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ABSTRUCT 

A Parametric Study on The Behaviour of Mechanically Stabilized Earth (MSE) 

Wall Using Finite Element Method 

Yasameen Kadhim NAEEM 

M. Sc.  in Civil  Engineering 

Supervisor Assoc. Prof. Dr. Hanifi ÇANAKÇI 

May 2014 

116 page 

Mechanically stabilized earth (MSE) walls offer simple construction techniques, 

pleasing aesthetics, and cost-effective solutions as an alternative to conventional 

gravity walls.This dissertation presents the analysis of  reinforced soil retaining 

walls were carried out  to review the engineering properties of the MSE wall and 

perform parametric studies various factors that may govern the behaviour of the 

MSE wall by using finite element program PLAXIS 2D. The geometric parameters 

such as reinforcement length, vertical spacing between the reinforcement layers, 

reinforcement stiffness, wall height, face element thickness, position of traffic load, 

and finally the type of reinforced soil were examined  to investigate their effects on 

the forces developed in the reinforcement and the wall deformation. It is shown that 

the forces developed are largely independent of  reinforcement length, reinforcement 

stiffness, and face element thikness. Generally, axial force increases with increasing 

the wall height, vertical spacing between the geogrid layers,  and angle of internal 

friction for backfill soil. While,  wall deformation are largely dependent on geogrid 

length and an acceptable resultes were obtained when using L/H equal to 0.7. Wall 

deformation also decreasing with increasing geogrid stiffness and therfore  geogrid 

with higher strength is recomended to be used. Beside, the vertical spacing (Sv) 

between geogrid layers which also affect on the horizontal deformation and the 

minimum value can be used in the design of MSE walls equal to 0.5 m. 

 

Keywords: Geosynthetic, Horizontal displacement, Finite element method, 

Reinforcement stiffness, MSE wall. 
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ÖZET 

Sonlu Elemanlar Metodu Kullanılarak Mekanik Açıdan Stabilize Edilmiş 

Dolgu Duvar Üzerinde Parametrik Çalışma 

Yasameen Kadhim NAEEM 

Yüksek Lisans , İnşaat Mühendisliği 

Danışman Doç. Dr. Hanifi ÇANAKCI 

Mayıs 2014 

116 sayfa 

Mekanik olarak stabilize edilmiş dolgu duvarlar, geleneksel olarak kullanılan ağırlık 

duvarlarına göre basit yapım teknikleri, estetik açıdan görüm ve maliyet açısından 

daha iyi çözümler sunar. Bu çalışma güçlendirilmiş istinat duvarlarının analizini 

sunmaktadır. PLAXIS 2D lisanslı sonlu elemanlar programı kullanılarak mekanik 

olarak stabilize edilmiş dolgu duvarların mühendislik özellikleri ve bu duvarların 

davranışında etkili olan çeşitli parametreler incelenmiştir. Donatı uzunluğu, donatı 

tabakaları arasındaki dikey boşluklar, donatının sertliği, duvar yüksekliği,yüzey 

elemanlarının kalınlığı, trafik yükünün pozisyonu ve güçlendirilmiş zeminin tipi gibi 

geometrik parametreler analiz edilmiş ve etkiyen yüklerin donatılar ve duvar 

deformasyonları üzerinde ki etkileri incelenmiştir.Sonuçlar göstermiştir ki; etkiyen 

yükler genellikle donatı uzunluğundan, donatı sertliğinden ve yüzey elemanlarını 

kalınlığından bağımsızdır. Genellikle eksenel kuvvetler, duvar yüksekliğinin, 

geogrid tabakalar arasında ki dikey boşlukların ve dolgu zeminin içsel sürtünme 

açısının artmasıyla artış göstermiştir. Duvar deformasyonları genellikle geogrid 

uzunluklarına bağlı olmakta ve L/H oranı 0.7 olduğunda kabul edilebilir sonuçlar 

elde edilebilmektedir. Duvar deformasyonları ayrıca, geogrid sertliğinin artışına 

bağlı olarak azalma eğilimi göstermiştir ve bundan dolayı kullanım için yüksek 

dayanımlı geogridler önerilmiştir. Bunlara ek olarak, geogrid tabakalar arasında ki 

dikey boşluklar yatay yöndeki deformasyonlarda da etkili olmuştur ve minimum 

değer olarak bu dikey boşluklar 0.5 m olarak, mekanik olarak stabilize edilmiş dolgu 

duvarların tasarımında kullanılabileceği önerilmiştir. 

 

Anahtar Kelimeler: Geosentetik, Yatay yerdeğiştirme, Sonlu eleman metodu, 

Donatı sertliği, Mekanik olarak stabilize edilmiş dolgu duvarlar. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 General 

Mechanically Stabilized Earth (MSE) walls are earth retaining structures that are 

constructed by placing alternating layers of reinforcement and compacted soil 

behind a facing element to form a composite material which acts integrally to 

restrain lateral forces (Alzamora and  Anderson,  2009). MSE walls are relatively 

flexible gravity structures that can accommodate  differential settlement.  

