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ABSTRACT

SUPER RESOLUTION OF LIGHT FIELDS USING
CONVOLUTIONAL NEURAL NETWORK

Muhammad Shahzeb Khan Gul

M.S. in Electrical, Electronics Engineering and Cyber Systems

Advisor: Prof. Dr. Bahadir Kursat GUNTURK

May, 2018

Light field imaging extends the traditional photography by capturing both spatial

and angular distribution of light, which enables new capabilities, including post-

capture refocusing, post-capture aperture control, and depth estimation from

a single shot. Micro-lens array (MLA) based light field cameras offer a cost-

effective approach to capture light field. A major drawback of MLA based light

field cameras is low spatial resolution, which is due to the fact that a single image

sensor is shared to capture both spatial and angular information. In this thesis,

we present a learning based light field enhancement approach. Both spatial and

angular resolution of captured light field is enhanced using convolutional neural

networks. The proposed method is tested with real light field data captured with

a Lytro light field camera, clearly demonstrating spatial and angular resolution

improvement.

Keywords: Light field, Deep learning, Angular resolution, Spatial resolution.
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ÖZET

EVRİŞİMSEL SİNİR AĞLARI İLE IŞIK ALANLARININ
SÜPER ÇÖZÜNÜRLÜĞÜ

Muhammad Shahzeb Khan Gul

Elektrik-Elektronik Mühendisliği ve Siber Sistemler, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Bahadır Kürşat GÜNTÜRK

Mayıs, 2018

Işık alan görüntüleme, ışığın hem uzamsal hem de açısal dağılımını kaydederek,

kayıt sonrası odaklama, kayıt sonrası diyafram kontrolü ve tek bir çekimden

derinlik kestirimi gibi geleneksel görüntülemeden daha öte yetenekler sağlar.

Mikro-lens dizisi (MLD) tabanlı ışık alan kameraları ışık alanını kaydetmede

uygun maliyetli bir yaklaşım sunar. MLD tabanlı ışık alan kameralarının

temel sorunu tek bir görüntü sensörünün uzamsal ve açısal bilgiyi kaydetmesi

için paylaşılmasından dolayı ortaya çıkan düşük uzamsal çözünürlüktür. Bu

tezde, öğrenme temelli ışık alan iyileştirme yaklaşımı sunulmaktadır. Evrişimsel

sinir ağları ile kaydedilmiş ışık alanının hem uzamsal hem de çözünürlüğü

arttırılmaktadır. Önerilen metod Lytro ışık alan kamerasıyla çekilmiş gerçek

ışık alan verisiyle test edilmiş, uzamsal ve açısal iyileştirme açık bir şekilde

gösterilmiştir.

Anahtar sözcükler : Işık alanı, derin öğrenme, açısal çözünürlük, uzamsal

çözünürlük.
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Chapter 1

Introduction

Figure 1.1: Athanasius Kircher, Large portable camera obscura, 1646.
c©Gernsheim Collection.

The word ”camera” is a Latin word, which means chamber or dark room. The

name ”camera” is derived based on the experiment performed by Ibn al-Haytham

in dark room known as pinhole camera (camera obscura). He made a pinhole in
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one wall of the dark room so that light rays can pass through it. Real world

scenes reflect light rays which passes through the pinhole to form an inverted

image on the opposite wall of the room. Since the inception of pinhole camera,

many advancements has been made in the technology of photography.

1.1 Traditional Cameras

A traditional camera is composed of a lens system and an imager. A two-

dimensional projection of a scene is formed by the lens system i.e. by converging

the light rays reflected by the scene on to the imager, which records the intensities

of light rays. Traditionally, photographic film or photographic plate was used as

imager. The advent of digital technology introduced electronic image sensor based

on charged couple device (CCD) or complementary metal-oxide-semiconductor

(CMOS) technology enabling the user to save images in the digital form.

The lenses used in a lens system are usually made up of glass with refractive

surfaces to converge the incident light rays. The magnitude of the refraction is

dependent upon the angle between the lens surface and the light ray incident on

the surface and the refractive index of the lens. To get the sharp image of the

scene, the image sensor is kept at a distance where light rays are converged after

passing through the lens system.
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1.2 Light Field Imaging

Light field refers to the collection of light rays in 3D space. With a light field

imaging system, light rays in different directions are recorded separately, unlike

a traditional imaging system, where a pixel records the total amount of light

received by the lens regardless of the direction. The angular light information

introduce new abilities, including depth estimation, post-capture refocusing, post-

capture aperture size and shape control, and 3D modeling. There are numerous

application areas for light field imaging, including 3D optical inspection, robotics,

microscopy, photography, and computer graphics.

Light field acquisition can be done in various ways, such as camera arrays

[1], optical masks [10], angle-sensitive pixels [11], and micro-lens arrays [12, 13].

Among these diverse methodologies, micro-lens array (MLA) based light field

cameras provide a cost-efficient solution, and have been successfully commercial-

ized [14, 15].

1.3 Motivation

There are several advantages of micro-lens array (MLA) based light field cameras

over the conventional camera array based light field acquisition, including com-

pact design and cost effective solution. However, there is a fundamental trade-off

between these advantages and the image resolution.

In MLA-based light field cameras, there is a trade-off between spatial resolution

and angular resolution since a single image sensor is used to capture both. For

example, in the first generation Lytro camera, an 11 megapixel image sensor

produces an 11x11 sub-aperture perspective images, each with a spatial resolution

of about 0.1 megapixels 1. Such a low spatial resolution prevents the wide spread

adoption of light field cameras. In recent years, the low spatial resolution issue has

1The resolution is obtained by decoding through the open-source software presented by
Dansereau [16].
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been widely adopted by researchers. Hybrid systems, combination of a traditional

image sensor with a light field sensor, have been presented [17, 18, 19], where the

high spatial resolution image from the regular sensor is used directly if needed or

transfered to sub-perspective images of light field. The disadvantages of hybrid

systems include increased cost and larger camera dimensions. Another approach

is to apply multi-frame super-resolution techniques to the sub-perspective images

of a light field [20, 21]. It is also possible to apply learning-based super-resolution

techniques to each sub-aperture image of a light field [22].

