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ABSTRACT

NEURAL NETWORK-BASED ADAPTIVE
MYOELECTRIC SIGNAL CLASSIFICATION VIA

UTILIZATION OF ENTROPY HISTORY

Kübra Nazlıhan Işık

M.S. in Electrical-Electronics Engineering and Cyber Systems

Advisor: Asst. Prof. Dr. Mehmet Kocatürk

December, 2017

The surface electromyography (sEMG) signals emanating from the remnant

forearm muscles of transradial amputees are eligible for controlling robotic pros-

theses to replace the functions of the lost hand. sEMG pattern recognition (PR)

algorithms are utilized in prosthetic decoders to provide intuitive and naturalistic

way of control. However, classification accuracy of these algorithms decay over

time since the sEMG signal input continuously changes in practice due to the

dynamics of muscular contraction and the skin-electrode interface. Our goal in

the present study was to develop a computationally efficient classification method

that can realize adaptation in an unsupervised manner and improve the perfor-

mance of the prosthetic hand controllers. To this end, we developed an adaptive,

neural-network-based sEMG signal classifier. In the system, the entropy associ-

ated with each classification decision is used as a metric to evaluate the confidence

level of the predictions. A buffer is implemented into the system to store the his-

tory of the entropy and unsupervised learning is realized only when the entropy

values associated with the predictions are below a certain confidence level for a

certain time period. The present classifier was developed using simulated sEMG

signals and its classification accuracy was validated using sEMG signal recordings

from two able-bodied subjects performing 5 types of hand gestures. Followed by

a supervised training phase using a 25 seconds sEMG signal recording, the aver-

age classification accuracy of the classifier for 725 seconds sEMG recordings was

94,5841% and 94,1390% when adaptation is applied and not applied, respectively.

The classification accuracy results for the recordings from able-bodied subjects re-

vealed that the present unsupervised, neural network-based adaptation approach

is promising for improving the robustness of the prosthetic hand controllers. The

present system proposes a computationally efficient solution for the adaptation
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problem by utilization of a neural network and online learning strategy. The

system stores only the entropy history for a number of latest classifications and

performs the adaptation only using the latest sEMG signal input vector.

Keywords: EMG, Neural Network, Adaptation, Surface EMG Signal Classifica-

tion, Simulation of EMG Signals.



ÖZET

ENTROPİ GEÇMİŞİNDEN YARARLANARAK SİNİR
AĞI TEMELLİ UYARLANABİLİR MİYOELEKTRİK

İŞARET SINIFLANDIRMASI

Kübra Nazlıhan Işık

Elektrik-Elektronik Mühendisliği ve Siber Sistemler , Yüksek Lisans

Tez Danışmanı: Yrd. Doç. Dr. Mehmet Kocatürk

Aralık, 2017

Transradiyal amputelerin kalan ön kol kaslarından yayılan yüzeyel elek-

tromiyografi işaretleri(yEMG), kaybedilen elin fonksiyonlarının yerini almak

üzere robotik protezlerin kontrolü için kullanılmaya uygundur. Protetik

şifre çözücülerde sezgisel ve doğal bir kontrol sağlamak için yEMG örüntü

tanıma(ÖT) algoritmalarından faydalanılır. Ancak, şifre çözücüye gelen yEMG

işaret girdilerinin adele kasılmaları ve cilt-elektrot arayüzü dinamiğinden kay-

naklanan devamlı değişimleri nedeniyle bu algoritmaların sınıflandırma doğruluk

değerleri zamanla azalır. Bu tez çalışmasındaki amacımız gözetimsiz uyarlama

gerçekleştirebilen ve protez el kontrol birimlerinin performansını arttırabilecek

hesapsal olarak verimli bir sınıflandırma yöntemi geliştirmekti. Bu doğrultuda,

uyarlanabilir ve sinir ağı temelli bir yEMG işaret sınıflandırıcısı geliştirdik.

Her bir sınıflandırma kararı ile ilişkilendirilen entropi, sistemde tahminlerin

güvenilirlik seviyelerini değerlendiren bir ölçüt olarak kullanıldı. Entropi

geçmişini kaydetmek üzere sistemde bir arabellek tanımlandı ve tahminlerle

ilişkilendirilmiş entropi değerleri yalnızca belirli bir zaman aralığında belirli

bir güvenilirlik değerinin altında olduğunda gözetimsiz öğrenme gerçekleştirildi.

Önerilen sınıflandırıcı benzetilmiş yEMG işaretleri kullanılarak geliştirildi ve

sınıflandırma doğruluğu 2 sağlıklı denekten 5 çeşit el hareketinin uygulamaları

sırasında kaydedilen yEMG işaret kayıtları kullanılarak doğrulandı. 25 saniyelik

bir yEMG işaret kaydı kullanılarak gözetimli eğitim aşaması ardından, 725 saniye-

lik yEMG işaret kayıtları için sınıflandırıcının uyarlama uygulandığı ve uygulan-

madığı durumlar için hesaplanan ortalama genel sınıflandırma doğruluk değerleri

sırasıyla 94,5841% ve 94,1390% idi. Sağlıklı deneklerden alınan kayıtlar için elde

edilen sınıflandırma doğruluğu sonuçları, bu gözetimsiz, sinir ağı temelli uyarlama

yaklaşımının protez el kontrol birimlerinin gürbüzlüğünü arttırma açısından umut
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verici olduğunu ortaya çıkarmıştır. Sunulan sistem, uyarlama problemi için sinir

ağı ve çevirim içi öğrenme stratejisi kullanarak hesapsal olarak verimli bir çözüm

ileri sürmektedir. Sistem yalnızca belirli sayıdaki son sınıflandırma için entropi

geçmişi tutmakta ve uyarlamayı yalnızca en son yEMG işaret girdi vektörünü

kullanarak gerçekleştirmektedir.

Anahtar sözcükler : EMG, Sinir Ağları, Yüzeyel EMG İşaret Sınıflandırma, EMG

İşaret Simulasyonu.
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Chapter 1

INTRODUCTION

The ultimate goal of the surface electromyography (sEMG) signal classification

studies is to develop robust and high performance decoders for myoelectric con-

trolled prostheses. A myoelectric controlled prosthesis is an externally powered

artificial limb that is controlled by the bio-signals generated from the remnant

muscles (skeletal) of the amputees. Improvements in the robotic technology en-

able the development of prostheses that have multi degrees of freedom (DOF).

The number of DOF that a myoelectric controlled prosthesis has indicates its

range of motion. Increasing the number of DOF increase the dimensionality of

the prosthesis and thus control interfaces should be capable of providing easy and

smooth use for the prosthetic users. However, conventional control approaches

(e.g. on/off control based on one channel contractions) are inadequate to com-

pensate these multi-dimensionality requirements. In most of the conventional

approaches, the user of the prosthesis has to do unnatural co-contractions to

transit among several predefined prosthesis motions and to select the motion

that the user intended to do. This kind of way of control is cumbersome to the

users of the prosthesis which using conventional control approaches that support

one DOF(e.g. only simple movements like gripping, open and close) most of the

time.

Pattern recognition(PR)-based controllers increase the functionality of the
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prostheses. In contrast to the conventional approaches, PR enables to gather

more information from the muscles about the movement that the user intended

to do. PR algorithms can easily process and distinguish the user signal patterns

accordingly. Thus, a PR-based prosthetic user only needs to perform the con-

tractions related with his/her intended movement and algorithm does the rest.

Consequently, PR offers more intuitive and natural way of control than the tra-

ditional approaches (on/off control based on the contraction detected from single

recording channels) do.

Despite the consensus on promising control ability of the PR algorithms, per-

formance reliability of the classifiers has been argued. Non-stationary, time-

variant characteristics of the EMG signals are the main reason behind these ar-

guments. Moreover, performance decays can occur in long term (between days) or

in short term (within a day, an hour, couple of hour) due to some factors such as

user movement pattern variability, electrode shifts, muscle fatigue, electrode-skin

contact problems (conductivity changes, humidity, sweating) etc. PR algorithms

cannot handle these problems, thus, enhanced algorithms are required to be de-

veloped to accommodate the variations in the EMG signals.

Different strategies have been developed to prevent systems from performance

degradation. Initial training enhancements to improve classifiers generalization

abilities, easier re-training strategies, studies on user adaptation, online training

strategies to manage algorithm adaptation can be given as some instances to

these solutions that have been developed previously by the other researchers.

Recently, adaptive classifier approaches for the sEMG signals have attracted the

researchers. Main idea behind the adaptive classifiers is developing algorithms

that can adequately update the classifier discriminator parameters and track the

changing trends in the sEMG signals in time. Unsupervised adaptation techniques

are on demand with reliable and robust online training strategies.
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1.1 Literature Overview

Myoelectric controlled prostheses have been developed since 1960s [1]. Mechan-

ical features of the first versions of the prosthetics (e.g. hooks, body powered

and on/off controlled myoelectric prosthesis) were easily controllable but limited

in the functionality. Multi DOF prostheses were developed to improve the func-

tionality of the artificial limbs. However, control strategies could not fulfill the

requirements of the improved mechanical technology. Therefore, PR algorithms

have become a prominent solution for the control of multi DOF prosthetics. There

is a wide consensus on the PR system contributions but clinical viability of the

PR is still argued and could not be tested and proved in all aspects. Numerous

studies are conducted to improve PR-based systems reliability.

Since sEMG signal classification studies take part in a multidisciplinary field,

that is, intersection of engineering, robotics, neurology and even medicine (e.g.

surgical operations like targeted muscle re-innervation(TMR) [2], [3]), the moti-

vations in the studies are widely diversified in the literature. Some of the studies

have been concentrated on the development of prosthetic limbs, others focused

on the control strategies of the prostheses in the context of software and the

hardware developments. sEMG signal classification studies are only one part of

the control strategies field.

Effects of the diversity of topics are observed even in this specific research area

(EMG signal classification studies). An EMG classification study depends on

the numerous conditions and factors by its own. Most of the factors in different

conditions that may affect the performance of the classifier are separately inves-

tigated. The factors that may affect the EMG signal classification studies can be

categorized into; data acquisition techniques, user himself/herself, data process-

ing and classification techniques (These categories include numerous parameters

that may affect the performance).

In the data acquisition point of view; different data acquisition configuration

settings, conducted movements, movement performing variations (i.e. isotonic
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(muscle length changes), isometric (no muscle length changes), transient (dy-

namic, short and burst), steady-state (constant force) contractions) are investi-

gated. The number of the channels that is required to develop an EMG data

acquisition setup has argued [4] and it was demonstrated that, using more than

2 channels substantially improve the classification performance of the systems.

The impact of the limb position [5], electrode size [6], electrode location and

orientation on the limb were the other topics that the researchers have been stud-

ied on for the performance improvements. A training strategy has been applied

to prevent the system from accuracy degradations that may be caused from the

electrode displacements [7]. It was called “grouping training” in the study and it

was done by augmenting initial training data with possible electrode displacement

patterns. In another study, same strategy has been used with a small difference

to resolve performance decay problem that is caused by different limb positions.