 

 MSE wall typically constructed using three structural components which  work 

together to form the composite structure referred to as MSEW.  These three 

components are: 1) Reinforced fill: the soil that is used behind the facing of the wall. 

Theoretically all the types of soil can be used as a reinforced fill, a well graded 

granular soil is the preferred material due to its strength, drainage, durability 

properties, and easy in construction. 2) Reinforcement elements: in the construction 

of a MSE wall, reinforcements are placed in layers in the backfill soil, and this 

reinforced mass resists the earth pressure caused by the retained soil using the 

relative motion between reinforcement and soil (Kibria  et al., 2014). Reinforcing 

elements are made out of steel or geosynthetic materials. 3) Facing elements: used to 

prevent the soil from raveling out between the  reinforcement layers. Common 

facings include precast concrete panels, dry cast modular blocks, metal sheets and 

plates, gabions, welded wire mesh, and shotcrete ( Elias et al., 2001). 

The earth pressure coming from the retained fill is resisted by the reinforced soil 

mass  by using relative motion between the reinforcement and soil. 

 

 

1 



Therefore, the performance of  MSE wall depends on the interaction between  soil 

and reinforcement  (see Figure 1.1 ).  

 

 

Figure 1.1 Generic cross section of a MSE structure (Liang, 2004) 

 

MSE retaining walls are routinely designed for a 75-year service life; those 

supporting bridges are typically designed for 100 years (Anderson et al., 2012). 

Reinforced earth retaining wall have gained substantial acceptance as an ideal 

alternative solution to conventional masonry, gravity, and cantilever retaining wall 

structures in most applications due to their 1) simplicity, rapidity and easy of 

construction, 2) less site preparation, 3) less space requirement for construction 

operation, 4) technically feasible to heights in excess of 25 m, 5)  do not require 

experienced craftsmen with special skills. In addition to technical and performance 

advantages, another primary reason for the acceptance of reinforced earth retaining 

wall it has been economical alternatives for reinforced concrete in most applications, 

such as wing walls, bridge abutments, and elimination the right-of-way in some 

cases where an embankment or excavation with stable side slopes cannot be 

constructed.  Figures  (1.2 & 1.3 ) shows MSE wall applications abutments, marine, 

and urban application. 
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They are suited to economical construction in steep-sided terrain, in ground with 

unstabil slope, also it can be used at sites with poor foundation conditions that may 

be required for foundation improvements. In such cases, using MSE walls resulted in 

cost savings of greater than 50 percent from the total cost of the project. MSE walls 

have been used in public and private projects for at least three decades. 

 

 There are Some additional successful uses of MSE walls include: 

 Temporary structures for highway reconstruction projects. 

 Reinforced soil dikes, which have been used for containment structures for 

water and waste.  

 Dams and seawalls, including increasing the height of existing dams. 

 Bulk materials storage using sloped walls. 

 

Extensive researches have been conducted to investigate the reinforcement 

mechanisms. In spite of widespread usage of MSE wall, the long- term behavior of 

geogride - reinforced MSE walls remain uncertain. In particular, the tendency of 

polymeric geogride to creep under sustained loading at high temperature poses a 

potential risk to the performance of MSE walls in warm climate (Reddy et al., 2003). 
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Figure 1.2 MSE walls, urban applications (Elias et al., 2001) 
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Figure 1.3 MSE wall applications, abutments, and marine (Elias et al., 2001) 
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Numerical modelling of reinforced earth retaining wall and other structures has been 

increasingly adopted in researches since  their outstanding cost- time effectiveness. 

This research work employs by using the computer program PLAXIS  2D to develop 

and analysis a finite element (FE) model  in each of the cases considered.  

 

 A parametric study was conducted to identify the effects of various structural 

components of a MSE wall which can positively or negatively influnce in the 

general performance of the MSE wall. These factores include Soil and reinforcement 

properties: 1) backfill soil (granular and clayey soil),  2) geogrid strength (EA), 3)  

vertical spacing between reinorcement layeres (Sv), 4)  reinforcement length to 

height (L/H) ratio, 5) height of the wall (H), 6) thickness of facing elements (D), and 

7) the position of traffic surcharge live load. 

The soil model used to characterize the site was the elasto-plastic Mohr-Coulomb 

model. The basic Mohr-Coulomb input parameters for the all layers of soil are fully 

described in Chapter three of this dissertation. The soil-geogrids wall was modelled 

as an elasto-plastic material. 

 

1.2 Objectives and Scope of Study 

 

The  main objective of the current research is to make further studies on the 

behaviour of the reinforced earth wall when the mechanical properties and geometry 

of its composite materials changes to  achieve the design under static load. 