1.4 Contribution

The main contribution of this thesis is to enhance the spatial and angular reso-

lution of light fields. We have proposed a learning based method for the super-

resolution of light field. The proposed method consists of the convolutional neural

network for both spatial and angular resolution. The proposed method is com-

putationally less expensive. In terms of quantitative and qualitative results, the

proposed method has outperformed the state-of-the-art techniques. This work

has been published as a journal paper [23].
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Chapter 2

Background

2.1 Light Field

Light field imaging is first described by Lippmann, who proposed to use a set of

small biconvex lenses to capture light rays in different directions and refers to it

as integral imaging [24]. The term ”light field” was first used by Gershun, who

studied the radiometric properties of light in space [25]. Adelson and Bergen used

the term ”plenoptic function” and defined it as the function of light rays at every

possible location in space, going at every possible angle, for every wavelength,

and at every time [26]. Adelson and Wang described and implemented a light

field camera that incorporates a single main lens along with a micro-lens array

[27] (refer to Equation 2.2 and Figure 2.1).

P (φ, θ, x, y, z) (2.1)

This design approach is later adopted in commercial light field cameras [14, 15].

In 1996, Levoy and Hanrahan [28] and Gortler et al. [29] formulated light field as

a 4D function, and studied ray space representation and light field re-sampling.

They restrict the attention to the light rays passing through the free-space, that is
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Figure 2.1: Parameterizing a ray in 3D space by position (x, y, z) and direction
(θ, φ).

region free from occuluders. In this way, the light passing along a ray is constant

and eliminating one dimension of variation.

P ′(φ, θ, u, v) (2.2)

The light intensity is given for every possible position u and v on a 2-

dimensional plane, and angle θ and φ.

Over the years, light field imaging theory and applications have continued to

be developed further. Key developments include post-capture refocusing [30],

Fourier-domain light field processing [12], light field microscopy [31], focused

plenoptic camera [13], and multi-focus plenoptic camera [32].

2.1.1 Light Field Parameterization

In [33], light field is represented as a 5D radiance function describing every 3D

scene point through 2D light rays. However, it can be reduced to 4D with the
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Figure 2.2: Two parallel plane light field parameterization. In all three models,
u and v serves as basic arguments. The other two arguments are parameterized
as; (a) global coordinates of s and t, (b) angular coordinates θ and φ representing
the angle of ray after intersecting with uv plane, (c) local coordinates of s and t,
are sometime also referred to as slope of the ray intersecting uv plane.

assumption that radiance does not change in free space along rays [28]. Pa-

rameterization of 4D light field is achieved by parameterizing light rays by their

intersections with two planes in arbitrary position. In Fig. 2.2, some two-plane

light field parameterization models are shown.

2.1.2 Light Field Acquisition

There are different ways to capture the light field, among them two approaches

are very popular. First method is to use camera array [28, 1, 34], and the other

method is to use micro-lens array in front of the imaging sensor [12, 13]. Some

other light field acquisition methods include optical masks [10], angle-sensitive

pixels [11], gantry for the camera movement [35], and kaleidoscope-like optics

[36].
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Figure 2.3: Cammera array of 8x16 cameras to create light field developed by
Stanford [1].

2.1.2.1 Camera Array Based Light Field

The straightforward approach to capture high-resolution light field is to set up an

array of cameras. Among different camera array-based approaches, the Stanford

implementation [1] is shown in Figure 2.3. The directional information of light

rays, i.e. the angular resolution is defined by the number of cameras in the grid,

e.g. the angular resolution of 8x16 grid camera array as shown in Figure 2.3

is 8x16. The size of the camera array system is typically very large, such as

spanning around 1m horizontally and vertically in Figure 2.3. In this case, the

wider baseline between the adjacent cameras results in a discrete blur at the time

of rendering of the different perspective images. The light field produced with

camera array system is very high in terms of quality and high dynamic range

imaging as compared to the other acquisition methods, but still, they are very

bulky and not portable and sometimes required high data bandwidth.

2.1.2.2 MLA-Based Light field

MLA-based light field cameras have two basic implementation approaches. In

one approach, the image sensor is placed at the focal distance of the micro-lenses

[12, 14]. In the other approach, a micro-lens relays the image (formed by the

objective lens on an intermediate image plane) to the image sensor [13, 15].
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MLA-based light-field camera structure depicting different key components for

both the approaches discussed above is shown in Fig. 2.4 and 2.5. In Fig. 2.4,

the plenoptic camera 1.0 [14] design is shown, where light rays from a single scene

point converges to a single point on the focal plane of the micro-lens array, from

there the micro-lens separates these rays according to the direction and create

a focused image of the aperture of the main lens on the grid of pixels placed

exactly at the focal length of the micro-lens (which is also known as lenslet).

Whereas, in the other approach plenoptic camera 2.0 [15], relative postion of the

micro-lens array is the main difference. Instead of placing the micro-lenses at the

principal plane of the objective lens, they are now focused onto the image plane

(intermediate plane) of the objective lens. The effect of such configuration is,

now each micro-lens acts as a single pinhole camera, observing the small part of

the virtual image inside the camera. These small image parts are then mapped

onto the image sensor with high spatial resolution. Fig. 3.1 is a dataset collected

by the camera which has same structure like Fig. 2.4. Essentially the raw data is

same as the conventional photograph. Microscopically, however, one can see the

subimages of the objective lens aperture captured by each lenslet. These lenslet

images capture the structure of light in the world, and reveal, for example, the

depth of objects. The raw image formed is referred to as lenslet image.

