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ABSTRACT

SALES MANAGEMENT ANALYSIS with TEXT MINING METHODS

SOYER, Tugba
MSc., Applied Data Science Program of Graduate School
Supervisor: Associate Prof. Semih TUMEN

February 2020

The aim of this study is to examine offer contents of a major vehicle company using data mining
techniques to categorize these offers based on difficulty level for the purpose of improving sales
management process. The language of the offers is mainly in German. Categorizing the offers
according to the difficulty level will allow the company to observe the changes in the customer
requests over time and to make long term strategic sales management and marketing plans. A
new method is developed inspired by the Support Vector Machine and Lexicon sensitivity
analysis, and the offers are categorized with respect to their difficulty levels. At this stage,
technical dictionaries are prepared with the support of the company’s expert team. The study
also constructs a large consolidated data set, which could serve as a basis for future sales
management analysis of the offers. The data set used in this study contains 1,082,093
observations used in the vehicle sales process between 2006-2019. As a result of this study,
unstructured and distributed offers data are converted into a data set ready for analysis. It is
seen that the content of the special requests affects the difficulty level more than the number of
requests included in the offer. It is understood how market demands have changed over time
for the countries.

Keywords: Sales Management, Text Mining, Text Categorization, Lexicon Sentiment Analysis,

Machine Learning, Automotive, German
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METIN MADENCILIK YONTEMLERI ILE SATIS YONETIMI ANALIZI

Soyer, Tugba
Yiiksek Lisans, Uygulamali Veri Bilimi Boliimii
Tez Yoneticisi: Dog¢. Dr. Semih Tiimen

Subat 2020

Bu ¢alismanin amaci, satis yonetim siirecini iyilestirmek hedefiyle teklifleri zorluk seviyelerine
gore kategorize etmek i¢in veri madenciligi tekniklerini kullanarak biiyiik bir arag sirketinin
teklif igerigini incelemektir. Tekliflerin dili ¢ogunlukla Almancadir. Tekliflerin zorluk
seviyesine gore siniflandirilmasi, sirketin miisteri taleplerindeki degisiklikleri gozlemlemesine
ve gelecek planlar1 yaparken fikir edinmesine katki saglayacaktir. Destek Vektor Makinesi ve
Lexicon duyarlilik analizinden esinlenerek yeni bir yontem gelistirilmis ve teklifler zorluk
seviyelerine gore kategorize edilmistir. Bu agsamada degerlendirme uzmani grubun destegiyle
teknik icerikli 6zel sozliikler hazirlanmistir. Ayrica, tiim tekliflerin tek bir veri setinde
birlestirilmesi ve igerigin analiz edilmesi, satis yonetimi siirecindeki diger olasi ¢alismalarin
temelini olusturmustur. Bu ¢alismada kullanilan veri seti 2006-2019 yillar1 arasinda arag satis
stirecinde kullanilan 1,082,093 gozlemi icermektedir. Calisma sonucunda, yapilandirilmamis
ve dagmik teklif verileri analiz edilmeye hazir bir veri setine doniistiriilmistir. Teklif
icerisinde yer alan Ozel istek sayis1 yerine isteklerin igeriginin zorluk seviyesini daha ¢ok
etkiledigi goriilmektedir. Ulke bazinda piyasa taleplerinin zaman iginde nasil degistigi

anlasilmaktadir.

Anahtar Kelimeler: Satis Yonetimi, Metin Madenciligi, Metin Kategorizasyonu, Lexicon

Duygu Analizi, Makine Ogrenimi, Otomotiv, Almanca
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1. INTRODUCTION

1.1. Motivation

Data science techniques are used in management analysis in many different contexts including,
but are not limited to, profile analysis on social media, product marketing and communication,
analyzing the period of artworks by doing emotion analysis, performance measurement of

production companies, and development of sales management processes.

The data in social media channels such as Twitter, Instagram, where every second information
flow is available, can be used for many different purposes. The study of categorizing both users
and shared images by examining user profiles is an example of data analysis performed on
social media channels (Hu et al., 2014). The findings suggest that the consumption of traditional
news media has decreased while the number of online news users has increased (Stempel et al.,
2000). In the study conducted by Gorodnichenko et al (2018), the text data of two major
political events on Twitter are analyzed using the Sentiment analysis method and the questions
of how the communication revolution affects the information flows between individuals and
how they can affect these flows are examined. The rapid and widespread dissemination of
information on social media affected the news media, making social media a powerful source
of news. This has created the risk that social media, especially during high-impact events, may
publish false drop and feint news. The study conducted by Karol Jan Borowiecki is another
example of how wide the data analysis is. Using approximately 1,400% letters written by
Wolfgang Amadeus Mozart, Ludwig van Beethoven and Franz Liszt throughout their lives, it
was analyzed which emotions were revealed during the creation of the artworks. With the
linguistic analysis method, how positive emotions (e.g. happiness) or negative emotions (e.g.
grief) are reflected in the artworks is examined and the intensity of emotions during the creation

of artworks were detected (Borowiecki, 2017).

11400 words are selected within the scope of the relevant study. It is not the total words in the artworks of 3

artists. See section I11B in relevant study for a discussion of the selection.



Knowledge is the most valuable asset of a manufacturing enterprise, as it enables a business to
differentiate itself from competitors and to compete efficiently and effectively to the best of its
ability. Knowledge exists in all business functions, including purchasing, marketing, design,
production, maintenance, and distribution; but knowledge can be notoriously difficult to
identify, capture and manage (Harding et al., 2006). Moreover, over the years, the growth and
meaninglessness of the data caused problems as well as being important. In order to carry out
a retrospective study or to make decisions by making predictions for the future, there was a
need to make the data meaningful and to obtain results through data analysis. Data processing
and reporting are important for the firm to examine its own performance as well as to ensure its

continuity in the market.