In this strategy, in addition to the EMG patterns limb accelerometer sensor data

was added to the initial training data aiming to improve generalization ability of

the classifier by teaching the classifier possible pattern variations of each classes

[8]. Moreover, in a recent study, a prostheses control strategy robust to limb posi-

tion was proposed by utilizing sparse representations [9]. Inter-electrode distance

and different electrode configuration effects on the system performance has been

studied too [10]. Studies that has been conducted in the literature shows the va-

riety of the factors that may affect performance of the sEMG signal classification

studies.

Different muscular structures that the individuals have make the user him-

self/herself the most important factor for the classification studies due to their

specific physiological and anatomical properties. The user has been described in

a study as “source of the greatest variability” [11]. In this study, a virtual reality

environment (VRE) was provided to the user to ease the system training that has

been developed (real time controlling of the virtual prosthesis with a classifier).

It demonstrates that subject could learn the classifier dynamics and performed

more repeatable movements after spending some time using the virtual prosthe-

sis. At the end, user performed more repeatable movements and performance of

the system improved. Moreover, the performance results of the system which is

4



reported in [12] revealed the user adaptation ability in the performance.

Actual prosthetic users are amputees obviously. Their residual muscles are ca-

pable of generating EMG signals and these signals can be used to control robotic

wrist and hand movements. The user characteristics vary more than non-disabled

individuals. Individuals amputated from their forearms have different name ac-

cording to their amputation levels such as below elbow and above elbow amputa-

tions are called transradial and transhumeral respectively. In the majority of the

studies, amputee and intact individuals have been involved in the experiments to-

gether. On the other hand, only non-disabled subjects have participated in some

studies. Similarities between those subject groups (amputees vs. non-amputees)

in terms of training abilities and system usage error rates/performances has been

reported in numerous studies [13]. Generally, performance similarity between

non-disabled and transradial amputees is higher than transhumeral amputees.

Because transradial amputees have more and sufficient number of remnant mus-

cles than transhumeral amputees. Even for high effort required complex motions

like finger muscle activities could be classified and classification accuracy results

comparisons between non-disabled and transradial amputees revealed similar per-

formance within two groups [14]. In a study, high error rates have been reported

for the transradial amputees initially but the error rate has been reduced after

user training over time and similar performance with the non-disabled individ-

uals has been achieved by the amputees accordingly [15]. The reason behind

the initially high error rates is that the transradial amputee has short limb that

make the remnant muscle hard to produce intended movements. However, the

amputee can learn to use his/her remnant muscles efficiently by training to con-

trol the prosthetic and the error rate is decreased resultantly. These findings

show that, the studies involving only able bodied individuals are acceptable to

test developed schemes for the future prosthetic applications.

Data preprocessing methods are one of the most important factors that may

affect classification performance. Some of the preprocessing methods that have

been applied in the literature can be listed as noise filtering, dimensionality reduc-

tion techniques (e.g. principal component analysis before classification [15]) and

time window length [16]. Time window length is one of the important parameter
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in the preprocessing methods. Sufficient window length should be determined.

Since features of the current sEMG signal will be extracted from these windows,

length of the windows should be long enough to represent main characteristics of

a class. However, it should not be too long that can be led to late classifier deci-

sions. The length of the time window should be short enough to have a classifier

that make fast classification decisions during use of the prosthesis.

1.1.1 Surface Electromyography(SEMG) Signals Classifi-

cation

sEMG signals are acquired during performing real limb motions. The data gath-

ered from multiple muscles enable classifiers to capture muscle synergy patterns

and maps data patterns into motion labels [17]. Classification algorithms are

the interfaces between human and the prosthetics in this manner. However the

decisions of the classifiers are not mechanical output of the prosthetics. Func-

tional assessments of the PR systems on the prosthesis have to be carried out

additionally [18].

Feature extraction is the first and important step of the classification problems.

EMG signals are divided into temporal segments and time domain features are

extracted from each of these segments which are called time windows. Many

different features and feature groups are evaluated and alternative feature sets

have been sought to find best performing classifier in the literature [19], [20].

Feature extraction process should suit the real time control requirements of the

prosthetic devices. Time domain features such as mean absolute value (MAV)

and waveform length (WL) are suitable to be used in real time [16] control due

to easy computations [21] and stability [22] to the changes over time. Besides,

similar performance results have been reported when the time domain features

and the complex features such as discrete wavelet are compared [23]. Therefore,

time domain features are most commonly used features in the previous studies.

Most of the classification algorithms have been studied including non-linear
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(e.g. multi layer perceptron (MLP)) and linear ones (e.g. linear discriminant

analysis (LDA)) in the literature. High classification accuracies are reported

mostly above 90% accuracies for both classifier types in general. Non-linear

classifiers offer better classification accuracy than linear ones [23] for the EMG

signal due to its unpredictable, complex, non-stationary nature. However, LDA

is the mostly used classifier among the classifiers in the literature. The reasons

behind the use of the LDA were indicated in most of the studies as being widely

used and its easy implementation. It is applied conventionally [16] and in different

expanded versions (e.g. LDA with multiple binary classifications [18]) as well.

In addition to LDA classifier, other classifiers have been used in the litera-

ture are support vector machine (SVM) [24], hidden markov models (HMM) [25],

gaussian mixture model(GMM) [26], k-nearest neighbor (knn) [27] etc.. High

accuracy results have been reported in most of the studies. Different classifier

and feature combinations have been used to discriminate sEMG signals for each

study. High accuracy results that are attained by different classifiers can be inter-

preted as inconsistency for the literature. But the factors such as data acquisition

tools, data processing methods, movements that are conducted by the subjects

and the subjects who are involving to the experiments vary among studies ba-

sically. Therefore, performance results that have been reported for each study

in the literature may be unique in nature [28]. It is hard to make comparative

interpretations among studies.

Nevertheless, it is possible to find an eligible classifier and feature combination

according to the acquired data patterns. The evaluation criteria for selecting

classifier and feature combinations can be the applicability of the online training

(learning) procedure to the classifier and both features and classifiers should be

satisfying the real time constraints. These are important properties to prevent

systems from performance degradations that may be caused by stochastic nature

of the sEMG signals. The algorithm should be capable of adapting the changes

that may occur in the sEMG signal patterns and algorithm should be upgraded

properly.
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1.1.2 Adaptive Classification Approaches

sEMG signals are complex and unpredictable signals due to their non-stationary

and time-variant nature. When other external factors (e.g. sweat, muscle fa-

tigue, electrode displacements, humidity, changes in the quality of the signal

etc.) are involved in the process, signals become harder to discriminate over

time. Especially the conventional PR algorithms fail to accommodate sEMG sig-

nals dynamics over time. In conventional PR algorithms, only one initial training

phase is executed to compute the parameters of the classifier. These parameters

are used to make classification decisions and do not change during classification

phase. When the signal patterns start to change and differentiate from the initial

training data patterns, previously calculated parameters (during initial training)

cannot handle the process and start to deteriorate accuracy of the classifier by

making wrong decisions for new encountered exemplars.

Previous efforts that have been made to improve the performance of the sEMG

classification studies mostly concentrate on the pre processes before the classifi-

cation phase. The strategies such as applying proper data acquisition techniques,

determination of the best feature and classifier combinations provide high clas-

sification accuracies. However, these strategies only offer high performance in

a certain time, with a limited data without considering effects on the system

performance that may caused over time.

More recently, adaptive classifiers have taken interests of the researchers since

they can be a solution for the performance degradations over time. Adaptive

classifiers are developed to accommodate the changes and aim to recover possible

system performance degradations. An adaptive scheme can detect the abnormal-

ities in the classifier performance and adjust the classifier parameters accordingly.

As an example, Thakor et al. (2012) developed an adaptive algorithm which is

based on LDA, detects deteriorations of the signal and categorize them into dif-

ferent types as slow changes and fast changes by using entropy calculations [29].

Different update strategies have been applied for each type of deterioration in the

study.
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In order to develop a good adaptive classifier, computationally efficient up-

date strategies should be developed. It should ensure that the classifier appli-

cable when it makes decisions in real time, real time classification and training

constraints should be considered. Robust, reliable and unsupervised adaptation

strategies [30] are on demand currently [31]. Within this context, crucial proper-

ties that an adaptive classifier should satisfy can be listed as:

• Less update frequency [32], [33]: algorithms need to have a metric to adjust

the update frequency.

• Easy implementation of online training [32].

• Low computational load for update strategy: computationally intense up-

dating algorithms should be avoided [32], [19].

• Valid online training data [19]: This issue is important especially for devel-

oping unsupervised adaptive strategies. Since target classes are unknown

during classification, choosing new samples to update existing classifier can

be cumbersome. It is easier to do in supervised strategies, since input-label

pairs are known even during classification phase.

• Size of the online training data: small amount of data required to reduce

the time required to complete the online training and also to reduce com-

putational load.

Sensinger et al. (2009) have evaluated different types of online training data

modifications including supervised and unsupervised methods by utilizing entropy

[34]. The results that have been obtained in this study revealed that supervised

approaches provide better performance due to target classes are known. But

application of a supervised scheme is cumbersome to the user, since the user

should give feedback frequently to provide correct labels to the system. Nishikawa

et al. (2001) is one of the example for supervised training strategy [35]. They

have proposed real time learning scheme utilizing feed-forward neural network

as classifier and back propagation (BP) algorithm as training strategy in their
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studies [35], [36]. User judgements control the learning process to teach system

new motions and adapt the system to a specific user. Moreover, if the user does

not satisfy the system performance, he/she can re-teach movement set to the

network. BP learning helps network to update its weights in a supervised way by

using ’teacher signals’ sent by the user to label the signal patterns for the current

movement data. When the user wants to teach new motion to the system, lastly

calculated feature vectors are added to the training data set and training occurs

using this updated training data set. A root mean squared (RMS) threshold was

used to stop the training process (all data points in the training data should

satisfy the condition).

As it is previously mentioned, low computational load should be satisfied for

the update strategy. Easy and computationally efficient update methods have

been proposed for the LDA classifier in this manner. In order to retrain the LDA

classifier, covariance matrices are required to be recalculated. However, recal-

culation of the covariance matrices during classification task is computationally

intensive and it is a problem for the real time use of the prosthetic device. In one

of the study[37], to simplify the recalculation of the covariance matrix, instead

of calculating entire covariance matrix for each update step, only small modifi-

cations have been made on the covariance matrix like in another study [38]. The

study has been proposed to prevent the classification performance from degra-

dations based on detecting abnormal activities on the EMG signals. When the

abnormalities are detected in the sEMG channels, signals that are gathered from

those channels not included into the samples that will be classified. Similarly, re-

lated information about the abnormal activity detected EMG channels have been

extracted from the covariance matrices at the same time to track the changes in

the signals (basically to adapt). Residual parts of the covariance matrices have

been used to classify EMG patterns, thus this procedure simplifies and speeds up

the retraining process.

It has been revealed that, unsupervised solutions are required to develop self

adaptive approaches. Chen et al. (2013) offers a unsupervised way of update

strategy utilizing labels of the decision outputs of the classifier, LDA that has

been used in the study[38]. Classifier parameter, covariance matrix, has been
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iteratively updated, after every decision output using classified labels. Similarly,

in another study update frequency of the classifier is in every test sample classi-

fication [39]. However, it is an intensive work and may led wrong classifications

due to the only criteria for labeling the upcoming samples the classifier decision

itself. There is no controlling mechanism to valid classifier outputs. Therefore,

confidence metrics are used as an evaluative metric for deciding on the data that

is used to update the classifier parameters. In the study of Amsuss et al. (2014),

an ANN has been used as a confidence metric [30]. The network has been em-

ployed as a self assessment mechanism for the LDA classifier outputs and corrects

the classifier decisions accordingly.

