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ABSTRACT

COMPOSITIONAL MODELLING OF FIRST-PERSON ACTIONS AS
VERB-NOUN STREAMS USING LSTM BASED LATE FUSION

STRATEGIES

GÖKCE, ZEYNEP
M.S., Department of Interactive Computing and Information Systems

Supervisor: Assist. Prof. Dr. Selen Pehlivan Tort

JULY 2019, 61 pages

Analysis of first-person videos involving human actions could help in the solutions

of many problems. These videos include a large number of fine-grained action cate-

gories with hand-object interactions. In this thesis, compositional modeling of verb

and object streams with various fusion strategies is proposed to recognize human ac-

tions in first-person videos. We utilize 3D Convolutional Neural Network model,

C3D, for verb stream to model video-based features in multiple scales, and we utilize

object detection model, YOLO, for object stream to model objects interacting with

hand. Two fusion strategies are proposed to combine these two streams. In the first

one, human actions are obtained by simple multiplication without learning. In the

second, LSTM based models are proposed. Experimental results on EGTEA Gaze+

dataset obtained from these two different fusion strategies show that our composite

models present promising results compared to the baseline action models.

Keywords: human action recognition, first-person videos, deep learning, computer
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ÖZ

BİRİNCİ-ŞAHIS HAREKETLERİNİN LSTM TABANLI GEÇ FÜZYON
STRATEJİLERİ KULLANARAK FİİL-NESNE AKIŞLARI OLARAK

BİRLEŞİMSEL MODELLENMESİ

GÖKCE, ZEYNEP

Yüksek Lisans, İnteraktif Bilişim Sistemleri Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Selen Pehlivan Tort

Temmuz 2019 , 61 sayfa

Birinci-şahıs videolarının analizi, insan hareketlerini içeren birçok probleme çözüm

sunmaktadır. Bu videolar, el-nesne etkileşimlerine sahip çok sayıda detaylı eylem ka-

tegorisi içerir. Bu tezde, birinci-şahıs videolarındaki insan hareketlerini tanımlamak

amacıyla çeşitli füzyon stratejileriyle fiil ve nesne akışlarının birleşimsel modellen-

mesi önerilmiştir. Fiil akışında, video tabanlı özellikleri çoklu ölçeklerde modellemek

için 3 Boyutlu Konvolüsyonlu Sinir Ağı modeli, C3D, kullandık. Nesne akışında ise

el ile etkileşimde bulunan nesneleri modellemek için nesne algılama modeli, YOLO,

kullandık. Bu iki akışı birleştirmek için iki farklı füzyon stratejisi önerilmiştir. İlkinde,

insan hareketleri herhangi bir öğrenme gerçekleştirmeden basit bir çarpımla elde edil-

mektedir. İkincisinde ise LSTM tabanlı modeller kullanılmıştır. EGTEA Gaze+ veri

seti üzerinde iki farklı füzyon metodolojilerinden elde ettiğimiz deneysel sonuçlar,

birleşik modellerimizin taban modeli olan C3D hareket modelinden daha başarılı ol-

duğunu göstermiştir.
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CHAPTER 1

INTRODUCTION

With the increasing availability and popularity of the wearable cameras such as Go-

Pro 1, Google Glass 2, SenseCam 3 and Tobii Eye-Tracking Glasses 4, recordings with

these cameras have become a part of daily life. A camera wearer can record thousands

of hours of personalized videos with these cameras and the recorded data is known as

the first-person video. First-person videos capture what the camera wearers see and

consist of temporal and visual information in the wearer’s point of view. Since these

videos are in the first-person perspective, it enables to monitor the day-long activity

of the camera wearer, and enables to understand the interactions with the surrounding

objects or other individuals.

Due to the recent growth in the number of first-person videos, evaluation of daily

human activities gain popularity in first-person vision. This has led to new applica-

tions for health monitoring, robotics, autonomous driving, and entertainment. Daily

recording in first-person view can be used to monitor patient activities. For instance,

first-person acts are analyzed to detect early signs of dementia [5]. In robotic, first-

person videos are useful to make the robot learn the structure of human motion from

the first person view [6]. For driver-assistance systems, monitoring the driver’s be-

havioral status is studied to provide necessary assistance for safe and comfortable

driving [7]. Besides, tracking and understanding human actions in first-person view

is important for feasible applications in virtual reality [8].

Unlike third-person videos with fixed camera view, the first-person setting has dif-

1 https://gopro.com/en/tr/
2 https://www.google.com/glass/start/
3 https://www.microsoft.com/en-us/research/project/sensecam/
4 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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ferent characteristics with new challenges such as camera view transition, frequent

illumination changes. Since the videos are recorded from the perspective of the cam-

era wearer, the wearer’s attention in first-person videos is on the hands and the target

objects in these videos.

As one fundamental problem of computer vision, action recognition task is also an im-

portant topic with wide range of applications in first-person vision. Day-long videos

in first-person view include fine-grained action categories performed by hands with

object interactions (e.g., pour seasoning from seasoning container to salad). Intra-

class similarity makes action categories hard to distinguish from each other and the

recognition task requires detailed spatial-temporal analysis to reveal details. During

analysis, hands and objects are the most significant clues to determine the performed

action, and the action is recognized using both hand motion and object appearances.

Moreover, it is evident that models based on both appearance and motion achieve

state of the art results on first-person videos [9].

In this thesis, our aim is to construct a composite model which is made of verb and

object (noun) streams to perform action recognition in first-person videos. There is

a large number of distinct action categories with verb-object labels (i.e. take tomato

action is decomposed into tomato as an object and take as a verb). Splitting action

recognition problem into verb and object recognition problems helps to cover a large

number of categories as it decomposes the action space into verb and object spaces.

In our model, verb recognition is modelled used a verb stream that encodes spatial-

temporal behavior of hands performing action, while the object recognition is based

on an object stream modelling object occurrences in the video. In order to recognize

the action, various fusion methodologies are proposed to combine these distinct verb

and object streams.

In this chapter, we present our research problem with our contributions. First, we

explain some of the challenges appearing in recognition from the first-person view

in Section 1.1. Then, we summarize the contributions of this study in Section 1.2.

Finally, we present the content of this thesis in Section 1.3.
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1.1 Challenges

Action recognition problem in first-person view is one of the challenging problems

of computer vision. Major issues of action recognition explained in [10, 11] are

expanded with our observations. The challenges of our problem in first-person videos

are listed as follows

• Intra-class variations. A large number of action categories appear in first-

person videos and the same action can be performed differently by different

persons. For instance, a mix salad action sample can be performed by vari-

ous kinds of hand held instruments, can be performed in different speed and

direction.

• Inter-class similarities. Since the range of hand motion is limited in the first-

person view, patterns of hand movements can be so similar to each other. For

instance, the hand movements for open and take actions are performed similarly

in two steps that are (1) the hand reaches out to an object in the first step and (2)

the hand is pulled up towards the wearer’s body after hand-object interaction in

the second step.

• Head movements. Due to the wearable camera, the instant head movements

cause camera uneven transitions making the visual content hard to understand.

• Temporal variations. Some action categories last longer than some other ac-

tion categories. For instance, mix action is a periodic action and its samples

take a long time compared to put action samples.

• Limited vision. Since the videos are recorded by the first-person point-of-

view, only the camera wearer’s hands and objects in close range are visible.

First-person view may not provide enough information about the background.

In fact, the hand can be partially visible and its pose can get lost.

1.2 Contributions

The contributions of our study in first-person action recognition are listed as follows

3



• Action recognition model based on verb and object. In this thesis, we pro-

pose a novel compositional action recognition model with two complementary

streams corresponding to verb and object models. We show that our proposed

compositional model outperforms the conventional action recognition model

trained using action categories without any decomposition.

• Hand model as motion information. To the best of our knowledge, the hand

information is generally proposed to reach object information in literature the

[12]. It is not directly used to represent the action. Since hand knowledge is

crucial in action recognition in first-person videos, hand based verb model is

proposed to present the motion as verb classification. It has been shown that

combination of detectors in multiple scales increases the performance, although

hand based verb model is not adequate on its own to represent motion knowl-

edge.

• Full supervision with hand and object annotations. Since the action space is

huge and contains extreme number of action samples, we populate the recog-

nition model with full supervision in this thesis. The background models of

our system including action, verb and object detectors are trained using pro-

vided annotations in multiple levels. Even the EGTEA Gaze+ dataset provides

ground truth video labels, it does not have the annotations for frame, hand and

object locations. We annotate frames with hand and object bounding boxes.

1.3 Thesis Organization

The rest of this thesis is composed of four chapters as summarized below.

In Chapter 2, the related literature is reviewed by focusing on general purpose meth-

ods for action recognition and focusing specially on first-person action recognition.

In addition, the popular first-person video datasets are provided in detail. Technical

review of the background architectures YOLO, 3D-CNN and LSTM used as part of

our action recognition model is explained as well.

In Chapter 3, our proposed architecture is described in detail. Background detection

models and proposed late fusion strategies for compositional model are explained

4



with training details.

In Chapter 4, the experimental evaluations are provided with our observations. Eval-

uations are presented for two main fusion strategies and supported through ablation

studies. In addition, comparison with recent studies is given.

