T.C. DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DYNNIKOV KOORDİNATLARI VE π₁-TRAIN TRACK GRAFİKLERİ

Umut GÜNGÖRÜR

YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI

<u>DİYARBAKIR</u>

Ağustos-2018

T.C

DICLE UNIVERSITESI

FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ

<u>DİYARBAKIR</u>

Umut GÜNGÖRÜR tarafından yapılan "Dynnikov Koordinatları ve π_1 -Train Track Grafikleri" konulu bu çalışma, jürimiz tarafından Matematik Anabilim Dalında YÜKSEK LİSANS tezi olarak kabul edilmiştir

Jüri Üyesinin

Ünvanı Adı Soyadı Başkan: Dr. Öğr.Üyesi S. Öykü YURTTAŞ Üye : Prof. Dr.

Üye: Doç Dr.

Tez Savunma Sınavı Tarihi: 21/09/2018

Yukarıdaki bilgilerin doğruluğunu onaylarım.

.../..../20

Prof.Dr.Sevtap SÜMER EKER

ENSTİTÜ MÜDÜR V.

(MÜHÜR)

TEŞEKKÜR

Bu tezin yazımında ve 2 yıl süren yüksek lisans eğitimim boyunca desteğini asla kesmeden değerli bilgilerini benimle paylaşan, her aşamasında zamanını ayırıp sabırla yardım elini uzatan ve gelecekteki mesleki hayatımda da benimle paylaştığı bilgi ve birikiminlerinden her daim yararlanacağımı düşündüğüm kıymetli danışman hocam Dr. Öğr. Üyesi S. Öykü Yurttaş'a teşekkürü bir borç bilirim. Böyle mükemmel ve üretken bir akademisyen ve harika bir insanın öğrencisi olmak benim için onurdur.

Danışmanım dışında bu süreçte hem kendi alanlarındaki tecrübelerle hem de tez yazımı konusundaki bilgi ve deneyimleriyle büyük yardımları dokunan Prof. Dr. H. Özlem Güney, Prof. Dr. Hasan İlhan Tutalar, Doç Dr. Ferihe ATALAN OZAN ve Dr. Öğr.Üy. Elif MEDETOĞULLARI hocalarıma teşekkür ederim.

Teşekkürlerin en büyüğü hayatımın her anında bana gösterdikleri sevgi ve destekten dolayı çok kıymetli aileme. Bana olan inançları ve güvenleri için annem Selma Güngörür ve babam Nedim Güngörür'e, bu hayattaki en büyük şansım en yakınım, kardeşim Utku Güngörür'e hep yanımda oldukları için teşekkür ederim.

Son olarak, tez yazımı süresince verdikleri destekle motivasyonumu yüksek tutmamı sağlayan ve bu sürecin tamamlanmasına yardımcı olan dostlarım; Gamze Bodur'a, Gökçen Mutlu'ya, Esra Efetürk'e, Ece Köksal'a, Betül Top Çetinkaya'ya, Mehtap Çevik'e, Muammer Altunok'a ve bütün arkadaşlarıma çok teşekkür ederim.

İÇİNDEKİLER

TEŞEI	ГЕŞEKKÜR			
İÇİNDEKİLER				
ÖZET				
ABSTRACT				
ŞEKİL LİSTESİ				
KISAI	KISALTMA VE SİMGELER			
1.	GİRİŞ	1		
2.	KAYNAK ÖZETLERİ	3		
3.	MATERYAL ve METOT	5		
3.1.	Çoklu Eğriler	5		
3.2.	Çoklu Eğrilerin Dynnikov Koordinatları	7		
3.3.	Güncelleme Kuralları	13		
3.4.	Train Track Grafikleri	15		
3.5.	Çoklu Eğrilerin Train Track Koordinatlarından Oluşturulması	18		
4.	ARAŞTIRMA BULGULARI	19		
4.1.	$\Delta = \Delta_{2i} \cup \cdots \cup \Delta_{2j-1}$ Bölgesinde Yol Bileşenleri	19		
4.2.	Çoklu Eğrilerin Geometrik Kesişim Sayısı	28		
5.	TARTIŞMA VE SONUÇ	33		
6.	KAYNAKLAR	35		
ÖZGEO	ÖZGEÇMİŞ			

ÖZET

DYNNIKOV KOORDİNATLARI VE π_1 -TRAIN TRACK GRAFİKLERİ

YÜKSEK LİSANS TEZİ

Umut GÜNGÖRÜR

DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

2018

Bu tezin amacı n-noktası çıkarılmış D_n diski üzerinde tanımlı çoklu eğrilerin Dynnikov koordinatları ile π_1 -train track koordinatları arasında geçiş formülleri tanıtmaktır.

Dynnikov koordinat sistemi D_n de tanımlı çoklu eğrilerin kümesi \mathcal{L}_n ile $Z^{\{2n-4\}}\setminus\{0\}$ arasında birebir ve örten bir dönüşüm verir. π_1 -train track koordinatları da \mathcal{L}_n için alternatif bir koordinat sistemi sunar. Bu tezde bu iki koordinat sistemi arasında geçiş formülleri sunulmuştur. Ayrıca bu formüllerden yararlanarak D_n de verilen iki çoklu eğrinin geometrik kesişim sayısı π_1 -train track koordinatları cinsinden hesaplanmıştır.

Anahtar Kelimeler: Çoklu eğriler, Dynnikov koordinatları, π_1 -train track grafiği, geometrik kesişim sayısı.

ABSTRACT

DYNNIKOV COORDINATES AND π_1 –TRAIN TRACKS

MASTER OF SCIENCE THESIS

Umut GÜNGÖRÜR

UNIVERSITY OF DICLE INSTITUTE OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATIC

2018

The aim of this thesis is to introduce transition formulae between Dynnikov coordinates and π_1 -train track coordinates of multicurves on the *n*-punctured disk D_n .

Dynnikov coordinate system gives an explicit bijection between the set of multicurves \mathcal{L}_n on D_n and $Z^{\{2n-4\}}\setminus\{0\}$. An alternative way to coordinatize multicurves is achieved by π_1 -train track coordinates. This thesis gives transition formulae between Dynnikov coordinates and π_1 -train track coordinates of multicurves. This provides a way to compute the geometric intersection number of two multicurves on D_n in terms of π_1 -train track coordinates.

Key Words: Multicurves, Dynnikov coordinates, π_1 -train track coordinates, geometric intersection number.

ŞEKİL LİSTESİ

<u>Şekil No</u>	<u>S</u>	<u>Sayfa</u>
Şekil 3.1.	D ₆ da bir çoklu eğri	6
Şekil 3.2.	$i(\mathscr{L}^{i}, \mathscr{L}^{2}) = 10$	6
Şekil 3.3.	α_i ve βi yayları	7
Şekil 3.4.	$\delta(\mathscr{L}) = (2, 8, 5, 3; 10, 8, 2)$ üçgen koordinatları	8
Şekil 3.5.	Sağ ve Sol dönen bileşen	9
Şekil 3.6.	\mathscr{L} nin üçgen koordinatları	10
Şekil 3.7.	S_i bölgelerindeki bağlantılı bileşenlerin biraraya getirilmesi	11
Şekil 3.8.	$\delta(\mathscr{L}) = (2, 8, 5, 3; 10, 8, 2)$ karşılık gelen çoklu eğri	11
Şekil 3.9.	$\alpha_1 + \alpha_2$ toplamı tek sayı	12
Şekil 3.10.	$ \rho(\mathscr{L}) = (-1, 1; 1, 0) $	14
Şekil 3.11.	Bir işaretlenmiş noktalı 1–gen ve işaretlenmiş nokta içermeyen bazı çokgenler	16
Şekil 3.12.	D_4 te bir π_1 -train track grafiği	16
Şekil 3.13.	au nun bir lifli komşuluğu. Burada yeşil renkli lif singüler liftir	17
Şekil 3.14.	Kırmızı eğri $ au$ tarafından taşınmaktadır	17
Şekil 3.15.	Her bir düğmede eğri parçaları tek türlü birleştirilir	18
Şekil 3.16.	Verilen bir eğrinin train track koordinatlarından oluşturulması	18
Şekil 4.1.	\mathscr{D} nin $\Delta_{2i} \cup \Delta_{2i+1}$ ve $\Delta = \Delta_{2i} \cup \cdots \cup \Delta_{2j-1}$ bölgelerindeki yol bileşenleri	19
Şekil 4.2.	$\alpha_{2i-1,2i+1}$ yol bileşenlerinin hesaplanması	21
Şekil 4.3.	$\alpha_{2i-1,2j-1}$ yol bileşenlerinin hesaplanması	23
Şekil 4.4.	$x_i \alpha_{2j-1}$ yol bileşenlerinin hesaplanması	23
Şekil 4.5.	$x_{i,j}$ yol bileşenlerinin hesaplanması	24
Şekil 4.6.	Dynnikov koordinatları $\rho(\mathcal{L}) = (-1, 1; -1, 1)$ olan \mathscr{L} çoklu eğrisi	24
Şekil 4.7.	\mathscr{L} nin train track koordinatları $(e_1, e_2, e_3, e_4, e_5) = (1, 0, 1, 0, 1)$	26

Şekil 4.8.	4.8. x_i aralığını kesen yol bileşenleri				
Şekil 4.9.	. K karesinde \mathscr{L} nin yol bileşenleri				
Şekil 4.10. α_{2i-1} ve α_{2i} yayları üzerindeki kesişimler ile β_i ve x_i nin köşegenler olduğu dörtgen					
Şekil 4.11.	D_5 te bazı elemanter eğriler	28			
Şekil 4.12.	12. S _{ij} bölgesindeki yol bileşenleri				
Şekil 4.13.	D_4 te π_1 -train track grafiği tarafından taşınan C_{34} elemanter ile :L eğrisinin geometrik kesişimi	31			
Şekil 4.14.	D_3 te farklı π_1 -train track grafikleri tarafından taşınan iki eğrinin geometrik kesişimi	32			

KISALTMA VE SİMGELER

D_n	: Düzlemde <i>n</i> –noktası çıkarılmış disk
\mathcal{L}_n	: D_n de çoklu eğrilerin kümesi
τ	: Train track grafiği
∂D_n	: D_n diskinin dış sınırı
$i(L^1, L^2)$:L ¹ ve L ² nin geometrik kesişim sayısı
CW	: CW kompleks
Δ_{2i-1}	: $\alpha_{2i-1}, \alpha_{2i}, \beta_i$ yaylarıyla sınırlanan bölge
Δ_{2i}	: $\alpha_{2i-1}, \alpha_{2i}, \beta_{i+1}$ yaylarıyla sınırlanan bölge
δ	: Üçgen koordinat fonksiyonu
S_i	$: \Delta_{2i-1} \cup \Delta_{2i}$
ρ	: Dynnikov koordinat fonksiyonu
[x]	: x den küçük olmayan en küçük tamsayı
b_j^+	$\max(b_j, 0)$
$T_v(\tau)$: <i>v</i> düğmesinde tanjant vektörü
7	: Deformasyon Retraksiyonu
μ	: Çapraz Ölçüm
$W_z(\tau)$: $ au$ Çapraz Ölçüm Uzayı
$\mathscr{L}\prec \tau$: \mathscr{L} , τ tarafında taşınmaktadır
$\alpha_{i,j}$: Uç noktaları α_i ve α_j üzerinde olan bağlantılı bileşenler
$x_i \alpha_j$: Uç noktaları x_i ve α_j üzerinde olan bağlantılı bileşenler
$x_{i,j}$: Uç noktaları x_i ve x_j üzerinde olan bağlantılı bileşenler
C _{ij}	: <i>i</i> den <i>j</i> ye kadar işaretlenmiş noktaları kapsayan elemanter eğri
$MCG(D_n)$: D_n Gönderim Sınıfları Grubu
σ_i	: <i>i</i> . Artin Örgü üreteci
σ_i^{-1}	: <i>i</i> . Artin Örgü üretecinin tersi

1. GİRİŞ

Verilen bir yüzeyde tanımlı çoklu eğriler (birbirinden ayrık basit kapalı esas eğrilerin homotopi sınıflarının oluşturduğu sistemler) düşük boyutlu topoloji ve hesaplamalı topolojide merkezi bir rol oynamaktadır. Böyle sistemler genellikle Dehn–Thurston koordinatları veya train track koordinatları tarafından tanımlanmaktadır (Penner ve Harer 1992, Bestvina ve Handel 1995, Hamidi ve Chen 1996, Menzel ve Parker 2003, Parker ve Series 2004). Yüzeyin *n*–noktası çıkarılmış D_n diski (*n* adet *işaretlenmiş* noktalı disk) olması durumunda çoklu eğrileri tanımlamanın alternatif ve kullanışlı bir yolu çoklu eğrilerin kümesi ile $\mathbb{Z}^{2n-4} \setminus \{0\}$ arasında birebir ve örten bir fonksiyon tanımlayan Dynnikov koordinat sistemini kullanmaktır (Dynnikov 2002, Dynnikov ve Wiest 2007, Dehornoy 2008, Dehornoy ve ark. 2008, Yurttaş 2013, Yurttaş 2016, Yurttaş ve Hall 2017, Yurttaş ve Hall 2018).