Fukuda et al. has been made one of the greatest contribution to the literature

belonging to adaptive EMG classifier studies [40]. Combination of feed-forward

neural network and GMM discrimination functions creates a probabilistic neural

network which has been employed to classify sEMG signal patterns. Time-series

of the sEMG signals have been as the inputs of the network. Adaptation scheme

updates network parameters by using back-propagation (BP) learning and apply

suspension rule that output the network to no motion. Entropy has been used as

confidence metric that decide whether an update is required or not. If calculated

entropy during classification is under a predetermined threshold, network updates

the weights by utilizing BP learning. Before retraining the network, training data

set is modified by adding the last sample to the training data set and removing

oldest data sample from the existing data set. Since this adaptation scheme uses

all the training data to apply retraining and update network parameters, it is a

time consuming task. Substantial amount of time is required to complete training

data convergence [41]. It is not certainly explained in the study that update of

the network weights occurs with the previously calculated weights or the weights

are randomly initialized for every new update step. If it is randomly initialized,

convergence of the training data samples can take more time [42], [43], [44], [45].
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1.1.3 Artificial Neural Networks as EMG Signal Classi-

fiers

It is well known that, artificial neural networks (ANN) can classify any kind

of distributed (linear or non-linear) data. A well constructed network makes

non-linear mappings between inputs and output classes through network training

strategies. Back-propagation learning algorithm is a well-known and mostly used

training strategy in the sEMG ANN classification studies. The algorithm updates

the network weights using each data point in the training data set. Basically error

between desired output and actual output of the network are propagated to the

network from output to input in the BP training. The training continues until

network learns to discriminate all the training data examples correctly.

In one of the study, Baspinar et al. (2013) have been compared classifiers

Gaussian mixture model (GMM) and ANN with different network structures in

terms of classification rates as classifier performance metric [46]. An ANN with

20 neurons in hidden layer outperformed the GMM classifier. In another study,

ANN and LDA classifiers comparison has been made in the cases of electrode

shift [6]. It has found that, LDA has better generalization ability than ANN in

the cases of electrode shifts.

First real time ANN based sEMG signal classification study has been per-

formed by Hudgins et al. (1993) [47]. Time domain features (i.e. MAV, MAV

Slope, zero crossing (ZC), slope sign changes (SSC), WL) have been used in the

study as features. In the study, a 3 layered feed-forward back-propagation neural

network (BPN) have been constructed. Classification scheme has an adaptation

unit to modify network weights for the possible small variations of the features.

When error rate of the network is under a predetermined error rate threshold, re-

training occurs starting from the last updated network weights until the error rate

becomes under desired value. This study offers a supervised adaptation scheme,

since target class labels are given to the adaptation unit during classification to

calculate error rates and to track performance degradations.
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Tenore et al. (2009) have used ANN to discriminate separate finger move-

ments [14]. The best time domain features and neural network combination were

argued. The results of the study show that, WL gave the best performance in

terms of classification accuracy among the time domain features for the classifier

ANN. No adaptation procedure has been applied in some of the NN-based clas-

sification studies. Only optimal network structures has been sought to gain high

classification accuracies considering the network complexity [48], [49].

In another three layered feed-forward NN based study [50], training is real-

ized by utilizing BP. The existing training (learning) data has been modified and

the network retrained by using the new training data inputs (samples) during

classification. Training data modification has been made by utillizing three dif-

ferent methods that the study proposed: selective addition, automatic addition,

and automatic elimination. Alternative online training methods has been devel-

oped such as: a neural network architecture uses varying learning rate has been

constructed to improve and speed up BPN learning during classification [51].

1.2 Objectives of the Thesis

As it is mentioned in the previous sections, sEMG signals are non-stationary and

time-variant biological signals. PR algorithms offer high classification accuracies

but reliability problems are occurred over time due to the unpredictable nature

of the sEMG signals. The main objective of the present thesis was to develop

a robust, reliable and unsupervised adaptive sEMG signal classification method

that can be used in the prosthetic limb controllers and can be a solution for the

recent reliability problems that the PR algorithms suffer from. In this sense, an

adaptive classifier was developed using neural networks and an unsupervised way

of adaptation is implemented using entropy.

The online training strategy of the present algorithm is superior to the other

training strategies with its computationally efficient and reliable updating pro-

cedure. The update occurs only in the predetermined time intervals and if some
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specific conditions are met. This strategy substantially improves the robustness

of the adaptive classifier.

1.3 Outline of the Thesis

At the beginning of Chapter 2, a brief explanation about sEMG signal genera-

tion in terms of physiological aspects is given. Subsequently, the properties of the

sEMG model that has been used in the thesis are disclosed. sEMG signals corre-

sponding to different movements are generated using this model. The generated

sEMG signals are later distorted to simulate the conditions in which classifier

adaptations are required. The simulated and distorted signals are presented in

the following sections. The neural network-based sEMG classifier is described

and its adaptation capability is studied using the simulated sEMG signals. The

classification performance of the classifier is shown and discussed at the end of

the chapter.

In chapter 3, an improved version of the adaptive classifier is introduced. It

is improved by utilizing entropy history of the neural network. The classification

and adaptation performance of the classifier is studied using real sEMG signals

recorded from able-bodied subjects.

Lastly in chapter 4, thesis concludes with summary of the entire thesis. Ad-

vantages and disadvantages of the developed system are presented. The main

contributions of the present study and possible future improvements are identi-

fied.
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Chapter 2

SURFACE EMG SIGNAL

SIMULATIONS and NEURAL

NETWORK-BASED sEMG

SIGNAL CLASSIFICATION

2.1 Introduction

Electromyography signals (EMG) are electrical activities that originate in the

skeletal muscles. They are generated during muscle contractions as a result of

chemical, electrical and mechanical reactions. EMG signals can be recorded over

the skin by using surface electrodes. Electrode records the average potential un-

derneath the electrode[52] namely pick-up area [6] and surface electromyography

signals (sEMG) are constituted.

EMG signal generation mechanism in a physiological and anatomical extent

has drawn attention for decades. In order to improve our understanding about

the EMG signals, EMG models have been developed. The models mainly aim

to study the effects of the parameters on the generated signal properties (e.g.

15



waveform, amplitude) and subsequently establish relationship between the signal

and the physiological and anatomical properties of the muscle [53], [54]. On the

other hand, the models provide variable controllability [52], thus they can be used

to assess the developed algorithms.

EMG models are simply based on mathematical derivations of the signals.

One of the earliest mathematical descriptions has been made by Plonsey [55],

[56], Rosenfalck and Andreasan [57]. The smallest source of the EMG signals,

fiber action potentials, have been generated by using these mathematical solutions

[58], [59].

The sEMG signals that are detected over the skin can be simulated by utilizing

the mathematical derivations of the EMG models. Within this context, a sim-

ple sEMG model is generated in the present thesis. Generated model dynamics

are based on Merletti EMG model [60] and roughly encompass main functional

features of real sEMG signals. Merletti model is expanded into multi MUAP

model that simulates sEMG signals. In the present study, it is attempted to

generate two-channel bipolar electrode recordings. Different signal combinations

of two channels are created to simulate distinct movement patterns. Simulated

signals are distorted with a variety of distortion levels. Finally, resulted signals

are classified using an adaptive neural network classifier.

The aims of the present chapter can be listed as:

• constructing a basic sEMG model(construction of a realistic model is out

of scope of this study),

• creating distinguishable movement signal patterns,

• investigating the performance of the adaptive classifier we developed for dis-

torted sEMG signals(simulations with known parameters provide sufficient

interpretations to see the algorithms [61] accuracy and robustness prior to

the tests using experimenter sEMG signal recordings).
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In this chapter, basics about an EMG signal generation during muscle con-

tractions will be presented concisely before the sEMG model explanations. Af-

terwards, properties of sEMG model, simulated signals and distorted versions of

the simulated signals will be given. Brief explanation about the first version of

the adaptive neural network classifier will be made (expanded version of it will

be introduced in the next chapter). Distorted signal classification results will be

compared between the cases in which adaptive and non adaptive classifier are

used. Finally, the chapter concludes with the classifier results and discussions.

2.2 Methods

2.2.1 sEMG Signal Simulation of Movements

2.2.1.1 Theoretical background

An EMG signal simply originates in skeletal muscles. A skeletal muscle is com-

posed of motor units (MU) and each MU is composed of variety number of fibers.

Number of MUs and fibers of each MU may vary among muscles [53] .

The smallest portion of an EMG signal is initiated in neuromuscular junc-

tions (NMJ) of the fibers. Neuromuscular junction is the location where a motor

neuron and a fiber is connected. The motor command received from the motor

neuron activates the fiber and the other fibers that are coordinated from same

motor neuron through their NMJs. A motor neuron and the fibers it innervates

constitute the smallest functional unit of a muscle which is called motor unit

(MU). Activation of each fiber of the MU discharges action potentials and forms

motor unit action potential (MUAP) accordingly [62], [63], [53].

Contraction of a muscle is initiated by the activation of single MU but this

activation creates weak contraction. Thus, contributions of more MUs increase

the force generated by the muscle. To sustain a contraction, MUs are repeatedly
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activated [53]. Potentials that are generated during this activation interval con-

stitute MUAP trains (MUAPT) [64]. Occurrence frequency namely firing rate

of each MUAP in a MUAPT may change in time according to number of active

MUs.

Created action potentials from active fibers of MUs linearly contribute to the

electric field spatially and temporally in and around a muscle [65]. An EMG sur-

face electrode is located on the skin in a place in the vicinity of the related muscle

can be recorded effectively. The recorded signal consists of the superposition of

MUAPs generated under the detection area of the electrode basically. Resultant

signal that is recorded by the electrode is called surface electromyogram (sEMG)

signal.

2.2.1.2 About the model in general

In the present study, Merletti’s EMG model [60] is used to simulate sEMG signals.

The model constitutes a sEMG signal by potential generated at intracellular level

to extracellular level. In the study, only single MU action potential and its current

created on the surface have been simulated. Several assumptions have been made

to simplify implementation of the model (i.e. tissue between surface and the

source(s)(signal generation points like fiber NMJ)) is assumed as homogeneous

and anisotropic conducting semispace limited by a plane (skin surface) of infinite

extent. Despite the simplifications, model is sufficient to generate sEMG signals

to investigate effects of the parameters such as conduction velocity, depth of the

fiber in a muscle and different recording electrode configuration on the shape of

the generated MUAP [52].

In the present study, two-channel differential (bipolar recording configuration)

sEMG signals are generated using this model. Unlike Merletti, more than one

MUAP are calculated to constitute the sEMG signal. Additionally, two different

signal sources are simulated. It is intended to create 4 different sEMG channel

signal combinations that can be distinguishable in the classification experiments.

Different parameters have been used for each channel, i.e. number of MU and
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conduction velocity of the fiber. The details about the movement generation will

be given in the following sections.