In Chapter 5, Our proposed model are summarized with its limitations. The future

work, that can be applied to improve our proposed model, is explained through a

detailed discussion.
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CHAPTER 2

RELATED WORKS

Research on egocentric video analysis emerged with the development of wearable

cameras and was applied to a wide range of problems. The focus of this thesis is on

recognizing actions from egocentric videos. This chapter first gives a brief review of

action recognition problem with recent background models (see surveys [13, 11, 14]

for more details), and then explains the recent studies used to recognize actions from

the first-person view. Background models used in our study; convolutional neural

networks, recurrent neural network with its variations and YOLO object detection

network, are explained as well in this chapter.

2.1 Third-Person Action Recognition Models

In computer vision, various models are proposed to analyze human actions in videos.

For human action recognition, classical methods are based on widely used hand-

crafted features [15, 16, 17, 18]. With the advent of deep learning, recent studies

focus on deep learning based approaches. In this section, we summarize the models

using hand-crafted features, and then deep neural models used for action recognition.

2.1.1 Traditional Model Based on Hand-Crafted Features

Human action recognition studies in the literature consist of different kinds of ap-

proaches from global representations to local representations using hand crafted fea-

tures, and classical machine learning methods. While global approaches are based on

human silhouettes in image and optical flows, the local approaches are based on local

6



descriptors.

In some earlier studies, human action can be represented using global descriptors ex-

tracted from the whole images or silhouettes of images. In these studies, silhouettes

and optical flow based models were proposed as global approaches [19]. In silhou-

ettes based approach [20, 21, 22], global hand-crafted descriptors are defined over

silhouettes. One of these studies was proposed by Bobick et al. [23] as an action

recognition model with two components including motion-history image (MHI) and

motion-energy image (MEI). Instead of using silhouettes, Lu et al. [24] proposed opti-

cal flow based model using Lucas-Kanade-Tomasi Tracker [25] for body joints tracing

in time-step. Action recognition approach is based on correspondences between the

human body postures in video frames including body joints. Instead of application

of silhouettes and optical flow based models separately, Tran et al. [26] address the

problem using both silhouette and optical flow approaches for action recognition.

Although the global approach is proposed widely in the literature, local approaches

became popular with the emergence of space-time interest points (STIPs) proposed

in [27]. STIP descriptors adapted from Harris Corner detector [28] represents hu-

man actions by modelling spatial and temporal information of interest points. Later,

human motion in videos was represented using STIP descriptors in many studies

[29, 30]. Besides STIP, Wang et al. [31] proposed trajectory based approach using

dense-trajectory descriptor including HOG [32], HOF [33] and MBH [34] features

extracted along trajectories.

2.1.2 Deep Neural Network Models

After deep architectures were applied for image classification [35, 36], they are also

tested for video classification including action recognition problems. Popular deep

learning models for action recognition include Convolutional Neural Network (CNN),

Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) which is

one particular variant of RNN. These models are used in action recognition not only

for classification but also for feature extraction.

Action model proposed in [37] extracts hand-crafted features over spatial-temporal
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volumes by computing Harris Corner points and their histograms. Then, these fea-

tures are feed into the deep learning model to train for action classes. In another study,

Mo et al. [38] use extracted CNN features for action classifications.

Due to spatial-temporal nature of videos, new deep learning models were designed for

video understanding. 3D-CNN based models [39, 40, 4] achieve good results since

they learn both spatial and temporal information using 3-dimensional convolution

filters. Recently, LSTM models are able to learn over long sequences of data as they

model the temporal dynamics from the video. Since LSTM is a good alternative for

sequence classification, it is also proposed for action recognition using a sequence of

images in videos [41]. In [42], LSTM is applied over sequence of video clips each

represented by 3D convolutional neural network based feature, named C3D [4].

Another approach is stream-based action recognition models consisting of multiple

deep neural network models. One such model is [43] with two streams that include

one spatial stream using a single frame as input and another temporal stream using

multi-frame optical flow representations as input. It has been shown that performance

is increased using two-stream convolution neural network models.

2.2 First-Person Action Recognition Models

Within the development of wearable cameras, action recognition problems in first-

person videos have become popular in computer vision. In literature, a wide range of

studies are proposed. Traditional methods are developed using hand-crafted features

such as GIST [44], HOG [32], HOF [33], STIP [27], SIFT [45], and trajectory-based

MBH [31], and traditional classification models such as K-NN and SVM. With the

advent of deep learning models, recent egocentric models for action recognition are

developed using models such as CNN, LSTM, C3D and stream networks. In this sec-

tion, we explore traditional and deep learning based egocentric action models from

the literature in three main parts which are appearance-based, motion-based and hy-

brid models.
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2.2.1 Appearance Based Models

Appearance cues such as occurrences of objects and their locations, gaze information,

and hands with locations and sizes are informative for egocentric video understanding

and they are used in many studies.

Objects have crucial knowledge to describe first-person actions by revealing human-

object interactions. According to Fathi et al.[46], the target object is generally visible

in the center of video frames. But, the target object can also be obtained using gaze

or hand location. The first step in first-person action recognition is localizing hands

and objects in video frames to define the region of interests (ROIs) where the action

occurs. Later, appearance-based features can be extracted over ROIs.

In many studies [47, 46], hand-object interactions are modelled over extracted ROIs

to understand egocentric activities.

Spriggs et al. [48] propose a K-NN based technique for activity recognition using

GIST [44] feature and Inertial Measurement Units (IMU) data. 57.8% performance

is achieved over CMU-MMAC [49] dataset when IMU and video data are combined.

Another object-based model by Pirsiavash and Ramanan [50] introduces temporal

pyramid based model provided to define the usage of the objects in video for action

recognition. HOG [32] features are extracted and used for object modeling. With

linear SVM classifier, performance is achieved up to 77% using object information

over ADL dataset. Fathi et al. [46] address the importance of objects in first-person

videos and propose a method with two steps over GTEA dataset. The first step is

segmenting videos into foreground and background regions using optical flow, SIFT

features, color histograms. Foreground segments are further decomposed into hands

and active objects. The second step performs recognition using Multiple Instance

Learning (MIL) over object segments. According to Fathi et al. [47], fine-grained

actions are categorized using hand interaction features (such as optical flow of both

hand and object, hand pose, hand location, hand size, and left/right-hand relative

location). As their previous work [46], hands, foreground objects, and background

are segmented and Adaboost [51] classifier is used for recognition. The proposed

model is tested on GTEA dataset with an accuracy of 45%.
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Recently, Cartas et al. [52] present another object-based model using human-object

interaction with two steps over GTEA dataset. First, the hand region is segmented to

get object region in video frames. The object regions surrounding hands are detected

using Multiscale Combinational Grouping method [53]. Then, a star-structured re-

gion model, R*CNN [54], is used for more than one region classification. Last, the

output of R*CNN as contextual cue is given to LSTM to predict action category.

Gaze information is another important cue for action recognition in first-person videos.

The gaze of camera wearer generally focuses on the point where the action is per-

formed. Therefore, visual features extracted around the gaze regions are more infor-

mative compared to features extracted from other regions. Fathi et al. [2] use gaze

information for action recognition in first-person videos. This is extended object-

based model of their previous work [47] with addition of gaze appearance. The SVM

classifier is used for action categorization using object-based, gaze-based appearance

features and future manipulation features. Object-based features are extracted from

object classifiers including object context around the gaze point. Gaze-based appear-

ance features are computed using histogram of color and texture area around gaze

points. Future manipulation features consist of the information of whether the object

is manipulated by hand in a few frames ahead. Using gaze information that is given

with GTEA Gaze+ dataset, the unrelated background objects are eliminated and 47%

performance is achieved compared to 27% of [47] on the same dataset without us-

ing gaze information. Similarly, Li et al. [1] develop a model for gaze prediction in

first-person videos using hand/head movement, hand location and pose.

2.2.2 Motion Based Models

First-person videos capture motion information from camera wearer, head and hand

movements and eye movements. Besides object-based models, which is known as

appearance-based models, motion-based models are also proposed to recognize the

first-person actions in the literature.

Kitani et al. [55] model motion in first-person sports activities using motion his-

tograms. The motion histograms are based on optical flow of the scene. Due to

the unsupervised scenario, Drichlet process mixture models are proposed to get ac-

10



tion categories using the motion histograms. Li et al. [56] model motion information

using Dense Trajectories [31] as a baseline descriptor.

2.2.3 Hybrid Models

Appearance and motion domains are composed, i.e. using stream-based models

which are introduced by [57]. These kinds of studies are based on not only ap-

pearance information but also motion information, since fusing them is also more

informative for first-person action recognition as it can be seen in the following stud-

ies [9, 58, 59, 60].

Ma et al. [9] model object appearance and motion information as a two-stream net-

work. The first stream analyzes appearance in three steps; segmentation, localiza-

tion and object recognition successively. FCN32 network architecture is designed

for segmenting hand regions. Later, FCN32 network architecture trained for hand

segmentation is fine-tuned for object localization. This step gives the pixel-based oc-

currence probability of object of interest as output. Pre-processing each probability

map, it uses the centroid of the largest blob as the predicted object center and the

object is cropped with fixed-size bounding box. Finally, the cropped object regions

with labels are given to the Object Recognition CNN, CNN-M-2048 model [61]. The

second stream analyzes motion information similarly but using optical flow features.