Dinamik sistemlerde oldukça geniş bir uygulama alanı olan Dynnikov koordinat sistemi , *n*-Örgü Grubunda kelime probleminin çözümü (Dehornoy 2008), pseudo–Anosov tipinden örgülerin topolojik entropi ve diğer dinamiksel özelliklerinin hesaplanması (Hall ve Yurttaş 2009, Yurttaş 2016) gibi bir çok önemli problemin çözümünde kullanılmıştır. Ayrıca, bir çoklu eğrinin bağlantılı olup olmadığını polinomsal zamanda hesaplayan bir algoritmanın varlığı açık problemi uzun bir aradan sonra D_n durumu için Dynnikov koordinatları verilen bir çoklu eğrinin tam olarak kaç parçadan oluştuğunu kuadratik zamanda hesaplayan bir algoritma tanıtılarak çözülmüştür (Yurttaş ve Hall 2017). Bunun sonucu olarak D_n de verilen iki keyfi çoklu eğrinin geometrik kesişim sayısı yine Dynnikov koordinatları cinsinden kuadratik zamanda çalışan bir algoritma ile hesaplanmıştır (Yurttaş ve Hall 2018).

Yüzey homeomorfizmalarının dinamiği (Fathi ve ark. 1979, Thurston 1988, Yurttaş 2016) ve eğriler ile ilgili kombinatorik problemleri (Yurttaş ve Hall 2017, Yurttaş ve Hall 2018, Schaefer ve ark. 2008) çalışmak için en sık kullanılan koordinat sistemlerinden biri de train track grafikleridir (Penner ve Harer 1992, Bestvina ve Handel 1995, Hamidi ve Chen 1996, Menzel ve Parker 2003, Parker ve Series 2004). Bir τ train track grafiği *düğme* adı verilen köşeler ve *dal* adı verilen kenarlardan oluşan, her bir düğmede bir tek tanjant vektörü bulunan ve belli geometrik özellikleri sağlayan bir CW–komplekstir. τ üzerinde bir *çapraz ölçüm*, τ nun her bir dalına negatif olmayan ve *düğme koşulları* olarak adlandırılan belli lineer denklemleri sağlayan sayılar tayin eden bir fonksiyondur. Bir çapraz ölçüm ile donatılmış train track grafiğine *ölçülü train track grafiği* denir. Böyle grafikler çoklu eğrileri koordinatlandırmanın başka bir yolunu sunar. Daha açık olarak, $\mathcal{W}(\tau)$, τ ile ilişkili çapraz ölçümler uzayını belirtmek üzere, bir \mathcal{L} çoklu eğrisi, $\mathcal{W}(\tau)$ uzayındaki bir çapraz ölçüm tarafından ortaya çıkıyorsa \mathcal{L} , τ tarafından taşınıyor denir ve ilgili ölçüler \mathcal{L} nin *train track koodinatları* olarak adlandırılır.

Bu tezin amacı *n*-noktası çıkarılmış D_n diski üzerinde tanımlı çoklu eğrilerin Dynnikov koordinatları ile π_1 -train track koordinatları arasında geçiş formülleri tanıtmaktır.

Bu tez beş bölümden oluşmaktadır. İlk bölüm giriş kısmına ayrılmış, sonuçlarımız için gerekli temel kavramlar ve terimler ikinci bölümde tanıtılmıştır.

Üçüncü bölüm ise, sonuçlarımız için gerekli altyapı materyalini içermektedir. Daha açık olarak, üçüncü bölümde D_n de tanımlı çoklu eğrilerin kümesi ile $\mathbb{Z}^{2n-4} \setminus \{0\}$ kümesi arasında birebir ve örten bir fonksiyon tanımlayan Dynnikov koordinat sistemi ve çoklu eğrilerin π_1 -train track koordi-

1. GİRİŞ

natları detaylı bir şekilde incelenmiş, her iki koordinat sistemi için açıklayıcı örnekler sunulmuştur. Ayrıca, D_n in gönderim sınıfları etkisini Dynnikov koordinatları cinsinden veren ve Dynnikov koordinatlarının örgülerin dinamiği üzerinde kullanımını olanaklı kılan güncelleme kuralları verilmiştir.

Dördüncü bölümde, bu tezin odak noktası olan koordinat sistemleri arasındaki geçiş formülleri açıklayıcı resimler ve örneklerle sunulmuştur. Böylece, D_n de verilen bir çoklu eğri ile elemanter bir eğrinin ve D_3 de verilen iki keyfi çoklu eğrinin geometrik kesişim sayısını π_1 -train track koordinlatları cinsinden yazılmasına olanak sağlanmıştır.

Son olarak, beşinci bölümde, güncelleme kurallarının π_1 -train track koordinatları cinsinden yazımı ve bu tezde verilen sonuçların yüksek cinsli yüzeylere genelleştirme problemleri sorulmuştur.

2. KAYNAK ÖZETLERİ

Bu bölümde tezin oluşturulmasında önemli rol oynayan ve Dynnikov koordinat sistemi ile train track koordinatları aracılığıyla birçok dinamiksel ve kombinatorik problemin çözüldüğü kaynaklar listelenmiştir.

- On a Yang-Baxter mapping and the Dehornoy ordering; 2002 yılında I. Dynnikov tarafından yazılan bu makalede Dynnikov koordinat sistemi tanıtılmış, Artin *n*-örgü grubunun σ_i ve σ_i^{-1} üreteçlerinin Dynnikov koordinatları cinsinden çoklu eğriler kümesi üzerindeki etkisi verilmiştir.
- On computing the entropy of braids; 2006 yılında J. Moussafir tarafından yazılan bu makalede verilen bir örgünün topolojik entropisinin yaklaşık değerini Dynnikov koordinatları cinsinden hesaplayan bir metod sunulmuştur.
- On the complexity of braids; 2007 yılında I. Dynnikov ve B. Wiest tarafından yazılan bu makalede verilen bir örgünün cebirsel kompleksitesi tanıtılmış, bir çoklu eğriyi minimal bir eğri sistemine dönüştüren 'rahatlatma algoritması' verilmiştir.
- Efficient solutions to the braid isotopy problem; 2008 yılında P. Dehornoy tarafından yazılan bu makalede Artin grubunun kelime problemi için etkili bir çözüm sunulmuştur. Daha açık olarak verilen bir örgünün birim olup olmadığını Dynnikov koordinatları cinsinden hesaplayan bir algoritma verilmiştir.
- On the topological entropy of families of braids; 2009 yılında T. Hall ve S.Ö. Yurttaş tarafından yazılan bu makalede örgülerin sonsuz bir ailesinin her bir üyesinin topolojik entropisini Dynnikov koordinatları cinsinden hesaplayan bir metod tanıtılmıştır.
- Geometric intersection of curves on punctured disks; 2013 yılında S.Ö. Yurttaş tarafından yazılan bu makalede verilen bir çoklu eğrinin minimal bir eğri ile olan geometrik kesişim sayısını Dynnikov koordinatları cinsinden hesaplayan bir formül verilmiştir.
- Dynnikov and train track transition matrices of pseudo-Anosov braids; 2016 yılında S.Ö. Yurttaş tarafından yazılan bu makalede Dynnikov matrisleri ile train track geçiş matrislerinin spektrumları kıyaslanmış, bu matrislerin belli koşullar ardında özdeğer kümelerinin eşit olduğu ispatlanmıştır.
- Counting components of an integral lamination; 2017 yılında S.Ö. Yurttaş ve T. Hall tarafından yazılan bu makalede verilen bir çoklu eğrinin bağlantılı bileşen sayısını Dynnikov koordinatları yardımıyla kuadratik zamanda hesaplayan bir algoritma verilmiştir.
- Intersections of multicurves from Dynnikov coordinates; 2018 yılında S.Ö. Yurttaş ve T. Hall tarafından yazılan bu makalede verilen iki keyfi çoklu eğrinin geometrik kesişim sayısını Dynnikov koordinatları yardımıyla kuadratik zamanda hesaplayan bir algoritma verilmiştir.

- Train-tracks for surface homeomorphisms; 1995 yılında M. Bestvina ve M. Handel tarafından yazılan bu makalede Thurston'ın yüzey homemorfizmaları sınıflandırma teoremi için algoritmik bir ispat verilmiştir. Bu ispat için train-track koordinatları kullanılmıştır.
- Pseudo-Anosov diffeomorphisms of the twice punctured torus; 2003 yılında C. Menzel ve J.R. Parker tarafından yazılan bu makalede π_1 -train track grafikleri yardımıyla iki noktası çıkarılmış torusta verilen bir homeomorfizmanın izotopi sınıfının pseudo-Anosov olup olmadığını veren bir algoritma tanıtılmıştır.

3. MATERYAL VE METOT

Bu bölümün amacı D_n de verilen çoklu eğrilerin Dynnikov koordinatlarını ve π_1 -train track koordinatlarını tanıtmaktır. Öncelikle, Dynnikov koordinat sistemi tanıtılacaktır. Bunun için, her bir çoklu eğriyi D_n yüzeyine gömülü 3n - 5 adet belli yay üzerindeki geometrik kesişim sayısını kullanarak \mathbb{Z}^{3n-5} kümesinin bir elemanı olarak tanıtan üçgen koordinatlarından faydalanılacaktır. *Dynnikov koordinatları* (Dynnikov 2002, Dynnikov ve Wiest 2007, Dehornoy 2008, Dehornoy ve ark. 2008, Yurttaş 2013, Yurttaş 2016, Yurttaş ve Hall 2017, Yurttaş ve Hall 2018) bu kesişim sayılarının belli bir lineer bileşimidir ve \mathcal{L}_n ile $\mathbb{Z}^{2n-4} \setminus \{0\}$ arasında birebir ve örten bir fonksiyon tanımlamaktadır.

Daha sonra, D_n de belli topolojik ve geometrik özellikleri sağlayan bir CW kompleks olan train track grafikleri ve bu teze konu olan π_1 -train track grafikleri tanıtılarak, ölçülü train track grafiklerinin üzerlerinde taşıdıkları çoklu eğrileri nasıl koordinatlandırdıkları açıklayıcı örneklerle anlatılacaktır.

3.1. Çoklu Eğri

 D_n , düzlemde *n*–noktası çıkarılmış (*n* adet *işaretlenmiş* noktalı) bir disk olsun. Bu bölümde D_n de tanımlı çoklu eğriler tanıtılacak, çoklu eğriler ile ilgili bazı özelikler ve tanımlar verilecektir.

Tanım 3.1.1. $\alpha(0,1) \subset D_n$ özelliğindeki $\alpha : [0,1] \to D_n$ sürekli dönüşümüne D_n de bir yol adı verilir. $\alpha \operatorname{nın} \alpha(0)$ başlangıç ve $\alpha(1)$ bitiş noktası olmak üzere iki uç noktası vardır. Eğer α , D_n de gömme (embedding) ise, α ya yay adı verilir. S^1 birim çember olmak üzere, $\alpha : S^1 \to D_n$ sürekli dönüşümüne D_n de *kapalı eğri* denir ve eğer α gömme ise α nın görüntüsü D_n de *basit kapalı eğri* olarak adlandırılır.

Tanım 3.1.2. f ve g, D_n de iki sürekli dönüşüm ve I = [0, 1] olsun. $\forall t \in I$, $\forall x \in D_n$, H(x, t) = f(x) ve H(x,t) = g(x) olacak şekilde bir $H : D_n \times I \to D_n$ sürekli dönüşümü varsa f dönüşümü g dönüşümüne *homotoptur* denir ve H ye *homotopi* adı verilir. α ve β , D_n de iki eğri olmak üzere $\forall x \in D_n$,

$$H(x,0) = \alpha(x), H(x,1) = \beta(x)$$
 ve
 $H(0,t) = \alpha(0) = \beta(0), H(1,t) = \alpha(1) = \beta(1)$

olacak şekilde bir $H: D_n \times I \to D_n$ sürekli dönüşümü varsa α ve β ya *homotopik eğrilerdir* denir ve $\alpha \simeq \beta$ ile gösterilir.