Data used in this study are gathered from a company operating in the automotive/vehicles
sector. For products with high price performance such as passenger car, house etc., price offers
should be prepared. The buyer requests a configuration with details of the product to be
purchased and evaluates the quotation offered for the product. After the delivery of the offer,
the product may be purchased or not. Even if the sale is not materialized, the offer process has
to be experienced. Within the scope of this thesis, the changes in the quality and quantity of
offers prepared for the vehicles are examined. The vehicles are divided into different categories.
First of all, it is aimed to convert the offer contents into a meaningful data set in terms of
customer specific requests 2. Offer content has never been combined as a single data set before
in the company and has never been analyzed using data mining methods. Converting the
unstructured data into a data ready to analyze is very valuable as it will facilitate access to
knowledge. Additionally, determining the difficulty levels of offers using the text mining

method provides to observe how the market demands have changed over time.

Furthermore, the categorization of the offers supports the department that prepares the offer in
the sense that it provides information on how the offers vary over years. The vehicle product is
diverse in itself. Thus, each sub-product can be prepared by one or several responsible persons.
After the categorization process is completed, the decentralization can be reviewed again. Such

that the decentralization in the sub-product groups may vary depending on the categorization

2 In addition to the serial features and options of a vehicle configuration, specific request can be demanded by
customer. It can be added in the vehicle configuration as text format. In the thesis content, these requests are

referred to as customer specific request which is called CSR.

2



of the offer by the difficulty level. For example, if offers prepared in one vehicle type become
increasingly difficult over the years, and vice versa, the number of type-based employees need
to be revised. Of course, analyzing the allocation of workload across marketing specialists is
not the ultimate goal of this study, but in a department/section where 40% of the workload is
offer preparation, the result is highly relevant for planning and execution. Furthermore, not
every offer is guaranteed to be ordered but only has the “possibility”. The conversion of offers
to orders means that the company earns money. When a firm makes future plans, it makes better
decisions if it observes how a constraint that directly affects profit has changed over the years.
Therefore, it is very important for the firm that the difficulty level of the offers is categorized
and how it has changed over the years.

Finally, the details of the customer demands are examined for the company that has adopted
the principle of customer focus. The offers are categorized and how the offers vary according
to difficulty level are examined. The results of the study provide an opportunity for the sales

management department to assess/develop themselves and make long-term strategic decisions.

1.2.  Outline of the Thesis

In Section 2, literature review of the works related to text categorization and text mining in
sales management is given. This section shows the value and contribution of the study carried

out by examining the different studies in the literature.

The data set used in the thesis is introduced in Section 3. How the data set is made suitable for

analysis is detailed. Information about the applications used in the thesis is given.

The Results section includes what categorization of offers and text mining results mean for
sales management. For each vehicle group based on year and country, how data is transformed

into knowledge is explained with examples.

The Conclusion and Future Works section contains inferences from the analysis results and

how these inferences can be evaluated in the future.



2. LITERATURE REVIEW

In this section, data mining techniques in the literature used for both sales management and text
categorization are examined. Data mining techniques is used in many areas of sales processes
such as analysis of sales rates, marketing, Customer Relationship Management and customer

categorization.

In the study conducted by Bahng and Kincade, the effect of weather on sales was investigated
by using sales data of a retailer of branded women’s business wear. As a result of this study, it
was determined that more seasonal clothes were sold during the sales periods in which drastic

temperature changes occurred (Bahng and Kincade, 2012).

Banks and insurance companies are sectors with a large customer database. They want to sell
products such as loans and life insurance policies to their customers. A specific customer group
in the database has already purchased the products. Customers who have not purchased the
remaining product must be identified. At this stage, the process can be managed with the using
of data mining (Ling and Li, 1998).

The marketing model has shifted from product-focused to customer-focused (Harding et al.,
2006). Customer focus means more sales, more profit. The need to better understand customer
behavior and the interest of many managers to focus on those customers who can return long-
term profits has changed how marketers view the world (Gorodnichenko et al., 2018). The
studies in this field are called to as Customer Relationship Management (CRM). CRM is also

valid to the manufacturing sector as well as in the service sector.

Data mining for customer segmentation is applied by Morita et al. (2000) to determine which
customers are likely to shift from one cellular company to another. A rule induction algorithm
on the transformed data are used to build rules and afterwards the potential moves of the

customers are predicted.

Hui and Jha (2000) used DBMiner to develop a decision-support system using a customer
service database. Neural networks and case-based reasoning were used to mine the unstructured

customer data to identify the machine faults.



With the increase in text information stored in electronic format, automatic text classification
or text categorization became increasingly important (Kibriya et al., 2004). Automatic text
classification/categorization is performed by use of machine learning models (Dalal et al,
2002). In text categorization studies, three of the most common applied machine learning
algorithms are generally used. These are “Naive Bayes”, “Maximum Entropy Classification”,
“Support Vector Machines” (Pang et al., 2002). Another method used for text categorization
is Sentiment Analysis. Sentiment analysis is a research area that aims to specify subjective
information such as attitude, emotion and opinion in a text document (Wlezien et al., 2017).
There are two main methods used in sentiment analysis which are machine-learning based
(supervised methods) and dictionary-based method (Lexicon-Based method). Machine learning
methods used for text categorization are valid in sentiment analysis. Naive Bayes (NB), Support
Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN) are some examples
for machine-learning based methods in sentiment analysis. Lexicon-based model consists
specific dictionary for relevant dataset. In the study by Grabner, D. et al. customer reviews of

hotels in London are categorized using Lexicon analysis (Grébner et al., 2012).