Figure 2.4: Conceptual schematic of plenoptic camera 1.0, which is composed of
an objective lens, micro-lens array and image sensor. Here the image sensor is
place at the focal distance of the micro-lens.
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Figure 2.5: Conceptual schematic plenoptic camera 2.0, where an image formed
on the intermediate plane is relays on to the image sensor.

2.2 Convolutional Neural Networks (CNNs)

In recent years, convolutional neural networks have been extensively applied in

image processing and computer vision applications. CNNs are considered as a

branch of deep learning algorithms. They are also known as the specific kind

of neural networks designed to process data having clear grid-like topology. As

the name suggests, CNNs employs convolution which is a linear mathematical

operation. Although the inspiration of convolutional neural network was taken

from the work of Hubel and Wiesel [37] on the identification of cells with local re-

ceptive field, but for the first time, CNN was presented in the pioneering work of

Furushima’s Neocognitron [38]. LeCun et al. work presented in [2] for handwrit-

ing digit recognition utilizing gradient-based stochastic gradients, is considered

as the breakthrough in the field of deep learning. The architecture (for details,

see Fig. 2.6) presented in [2], is the first back-propagation convolutional neural

network.

CNN typically consist of several layers. These layers are further divided into

different stages: convolution, with non-linear activation function and pooling

operation. All these stages are explained below.
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Figure 2.6: CNN model presented in [2] for document and handwritten digit
recognition. This model consists of different kinds of layers such as convolution,
subsampling, full connection and Gaussian connection. The input of this network
is an image while the output is a vector containing the probability of the input
image belonging to different classes. The image is adopted form the paper [2].

2.2.1 Convolution

The name convolutional neural network is derived due to the fact that convolu-

tion, which is a linear mathematical operation, is the key element of this algo-

rithm. The main objective of convolution in CNN is to extract different distinct

features from the input data. A two-dimensional array of learnable parameters

called kernel is slide over a two-dimensional array of an input image with the

summation of corresponding multiplications as output. In mathematical form, it

can be expressed as

Y [x, y] =
∑
i

∑
j

I[i, j]K[x− i, y − j] (2.3)

Here, I denotes the input image, K is the learnable kernel and Y is the output

of the convolution operation between I and K. There are three main advantages

of using convolution in CNNs as compared to the matrix multiplication in multi-

layer neural networks. The first advantage is that it has sparse interaction (or

sparse weights). It means that fewer connections between input and output which

subsequently reduce the overall memory requirements. In this case, a smaller size

kernel is used as compared to the size of the input. The area covered by the

kernel on the input image is called receptive field. Parameter sharing is the

second advantage achieved by the convolution operation. It means that there is

no need to define individual kernels for every location, the same kernel is applied
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Figure 2.7: Different non-linear activation functions. The image is taken from
ujjwalkarn.me

for every location in the input. Whereas, every element of the conventional

neural network weight matrix is utilized only once for generating the output of

the layer. This again reduces the memory requirements of the model. The last

advantage is that convolution provides the equivalent representations. The output

of convolution operation is a two-dimensional feature map. Parameter sharing

makes the convolution operation translation equivariant. This means that the

output representation changes accordingly with the variation in the input.

2.2.2 Non-linear Activation Function

Activation functions are really important to learn complex and non-linear map-

pings between the input and output. CNNs without non-linear activation func-

tions would simply be a linear regression model, unable to model complicated

non-linear functions. The main purpose of using CNN is to make sense of some-

thing which is complex, high dimensional and non-linear such as videos, audio,

images etc. This shows the importance of activation function in CNNs. There are

different kinds of non-linearities such as Sigmoid, Tanh-hyperbolic tangent and

Rectified linear units (ReLU). Fig. 2.7 shows the plot of all the three functions.

12



Figure 2.8: An example of the max pooling. The number of parameters are
reduced by applying pooling units over four non-overlapping regions of the image.

2.2.3 Pooling

After convolution operation, a non-linear activation function, such as rectified

linear activation function (ReLU) is applied on the obtained feature maps. In

the last stage, pooling operation is performed. The main objective of the pooling

function is to summarize and find out a single value for a 2D window. These grid

windows can be overlapping and non-overlapping. The output of the max pooling

layer is the maximum value in a rectangular neighborhood. Some other pooling

operations are average pooling in a rectangular neighbourhood, minimum output

in the neighborhood, or the L2 norm of the grid.

The pooling operation is again responsible for making the representation in-

variant to small translations of the input. This means that the small translation

in the input will not affect the values of most of the pooled outputs. This in-

variance to translation property becomes handy when we are more interested in

whether some features are present in the input rather than their exact position

in the input. An example of max pooling is shown in Fig. 2.8.

An mxm region is selected to pool the convolved features obtained after con-

volution and non-linear activation function. Then, the convolved features are

divided into mxm regions separated by s pixels. Non-overlapping regions are

obtained if s = m. These pooled features are then utilized as input to the next

convolutional layer.
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2.2.4 Learning

Back-propagation algorithm or stochastic gradient descent (SGD) function is typ-

ically used in convolutional neural network to minimized a cost function. The

standard formulation is given as follows

θk+1 = θk − ηkδL(θk, z)

δθk
(2.4)

where θ are the learning parameters and η is the learning rate. In the re-

cent years, computational resources have been improved due to the advancement

in GPU technology. The availability of large datasets with increased computa-

tional power has let the researchers train deeper convolutional neural networks

(in terms of number of layers and number of filters) to obtain significant perfor-

mance increase in many computer vision applications especially for the task of

image classification.
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Chapter 3

Spatial And Angular Resolution

Enhancement

3.1 Related Work

3.1.1 Super-Resolution of Light Field

One approach to enhance the spatial resolution of images captured with an MLA-

based light field camera is to apply multi-frame super-resolution technique on the

perspective images obtained from the light field capture. The Bayesian super-

resolution restoration framework is commonly used, with Lambertian and textual

priors [20], Gaussian mixture models [39], and variational models [21].