Aşağıdaki tanımın, Bölüm 3.4 de verilecek train track koordinatları tanımında önemli bir rolü vardır.

Tanım 3.1.3. $A \subseteq X$ olsun. $\forall x \in X$, $\forall a \in A$, F(x,0) = x, $F(x,1) \in A$ ve F(a,1) = a olacak şekilde bir $F : X \times [0,1] \rightarrow D_n$ sürekli dönüşümü varsa F ye X in A altuzayına *deformasyon retraksiyonudur* denir. Bu durumda A, X in bir *deformatik retraktı* olarak adlandırılır.

Tanım 3.1.4. D_n de disk, 1 adet işaretlenmiş noktası olan disk veya halka sınırlamayan basit kapalı eğriye *esas eğri* denir. D_n de birbiriyle kesişmeyen sonlu sayıda esas eğrinin homotopi sınıflarının

Şekil 3.1. D_6 da bir çoklu eğri

bir birleşimi *çoklu eğri* olarak adlandırılır (Şekil 3.1). D_n de tanımlı çoklu eğrilerin kümesi \mathcal{L}_n ile gösterilir.

Şimdi, Bölüm 3 ve Bölüm 4 de verilen tanım ve sonuçlar için çok önemli olan eğrilerin (ve yayların) geometrik kesişimi kavramı ile devam edelim.

Şekil 3.2. $i(\mathcal{L}^1, \mathcal{L}^2) = 10$

Tanım 3.1.5. $\mathscr{L}^1, \mathscr{L}^2 \in \mathscr{L}_n$ olsun. \mathscr{L}^1 ve \mathscr{L}^2 nin geometrik kesişim sayısı $i(\mathscr{L}^1, \mathscr{L}^2)$

$$i(\mathscr{L}^1, \mathscr{L}^2) = \min(\#L^1 \cap L^2 : L^1 \in \mathscr{L}^1 \quad \text{ve} \quad L^2 \in \mathscr{L}^2)$$

dır. Bir çoklu eğri ile bir yay arasındaki geometrik kesişim sayısı benzer şekilde tanımlanır.

Dolayısıyla, iki çoklu eğrinin geometrik kesişim sayısı bu laminasyonların içinde bulunduğu homotopi sınıflarındaki temsilciler arasındaki minimum kesişim sayısıdır. Örneğin, Şekil 3.2 de verilen çoklu eğrilerin geometrik kesişim sayısı 10 dur. Çoklu eğrilerin geometrik kesişim sayıları ile ilgili uygulamalar Bölüm 4.2 de detaylı bir şekilde verilmiştir.

3.2. Çoklu Eğrilerin Dynnikov Koordinatları

Bu bölümde, Dynnikov koordinat sistemi detaylı bir şekilde açıklanacak, birebir ve örten bir dönüşüm olan $\rho : \mathscr{L}_n \to \mathbb{Z}^{2n-4} \setminus \{0\}$ Dynnikov koordinat fonksiyonu tanıtılacaktır. D_n $(n \ge 3)$ düzlemde *n*-noktası çıkarılmış diskin standart bir modeli olsun (işaretlenmiş noktalar Şekil 3.3 de gösterildiği gibi diskin yatay eksenindedir). \mathscr{A}_n , D_n de uç noktaları diskin dış sınırı ∂D_n ve diskin işaretlenmiş noktaları üzerinde bulunan yayların kümesi olsun. Şekil 3.3 de gösterilen α_i $(1 \le i \le 2n-4)$ ve β_i $(1 \le i \le n-1)$ yaylarını düşünelim. α_{2i-3} ve α_{2i-2} $(1 \le i \le n)$ yayları *i*-inci işaretkenmiş noktayı diskin sınırına birleştirirken, β_i yayının her iki uç noktası ∂D_n de yer alıp, *i*-inci ve *i* + 1-inci işaretlenmiş noktalar arasından geçer.

Bu yaylar, 2n - 4 tanesi üçgensel olmak üzere diski 2n - 2 (kapalı) bölgeye ayırır. Diskin dış sınırı tek bir nokta ile eşleştirildiğinde *i*-inci işaretlenmiş noktanın ($1 \le i \le n$) solunda ve sağında yer alan her bir bölge 3 yay tarafından sınırlandırıldığından üçgenseldir. *i*-inci işaretlenmiş noktanın solundaki Δ_{2i-3} bölgesi, α_{2i-3} , α_{2i-2} ve β_{i-1} yaylarıyla ve sağındaki Δ_{2i-2} bölgesi, α_{2i-3} , α_{2i-2} ve β_i yaylarıyla sınırlıdır. Diskin en solundaki ve en sağındaki Δ_0 ve Δ_{2n-3} bölgeleri sırasıyla, β_1 ve β_{n-1} ile sınırlıdır.

 $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisinin α_i ve β_i yaylarını minimum sayıda kesen *minimal* bir temsilcisi her zaman bulunabilir. \mathscr{L} nin *minimal* temsilcisi *L* ile gösterilir.

 α_i ve β_i , *L* nin sırasıyla α_i ve β_i yayları ile olan kesişim sayısına karşılık gelsin.

 α_i ve β_i sembollerinin, ne zaman yaylara, ne zaman yaylar üzerindeki kesişim sayılarına karşılık geldikleri tez boyunca açıkça belirtilecektir.

Şekil 3.3. α_i ve β_i yayları

Tanım 3.2.1. $\delta : \mathscr{L}_n \to \mathbb{Z}_{\geq 0}^{3n-5}$ üçgen koordinat fonksiyonu,

$$\delta(\mathscr{L}) = (\alpha_1, \ldots, \alpha_{2n-4}; \beta_1, \ldots, \beta_{n-1}).$$

olarak tanımlanır.

Örneğin, Şekil 3.4 de gösterilen $\mathscr L$ çoklu eğrisinin üçgen koordinatları

$$\delta(\mathscr{L}) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4; \beta_1, \beta_2, \beta_3) = (2, 8, 5, 3; 10, 8, 2)$$

olarak verilir.

Şekil 3.4. $\delta(\mathscr{L}) = (2, 8, 5, 3; 10, 8, 2)$ üçgen koordinatları

Tanım 3.2.2. $S_i = \Delta_{2i-1} \cup \Delta_{2i}$ $(1 \le i \le n-2)$ olarak tanımlansın. *L* nin S_i de bir yol bileşeni, $L \cap S_i$ kümesinin bir bağlantılı bileşenidir. *L* minimal olduğundan S_i de 4 tip yol bileşeni vardır.

- (i) *Sağ dönen bileşen*; Her iki uç noktası β_i üzerinde olan ve hem α_{2i-1} hem de α_{2i} yayını kesen bileşen;
- (ii) *Sol dönen bileşen*; Her iki uç noktası β_{i+1} üzerinde olan ve hem α_{2i-1} hem de α_{2i} yayını kesen bileşen;
- (iii) *Üst yol bileşen*; Uç noktaları β_i ve β_{i+1} üzerinde olan ve α_{2i-1} yayını kesen ancak α_{2i} yayını kesmeyen bileşen;
- (iv) Alt yol bileşen; Uç noktaları β_i ve β_{i+1} üzerinde olan ve α_{2i} yayını kesen ancak α_{2i-1} yayını kesmeyen bileşendir.

Uyarı 3.2.3. *L* basit kapalı eğriler içerdiğinden *L* nin S_i de hem sağ ve hem de sol dönen bileşenleri bulunamaz.

Şekil 3.5. Sağ ve Sol dönen bileşen

Tanım 3.2.4. Her $0 \le i \le n - 1$ için,

$$b_i = \frac{\beta_i - \beta_{i+1}}{2}.\tag{1}$$

olarak tanımlanır.

 $|b_i|$, S_i de bulunan dönen bileşenlerin sayısını verir. $\varepsilon_i = \operatorname{sgn}(b_i)$, dönen bileşenlerin sağ ya da sol dönen bileşen olup olmadığını belirler. Daha açık olarak, S_i de $b_i > 0$ ise sağ dönen bileşen ve $b_i < 0$ ise sol dönen bileşen vardır.

Uyarı 3.2.5. *L* nin en solundaki Δ_0 bölgesinde sadece sol dönen bileşen, en sağındaki Δ_{2n-3} bölgesinde sadece sağ dönen bileşen vardır. Dönen bileşen sayıları, Δ_0 bölgesinde $\frac{\beta_1}{2}$ ve Δ_{2n-3} bölgesinde $\frac{\beta_{n-1}}{2}$ ile bulunur.

 S_i de her alt ve üst bileşen sırasıyla α_{2i} ve α_{2i-1} yaylarıyla kesiştiğinden sıradaki Yardımcı Teoremin ispatı açıktır.

Yardımcı Teorem 3.2.6. S_i bölgesinde alt ve üst bileşenlerin sayıları sırasıyla, $S_i^a = \alpha_{2i} - |b_i|$ ve $S_i^{ii} = \alpha_{2i-1} - |b_i|$ olarak verilir.

Yardımcı Teorem 3.2.7, Şekil 3.5 den kolaylıkla gözükmektedir.

Yardımcı Teorem 3.2.7. Her S_i için aşağıdaki eşitlikler sağlanır

$$\max(\boldsymbol{\beta}_{i}, \boldsymbol{\beta}_{i-1}) = \boldsymbol{\alpha}_{2i} + \boldsymbol{\alpha}_{2i-1} \tag{2}$$

$$\min(\beta_i, \beta_{i-1}) = \alpha_{2i} + \alpha_{2i-1} - 2|b_i|.$$
(3)

Örnek 3.2.8. Üçgen koordinatları (2, 8, 5, 3; 10, 8, 2) olan $\mathcal{L} \in \mathcal{L}_4$ çoklu eğriyi çizebilmek için her S_i bölgesindeki dönen bileşen sayıları Tanım 3.2.4, alt ve üst bileşen sayıları Yardımcı Teorem 3.2.6 yardımıyla hesaplanır.

 β_1 =10 olduğundan Δ_0 bölgesinde 5 sol dönen bileşen ve $\beta_3 = 2$ olduğundan Δ_5 bölgesinde 1 sağ dönen bileşen vardır.

$$b_1 = \frac{\beta_1 - \beta_2}{2} = \frac{10 - 8}{2} = 1$$

olduğundan S_1 bölgesinde 1 sağ dönen bileşen,

$$b_2 = \frac{\beta_2 - \beta_3}{2} = \frac{8 - 2}{2} = 3$$

olduğundan S₂ bölgesinde 3 sağ dönen bileşen vardır.

Şimdi Yardımcı Teorem 3.2.6 yardımıyla, her bir S_i bölgesindeki üst ve alt bileşen sayılarını hesaplayalım.

$$\alpha_1 - b_1 = 2 - 1 = 1$$
 ve $\alpha_2 - b_1 = 8 - 1 = 7$

olduğundan S_1 de 1 üst bileşen ve 7 alt bileşen vardır.

Benzer şekilde $\alpha_3 - b_2 = 5 - 3 = 2$ ve $\alpha_4 - b_2 = 3 - 3 = 0$ olduğundan S_2 de 2 üst bileşen vardır ve hiç alt bileşen yoktur. Bu bilgiler ışığında önce Şekil 3.7 elde edilir. Hesaplanan bileşenler homotopi altında tek türlü birleştirilerek Şekil 3.8 deki çoklu eğri elde edilir.

Şekil 3.6. \mathscr{L} nin üçgen koordinatları

Yardımcı Teorem 3.2.9. $\delta : \mathscr{L}_n \to \mathbb{Z}_{\geq 0}^{3n-5}$ üçgen koordinat fonksiyonu birebirdir.

İspat. Örnek 3.2.8 de olduğu gibi her bir S_i bölgesindeki alt, üst, sağ dönen ve sol dönen yol bileşenleri hesaplanır. Bu bileşenler homotopi altında tek türlü birleştirilerek *L* tek türlü belirlenir.