Although Naive Bayes method is called as its simplicity and the fact that its conditional
independence assumption clearly does not hold in real-world situations, Naive Bayes-based text
categorization is in tendency to get good results in a surprisingly way (Lewis, 1998); Indeed,
Domingos and Pazzani (1997) show that Naive Bayes is optimal for certain problem classes

with highly dependent features.

Maximum Entropy Classification (abbreviated by “MaxEnt” or “ME”) is the other alternative
and effective technique in a number of natural language processing applications (Berger et al.,
1996). Nigam et al. (1999) reveal that this method rarely predominates the other method ‘“Naive

Bayes” at standard text classification.

Support Vector Machines (SVMs) are one of the types of learning machines, based on the
“Structural Risk Minimization” principle from the computational learning theory. The idea of
structural risk minimization is to attain a hypothesis h for which we may assure the lowest true
error. The true error of h is the probability that h makes an error on an unseen and randomly
selected test example Besides, it is important that SVMs are so effective at traditional text
categorization and occasionally predominate the other method “Naive Bayes”, and these are the

large-margin ones compared to the Naive Bayes and Maximum Entropy Classification methods
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(Joachims, 1998). In addition, there is a known fact for SVM method which is the algorithm
performs the categorization by assigning the same values for each input. However, it is
impossible that all inputs have the same value. SVM method is supported by feature weighting
or feature selection to solve this problem and significant impact on the performance of this
method (Wang, 2010).

3. DATA and METHODOLOGY

In this section, the information about the data and applied methodology is explained. The

flowchart diagram of the methodology is shown in Figure 1.

Data and Data Modelling (Combination of
Data Gathering Institutional Preprocessin Lexicon Sentiment Analysis
Setting P g and SVM Analysis)

Categorization
of the Offers

Figure 1. Flowchart of Methodology

As shown in the flowchart diagram, firstly data is obtained and the content of the data to be
analyzed should be examined in detail. Afterwards, a "data preprocessing” should be performed
to obtain a data ready to be analyzed since there are characters in the data that affect the analysis
processes and results. After the completion of the pre-processing process, Modelling
(Combination of Lexicon Based Sentiment Analysis and SVM Analysis) process is examined.
A new model® which is adapted to the data is created by taking a different perspective from
Lexicon sentiment analysis and SVM text categorization studies in the literature. How to apply
the created model is described. Finally, the categorization of offers, which is one of the desired
results to be obtained within the scope of the thesis, is completed. While applying the extended
model for categorization, various analyzes requested by the company are performed. These

analyzes and their returns are explained in the Result and Future Work section.

3 The new model can be called extended / combination of the Lexicon sentiment analysis and SVM text

categorization. It is not a completely new model.



3.1. Data Gathering

Data must be obtained through the “Main System of the Offer” where the offers are submitted,
via different report screens of the “Offer Details” and “Offer Evaluation Time Details” since

there is no ready dataset for thesis study.

Two separate datasets are needed within the scope of the thesis. The first dataset contains the
details of the offers and the second dataset contains the details of the evaluation process of the

offers, the first dataset is named as “Offer Detail” and the second is called “Offer Time”.

Data can be acquired from the report screens in the main system by transferring to the
spreadsheets. Maximum 20,000 rows of data are allowed at one time. So, the data have to be
transferred to multiple spreadsheet files. Firstly, Offer Detail data was gathered. 82 separate
files are transferred from report screen. By combining 82 different files, this dataset is created.
Similarly, all the data required for the “Offer Time” dataset is transferred from report screens
to 5 different files. By combining these files, the second dataset is created.

3.2. Data and Institutional Setting

The data used in this thesis belongs to one of the leader companies in the automotive sector.
The company has two main product groups: bus and truck. The data includes information about
the bus group. The company has bus manufacturing plants in 3 different countries. Within the
scope of the study, vehicle groups produced by the central bus production factory with the most
units and serving the premium market are examined which are High Premium, Premium Coach

and Coach vehicles groups. Figure 2 shows the company's bus product tree.
m  High Premium
m Premium Coach

Coach

— City

— Intercity

|



Figure 2. Vehicle Groups

Sales of vehicles are carried out through main sales companies and dealerships. The main sales
companies and dealerships serve 36 countries including Turkey. During the sales process, a
unique offer number for each customer needs to be configured. Vehicle configuration is created
in a digital environment through a system used by seller. There are serial and option offered on
the basis of vehicle type. The codes for the serial products are automatically selected in the
configurator. The options are selected by the seller according to the customer's demands. For
example, the seat type produced only from fabric is the serial for vehicles in the coach group,
while the seat type produced from leather and fabric combination is available as an option. If
the customer does not request the series and options, the requests are added to the configuration
as “CSRs”. Since there are no ready codes in the configurator for them, requests are written to
the configuration as Text. Continuing from the example of the seat, instead of the seat offered
in the leather / fabric combination, a more luxurious and more comfortable seat is required. The
feasibility of this request should be evaluated by the responsible persons in the production

company and an offer should be submitted if this request is acceptable by production company.

After the evaluation is completed, the seller submits the offer to the end customer based on the
costs of additional CSRs in the configuration. If the customer wants to buy the vehicle, the order
is executed, and the vehicle is included in the production plan. Since order-based production is

made, the production plan of a vehicle that has not been ordered cannot be made.