Learning-based single-image super-resolution methods can also be adopted to

address the low spatial resolution issue of light fields. In [22], a dictionary learning

based super-resolution method is presented, demonstrating a clear improvement

over standard interpolation techniques when converting raw light field capture

into perspective images. Another learning based method is presented in [4], which

incorporates deep convolutional neural networks for spatial and angular resolution

enhancement of light fields.
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In contrast to single-sensor light field imaging systems, hybrid light field imag-

ing system has also been introduced to improve spatial resolution. In the hybrid

imaging system proposed by Boominathan et al. [17], a patch-based algorithm is

used to super-resolve low-resolution light field views using high-resolution patches

acquired from a standard high-resolution camera. There are several other hybrid

imaging systems presented [18, 40, 19, 41], combining images from a standard

camera and a light field camera. Among these, the work in [19, 42] demonstrates

a wide baseline hybrid stereo system, increasing the spatial resolution and also

improving the range and accuracy of depth estimation.

There are some methods focusing only on the low angular resolution prob-

lem associated with the light field cameras. In [43], light field super-resolution

is performed from a 3D focal stack sequence using a prior based on the dimen-

sionality gap. Frequency domain methods, utilizing signal sparsity and Fourier

slice theorem is being adopted by [44], to reconstruct a 4D light field. There is

another method of reconstructing full light field using multidimensional patches

from a sparse set of input views [45]. An optimization framework to generate

novel views from the sparse set of input views is proposed in [46]. Given the

depth estimates at the input views, novel views are reconstructed by minimizing

an objective function which maximizes the quality of the final results. There are

some learning based methods, utilizing different convolutional neural networks

architecture for the enhancement of angular resolution [3], [4]. [3] first calculate

the disparity among the input views using a convolutional neural network, then

utilize it to wrap the input images to the novel view using another convolutional

neural network.

3.1.2 Deep Learning for Image Restoration

Convolutional neural networks (CNNs) are variants of multi-layer perceptron net-

works. Convolution layer, which is inspired from the work of Hubel and Wiesel

[37] showing that visual neurons respond to local regions, is the fundamental part

of a CNN. In [2], LeCun et al. presented a convolutional neural network based
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Figure 3.1: Light field captured by a Lytro Illum camera. A zoomed-in region is
overlaid to show the individual lenslet regions.

pattern recognition algorithm, promoting further research in this field. Deep

learning with convolutional neural networks has been extensively and success-

fully applied to computer vision applications. While most of these applications

are on classification and object recognition, there are also deep-learning based

low-level vision applications, including compression artifact reduction [47], im-

age deblurring [48] [49], image deconvolution [50], image denoising [51], image

inpainting [52], removing dirt/rain noise [53], edge-aware filters [54], image col-

orization [55], and in medical imaging for the automatic segmentation of retinal

layer boundaries in optical coherence tomography (OCT) images [56], which is

the first step in creating high quality vascular pattern images from the popular

new OCT angiography imaging modalities [57, 58]. Recently, CNN has also been

deployed for the super-resolution of single image [59, 60, 61, 62]. Although these

single-frame super-resolution methods can be directly applied to light field per-

spective images to improve their spatial resolution, we expect better performance

if the angular information available in the light field data is also exploited.
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Figure 3.2: An illustration of the proposed DLFSR method. First, the angular
resolution is doubled; second, the spatial resolution is doubled. The networks are
applied directly on the raw light field, not on the perspective images. The effect
of each step on the perspective images is also illustrated.

Figure 3.3: Light field parameterization. Light field can be parameterized by the
lenslet positions (s,t) and the pixel positions (u,v) behind a lenslet.

Figure 3.4: Sub-aperture (perspective) image formation. A perspective image
can be constructed by picking specific pixels from the lenslet regions. The size of
a perspective image is determined by the number of lenslets.
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3.2 Architecture and Formulation

In Figure 3.1, a light field captured by a micro-lens array based light field camera

(Lytro Illum) is shown. When zoomed-in, individual lenslet regions of the MLA

can be seen. The pixels behind a lenslet region record directional light amounts

received by that lenslet. As illustrated in Figure 3.3, it is possible to represent a

light field with four parameters (s,t,u,v), where (s,t) indicates the lenslet location,

and (u,v) indicates the angular position behind the lenslet. A perspective image

can be constructed by taking a single pixel value with a specific (u,v) index from

each lenslet. The process is illustrated in Figure 3.4. The spatial resolution of a

perspective image is controlled by the size and the number of the lenslets. Given

a fixed image sensor size, the spatial resolution can be increased by having smaller

size lenslets; given a fixed lenslet size, the spatial resolution can be increased by

increasing the number of lenslets, thus, the size of the image sensor. The angular

resolution, on the other hand, is defined by the number of pixels behind a lenslet

region.

Our goal is to increase both spatial and angular resolution of a light field

capture. We propose a convolutional neural network based learning method,

which we call light field super resolution (LFSR). It consists of two steps. Given

a light field where there are AxA pixels in each lenslet area and the size of each

perspective is HxW , the first step doubles the angular resolution from AxA to

2Ax2A using a convolutional neural network. In the second step, the spatial

resolution is doubled from HxW to 2Hx2W by estimating new lenslet regions

between given lenslet regions. Figure 3.2 gives an illustration of these steps.

The closest work in the literature to our method is the one presented in [4],

which also uses deep convolutional networks. There is a fundamental difference

between our approach and the one in [4]; while our architecture is designed to

work on raw light field data, that is, lenslet images; [4] is designed to work on

perspective images. In the experimental results section, we provide both visual

and quantitative comparison with [4].
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Figure 3.5: Overview of the angular SR network to estimate a high angular
resolution version of the input light field. A lenslet is drawn as a circle; the
AxA region behind a lenslet is taken as the input and processed to predict a
2Ax2A lenslet region. ReLU non-linear activation function is applied after each
convolution layer.