Şekil 3.7. S_i bölgelerindeki bağlantılı bileşenlerin biraraya getirilmesi

Şekil 3.8. $\delta(\mathscr{L})=(2,8,5,3;10,8,2)$ karşılık gelen çoklu eğri

Uyarı 3.2.10. Üçgen koordinatları her Δ_i bölgesinde, üçgen eşitsizliği ve Yardımcı Teorem 3.2.7 deki koşulları sağlamalıdır. Ayrıca \mathscr{L} basit kapalı eğrilerden oluştuğundan her bir β_i yayını (dolayısıyla her bir $\alpha_{2i-1} \cup \alpha_{2i}$ birleşimini) çift sayıda kesmelidir. Bu nedenle $\mathbb{Z}_{\geq 0}^{3n-5}$ kümesinden alınan her vektör bir çoklu eğriye karşılık gelmeyebileceğinden $\delta : \mathscr{L}_n \to \mathbb{Z}_{\geq 0}^{3n-5}$ fonksiyonu örten değildir. Örneğin, (2,1;2,2) üçgen koordinatları, $\alpha_1 + \alpha_2$ toplamı tek sayı olduğundan basit kapalı bir eğri sistemine karşılık gelmez (Şekil 3.9).

Tanım 3.2.11. *Dynnikov koordinat fonksiyonu* $\rho : \mathscr{L}_n \to \mathbb{Z}^{2n-4} \setminus \{0\},$

Şekil 3.9. $\alpha_1 + \alpha_2$ toplamı tek sayı

$$a_i = \frac{\alpha_{2i} - \alpha_{2i-1}}{2} \qquad \text{ve} \qquad b_i = \frac{\beta_i - \beta_{i+1}}{2} \tag{4}$$

 $1 \le i \le n-2$ olmak üzere

$$\rho(\mathscr{L}) = (a,b) = (a_1, \dots, a_{n-2}; b_1, \dots, b_{n-2})$$

olarak tanımlanır.

 $(\alpha; \beta)$ kesişim sayıları (dolayısıyla bunlara karşılık gelen çoklu eğri), Yardımcı Teorem 3.2.12 kullanılarak $(a; b) \in \mathbb{Z}^{2n-4} \setminus \{0\}$ Dynnikov koordinatlarından bulunabilir.

Yardımcı Teorem 3.2.12. $(a,b) \in \mathbb{Z}^{2n-4} \setminus \{0\}$ üçgen koordinatları aşağıda verilen bir ve yalnız bir $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisine karşılık gelir.

$$\beta_{i} = 2 \max_{1 \le k \le n-2} \left[|a_{k}| + b_{k}^{+} + \sum_{j=1}^{k-1} b_{j} \right] - 2 \sum_{j=1}^{i-1} b_{j}$$
(5)

$$\alpha_{i} = \begin{cases} (-1)^{i} a_{\lceil i/2 \rceil} + \frac{\beta_{\lceil i/2 \rceil}}{2} & e \breve{g} er \ b_{\lceil i/2 \rceil} \ge 0; \\ (-1)^{i} a_{\lceil i/2 \rceil} + \frac{\beta_{1+\lceil i/2 \rceil}}{2} & e \breve{g} er \ b_{\lceil i/2 \rceil} \le 0 \end{cases}$$
(6)

Burada [x] x den küçük olmayan en küçük tamsayıyı göstermektedir.

 $b_j^+ = \max(b_j, 0)$ olsun. Yukarıdaki Yardımcı Teorem 3.2.12 nin ispatı (Hall ve Yurttaş 2009, Yurttaş 2013, Yurttaş 2016) da detaylı bir şekilde yapılmıştır. İspat, çoklu eğrilerin Dynnikov koordinatlarının aşağıdaki özelliklerine dayanmaktadır:

1. $b_i = \frac{\beta_i - \beta_{i+1}}{2}$ olduğundan β_1 in bilinmesi halinde bütün β_i ler ve Yardımcı Teorem 3.2.7 yardımıyla her bir α_i hesaplanabilir.

2. $\beta_i \ge 0$ $(1 \le i \le n-1)$ ve $\alpha_i \ge b_{\lceil i/2 \rceil}$ $(1 \le i \le 2n-4)$ eşitsizlikleri ve bu eşitsizliklerden en az birinin eşitlik olması gerekmektedir (aksi takdirde çoklu eğri ∂D_n e paralel bir eğri içerir). Buradan,

$$\beta_1 = 2 \max_{1 \le k \le n-2} \left[|a_k| + b_k^+ + \sum_{j=1}^{k-1} b_j \right]$$

olarak bulunur.

Örnek 3.2.13. $\rho(\mathscr{L}) = (a,b) = (-1,1;1,0) \in \mathbb{Z}^4$ vektörünün Yardımcı Teorem 3.2.12 den yararlanarak α ve β üçgen koordinatlarını hesaplayalım.

(5) formülünden yararlanarak

$$\beta_1 = 2 \max \left(|a_1| + b_1^+, |a_2| + b_2^+ + b_1 \right)$$
$$= 2 \max (2, 2) = 4.$$

bulunur. Buradan,

$$\beta_2 = \beta_1 - 2b_1 = 4 - 2 = 2$$
 ve $\beta_3 = \beta_2 - 2b_2 = 2 - 0 = 2$

elde edilir. (6) formülünden

$$\alpha_{1} = (-1)^{1} a_{\lceil 1/2 \rceil} + \frac{\beta_{\lceil 1/2 \rceil}}{2}$$
$$= (-1)a_{1} + \frac{\beta_{1}}{2} = (-1).(-1) + \frac{4}{2} = 1 + 2 = 3$$

dır. Benzer şekilde $\alpha_2 = 1$, $\alpha_3 = 0$ ve $\alpha_4 = 2$ olarak hesaplanarak \mathscr{L} nin üçgen koordinatları $\delta(\mathscr{L}) = (3, 1, 0, 2; 4, 2, 2)$ olarak bulunur. Örnek 3.2.8 de olduğu gibi alt, üst, sağ ve sol dönen bileşen sayıları hesaplanarak Şekil 3.10 deki çoklu eğri elde edilir.

Şimdi D_n de tanımlı yönlendirilebilir homeomorfizmaların homotopi sınıflarına karsılık gelen örgüler (Artin 1925, Artin 1947) ve örgülerin çoklu eğriler kümesi üzerindeki etkisini Dynnikov koordinatları cinsinden veren güncelleme kuralları (Dehornoy ve ark. 2008, Dynnikov 2002, Dynnikov ve Wiest 2007, Hall ve Yurttaş 2009, Yurttaş ve Hall 2017, Yurttaş ve Hall 2018) tanıtılacaktır.

3.3. Güncelleme Kuralları

 D_n de yönlendirilebilir homeomorfizmaların homotopi sınıflarının grubu olan D_n in *Gönderim* Sınıfları Grubu $MCG(D_n)$ ile gösterilsin. Yüzey homeomorfizmalarının dinamiksel özelliklerini anlamak için çoklu eğriler üzerindeki etkilerini anlamak gerekir. $f: D_n \to D_n$ homeomorfizması $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisini $f(\mathscr{L}) \in \mathscr{L}_n$ laminasyonuna götürdüğünden $MCG(D_n)$, \mathscr{L}_n üzerindeki etkisi iyi tanımlıdır. $MCG(D_n)$, $B_n/Z(B_n)$ bölüm grubuna izomorf olduğundan B_n örgü grubunun da \mathscr{L}_n

Şekil 3.10. $\rho(\mathscr{L}) = (-1, 1; 1, 0)$

üzerindeki etkisi iyi tanımlıdır. D_n de gönderim sınıfları grubunun her bir elemanı örgülerle temsil edildiğinden örgülerin çoklu eğrileri birebir ve örten olacak şekilde tanımlayan Dynnikov koordinatları üzerindeki etkisini anlamak çok önemlidir.

Teorem 3.3.5, güncelleme kuralları (Dynnikov 2002, Hall ve Yurttaş 2009) olarak adlandırılan ve her bir σ_i , σ_i^{-1} , $(1 \le i \le n-1)$ Artin örgü üretecinin \mathscr{L}_n üzerindeki etkisini Dynnikov koordinatları cinsinden vererek, B_n nin \mathscr{L}_n üzerindeki etkisini Dynnikov koordinatları cinsinden bulmaya olanak sağlayan kurallar sunmaktadır. Daha açık olarak güncelleme kuralları $\rho(\sigma_i(\mathscr{L}))$ ve $\rho(\sigma_i^{-1}(\mathscr{L}))$ vektörlerini $\rho(\mathscr{L})$ cinsinden yazmamızı sağlar.

Tanım 3.3.1. (Artin 1925) B_n Artin örgü grubu (*n*-örgü grubu), $\sigma_1, \ldots, \sigma_{n-1}$ üreteçleri aşağıdaki bağıntıları sağlayan sonlu üreteçli bir gruptur

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \qquad 1 \le i, j \le n-1, \quad |i-j| \ge 2,$$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \qquad 1 \le i \le n-2.$$

Tanımlar 3.3.2. B_n de yarı twist

$$\Delta_n = (\sigma_1 \dots \sigma_{n-1})(\sigma_1 \dots \sigma_{n-2}) \dots (\sigma_1 \sigma_2)(\sigma_1)$$

ve tam twist

$$\theta_n = \Delta_n^2 = (\sigma_1 \sigma_2 \dots \sigma_{n-1})^n.$$

olarak tanımlanır.

Teorem 3.3.3. (*Chow 1948*) $n \ge 3$ için, B_n nin merkezi $Z(B_n)$ tam twist tarafından üretilen sonsuz devirli bir altgruptur. Yani, $Z(B_n) = \langle \theta_n \rangle du$:

Teorem 3.3.4. n = 0 ve n = 1 için $MCG(D_n)$ aşikardır. n > 1 için $MCG(D_n)$, $B_n/Z(B_n)$ bölüm grubuna izomorftur.

Teorem 3.3.4, $MCG(D_n)$ nin \mathscr{L}_n üzerindeki etkisinin B_n nin \mathscr{L}_n üzerindeki etkisini tanımladığını söylemektedir. Bununla birlikte örgülerin eğriler üzerindeki etkisi alışılmış notasyondan farklıdır: bileşke soldan sağa doğru alınır. Yani, *C* bir eğri $\beta_1, \beta_2 \in B_n$ olmak üzere $(\beta_1\beta_2)(C) = \beta_2(\beta_1(C))$ dır.

$$[a+b] = \max(a,b)$$
$$[ab] = a+b$$
$$[a/b] = a-b$$
$$[1] = 0$$

olsun. Aşağıdaki teorem güncelleme kurallarını vermektedir.

Teorem 3.3.5. $1 \le i \le n - 1$ ve $\sigma_i(a, b) = (a', b')$, $\sigma_i^{-1}(a, b) = (a'', b'')$ olsun. O zaman j = i - 1 veya j = i dışında $a'_j = a_j$, $a''_j = a_j$, $b'_j = b_j$ ve $b''_j = b_j$ ve

• i = 1 ise

$$\begin{aligned} a_1' &= \left[\frac{a_1 b_1}{a_1 + 1 + b_1} \right], \\ a_1'' &= \left[\frac{1 + a_1 (1 + b_1)}{b_1} \right], \end{aligned} \qquad b_1' &= \left[\frac{1 + b_1}{a_1} \right] \end{aligned}$$

• $2 \le i \le n-2$ ise

$$\begin{aligned} a'_{i-1} &= \left[a_{i-1}(1+b_{i-1})+a_{i}b_{i-1}\right], \qquad b'_{i-1} &= \left[\frac{a_{i}b_{i-1}b_{i}}{a_{i-1}(1+b_{i-1})(1+b_{i})+a_{i}b_{i-1}}\right] \\ a'_{i} &= \left[\frac{a_{i-1}a_{i}b_{i}}{a_{i-1}(1+b_{i})+a_{i}}\right], \qquad b'_{i} &= \left[\frac{a_{i-1}(1+b_{i-1})(1+b_{i})+a_{i}b_{i-1}}{a_{i}}\right]; \\ a''_{i-1} &= \left[\frac{a_{i-1}a_{i}}{a_{i-1}b_{i-1}+a_{i}(1+b_{i-1})}\right], \qquad b''_{i-1} &= \left[\frac{a_{i-1}b_{i-1}b_{i}}{a_{i-1}b_{i-1}+a_{i}(1+b_{i-1})(1+b_{i})}\right], \\ a''_{i} &= \left[\frac{a_{i-1}+a_{i}(1+b_{i})}{b_{i}}\right], \qquad b''_{i} &= \left[\frac{a_{i-1}b_{i-1}+a_{i}(1+b_{i-1})(1+b_{i})}{a_{i-1}}\right]; \end{aligned}$$

• i = n - 1 ise

$$a'_{n-2} = [a_{n-2}(1+b_{n-2})+b_{n-2}], \qquad b'_{n-2} = \left[\frac{b_{n-2}}{a_{n-2}(1+b_{n-2})}\right],$$
$$a''_{n-2} = \left[\frac{a_{n-2}}{a_{n-2}b_{n-2}+1+b_{n-2}}\right], \qquad b''_{n-2} = \left[\frac{a_{n-2}b_{n-2}}{1+b_{n-2}}\right].$$

3.4. Train Track Grafikleri

Bu bölümde train track grafikleri (Bestvina ve Handel 1995, Hamidi ve Chen 1996, Menzel ve Parker 2003, Parker ve Series 2004) tanıtılacak, çoklu eğrilerin bu grafiklerle nasıl koordinatlandırıldığı gösterilecektir. **Tanım 3.4.1.** D_n üzerinde τ train track grafigi, *düğme* adı verilen köşelerden ve *dal* adı verilen kenarlardan oluşan ve her bir düğmesinde bir ve yalnız bir $T_v(\tau)$ tanjant vektörü bulunan D_n e gömülü 1–boyutlu bir CW komplekstir. Ayrıca, $D_n - \tau$ nun her bir bileşeni ya bir işaretlenmiş noktalı bir *p*-gen ($p \ge 1$) ya da işaretlenmiş nokta içermeyen bir *k*-gen ($k \ge 3$) olmalıdır (Şekil 3.11).