CSRs are the biggest feature that distinguishes the company from its competitors in the market.
CSRs provide product flexibility to customers. So that a customer can buy the vehicle they
dream of by means of flexibility.* Some customer specific requests can be implemented very
easily, while others can be very difficult®. The difficulty of customer demands affects both the
technical work and documentation process of the new request and the production process of the
vehicle. In addition, an extra price is charged to the customer for each special request. Requests
are carefully priced out by a responsible department in order to the price offer bears the
technical work and production cost since they affect the company's profit rates. In fact, the

company needs to observe how offers change over time while making a future plan.

4 Requests are accepted if they are found appropriate based on international homologation rules and received

approval for feasibility by the responsible departments in the manufacturing company.

® Technical feasibility and supply availability are the main criterions.

8



All in all, within the scope of this thesis, the contents of the offers up to the date of 26.08.2019
from the first offer registered in the system are examined. The offers are categorized according
to difficulty levels, grouped by country and type, with using Text mining methods based on

CSRs content. As a result of the categorization process, it is how the offers change over time.

As stated in the data gathering title, two different data sets were created within the scope of this

study. In this section, the content of the datasets is detailed.

Dataset of the Offer Details

The offer details dataset contains the CSRs’ texts and the details of the vehicle in a customer's
configuration. As an example of how the order is received and processed: A bus transport
company contacts the seller to add a new coach vehicle to its fleet. A new configuration is
prepared for this customer. In this example, it is assumed that two new specific requests are
demanded, apart from the series and options, which are curtain and seat fabric compatible with
the customer's fleet. As mentioned before, new CSRs are added as text into the configuration.
The configuration is transferred to the responsible person via a system for the offer evaluation.
The configuration document and CSRs are displayed separately in this system. In this example,
the offer is numbered dummy "12345". The responsible person evaluates the CSRs text and
gives confirmation of the feasibility of the requests. Finally, he checks the overall configuration
and, if the vehicle has all the appropriate conditions for the order, the system confirms “the
vehicle is suitable for the order. Finally, the overall configuration is checked and, if the vehicle
has the appropriate conditions for ordering, responsible person approves to order via the system.
Details of the offer are automatically added to the database of the system. When a new offer is
created, the next Number is automatically assigned as “Offer Number” which is “12345” in this
example. CSRs in the new offer are recorded and added on following previous offer’s CSRs.
Finally, the system has the ability to transfer the database to spreadsheet files. The contents of
the dataset are illustrated in the Table 1.°

6 There is a total of 31 variables in this data set. All variables are not covered by the study. For example, pricing
details. In order to obtain general information about this data set, sample table is created.

9



Offer Vehicle  Customer  Unit Country CSR Cost of

Number Type Name the CSR
12345 High XYXTour 5  Deutschland ~ Vorhangstoffinrot ...
Premium Farbe
12345 High XYXTour 5  Deutschland Fahrgastsitze schoepf ...
Premium in rot Farbe
12346 Coach  YXY Tour 3 Italien Fahrzeug Lackierung ...
Farbe in blau
12346 Coach YXY Tour 3 Italien Liufer azoinblau  ......

Table 1. Contents of the Offer Details Dataset

The "Offer Details" data set consists of 1,082,0937 observations and 31 variables. Offer number,
customer name, offer creator name, the product group of the created offer, the CSR in the offer,
price of each CSR, price calculation details of offers are a few examples among 31 variables.
Distribution of the type of the variables in the dataset are that 11-numeric and 20-character

variables

Summary Statistics of Offer Details Dataset

Vehicle groups, offer numbers, order numbers are summarized in this part.

Vehicle Groups

As previously mentioned, within the scope of this thesis study High Premium, Premium Coach

and Coach vehicles’ groups are examined.

Countries
As previously mentioned, a total of 36 countries, including turkey vehicle sales process is
carried out. Countries are shown in Table 2.

Countries
Germany Belgium Dubai Bulgaria
France Croatia Slovenia Greece
Italy Czech Republic Hungary Romania

71,082,093 is that total number of CSR for all vehicle Groups.

10



Turkey Estonia Switzerland Azerbaijan

Austria Spain Lithuania Gabon
Poland Norway Luxembourg Latvia
UK Morocco Bosnia Mexico
Russia Netherlands Denmark Israel
Sweden Slovakia Portugal Iceland

Table 2. The countries which carried vehicle sales

Number of the Offer by the vehicle Type

Since 2006, when the first offer was prepared, 793 offers for high premium vehicles, 4731
offers for Premium Coach vehicles and 14314 offers for Coach vehicles were created. The

number of offers for each vehicle group is shown in the Table 3.

Vehicle Groups Number of the Offer

High Premium 793
Premium Coach 4731
Coach 14314

Table 3. The number of offers for each vehicle group

Dataset of the Offer Time

In addition to the content of the offer, there is a database in which the offer evaluation process
is recorded. This data is obtained from a different report screen in the main system. The data
set contains a total of 18 variables and 45,344 observations®, including the offer number, vehicle
group, customer name, the time when the offer evaluation was started to be evaluated, the time
when the offer evaluation was completed, the evaluator and country of the offer. This data set
and the offer numbers in the Offer Details data set are common. Offer number variable is
common to the Offer Details and the Offer Time datasets. This variable is included in the offer

& There is a total of 45344 observations including vehicle groups outside the scope of the thesis.
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details data set. Other variables in this dataset are not examined within the scope of this thesis.

The content of the dataset is illustrated in the XG table.?

