU score is obtained by using unigram (1-gram) model. Additionally, the other

n-gram models can be used. The words can be chunked together to form single entities,

for example, fuel tank can be chunked together as one word. Normally it is 2-gram

model but it can be used as single entity. This may help to predict what the next word

will be (cf. Brownlee, 2017). To conclude, the different BLEU scores which can be seen

in the examples are related to the corpus which I used. When we add new parallel data

to the corpus (related to domain), we could get higher quality results which are closer to

the reference text and this means we could get higher BLEU scores. To be able to

https://blog.xrds.acm.org/2017/10/introduction-n-grams-need/),%20(accessed

46

measure the BLEU score we can check the words in the MT output and assign 1 for the

ones that are seen in the reference translation, and 0 for the ones that are not seen in the

reference translation. Then the number of words that are seen in the reference

translation can be divided by the total number of words in the output sentence. This is

how unigram precision works. But this changes depending on different parameters such

as the length of the sentences, the number of the characters, and so on. And also, BLEU

does not consider the meaning or sentence structure (cf. Tatman, 2017). For example:

Araç gazı ve güvenlik Yangın durumunda yapılacaklar UYARI! (HT)

vehicle gas and safety yangın yapılacaklar uyari! 1 (MT) (23.761019)

Gerekliliğin amacı güvenliği tehlikeye düşürecek durumları mümkün olduğunca

önlemektir. (HT)

gerekliliğin defect güvenliği tehlikeye düşürecek durumları possible önlemektir. (MT)

(1.304298)

In the first example, there are 3 words in the MT output that are seen in reference

translation (HT). The total number of words in the MT output sentence is 8. When the

number of words that are seen in the reference translation is divided by the total number

of words in the output sentence, the score is not 23.761019. The same is applicable for

the second example. It should be noted that BLEU is just precision not a result showing

the quality or usefulness of the translation results. It just compares the reference text and

MT output and gives an average score to help MT engine producers to check the

progress of training the MT engine.

47

6 CONCLUSION

The purpose of this thesis was to show the basic technical steps of creating an SMT

engine, and creating corpus and making this corpus ready to be used for statistical

machine translation engine. The reader of this thesis can find useful information to

create her/his own SMT engine, and may make profit for the company s/he works for or

herself/himself. For example s/he can use his own engine and do translation in a shorter

time. People who spend time on preparing corpus in big volumes in a specific domain

may sell their engines or they can take part in an engine creation process. And these

people can benefit from this study. In order to create SMT engine, parallel corpus needs

to be used. In order to create parallel corpus, big volumes of data needs to be aligned.

Of course there are some ethical considerations on data usage. Translators, editors,

project managers or anyone who take part in a translation process and work for a

language service provider (LSP), multilingual language vendor (MLV) or an individual

client need permission of the owner of data before using it for their engines, although

translation is done by themselves.

People who are not familiar with Linux operating system, and Moses, can

benefit from this thesis to create their own statistical based machine translation engines.

There are other systems much easier to use but the basis of most of these systems is

Moses and it provides users to make more individual parameter calibrations. In this

thesis, it is not claimed to show all kinds of parameter. Most of the resources on Moses

suppose that the user has basic information on coding and using Linux. For this reason,

these resources give the codes and expect the user to adapt them accordingly. In this

thesis, it is aimed to explain the codes in a simple way.

In order to create the SMT engine I got training on basic coding and using Linux

operating system. Then I adapted the codes accordingly and made the MT engine ready

for translation. As a result, I have an engine that can translate automotive texts but due

to the volume of the data used, the results are not high-quality. In this study, it is tried to

explain what a code means and how it can be adapted by an individual user. In the first

chapter I outlined the CAT tools and machine translation. In the following chapter, I

summarized the effects of technological developments on translators and their

transformation. In chapter three, I mentioned the different machine translation systems,

48

and corpus. The fourth chapter includes the technical steps of creating SMT engine. In

the fifth chapter, I briefly gave information on BLEU and showed the examples

obtained from the engine which I have created. I hope this basic study will function as

an initiative for translation students.

49

REFERENCES

Bahdanau, Dzmitry, KyungHyun Cho and Yoshua Bengio. 2015. “Neural

 Machine Translation by Jointly Learning to Align and Translate.” In

 ICLR Conference, San Diego, the USA, 07-09. arXiv:1409.0473.

Blommaart, Eef. 2012. “YouTube.” YouTube (blog), Accessed January 8,

 2019. https://www.youtube.com/watch?v=aIxI8mGbNuY.

“Boost C Libraries.” (n.d.). “Welcome to Boost.org.” Accessed March 1,

 2019. https://www.boost.org/.

Brownlee, Jason. 2017. “A Gentle Introduction to Calculating the BLEU

 Score for Text in Python.” Section on Deep Language Processing.

 Accessed August 20, 2019.https://machinelearningmastery.com/

 calculate-bleu-score-for-text-python/.