2.2.1.3 Equations of the model and their relation with the theory

Main components of the model is shown in the diagram which is represented in

Figure 2.1.
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Figure 2.1: Architecture of the sEMG model. Basic operations of generating a
sEMG signal that simulate the signals obtained from one channel are shown in
the figure. Signal graphs show 1 second signal simulations (FAP: Fiber Action
Potential, MUAP: Motor Unit Action Potential, SEMG: Surface EMG).

The diagram shows the main operations of the constructed model to generate

the sEMG signal. Basically, superposition of several fiber action potentials con-

stitute a motor unit action potential (e.g. MUAP1) as illustrated in Figure 2.1.

Other MUAPs which involve the constitution of sEMG1 signal are created by

contribution of different number of fibers for each MUAP. sEMG1 and sEMG2

represents the signals of first and second electrodes of a channel respectively. In
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order to simulate bipolar electrode configuration recordings, signals of these two

electrodes are subtracted from each other to form the resultant signal sEMG.

2.2.1.4 Fiber action potential in intracellular field

Simulation of a sEMG signal starts from the intracellular level. As it is mentioned

previously, a single fiber action potential initiate at the NMJ of the fiber where the

activation command received. Generated action potentials at the NMJ (locates

in the middle of the fiber approximately) of a fiber propagate along the fiber

length towards two opposite directions longitudinally with a constant velocity

and extinguish at the tendon ends of the fiber [66]. This propagation mechanism

is attempted to simulate in the current model. It is assumed that potential has

triphasic shape. Three poles are calculated symmetrically located both side of the

NMJ which is denoted as z within this manner using current distribution equation

2.2 which is derived from the fiber action potential equation 2.1. Consequently

6 poles are obtained for each instant current positions, 3 poles of each action

potential propagate along the fiber length by the equation cvt in time t in opposite

directions.

Intracellular action potential of a fiber is denoted by the mathematical expres-

sion:

Vm(z) = A(Λz)3e−Λz −B. (2.1)

and second derivative of the fiber potential is the current distribution [52]

which is calculated as:

Im = CAΛ2(Λz)[6− 6Λz + (Λz)2]e−Λz (2.2)

where Λ is scaling factor in mm−1, C is a proportionality constant, z is distance

along the fiber length (reference point is NMJ point of the fiber ) depends on the
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conduction velocity and time, calculated as cvt. A and B are action and resting

state potential constants respectively.

2.2.1.5 Fiber action potential in extracellular field

Tissue between the source (active fiber cell NMJ point inside the muscle) and the

skin affects the signal recorded over the skin. For the sake of simplicity, tissue

effects such as low pass filtering are neglected in the model. It is not aimed to

create a realistic model in the present study as it is mentioned previously.

Since a sEMG model is indented to generate, calculated potentials in the in-

tracellular level are transformed to the skin level. Thus, action potential of a

fiber that is detected over the surface of the skin is formulated in the model as:

V =
1

2πσr

∑ Pi√
(h2)Ka + (zi − z)2

(2.3)

σr is electric conductivity (S/mm) along fiber radius r, Pi is current value of

the pole i that is calculated using equation 2.2, h is depth of the fiber underneath

the skin, Ka is anisotropy ratio(ratio between conductivities in the longitudinal

and perpendicular directions) that equals to σz/σr, σz and σr are electric con-

ductivities along z and r directions, Zi is distance between electrode location and

the NMJ along fiber length parallel to the skin surface.

2.2.1.6 Motor unit action potential

As it is mentioned previously, a MUAP is the superposition of fiber action po-

tentials which are involved in the electrode detection field. Different number of

fibers are defined and MUAPs that is generated on the surface of the skin are

calculated using the equation 2.3 for each MU. MUAP shape and the amplitude

highly depends on the factors like distance between detection site and origin of

the signal [61], number of fibers and their firing rates and conduction velocity etc.
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These effects are clearly observed during simulation calculations. For instance,

there is an inverse relationship between the duration time of an action poten-

tial and its conduction velocity, as it has been revealed in De Lucas study [67].

Thus, same conduction velocities (cv) are determined for each fiber of a MU but

conduction velocity for each MU is different.

2.2.1.7 Surface EMG signal simulation

After calculating a single MUAP, there were three more steps that should be taken

to achieve the intended model solution. These steps can be listed as: electrode

signal simulation, bipolar recording simulation and final sEMG signal simulation.

Resulted sEMG signal represents the signal which is recorded from one channel.

Movement simulations have been made accordingly by changing the parameters

(e.g. firing rate, number of fibers, and conduction velocity of the fiber) of the

involved fibers for each channel.

A duration time was determined for the signal simulations (20 seconds signals

are generated). MUAPs are generated repeatedly by varying firing rates. Firing

rate of the MUAPs was reduced by two (2) for the following MUAPs that will

be involved into the signal that is recorded from one electrode. This process

simply constitutes MUAP train (MUAPT) in the predetermined time interval.

Number of occurrences of one MUAP in the MUAPT varies according to the firing

rate, electrode-source distance and time interval. Additionally, electrode location

values of the fibers are increased incrementally to simulate action potentials move

in time (generating times of the single fiber action potentials differ), simply to

generate MUAPTs. Consequently, linear summation of the MUAPTs constitutes

the sEMG signal which is recorded from one of the electrodes in the bipolar

electrode pair [52].

Only difference between the bipolar electrode signals is having different za

(electrode position) values, all the other parameters are exactly same for each

sEMGs (these are sEMG1 and sEMG2 signals as represented in Figure 2.1).

Two different electrode locations were determined and the distance between the
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electrode pairs was 2 cm approximately and same for all movement simulations.

It can be considered as second electrode recordings are different representation

of the first electrode signals shifted in time. However they are not exactly same,

due to different initial electrode locations resultant signal vary in time (differ in

shape and amplitude).

To simulate different movements, the parameters like number of MUs, number

of fibers of each MU and the conduction velocities of the fibers for each MU are

adjusted differently for each channel. These parameter adjustments enable the

simulation of distinct movement signals in terms of shape and amplitude for each

channel signals. [68]

2.2.1.8 Assumptions of the model

The action potential of a fiber is generated as a tripole. It is assumed that fibers

of the motor units are distributed parallel to the skin. All the fibers are assumed

to be in the same depth and have same length and radius. The diameters of the

fibers are neglected. Fibers are considered as line sources. The difference between

firing rate of the MUs and the distance between two bipolar electrodes were same

for each generated sEMG signal. Electrode spatial extent is restricted only to

parallel direction to the skin, along to fiber length. Tissue effect between the

electrode and the source is neglected. Different conduction velocities, number of

MUs and fibers of each MU are determined to constitute different sEMG signals

in terms of shape and amplitude.

2.2.2 Distorted Signal Simulation

Amplitudes of the simulated signals are changed gradually (increased and de-

creased) to create distortions like in the conditions sweating or misconduct issues

between skin and the electrode. Loose conduct between the skin and the elec-

trodes may lead to decrease and sweating may lead to increase on the amplitude

of the EMG signals. Classification and adaptation performances are investigated
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during variations of the signal.

Different amount of distortion levels have been applied to all of the previously

simulated movement signals. Distorted signal patterns are created for each simu-

lated movement signal. Distortion only applied to the signals of the one channel

of the channel pair.

Distorted signals are simulated as amplitude changes on the signals using the

equation[69]:

y = (1± d)y (2.4)

where y is the signal which is intended to distort, d is the rate of distortion.

− and + signs are for the adjustment of the distortion level. − decrease and +

increase the amplitude of the signal y.

2.2.3 Neural Network Adaptation

General architecture of the system is shown in Figure 2.3. An adaptive neural

network classification algorithm is developed to adapt to the variations in the

signals. Training and test data sets are constructed by extracting features from

the simulated signals. A simple three layered feed-forward neural network used

as the main classifier that calculate initial outputs. Neural network that is used

in the present study is consisted of 8 input, 4 hidden, 4 output layer neurons.

Structure of the network is illustrated in Figure 2.2.

Calculated outputs are not accepted as classifier decisions directly. An eval-

uative confidence metric, entropy, is used to control classifier outputs. Entropy

can be calculated using Equation 3.1(in Chapter 3). Interpretations that made

by entropy calculation basically based on the argument; high entropy means low

confidence and low entropy means high confidence. Entropy thresholds are deter-

mined according to this argument. It is crucial to define a suitable confident zone
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Figure 2.2: Structure of the neural network.

where adaptation can be applicable. It is assumed that entropy increases but no

wrong classifications occur in these threshold intervals. Thresholds are defined

empirically after several evaluations made on the classification results. Simulta-

neous classifier decision results and entropy calculation plots made easier to spot

increased but correctly classified entropy values. Thus, entropy value of the net-

work output is controlled immediately to check the difference between calculated

entropy and the threshold intervals. If the calculated entropy value fits in the

threshold intervals classifier is retrained by this recent input samples, otherwise

classifier makes the decision without any retraining process (retraining was held

by applying back propagation online learning and only the last sample used to

update network weights that can be used for the next classifications). This is the

first version of our adaptive neural network, details about the classifier will be

given and expanded version of the classifier will be introduced in the next chapter

(Chapter 3).
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Figure 2.3: Structure of the adaptive neural network.

26



2.3 Results

2.3.1 Simulated Signals

20 seconds signals are simulated for each movement. Constant parameters were

determined as: A = 96mV is action potential, B = 90mV resting state potential

and radial conductivity; σr =0,330 [60].

2.3.1.1 Wrist extension movement simulation

Wrist extension movement signal simulation is plotted in Figure 2.4.
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Figure 2.4: Simulated signal of movement wrist extension.

Parameters of the simulated signal wrist extension:

Channel 1:

Conduction velocities of each MU respectively = [6 6.5 7 7 7.2 7.5 7.5 8 8 8 8]m/s.

Number of fiber of each MU = 10.

Channel 2:

Conduction velocities of each MU respectively = [4 4.4 5 5 5.5 5.5]m/s. Number

of fiber of each MU = 5.
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2.3.1.2 Wrist flexion movement simulation

Wrist flexion movement signal simulation is plotted in Figure 2.5.
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Figure 2.5: Simulated signal of movement wrist flexion.

Parameters of the simulated signal wrist flexion:

Channel 1:

Conduction velocities of each MU respectively = [4 4 4 5 5 5.5]m/s. Number of

fiber of each MU = 5.

Channel 2:

Conduction velocities of each MU respectively = [6.5 6.5 6.5 6.5 7 7 7 7.2 8 8

8]m/s. Number of fiber of each MU = 10.

2.3.1.3 Hand close movement simulation

Hand close movement signal simulation is plotted in Figure 2.6.

Parameters of the simulated signal hand close:

Channel 1:

Conduction velocities of each MU respectively = [4 4 5 5 5.5 6 7 7.2 7.5 8 8 8]m/s.

Number of fiber of each MU = 10.

Channel 2:
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Figure 2.6: Simulated signal of movement hand close.

Conduction velocities of each MU respectively = [4 4.4 5 5 5.5 5.5 6.5 6.5 7 8

8]m/s. Number of fiber of each MU = 10.

2.3.1.4 Hand open movement simulation

Hand open movement signal simulation is plotted in Figure 2.7.
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Figure 2.7: Simulated signal of movement hand open.

Parameters of the simulated signal hand open:

Channel 1:
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Conduction velocities of each MU respectively = [4 4 5 5 6 7 7 7.2 7.5 8 8]m/s.

Number of fiber of each MU = 10.