Şekil 3.11. Bir işaretlenmiş noktalı 1-gen ve işaretlenmiş nokta içermeyen bazı çokgenler

Her bir v düğmesinde $T_v(\tau)$ tanjant vektörü için bir yön belirleyerek gelendallar ve gidendallar şöyle tanımlanabilir: v düğmesine bitişik bir e dalının yönü $T_v(\tau)$ tanjant vektörünün yönüyle aynı ise e ye gelendal, aksi takdirde gidendal denir. $D_n - \tau$ nun her bir bileşeni üçgen ya da bir 1-delikli 1-gen ise, τ train track grafiğine *tamdır* denir.

Bu tezde özel bir train track grafiği olan π_1 -train track grafikleri (Menzel ve Parker 2003, Parker ve Series 2004, Hamidi ve Chen 1996) kullanılacaktır (Şekil 3.14)

Tanım 3.4.2 (π_1 -Train Track Grafiği). D_n de x_i ($0 \le i \le n$), *i*-inci işaretlenmiş nokta ile *i* + 1-inci işaretlenmiş nokta arasındaki aralığı göstersin. $\tau \pi_1$ -train track grafiği aşağıdaki koşulları sağlar:

- i. τ nun tüm düğmeleri *x*-ekseni üzerindedir ve her bir x_i aralığında τ nun en fazla bir düğmesi vardır.
- ii. v_i ve v_j sırasıyla x_i ve x_j aralıklarındaki düğmeler olmak üzere τ nun v_i ve v_j yi birleştiren en fazla bir dalı vardır.
- iii. x_{ij} , τ nun v_i ve v_j düğmelerini birleştiren dalı olmak üzere $i \neq j$ dir.

Şekil 3.12. D_4 te bir π_1 -train track grafiği

Tanım 3.4.3. τ üzerinde tanımlı μ çapraz ölçümü en az bir *e* dalı için $\mu(e) \neq 0$ olacak şekilde τ nun her bir dalına $\mu(e) \in \mathbb{R}^+$ sayısı tayin eden ve *düğme koşulları* nı sağlayan bir fonksiyondur. Yani, her bir *v* düğmesi için

$$\sum_{v \text{ deki gelen dallar}} \mu(e) = \sum_{v \text{ deki giden dallar}} \mu(e)$$

dir. μ çapraz ölçümü ile donatılmış bir train track grafiğine *ölçülü train track grafiği* denir. τ üzerinde tanımlı çapraz ölçümlerin uzayı $\mathscr{W}_{\mathbb{Z}}(\tau)$ ile gösterilir.

Tanım 3.4.4. τ nun N komşuluğunun Şekil 3.13 de olduğu gibi $r : N \searrow \tau$ retraksiyonunun lifleri ile donatıldığı lifli komşuluğunu düşünelim. Burada, τ nun her bir düğmesi için $r^{-1}(v)$ Şekil 3.13 de gösterildiği gibi bir *singüler lif* tir. Verilen bir $\mathcal{L} \in \mathcal{L}_n$ çoklu eğrisinin homotopi sınıfında N deki her bir life çapraz olan bir temsilcisi varsa \mathcal{L} , τ *tarafından taşınıyor* denir ve $\mathcal{L} \prec \tau$ olarak yazılır. τ tarafından taşınan çoklu eğrilerin uzayını $\mathcal{L}(\tau)$ ile göstereceğiz.

Şekil 3.13. τ nun bir lifli komşuluğu. Burada yeşil renkli lif singüler liftir.

Şekil 3.14 de verilen bir π_1 -train track grafiği tarafından taşınan bir eğriyi göstermektedir.

Şekil 3.14. Kırmızı eğri τ tarafından taşınmaktadır

Uyarı 3.4.5. Yukarıdaki tanımlar ölçülü train track grafiklerinin \mathscr{L}_n çoklu eğriler uzayı için bir koordinat sistemi verdiğini söyler: Bir çoklu eğrinin τ tarafından taşınabilmesi için gerek ve yeter koşul τ üzerinde tanımlı bir çapraz ölçüden elde edilmesidir (yani τ nun her bir düğmesi için düğme koşullarını sağlamasıdır). Sezgisel olarak, \mathscr{L} deki her bir eğri tren raylarından geçen bir tren gibi düşünülebildiğinden train track tarafından taşınmayan bir eğri raylardan çıkan bir trene benzetilebilir. Ayrıca, aşağıda detaylı bir şekilde açıklandığı üzere verilen bir $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisinin τ train track koordinatları τ nun her bir dalına paralel eğri parçası sayılarından oluşacağından τ nun her bir e dalı için $\mu(e) \in \mathbb{Z}^+$ dir.

3.5. Çoklu Eğrilerin Train Track Koordinatlarından Oluşturulması

au, D_n de e_1, e_2, \ldots, e_k dalları ile verilen bir train track grafiği olsun. au üzerinde $(\mu(e_1), \ldots, \mu(e_k)) \in \mathbb{Z}^k_+$ çapraz ölçümü verilsin. au nun $N_{ au}$ lifli komşuluğunda her bir *i* için e_i dalına paralel $\mu(e_i)$ ayrık yay çizelim. μ çapraz ölçüm olduğundan Tanım 3.4.3 gereği her bir v düğmesinde gelendalların sayısı giden dalların sayısına eşit olduğundan Şekil 3.15 da gösterildiği gibi gelendallar gidendallar ile ayrık bir şekilde tek türlü birleştirilerek basit kapalı bir eğri sistemi elde edilir. $D_n - au$, 0 - gen, 1 - gen, 2 - gen, bir noktası işaretlenmiş 0 - gen veya halka içermediğinden $(\mu(e_1), \ldots, \mu(e_k))$ bir çoklu eğri verir (Şekil 3.16). Buradan, $\psi_{ au} : \mathscr{W}_{\mathbb{Z}}(au) \to \mathscr{L}(au)$ fonksiyonuna ulaşılır. Tersine, \mathscr{L} nin au tarafından taşındığını varsayalım. O zaman, \mathscr{L} tarafından au nun e_1, \ldots, e_k dallarına atanan $\mu(e_1), \ldots, \mu(e_k)$ tamsayıları \mathscr{L} nin $L \subseteq N_{ au}$ temsilcisinin e_i dalı üzerinden (yön gözetmeksizin) geçme sayısı olarak verilir ve bunlar düğme koşullarını sağlar.

Şekil 3.15. Her bir düğmede eğri parçaları tek türlü birleştirilir

Buradan, $\psi_{\tau}^{-1} : \mathscr{L}(\tau) \to \mathscr{W}_{\mathbb{Z}}(\tau)$ ters fonksiyonu elde edilir. Sonuç olarak, $\psi_{\tau} : \mathscr{W}_{\mathbb{Z}}(\tau) \to \mathscr{L}(\tau)$ birebir ve örten bir dönüşümdür.

Uyarı 3.5.1. τ , D_n de e_1, e_2, \ldots, e_k dalları ile verilen bir train track grafiği ve $\mathscr{L} \prec \tau$ olsun. \mathscr{L} nin τ nun dallarına tayin ettiği $(\mu(e_1), \ldots, \mu(e_k)) \in \mathbb{Z}^k_+$ çapraz ölçümüne \mathscr{L} nin $(\tau$ ya göre) *train track koordinatları* denir. Kolaylık açısından, $(\mu(e_1), \ldots, \mu(e_k))$ koordinatların e_1, e_2, \ldots, e_k ile göstereceğiz.

Tez boyunca e_1, e_2, \ldots, e_k sembollerinin, ne zaman dallara, ne zaman koordinatlara karşılık geldikleri açıkça belirtilecektir.

Şekil 3.16. Verilen bir eğrinin train track koordinatlarından oluşturulması

4. ARAŞTIRMA BULGULARI

Bu bölümde, öncelikle D_n de verilen bir çoklu eğrinin π_1 -train track koordinatlarını Dynnikov koordinatlarına bağlayan geçiş formülleri verilecektir. Daha sonra D_n de verilen keyfi bir çoklu eğrinin *elemanter* olarak adlandırılan özel bir çoklu eğri ile olan geometrik kesişim sayısı π_1 -train track koordinatlarından hesaplanacaktır. Ayrıca, D_3 te verilen keyfi iki çoklu eğrinin geometrik kesisim sayısını hesaplayan ve determinant hesabına dayanan iyi bilindik bir formülün π_1 -train track koordinatları cinsiden yazımı verilecektir. Bunun için Tanım 4.1.1 de tanıtılacak yol bileşenlerinden yararlanılacaktır. Bu bölümde, Dynnikov koordinatlarının hesaplanmasında ihtiyaç duymadığımız ancak π_1 -train track koordinatlarının hesaplanması için gerekli olacak ek yaylar kullanılacaktır. Bunlar birinci işaretlenmiş noktanın üstünde ve altındaki α_{2n-3} ve α_{2n-2} yayları ile sağındaki β_n yayı olacaktır.

4.1. $\Delta = \Delta_{2i} \cup \cdots \cup \Delta_{2i-1}$ Bölgesinde Yol Bileşenleri

Şekil 4.1. $L \min \Delta_{2i} \cup \Delta_{2i+1}$ ve $\Delta = \Delta_{2i} \cup \cdots \cup \Delta_{2j-1}$ bölgelerindeki yol bileşenleri

Tanımlar 4.1.1. L, $\mathscr{L} \in \mathscr{L}_n$ nin *minimal* bir temsilcisi olsun $(0 \le i < j \le n-1)$. $\alpha_{2i-1,2i+1}$ yol bileşeni (sırasıyla $\alpha_{2i,2i+2}$ yol bileşeni), L nin uç noktaları α_{2i-1} ve α_{2i+1} (sırasıyla α_{2i} ve α_{2i+2}) yayları üzerinde olan $\Delta_{2i} \cup \Delta_{2i+1}$ bölgesindeki bağlantılı bileşenidir (Şekil 4.1).

Benzer şekilde, $\Delta = \Delta_{2i} \cup \cdots \cup \Delta_{2j-1}$ bölgesinde *L* nin aşağıdaki bağlantılı bileşenlerini tanımlayabiliriz (Şekil 4.1):

- $\alpha_{i,j}$ yol bileşeni; uç noktaları α_i ve α_j üzerinde olan ve hiç bir x_k $(1 + \lceil i/2 \rceil \le k \le \lceil j/2 \rceil)$ aralığını kesmeyen
- $x_i \alpha_j$ yol bileşeni ; uç noktaları x_i aralığı ve α_j yayı üzerinde olan ve hiç bir x_k $(i < k \le \lceil j/2 \rceil)$ aralığını kesmeyen
- x_{ij}^{ii} yol bileşeni; uç noktaları x_i ve x_j aralıklarında olan, hiç bir x_k $(i < k \le j)$ aralığını ve α_{2k} $(i \le k \le j 1)$ yayını kesmeyen
- x_{ij}^{a} yol bileşeni; uç noktaları x_i ve x_j aralıklarında olan, hiç bir x_k $(i < k \le j)$ aralığını ve α_{2k-1} $(i \le k \le j-1)$ yayını kesmeyen

bağlantılı bileşenlerdir.