Finally, fully connected layers of these two streams are concatenated and a new fully

connected layer is added on top of the network to recognize activities.

Yansong Tang et al. [58] integrate depth knowledge besides appearance and motion

information and test over RGB-D egocentric dataset (THU-READ). Tri-stream net-

work is proposed to incorporate appearance, motion and depth knowledge, and to

encode RGB images, optical flow, and depth images respectively. Action prediction

is calculated by taking the average score of three streams.

Hahn et al. [59] propose a model using visual information from videos and textual

information from the recipe of these videos as well. The proposed model has three

steps which are action proposal, object recognition, and recipe alignment steps. In

action proposal step, video frames are localized in terms of having action or not.
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Bidirectional LSTM is used for frame classification with two classes, action or not-

action. In the object recognition step, ResNet101 network [62] is trained for object

classification along with frames having actions according to the action proposal step.

Finally, in the recipe alignment step, the action category of the video is predicted

using a natural language processing model (Stanford Dependency Parser [63]).

Recently, G. Kapidis et al. [60] introduce a multi-modal approach based on sequential

learning using LSTM architecture to recognize egocentric actions on EPIC-Kitchens

dataset [64]. Due to unavailability of hand annotations in EPIC-Kitchens dataset,

a hand detector is trained using Yolov3 [65] object detection model on hand sam-

ples gathered from various datasets. Then, objects in video frames of EPIC-Kitchens

dataset are detected using object detection model. The object is also interpreted as

a binary object presence vector using YOLOv3. Finally, LSTM is trained for action

recognition using both information of hands as motion knowledge and object pres-

ence vector as object knowledge.

2.3 Brief Overview of Egocentric Datasets

The availability of first-person videos has increased along with a wearable camera

and other devices in recent years. This section includes an overview of popular and

the most relevant egocentric datasets (see Table 2.1).

CMU-MMAC. The Carnegie Mellon University Multi-modal Activity database (CMU-

MMAC) [49] consists of cooking and meal preparation activities which are making

brownies, pizza, sandwich, salad, and scrambled eggs. These 5 cooking activities are

performed by 43 subjects. Different modalities are recorded which are video, audio,

IMU signals, motion capture, wearable sensors.

ADL. This dataset was introduced for detecting activities of daily living in first-

person videos. It consists of 1 million frames of 10 hours of video. It contains 32

actions performed by 20 people in 20 different homes such as combing hair, makeup,

brushing teeth, etc. The dataset was annotated with activities, object tracks, hand

positions, and interaction events [50].
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GTEA. Georgia Tech Egocentric Activities (GTEA) dataset contains 7 meal prepara-

tion activities which are Hotdog, Sandwich, Instant Coffee, Peanut Butter Sandwich,

Jamand Peanut Butter Sandwich, Sweet Tea, Coffee and Honey, Cheese Sandwich

recorded by a head-mounted camera and each performed by 4 subjects. There are 28

activity videos with 71 action categories such as put water cup, take coffee and etc.

Each action category was also labelled using verb and noun categories [47, 46].

GTEA Gaze. This dataset was collected using Tobii eye-tracking glasses. In total,

there are 17 video sequences with gaze information performed by 14 different sub-

jects. Each action in these videos is represented with a verb and set of nouns such as

pouring milk into cup. Pixel-level hand annotations are provided as well [2].

GTEA Gaze+. This dataset is a variant of GTEA Gaze+ and it was collected us-

ing SMI eye-tracking glasses. It consists of 7 meal-preparation activities which are

American Breakfast, Pizza, Snack, Greek Salad, Pasta Salad, Turkey Sandwich and

Cheese Burger with recipes. 37 activity videos performed by 26 subjects are pro-

vided with gaze tracking and action annotation. Each action consists of verb and set

of nouns such as put milk container. Similarly, this dataset also provides pixel-level

hand annotations. 44 action categories are used in [56] and the action categories are

listed in web pages of dataset [66] for a fair comparison.

EGTEA Gaze+. This is also available large egocentric dataset. There are 86 ego-

centric activities consist of cooking videos. It includes 106 action categories which

consist of 19 verb categories and 53 object categories. [12].

THU-READ. Tsinghua University RGB-D Egocentric Action Dataset provides 2

modalities which are RGB and depth modalities. It contains 40 actions which are

performed by 8 subjects (6 males and 2 females). Each action is repeated 3 times by

each subject. In total, there are 1920 action clips. These action clips are divided into 4

splits in subject-based; 3 splits are used for training, the other is used for testing [58].

BEOID. Bristol Egocentric Object Interactions Dataset is created using a head-mounted

camera and eye tracker. It consists of 58 different activity videos performed by 8 dif-

ferent subjects in 6 different places which are kitchen, workspace, laser printer, cor-

ridor with a locked door, cardiac gym, and weight-lifting machine. The action labels
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with 3D object information are available [67].

EPIC-Kitchens. The first-person dataset is recorded using a head-mounted camera

in 32 different kitchens which are the wearers’ kitchens at their home. There are 55

hours of recording with 39,594 action segments which consist of 125 verb classes

along with 331 noun classes. This dataset also provides the 454,255 object bounding

boxes [68].

UT Egocentric. Various indoor and outdoor activities such as cooking, eating, driv-

ing, and shopping are recorded by 4 different subjects. There are 10 videos recorded

but 4 of the 10 videos are available due to the privacy reasons. Annotated binary

masks of images with positive and negative classes are given for region of interest.

There is no available annotation except for binary mask of region of interest [69, 70].

Charades-Ego. It consists of 157 different types of daily activities with 68,536 anno-

tated samples which are recorded both in first-person and third-person views. There

are 33 verb and 38 noun classes; the place information where the videos are recorded

in is available per activity sample [71].
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2.4 Convolutional Neural Network

Convolutional neural network (CNN) is a deep learning algorithm, developed inspir-

ing from the human brain cortex. CNN is similar to regular neural networks and

consists of a set of layers that are an input layer, followed by hidden layers (convo-

lutional, pooling, and fully connected layers) and an output layer. There are various

CNN architectures constructed for image data such as LeNet [72], AlexNet [35],

VGGNet [73], GoogLeNet [74], ResNet [62]. Unlike classical computer vision ap-

proaches, these models take images as input and construct visual concepts without

any pre-processing.

LeNet5 architecture by LeCun et al. [72] was introduced as a pioneer of convolutional

neural network with 7 convolution layers and developed for handwritten digit/charac-

ter recognition on bank checks. Deeper CNN architectures have become popular with

AlexNet [35] that won ImageNet ILSVRC competition in 2012. Another deep CNN

architecture with 16 convolution layer, VGGNet [73], was constructed using 2 or 3

consecutive convolutional layers. Unlike previous neural network models, ResNet

[62] was developed with residual blocks. Within these residual blocks, the output

of a layer not only feeds into the next layer but also feeds into the 2-3 next layers.

GoogLeNet [74] proposed inception modules as a wider and deeper model than oth-

ers for image classification. Each inception module consists of multiple convolutional

layers with various spatial sizes.

There are two types of convolution which are 2D convolution, and 3D convolution.

While the input is convolved with the kernel only spatially in 2D convolution, the in-

put is convolved with the kernel both spatially and temporally in 3D convolution. 3D

convolution is generally preferred for video data processing since it models spatial-

temporal information. 3D Convolutional Networks [75, 4] are CNN models with

good performances in action recognition over videos.
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Figure 2.1: 3D Convolutional Neural Network (C3D) [4] architecture with 8 convo-

lutional, 5 pooling and 2 fully connected layers.
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2.5 3D Convolutional Neural Network

For the reasons that appearance and motion information is important to describe

videos and 3D-CNN learns spatio-temporal information of videos well [4, 75]), 3D-

CNN is proposed for action recognition in videos.

In this part, 3D-CNN architecture, which is named C3D network in this paper [4],

proposed by Tran et al. [4] is described in detail. There are 8 convolution layers, 5

pooling layers, 2 fully connected layers and a softmax layer in the proposed architec-

ture (see Figure 2.1). All 3D convolution filters are 3x3x3 with stride 1x1x1. During

training, five clips with 16x112x112 size are cropped randomly from each training

video as spatially and temporally. Also, horizontal flipping is applied to each clip

with 50% probability. Trained C3D model is used for feature extractor. For each clip

with 8 frames overlapping temporally, C3D features extracted from fc6 layer. The

video is represented with the 4096-dim feature taking an average of the fc6 feature

maps. After following L2-normalization, C3D video descriptors are given to multi-

class linear SVM classifier to predict action category. It has been also shown that

C3D features combined with hand-crafted features such as dense trajectory increase

the accuracy.