Parametric studies were performed including  various factors that may govern the 

behaviour  of MSE wall, and investigate the effect of this  parameters on the 

horizontal extreme displacement of the MSE wall and the axial force on the geogrid 

in different layers. 

 

An adequate amount of graphs are provided to represent the displacement of the 

MSE wall. Moreover, the difference between the axial force  in all geogrids layers 

are also presented and compared under different conditions. Results are reported in 

graphical forms. 
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1.3 Organization of the thesis 

This thesis devided into five chapters which are arranged as follows: 

 

 Chapter One  contain an introduction on  MSE wall. It also presents the 

objectives of this research work and provides the details of various chapters 

and their contents as well. 

 Capter Two provides the literature review on MSE wall. 

 Chapter Three presents the numerical modeling of the MSE. 

 Chapter Four presents the analysis and results of numerical modeling. 

Initially the MSE wall  was simulated and calibrated using PLAXIS 2D. 

Then the results of various parametric studies are presented in graphical 

forms. 

 Chapter  Five is summation of the main conclusions from the current 

research and recommendations.  
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CHAPTER II 

 

DEVELOPMENT OF REINFORCED EARTH STRUCTURES 

AND THEIR UNDERLYING PRINCIPLES 

 

2.1 General 

The use of reinforcement soil can be traced to prehistoric times. The earliest form of 

reinforced soil was the Ziggurats in Iraq and the Great Wall of China. The 

Ziggurates are the large religiouse towers were built by Babylonian’s during the 

Early Bronze Age (about 2500 to 5000 years ago). It was reinforced with woven 

mats made from reeds laid horizontally with plaited ropes of the same material 

embedded in layers of gravel and sand (see Figure  2.1).  

The Great Wall of China (see Figure 2.2) for at least 1000 years  (e.g., western 

portion of the Great Wall) and were used along the Mississippi River in the 1880s 

(Reddy et al., 2003). It has tamarisk branches as reinforcement embedded in a 

mixture of gravel and clay (Elton and Patawaran, 2005). 

Many primitive people used straw to improve the quality of adobe bricks, also they 

used sticks and branches to reinforce mud dwellings dates back to earliest human 

history.  

During the 17th and 18th centuries, French settlers along the Bay of Fundy in 

Canada and they used sticks to reinforce mud. In England people used wooden pegs 

for erosion and land slide control, also they used bamboo or wire mesh for revetment 

erosion contol. Soil reinforcing can also be achieved by using live plant roots (Berg 

et al., 2009). The concept of reinforced earth was introduced in France in 1960s by 

Henri Vidal. The use of  geogrid as reinforcement was introduced in 1970. 
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The problem of corrosion of metal reinforcements and the emergence of 

geosynthetics later led to the latter’s use as reinforcement. 

Many hypotheses have been assumed in the last 25 years about the mechanism of 

load transfer between the soil and reinforcement and their interaction. Many 

researchers have also carried out studies to find suitable method for the analysis and 

design of reinforced soil structures. 

 

 

Figure 2.1  The ziggurats in Iraq (http://www.atlanteagardens.blogspot.com.tr) 

 

 

 

Figure  2.2  Great Wall of China  (http://www. shedexpedition. com)  
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2.2 History and Development of Reinforcing Systems 

Here is some important timelines in the development of the reinforced earth 

techniques: 

 

1- The French architect Henry Vidal research led to development of the 

reinforced soil in 1966, which used steel strips for reinforced. The first wall 

used this technology in the  United States was built in 1972 on Califorina 

state highway 39, northeast of Los Angeles. 

 

2- Using geogride for soil reinforcement has been used since 1970. Design 

methods was developed around 1980.  

 

3- The use of geotextiles in soil reinforcement  started in 1971 in France after 

their beneficial effect in the construction of embankment over weak 

subgrades (Reddy et al., 2003). The first use of this type in the United States 

was construted in 1974  (Berg et al., 2009). 

 

4- The fundamental researches on the mechanism and design of the reinforced 

earth which  including 15-full scale experiments,  were realized from 1967 to 

1978 by the “Laboratoire Central des ponts et Chausses” in Paris. 

 

5-  Polymer - reinforced permanent walls have been approved by AASHTO in 

the USA in 1997. 

 

The reinforced earth technique has been quickly accepted all over the world because 

it is  an economical and efficient solution. It has been extensively used in retaining 

walls and bridge abutments for highways, expressways and railroads lines.  As well 

as for other structures as industrial, civil, defence, and water works projects.  

 

Some applications of the techniques are shown in Figure (2.3) . 
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Figure  2.3  Application of reinforced wall as Retaining wall & Abutments 

(http://www.geosynthaticsmagzine.com) 
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2.3 Components of MSE Wall 

Reinforced soil has three main components: the backfill, reinforcement,  and the 

facing. Other components that are required are the foundation, drainage elements, 

and the connections between the facing and the reinforcement. Additional 

components may be needed depending on the function of the reinforced soil being 

constructed. 