Clark, Stephen. (n.d.). “ACS Statistical Machine Translation Lecture 2:

 Introduction to SMT Models.” Lecture, University of Cambridge,

 the UK.

Crandall, Richard E. 2017. “Industry 1.0 to 4.0: the Evolution of Smart

 Factories.” ASCM. Accessed April 13, 2019.

 http://www.apics.org/apics-for-individuals/apics-magazine-

 home/magazine-detail-page/2017/09/20/upgrading-smart-

 manufacturing-with-industry-4.

Esselink, Bert. 2000. A Practical Guide to Localization. Amsterdam/Philadelphia: John

 Benjamins.

Federico, Marcello, Nicola Bertoldi and Mauro Cettolo. 2008. Language

 Modeling Toolkit Version 5.20.00 User Manual. Ebook. Trento:

 FBK-irst. Accessed April 19, 2019. http://hermes.fbk.eu/people

 /bertoldi/ teaching/lab_2010-2011/img/irstlm-manual.pdf.

“GIZA Installation and Running Tutorial.” 2016. Okapi Framework.

 Accessed July 12, 2019. https://okapiframework.org/ wiki/ index.php/

 GIZA++_Installation_and_Running_Tutorial.

Koehn, Phillipp. 2019. Statistical Machine Translation System User Manual

 and Code Guide. Edinburgh: Edinburgh University Press.

Kumar, Prachi. 2017. Crossroads: The ACM Magazine for Students (blog),

 Accessed June 21, 2019. https://blog.xrds.acm.org/2017/10/

 introduction-n-grams-need/.

https://www.youtube.com/watch?v=aIxI8mGbNuY
https://www.boost.org/
https://machinelearningmastery.com/%09%09%09%09%20calculate-bleu-score-for-text-python/
https://machinelearningmastery.com/%09%09%09%09%20calculate-bleu-score-for-text-python/
http://www.apics.org/apics-for-individuals/apics-magazine-%09%09%09home/magazine-
http://www.apics.org/apics-for-individuals/apics-magazine-%09%09%09home/magazine-
http://hermes.fbk.eu/people%09%09%09/bertoldi/%20teaching/lab_2010-2011/img/irstlm-manual.pdf
http://hermes.fbk.eu/people%09%09%09/bertoldi/%20teaching/lab_2010-2011/img/irstlm-manual.pdf
https://okapiframework.org/%20wiki/%09index.php/%20%09%09GIZA++_Installation_and_Running_Tuto
https://okapiframework.org/%20wiki/%09index.php/%20%09%09GIZA++_Installation_and_Running_Tuto
https://blog.xrds.acm.org/2017/10/

50

O’Dowd, Tony. 2013. “The History of Machine Translation Pt. 1.”

 KantanMT (blog), Accessed May 12, 2019. https://kantanmtblog.

 com /2013/07/12/the-history-of-mt-pt-1/.

O’Dowd, Tony. 2014. “RBMT vs SMT.” KantanMT (blog), Accessed

 March 16, 2019. https://kantanmtblog.com/2014/02/13/rbmt-vs-

 smt/.

Othman, Achraf. 2017. “How to Install Moses (Statistical Machine

 Translation) on Ubuntu?” Dr. Achraf Othman, Accessed June 27,

 2019. http://achrafothman .net /site/how-to-install-moses-statistical-

 machine-translation-in-ubuntu/.

Öner, Işın. 2006.“Yerelleştirme'nin Tanımı.” Varlık 1185: 33-35.

Öner Bulut, Senem. 2019. “Future Professional Profile and Agency of the Human

 Translator: A Survey on Human-Machine Tension in the Context of

 Technologization of Translation.” In Research in Translation Studies (ed. Seda

 Taş), 93-122. İstanbul: Hiperyayın.

Papineni, Kishore, Salim Roukos, Todd Ward and Wei-Jing Zhu. 2002. “BLEU:

 a Method for Automatic Evaluation of Machine Translation.”

 Proceedings of the 40th Annual Meeting of the Association for

 Computational Linguistics (ACL), 311-318. https://www.aclweb.org

 /anthology/P02-1040.pdf.

Pym, Anthony. 2003. “Redefining Translation Competence in an Electronic Age.

 In Defence of a Minimalist Approach.” Meta 48 (4): 481- 497.

 https://doi.org/10.7202/008533ar.

Rathod, Sarita G. and Shanta Sondur. 2012. “Machine Translation of Natural

 Language Using Different Approaches: ETSTS, English to Sanskrit

 Translator and Synthesizer.” International Journal of Emerging

 Technology and Advanced Engineering 12 (2): 379-383.

Schumacher, Phyllis and Janet Morahan-Martin. 2001. “Gender, Internet and

 Computer Attitudes and Experiences.” Computers in Human

 Behavior 17 (1): 95-110. http://dx.doi.org/10.1016/S0747-

 5632(00)00032-7.