2.6 Recurrent Neural Network

The feed-forward neural networks such as CNN could not deliver high performance

for sequential data such as time series data, videos, audio, and text, since it is assumed

that inputs and outputs in each layer of the network are independent. No correlation

between each point of the sequential data can be established in these networks. On the

contrary, Recurrent Neural Network (RNN) is named as recurrent since (1) the cal-

culation is repeated for each item of the sequential data using weight sharing strategy

and (2) outputs in each time step depends on the calculation from the previous time

steps. As shown in Figure 2.2, besides the input data xt, the content units ht-1 showing

the previous output also affect the network at time t in RNN. The decision for the

input at the moment t-1 also affects the decision to be made at time t. So, in these

networks, inputs produce output by combining current and previous information.
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Figure 2.2: Recurrent neural network and ulfolded structure

The mathematical formula used in this model is given in Equation 2.1 and 2.2:

ht = σ(U ∗ xt +W ∗ ht−1) (2.1)

yt = φ(V ∗ ht) (2.2)

where ht is the hidden state, xt is the input and yt is the output at time t step. U,

W and V are shared weights in network. The σ and φ is the activation function

such as sigmoid or tanh. While training step, the weights are updated according to

the previous and current information using Back Propagation Through Time (BPTT)

algorithms [76, 77]. Backpropagation process is applied until the error between the

ground truth and prediction outputs is minimized.

As RNN becomes more complex (deep in time), vanishing gradient problem has oc-

curred since RNN is not able to handle long-term dependencies in practice. This

problem has been solved using Long-Short Term Memory (LSTM), a special kind of

RNN, which was first designed in 1997 [78].

Long Short Term Memory. Long Short Term Memory (LSTM) is a special type

of recurrent neural network which is widely used. However, the difference from the

recurrent neural network is that the memory cell in recurrent layers has a simpler

structure. In each memory cell of LSTM, there are 3 multiplicative units, also known

as gates, which consist of input gate, output gate and forget gate with a special task.

LSTM memory cells can write, keep, erase and read information using mathematical

operations using these gates. With the help of the gates in memory cell, it is decided
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which parts of data are memorized, which part of the data is allowed to write on mem-

ory, when information is allowed to read from the memory and which parts of data is

forgotten. The structure of LSTM memory cell is denoted in detail in Figure 2.3.

X +

tanh ���

tanh

XX

ht

xtxt-1 xt+1

ht+1ht-1

Figure 2.3: Long-Short Term Memory Network cell in detail

The mathematical operations in LSTM memory cell are given in the following Equa-

tions (2.3 - 2.7). In each time step of the cell, xt, ht-1 and Ct-1 are inputs and Ct and

ht are outputs of the network. The first stage in LSTM memory cell is the operation

of forget gate. It is decided which part of input data is aroused from memory (see

Equation (2.3)):

ft = σ(Wf · [ht−1, xt] + bf ), (2.3)

where σ is the sigmoid function, inputs are xt at t time step and ht-1 from t-1 time step

and the network parameters are Wf and bf.

The second stage is the decision of which parts of the data is memorized (see Equation

(2.4-2.5)):

it = σ(Wi · [ht−1, xt] + bi). (2.4)

C̃t = tanh(Wc · [ht−1, xt] + bc). (2.5)

The third stage is the update of current state of Ct using Ct−1 and it (see Equation

(2.6)):

Ct = ft ∗ Ct−1 + it ∗ C̃t, (2.6)
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The last stage of the mathematical operations in LSTM cell is the output gate. After

input, forget gates are computed, ht is decided as output of cell (see Equation (2.7)).

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct). (2.7)

So, LSTM remembers the things for a long time with this memory cell and learns

whether it will receive or release the data. Long-term dependency problem is handled

with this memory cell structure.

Bidirectional LSTM. Bidirectional LSTM (BiLSTM) [79] is the combination of

LSTM structure[78] and bidirectionality from Bidirectional RNN [80]. BiLSTM

consists of backward and forward networks and the outputs of these sub-networks

in each time step are combined to the same output layer [79]. It is based on the idea

that the outputs at any time step may depend on not only previous data but also the

future data. In Figure 2.4, it can be seen that BiLSTM is constructed with stacked two

LSTM networks, which are forward and backward. Each layer of the BiLSTM feeds

backward and forward information of the point of sequence data into the output layer

simultaneously at each time step.
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Figure 2.4: BiLSTM structure overview
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2.7 YOLO Object Detection

Object detection is the identification of all relevant objects in an image with their

bounding boxes and categories. YOLO [81] is a real-time deep learning model to

detect objects in images using a regression approach and it is faster than other object

detection models [82]. Unlike the prior deep learning models such as R-CNN and

its variants [83, 84, 85], YOLO predicts classes and bounding boxes jointly and at

real-time.

YOLOv2 architecture consists of just convolutional layers with max pooling. Darknet-

19 architecture with 22 convolution layers is used which contains with 3x3 and 1x1

filters. Especially, 1x1 filters are applied on detection layers. Before the last detection

layer, the shortcut connection is used in this architecture, as suggested in ResNet [62].

After low-level feature map from the previous layer is reshaped and concatenated with

high-level layer feature map in the next layer, the concatenated feature is given to the

next layer of the architecture.

Given a single RGB image as input, object detection is performed in the last layer

known as a detection layer. Detection layer of the model creates SxSxN tensor as

output where the input image is represented with SxS grid spatially. Each grid cell

contains predictions of B bounding boxes for each class, each of which consists of 5

components (x, y, w, h, confidence score). x and y are the coordinates of the bounding

boxes, w and h represent the width and height. N, depth of output tensor SxSxN, is

defined in the following Equation 2.8.

N = Bx(5 + C ) (2.8)

where B = 5 is default bounding box number with different scales, C is the class

number, 5 is the components (x, y, w, h, confidence score) for each bounding box

prediction.

In training of YOLOv2, it uses sum-squared error between the predictions and the

ground truth to calculate the loss. Three terms which are confidence loss, classifi-

cation and localization loss are used for total loss function. Confidence loss is the
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objectness of the box. If there is no object in the bounding box, then the objectness

loss should be reduced. Localization loss is an error between the predicted bound-

ary box and the ground truth. The difference between predicted boundary box and

ground truth should be minimum. It is also same for classification loss. In testing of

YOLOv2, a threshold is applied to confidence score to eliminate the unrelated object

bounding boxes from all predictions in the image.

The purpose of this YOLO object detection network in this thesis is to define object

and hand detection in first-person video frames. It can be said that YOLO is the

auxiliary model to find hand and object regions with categories for verb and object

models in our proposed structure in Chapter 3.
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CHAPTER 3

OUR APPROACH

First-person videos consist of fine-grained action categories with high similarity (e.g.,

pour seasoning from seasoning container to salad). Due to the fact that the first-person

samples are difficult to distinguish from each other, one natural way for fine-grained

recognition of these action categories is to decompose actions into verb and object

categories and to investigate the co-occurrence of both categories on the same video

sample. For instance, take tomato action can be identified by the recognition of verb

category, take, and object category, tomato, simultaneously (see Figure 3.1).

Figure 3.1: Verb-object pairs in first-person videos from EGTEA Gaze+ dataset.

Many studies emphasize the importance of both motion and appearance-based fea-

tures for recognizing human actions with high success in first-person videos [9].
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Both motion and appearance-based features can be modelled in different ways that

are modeling with a simple concatenation of these features [59, 60] and modeling

with stream-based structure [57, 9, 58].

With these motivations, in this thesis, two complementary steps are proposed to per-

form action recognition in first-person videos. The first step is determining the verb

and object that construct the action. In this step, motion and appearance informa-

tion is represented by verb and object models respectively and separately. The verb

model is constructed by a spatial-temporal model C3D[4] which is a type of 3D con-

volutional neural network model, while object model is constructed using an object

detector YOLOv2 [82], which is the second version of YOLO [81]. The second step

is a fusion methodology which is based on the combination of these distinct verb and

object models to perform action recognition. A simple count-based fusion method-

ology along with LSTM-based fusion methodologies are proposed in the second step

of our approach.

The chapter continues with the overview of our approach in Section 3.1, verb model

in Section 3.2, object model in Section 3.3, and fusion methodologies in Section 3.4

respectively.

3.1 Model Overview

Action recognition model is demonstrated in Figure 3.2. Using verb and object cat-

egories, the proposed architecture which has three main streams composed of Verb,

Object, and Fusion; (1) Verb stream is a verb classifier that takes successive N clips

and returns the verb scores per clip as an output. (2) Object stream is an object detec-

tion network taking video frames and returns object proposals with bounding boxes.

Finally, (3) Fusion Stream is the action model employing various fusion strategies to

recognize action categories taking the outputs of verb and object models.
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Figure 3.2: Model overview. Compositional modeling utilizes verb and object

streams to recognize action in first-person videos.

3.2 Verb Stream as Video Verb Descriptor

We introduce the verb model to recognize the verb category of human action videos.

Indeed, we present motion information of video using verb model as video verb de-

scriptor. In this study, verb model is proposed as a composition of two sub-models

which are full-scale verb model and hand-scale verb model. While full-scale verb

model reveals coarse-grained description by utilizing full-scale frames with hands,

objects and scene information, hand-scale model reveals fine-grained description by

utilizing zoomed regions around hands.