 

2.3.1 Backfill 

Theoretically any type of soil can be used as backfill since the introduction of 

reinforcement would cause an increase in strength. Generally; prior to the 

mobilization of the reinforcement tensile strength, the soil alone carries the entire 

load. Soil contributes to the strength of the structure and how much load the soil can 

carry alone before the mobilization tensile strength of the reinforcement  is 

important. Thus, clean course grained soils (sand & gravel) are specified and 

preferred since they are: 

 stronger and providing better durability for metallic reinforcement (see 

Figure  2.4). 

 drainage controls are essentially not necessary because it is  free draining. 

 Good soil reinforcement interaction because of hight friction characteristics, 

which  include an increased rate of wall erection and improved maintenance 

of wall alignment tolerances (Berg et al., 2009). 

 There are also significant handling, placement, and compaction advantages 

in using granular soils. 

 Are generally less susceptible to creep (Blaise, 2001). 

 

These performance requirements generally eliminate soils with high clay contents. 

Silts and/or clays were used in the reinforced soil zones and clearly, these situations 

were not “free draining” and hydrostatic pressures should have been considered in 

the design stage when using such low permeability soils. 
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That is not mean that silts and/or clays can not be used in the reinforced soil zone, it 

is meant to imply that if these poorly draining soils are used, they must be used with 

proper drainage components  (Koerner  and Koerner,  2011), and special attension to 

be paid to the creep potential (Blaise, 2001). 

 

 

Figure 2.4  Aggregate interlocking with geogrid (http://www.windfarmbop.com) 

 

2.3.2 Reinforcement elements 

Different types of materials have been used as reinforcement. The reeds and 

branches used in ancient times have been replaced by metal and geosynthetics. 

Reinforcement can be in the form of strips, grids, and sheets. Berg et al., (2009) 

descriped MSE systems by the reinforcement geometry,  reinforcement material, 

extensibility of the reinforcement material, and  stress transfer mechanism. 

 

2.3.2.1 Reinforcement Geometry 

Three types of reinforcement geometry can be considered : 

 Linear unidirectional: strips, including  ribbed or smooth steel strips, or 

coated geosynthetic strips over a load-carrying fiber. 

 Composite unidirectional:  bar or grids mats which have  grid spacing greater 

than 150 mm. 

 Planar bidirectional: continuous sheets of geosynthetics or, welded wire 

mesh, and woven wire mesh. The spacing between mesh element  are less 

than 150 mm. 
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2.3.2.2 Reinforcement Element 

Below the  characteristics of metallic and nonmetallic reinforcements: 

 Metallic reinforcements: typically of mild steel. Usually the steel is  

galvanized or some time epoxy coated. The performance and durability 

considerations for this type of reinforcement vary considerably and are 

detailed in the companion Corrosion (Berg et al., 2009). 

 

 Nonmetallic reinforcements: polymeric materials consisting of 

polypropylene, polyethylene,  or polyester. 

These reinforcement come in different shapes; such as strips, grids, sheet, fibers,  

and rods. 

 

2.3.2.3 Reinforcement Extensibility 

There are two classes of extensibility: 

 Inextensible: reinforcement deformation at  failure is much less than the soil 

deformation. Steel strip and bar mat reinforcements are an example on the  

inextensible type. 

 Extensible: reinforcemenat deformation at failure is comparable  to or  

greater than  the soil deformation. Geogrid, geotextile, and woven steel wire 

mesh reinforcements are an example on the extensible type. 

 

An inextensible metallic reinforcement makes the structure brittle and the extensible 

geosynthetic increases the ductility of the reinforced soil structure. 

 

2.3.3  Facing Elements 

In front of the backfill, there are the facing elements which control the aesthetics of 

the MSE wall (see Figure 2.5) since they are the only visible part of the completed 

structures. Facing also protect the soil and reinforcing elements from weathering 

effects, in addition, the facing provides protection against backfill erosion, and 

provides, in some cases  drainage paths. A wide range of finishes  and colors can be 

provided. 
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Figure 2.5  Facing element of MSE walls (http://www.reinforcedearth.com) 

 

The facing which are  currently used include plate and metal sheets, precast concrete 

elements,  concrete block, welded wire mesh, rubber tires, timber, and shotcrete and 

as illustrated below: 

 

 a ) Segmental precast concrete panels: the typical nominal panel dimensions of 

precast concrete panels are  1.5 m high, 1.5 or 3 m wide, and minimum thickness of 

140 mm. They are of a cruciform, square, rectangular, diamond, or hexagonal 

geometry. Temperature and tensile reinforcement are required but will vary with the 

size of the panel. Vertically adjacent units are usually connected with shear pins (see 

Figure 2.6). 