Channel 2:

Conduction velocities of each MU respectively = [4 5 5 5.5 5.5 6 6]m/s. Number

of fiber of each MU = 7.

2.3.2 Adaptation Results for Distorted Signals

2.3.2.1 Distorted signals

First 10 seconds of the simulated 20-seconds sEMG signal is distorted in differ-

ent levels and appended consecutively to create three different distorted signal

arrangements (DT1-3). 10 seconds of the signal corresponds to 200 samples of

the simulated patterns. Distortion is applied only on the signals corresponding

to the first channel in each movement.

Three different signal arrangements (DT1-3) are made for each movement sig-

nal pattern. Distortion arrangement types are described below for each differently

arranged signal patterns:

Distortion type 1 (DT1): Starting with 10 seconds of the simulated undis-

torted signal patterns, 5% distortion rate is applied to the same undistorted

signal and appended at end of the undistorted signal. This process is continued

incrementing distortion rate by 5% until distortion rate reaches 50%. After that,

distortion rate that is applied on the simulated signal start to decrease by 5%

until reaching 0% distortion rate -it will be the same undistorted signal that was

given to the neural network at the beginning. The same undistorted 10 seconds

signal patterns are appended to at the end of the signal arrangement (DT1) three

times. As an instance, distorted and rearranged wrist flexion movement signal

patterns appended according to the DT1 distortion type is shown in Figure 2.8.

Distortion type 2 (DT2): 10 seconds undistorted simulated signal patterns

are located at the beginning of the signal arrangement. Distortion rate that the
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Figure 2.8: Distorted wrist flexion movement signal which is arranged by DT1

same 10 seconds undistorted signal exposed starts to increase by 5%. Increasing

distortion rate is continued until distortion rate reaches 50%. It is the maximum

level of the distortion, after that distortion rate start to decrease gradually by

5% until reaching 0% distortion rate. Each distorted signal is appended next

to each other. 10 seconds undistorted signal patterns are added at the end of

the distorted signals several times (i.e. 20 times). As an instance, distorted and

rearranged wrist flexion movement signal patterns appended according to the

DT2 distortion type is shown in Figure 2.9.
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Figure 2.9: Distorted wrist flexion movement signal which is arranged by DT2

Distortion type 3 (DT3): Undistorted 10 seconds signals are appended at
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the beginning of the signal arrangement 20 times. Afterwards, the undistorted

signals start to distort by 5% distortion rate. Distortion rate is incrementally

increased by 5% until reaching 50% distortion rate like the other distortion types

(DT1 and DT2). Distortion rate of the signals exposed gradually decreased by

5% until 5% distortion rate is reached. As an instance, distorted and rearranged

wrist flexion signal movement signal patterns appended according to the DT3

distortion type is shown in Figure 2.10.

Figure 2.10: Distorted wrist flexion movement signal which is arranged by DT3

2.3.2.2 Adaptive neural network

Neural network that is used in the present study is consisted from 8 input, 4

hidden and 4 output layer neurons as it is mentioned in the methods section.

Learning rate that is used during training of the classifier to obtain initial weights

and during adaptation process was same (i.e. 0.15). Training of the constructed

neural network is continued until all movement patterns are correctly classified

(after 16374 epochs training stopped). Training and test data are constructed

by extracting root mean square (RMS) and wavelength (WL) features separately

from all time windows of simulated signals. Movement data patterns (extracted

feature vectors from time windows) are fed to the neural network in the following

order: wrist flexion, hand close, wrist extension and hand open. Upper entropy

threshold is 0.05 and lower threshold is 0.01. Adaptation is applied when the

entropy that is calculated from the decision outputs is in this threshold interval

as shown in Figure 2.3.
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Classification accuracy results for each distortion type (DT1-DT3) and for

each movement are shown in Figures 2.11, 2.12, 2.13, 2.14. The results of the

movement signal patterns are represented in the same order as the movement

patterns are fed to the neural network. Every 10 seconds, the signal classification

accuracy is calculated using Equation 3.3 and shown below in graphs.

Results for DT1:

The results for DT1 signal classification are shown in the graphs for each

movement with the same order as the movement patterns were fed to the classifier.

Figures 2.11, 2.12, 2.13, 2.14 present wrist flexion, hand close, wrist extension and

hand open movements classification accuracy results, respectively.

Results for DT2:

The results for DT2 signal classification are shown in the graphs for each

movement with the same order as the movement patterns were fed to the classifier.

Figure 2.15 presents wrist flexion results, 2.16 presents hand close results, 2.17

presents wrist extension results, 2.18 presents hand open results, respectively.

Results for DT3:

The results for DT3 signal classification are shown in the graphs for each

movement with the same order as the movement patterns were fed to the classifier.

Figure 2.19 presents wrist flexion results, 2.20 presents hand close results, 2.21

presents wrist extension results, 2.22 presents hand open results, respectively.
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Figure 2.11: The classification accuracy results for type 1 distorted (DT1) for

wrist flexion movement. The classification results where no adaptation is applied

are shown in graphs A, B and C. A) The output class labels of the network for

each data point(sample). Class labels are represented by numbers 1 to 4 for wrist

flexion, wrist extension, hand close, hand open movements, respectively. Green

stars and red stars represent true and wrong classified samples by the classifier,

respectively. B) Entropy after each decision of the classifier. C) Classification

accuracy calculations shown by black stars for every 200 samples.

Classification results where adaptation is applied are shown in graphs D & E. D)

Entropy after each classification (adaptation is applied during classification). E)

Classification accuracy calculations for every 200 samples shown by black stars.

The samples where the adaptation applied marked by blue vertical triangles.

2.4 Discussion

Distortion Type 1(DT1) Results:
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Wrist flexion movement patterns are the first patterns that are fed to the

network. The classification accuracy results for type 1 distorted signals for the

movement are shown in Figure 2.11. The highest distortion level corresponds

to the samples where the highest entropy values are observed (Figure 2.11B).

Meanwhile, the patterns where the lowest accuracies (Figure 2.11C) are observed

have the highest entropy value (Figure 2.11B). The increase and the decrease

in the entropy trends can be clearly seen from Figure 2.11B. When the entropy

graphs are compared for the cases in which adaptation is applied (Figure 2.11D)

and not applied (Figure 2.11B), it can be said that after applying adaptation,

entropy is substantially decreased as expected. As a result of decrease in the

entropy, increases are observed in the classification accuracies (Figure 2.11D).

No decrease is observed in the classification accuracy for the next upcoming

patterns (hand close movement patterns), when the accuracy results of the first

samples of the movement in the cases where adaptation is applied and not applied

are compared which are shown in Figure 2.12C and E. It shows that previously

applied adaptations (in the wrist flexion movement patterns) did not lead to any

difference on the classification accuracy. Nevertheless, adaptation points are seen

at the first samples of the movement due to the increased entropy. The number of

adaptation points are gradually increased for the next samples of the movement

as a result of the gradual distortion increases. When adaptation is not applied,

accuracy starts to decrease after 1000 samples, it corresponds to the samples

where 25% distortion rate is applied, decrease continues until reaching 50% dis-

tortion rate, lowest accuracy is observed as a result of 50% distortion in Figure

2.12B. In addition, in the classification accuracy results where the adaptation

applied (Figure 2.12E), starting from the samples where classification accuracy

start to decrease (25% distortion rate) in the case of no adaptation applied (Fig-

ure 2.12C), it is observed that adaptation algorithm starts to recover distortion

effects on the accuracy. It is valid even for the cases where highest distortion

rate is reached, significant enhancement on the accuracy can be seen in Figure

2.12E when it is compared with the accuracy results where no adaptation applied

(Figure 2.12C). Since it is the second time of the algorithm comes across with
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Figure 2.12: The classification accuracy results for type 1 distorted (DT1) for

hand close movement. The classification results where no adaptation is applied

are shown in graphs A, B and C. A) The output class labels of the network for

each data point(sample). Class labels are represented by numbers 1 to 4 for wrist

flexion, wrist extension, hand close, hand open movements, respectively. Green

stars and red stars represent true and wrong classified samples by the classifier,

respectively. B) Entropy after each decision of the classifier. C) Classification

accuracy calculations shown by black stars for every 200 samples.

Classification results where adaptation is applied are shown in graphs D & E. D)

Entropy after each classification (adaptation is applied during classification). E)

Classification accuracy calculations for every 200 samples shown by black stars.

The samples where the adaptation applied marked by blue vertical triangles.

the same distorted patterns, faster recovery is observed than the previous

distorted patterns recovery in the accuracy results where the adaptation applied

for the next upcoming patterns (Figure 2.12E). The number of samples where the

adaptation applied start to decrease after 2600 samples. It can be explained by

those samples does not require any further adaptation due to 100% classification
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accuracy is reached and entropy is in the intended level (smaller than 0.01) for

those samples.

In Figure 2.13, wrist extension movement classification accuracy results are

shown. It can be said that, wrist extension movement did not affected by the

distortion like the other movement patterns affected. In the classification accu-

racy results where the adaptation is not applied (Figure 2.13C), 100% accuracy is

observed for all the sample groups (every 200 samples), there is no any decrease

are observed in the accuracy due to the distortion. When accuracy results in the

cases adaptation is applied and not applied are compared, decrease in the accu-

racy of the first sample group of the movement where adaptation is applied can

be related with the previous class adaptations (hand close movement samples).

Changes in the weights may be not suitable for the new class patterns/samples

(wrist extension) and algorithm may not adapt this rapid changes and cause to

decrease the classification accuracy. However, it is seen in the graph that it does

not take too long (Figure 2.13E). After 200 samples algorithm recover the classifi-

cation accuracy and reach the same classification accuracy values (Figure 2.13E)

with the accuracy results where no adaptation is applied (Figure 2.13C) quickly.

In the results of the last inputs of the network (hand open movement patterns),

no decreases are observed in the accuracies of the first sample groups of the

movement when the accuracy results in the cases where adaptation is applied and

not applied are compared for graphs are shown in Figure 2.14C and E. Hand open

movement patterns are the patterns which are highly affected by the distortion as

it can be seen from the dramatic decreases in the classification accuracy results

in the case where no adaptation is applied (Figure 2.14C). For example, when

the distortion rate reached 40%, algorithm did not classify any patterns correctly

(0% accuracy). In the case of adaptation is applied, significant increases in the

accuracy are observed when it is compared with the accuracy results where no

adaptation is applied. Especially, when the distortion level start to decreases in

the accuracy results where no adaptation is applied (Figure 2.14C) , high amount

of recovery is observed from 0% (without adaptation) to 100% (with adaptation)

when it is compared with the accuracy where adaptation is applied (Figure 2.14E).

It reveals that the adaptation algorithm has good recovery performance even in
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the high amount of distortion levels.
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Figure 2.13: The classification accuracy results for type 1 distorted (DT1) for

wrist extension movement. The classification results where no adaptation is ap-

plied are shown in graphs A, B and C. A) The output class labels of the network

for each data point(sample). Class labels are represented by numbers 1 to 4 for

wrist flexion, wrist extension, hand close, hand open movements, respectively.

Green stars and red stars represent true and wrong classified samples by the

classifier, respectively. B) Entropy after each decision of the classifier. C) Clas-

sification accuracy calculations shown by black stars for every 200 samples.