C3D architecture [4] is employed in both sub-models for verb prediction, since it

learns spatio-temporal information on videos during convolution (see Section 2.5).

(Tensorflow implementation is used for C3D architecture utilizing the code in [86])

Each verb model, namely full-scale and hand-scale models, generates stream of pre-

diction scores as softmax outputs per video. Particularly, these streams are V xC

dimensional verb score matrices. These matrices are further combined using max-

pooling over score vectors of clips with hand.

3.2.1 Full-Scale Verb Representation

The purpose of the full-scale model is to describe the verb category in coarser level.

Model is based on C3D architecture which takes the video clips as input and outputs

the category scores. Unlike the original C3D model [4] which utilizes randomly se-

lected video clips over training videos, our model is trained on ground truth video

clips in which the action is performed to increase the accuracy. Ground truth video

clips are the clips extracted around the neighborhood of the ground truth frames (ex-

25



plained in Section 4.1.1). Following the original C3D setting [4], the video clips are

resized to 112 x 112 x 3 x 16 before given to the C3D verb model.

Given a video, C successive clips, each of which includes 16 frames, are obtained

by sliding 2 frames through the video. Each clip is given to full-scale C3D verb

model, and prediction scores per category are taken as output. The model returns

V xC dimensional verb score matrix as full-scale verb stream, where V is the number

of verb categories and C is the number of clips.

3.2.2 Hand-Scale Verb Representation

Hand information is the most important clue to determine camera wearer’s action in

first-person videos. The purpose of hand-scale model is to describe verb category in

finer level with a hand centric approach. This model utilizes hand regions eliminating

background information from the video frames instead of looking at videos in full-

scale as in the full-scale verb model. In order to classify verb of video using hand

information, hand-scale verb model with two steps is proposed. First, hand detector

is used to predict hand regions in frames of videos. Second, verb model takes the

hand-volumes cropped around hand regions and predicts verb scores. The details of

this model are explained as follows.

In the first step, we propose a hand-detection model to localize hands in video frames.

We use the state-of-the art object detector YOLOv2 [87] to detect hands. The YOLO

architecture is fine-tuned for one class (hand) using our hand dataset gathered from

the EGTEA Gaze+. Our hand dataset and the annotation strategy are explained in

Section 4.1.1. Trained hand detector takes video frames as input and returns detected

regions as hand proposals with confidence scores.

Proposals having 50% overlap with ground truth hands labelled on ground truth

frames are used to extract hand volumes. Particularly, a hand volume is a tube cropped

around a hand-region, where the volume contains the hand-region in its mid-frame

and lasts 16 frames keeping the spatial location of hand along with all frames. The

cropped hand volume is spatially resized into 112 x 112 before it is fed into the hand-

scale verb model as input. In order to be consistent with the full-scale verb models,
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the hand-scale verb model is trained using C3D architecture [4] as well. While some

verb actions such as open and take are performed by one hand, other verb actions

such as cut and mix are performed by two hands. In the actions performed by both

hands, one of these hands may not move with the same pattern of verb category. We

can say that the one hand sometimes may act as an auxiliary hand to perform the main

verb category in the video. For example, when we consider cut as a verb in the video,

one hand cuts the object while the other hand holds the object. Following this, we

extend verb categories with the additional verb category hold to learn hand motion

more accurately. The hand-scale model is trained with verb categories of full-scale

model as well as the verb category hold.

Given a video, hand-regions are extracted using the YOLO hand detector by sliding

2 frames through the video. Then, we obtain a hand-volume for each hand-region.

Each hand volume is cropped around the hand bounding box. These volumes are fed

into C3D model and prediction scores are obtained. It is possible that multiple hand

volumes (e.g., cut action) may be detected on the same video frame (clip) since the

action may be performed by both hands. In order to represent each video clip by one

score vector, we apply max-pooling over prediction scores of multiple volumes. The

model returns V xC dimensional verb score matrix as hand-scale verb stream, where

V is the number of verb categories and C is the number of clips.

3.3 Object Stream as Video Object Descriptor

In first-person videos, objects manipulated by hand help to recognize fine-grained

action categories. We aim to find which objects appeared in the video. YOLOv2 [87]

is used to detect objects in video frames. Object detector is fine-tuned with object

categories of the given dataset, and the object annotation strategy is explained in

Section 4.1.2. Object model takes single frame at a time and proposes possible object

bounding boxes with confidence scores. There may be so many objects predictions. In

order to eliminate the invalid detections, a threshold (0,4) is applied to the confidence

scores for objectness, and max-pooling is applied to pool object scores per frame.

The model returns an object stream as pooled and stacked confidence scores over
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Figure 3.3: Fusion methodologies for action recognition. (a) Methodology 1: Simple

Fusion. Verb and object vectors extracted from verb and object streams are multiplied.

(b) Methodology 1. After verb and object scores are extracted from LSTM Verb and

LSTM Object models, they are multiplied. (c) Methodology 2. Verb and object

streams are concatenated using Action LSTM network. (d) Methodology 3. Verb

and object streams are concatenated using shallow neural network (e) Methodology

4. Action LSTM utilizes the baseline model outputs for action recognition.

video frames and it corresponds to an OxC dimensional object score matrix, where

O is the number of object categories and C is the number of frames.

3.4 Fusion Methodologies

Fusion stream is the last step of our proposed model and is referred to as the ac-

tion model combining verb and object information extracted from verb and object

streams. We employ multiple fusion methodologies with late fusion strategy inspir-

ing from the study in [88]. We can categorize the proposed fusion methodologies in

two ways. The first approach proposes a simple fusion strategy consisting of simple

vector multiplication without any learning. The second fusion approach employs a set

of late fusion strategies with various LSTM learning mechanisms. Figure 3.3 shows

the fusion methodologies.
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3.4.1 Simple Count Based Fusion Strategy

Using a simple fusion methodology, verb and object information extracted by verb

and object models are combined to obtain the action label of the given video. It is

simply based on multiplication operation without any learning. The structure of this

fusion methodology can be seen in Figure 3.3 (a).

In the verb stream, successive clips for given test video, each of which includes fixed

16 frames, are obtained by sliding 2 frames through the video. First, two V xC verb

score matrices where V is the number of verb categories and C is the number of clips

is extracted using full-scale and hand-scale C3D verb models (see Section 3.2) and

then these matrices are max-pooled. Later, each clip is assigned to a verb category

by calculating the category with the maximum score among the prediction scores

over CxV matrix. Assigning all clips to a verb category, a histogram showing the

distribution of the verb categories over video clips is computed and L1 normalization

is applied to eliminate the effect of video length. To sum up, the video is represented

as a V dimensional verb-vector v.

In the object stream, in a similar way to verb stream, successive frames are obtained

by sliding 2 frames through the video, and objects are detected using the object de-

tection model (see Section 3.3). Each frame of the video is first assigned to an object

category by calculating the category with the maximum score usingOxC matrix com-

puted by object model. Assigning all frames to an object category, a histogram show-

ing the distribution of the object categories over video frames is extracted from all

assigned object categories and L1 normalization is applied to eliminate the effect of

video length. To sum up, the video is represented as an O dimensional object-vector

o.

Inspired by a recent verb-object study for human-object interactions in still images[89],

the V xO dimensional estimation map, E, is calculated to get action categories in-

cluding all combinations of actions. E is extracted using a simple multiplication of

v and o vectors from the verb and object models (see above). In order to evaluate

the combinations of {verb, object} pairs existing in the dataset, the estimation map,

E, is masked by a V xO dimensional binary mask, A, consisting of binary values (see
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Equation 3.1). The binary activity mask size is constructed to preserve the verb-object

space in our dataset. 1 shows the existence of a verb-object category pair, 0 shows the

nonexistence of the verb-object category pair in our dataset (e.g., cut-fridge pair is

not consistent action category with our dataset).

E = v · oT

E ′ = E � A
(3.1)

The {verb, object} pair with the maximum value overE matrix is assigned as the pre-

dicted category of the given video sample. As a result, the video is represented with

appearance and motion feature vectors that are completely count-based (histogram

based) and are extracted by utilizing verb and object models. This simple fusion

methodology utilizes these features and provides the action category without train-

ing. The closest study to our simple count-based fusion methodology is the model

proposed for human-object interaction in zero-shot setting [89]. However, the study

is different from ours in terms of models and dataset that we used.

3.4.2 LSTM Based Fusion Strategies

Since action videos consist of sequential clips, recurrent models can be used to model

the temporal relations between labels presented in consecutive clips. Given verb and

object prediction vectors per clip, we use long short-term memory (LSTM) models

to represent temporally the action of each clip. Such temporal information is com-

plementary to video clips being a part of a longer video sequence, and is critical to

smooth the labels of predicted clips. In this section, our aim is to propose fusion

methodologies based on recurrent structures to provide not only the fusion of verb

and object judgments for action classes but also improve accuracy. In contrast to the

first fusion strategy, our proposed fusion strategy in this part is based on two vari-

ant model of RNN, namely LSTM and BiLSTM. Available verb and object detection

scores are fused using four different ways:

Methodology 1. Individual LSTM networks is trained over verb and object streams

of trained samples separately. Given a video, computed prediction scores for verb and
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objects, verb-vector v and object-vector o, are combined using a simple multiplication

as described in Eq. 3.1 to perform action recognition (see Figure 3.3 (b)).