     

b) Dry cast modular block wall (MBW) units: these are relatively small, squat 

concrete units that have been specially designed and manufactured for retaining wall 

applications. The mass of these units  ranges from 15 to 50 kg , with units of  35 to 

50 kg  routinely used for highway projects. Unit heights typically range from 100 to 

200 mm for the various manufacturers. Exposed face length usually varies from 200 

to 450 mm. Nominal width typically ranges between 200 and 600 mm. MBW 

facings are available in a variety of shapes and textures. 
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Units may be manufactured solid or with cores. Full height cores are filled with 

aggregate during erection. Units are normally dry-stacked (i.e. without mortar) and 

in a running bond configuration. Vertically adjacent units may be connected with 

shear pins, lips, or keys ( see Figure  2.7). 

 

c) Welded Wire Mesh (WWM): it  can be bent up at the front of the wall to form the 

wall face. This type  is used for example in Reinforced Earth wire faced retaining 

wall systems (see Figure  2.8). 

 

d) Gabion Facing: These polymer or steel – wire baskets are filled with stone,  can 

be used as facing with MSE wall with reinforcing elements consisting of  welded 

bar-mats,  welded wire mesh geogrids, geotextiles or the double-twisted woven 

mesh placed between the gabion baskets (see Figure  2.9). 

 

e) Post-construction Facing : for wrapped faced walls, the facing – whether it was  

geotextile, geogrid, or wire mesh – can be attached after construction of the wall by 

shotcreting, guniting, cast-in-place concrete or by attaching prefabricated facing 

panels made of concrete, wood, or other materials. This type of facing  adds cost but 

the significant settlement is anticipated (see Figure  2.10). 

 

f) Geosynthetic Facing: variouse types of geosynthetic reinforcements can  looped 

around at the facing to form the exposed face of the retaining wall. These faces are 

susceptible to ultraviolet light degradation, vandalism, and damage due to fire.  

Geogrid are also warpped around the backfill in a similar manner to welded wire 

mesh. The geogrids need protection against ultraviolet light and vandalism; therfore, 

an asphalt or concrete coating is usually applied (see Figure 2.11). Vegetation can 

also grow through the grid structure and can provide both ultraviolet light protection 

for the geogrid and a pleasing appearance. 

 

 

 

 

16 



g) Timber facing: this type of facing are made of railroad ties or of other large 

elements of treated timber, geogrid either  held by friction, or attached by batten 

strips when placed bettween the treated timber elements . 

 

 

Figure 2.6  Example MSE wall facing treatments  (Berg et al., 2009) 

 

 

Figure 2.7 Examples of commercially available MBW units (Berg et al., 2009) 
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Figure 2.8 Welded Wire Mesh  (http://www. atlanticcivil.com. au) 

 

 

 

 

Figure 2. 9 Gabion Facing  (http://www. kaengineers. com) 
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Figure 2.10 Post construction Facing  (http:// www.tensarcorp.com) 

 

 
 

Figure 2.11  Types of  reinforced soil wall facing (Berg et al., 2009) 
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2. 4  Design Life 

The designing of a service life for MSE wall should be bsased on consideration of 

the potential longterm effects of material deterioration, stray currents, seepage, and 

other potentially deleterious envirnmental factors on each of the material 

components comprising the MSE wall. 

 

Generally and  for most applications retaining walls can be divided into two types : 

 permanent retaining walls and it should be designed for a minimum service 

life of 75 years. 

  Retaning wall for temporary applications and it should be designed  for a 

service life of 36 months or less. 

 

A greater level of safety and longer service life (i.e., 100 years) may be appropriate 

for buildings, walls which support bridge abutments, critical utilities, or other 

facilities for which the consequences of poor performance or failure would be severe 

(Elis et al., 2001). 

 

2.5 Modes of failure 

Analysis of failure mechanisms consider the stability of an equivalent gravity 

structure comprising the facing units, geosynthetic reinforcement and reinforced soil 

fill. Several possible failure modes are checked in reinforced soil walls depending on 

type of the structure itself and the field conditions, they are checked in the design of 

reinforced soil structures are mentioned below:  

 

 External stability: 

 (a) Vertical and horizontal deformations resulting into unacceptable differential 

settlement.  

 (b) Lateral sliding of reinforced soil. 

 (c) Overturning failure due to rotation about toe of the wall. 
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(d) Bearing capacity failure (punching) of the foundation soil under the reinforced 

soil. 

(e) Overall collapse of the reinforced wall or embankment or nailed slope (Figure   

2.12). 

 Internal stability: analysis addresses reinforcement rupture failure and pull-out 

failure of reinforcement which depend on interaction with reinforced fill  ( 

Figure 2.13). 

 compound stability: identify possible compound failure modes which initiate 

outside the reinforced zone and exit through the reinforcement and facing. 