Classification results where adaptation is applied are shown in graphs D & E. D)

Entropy after each classification (adaptation is applied during classification). E)

Classification accuracy calculations for every 200 samples shown by black stars.

The samples where the adaptation applied marked by blue vertical triangles.

Distortion Type 2 (DT2) Results:

In the DT2 type of distorted signal arrangement, same patterns that belong to

same class are fed to the network subsequently a couple of times at the end of the
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distorted signal patterns. The reason for this kind of arrangement is to see if the

algorithm can adapt when different class patterns are fed to the network right

after the patterns belonging to the same class. Thus, the patterns belonging

to the same class are fed to the network 20 times at the end of the distorted

signals (once a time corresponds to 200 samples of the class patterns where the

accuracy is calculated). However, no significant amount of decreases are observed

on the classification accuracies at the transition times when new class patterns

(different from the previous class patterns) are fed to the network (for instance,

Figures 2.16E and 2.17E). Also, similar accuracies are observed for the signals

corresponding to distortion type 1 (DT1). It shows that the algorithm has the

ability to prevent the classifier from over training. It may be achieved by choosing

proper entropy thresholds that prevents algorithm from excessive adaptation.

Distortion Type 3 (DT3) Results:

It is observed that changing the order of the distorted patterns in the signal

arrangements do not have any effect on the classification accuracy results. The

classifier can transited among distorted signal patterns without any significant

loss in the accuracy and adapted to the new situations easily.

Consequently, small variations and changes in the signal patterns can be re-

covered by the adaptation algorithm. Even in the cases when the highest amount

of distortion is applied (50%) adaptation performance is still valid. It shows that

adaptation algorithm that is developed in this chapter is capable of adapting new

patterns for different situations. The results based on utilization of simulated

sEMG signals in this chapter reveal that our algorithm can be further applied for

classification of experimental sEMG signal recordings from subjects.
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Figure 2.14: The classification accuracy results for type 1 distorted (DT1) for
hand open movement. The classification results where no adaptation is applied
are shown in graphs A, B and C. A) The output class labels of the network for
each data point(sample). Class labels are represented by numbers 1 to 4 for wrist
flexion, wrist extension, hand close, hand open movements, respectively. Green
stars and red stars represent true and wrong classified samples by the classifier,
respectively. B) Entropy after each decision of the classifier. C) Classification
accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification (adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.15: The classification accuracy results for type 2 distorted (DT2) for
wrist flexion movement. The classification results where no adaptation is applied
are shown in graphs A, B and C. A) The output class labels of the network for
each data point(sample). Class labels are represented by numbers 1 to 4 for wrist
flexion, wrist extension, hand close, hand open movements, respectively. Green
stars and red stars represent true and wrong classified samples by the classifier,
respectively. B) Entropy after each decision of the classifier. C) Classification
accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification (adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.16: The classification accuracy results for type 2 distorted (DT2) for
hand close movement. The classification results where no adaptation is applied
are shown in graphs A, B and C. A) The output class labels of the network for
each data point(sample). Class labels are represented by numbers 1 to 4 for wrist
flexion, wrist extension, hand close, hand open movements, respectively. Green
stars and red stars represent true and wrong classified samples by the classifier,
respectively. B) Entropy after each decision of the classifier. C) Classification
accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification(adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.17: The classification accuracy results for type 2 distorted (DT2) for
wrist extension movement. The classification results where no adaptation is ap-
plied are shown in graphs A, B and C. A) The output class labels of the network
for each data point(sample). Class labels are represented by numbers 1 to 4 for
wrist flexion, wrist extension, hand close, hand open movements, respectively.
Green stars and red stars represent true and wrong classified samples by the
classifier, respectively. B) Entropy after each decision of the classifier. C) Clas-
sification accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification (adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.18: The classification accuracy results for type 2 distorted (DT2) for
hand open movement. The classification results where no adaptation is applied
are shown in graphs A, B and C. A) The output class labels of the network for
each data point(sample). Class labels are represented by numbers 1 to 4 for wrist
flexion, wrist extension, hand close, hand open movements, respectively. Green
stars and red stars represent true and wrong classified samples by the classifier,
respectively. B) Entropy after each decision of the classifier. C) Classification
accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification(adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.19: The classification accuracy results for type 3 distorted (DT3) for
wrist flexion movement. The classification results where no adaptation is applied
are shown in graphs A, B and C. A) The output class labels of the network for
each data point(sample). Class labels are represented by numbers 1 to 4 for wrist
flexion, wrist extension, hand close, hand open movements, respectively. Green
stars and red stars represent true and wrong classified samples by the classifier,
respectively. B) Entropy after each decision of the classifier. C) Classification
accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification (adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.20: The classification accuracy results for type 3 distorted (DT3) for
hand close movement. The classification results where no adaptation is applied
are shown in graphs A, B and C. A) The output class labels of the network for
each data point(sample). Class labels are represented by numbers 1 to 4 for wrist
flexion, wrist extension, hand close, hand open movements, respectively. Green
stars and red stars represent true and wrong classified samples by the classifier,
respectively. B) Entropy after each decision of the classifier. C) Classification
accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification (adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.21: The classification accuracy results for type 3 distorted (DT3) for
wrist extension movement. The classification results where no adaptation is ap-
plied are shown in graphs A, B and C. A) The output class labels of the network
for each data point(sample). Class labels are represented by numbers 1 to 4 for
wrist flexion, wrist extension, hand close, hand open movements, respectively.
Green stars and red stars represent true and wrong classified samples by the
classifier, respectively. B) Entropy after each decision of the classifier. C) Clas-
sification accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification (adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Figure 2.22: The classification accuracy results for type 3 distorted (DT3) for
hand open movement. The classification results where no adaptation is applied
are shown in graphs A, B and C. A) The output class labels of the network for
each data point(sample). Class labels are represented by numbers 1 to 4 for wrist
flexion, wrist extension, hand close, hand open movements, respectively. Green
stars and red stars represent true and wrong classified samples by the classifier,
respectively. B) Entropy after each decision of the classifier. C) Classification
accuracy calculations shown by black stars for every 200 samples.
Classification results where adaptation is applied are shown in graphs D & E. D)
Entropy after each classification (adaptation is applied during classification). E)
Classification accuracy calculations for every 200 samples shown by black stars.
The samples where the adaptation applied marked by blue vertical triangles.
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Chapter 3

NEURAL NETWORK-BASED

ADAPTIVE sEMG SIGNAL

CLASSIFICATION

3.1 Introduction

Two types of adaptation have been reported in the literature: user and algo-

rithm based adaptation. Studies that have been based on the user adaptation

mostly concentrate on the user training strategies to improve the user prosthetic

control skills. They mostly depend on the adaptation abilities of the users to

the prosthetic system. In these types of adaptation schemes, the user learns the

classifier dynamics and performs movements or muscle contractions that can be

distinguishable by the classifier [70]; consequently, performance improvements are

observed. In the literature, the adaptation of the user to the system has been

investigated. For instance, He et al. reported error rates over 11 consecutive

days during prosthetic use [12]. After 3 days, a decrease has been observed in the

error rates. Study demonstrates the learning/adaptation ability of the user with

decrease error rates over days.
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It can be said that user adaptation impacts on the system performance are ob-

served inevitably in terms of performance improvements. However, self recovery

mechanisms still required to ensure high classifier performance over time. Pat-

tern recognition (PR) algorithms offer great performances, high accuracies have

been reported in the literature [24],[18]. However, conventional pattern recogni-

tion algorithms have troubles in adaptation to the changes on the signal patterns

over time. Especially for the supervised classifiers, they use parameters that are

calculated at the initial training phase and classification accuracy of the classifier

depends on these parameters. High classification accuracy that obtained at the

beginning of the classification trials cannot be sustained due to changes on the

signal patterns and the fixed parameters of the classifiers [12], [71]. Long train-

ing sessions are required to have better generalization ability of the classifier.

Nevertheless, it is almost impossible to include all the possible conditions to the

training data.

This problem is also valid for the neural network classifiers. The weights of

the networks are the parameters of the neural network classifier. Well established

weights enable to classify unseen test samples (samples that are different from the

samples which are used in the training session). Conventionally, weights of the

network are calculated at the end of a training session and does not modify during

classification sessions. However, performance degradations may be occurred in

terms of classification rates over time due to the changes in the recorded signal

patterns.

Adaptive classifiers have been developed to solve this performance degradation

problem. These classifiers are capable to accommodate unpredictable variations

in the EMG signals. They can simply improve the classifier performance and

reduce the user effort during prosthetic use. When system performance starts

to deteriorate, parameters of the classifier updated. This approach aids to track

changes in the feature space and significantly recovers the performance degrada-

tions. Training strategies have been developed to update classifier parameters

that can be used during classifications. Therefore, robust and reliable unsuper-

vised approaches are on demand.
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In the present study, we aimed to develop an unsupervised adaptation tech-

nique that is capable to detect adaptation required cases without any need for

supervision by the user or someone else. Also an entropy history buffer property

is included to the technique to avoid overtraining and improve the robustness of

the adaptive classifier.

In this chapter, the details about the data acquisition settings are given first.

Afterwards, the developed adaptive neural network classifier is introduced. Clas-

sifier, neural network and the other system components that constitute the adap-

tive algorithm are explained in different sections. The classification results for

experimental sEMG data from 2 subjects are presented. The results are discussed

and main contributions of the developed classifier are presented at the end of the

chapter.

3.2 Methods

3.2.1 Data Acquisition

3.2.1.1 Experimental setup

Data acquisition experimental setup consists of Myo armband, a Bluetooth

adapter and PC(Intel Core i5, 3.20GHz CPU, x64 bit windows 8 pro opearat-

ing system and 4GB RAM).

Myo armband is a wearable gesture control device released by Thalmic Labs

Inc. in 2001. It has eight surface EMG electrode pairs and inertial measurement

unit (IMU) containing gyroscope, accelerometer and a magnetometer. Only the

EMG data stream is used in the study. The sampling rate of the device is 200

Hz. The device sends the digitized EMG signals to the PC using Bluetooth

technology.
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There are several advantages of using Myo armband in data acquisition ex-

periments. It is like a bracelet which has elastic material and can easily be worn

to the forearm. On the other hand, combination of the design of the electrode

and stainless steel dry electrodes that is located on the device provides good skin

electrode contact and enables recording high quality and reliable signals. When it

is fit to the arm of the user properly, no further preparation required before using

the device. Since several preparation steps (removing hair, cleaning skin etc.)

are need to start recording for the conventional data acquisition configurations,

this device superior to other conventional methods due to this property. Conse-

quently, Myo armband eases collecting EMG data from forearm while performing

movement tasks.

3.2.1.2 User interface

A MATLAB interface was implemented to manage subject, experimenter and the

device interactions during data acquisition processes. Experimenter guided the

subject about the execution time intervals of the forearm movements by tracking

the command flow in the user interface. MATLAB packages (developed by Mark

Tomaszewski), which provides the control of EMG and the software interactions

to collect EMG data recordings from the EMG electrodes, and Thalmic labs

released software development kit (SDK) files of the Myo armband are utilized

during the implementation of the interface. The graphical user interface sim-

ply displays the name of the movements that are required to initiate instantly.