Methodology 2. This fusion methodology utilizes the LSTM structure to recognize

the action category of the video. We concatenate verb and objects prediction scores

(streams) as representations of video clips. Later, single action based LSTM model is

trained to predict the action category (see Figure 3.3 (c)).

Methodology 3. Similar to methodology 1, individual LSTM networks are trained

over verb and object streams of train samples separately. Later, fully connected based

shallow neural network model is trained to predict action categories over verb and

object prediction scores of LSTM outputs. (see Figure 3.3 (d)).

Methodology 4. This fusion methodology utilizes the C3D model trained as an action

detector, but not as a verb and object detector. First, a C3D model is trained on action

categories on the whole dataset. Having action trained C3D model, the model is used

to extract action prediction scores per clip. The prediction along clips are stacked into

a single stream and fed into a single action based LSTM model (see Figure 3.3 (e)).

Here, clips are extracted with a temporal stride of 2 frames over videos and each clip

lasts 16 frames.
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CHAPTER 4

EXPERIMENTS

In this chapter, we evaluate our models on action recognition and present the exper-

imental results. We first introduce the dataset and the hand-object annotations we

used and extracted in Section 4.1. Later, we present the evaluation criteria used to

evaluate action recognition results 4.2. Then, we report the experimental results for

(a) evaluations with ablation studies on simple fusion strategy 4.3, and (b) evaluations

for LSTM based fusion strategies 4.4. We conclude and compare with recent studies

on the same dataset in Section 4.5.

4.1 Dataset and Annotations

We perform our experiments on the EGTEA Gaze+ dataset [66] which includes first-

person meal preparation activity videos. The EGTEA Gaze+ dataset is published in

2018 and extended from the GTEA Gaze+. It consists of cooking activities performed

by 32 different subjects and includes 86 cooking videos providing 106 action cate-

gories in 3 train-test splits. Each train-test split has 8229 train and 2022 test video

samples. In this dataset, action categories are made of verb and object pairs. 106

fine-grained action categories consist of 19 verb categories and 53 object categories.

While some action categories such as cut tomato contain one object category, others

such as pour water-faucet-pot contain more than one object category.

Since frame based action, hand and object annotations are missing, we annotate

ground truth video frames and the hand and object bounding boxes occurring in these

frames to use in our supervised model. The annotations of hand, object and action

in video frames are demonstrated in Figure 4.1. We present hand, object and action
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Figure 4.1: Hand, object and action annotations in video clip.

annotation details in Section 4.1.1, Section 4.1.2 and Section 4.1.3 respectively.

4.1.1 Hand Annotations

The EGTEA Gaze+ dataset has sparsely annotated pixel-level hand masks which are

publicly available. Contrary to the available sparse annotations in the EGTEA Gaze+,

our aim is to create our systematic hand annotations with bounding boxes. In our

study, hands having consistent hand motion with the ground truth verb category are

annotated in frames of the video samples. The annotated frames with hands corre-

spond to the middle frames of action volumes used in the C3D verb model training

(see Section 3.2).

We annotated each video sample that has visible and consistent hand motion over the

3 train-test splits of the dataset. Since hand is not included among object categories,

wash hand action category in wash verb and hand object is just recognized using

additional wash-hand verb category (video samples of wash hand action category

are identified using only verb stream). Moreover, some video samples can not be

annotated in a verb category due to the absence and invisibility of hand (video samples

of inspect-read recipe action category are identified by recipe object using only object

stream since hands are missing in these samples). As a result, annotations for 20 verb
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categories are provided for training of hand models (including hold and wash-hand,

and excluding inspect-read). The number of labelled hand samples with verb labels

for train split 1, split 2 and split 3 are 8230, 8288 and 8075 respectively.

4.1.2 Object Annotations

The related objects in video clips are considered in our action scenario and the objects

interacting with hand are used in our object model. Therefore, the frames with hand

annotations are labelled with object locations as well. However, we do not achieve

enough and balanced number of object samples, since some objects are not visible

when they interact with hand. Therefore, the same object categories are populated

with additional annotations from other frames of the videos.

Annotations of water, and seasoning are skipped since it is difficult to determine the

properties (i.e. view, size, shape, etc.) of these object categories. Moreover, the hand

is not included among object categories, since the hand annotations are used for hand

detector which is an auxiliary model in our hand-scale verb model (see Section 3.2.2).

As a result, annotations for 50 out of 53 object categories are provided for the object

models. The number of labelled object samples for train split1, split2 and split3 are

also 7251, 7295 and 7117 respectively.

4.1.3 Action Annotations

Current version of the EGTEA Gaze+ dataset does not include frame level annota-

tions. However, the verb models (see Section 3.2) and baseline action models (see

experiments in Section 4.3.3) are trained in a supervised setting and receive labelled

video clips. Since annotated hands are on the middle frames of actions, evidently

hand annotations are also utilized as action annotations for our proposed models.
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4.2 Evaluation Metrics for Recognition

In order to evaluate first-person action recognition task, the classification accuracy

metrics are defined as follows:

Overall Accuracy. The accuracy metric measures how accurately our model predicts

and is the standard metric to evaluate the performance of our model.

accuracy =

∑C
i=1TPi∑C

i=1(TPi + FPi)

Mean Class Accuracy. The dataset has unbalanced data with various number of

samples in each category. In this case, the category with more instance dominates

the overall accuracy and makes it unreliable. In order to evaluate performance of our

models, the accuracy is first calculated for each class, and then per-class accuracy

numbers are averaged to get final accuracy. The mean accuracy formula is defined as

acci =
TPi

TPi + FPi

mean accuracy =
1

C

C∑
i=1

(acci)

where the C is the number of action class in dataset, TP is the number of true pre-

dicted instances, and FP is the number of false predicted instances. All experimental

results are evaluated using mean class accuracy in the following.

4.3 Experiments on Simple Count Based Fusion Methodology

We evaluate the verb, object and action models using count based methodology and

report accuracy of each model at video level. The baseline C3D verb model utilizes

video clips consisting of 16 frames and YOLO object model utilizes video frames in

each time step as input. In order to evaluate a test video, we sequentially test each

clip and frame of video at a temporal stride of 2 frames. In the test stage, the set of

clips in video at temporal stride 2 frames is called clip sequence. The set of frames in

video at a temporal stride of 2 frames is called frame sequence. The final prediction
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of each video is extracted using the histogram of categories of each clip and frame of

the given video.

4.3.1 Ablation Studies on Verb Model

Verb Models with Scaled ROI. Region of interest (ROI) in different scales get dif-

ferent amount of information from the background. This situation may have crucial

effects on accuracy. In order to examine these effects, we evaluate verb recognition

performances in different scales for verb models. Individual performances of each

scale are evaluated and the experimental results are shown in Table 4.1.

The first verb model is trained in full-scale mode where the whole frame of clips is

used in training as explained in Section 3.2.1. For other scales, we crop regions and

construct volumes around hand predictions. The region is determined using different

enlargement scales. For a scale, horizontal and vertical enlargement is applied in all

directions. Hand10 and and20 verb models mean that 10% and 20% of enlargement

with respect to width and height of the detected hand regions are applied respectively.

Verb Models with Scaled ROI Split1 Split2 Split3

C3D (Full Scale) 39.99 41.84 38.69

C3D (Hand20) 37.13 N/A N/A

C3D (Hand10) 35.91 33.19 34.58

Table 4.1: Mean class accuracy results of verb models with different ROI scales in

verb stream. Simple count based methodology is applied in these experiments and

some experiments in some splits of dataset are not available.

We observed that full scale verb model outperforms the other hand based verb models

since the full region contains the information of hand motion, object, and background.

The context provided by each element enhances the ability to recognize action in

videos [47]. When the individual verb categories are investigated, hand-scaled verb

models outperform the full-scale one in some categories such as open, put, crack verb

categories.
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Combination of Verb Models. It is observed that although the full-scale verb model

outperforms hand-scale verb models in terms of mean class accuracy, hand-scale verb

models for some verb categories outperform the full-scale verb model. Therefore, we

fuse the verb models using two fusion strategies, weighted average, and max-pooling.

In the first strategy, softmax values of the clip sequence are averaged using weight pa-

rameter at clip level. The weight parameters (αfull, αhand10, αhand20) are empirically

searched in the [0-1] range and selected by looking at the performances on the test

split. Likewise, the max-pooling is applied to the softmax values of video clips. The

results are reported in Table 4.2. It has been shown that the combination of softmax

values extracted from verb models by weighted average and max-pooling enhances

the verb recognition accuracy of the verb model. Due to the fact that full-scale verb

model achieves the best accuracy, we keep full-scale verb model and combined with

other two in this experiment.

Fusion Strategies Models Split1 Split2 Split3

Weighted Avg.