3.2.1 Angular Super-Resolution (SR) Network

The proposed angular super-resolution network is shown in Figure 3.5. It is com-

posed of two convolutional layers and a fully connected layer. The input to the

network is a lenslet region with size AxA; and the output is a higher resolution

lenslet region with size 2Ax2A. That is, the angular resolution enhancement

is done directly on the raw light field (after demosaicking) as opposed to doing

on perspective images. Each lenslet region is interpolated by applying the same

network. Once the lenslet regions are interpolated, one can construct the perspec-

tive images by rearranging the pixels, as mentioned before. At the end, 2Ax2A

perspective images are obtained from AxA perspective images.

The convolution layers in the proposed architecture are based on the intuition

that the first layer extracts a high-dimensional feature vector from the lenslet

and the second convolutional layer maps it onto another high-dimensional vector.

After each convolution layer, there is a non-linear activation layer of Rectified

Linear Unit (ReLU). In the end, a fully connected layer aggregates the informa-

tion of the last convolution layer and predicts a high-resolution version of the

lenslet region.

The first convolution layer has n1 filters, each with size n0xk1xk1. (In our

experiments, we treat each color channel separately, thus n0 = 1.) The second

convolution layer has n2 filters, each with size n1xk2xk2. The final layer is a fully
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Figure 3.6: Overview of the proposed spatial SR network to estimate a higher
spatial resolution version of the input light field. Four lenslet regions are stacked
and taken as the input to the network. The network predicts three new pixels to
be used in high-resolution perspective image formation. Each convolution layer
is followed by a non-linear activation layer of ReLU.

connected layer with 4A2 neurons, forming a 2Ax2A lenslet region.

3.2.2 Spatial Super-Resolution (SR) Network

Figure 3.6 gives an illustration of the spatial super-resolution network. Similar

to the angular super-resolution network, the architecture has two convolutional

layers, each followed by a ReLU layer, followed by a fully connected layer. Differ-

ent from the angular resolution network, four lenslet regions are stacked together

as the input to the network. There are three outputs at the end, predicting the

horizontal, vertical, and diagonal sub-pixels of a perspective image. To clarify the

idea further, Figure 3.7 illustrates the formation of a high-resolution perspective

image. As mentioned earlier, a perspective image of a light field is formed by

picking a specific pixel from each lenslet region and putting all picked pixels to-

gether according to their perspective lenslet positions. Using four lenslet regions,

the network predicts three additional pixels in between the pixels picked from the

lenslet regions. The predicted pixels, along with the picked pixels, form a higher

resolution perspective image.

21



Figure 3.7: Constructing a high-resolution perspective image. A perspective
image can be formed by picking a specific pixel from each lenslet region, and
putting all picked pixels together. Using the additional pixels predicted by the
spatial SR network, a higher resolution perspective image is formed.

3.3 Training

We used a dataset that is captured by a Lytro Illum camera and is available

online [63]. The dataset has more than 200 raw light fields, each with angular

resolution of 14x14 and spatial resolution of 374x540. In other words, each light

field consists of 14x14 perspective images; and each perspective image has a

spatial resolution of 374x540 pixels. The raw light field is of size 5236x7560,

consisting of 374x540 lenslet regions, where each lenslet region has 14x14 pixels.

We used 45 light fields for training and reserved the others for testing. The

training data is obtained in two steps. First, we drop every other lenslet region

to obtain a low-spatial-resolution (187x270) and high-angular-resolution (14x14)

light field. Second, we drop every other pixel in a lenslet region to obtain a

low-spatial-resolution (187x270) and low-angular-resolution (7x7) light field.

The angular SR network, as shown in Figure 3.5, has low-spatial-resolution

and low-angular-resolution light field as its input, and low-spatial-resolution and

high-angular-resolution light field as its output. Each lenslet region is treated

separately by the network, increasing the size from 7x7 to 14x14. The first con-

volution layer consists of 64 filters, each with size 1x3x3. It is followed by a ReLU

layer. The second convolution layer consists of 32 filters of size 64x1x1, followed

by a ReLU layer. Finally, there is a fully connected layer with 196 neurons at the
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end to produce a 14x14 lenslet region.

The spatial super-resolution network, as shown in Figure 3.6, has low-spatial-

resolution and high-angular-resolution light field as its input, and high-spatial-

resolution and high-angular-resolution light field as its output. Four lenslet re-

gions are stacked to form a 14x14x4 input. The first convolution layer consists of

64 filters, each with size 4x3x3. The second convolution layer consists of 32 filters

of size 64x1x1. Each convolution layer is followed by a ReLU layer. Finally, there

is a fully connected layer with three neurons at the end to produce the horizontal,

vertical and diagonal pixels. This network generates one high-spatial resolution

perspective. For each perspective, the network is trained separately.

We implement and train our model using the Caffe package [64]. For the weight

initialization of both networks, we used Xavier’s initialization technique [65],

with mean set to zero and standard deviation set to 10−3, to prevent vanishment

or over-amplification of weights. The learning rate for the three layers of the

networks is 10−3, 10−3, and 10−5, respectively. Mean squared error is used as the

loss function, which is minimized using the stochastic gradient descent method

with standard backpropagation [2]. For each network, the input size is about 13

million; and the number of iterations is about 108.
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Chapter 4

Experiments

We evaluated our LFSR method on 25 test light fields which we reserved from

the Lytro Illum camera dataset [63] and on the HCI dataset [66]. For spatial and

angular resolution enhancement, we compared our method against the LFCNN

[4] method and bicubic interpolation. There are several methods in the literature

that synthesize new viewpoints from a light field data; thus, we compared the

angular SR network of our method with two such view synthesis methods, namely,

Kalantari et al. [3] and Wanner and Goldluecke [46]. Finally, there are single-

frame spatial resolution enhancement methods; we chose the latest state-of-the-

art method, called DRRN [67], and included it in our comparisons.