Vehicle Customer  Evaluation  Evaluation Evaluator Country

Offer Group Name Start Date End Date

Number

12345 High XYX 19.09.2016  22.09.2016 Burak Deutschland
Premium 15:24:41 13:24:61

12346 Coach YXY 11.02.2017  13.02.2017 Tugba Italy

10:30:30 10:30:30

12347 Coach YXX 12.02.2017  14.02.2017 Tugba Italy

Premium 15:22:37 15:22:37

Table 4. Table Contents of the Offer Time Dataset

3.3. Data Preprocessing

As a result of technological developments, the data used in the companies have shown various
structurality. In fact, the data set can be categorized into structural, semi-structural and non-

structural (Gandomi and Haider, 2015).

Structured data consists of clearly defined data types that make patterns easily searchable. So
that, it is well organized and easily understandable by machine language. The structured data
can be one-dimensional or multi-dimensional as well as a tabular or non-tabular format. For

example, a table that lists sales amount by year.

Semi-structured data between the structured and unstructured data format covers continuity. In
another words, it has not been well organized, but they are suitable to be organized and can be
easily analyzed. Extensible Markup Language (XML) is an example of semi-structured data on
the Web. The main reason that prevents it from being considered as structured data is XML
documents containing user-defined data tags which make them machine-readable (Gandomi
and Haider, 2015).

Unstructured data is not organized and under the influence of this situation, it cannot be easily

processed and analyzed using conventional tools and methods. Image, video, mobile activity

% In order to obtain general information about Offer Time Dataset, sample table is created.
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and social media activity are examples of unstructured data. In addition to given examples, text
document is falls into the unstructured data category.

The fact that the non-structural data is in irregular format causes many factors that may
negatively affect the results of the analysis and do not need to be analyzed. Data preprocessing
should be used for standardizing the data and extracting unnecessary knowledge from
unstructured text data. As a result of these preliminary processes, the efficiency of the analyzes

is increased.

Text preprocessing methods vary by language and type of text document. For example, “@” is
used frequently in the data has Emails while it is not in a document that holds sales data. In
“Preprocessing Techniques for Text Mining articles” effective preprocessing steps are indicated
as "Tokenization, Stop Word Removal, Stemming" (Kannan and Gurusamy, 2014). By means
of these preprocesses, it is stated that the root words are defined, and the size of the text data
are reduced (Vijayarani et al., 2015). It is not possible to apply these steps one to one for each

data. Thus, these steps should be privatized based on the document to be analyzed.

In this section, data preprocessing steps used on Offer Data are explained. As shown in Figure
3, they consist of conversion of special letters, removing punctuations and spaces, tokenization

and stemming.

Convert Lower Removing
gg%?ﬁtt Case and Punctuations Tokenization Stemming
Special Letters and Spaces

Figure 3. Text Preprocessing Steps

The following example of the Offer Text is used to show how each preprocessing step used in
and affected the raw text document. This Offer Text is related to the customer's special request
other than the serial or options offered for the curtain. Many different CSRs for curtain have
been requested in different years. Without the year information, only the effect of the pre-

processing steps on the request text are shown.
“ - Gardienenhaltebinder in Vorhangstoff ”
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3.3.1. Convert Lower Case and Special Letters

One of the most common methods for text preprocessing step is conversion to lower case. Also,
firstly lower-case step is applied. The letters 8 and & in the German alphabet can be written as
"ss" and "ae". For example, the carpet can be written as "Laufer" or "Laeufer". The letters 8 and
4 are changed to "ss" and "ae™ to prevent multiple versions of the same word. After conversion
of lower case and the special letters preprocessing steps, example of the Offer Text seems as

follow:

“ - gardienenhaltebaender in vorhangstoff ”

3.3.2. Removing Punctuations, Spaces and Stop words

Punctuation and spaces do not contain any information in the text analysis process. If there is a
punctuation mark adjacent to the words, it may negatively affect the result. In addition, it makes
the text document look heavier. In order to reduce the dimensionality of term space,
punctuations, spaces and stop words should be removed (Vijayarani et al., 2015). After
removing punctuation and spaces from the text document, given example of the Offer Text

looks like as follows;

“ gardienenhaltebaender vorhangstoff ”

Thus, as shown in the example, "-" punctuation is deleted from the text document.

3.3.3. Tokenization

Tokenization is the process of creating the smallest meaningful units by dividing a flow of text
into words, expressions, symbols, or elements such as tokens. Tokens may contain one or more
words depending on the content of the analysis. Token lists become input for further processing,
such as text mining. The language of the text to be tokenization determines the difficulty of the
process. (Vijayarani et al., 2015). It is easier in languages where words are separated using
white spaces. After this step, normally, text document consists of words list. But in this study,
the text was not converted into a single word format. By using the Tokenization method, word
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lists for each vehicle groups are created to be used in the analysis phase. Because a request can
have more than one interrelated word in it, which affects the difficulty level of the request.

3.3.4. Stemming

Another important step in text pre-processing is stemming. With stemming, words are
converted to root forms. Depending on the structure of the language, the words may take
different paragoge. Automatically eliminate these paragoge and use the root format of words.

For example, “looked” is stemmed to l00k; “books” is stemmed to “book”.

The root of the words could be used in the newly created dictionary for analysis, but this method
was not used because German was a language in which more than one word was combined and
new words were derived. For example, “seitenwandverkleidung”. This word was formed by

combining the words “seiten” - “wand” - “verkleidung”.

3.4.  Modelling: Combining Lexicon Sentiment Analysis and SVM Analysis

Text categorization varies according to the content and language of the data set examined. The
data set examined within the scope of the thesis is the text document of the CSR of a product

group in the automotive sector. Most of the words in the data set are technical word.