C3D (Full-Hand10) 46.99 43.99 43.16

C3D (Full-Hand20) 45.63 N/A N/A

C3D (Full-Hand10-Hand20) 46.38 N/A N/A

Max-Pooling
C3D (Full-Hand10) N/A 43.57 42.08

C3D (Full-Hand20) 44.91 N/A N/A

Table 4.2: Experimental results of combined verb models based on simple count

based methodology. The results are obtained using mean class accuracy metric. In

weighted fusion strategy, the verb predictions from different verb models in different

scales are averaged using weights, αfull for full-scale model, αhand10 for hand10 verb

model, and αhand20 for hand20 verb model. C3D (Full-Hand20) model uses [αfull =

0.5, αhand20 = 0.5], C3D (Full-Hand10) model uses [αfull = 0.5, αhand10 = 0.5], and

C3D (Full-Hand10-Hand20) uses [αfull = 0.4, αhand10 = 0.3, αhand20 = 0.3]. Max-

pooling strategy is just reported for Full-Scale and Hand20. The results are taken on

split1 of the EGTEA Gaze+ dataset.

According to Table 4.2, the fusion strategy helps the verb model to increase mean

class accuracy upto 46.99% when compared to the individual verb models reported in
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Table 4.1. Although the accuracy of three scale combination (the combination of full-

scale, hand10 and hand20 verb models) using weighted average strategy is higher than

others, we continue with the full-scale and hand20 combination using max-pooling to

be used in compositional action models in the action experiments. The reason is that

max-pooling is a straightforward fusion strategy and easy to apply.

4.3.2 Ablation Studies on Object Model

We evaluate the accuracy of object model presented in Section 3.3. Two different

approaches are used for evaluation. First, frame based object detection accuracy is

calculated using mAP (Mean Average Precision). Second, the video based main ob-

ject classification is calculated by using frequency of object appearances in the video

frames. The results can be seen in Table 4.3.

In order to evaluate our object detector, YOLO, we provide detection results on split1

and we achieve 55.51% mAP. For trash, mixture, condiment object classes, low ac-

curacies are achieved since these objects are hard to detect. Moreover, some objects

are getting mixed up with each other. We observe that action labels of the EGTEA

Gaze+ dataset video samples are often confused and some samples of the same class

are labelled with different object categories. For instance, tomato container object

instances are visually similar to grocery bag object instances. In another example,

fridge, fridge drawer and drawer object instances are getting confused and used

interchangeably in labelling. The low accuracy in object detection at the frame level

seems to be originated from the ground truth labels of the original dataset.

We also evaluate the object model at video level. It is analyzed how often the main

object of any action category appears on the video. Object model, YOLO, predicts

objects in frames of the video sequence. The most frequently detected object category

by YOLO in each video is assigned to that video as the main object category. 63.41%,

63.73%, and 62.24% accuracies are achieved for video object classification using

mean class accuracy metric in split1, split2 and split3 respectively.
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Object Models Split1 Split2 Split3

YOLO object classification 63.41 63.73 62.24

Table 4.3: Object models are evaluated at video level with mean class accuracy

(mACC) using simple count based methodology.

4.3.3 Experimental Results on Action Recognition

We provide two different experiments for action recognition. While the first experi-

ment is the proposed action model based on simple multiplication, the second exper-

iment is the baseline C3D action model for comparison.

Verb-Object Multiplication Model. The first action recognition model is based on

a simple multiplication of verb and object vectors. The verb and object vectors are

calculated for each test video using verb and object models. The video samples clas-

sified with a verb and an object pair simultaneously are assigned to corresponding

action category (see Section 3.4.1 for details). The results are given in Table 4.4.

Baseline Model. The baseline action recognition model is constructed using C3D

model having the same architecture with the verb model. The model is trained in

supervised setting using annotated action frames (clips) where architecture learns ac-

tions rather than verb classes. For each clip of the test video, a softmax output over

action labels is retrieved from the C3D model, then the frequently observed action

label among clip sequence of the video is evaluated using simple count based his-

togram method proposed in Section 3.4.1 (instead of applying count based model on

verb and object streams separately, we apply the same model on action scores).

Action Recognition Models Split1 Split2 Split3

Verb-Object Multiplication 33.87 35.86 34.57

Baseline 21.85 N/A N/A

Table 4.4: The action model based on verb and object multiplication along with the

baseline C3D action model.
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We observed that action model based on verb-object multiplication outperforms the

baseline C3D action model with more than 10% accuracy. Although it is a simple

fusion that consists of multiplication of verb and object vectors to recognize the action

category without any learning, its performance is higher than baseline C3D action

model, shown in Table 4.4.

4.4 Experiments on LSTM based Fusion Methodologies

We evaluate the verb, object and action models using LSTM and BiLSTM fusion

methodologies. We make use of recurrent structures to construct verb, object and

action models in this part.

4.4.1 Ablation Studies on LSTM Verb Model

Combination of features improves the verb model performance as seen from the verb

experiments in Section 4.3. Therefore, we continue with the combination of different

scales of verb models where we select the full-scale and a hand-scale verb model

to fuse (Note that while hand20 verb model is used in action models of split1, we

use hand10 model in action models for other splits since the hand10 and hand20

results in similar performances) and the LSTM structure is used for verb experiments.

Combination types such as concatenation and max-pooling are applied on the softmax

outputs of the verb models and then these combined features are deployed to BiLSTM

and LSTM structures to analyze the performances.

BiLSTM and LSTM verb models are constructed using 2 layers with 50 cell size. We

also use 10 as batch size and 0.001 as learning rate of Adam Optimizer. According to

experimental results given in Table 4.5, the combination of full-scale and hand-scale

verb models helps in verb recognition with 7.46 % improvement over split1 (For

more detail, see confusion matrices of verb models in Figure 4.2). It is observed that

the concatenation outperforms the max-pooling fusion method in verb models. It is

clearly seen that BiLSTM verb models combining of softmax values outperform the

simple count based fusion strategy given in Section 4.3. Since the verb model with

BiLSTM structure (50.43%) gives higher accuracy than LSTM structure (48.13%) in
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LSTM Verb Models Split1 Split2 Split3

C3D + BiLSTM (full scale) 46.49 N/A N/A

C3D + BiLSTM (full scale + hand, concatenation) 53.95 49.96 N/A

C3D + BiLSTM (full scale + hand, max-pooling) 50.43 50.04 50.25

C3D + LSTM (full scale + hand, max-pooling) 48.13 N/A N/A

Table 4.5: Various combination of softmax values of verb models are employed by

BiLSTM based and LSTM verb networks.

Table 4.5, we continue with the other verb models based on BiLSTM structure.

4.4.2 Ablation Studies on LSTM Object Model

In this part, we evaluate the object model presented in Section 3.3 using BiLSTM and

LSTM. Object category probabilities of each frame in frame sequence, which are ex-

tracted by object model, are deployed to BiLSTM object model. Therefore, the video

based main object classification is also performed using BiLSTM. The structure is

constructed using 1 layer with 100 cell size. We use 30 as batch size and 0.001 as

learning rate of Adam Optimizer. BiLSTM object model achieve 70.59% accuracy

in split1 as can be seen in Table 4.6 (For more detail, see confusion matrix of in Fig-

ure 4.3). It is observed that the recurrent object model outperforms the object model

which is in the simple count-based ablation study. It has been seen that BiLSTM ob-

ject model also improves the accuracy compared to LSTM object model over split1.

LSTM Object Models Split1 Split2 Split3

BiLSTM object model 70.59 71.34 67.73

LSTM object model 68.73 N/A N/A

Table 4.6: Evaluation of LSTM based object models in the available splits of EGTEA

Gaze+ dataset.

41



4.4.3 Experimental Results on Action Recognition

We make use of recurrent verb and object models and provide action models based

on different fusion methodologies. The results of these experiments are presented in

Table 4.7.

Action Recognition Models with LSTM based Methodology Split1 Split2 Split3

Methodology 1 - BiLSTM Multiplication Model 45.29 N/A N/A

Methodology 2 - BiLSTM Verb Object Combination Model, concatenation 45.18 N/A N/A

Methodology 2 - LSTM Verb Object Combination Model, concatenation 44.36 N/A N/A

Methodology 2 - BiLSTM Verb Object Combination Model, max-pooling 46.49 41.20 40.82

Methodology 2 - LSTM Verb Object Combination Model, max-pooling 44.10 N/A N/A

Methodology 3 - BiLSTM Fusion using Simple CNN 45.45 N/A N/A

Methodology 4 - BiLSTM Baseline Model 23.31 N/A N/A

Table 4.7: LSTM based action models are provided with different approaches.

Methodology 1 is the implementation of simple fusion based on verb and object vec-

tor multiplication, methodology 2 are LSTM action model which utilizes the differ-

ent combination type of verb and object probabilistic values extracted from verb and

object streams. Methodology 3 is the other experiment with simple CNN which con-

sist of 2 fully connected layers. Finally, experiment in methodology 4 provides also

LSTM based action model utilizes baseline C3D action model.

Methodology 1 - LSTM Multiplication Model. In order to identify action category

of video, verb-object multiplication is simply applied. The verb and object vectors

are extracted from LSTM verb model (C3D + BiLSTM (full scale + hand, max-

pooling) given in Table 4.2) in the verb stream and LSTM object model (BiLSTM

object model) in the object stream respectively. Given a test video, we simply mul-

tiply the LSTM verb vector and LSTM object vector. The verb-object pair, which

has the maximum value on the matrix obtained by multiplication, is selected as the

predicted action category of the video. This experiment is applied over split1, and

45.29% accuracy is achieved as can be seen in Table 4.7.