 

 

                 (a)                                                                     (b) 

 

                      (c)                                                               (d) 

 

Figure 2.12 Potential external failure mechanisms for a MSE wall : (a) sliding,  

(b) overturning, (c) bearing capacity, (d) deep seated stability (eccentricity) 

(Elise et al., 2001) 
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Figure 2.13  MSE Wall Internal Failure Mechanism: (a) Tension failure                                            

(b) pullout failure  (SCDOT Geotechnical Design Manual, 2010) 

 

 

2.6 Relative cost  of MSE wall 

Site specific costs of a soil-reinforced structure are a function of many factors, 

including requirements of the cut-fill, type and size of wall/slope, type of soil in-situ, 

available backfill materials, type of facing finish, permanent or temporary 

application. 

 

 It has been found that MSE walls with precast concrete facings are usually less 

expensive than reinforced concrete retaining walls for heights greater than about 3 m 

and average foundation conditions. Modular block walls are competitive with 

concrete walls at heights of less than 4.5 m. 

 

In general, the use of MSE walls results in savings on the order of 25 to 50 percent 

and possibly more in comparison with a conventional reinforced concrete retaining 

structure, especially when the latter is supported on a deep foundation system (poor 

foundation condition) ( Elis et al.,  2001). The mean costs of publicly financed walls 

for four different types are shown in  Figure (2.14). Based on area of wall facing, it 

is seen that MSE walls with geosynthetic reinforcement are the least expensive of all 

wall types. 
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Even further, the classical gravity type of walls are more than twice as expensive as 

another type  (Koerner  and  Koerner, 2011). 

 

Savings in cost  is obtained by elimination of the deep foundations (usually 

possible), because reinforced soil structures can accommodate total and differential 

settlements. Other cost saving features include speed of construction and ease of 

construction. 

The actual cost of a specific MSE wall  structure will depend on the cost of each of 

its principal components (Elis et al., 2001). For segmental precast concrete wall, 

typical relative costs are: 

 

  Erection of panels and contractors profit - 20 to 30 percent of total cost. 

  Reinforcing materials - 20 to 30 percent of total cost. 

  Facing system - 25 to 30 percent of total cost. 

 Backfill materials including placement - 35 to 40 percent of total cost, where 

the fill is a granular fill from an off site borrow source. 

 

 

 

Figure 2.14 Cost comparison for retaining walls (Koerner  and  Koerner, 2011) 
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2.7 Mechanics of soil reinforced 

A reinforced soil mass is somewhat analogous to reinforced concrete in that the 

mechanical properties of the mass are improved by reinforcement placed parallel to 

the principal strain direction to compensate for soil's lack of tensile resistance.   

 

     The composite material has the following characteristics: 

 Stress transfer between the soil and reinforcement continuously takes place 

along the reinforcement. 

 The distribution of the reinforcements  throughout the soil mass with a 

degree of regularity ( not be localized). 

 

Several experimental and theoretical investigations have been performed since the 

invention of Reinforced Earth wall  to understand the concepts and mechanism of 

reinforced soil structure and interaction among its basic components, reinforcing 

elements, backfill soil and facing. In literature, three concepts have been proposed to 

explain the mechanical behavior of a Geosynthatices Reinforced Soil (GRS ) mass: 

(1) the concept of enhanced confining pressure, (2) the concept of enhanced material 

properties, and (3) the concept of reduced normal strains. 

 

2.7.1 Concept of Apparent Cohesion 

In this concept, a reinforced soil increase the major principle stress at failure from 

1 to 1R (with an apparent cohesion C'R) due to the presence of the reinforcement ( 

Wu et al., 2013), as shown by the Mohr stress diagram in Figure (2.15). The 

apparent cohesion C'R can be determined if  a series of triaxial tests on unreinforced 

and reinforced soil elements were conducted. The φ value for unreinforced  and 

reinforced sand were about the same as long as slippage at the soil reinforcement 

interface did not occur. 
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Figure 2.15 Illustration Concept of apparent cohesion due to the presence of 

reinforcement (Wu et al., 2013) 

 

 
2.7.2 Concept of Apparent Confining Pressure 

In this concept, the axial strength increased from σ 1 to σ 1R in a reinforced soil (with 

an increase of confining pressure, Δ σ3R), as shown in Figure (2.16), due to the 

tensile inclusion. The value of Δ σ3R can also be determined from a series of triaxial 

tests by assuming that φ will remain the same (Wu et al., 2013). 

The concept of apparent confining pressure the apparent cohesion can be determined 

from the strength data for the unreinforced soil. 

 

 

Figure 2.16  Illustration  Concept of apparent confining pressure due to the presence 

of reinforcement (Wu et al., 2013) 
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2.8 Stress Transfer Mechanisms 

Stresses are transferred between the reinforcement and the soil by friction (Figure 

2.17 a) and/or passive resistance (Figure 2.17 b) depending on reinforcement 

geometry:  

 

 Friction: the reinforcement elements should be aligned where friction is 

important in the direction of soil reinforcement relative movement. 