Sentiment analysis is a research area that aims to specify subjective information such as attitude,
emotion and opinion in a text document (Wlezien et al., 2017). Two main methods are used
for sentiment analysis which are Lexicon-based method (unsupervised approach) and Machine
Learning based method (supervised approach) (Kolchyna et al., 2015). Machine Learning based
studies are hinged on text categorization, while Lexicon-based model is hinged on pre-defined

dictionary creation.

In the dictionary-based method, which is Lexicon based sentiment analysis, a polarity score is
assigned to the unigram in the dictionary, then the overall polarity score of the text is calculated

as the sum of the polarities of the unigram (Kolchyna et al., 2015).

Sentiment analysis is not performed in this study, but a new method is developed by utilizing
the custom dictionary creation process in the Lexicon based method process.
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Standard SVM uses all input features with the same importance when categorizing. However,
it is a fact that the features of the inputs to be used in categorization are not identical. Two main
methods are used to determine the differences in the features of the inputs. These are feature
selection and feature weighting. The purpose of feature selection is to improve the
generalization performance of the learning algorithm to eliminate irrelevant variables
(Rakotomamonjy, 2003). Thus, a new subset is created using efficient variables for
classification. On the other hand, the feature weighting attempts to estimate the relative
importance of each feature and assign a weight corresponding to these estimates (Jin et al.,
2005). Rather than making a binary decision on the relevance of feature, it is preferred to use a
feature weight that has a continuous value, since it determines a more sensitive relevance
(Wang, 2010).

In this study, the words to be used for offer categorization are assigned value with inspired by
feature weighting method. 5-point Likert scale method is used to determine the scores to
represent the values. It is impossible to give points to every word in the offer. Therefore, scoring
is done by selecting certain words. There may be differences in CSR Texts according to the
vehicle group. Therefore, it is necessary to examine the words on the basis of the vehicle group
and dictionaries are created based on the selected words. Scores representing the difficulty
levels are determined for the words in the dictionaries. In determining the score for words are
conducted with a team who are experts in offer evaluation. After that, the words in the
dictionaries are searched for each CSR Text line, respectively, and if detected, the difficulty
level of the relevant word is added to the total score value of the CSR Text line. With this step,
the total value of each word in the CSR Text content is calculated. There may be more than one
special request within an offer. This means that an offer contains multiple lines of CSR text. In
addition to scoring for CSR Text, the overall difficulty level of the offer needs to be determined.
For this, average value of the difficulty levels of all CSR Texts is calculated. The steps of the

applied method are shown in Figure 4.
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Create sub dataset based on vehicle groups
Create custom dictionary for each vehicle group

Decision of the score of the words

Word Detection in each CSR Text and imputation of the
score for each word

Find difficulty level of the offer

Figure 4. The steps of the applied method

Create Sub Dataset Based on Vehicle Groups

Separate data sets are created for the High Premium, Premium Coach and Coach vehicle groups.
Analysis was not performed using the main data set because too much observation would affect
the runtime of the detection loops and extend the analysis process. Also, Sub data sets are
created for time saving. The Table 5 shows the number of variables and observations of each

sub-data sets.

Vehicle Groups

High Premium Premium Coach Coach
Number of Number of Number of Number of Number of Number of
Observations Variables Observations Variables Observations Variables
9,464 31 34,151 31 144,519 31

Table 5. Content of sub-data sets

Create Custom Dictionary by Vehicle Groups

Since vehicle groups serve different markets, different specific request may be demanded in
addition to common requests. Therefore, instead of using a single dictionary, different
dictionaries are created for each vehicle group. When creating dictionaries, firstly, the number

of times each word is used in the sub datasets is counted. Top 100 most used words by vehicle
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group are determined. These are in Appendix A. In addition, the first 20 most commonly used
words for each vehicle group are shown in Figure 5. 1°
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10 Corpus text format was used to plot the Top20 words graph. Since the conversion of 74 and “B” letters is
done in data frame format, these are included in the graphic.
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Figure 5. Top 20 most used words by vehicle groups
The words in the relevant lists are not used completely, because too many words appear in the
lists, which can affect the difficulty level of the request if they are used in combination with a
different word. For example, “einbau”. This word means " assemble". But it is not clear what
the assembly is. Therefore, it is not appropriate to use this word directly. Dictionaries are
created with the support of offer evaluation experts by taking advantage of Top100 Word Lists.
The number of words in the newly created dictionaries and how many of the first 100 words
are used in these dictionaries are shown in the Table 6. The dictionaries are created for each

vehicle group are given in Appendix B.

Vehicle Groups

High Premium | Coach
Premium Coach
Length of Dictionary 153 163 183
Percentage of the first 100
words included in the 25 40 35

dictionary

Table 6. Content of Dictionaries

Decision of the words score

In order to categorize an offer, the difficulty level of the CSR texts must first be determined.
Scores representing the difficulty level of words are added to the custom dictionaries created
for each group of vehicles. 5-point Likert scale method was used to determine the difficulty
levels. The scores and their meanings for the difficulty levels are shown in Table 7.
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Score Meaning

1 Very easy

2 Easy

3 Medium

4 Difficult

5 Very Difficult

Table 7. Likert Scoring for Difficulty Level

The difficulty levels of the words in the created dictionaries are shown in Appendix A. The
distribution of the words used in the dictionaries according to the difficulty levels is shown in

Figure 6.