In addition to spatial and angular resolution enhancement, we investigated

depth estimation performance, and compared the depth maps generated by low-

resolution light fields and the resolution-enhanced light fields. In the end, we

investigated the effect of the network parameters, including the filter size and the

number of layers, on the performance of the proposed spatial SR network.
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4.1 Dataset

4.2 Spatial Resolution

The test images are downsampled from 1414 perspective images, each with size

374x 540 pixels, to 7x7 perspective images with size 187x270 pixels by dropping

every other lenslet region and every pixel in each lenslet region. The trained

networks are applied to these low-spatial and low-angular resolution images to

bring them back to the original spatial and angular resolutions. The networks

are applied on each color channel separately. Since the original perspective im-

ages available, we can quantitatively calculate the performance by comparing the

estimated and the original images. In Table 4.1, we provide peak-signal-to-noise

ratio (PSNR) and structural similarity index (SSIM) [68] results of our method,

in addition to the results of the LFCNN [4] method and bicubic interpolation.

Here, we should make two notes about the LFCNN method. First, we took

the learned parameters provided in the original paper and fine tuned them with

our dataset as described in [4]. This revision improves the performance of the

LFCNN method for our dataset. Second, the LFCNN method is designed to split

a low-resolution image pixel into four sub-pixels to produce a high-resolution im-

age; therefore, we included the results of bicubic resizing (imresize function in

MATLAB) to evaluate the quantitative performance of the LFCNN method. In

Table 4.1, we see that the LFCNN method produces about 1.3 dB better than

the bicubic resizing. The proposed method produces the best results in terms of

PSNR and SSIM.

Visual comparison is critical when evaluating spatial resolution enhancement.

Figures 4.6, 4.7, and 4.9 are typical results from the test dataset. Figure 12 is our

worst result among all test images. In these figures, we also include the results

of the single-image spatial resolution method, called DRRN [67]. This method

is based on deep recursive residual network technique, and produces state-of-the-

art results in spatial resolution enhancement. Examining the results visually, we
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Methods
PSNR (dB) SSIM

Min Avg Max Min Avg Max
Bicubic resiz-
ing(imresize)

24.2029 27.6671 34.6330 0.7869 0.8744 0.9457

LFCNN [4] 25.5963 28.9661 34.8231 0.7838 0.8904 0.9407
Bicubic interp. 27.2620 30.6245 37.1640 0.5780 0.9256 0.9659
Proposed
(LFSR)

29.7515 33.4273 39.5655 0.9360 0.9559 0.9823

Table 4.1: Comparison of different spatial and angular resolution enhancement
methods.

conclude that our method performs better than LFCNN method and bicubic in-

terpolation, and produces comparable results with the DRNN method. We notice

that the LFCNN method produces sharper results compared to bicubic interpola-

tion despite having lower PSNR values. In our worst result, given in Figure 4.11,

the DRNN method outperforms all methods. This particular image has highly

complex texture, which seems to be not modeled well with the proposed archi-

tecture. Training with similar images or using more complex architecture may

improve the performance. When comparing deep networks, we should consider

the computational cost as well. The computation time for one image with the

DRRN method is about 859 seconds, whereas, the proposed SR network takes

about 53 seconds, noting that both are implemented in MATLAB on the same

machine

In Figure 4.10, we test our method on the HCI dataset [66]. We compare

against the networks in [4] and [5]. The method in [5] produces less ringing arti-

facts compared to the LFCNN network [4]. The proposed method again produces

the best visual results.

Although we have shown results for resolution enhancement of the middle

perspective image so far, the proposed spatial SR network can be used for any

perspective image as well. In Table 4.2, average PSNR and SSIM on test images

for different perspective images (among the 14x14 set) are presented. It is seen

that similar results are obtained on all perspective images, as expected.
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Sub-aperture
Image#

Method
PSNR
(dB)

SSIM

7,1
Bicubic interp. 28.21 0.8631
Proposed 28.74 0.8789

5,5
Bicubic interp. 31.12 0.9310
Proposed 32.95 0.9496

6,6
Bicubic interp. 30.74 0.9272
Proposed 32.71 0.9485

6x8
Bicubic interp. 30.73 0.9267
Proposed 32.94 0.9504

8,6
Bicubic interp. 30.69 0.9270
Proposed 32.69 0.9492

8,8
Bicubic interp. 27.71 0.8793
Proposed 28.16 0.8917

Table 4.2: Evaluation of the proposed method for different perspective images.

4.3 Angular Resolution

In this section, we evaluate the individual performance of our angular SR network.

For this experiment, the angular resolution of the test images are downsampled

from 14x14 to 7x7 while keeping the spatial resolution at 374x540 pixels. These

low-angular images are then input to the angular SR network to bring them back

to the original angular resolution. The network is trained for each color chan-

nel separately. We compare our method against Kalantari et al. [3], which is a

very recent convolutional neural network based novel view synthesis method, and

against Wanner and Goldluecke [46], which utilizes disparity maps in a variational

optimization framework. Wanner and Goldluecke [46] may work with any dis-

parity map generation algorithm; thus, we report results with the disparity gen-

eration algorithms given in [6], [7], [8], and [9]. In Table 4.7, we quantitatively

compared the results with the state-of-the-art angular resolution enhancement

methods using PSNR and SSIM. In Figure 4.12, we provide a visual comparison.

Occluded regions in the scene increases the difficulty for view synthesis. The

proposed angular SR method produces significantly better results compared to

all other approaches.

Finally, we would like to note that the angular SR network, by itself, may
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turn out to be useful, since it may be combined with any single-image resolution

enhancement method to enhance the spatial and angular resolution of a light field

capture.

4.3.1 Lenslets Grid VS Single Lenslet Input

The input of our Angular SR network is a single lenslet. In this section, we have

carried out an experiment by increasing the number of lenslet form one to a grid

of 3x3 i.e. total nine lenslets. As shown in Fig. 4.1, the overall architecture

formation of the new network is exactly same as the angular SR network. To

distinguish between the two network, the angular SR network taking a grid of

lenslets as input is called Grid Angular SR network.