Methodology 2 - LSTM Verb Object Combination Model. Another experiment is

performed utilizing BiLSTM and LSTM structures as an action recognition model.

Unlike, methodology 1, the learning based model employs the combination of verb
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and object streams. The verb probabilistic values which are concatenated with dif-

ferent scales and then are concatenated with object softmax values. To sum up, the

model employs the verb and object knowledge for recognition. The networks are

simply constructed using 1 layer, cell size of 100. It is trained and tested using pa-

rameters of 20 as batch size and 0.001 as learning rate. With this combined features,

the action recognition accuracy is reached to 45.18% using BiLSTM structure over

split1 in Table 4.7.

Similar to the combination with concatenation, we evaluate LSTM and BiLSTM

structures by using a different combination of verb and object softmax values as input.

In this experiment, max-pooling is applied to the verb softmax values from full-scale

and hand-scale Verb Models. The max-pooled verb values are concatenated with ob-

ject softmax values, and finally, combined values are employed by the model. The

same architecture is also used for this experiment. The experimental results are given

in Table 4.7. According to the table, 46.49%, 41.20% and 40.82% accuracies of BiL-

STM are achieved for action recognition over split1, split2 and split3 respectively

(For more detail, see confusion matrix of action model in Figure 4.4).

For both combination types, experimental results show that BiLSTM structure im-

proves the accuracy compared to LSTM structure in Table 4.7. For this reason, we

continue with BiLSTM structure for other experiments.

Methodology 3 - LSTM Fusion using Shallow Neural Network. In this experi-

ment, we evaluate action recognition with shallow neural network which consists of

2 fully connected layers which have 512, 256 neurons respectively. In this small net-

work, dropout with a rate of 0.5 is added to each fully connected layer. Finally, it

ends with softmax layer. We use Adam Optimizer with learning rate of 0.001 to train.

The action model utilizes concatenated softmax values of BiLSTM verb and BiLSTM

object models at a clip level. As given in Table 4.7, 45.45% accuracy is obtained over

split1.

Methodology 4 - LSTM Baseline Model. LSTM based action model is also ex-

perimented utilizing baseline C3D action model. Clip sequence, which is extracted

from the softmax layer of baseline model is utilized by BiLSTM action model. BiL-

STM architecture is constructed using 1 layer with 100 cell size. For this experiment,
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parameters which are 0,001 learning rate, batch size of 30 are utilized. In this experi-

ment, accuracy reached to 23.31% in Table 4.7.

4.5 Comparison with Other Studies and Discussion

In this section, we compare our model performance and model structure to the others

in literature that reported results in EGTEA Gaze+ dataset. To the best our knowl-

edge, recent action recognition models [90, 12, 59] in literature are also performed

in EGTEA Gaze+ dataset. Compared to our model, different approaches with these

models are presented as follows.

Sudhakaran et al. [90] propose an object-centric deep learning model for first-person

action recognition. Similar to our approach, LSTM based structure is utilized to

encode the spatio-temporal information in this study. ConvLSTM is proposed [91]

model with ResNet34 [62] structure as backbone. ResNet34 network is trained using

RGB video images and gives spatial attention map. Spatial attention map provides

attention to the region that contains the objects. After training ResNet34, Convolu-

tional LSTM network with ResNet34 backbone network is trained together. It outper-

forms our model (our model achieves 51.93% overall accuracy over split1) in EGTEA

Gaze+ dataset with 60.76% performance for EGTEA Gaze+ dataset. While our model

utilizes strong supervision of object and hand bounding boxes to identify the action

in video, this model utilize weakly supervision with action class labels.

Another study, which is completely different structure from ours, to recognize the

first-person action in EGTEA Gaze+ dataset is presented by Yin Li et al. [12]. The

proposed deep learning model based on Regions with CNN (R-CNN) [83] learns the

first-person action and gaze information jointly. Their network takes the RGB frames

and optical flows of videos as input and gives the attention map, named as gaze map,

in stochastic units in the middle layer of the network. Using this attention map in the

next layers of the model, the action category is defined and the accuracy of the model

is achieved to 53.3% over split1.

Hahn et al. [59] propose action recognition model which is different from other stud-

ies with using textual information from the recipe of the video as well as visual in-
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formation. The proposed model consists of three steps which are action proposal,

object recognition, and recipe alignment steps. To get the action classes, they use a

recipe-video alignment technique based on natural language processing utilizing the

object categories obtained from the object recognition step. Object recognition step

was constructed using gaze information of dataset. They evaluate their studies with

49.05%, which is so close to our model performance, in EGTEA Gaze+.

In contrast to our approach, particularly the last two works utilize recipe and gaze in-

formation for recognition. To reach gaze information, the camera user should wear an

eye-tracking device, and these devices may make the user feel uncomfortable. More-

over, detailed pre-processing is required for recipe and gaze information to be used

in action recognition. Although our model does not use gaze and recipe information

which are available in the dataset, our performance is especially close to the last study.
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(a) Full-Scale Verb Model (b) Hand-Scale Verb Model

(c) Fusion of Verb Models (d) LSTM Verb Model

Figure 4.2: Confusion Matrices of Verb Models over split1. (a) Full Scale Verb Model

is constructed over split1 with full vision. (b) Hand scale verb models are constructed

over split1 using 10% enlargement respectively. (c) Combined verb models using

max-pooling over full-scale and hand-scale model. (d) LSTM based verb model uti-

lizes combined full and hand scale verb softmax values from the verb stream.
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Figure 4.3: Confusion matrix of BiLSTM object model over split1. The 51 out of

53 object classes (excluding trash container and pasta which are not main object in

action) are taken into consideration for the object model.
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Figure 4.4: Confusion matrix of LSTM based action model. The compositional

model which utilizes both verb model (max-pooled full-scale and hand-scale verb

models) and the object model is evaluated in split 1.
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CHAPTER 5

CONCLUSION

5.1 Summary and Discussion

Action recognition in first-person videos such as take tomato, mix salad, is more chal-

lenging than action recognition which involves the basic action pattern such as take,

mix. Action videos in first-person view videos contain large number of interactions

with high similarities, and actions are expressed using human-object interactions cor-

responding to fine-grained action categories.

Due to human-object interactions, first-person action categories are presented by verb

and object pairs. For instance, take tomato action can be defined by a combination

of tomato as an object and take as a verb occurring in the same video clip. Con-

sidering the aforementioned problem definition of fine-grained action recognition in

first-person videos, we introduce compositional model including two complementary

steps to perform action recognition. The first step is based on construction of verb and

object models which are decomposition of actions. Particularly, verb video model as

the action representation and object video model as the interaction is represented as

two separate pathways. The second step is the fusion stage to identify action category,

where distinct verb and object models are combined to give their action judgments.

We proposed and applied two different fusion approaches: (1) count-based fusion

model with a simple multiplication step and (2) LSTM-based fusion model with a

recurrent step collecting verb and object label judgments along a temporal video se-

quence. We evaluate detection performances for verb, object and action models and

we present extensive experimental evaluation for action recognition over fusion ap-

proaches on the EGTEA Gaze+ dataset.
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In summary,

• Experimental results show that decomposing actions model into verb and object

models significantly improves the performance compared to the baseline action

model for a large number of action classes.

• Despite its simplicity, count-based fusion model results in acceptable recog-

nition rates and it outperforms the baseline action model without learning. In

addition to its simplicity and applicability without the need of learning strategy,

it provides detection of previously unseen verb-object pairs.

• Experimental results show that the recurrent networks improve action recogni-

tion performance along with verb and object model performances.

• Our compositional model consists of verb and object streams. In this work, we

assume that the object is appearing in the field of view to recognize the action.

As a disadvantage, our model will fail if the objects do not appear in the field

of view and in the first-person videos without human-object interaction.

5.2 Future Work

Our architecture is constructed using various sub-models which are verb model, ob-

ject model, fusion model to get action category. Different extensions and changes can

be applied to improve action recognition as future work.

• In our model, verbs modelling is employed using C3D network structure for

spatial-temporal analysis. Verb models can be improved using dense-trajectories

that are known as the complementary feature for C3D. This could further im-

prove the recognition accuracies.

• The EGTEA Gaze+ dataset that is the meal preparation dataset also provides

the recipe for each meal. The framework can be further improved with an

additional text stream.

• Gaze location is an important clue for first-person video analysis. Gaze pro-

vides knowledge of the region of interest where the action is performed and the
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object is manipulated by hand. This rich information can also be utilized as an

additional stream for our framework.

• In order to evidence the power of our proposed model and consistency, our

proposed model can be tested on other first-person datasets consists of human-

object interaction.

5.3 Related Publication

Z. Gokce, S. Pehlivan “Human Action Recognition in First Person Videos using Verb-

Object Pairs”, IEEE 27. Signal Processing and Communications Applications Con-

ference (SIU), 2019.
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