Tatman, Rachael. 2019. “Evaluating Text Output in NLP: BLEU at Your Own Risk.”

 Towards Data Science. Accessed May 27, 2019.

 https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-

 risk-e8609665a213.

 “The Complete Open-Source and Business Software Platform.”

 SourceForge. Accessed April 22, 2019. https://sourceforge.net/.

https://kantanmtblog.com/2014/02/13/rbmt-vs-%09%09%09smt/
https://kantanmtblog.com/2014/02/13/rbmt-vs-%09%09%09smt/
https://www.aclweb/
https://doi.org/10.7202/008533ar
http://dx.doi.org/10.1016/S0747-%09%09%095632(00)00032-7
http://dx.doi.org/10.1016/S0747-%09%09%095632(00)00032-7
https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-%09%09risk-e8609665a213
https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-%09%09risk-e8609665a213
https://sourceforge.net/

51

 Tian, Liang, Fai Wong and Sam Chao. 2011. “Word Alignment Using

 GIZA on Windows.” Machine Translation Summit 13: 369-372.

 Accessed May 14, 2019. http://www.mt-archive.info/MTS-2011-

 Tian.pdf.

 Van der Meer, Jaap. 2015. TAUS. Accessed February 22, 2019. https://blog.

 taus.net/the-game-changers-of-2016.

 “What Is Technical Translation?” Technitrad, 2016. Accessed July 14,

 2019. https://www.technitrad.com/what-is-technical-translation/.

 Wiggins, Dion. “Omniscien.” Omniscien (blog). Accessed May 12, 2019.

 https://omniscien.com/migrate-from-smt-to-nmt/.

http://www.mt-archive.info/MTS-2011-%09%09%09Tian.pdf
http://www.mt-archive.info/MTS-2011-%09%09%09Tian.pdf
https://www.technitrad.com/what-is-technical-translation/
https://omniscien.com/migrate-from-smt-to-nmt/

52

APPENDICES

 APPENDIX I

Screenshot of Selecting the Operating System

APPENDIX II

Screenshot of Selecting the Ubuntu Operating System

53

APPENDIX III

Screenshot of Selecting The Memory Size of VM

APPENDIX IV

Screenshot of Creating a Virtual Disk

54

APPENDIX V

Screenshot of Selecting Virtual Disk Image

APPENDIX VI

Selecting the Dynamically Allocated Storage Space

55

APPENDIX VII

Screenshot of Selecting the Disk Size of VM

APPENDIX VIII

Screenshot of Initializing the Installation

56

APPENDIX IX

Screenshot of Selecting the ISO file

APPENDIX X

Screenshot of Selecting the Language

57

APPENDIX XI

Screenshot of Keyboard Selection

APPENDIX XII

Screenshot of Starting the Complete Installation Process

58

APPENDIX XIII

Screenshot of Erasing Disk and Installing Ubuntu

APPENDIX XIV

Screenshot of Ongoing Installation Process

59

APPENDIX XV

Screenshot of Selecting the Region

APPENDIX XVI

Screenshot, Showing the System Installation

60

ÖZGEÇMİŞ

ÖZGEÇMİŞ

Adı, Soyadı Alper ÇALIK

Doğum Yeri ve Yılı Kocasinan 1993

Bildiği Yabancı Diller İngilizce Almanca

ve Düzeyi (İleri) (İleri)

Eğitim Durumu Başlama - Bitirme

Yılı

Kurum Adı

Lise 2007 2011
24 Kasım Anadolu Lisesi

Lisans 2011 2016
Trakya Üniversitesi

Yüksek Lisans 2016 2019
İstanbul 29 Mayıs Üniversitesi

Doktora

Çalıştığı Kurum/lar Başlama - Ayrılma Yılı Çalışılan Kurumun Adı

1.

2018 2018 Localex Language Service Provider

2.

2018 -

Bartın Üniversitesi

Üye Olduğu Bilimsel

ve Mesleki Kuruluşlar

-

Katıldığı Proje ve

Toplantılar

-

Yayınlar: 1) Çalık, A. Creating an Automotive Oriented Statistical Based

Machine Translation Engine - Enriching Translation Studies through

Re-Readings [28.03.2018]

2) Çalık, A. Çeviri Teknolojileri Bağlamında Makine

Çevirisinin Çevirmen Kimliğine Olumlu/Olumsuz Etkileri: “Post-

Editör” Çevirmen Kimliğine Genel Bir Bakış - AsosCongress IV

[26.10.2018]

3) Akcan, G., Çalık, A. Teknolojinin Zaman Yönetimi

Konusunda Çevirmenler Üzerinde Yarattığı Baskının İncelenmesi –

Çevirmen Psikolojisi [Aralık 2018]

Diğer:

İletişim (e-posta): acalik@bartin.edu.tr

Tarih

İmza

Adı Soyadı

13/09/2019

Alper ÇALIK

mailto:acalik@bartin.edu.tr