Movement execution time displayed with a countdown and also for the rest states

between the movements. In resting state a cue shown to inform the user for the

next movement. The commands that show the movement names in the movement

set are periodically displayed in the interface until intended experiment time is

achieved.
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3.2.1.3 Experimental environment

Myo armband was on the same location on the arm of the subject during a data

recording session. Subject was on a comfortable chair in a neutral sitting posture.

The posture of the body, the angles of the joints, the location and the direction of

the arm were approximately same during the experiments. Elbow angle (between

forearm and the upper arm) was 90 degree and it was 0 degree between upper

arm and the body of the subject approximately. Forearm was positioned on a

soft rounded pad (object) touching the forearm at the wrist, considering same

direction of the palm for each experiment. Rest of the forearm was not reclined

to anywhere, only upper arm has support from the back side of the chair. So,

no pressure applied onto Myo armband while performing movements. Pressure

on armband may change the electrode locations and the amount of area that the

electrode contacts the skin. In this case, it is not possible to ensure same electrode

configurations due to possible electrode shifts. It can be resulted in fluctuations

on the acquired signals. Possible pressure to the Myo armband while it is on the

arm may lead significant impedance change on the skin-electrode interface, so we

avoided such disturbances on the position of the Myo armband and the pressure

on its electrodes.

3.2.2 Data Acquisition Sessions

Performing the movement set once a time will be called “trial” and multiple

repetition of movement set for a specified time interval will be called a “session”

of data acquisition experiments in this and the following sections.

3.2.2.1 Subjects

Two able-bodied subjects are participated in data acquisition sessions of the

study. SEMG signals were obtained from 2 female subjects to be used in the

following classification experiments. Subjects had no known neurological and
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physiological muscle related disorders.

3.2.2.2 Movement set

Five different movements are performed in predetermined order for each trial.

Each subject is informed by the experimenter about motion beginning and end

times by using the developed interface during data acquisition sessions. Between-

movement transition parts are removed from the acquired raw signals to obtain

clear and distinct data patterns for each class corresponding to movement types.

Movements that are executed by subjects was in the order: hand close (HC) (full

grasp), hand open(HO), hand grasp(HG)(half grasp), wrist flexion(WF), wrist

extension(WE) respectively as illustrated in Figure 3.1.

  
Hand Close Hand Open Hand Grasp Wrist Flexion Wrist Extension 

Figure 3.1: The movement set.

3.2.2.3 The details of the sessions

Before starting a session, armband is placed on the dominant forearm of the

participant to the thickest muscle bundle; approximately 5 cm below elbow cor-

responds to a region where superficial flexor and extensor muscles locate un-

derneath. Each movement contractions are held 5-6 seconds and time interval

between the movements is 10 seconds to prevent muscle from fatigue and unin-

tended contractions (e.g. twitches). Muscles are in rest in resting state intervals.

Subject specific voluntary contractions are executed. So, there is no restricted

level of force need to be applied to perform the movements. Trials are repeated
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30 times for each subject and there is 15 seconds between the trials. Two sessions

are conducted for each participant. Total time to conduct a session for a subject

is taken at around 50 minutes. One of the data acquisition session is illustrated

in Figure 3.2.
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Figure 3.2: The data acquisition session.

3.2.3 Adaptive Classifier

The algorithm of the developed adaptive classifier based on a neural network is

shown in Figure 3.3.

sEMG signals are separated into the time windows and the features are ex-

tracted from each window. The features are the sEMG signal samples that will

be fed to the network. When a new sEMG data sample is arrived to the net-

work, network process the sample and outputs the probability calculations for

each class. The entropy is calculated utilizing the network outputs. The entropy

values are stored in a buffer; last calculated entropy value is located at the end

of the buffer. The buffer size determines the memory size of the system for the

latest classification. The buffer is called “entropy history buffer” in this study.

The entropy history buffer is checked after every network output. If the entropy

history buffer is not full, current sample are directly classified according to the

neural probability outputs. Otherwise, if the buffer size is full, all entropy val-

ues in the buffer are checked whether they fall into the predetermined entropy
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threshold interval or not. If all the entropy values are under the predetermined

threshold, adaptation process is applied. The network weights are updated with

the last sample by utilizing back propagation algorithm. On the other hand, if

one or more entropy value exceeds the entropy threshold in the full sized buffer,

the entropy history buffer is cleared and the entropy values are started to store

for the next samples. When the sample classification process is completed, pros-

thetic may take action according to the classifier decision. The “motion” step is

not conducted in this study, it is included to the figure only to show next possible

step in real time prosthetic use.

 

New sEMG 

Data Sample 

Classify 
Are All Entropy 

Values in Buffer 

< 0.1? 

Motion 

No 

Calculate Entropy 

Yes 

Adaptation / Train with 

Last Sample 

Store Entropy  

(FIFO Buffer) 

Is Entropy 

History 

Buffer Full? 

Clear Entropy 

History Buffer 

Yes 

No 

Neural Network 

Outputs 

Figure 3.3: Flowchart of the adaptive neural network algorithm.
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3.2.3.1 The classifier: neural network

A three-layer feed-forward neural network is used as a classifier in this study.

Network inputs are features (root mean square (RMS) and wavelength (WL)) that

are extracted from moving 200ms length and 150ms overlapping time windows.

Time window length is an important parameter for the classification decisions.

It should not be too long to prevent the system from late decisions. On the

other hand, it should not be too short to avoid misrepresentation of the signal

patterns. In this sense, the optimal window length is determined according to

previous studies [72].

Feature selection is done empirically comparing the classifier performance

among time domain features. As it is indicated in the study, comparison among

classification results have revealed wavelength (WL) feature superiority to other

time domain features such as Willison amplitude, mean absolute value, variance

etc. [14].

The data provided from all 8 channels of the Myo armband is processed in

this study. Two features from each channel correspond to 16 input neurons for

the network. Sigmoid functions are used at the 6 hidden neurons as activation

function. Softmax function is used at the output layer which consists of 5 neurons.

Trade off between complexity and the classification accuracy is considered to

determine optimal network structure. Learning rate is the other parameter of

the network and determined empirically too. The network structure is illustrated

in Figure 3.4.

Softmax function returns output values which are the posterior probabilities

of each target class. All the output values fall in a range between 0 and 1 and

the sum of them equals 1. It is the main advantage of the softmax function and

helps to make decisions. The output neuron which has the highest value also has

the highest probability of belonging to a particular target class.

57



 

.

.

. 

. 

.

.

. 

. 

 

Input 

Layer 

Hidden 

Layer 

Output 

Layer 

Sigmoid 

Function 

= 
 

      
 

Neuron # 

      #1 

#2 

#3 

#4 

. 

. 

. 

 

#8 

. 

. 

. 

 

. 

 

#14 

#15 

#16 

Softmax 

Function 

= 
  

     
 

 

Figure 3.4: The structure of the neural network.

Back propagation algorithm is the training algorithm of the network. It is used

in the initial training phase to calculate the network weights. After completing

the training phase, test data classification experiments are conducted. During the

classification phase, back propagation is also enabled to update network weights

if the adaptation required conditions are met. Since the target label are not

known during test data classifications, the network is utilized from its own class

decisions to set target label during the network weights updates. In other words,

labeled samples by the classifier are used to retrain the network and weights are

updated accordingly. Thus, an unsupervised adaptation process is applied.

3.2.3.2 Adaptation using “entropy”

In the unsupervised adaptation schemes, important issues such as when to adapt

and how to adapt should be considered as it is mentioned in [31] to obtain a
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reliable and efficient way of adaptation. In order to develop a reliable adaptive

scheme, adaptive classifier dynamics are constructed with these parameters taken

into consideration:

• the frequency of the adaptation,

• a confidence metric to prevent the unsupervised classifier from adapting

according to the previous unreliable classification results,

• adaptation size to prevent the unsupervised classifier from overfitting

• disturbing the convergence properties of the classifier.

Entropy is our confidence metric that controls the network outputs and de-

cides when to update the network weights. High entropy means low confidence

for the particular classifier decision. Conversely, low entropy means high confi-

dence. Since the cases in which adaptation is required is detected by the entropy

threshold, this threshold should be well defined to prevent the system from the

degradations in the classification accuracy. Low entropy threshold may lead to no

improvement in the classification accuracy (only adaptation will be in the most

confident interval, this may not make any change in the overall classification ac-

curacy) and too high entropy threshold may increase the risk of come across non

reliable classifier output (may cause updating the network weights using wrong

labeled samples). Therefore, entropy threshold is determined to 0.1 after several

empirical evaluations. The entropy also determines the frequency of the adap-

tation. There is neither periodical nor incremental adaptation. The algorithm

detects the time points which an adaptation is required.

Since there is no batch learning applied during the network updates in our

design, adaptation size becomes a more important parameter in the algorithm.

Learning rate is a critical parameter to adjust adaptation size of the unsuper-

vised neural network classifier. Network updates its weights using only the latest

network inputs by online back propagation update rule and the learning rate is

used for this rule. Therefore, an optimal value is determined for learning rate
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which is not too big to update the weights to the same class instantly; such a

fast adaptation to a single class can lead to decrease in the overall classification

accuracy of the neural network. On the other hand, learning rate was not too

small so that insignificant improvements on the adaptation performance may be

avoided.

Entropy is calculated after each output of the network and changes in the en-

tropy values are tracked by the adaptation algorithm. If the entropy of the output

of the classifier is smaller than a predetermined threshold (0.1), adaptation pro-

cess is applied since the result of the classification is assumed to be reliable. The

entropy of a classification output for a network input is expressed as:

E(t) = −
C∑
c=1

netOutc(t) ln(netOutc(t)) (3.1)

where C is total number of classes, netOut is the output of each output neuron

of the network which corresponds to the posterior probabilities of the sample t,

to belong to a class.

An entropy history buffer is added to the adaptation algorithm to improve

performance and robustness of the system. In the classification phase, after each

entropy calculation using Equation 3.1, entropy values are stored in a buffer which

is called “entropy history buffer” . When the capacity of the buffer is full, entropy

value of next upcoming input is calculated again using Equation 3.1 and if it is

below a threshold (0.1), adaptation process is applied. The size of the “entropy

history buffer” is empirically determined as 10. After every adaptation process

the buffer is cleared and started to stored again the entropies of the upcoming

classifications.

3.3 Results

Training and test data sets are constructed from the collected raw EMG signals

for each session of the each subject. The signals are divided into time windows

and the features are extracted from each sliding time window. The resultant
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samples are labeled for each class to obtain separate movement patterns. First

trial’s data in a session are used as training data, the rest (29 of them) are used

as test data. Training and test phases of each session are conducted separately.

The construction of the test and training data sets from a session data is shown

in Figure 3.5.
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Figure 3.5: The construction of training and test data set from a session.

The network weights are randomly initialized in an interval between 0.01 and

-0.01 as it is recommended in [73] (cited from book [73]: “initial value of weights

large in magnitude, weights sum may also be large and may saturate the sigmoid,

so initial weights should be chosen close to zero”) for the initial training phase.

The learning rate is determined as 0.05 to be used for all the training and test

phases. The stopping criteria of the training phase was reaching 100% classifi-

cation accuracy in the training (0 classification error) and obtaining an average

entropy over classification outputs of an epoch which is smaller than 0.01. The

classification accuracy and the average entropy is calculated at the end of ev-

ery epoch by feeding all the training data samples into the network again and

classifying with last updated weights.