Generally, friction develops at locations where there is a relative shear       

displacement and corresponding shear stress between soil and reinforcement 

surface. Examples of such reinforcing elements are steel strips, longitudinal 

bars in grids, geotextile and some geogrid layers are an examples of such 

type of reinforcement element. 

 

 Passive resistance: whean the bearing type stresses developed on 

"transverse" reinforcement surfaces normal to the direction of soil 

reinforcement relative movement. Generally, For rigid geogrids, bar mat, 

and wire mesh reinforcements Passive resistance is considered to be the 

primary interaction, also there is some passive resistance provided by  the 

transverse ridges on "ribbed" strip reinforcement . 

 

The contribution of each one from  transfer mechanism which mension above  for a 

particular reinforcement will depend on:  

  Skin friction (the roughness of the surface).  

  Effective normal stress. 

 The dimension of grid opening. 

  Thickness of the transverse members. 

 Reinforcement elongation characteristics. 

 

 Also the characteristics of the soils including grain size, grain size distribution, 

particle shape, density, water content, cohesion, and stiffness have equally important 

for the development  of the interaction. 
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(a) 

 

 

(b) 

Figure 2.17  Stress transfer mechanisms for soil reinforcement: (a) frictional stress 

transfere between soil & reinforcement surface, (b) soil passive resistance on 

reinforcement surface (Elise et al., 2001) 

 

 

2.9 Mode of Reinforcement Action 

The most important function of reinforcements is to restrain the deformation of the 

soil. In so doing, stresses are transferred from the soil to the reinforcement. These 

stresses are resisted by the reinforcement tension and/or shear and bending (Berg et 

al.,  2009). 
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 Tension: is the most common mode of action of tensile reinforcements. 

Generally all "longitudinal" reinforcing elements that cross shear plan  are 

subjected to high tensile stresses which usually developed in flexible 

reinforcements. 

 

 Shear and Bending: this mode of action can withstand by "Transverse" 

reinforcing elements which have some rigidity. 

 

2.10 Lateral Movements of the wall facing  

 The most lateral deformations of MSE wall face usually occur during construction 

processe. Post construction movements, however, may take place due to post 

construction surcharge loads, settlement of wall fill, or due to the foundation soil 

long-term settlement. 

The magnitude of lateral displacement depends on the techniques of fill placement, 

the effect of the compaction, reinforcement length and extensibility, connection 

details between reinforcement-to-facing, and  wall facing details.  

A deformation response analysis allows for an evaluation of the anticipated 

performance of the structure with respect to horizontal (and vertical) displacement    

(Berg et al., 2009). Using numerical modeling will be warranted and give more 

accurate calculation for bridge abutments which consider critical structures. 

The results of horizontal deformation analysises are most difficult, in many cases 

they are done only approximately  and it may impact the choice of facing, facing 

connections, or backfilling sequences. 

 

2.11 Vertical Movement and Bearing Pads 

Bearing pads are placed in horizontal joints of segmental precast concrete panels in 

order to allow the panel and the reinforcement to move down with the reinforced fill 

as it is placed and settles, mitigate downdrag stress, and provide flexibility for 

differential foundation settlements (Berg et al., 2009).  
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Generally, the internal settlement within the reinforced fill is practically immediate 

beside some minor movement which occure due to elastic compression  happened in 

granular materials after construction process. 

The total amount of the movement is the combination of the external differential 

movement and the internal movement. 

Normally for well graded granular fill the internal movement is negligible, and when  

using sand type fill and/or marginal fill containing an appreciable amount of fines, 

the internal movement can be significant which leads to  concrete panel cracking 

and/or downdrag on connections resulting in bending of connections and/or out of  

panel movement can occur. 

 

2.12 Finite Elements Analysis 

 Finit element method is one of the most  powerful  numerical techniques ever 

devised for solving differential  equations of initial and boundary value problems. 

In order to analyzing an element by the finit element method, the following 

parameters hould to define: 

 The domain. 

 The boundry condition. 

 The physical properties. 

 The initial condition. 

After  define this data and if the analysis is done carfully, it can be said that the 

process to do this analysis is very methodical, and it will give us satisfactory results. 

Finit Element Aanalysis of problem is so systematic, it can be divided into logical 

steps that can be implemented on adigital computer and can be used to solve 

different types of problems just by changing the input data in the computer program. 

PLAXIS 2D program based on the finite element method and intended for 2-

Dimensional and 3-Dimensional geotechnical analysis of deformation and stability 

of soil structures, as well as groundwater and heat flow, in geo-engineering 

applications such as excavation, foundations, embankments and tunnels.  
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2.12.1 General Philosophy of FEM  

Finite element method is the representation of a body or a structure by ingathering of 

subdivisions called finite elements, which assumed to be   inter-connected at points 

called nodes. This method is a numerical procedure for analysing structures and 

continua. FEM is a powerful tool used to  analysis of  complicated  to simpled 

geometries. 