Figure 4.1: Architecture of the proposed grid angular SR network to estimate
a higher angular resolution version of the input light field using lenslets grid as
input. Nine lenslet regions are stacked (i.e. AxAx9) and taken as the input to
the network. The output of the network is 2Ax2A middle lenslet region. ReLU
non-activation function is applied after each convolution layer.

For the training of the grid angular SR network, we used the same dataset,

captured using a Lytro Illum camera [63]. The network takes a grid of 3x3 lenslet

regions stacked to form 7x7x9 input, and increase the size of the middle input

lenslet region from 7x7 to 14x14.

In Table 4.4 and 4.3, we quantitatively compared the results with the Kalantari

et al. [3] angular resolution enhancement technique using PSNR (peak-signal-to-

noise-ration) and SSIM (structural similarity). The results are presented for the

two test datasets, the one used in this thesis and the other one is presented in

[3], which contains challenging diverse light fields. Both the proposed angular SR
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networks have shown significant improvement as compared to the state-of-the-art

method achieving high PSNR and SSIM. Although the overall difference in PSNR

and SSIM values between both angular SR network and grid angular SR network

is not very high. The computational time for a light field for angular SR network

is 66.01 sec, whereas the time taken by grid angular SR network is 73.83 sec.

Method PSNR (dB) SSIM
Kalantari et al. [3] 37.50 0.970

Angular SR Network 41.96 0.9846
Grid Angular SR Network 42.68 0.9884

Table 4.3: Quantitative evaluation of different angular resolution enhancement
methods on test dataset provided in [3] containing 30 light fields.

Method PSNR (dB) SSIM
Kalantari et al. [3] 32.33 0.9339

Angular SR Network 41.25 0.9904
Grid Angular SR Network 42.15 0.9912

Table 4.4: Quantitative evaluation of different angular resolution enhancement
methods on test dataset used in this thesis, containing 25 light fields.

In Figure 4.2, we have provided visual comparison. Both the images are very

challenging due to the occlusion and complex structure. It is clearly visible that

both proposed networks have produced visually same results, and better than the

state-of-the-art method.

4.4 Depth Estimation

One of the capabilities of light field imaging is depth map estimation, whose

accuracy is directly related to the angular resolution of light field. In Figure 4.8,

and 4.3, we compare depth maps obtained from the input light fields and the

light fields enhanced by the proposed method. The depth maps are estimated

using the method in [9], which is specifically designed for light fields. It is clearly

visible that depth maps obtained from light fields enhanced with the proposed

method show higher accuracy. With the enhanced light fields, even close depths

can be differentiated, unlike the low-resolution light fields.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.2: Visual comparison of the novel view. Both the pictures (”Cars” and
”Flower2”) are taken from Kalantari et al. [3] paper. (a) Kalantari et al. [3]/31.65
dB. (b) Angular SR Network/35.21 dB (c) Grid Angular SR Network/35.42 dB
(d) Ground truth, of ”Cars” picture. (e) Kalantari et al. [3]/31.93 dB. (f) Angular
SR Network/36.75 dB (g) Grid Angular SR Network/37.42 dB (h) Ground truth,
of ”Flower2” picture.

4.5 Models and Performance Tradeoff

To evaluate the best trade off between performance and speed, and to investigate

the relations between performance and the network parameters, we will progres-

sively modify different parameters from proposed network settings (i.e. k1 = 3 ,

k2 = 1, n0 = 1, n1 = 64, n2 = 32 and n3 = 3). All the experiments are performed

on a machine with Intel Xeon CPU E5-1650 v3 3.5GHz, 16GB RAM and Nvidia

980ti 6GB graphics card.
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Figure 4.3: Depth map estimation accuracy. (a) Middle perspective image. (b)
Estimated depth from the input light field of 7x7 angular resolution. (c) Esti-
mated depth from enhanced light field with 14x14 angular resolution.

4.5.1 Filter Size

In the proposed spatial SR network, the filter sizes in the two convolution layers

are k1 = 3 and k2 = 1, respectively. The filter size of the first convolution layer is

kept at k1 = 3; this means, for each light ray (equivalently, perspective image), the

network is considering the light rays (perspective images) in a 3x3 neighborhood

in the first convolution layer. Since higher dimensional relations are taken care of

in the second convolution layer, and since keeping the filter size small minimizes

the boundary effects, note that the input size in the first layer is 14x14, this seems

to be a reasonable choice for the first layer. On the other hand, we have more

flexibility in the second convolution layer. We examined the effect of the filter size

in the second convolution layer by setting k2 = 3 and k2 = 5 while keeping the

other parameters intact. In Figure 4.4, we provide the average PSNR values on

the test dataset for different values of k2 as a function of training backpropagation

numbers. When k2 = 5, the convergence is slightly better than the case with k2

= 1. In Table 4.5, we show the final PSNR values and the computation times per

channel (namely, the red channel) for a perspective image. It is seen that while

the PSNR is slightly improved the computation time is more than doubled when

we increase the filter size from k2 = 1 to k2 = 5.
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Figure 4.4: Effect of the filter size on performance.

Filter size PSNR(dB) Time(sec)

k2 = 1 36.31 17.58
k2 = 3 35.81 27.62
k2 = 5 36.40 45.18

Table 4.5: Effect of the filter size on performance and speed of the spatial SR
network.