At end of the network training, the calculated weights are stored to be used in

the test phases. The training phase is repeated 10 times with randomly initiated

weights. Consequently, 10 different weights are obtained at the end of conducted

training phases for each session data of each subject. All the parameters are same

(e.g. learning rate, entropy history buffer size and entropy threshold) for all the
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experiments. Classification phases are conducted 10 times with the previously

trained and calculated 10 weights for each session data of the each subject. Clas-

sifier performance is reported by averaging the recognition accuracies of all (10)

test phases of each session. The classification accuracy is a widely used metric to

evaluate classification performance of the classifiers and it is calculated as:

ClassificationAccuracy =
Number of Correctly Classified Samples

Number of All Classified Samples

3.3.1 Entropy History Buffer Size Comparison

In order to demonstrate effect of entropy history buffer size on adaptation perfor-

mance, classification results are compared when entropy history buffer size equals

1 (EHB1) and equals 10 (EHB10). Same initial weights are used for both ex-

periments. The mean accuracy results of the experiments are presented in Table

3.1 for EHB1 (on the left) and for EHB10 (on the right) respectively. The mean

accuracy results are reported for three different conditions:

• Condition 1, in the case of when no adaptation is applied. We call them

“WoA condition”.

• Condition 2, in which adaptation is applied and the weights are updated

using the algorithm shown in Figure 3.3. We call them “WA condition”.

• Condition 3, in which the weights are updated using the algorithm shown

in Figure 3.3 but reset to the value at the beginning of each movement

type. In other words, the adaptation is applied during a movement type

is executed but realization of the adaptation is discarded before starting

the execution of the next movement type. We applied this test case to

show whether the adaptation algorithm improves the classification accu-

racy during executing any movement type. We call this condition “WAin

condition”.
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In Table 3.1, the accuracy results are presented for 29 consecutive trials for each

three different conditions (WoA, WA, WAin) (In this table, trial numbers repre-

sent each trial classification accuracy results which are calculated using Equation

3.3). WA and WoA accuracy results are compared. Improvements in the WA

results are highlighted with bold fonts and decreased examples are represented

with bold and underlined fonts. EHB10 is superior to EHB1 according to these

results. Because, when the results for condition WoA and WA are compared,

decreases in the classification accuracy is more than the improvements. For in-

stance, an improvement of 2% is observed in the accuracy of trial 13 of the EHB1

experiment but a decrease is observed in the next trial (trial 14) with 1% in the

overall accuracy when the adaptation is applied (WA condition). This decrease

can be explained with over fitting. On the other hand improvements are mostly

observed in the EHB10 results and it is valid for WAin condition too; WA val-

ues are higher than WAin values in most of the trials. On the other hand, in

comparison with EHB1 results more improvements are observed when the en-

tropy history buffer size is 10 (EHB10). These results indicate the requirement

of entropy history approach. Therefore, using entropy history buffer in the algo-

rithm provides controllability when applying the adaptation and enables to avoid

applying unreliable unsupervised adaptations.
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Entropy History Size=1

Classification Accuracy (%)

Trial Number WoA WAin WA

1 96.35 96.08 96.5

2 98.8 98.73 98.88

3 95.09 94.0 94.52

4 95.07 94.96 95.16

5 95.95 95.7 96.18

6 91.25 89.87 90.77

7 92.27 90.5 90.88

8 92.31 92.41 93.26

9 93.98 94.5 94.91

10 93.04 94.47 94.99

11 94.44 95.29 96.72

12 90.19 91.27 92.91

13 91.93 92.87 93.28

14 97.22 96.28 96.33

15 95.59 94.06 94.54

16 94.98 93.77 94.16

17 95.49 94.72 95.24

18 94.73 94.59 94.91

19 93.05 93.42 93.83

20 94.58 95.36 95.72

21 96.44 95.56 95.81

22 93.81 94.04 94.44

23 90.47 91.45 91.84

24 94.67 95.75 96.14

25 94.38 94.5 94.88

26 94.98 93.37 93.66

27 94.52 93.91 94.54

28 93.81 91.84 92.21

29 90.65 88.74 89.91

Mean 94.14 93.86 94.38

Entropy History Size=10

Classification Accuracy (%)

Trial Number WoA WAin WA

1 96.35 96.35 96.38

2 98.8 98.77 98.76

3 95.09 95.04 95.05

4 95.07 95.05 95.08

5 95.95 95.84 95.95

6 91.25 91.37 91.42

7 92.27 92.27 92.31

8 92.31 92.45 92.49

9 93.98 94.07 94.14

10 93.04 93.36 93.51

11 94.44 94.66 94.69

12 90.19 90.61 90.65

13 91.93 92.29 92.35

14 97.22 97.35 97.35

15 95.59 95.6 95.64

16 94.98 95.0 95.1

17 95.49 95.91 96.01

18 94.73 95.39 95.52

19 93.05 94.3 94.36

20 94.58 95.38 95.45

21 96.44 96.78 96.79

22 93.81 94.39 94.51

23 90.47 91.86 91.88

24 94.67 95.74 95.79

25 94.38 95.64 95.67

26 94.98 95.06 95.09

27 94.52 94.95 95.0

28 93.81 94.42 94.45

29 90.65 91.43 91.53

Mean 94.14 94.53 94.58

Table 3.1: The overall mean accuracy (%) results when entropy history buffer

size equals 1 and 10 respectively.
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3.3.2 Subject Specific Results

The average of the two sessions’ overall classification accuracies are calculated for

each subject (two sessions are conducted for each subject). Overall mean accuracy

results are reported as bar graphs for the Subject 1 and Subject 2 respectively in

Figures 3.6 and 3.7.
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Figure 3.6: Overall classification accuracy(%) for Subject 1.

3.3.3 Class Specific Results

Class specific mean accuracy results of the subject 1 are presented in the Figures

3.8, 3.9, 3.10, 3.11, 3.12 for the movements HO, HC, HG, WF and WE respec-

tively. The presented results are average of the classification accuracy results of

two sessions that is conducted by the subject 1.
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Figure 3.7: Overall classification accuracy(%) for Subject 2.
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Figure 3.8: Classification accuracy(%) for Subject 1 for hand open (HO) move-

ment.
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Figure 3.9: Classification accuracy (%) for Subject 1 for hand close (HC) move-

ment.
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Figure 3.10: Classification accuracy (%) for Subject 1 for hand grasp (HG) move-

ment.
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Figure 3.11: Classification accuracy(%) for Subject 1 for wrist flexion (WF) move-

ment.
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Figure 3.12: Classification accuracy(%) for Subject 1 for wrist extension (WE)

movement.

3.4 Discussion

3.4.1 Entropy History Buffer Size Comparison

Entropy history buffer is inserted into the adaptation algorithm to avoid over fit-

ting and construct a robust algorithm which is not too sensitive to transients and
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sudden degradations in the signals. Especially entropy history is significantly ad-

vantageous for the cases in which many adaptation applicable (confident) samples

are consecutively fed to the neural network classifier.

3.4.2 Subject Specific Results

The subject specific classification results demonstrate that our adaptation algo-

rithm applied on a neural network classifier improves the classification perfor-

mance of a non-adaptive neural network classifier. Even when lower classification

accuracies than the other trials are observed in classification accuracy when no

adaptation (WoA) is applied (such as 84% (WoA) in trial 23 of subject 2), no-

table improvement is observed when classification accuracy results are compared

(WoA and WA).

3.4.3 Class Specific Results

Classification accuracy results are reported for Subject 1 for each class. No sig-

nificant decrease is observed in the accuracy results, when the results for the

conditions in which adaptation is applied (WA) and is not applied are compared.

On the other hand, in some of the trials’ classification accuracy results no signif-

icant improvements are observed when adaptation is not applied (WoA) and is

applied (WA) classification accuracy results are compared. This can be explained

with high WoA (when no adaptation applied) classification accuracy results. In

these trials adaptation is not required to apply already.

It can be valid also for the first trial results in which the adaptation process

may not significantly change the network weights. Therefore, no change in the

classification accuracy occur.
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Chapter 4

CONCLUSIONS

In the present thesis two-channel differential sEMG signals are simulated by uti-

lizing a sEMG model. The simulated signals corresponded to four different move-

ment types such as hand close, hand open, wrist extension and wrist flexion. The

amplitude of simulated sEMG signals are then changed for each movement to sim-

ulate the distortion effects caused by the conditions such as loose conduct between

the skin and the electrode and sweating. Distortion is created on the signals ba-

sically by gradually changing the amplitude of the signals. The amplitude change

in the signals for one channel was maximum 50%. The adaptive neural-network

classifier proposed in the present thesis was developed using these sEMG signal

simulations. After the development phase, the classification and adaptation per-

formance of the present classifier is studied and validated using sEMG recordings

obtained from two able-bodied subjects. Our results indicate that the utilization

of entropy associated with the classification decisions of the neural network as a

confidence metric is appropriate for reliable adaptations. An entropy threshold

is used in the system to determine whether a classification decision is confident

or not. If entropy associated with a decision is below this threshold, the decision

is considered confident and the network is trained using the latest input vector.

In this sense, decreasing the entropy threshold in the system would improve the

reliability of the adaptations. However, decreasing this threshold would also de-

crease the probability of realization of adaptations and consequently adaptation
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capability of the system. Therefore, the designer of the prosthetic controller needs

to determine the value of the entropy threshold by considering the trade-off be-

tween the reliability of the adaptations and the number of adaptations. In order

to further improve the reliability of the adaptations, we additionally implemented

a FIFO buffer into the system to store the entropies associated with a number

of latest classifications. The adaptations in the system realized only when all

entropy values in this buffer are below a certain threshold. Increasing the size of

this entropy history buffer would improve the reliability of the adaptations while

decreasing the probability of realizing an adaptation.

4.1 Advantages of the System

In the present system, there is no need to store the sEMG input vectors during

the adaptation or classification phase. Only the latest entropy values are required

to be stored into a history buffer to determine if the latest sEMG input vector

is suitable to be used for online learning, which realizes the adaptation in the

system. In this sense, the algorithm can track the entropy changes and detect

the adaptation required conditions by using the entropy history buffer. Thus, the

probability of application of adaptation is under control and the neural network is

prevented from overtraining. It can be said that, the weights of the neural network

are adapted to the upcoming signal inputs through adjusting by online learning

gradually according to the signal dynamic changes over time. Therefore, it is not

required to re-train the network during the classification phase (starting from the

random initial weights and using all training data). Furthermore, the adaptation

step of the present algorithm is easy to implement and computationally efficient,

thus the present approach can be a promising solution to improve the performance

of the prosthetic limb decoders (controllers).
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4.2 Limitations of the System and Future Im-

provements

In the present study, the adaptation performance and classification accuracy

of the developed algorithm was studied offline using sEMG signals previously

recorded from able-bodied subjects performing hand gestures. Real time (online)

prosthetic hand control experiments are required to be conducted to evaluate the

applicability of the algorithm in clinic applications. In addition, the performance

of the classifier proposed in the present thesis was studied using the sEMG signals

recorded from able-bodied subjects instead of the ones recorded from amputees.

Although it is reported in the previous studies that the prosthetic hand control

performance of amputee and able-bodied subjects is similar to each other, the per-

formance of the classifier presented here should also be studied with recordings

from amputees.
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