Uyarı 4.1.2. Verilen bir $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisi için Tanım 4.1.1 de hesaplanan x_{ij} sayılarının \mathscr{L} nin taşındığı π_1 -train track grafikleri hakkında bilgi verdiğine dikkat ediniz. Örneğin, $x_{0,3}^{ii} \neq 0$ özelliğindeki bir \mathscr{L} çoklu eğrisi Şekil 3.16 de verilen π_1 -train track grafiği tarafından taşınamaz. Üstelik, verilen bir $\tau \pi_1$ -train track grafiği için $\mathscr{L} \prec \tau$ ise x_{ij} sayıları Tanım 3.4.2 de verilen π_1 -train track koordinatlarına ulaşmamızı sağlar. Ayrıca, train track koordinatlarından x_{ij} yol bileşenlerine ulaşabiliriz: Verilen bir e dalı diskin üst veya alt yarısında kapsanıyor ise bir tek x_{ij} yol bileşeninin bir birleşimidir (Örneğin, Şekil 4.7 de gösterilen π_1 -train track grafiği için e_3 dalı $x_{1,2}^{ii}$ ve $x_{2,3}^{a}$ yol bileşenlerinin birleşimidir). Bu durumda, birleşimdeki x_{ij} yol bileşenlerinin sayısı e dalına karşılık gelen train track koordinatları.

Yardımcı Teorem 4.1.3. $L, \mathcal{L} \in \mathcal{L}_n$ nin minimal bir temsilcisi olsun. $\lceil x \rceil$, x den küçük olmayan en küçük tamsayıyı göstermek üzere, L nin $\Delta_{2i} \cup \Delta_{2i+1}$ bölgesindeki yol bileşenleri

$$\boldsymbol{\alpha}_{i,i+2} = \min\left(\boldsymbol{\alpha}_{i} - \boldsymbol{b}_{\lceil \frac{i}{2} \rceil}^{+}, \boldsymbol{\alpha}_{i+2} - (-\boldsymbol{b})_{1+\lceil \frac{i}{2} \rceil}^{+}\right)$$
(7)

olarak verilir.

Uyarı 4.1.4. i = j durumu için formüllerin özel durumuna dikkat ediniz. Yani, $\alpha_{i,i} = \alpha_i$ dir.

İspat. Genelliği kaybetmeden ispatı $\alpha_{2i-1,2i+1}$ için yapacağız. x_i , L nin i + 1-inci işaretlenmiş nokta ile i + 2-inci işaretlenmiş nokta arasındaki aralığı kesme sayısını göstersin.

(a) $\alpha_{2i+1} \ge \alpha_{2i-1}$ olsun. Şekil 4.2(a) da gösterildiği gibi

$$\alpha_{2i+1} = \alpha_{2i-1} - b_i^+ + x_i - b_i^+$$

$$= \alpha_{2i-1} + x_i - 2b_i^+$$
(8)

Şekil 4.2. $\alpha_{2i-1,2i+1}$ yol bileşenlerinin hesaplanması

dır. Ayrıca

$$\alpha_{2i+1} = \alpha_{2i-1,2i+1} + x_i - b_i^+ \tag{9}$$

dır. (8) ve (9) dan

$$\alpha_{2i-1,2i+1} = \alpha_{2i-1} - b_i^+$$

bulunur.

(b) $\alpha_{2i+1} \leq \alpha_{2i-1}$ iken Şekil 4.2(b) den yaralanarak

$$\alpha_{2i-1,2i+1} = \alpha_{2i+1} - (-b)_{i+1}^+$$

elde edilir.

Sonuç olarak,

$$lpha_{2i-1,2i+1} = \left\{ egin{array}{cc} lpha_{2i-1} - b_i^+ & lpha_{2i+1} \geq lpha_{2i-1} \ lpha_{2i+1} - (-b)_{i+1}^+ & lpha_{2i+1} \leq lpha_{2i-1} \end{array}
ight.$$

bulunur. Benzer şekilde $\alpha_{2i,2i+2}$ yol bileşeni

$$lpha_{2i,2i+2} = \left\{ egin{array}{ccc} lpha_{2i} - b_i^+ & lpha_{2i+2} \geq lpha_{2i} \ lpha_{2i+2} - (-b)_{i+1}^+ & lpha_{2i+2} \leq lpha_{2i} \end{array}
ight.$$

olarak hesaplanır. $\alpha_{2i+2} \geq \alpha_{2i}$ eşitsizliği

$$\alpha_{2i+2} - (-b)_{i+1}^+ \ge \alpha_{2i} - b_i^+$$

eşitsizliğine ve $\alpha_{2i+2} \leq \alpha_{2i}$ eşitsizliği

$$lpha_{2i+2} - (-b)_{i+1}^+ \le lpha_{2i} - b_i^+$$

eşitsizliğine denk olduğundan (Şekil 4.2)

$$\alpha_{i,i+2} = \min\left(\alpha_i - b^+_{\lceil \frac{i}{2} \rceil}, \alpha_{i+2} - (-b)^+_{1+\lceil \frac{i}{2} \rceil}\right)$$

yazılabilir.

Yardımcı Teorem 4.1.5. L, $\mathcal{L} \in \mathcal{L}_n$ nin minimal bir temsilcisi olsun. L nin $\Delta = \Delta_{2i} \cup \cdots \cup \Delta_{2j-1}$ bölgesindeki yol bileşenleri

$$\alpha_{2i-1,2j-1} = \min_{i < k < j-1} (\alpha_{2k-1,2k+1}) \tag{10}$$

$$\alpha_{2i,2j} = \min_{i \le k \le j-1} (\alpha_{2k,2k+2})$$
(11)

dır.

İspat. Genelliği kaybetmeden ispatı $\alpha_{2i-1,2j-1}$ için yapacağız. $\alpha_{2i,2j}$ benzer şekilde hesaplanır. Şekil 4.3 de görüldüğü gibi $\alpha_{2i-1,2j-1}$ yol bileşeni her bir α_{2k-1} $(i \le k \le j)$ yayını kesen ancak hiç bir x_k $(i < k \le j)$ aralığını kesmeyen bir yol bileşeni olduğundan böyle bileşenlerin sayısı $\Delta_{2k-1} \cup \Delta_{2k}$ $(i \le k \le j-1)$ bölgelerindeki $\alpha_{2k-1,2k+1}$ bileşenlerinin minimumuna eşittir. Yani,

$$\alpha_{2i-1,2j-1} = \min_{i \le k \le j-1} (\alpha_{2k-1,2k+1})$$

dır.

Şekil 4.3. $\alpha_{2i-1,2j-1}$ yol bileşenlerinin hesaplanması

Yardımcı Teorem 4.1.6. $L, \mathscr{L} \in \mathscr{L}_n$ nin minimal bir temsilcisi olsun. O zaman,

$$x_i \alpha_{2j-1} = |\alpha_{2i-1,2j-1} - \alpha_{2i-3,2j-1}|$$
(12)

$$x_i \alpha_{2j} = |\alpha_{2i,2j} - \alpha_{2i-2,2j}|$$
(13)

dır.

Uyarı 4.1.7. İlk ve son aralıklar için formüllerin özel durumlarına dikkat ediniz: Yani, i = 0 için $x_0\alpha_{2j-1} = \alpha_{-1,2j-1}, x_0\alpha_{2j} = \alpha_{-1,2j}$ ve i = n için $x_n\alpha_{2j-1} = \alpha_{2n-3,2j-1}, x_n\alpha_{2j} = \alpha_{2n-2,2j}$.

İspat. Tanımlar 4.1.1 gereği ve Şekil 4.4 den $i \leq j$ iken

$$\alpha_{2i-1,2j-1} = x_i \alpha_{2j-1} + \alpha_{2i-3,2j-1}$$

ve i > j iken

$$\alpha_{2j-1,2i-3} = x_i \alpha_{2j-1} + \alpha_{2j-1,2i-1}$$

olduğundan (12) elde edilir. (13) benzer şekilde hesaplanır.

Şekil 4.4. $x_i \alpha_{2j-1}$ yol bileşenlerinin hesaplanması

Teorem 4.1.8, $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisinin π_1 -train track koordinatlarını vermektedir.

Teorem 4.1.8. L, $\mathcal{L} \in \mathcal{L}_n$ nin minimal bir temsilcisi ve i < j olsun. O zaman, $x_{i,j}^{ii}$ ve $x_{i,j}^a$ aşağıdaki şekilde verilir.

$$x_{i,j}^{il} = x_i \alpha_{2j-3} - x_i \alpha_{2j-1} \tag{14}$$

$$x_{i,j}^a = x_i \alpha_{2j-2} - x_i \alpha_{2j} \tag{15}$$

Şekil 4.5. x_{ij} yol bileşenlerinin hesaplanması

İspat. Tanımlar 4.1.1 gereği ve Şekil 4.5 ten

$$x_i \alpha_{2j-3} = x_{i,j}^{\mathbf{u}} + x_i \alpha_{2j-1}$$

dolayısıyla (14) elde edilir. (15) benzer şekilde hesaplanır.

Uyarı 4.1.9. Yardımcı Teorem 4.1.6 da $\alpha_{i,j} = \alpha_{j,i}$ ve Teorem 4.1.8 de $x_{i,j} = x_{j,i}$ olduğuna dikkat ediniz.

Örnek 4.1.10. D_4 te Dynnikov koordinatları $\rho(\mathscr{L}) = (-1,1;-1,1)$ olan çoklu eğriyi düşünelim. Yardımcı Teorem 3.2.12 yardımıyla \mathscr{L} nin üçgen koordinatları

$$\delta(\mathscr{L}) = (3, 1, 1, 3; 2, 4, 2)$$

Şekil 4.6. Dynnikov koordinatları $\rho(\mathscr{L})=(-1,1;-1,1)$ olan \mathscr{L} çoklu eğrisi

olarak bulunur.

 \mathscr{L} nin $x_{i,j}^{ii} x_{i,j}^{a}$ ($0 \le i, j \le 4$) π_1 -train track koordinatlarını bulmak için Teorem 4.1.8 de belirtilen

$$x_{i,j}^{ii} = x_i \alpha_{2j-3} - x_i \alpha_{2j-1}$$
$$x_{i,j}^a = x_i \alpha_{2j-2} - x_i \alpha_{2j}$$

formülleri kullanılır. Burada sadece $x_{1,2}^{u}$ koordinatını hesaplayacağız. Diğer koordinatlar benzer şekilde bulunur.

$$x_{1,2}^{\mathbf{\ddot{u}}} = x_1 \alpha_1 - x_1 \alpha_3$$

olduğundan $x_1\alpha_1$ ve $x_1\alpha_3$ sayılarını hesaplamalıyız. Yardımcı Teorem 4.1.6 dan,

$$x_1\alpha_1 = \alpha_1\alpha_1 - \alpha_{-1}\alpha_1$$
$$x_1\alpha_3 = \alpha_1\alpha_3 - \alpha_{-1}\alpha_3$$

dır. Yardımcı Teorem 4.1.3 ve Yardımcı Teorem 4.1.5 ten,

$$\alpha_{-1,1} = \min(\alpha_{-1} - b_0^+, \alpha_1 - (-b)_1^+) = \min(1 - 0, 3 - 0) = 1$$

$$\alpha_{1,1} = \alpha_1 = 3$$

$$\alpha_{1,3} = \min(\alpha_1 - b_1^+, \alpha_3 - (-b)_2^+) = \min(3 - 0, 1 - 0) = 1$$

$$\alpha_{-1,3} = \min(\alpha_{-1,1}, \alpha_{1,3}) = \min(1, 1) = 1$$

bulunur. Dolayısıyla, $x_1 \alpha_1 = 2$ ve $x_1 \alpha_3 = 0$ olarak hesaplanır. Buradan,

$$x_{1,2}^{\ddot{u}} = x_1 \alpha_1 - x_1 \alpha_3 = 2$$

elde edilir. Benzer şekilde,

$$x_{0,1}^{u} = x_{0,2}^{u} = x_{0,4}^{u} = x_{1,3}^{u} = x_{1,4}^{u} = x_{2,3}^{u} = x_{2,4}^{u} = 0, x_{1,2}^{u} = 2, x_{3,4}^{u} = 1$$

olarak hesaplanır. \mathscr{L} çoklu eğrisi Şekil 4.6 da resmedilmiştir ve taşındığı π_1 -train track grafiklerinden birisi Şekil 4.7 de gösterilmiştir. \mathscr{L} nin bu train track grafiğine göre koordinatları $(e_1, e_2, e_3, e_4, e_5) =$ (1, 1, 0, 0, 1) dır.