4.5.2 Number of Layers and Numer of Filters

We also examine the network performance for different number of layers and

different number of filters. We implemented deeper architectures by adding new

convolution layers after the second convolution layer. The three-layer network

presented in the previous section is compared against the four-layer and five-

layer networks. For the four-layer network, we evaluated the performance for

different filter combinations. The network configurations we used are shown in

Table 4.6. In Figure 4.5, we provide the convergence curves for these different

network configurations. We observe that the simple three-layer network performs

better than the others. This means that increasing the number of convolution

layers is causing overfitting and degrading the performance.
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Convolutional Layers

First Second Third Forth

3 layer 1x3x3x64 64x1x1x32 - -
4 layer 1x3x3x64 64x1x1x32 32x1x1x32 -
4 layer 1x3x3x64 64x1x1x16 16x1x1x16 -
4 layer 1x3x3x64 64x1x1x32 32x1x1x16 -
5 layer 1x3x3x64 64x1x1x16 16x1x1x16 16x1x1x16

Table 4.6: Different network configurations used to evaluate the performance of
the spatial SR network.

Figure 4.5: Effect of number of layers and number of filters on performance.
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(a) Ground
Truth

(b) Bicubic
resiz-

ing(imresize) /
25.34 dB

(c) Bicubic
interp. / 27.7

dB

(d) LFCNN
[4]/ 25.76 dB

(e) DRRN
[67]/ 31.63 dB

(f) LFSR /
32.25 dB

Figure 4.6: Visual comparison of middle sub-aperture image.
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(a) Ground
Truth

(b) Bicubic
resiz-

ing(imresize) /
25 dB

(c) Bicubic
interp. / 28.11

dB

(d) LFCNN
[4]/ 25.12 dB

(e) DRRN
[67]/ 32.20 dB

(f) LFSR /
32.35 dB

Figure 4.7: Visual comparison of middle sub-aperture image.
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Figure 4.8: Depth map estimation accuracy. (a) Middle perspective image. (b)
Estimated depth from the input light field with 7x7 angular resolution. (c) Esti-
mated depth from enhanced light field of 14x14 angular resolution.
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(a) Ground
Truth

(b) Bicubic
resiz-

ing(imresize) /
28.92 dB

(c) Bicubic
interp. / 28.11

dB

(d) LFCNN
[4]/ 29.06 dB

(e) DRRN
[67]/ 36.78 dB

(f) LFSR /
34.21 dB

Figure 4.9: Visual comparison of middle sub-aperture image.
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(a) (b) (c) (d)

Figure 4.10: Qualitative comparison of generated novel views of HCI dataset.
Compared with LFCNN network presented in [4] showing ringing artifacts in

high-frequency regions, while the result of the LFCNN network presented in [5]
has much less artifacts. On the other hand the proposed method produce result
which are very close to the ground truth. (a) Yoon et al. [5]. (b) Yoon et al. [4].

(c) Proposed. (d) Ground truth.

4.6 Further Increasing the Spatial Resolution

For quantitative evaluation, we need to have the ground truth; thus, we downsam-

ple the captured light field to generate its lower resolution version. In addition,

we can visually evaluate the performance of the proposed method without down-

sampling and further increasing the spatial resolution of the original images. In

Figure 4.13, we provide a comparison of bicubic resizing, bicubic interpolation, the

LFCNN method [4], the DRRN method [67], and the proposed LFSR method.

The spatial resolution of each perspective image is increased from 374x540 to

748x1080. The results of the proposed method seem to be preferable over the

others with less artifacts. The LFCNN results in sharp images but has some

visible artifacts. The DRNN method seems to distort some texture, especially

visible in the second example image, while the proposed method preserves the

texture well.
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(a) Ground
Truth

(b) Bicubic
resiz-

ing(imresize) /
25.99 dB

(c) Bicubic
interp. / 28.15

dB

(d) LFCNN
[4]/ 24.09 dB

(e) DRRN
[67]/ 33.65 dB

(f) LFSR /
29.75 dB

Figure 4.11: Visual comparison of different methods. (The worst result image
from the dataset is shown here).
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(a) 15.03
dB

(b) 23.54
dB

(c) 23.88
dB

(d) 20.08
dB

(e) 27.80
dB

(f) 33.08
dB

(g) 31.55
dB

(h)
Ground
Truth

Figure 4.12: Visual comparison of the novel view. This ”Leaves” picture from
Kalantari et al.[3] paper contains very thin structure and significant amount of

occluded regions, which makes it difficult to synthesis novel views. Our
architecture produces resonably better result as compared to the state-of-the-art
methods. (a) Wanner et al. [6]. (b) Tao et al. [7]. (c) Wang et al. [8]. (d) Jeon
et al. [9]. (e) Kalantari et al. [3]. (f) Proposed Angular SR network. (g) LFSR.
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(a) (b) (c) (d) (e)

(f) Bicubic
resizing(imresize)

(g) Bicubic
interp.

(h) LFCNN [4] (i) DRRN [67] (j) Proposed
LFSR

Figure 4.13: Visual comparison of different methods.
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Chapter 5

Discussion And Conclusion

In this thesis, we presented a convolutional neural network based light field super-

resolution technique. The proposed method consists of two separate convolutional

neural networks trained through supervised learning. The architecture of these

networks are composed of only three layers, reducing computational complex-

ity. The proposed method shows significant improvement both quantitatively

and visually over the baseline bicubic interpolation and another deep learning

based light field super-resolution method. In addition, we compared the angu-

lar resolution enhancement part of our method against two methods for novel

view synthesis. We also demonstrated that enhanced light field results in more

accurate depth map estimation due to the increase in angular resolution.

The spatial super-resolution network is designed to generate one perspective

image. One may suggest to generate all perspectives in a single run; however, this

would result in a larger network, requiring larger size dataset and more training.

Instead, we preferred to have a simple, specialized, and effective architecture.

Similar to other neural network based super-resolution techniques, the method

is designed to increase the resolution by an integer factor (two). It can be applied

multiple times to increase the resolution by factors of two. A non-integer factor

size change is also possible by first interpolating using the proposed method and
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then downsampling using a standard technique.

The network parameters are optimized for a specific light field camera. For

different cameras, the specific network parameters, such as filter dimensions, may

need to be optimized. We, however, believe that the overall architecture is generic

and would work well with any light field imaging system once optimized.
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