Level Distribution of Words in Level Distribution of Words in
High Premium Group Premium Coach Group

11% = Levell 11% = Levell
= Level2 = Level2

u Level3 = Level3

Leveld Leveld

Levels Level5

Level Distribution of Words
in Coach Group

9%
m Levell

m Level2
= Level3
Leveld

Level5

Figure 6. Level Distribution of Words by vehicle group

3.5.  Categorization of the Offers

Three new data frames are created on the basis of the vehicle group by copying the offer
number, country, CRS texts and year variables in the Offer Details dataset. A new variable is
assigned to each word in the prepared dictionaries. Each offer contains multiple CRS texts. For
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each CRS text, the words in the dictionary are detected and the variable assigned to the word is
added to the difficulty level score of the word. This allows searching for multiple words in a
CRS text and calculating the total word difficulty value in the corresponding text. The weighted
arithmetic mean is calculated for each CSR text using the difficulty level sum and counts of
each difficulty level. Then, filtering is done based on offer number. The difficulty level of the
offer is calculated by taking the average of the CSR texts whose weighted arithmetic mean is

calculated for each offer. The steps applied to the categorization process are shown in Figure 7.

Create new subsets for each vehicle group which includes "offer number,
Step country, CRS texts and year” variables.

Step Create a new variable for each word in relevant dictionary (by vehicle groups)

Step To detect words in each CRS and add difficulty level in relevant variables

Count words level for each CRS and write them to new variables (5 different
Step variables should be created for each difficulty level)

Calculate weighted arithmetic mean for each CRS Text. Here, w; represents
Step difficulty levels and x; represents counts of each difficulty level in CRSs. Find
difficulty level each offer.

Figure 7. The steps applied to the categorization process

Formula of the weighted arithmetic mean is that:

where x is weighted arithmetic mean, wi (non-negative weights ) represents difficulty levels
and x; (data) represents counts of each difficulty level in CRS text.
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4. RESULTS

As a result of the study, meaningful information was obtained for sales management as well as
categorization of customer-specific offers. The database that contains the data of the offers
prepared since 2006 has never been examined before. Within the scope of this thesis, all offer
contents are analyzed with text mining methods. As a result of this analysis, the distribution of
the number of CSR Text by years, the variation of the total number of offers by years and total
number of offers by country were obtained. In addition, categorization was performed by using
country constraints in the vehicle group.

The first meaningful information obtained as a result of the analysis is the number of CSR text
contained in the offers. Teams that evaluate offers by vehicle groups are different. The number
of team members and workload distribution should be equal for each group of vehicles. The
number of CSRs in the offer does not directly affect the workload because an offer with too
many CSR text may fall into a very easy category. In this case, it can be said that an offer is
created with easy content but a little longer evaluation period. The analysis results of the
distribution of CSRs in three vehicle groups are shown in Figure 8.

number of the CSR Text in each Offer vs Offer Created Year / High Premium Vehicle Groups
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number of the CSR Text in each Offer vs Offer Created Year / Premium Coach Vehicle Groups

number of the CSR Text in each Offer vs Offer Created Year / Coach Vehicle Groups
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Figure 8. Distribution of CSR Text number by years for each vehicle group

According to the CSR text distribution graphs, the average CSR text of the offers in the High
Premium vehicle group is higher than the other two vehicle groups. The first offer for the High
Premium vehicle group is created in 2014. The highest CSR Text average belongs to 2014 while
the lowest average in 2015. The offer with the highest CSR Texts is created in 2018.

The first offer for the Premium Coach group is created in 2006 and the offer with the highest

CSR Text is created in 2008. The highest CSR Text average belongs to 2019 while the lowest
average in 2009. The average CSR Text by years does not exceed 10.
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The offer containing the highest CSR text is created in 2017 for the Coach vehicle group. The
highest CSR Text average belongs to 2015. The deviation of the average CSR Text is not high
after 2009. Finally, the average CSR text in all 3 vehicle groups is the lowest in 2019.

The total number of offers varies according to years. This is related to market needs and sales
performance. The variation of the total number of offers for three vehicle groups by years is

shown on Figure 9. In addition, the graphs showing the creating year of each offer are in
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Figure 9. Number of the offers by years for each vehicle group
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The first offer is created in 2014 for High Premium vehicle group. The total number of offers
created in 2014 is too low compared to other years which is 18. After this year, the number of
annual offers increases regularly. Since the data in 2019 is until August, the number of offers
exceeds 2018. Furthermore, when comparing Figure 9 and Figure 8, the high number of offers
does not mean that there is too much CSR Text. For example, Although the number of the

minimum offer is created in 2014, the average number of CSR Text in this year is not the lowest.

The highest offer in the Premium Coach vehicle is created in 2014 while the minimum offer
belongs to 2013. Although the number of offers increase regularly between 2015 and 2017,
36% decrease is observed in 2018 compared to the previous year.

The country of the offer is as important as content of the offers. The CSRs vary according to
market requirements. Categorization analyze is firstly done based on countries. Before
categorization results, how the total number of offers varies by countries is examined. The

number of offers by countries for each vehicle group is shown in Figure 10.
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Number of the Offer sent by country between 2013-2019 for High Premium Vehicles
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Figure 10. The total number of offers by country for each vehicle group
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Since the country names in the data set remain in German, the country names shown in the
Figure 10 are also in German. Additionally, countries named as Export are Dubai, Bulgaria,

Gabon, Bosnia and Azerbaijan.

When the graphs are examined, the highest offer was created for Germany for the three vehicle
groups. Italy ranks second for High Premium and Coach vehicles. The top 6 countries that make
the highest offer for the High Premium and Premium Coach vehicles are the same. These
countries are Belgium, Denmark, Germany, France, Italy and Austria. Countries for the Coach
group are Belgium, Germany, France, England, Italy and Spain. Furthermore, Australia has
once created an offer for the Coach vehicle but has never created an offer for other vehicle
groups. Default country is assigned to the non-sales offer created by marketing department.

This type of offer is not created for the High Premium vehicle group.