Uyarı 4.1.11. $x_{i,j}$ yol bileşenleri verilen bir $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisinin x_i aralığını kesme sayısının

$$x_i = \sum_{m \neq i} x_{i,m}^{ii} + x_{i,m}^{a}$$

olduğunu gözlemleyiniz.

Yardımcı Teorem 4.1.12. L, $\mathcal{L} \in \mathcal{L}_n$ nin minimal bir temsilcisi olsun. K, D_n de tüm köşeleri işaretlenmiş noktalar üzerinde olan ve iç kısmında hiçbir işaretlenmiş nokta bulunmayan bir dörtgen olsun. x, y, z, t, e ve f sembolleri L nin K dörtgeninin Şekil 4.9 de gösterilen kenarları ve köşegenleri ile olan kesişim sayılarını göstersin. Bu durumda

$$e+f = \max(x+y,z+t) \tag{16}$$

dir.

Şekil 4.7. $\mathcal L$ nin train track koordinatları $(e_1,e_2,e_3,e_4,e_5)=(1,0,1,0,1)$

Şekil 4.9. K karesinde L nin yol bileşenleri

İspat. Ω , *K* dörtgeni tarafından sınırlanan bölgeyi belirtsin. *xy* ve *zt*, Ω da *L* nin uç noktaları sırasıyla *x* ve *y* ile *z* ve *t* kenarları üzerinde bulunan eğri parçaları olsun. $L \cap \Omega$ nın bileşenleri ayrık olduğundan (*L* basit kapalı eğrilerden oluştuğundan) *xy* ve *zt* sayılarından en az biri sıfır olmalıdır. *xy* = 0 olduğunu varsayalım. O zaman, $z+t \ge x+y$ ve

x = xz + xty = yz + ytz = xz + yz + ztt = xt + yt + zte = xz + yt + ztf = xt + yz + zt

dır. Buradan

$$e+f = xz + yz + xt + yt + 2zt$$
$$= z+t$$

bulunur. Benzer şekilde, zt = 0 ise $x + y \ge z + t$ ve e + f = x + y bulunur. Bu durumda,

$$e + f = \max(x + y, z + t)$$

dır.

Yardımcı Teorem 4.1.13. $x_{i,j}$ yol bileşenleri verilen bir $\mathscr{L} \in \mathscr{L}_n$ çoklu eğrisinin üçgen koordinatları $\delta(\mathscr{L}) = (\alpha, \beta) \in \mathbb{Z}^{3n-5} \setminus \{0\}$

$$\alpha_{2i-1} = \sum_{\substack{0 \le k \le i \\ i+1 \le m \le n}} x_{k,m}^{ii} \quad ve \quad \alpha_{2i} = \sum_{\substack{0 \le k \le i \\ i+1 \le m \le n}} x_{k,m}^{a}$$
$$\beta_i = \max(\alpha_{2i-1} + \alpha_{2i-2}, \alpha_{2i-3} + \alpha_{2i}) - x_i$$

olarak verilir.

İspat. α_{2i-1} ve α_{2i} üzerindeki kesişimlerin, uç noktaları i + 1-inci işaretlenmiş noktanın solunda ve sağındaki aralıklar üzerinde bulunan $x_{k,m}$ bileşenlerinden geldiği Şekil 4.10(a) dan açıktır. β_i üzerindeki kesişim sayısını hesaplamak için Yardımcı Teorem 4.1.12 den yararlanacağız. D_n in sınırı ∂D_n tek bir O noktası ile eşleştirildiğinde i ve i + 1-inci işaretlenmiş noktalar ile O noktasının köşeler, $\alpha_{2i-2}, \alpha_{2i-1}, \alpha_{2i-3}$ ve α_{2i} yaylarının kenarlar, β_i yayı ile x_i aralığının köşegenler olduğu "dejenere" bir dörtgen elde edilir (Şekil 4.10(b)). O zaman (16) dan

$$\beta_i = \max(\alpha_{2i-1} + \alpha_{2i-2}, \alpha_{2i-3} + \alpha_{2i}) - x_i$$

bulunur.

Şekil 4.10. α_{2i-1} ve α_{2i} yayları üzerindeki kesişimler ile β_i ve x_i nin köşegenler olduğu dörtgen

4.2. Çoklu Eğrilerin Geometrik Kesişim Sayısı

Hesaplamalı topolojide çoklu eğriler ile ilgili önemli bir kombinatorik bir problem, bir yüzeyde verilen iki çoklu eğrinin geometrik kesişim sayısını polinomsal zamanda hesaplayan bir algoritma bulmaktır. Literatürde bu tür algoritmalar verilmiş olsa da (Schaefer ve ark. 2008) global koordinatları (çoklu eğrileri tek türlü belirleyen koordinatlar) kullanan bir algoritma yüksek cinsli yüzeyler için halen bulunamamıştır. Bu problem D_n de tanımlı çoklu eğriler için Yurttaş ve Hall tarafından (Yurttaş ve Hall 2018) Dynnikov koordinat Sistemini kullanan ve kuadratik zamanda çalışan bir algoritma verilerek çözülmüştür. Ayrıca keyfi bir çoklu eğri ile *elemanter* olarak adlandırılan belli tipteki bir bir çoklu eğrinin geometrik kesişim sayısını hesaplayan bir formül Dynnikov koordinatları yardımıyla Yurttaş tarafından verilmiştir (Yurttaş 2013).

Yukarıda tanıtılan π_1 -train track grafiği koordinatlarını Dynnikov koordinatlarına bağlayan geçiş formülleri sayesinde bu formüller train track grafiği koordinatları cinsinden de yazılabilecektir (Örnek 4.2.7 ve Örnek 4.2.8).

Şekil 4.11. D₅ te bazı elemanter eğriler

Tanım 4.2.1. D_n de *x*-ekseni ile olan geometrik kesisim sayısı 2 olan basit kapalı eğriye *elemanterdir* denir. Her bir bağlantılı parçası elemanter olan çoklu eğriye elemanter çoklu eğri denir. $1 \le i < j < n$ veya $1 < i < j \le n$ için $C_{ij} \in \mathcal{L}_n D_n$ de $\{i, i + 1, ..., j\}$ işaretlenmiş noktaları kapsayan elemanter eğrilerin homotopi sınıfını göstersin (Şekil 4.11). O zaman, C_{ij} elemanter eğrisinin Dynnikov koordinatları i > 1 için $b_{i-1} = -1$, j < n için $b_{j-1} = 1$ ve diğer tüm *k* indisleri için $b_k = 0$ olmak üzere

$$\boldsymbol{\rho}(C_{ij}) = (0, \dots, 0, b_1, \dots, b_{n-2})$$

dır. Ayrıca, $\tau \pi_1$ -train track grafiği ve $C_{ij} \prec \tau$ ise C_{ij} nin τ ya göre koordinatları $x_{i-1,j}^{ii} = x^a = 1$ ve $(k,m) \neq (i,j)$ için $x_{k,m}^{ii} = x_{k,m}^a = 0$ olarak verilir.

 D_n de verilen keyfi bir çoklu eğrinin *elemanter* olarak adlandırılan belli tipteki bir çoklu eğri ile olan geometrik kesişim sayısını Dynnikov koordinatlarından hesaplayan aşağıdaki sonuçların ispatları için (Yurttaş 2013, Yurttaş ve Hall 2018) e bakınız.

Tanım 4.2.2. $S_{i,j} = \bigcup_{i \le k \le j} S_k$ olsun. $L \min S_{i,j}$ de yol bileşeni $L \cap S_{i,j}$ deki bağlantılı bileşendir. $S_{i,j}$ de

s^ü_{*i,j*} *üst bileşen*in uç noktaları β_i ve β_{j+1} de olan ve hiç bir α_{2k} ($i \le k \le j$) yayını kesmeyen bileşendir. $S_{i,j}$ de $s^a_{i,j}$ alt bileşeni uç noktaları β_i ve β_{j+1} üzerinde olan ve hiç bir α_{2k-1} ($i \le k \le j$) yayını kesmeyen bileşendir. (Şekil 4.12). $S_{i,j}$ de $R_{i,j}$ büyük sağ dönen bileşenin her iki uç noktası β_i yayı üzerinde olan ve x–eksenini sadece β_{j+1} ile j + 1–inci işaretlenmiş nokta arasında kesen bileşendir. $S_{i,j}$ de $L_{i,j}$ büyük sol dönen bileşenin her iki uç noktası β_{j+1} yayı üzerinde olan ve x–eksenini sadece β_i ile i + 1–inci işaretlenmiş nokta arasında kesen bileşendir.

Şekil 4.12. S_{i, i} bölgesindeki yol bileşenleri

Yardımcı Teorem 3.2.6 yı kullanarak $S_{i,j}$ bölgesindeki yol bileşenleri hesaplanabilir. Yardımcı Teorem 4.2.3. $S_{i,j}$ de alt ve üst yol bileşenleri sırasıyla

$$s_{i,j}^{ii} = \min_{i \le k \le j} \{ \alpha_{2k-1} - |b_k| \}$$
 and $s_{i,j}^a = \min_{i \le k \le j} \{ \alpha_{2k} - |b_k| \}$

olarak verilir. Dolayısıyla, $s_{i,j} = s_{i,j}^{ii} + s_{i,j}^{a}$ toplamı $S_{i,j}$ deki alt ve üst yol bileşenler toplamıdır. Ayrıca,

$$L_{i,j} = \min(s_{i+1,j}^{ii} - s_{i,j}^{ii}, s_{i+1,j}^{a} - s_{i,j}^{a}, (-b_i)^{+})$$
$$R_{i,j} = \min(s_{i,j-1}^{ii} - s_{i,j}^{ii}, s_{i,j-1}^{a} - s_{i,j}^{a}, b_j^{+})$$

Teorem 4.2.4 in ispatı (Yurttaş 2013, Yurttaş ve Hall 2018) da bulunabilir.

Teorem 4.2.4. Üçgen koordinatları (α, β) olan $\mathcal{L} \in \mathcal{L}_n$ çoklu eğrisi verilsin. \mathcal{L} nin $C_{ij} \in \mathcal{L}_n$ ile olan geometrik kesisşm sayısı $i(\mathcal{L}, C_{ij})$,

$$i(\mathscr{L}, C_{ij}) = \beta_{i-1} + \beta_j - 2(s_{i-1,j-1} - R_{i-1,j-1} - L_{i-1,j-1})$$
(17)

olarak verilir.

Teorem 4.2.5 in ispatı (Yurttaş 2013) de bulunabilir.

Teorem 4.2.5. $\mathscr{L}^1, \mathscr{L}^2 \in \mathscr{L}_3$ çoklu eğrileri verilsin. Üçgen koordinatları $\delta(\mathscr{L}^1) = (\alpha^1, \beta^1), \delta(\mathscr{L}^2) = (\alpha^2, \beta^2) \in \mathbb{Z}^4 \setminus \{0\}$ ve Dynnikov koordinatları $\rho(\mathscr{L}^1) = (a^1, b^1), \rho(\mathscr{L}^2) = (a^2, b^2) \in \mathbb{Z}^2 \setminus \{0\}$ olsun. O zaman $i(\mathscr{L}^1, \mathscr{L}^2)$ geometrik kesişim sayısı

$$i(\mathscr{L}^{1},\mathscr{L}^{2}) = \begin{cases} \alpha_{2}^{1}\alpha_{1}^{2} + \alpha_{1}^{1}\alpha_{2}^{2} & ; \quad b^{1}b^{2} \leq 0\\ |\alpha_{2}^{1}\alpha_{1}^{2} - \alpha_{1}^{1}\alpha_{2}^{2}| & ; \quad b^{1}b^{2} \geq 0 \end{cases}$$

dır.

Uyarı 4.2.6. Yardımcı Teorem 4.1.13 ü kullanarak Teorem 4.2.4 ve Teorem 4.2.5 te verilen geometrik kesişim sayıları ile ilgili olan sonuçların π_1 -train track koordinatları cinsinden yazılabileceğine dikkat ediniz. Örnek 4.2.7 ve Örnek 4.2.8 bunu gerçekleştirmektedir.

Örnek 4.2.7. D_4 yüzeyinde Şekil 4.13 de gösterilen $\tau \pi_1$ -train track grafiği verilsin. τ tarafından taşınan \mathcal{L} ve \mathcal{L}' çoklu eğrilerinin koordinatları sırasıyla

$$(e_1, e_2, e_3, e_4, e_5, e_6) = (1, 1, 0, 2, 1, 1)$$
 ve $(e'_1, e'_2, e'_3, e'_4, e'_5, e'_6) = (0, 0, 0, 1, 0, 1)$

olsun. Buna göre $\mathscr{L}' = C_{34}$ elemanter eğrisine karşılık gelir. \mathscr{L} in $x_{i,j}$ yol bileşen sayıları

$$x_{0,1}^{\mathbf{u}} = x_{0,3}^{\mathbf{u}} = x_{0,4}^{\mathbf{u}} = x_{1,3}^{\mathbf{u}} = x_{1,4}^{\mathbf{u}} = x_{2,3}^{\mathbf{u}} = 0, \ x_{0,2}^{\mathbf{u}} = x_{1,2}^{\mathbf{u}} = x_{2,4}^{\mathbf{u}} = x_{3,4}^{\mathbf{u}} = 1$$

$$x_{0,2}^{a} = x_{0,3}^{a} = x_{0,4}^{a} = x_{1,2}^{a} = x_{1,3}^{a} = x_{1,4}^{a} = 0, \ x_{0,1}^{a} = x_{2,3}^{a} = 1, \ x_{2,4}^{a} = 2$$

dır. Yardımcı Teorem 4.1.13 den

$$\tau(\mathscr{L}) = (2,0,1,3;2,2,4)$$
 ve $\rho(\mathscr{L}) = (-1,1;0,-1)$

elde edilir. Yardımcı Teorem 4.2.3 den $S_{2,3} = 3$, $R_{2,3} = 1$ ve $L_{2,3} = 2$ hesaplanır. Teorem 4.2.4 den

$$i(\mathscr{L}, C_{34}) = \beta_2 + \beta_4 - 2(s_{2,3} - R_{2,3} - L_{2,3})$$
$$= 2 + 0 - 2(S_{2,3} - R_{2,3} - L_{2,3}) = 2 - 2(3 - 2 - 1) = 2$$

bulunur.

Şekil 4.13. D_4 te π_1 -train track grafiği tarafından taşınan C_{34} elemanter ile L eğrilerinin geometrik kesişimi

Örnek 4.2.8. D_3 yüzeyinde Şekil 4.14 da gösterilen τ_1 ve $\tau_2 \pi_1$ -train track grafikleri verilsin. τ_1 ve τ_2 tarafından taşınan \mathscr{L}^1 ve \mathscr{L}^2 çoklu eğrilerinin koordinatları sırasıyla $(e_1, e_2, e_3, e_4) = (0, 1, 0, 1)$ ve $(e'_1, e'_2, e'_3, e'_4) = (1, 2, 1, 2)$ olsun. Buna göre, \mathscr{L}^1 in $x_{i,j}$ yol bileşen sayıları

$$x_{0,1}^{ii} = x_{0,2}^{ii} = x_{2,3}^{ii} = 0, \ x_{1,3}^{ii} = 1, \ x_{0,3}^{ii} = x_{1,2}^{ii} = 2$$

$$x_{0,1}^{a} = x_{2,3}^{a} = 2, \ x_{1,3}^{a} = 1, \\ x_{0,2}^{a} = x_{0,3}^{a} = x_{1,2}^{a} = 2$$

ve \mathscr{L}_2 in $x_{i,j}$ yol bileşen sayıları

$$x_{0,1}^{ii} = x_{2,3}^{ii} = 1, \ x_{0,2}^{ii} = x_{0,3}^{ii} = x_{1,2}^{ii} = x_{1,3}^{ii} = 0$$

 $x_{0,3}^{a} = x_{1,2}^{a} = 1, \ x_{0,1}^{a} = x_{0,2}^{a} = x_{1,3}^{a} = x_{2,3}^{a} = 0$

dır. Yardımcı Teorem 4.1.13 den $\tau(\mathscr{L}^1) = (5,1;4,6)$ ve $\tau(\mathscr{L}^2) = (0,2;2,2)$ ve $\rho(\mathscr{L}^1) = (-2;-1)$ ve $\rho(\mathscr{L}^2) = (1;0)$ elde edilir. Teorem 4.2.5 ten,

$$i(\mathcal{L}^1, \mathcal{L}^2) = \alpha_1^1 \alpha_1^2 + \alpha_1^1 \alpha_2^2$$
$$= (1 \times 0) + (5 \times 2) = 10$$

Şekil 4.14. D_3 te farklı π_1 -train track grafikleri tarafından taşınan iki eğrinin geometrik kesişimi

5. TARTIŞMA VE SONUÇ

Bu tezde *n*–noktası çıkarılmış D_n diski üzerinde çalışılmıştır. Daha açık olarak, D_n de verilen bir çoklu eğrinin Dynnikov koordinatları ile π_1 –train track grafiği koordinatları arasında geçiş formülleri sunulmuştur. Bu formüllerden yararlanarak D_n de verilen bir çoklu eğri ile elemanter bir eğrinin ve D_3 de verilen iki keyfi çoklu eğrinin geometrik kesişim sayısı π_1 –train track koordinlatları cinsinden yazılmıştır. Bu formüllerin, D_n de Dynnikov koordinatları ile dinamiksel ve kombinatorik problemlerin yüksek cinsli yüzeylerde train track koordinatları ile çözümüne ışık tutması beklenmektedir.

Soru 1. Tezdeki sonuçları yüksek cinsli yüzeylere uyarlayabilir miyiz?

Teorem 3.3.5, güncelleme kuralları (Dynnikov 2002, Hall ve Yurttaş 2009) olarak adlandırılan ve her bir σ_i , σ_i^{-1} , $(1 \le i \le n-1)$ Artin örgü üretecinin \mathscr{L}_n üzerindeki etkisini Dynnikov koordinatları cinsinden vererek, B_n nin \mathscr{L}_n üzerindeki etkisini Dynnikov koordinatları cinsinden bulmaya olanak sağlayan kurallar sunmaktadır. Daha açık olarak güncelleme kuralları $\rho(\sigma_i(\mathscr{L}))$ ve $\rho(\sigma_i^{-1}(\mathscr{L}))$ vektörlerini $\rho(\mathscr{L})$ cinsinden yazmamızı sağlar.

Soru 2. Güncelleme kurallarını π_1 -train track koordinatları cinsiden yazınız.

6. KAYNAKLAR

Artin, E. 1925. Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg (4), Sayfa: 47-72.

Artin, E. 1947. Theory of braids. Ann. of Math. 48(2), Sayfa: 101–126.

Bestvina, M., Handel, M. 1995. Train-tracks for surface homeomorphisms. **Topology**, 34(1), Sayfa: 109–140.

Chow, W-L. 1948. On the algebraical braid group. Ann. of Math. 49(2), Sayfa: 654–658.

Dehornoy, P. 2008. Efficient solutions to the braid isotopy problem. **Discrete Appl. Math.**, 156(16), Sayfa: 3091–3112.

Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B. 2008. Ordering braids, volume 148 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI.

Dynnikov, I. 2002. On a Yang-Baxter mapping and the Dehornoy ordering. **Uspekhi Mat. Nauk**, 57(3(345)), Sayfa: 151–152.

Dynnikov, I., Wiest, B. 2007. On the complexity of braids. J. Eur. Math. Soc. (JEMS), 9(4), Sayfa: 801–840.

Fathi, A., Laudenbach, F., Poenaru, V. 1979. Travaux de Thurston sur lessurfaces, volume 66 of Astérisque. Société Mathématique de France, Paris, Séminaire Orsay.

Gover, P., Ross, S.D., Stremler, M.A., Kumar, P. 2012. Topological chaos, braiding and bifurcation of almot cyclic sets. Chaos, 22(4), Sayfa: 16.

Hall, T., Yurttaş, S.Ö. 2009. On the topological entropy of families of braids. **Topology Appl.**, 156(8), Sayfa: 1554–1564.

Hamidi-Tehrani, Hessam., Chen, Zong-He. 1996. Surface diffeomorphisms via train-tracks. **Topology Appl.** 73(2), Sayfa: 141–167.

Menzel, C., Parker, J. R. 2003. Pseudo-Anosov diffeomorphisms of the twice punctured torus. In Recent Advances in Group Theory and Low-Dimensional Topology. 27, Sayfa: 141-154.

Moussafir, J. 2006. On computing the entropy of braids, **Funct.Anal. OtherMath.**, Cilt: 1, Sayfa: 37–46.

Parker, J. R., Series, C. 2004. The mapping class group of the twice punctured torus. London Math. Soc. Lecture Note Ser. 311, Sayfa: 405–486. Cambridge Univ. Press, Cambridge.

Penner, R. C., Harer, J. L. 1992. Combinatorics of train tracks, Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 125. Schaefer, M., Sedgwick, E., Stefankovic, D. 2008. Computing Dehn twists and geometric intersection numbers in polynomial time, Proceedings of the 20th Canadian Conference on Computational Geometry (CCCG2008), Sayfa: 111-114.

Thurston, W.P. 1988. On the geometry and dynamics of diffeomorphisms of surfaces. **Bull. Amer. Math. Soc.** (N.S.), 19(2), Sayfa: 417–431.

Yurttaş, S.Ö. 2013. Geometric intersection of curves on punctured disks. Journal of the Mathematical Society of Japan, 65(4), Sayfa: 1554–1564.

Yurttaş, S.Ö. 2016. Dynnikov and train track transition matrices of pseudo-Anosov braids. **Discrete Contin. Dyn. Syst.**, 36(1), Sayfa: 541–570.

Yurttaş, S.Ö., Hall, T. 2017. Counting components of an integral lamination. **Manuscripta Math.**, 153(1-2), Sayfa: 263–278.

Yurttaş, S.Ö., Hall, T. 2018. Intersections of multicurves from Dynnikov coordinates. **Bull. Aust. Math. Soc.** 98(1), Sayfa: 149–158

ÖZGEÇMİŞ

Umut GÜNGÖRÜR, 01.08.1990 tarihinde Diyarbakır'da doğdu. İlk ve orta öğrenimini Konya'da, liseyi Ankara Mehmet Emin Resulzade Anadolu Lisesi'nde tamamladı. 2008'de Gazi Üniversitesi Fen Fakültesi Matematik Bölümünde başladığı lisans öğrenimini 2014 yılında tamamladı. 2015 yılından beri Milli Eğitim Bakanlığı bünyesinde kadrolu öğretmen olarak görevini sürdürmektedir.

T.C. DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZ ÇALIŞMASI İNTİHAL RAPORU FORMU

.314						
ÖĞRENCİ BİLGİLERİ						
ADI VE SOYADI	UN	AUT GÜNGÖRÜR				
ÖĞRENCİ NO	168	804001				
EĞİTİM – ÖĞRET	İM YILI 201	18				
YARIYIL		Güz 🛛 Bahar				
ANABİLİM DALI	MAT	ТЕМАТІК				
PROGRAM	Yül	ksek Lisans				
TEZ KONUSU	Dyr	nnikov Koordinatları ve π_1 -Train Track Grafikleri				
D		INTIHAL RAPORU BILGILERI				
RAPOR TURU	Tez	: Savunma Sınavı Sonrası				
SAYFA SAYISI	45					
BENZERLIK ORA	NI % 1	13				
RAPORLAMA TA	RİHİ 15/1	10/2018				
Yukarıda başlığı/konusu gösterilen tez çalışmamın kapak sayfası, giriş, ana bölümler, sonuç ve tartışma kısımlarından oluşan toplam 45 sayfalık kısmına ilişkin, 15/10/2018 tarihinde tez danışmanım tarafından <i>turnitin.</i> adlı intihal tespit programından aşağıda belirtilen filtrelemeler uygulanarak alınmış olan intihal raporuna göre, tezimin benzerlik oran % 13 'dir. Uygulanan filtrelemeler:						
UMUT GÜNGÖRÜR						
	(İmza) 15/10/2018	15/10/2018				
Dr. Öğr.Üy	esi S. Öykü YURT	TTAS Prof. Dr. H. Öslam Günzu				

Tez Danışmanı

Prof. Dr. H. Özlem GÜNEY Anabilim Dalı Başkanı