At this stage, offers are categorized based on countries. Instead of displaying all the countries
on a graph, the graphs are created according to the top 6 countries with the most offers.
Furthermore, graphs showing the categorization results for all countries are in Appendix D. The
difficulty level of the offers varies between “1-5”. “0" difficulty level means categorization
failed.

Categorization Results for High Premium Vehicle Group

The countries that request the most offers in the High Premium range are Belgium, Denmark,
Germany, France, Italy and Austria. The offer categorization results for these countries are

shown in Figure 11.
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Figure 11. Offer categorization by country based in High Premium vehicles

The categorization results in this vehicle group belong to the years 2014-2019. The red line on
the graph shows the average difficulty level. The average difficulty level of the offers created
by Germany varies between 2-3. Within the top 6 countries, the overall average difficulty level
of Italy is the lowest such that the average level of difficulty by years never exceed “2”. On the
other hand, Austria's offers have the highest levels of difficulty. According to the offer
categorization result graph of all countries in Appendix D, only one offer has been created by
Finland, England, Latvia, Russia, Slovenia and Hungary. Among these countries, Russian
offers could not be categorized. The distribution of average difficulty levels by years for the

High Premium vehicle group is shown in Figure 12.

High Premium Vehicle Group

scoreforcatagory

Figure 12. Offer categorization by year in High Premium vehicles
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The average difficulty level for High Premium vehicles is the lowest in 2014. The average
difficulty level is the highest in 2018. According to the graph, no offers are sent over the
average difficulty level of 2.5 between 2014 and 2019 years.

Categorization Results for Premium Coach Vehicle Group

The countries that request the most offers for the Premium Coach vehicle group are the same
as the High Premium vehicle group. The categorization results for these countries are shown in

Figure 13.

Premium Coach Vehicle Group
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Figure 13. Offer categorization by country based in Premium Coach vehicles

The categorization results in this vehicle group belong to the years 2006-2019. The red line on
the graph shows the average difficulty level. The average difficulty level of the offers created
by Germany varies between 2-3. Within the top 6 countries, as in the High Premium vehicle,
the country that creates the easiest offer is Italy and the most difficult offers is requested by
Austria. Only one offer was created by both Belgium and Denmark in 2018, and these are the

most difficult offers created by the relevant countries between 2006 and 2019.

According to the offer categorization result graph of all countries in Appendix D, only one offer
has been created by Portugal in 2011. Two dummy offers were requested in 2009 and 2014 for
this vehicle group. Several offers have been created for the Mexican and UK markets, but these

markets are not active. Thus, only two offers were created by UK in 2009 and no other offers

29



have been requested for this market in the last 10 years. Similarly, three offers were created for
Mexico and the last one belongs to 2014. Also, there is no activity in this market for the past 5

years.

Besides the country-based categorization results, average categorization scores by years for the
Premium Coach vehicle group are shown in Figure 14.

Premium Coach Vehicle Group

Figure 14.0ffer categorization by year in Premium Coach vehicles

The average difficulty level of the offers created in 2016 is the highest compared to other years.
In contrast, the lowest average is in 2008. There is no steady increase or decrease trend over the
years. An offer was created at the most difficult level in 2010 and 2016.

Categorization Results for Coach Vehicle Group

The countries that create the most offers for the Coach vehicle group are Belgium, Germany,
France, the UK, Italy and Spain. The categorization results of these countries' offers are shown

in Figure 15.
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Figure 15. Offer categorization by country based in Coach vehicle group

The categorization results in this vehicle group belong to the years 2006-2019. The red line on
the graph shows the average difficulty level. The average difficulty level of the offers created
by Germany varies between 2-3. The overall average of the offers created by Italy and the UK
is the lowest compared to the other top 6 countries. This means that the offer created by them

are easy.
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Figure 16. Offer categorization by year in Coach vehicles

According to the overall difficulty level average between 2006 and 2019, the difficulty level of

the Coach vehicle is the easiest among the other two vehicle groups.
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5. CONCLUSION & FUTURE WORK

In this study, the effect of the offer contents on sales management processes is examined by
combining the offer documents presented to the customers in a single data set during the vehicle
sales process. Country and year-based analyzes were conducted to analyze how market
demands vary. Moreover, offers were categorized according to difficulty levels with a new
method inspired by machine-learning and Lexicon sentiment analysis. However, there were
offers that could not be categorized for all vehicle groups. As a result of this study,
categorization could not be made in 18 of 793 offers in High Premium vehicle group, 144 of
4731 offers in Premium Coach vehicle group and 403 of 14314 offers in Coach vehicle group.
The main reason for this is that no word detection in the CSR text within the offer. If the specific
dictionaries used in categorization process is developed, 100 % categorization is provided.
Since this study is the result of combining and developing two different literature studies, we
think that this is the first study in this field. Additionally, it is seen that the content of the special

requests affects the difficulty level more than the number of requests included in the offer.

The results of the categorization have been shared with the sales managers in the relevant
countries and it has been reported how the market has changed over the years and these changes

should be taken into consideration for future investments.

Another outcome of the study is that there are countries that are constantly creating difficult
and simple offers on the basis of vehicle groups which are Austria and Italy. When allocating
tasks in the offer evaluation department, it is necessary to look at the country from which more

than one offer is sent to the responsible person during the process.

Finally, the future step in this study will be to estimate the difficulty level distribution of offer
to be prepared in the coming years based on the categorized data of previous years' offers. In
addition to the offer categorization, order categorization will be done. Order categorization will
ensure that the difficulty of a vehicle to start production is known in advance and precautions

for the possible challenges/problems encountered during the production process.
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Categorization Results for All Countries
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