 

2.12.2  Modelling the components of MSE Wall  

The processes of the incorporation of MSE wall parameters (mechanism of soil-

reinforcement- facing interaction) in the FEM are greatly influenced by the 

construction method, compaction, propping of facing during construction  thus, 

making it difficult to model the problem. 

 

 Soil and Rock:  under the load Soil & Rock  tend to behave in highly non- 

linear way. The famouse model of mohr- coulomb which is elastic perfectly 

– plastic model can be considered as a first order approximation  of real soil 

behaviour, this model requires five basic input parameter namely  Young 

modulus, Cohesion,  Poisson’s ratio, Friction angle, and a Dilatancy angle. 

 

 Reinforcement: is generally modelled by linear bar element (the objects 

geogrid are generally used to model soil reinforcement) capable of taking 

only axial tensile forces with no bending moment. Behaviour of extensible 

geosynthetic materials is generally nonlinear. The only material property of 

geogrid is an elastic normal (axial ) stiffness EA . 

 

 Facing:  MSE Wall facing  is slender structure  with significant bending 

stiffness (or flextural rigidity). The objects  plate are structural subject  used 

to model facing, the most important parameters are the flextural rigidity 

(bending stifness) EI, and the axial stifness EA. 
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2.13 Typical Current Design Methods 

In order to determine the geometric and reinforcement requirements to prevent 

internal and external failure  in MSE wall, a number of design methods have been 

deriven, all of these methods are either empirical in nature or based on limit 

equilibrium analysis. The main purpose of these methodes is to compute the factor 

of safety against several modes of failure. 

 

2.13.1 Force Equilibrium Methods  

Jewell Method (1987): This method describes a link between soil stresses  in a 

reinforced soil mass in which a constant mobilized angle of friction is assumed with 

the resulting displacements (velocity fields). There are two parameters for plane-

strain plastic deformation of soil: the plane-strain angle of friction φps, and the angle 

of dilation ψ. 

The planes on which the maximum shearing resistance φps is mobilized  are inclined 

at (45+ Error!φps)  to the direction of major principal stress, The directions along 

which there is no linear extension strain in the soil are called the “velocity 

characteristics” and are inclined at (45 + Error!ψ) to the direction of major principal 

stress (Figure 2.18). In this method, the reinforced soil structure is divided into 3 

zones based on the reinforcement force as shown in Figure (2.19). The boundary 

between zone 1 and 2 is at an angle (45+ Error!ψ) to the horizontal, and the 

boundary between zone 2 and 3 is at an angle φ ds . 

 

Large reinforcement forces are required in zone 1 to maintain stability across a 

series of critically inclined planes. In zone 2, the required reinforcement forces 

reduce progressively. Jewell method has been found to give the closest agreement 

with FE. It is only applicable to reinforced soil walls where there is little facing 

rigidity, such as a wrapped-faced GRS wall. In this method  several design charts are 

provided (Figure 2.20). 
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Figure 2.18  Illustration Major zones of reinforcement forces in a GRS wall and the 

force distribution along reinforcement with ideal length (Wu et al., 2013) 

 

 

 

 

Figure 2.19  Illustration Major zones of reinforcement forces in a GRS wall and the 

force distribution along reinforcement with ideal length (Wu et al., 2013) 
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45 + φps/2 45+ φ/2 

φ ds φ ps 



 

 

Figure 2.20   Illustration Charts for estimating lateral displacement of GRS walls 

with the ideal length layout(Wu et al., 2013)  
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2.13.2 Slope Stability Methods  

Many basic methods have been derived from the conventional slope stability studies; 

Fellenius or Bishop methods or the Wedges methods represent the most widely used 

methods. There are three noticeable differences among these methods as follow:  

(a) Failure surface shape. 

(b) Reinforcement force distribution. 

(c) The means by which a surcharge is considered. 

 

 Typical slope stability methods are as follows: 

1. Fellenius Method 

Developed by Wolmar Fellenius as a result of slope failures in sensitive clays in 

Sweden, it is  First method of slices to be widely accepted; also produces the 

lowest factor of safety. 

 

 Assumptions for Fellenius Method:Side forces (shear and 

- Compressional force of stress are not significant included Forces . 

- Weight of the slice, including weight of water. 

- Resisting Shear forces at base of slice, both those from the cohesion of the 

   soil and those from effective stress. 

- Resisting moments are generated by the shear strength of the soil at the 

   failure surface. 

 Governing Equation for Fellenius Method 

 

                                           Eq (2.1) 

         

Where: 

W-  The weight of sliced blocks. 

b - The length of sliding plane in sliced block. 
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ϕ  -  The angle of internal friction of sliding surface. 

c -  The cohesion of sliding surface. 

α -   Inclination of sliding surface with horizontal. 

 

2- Bishop's method 

The Modified (or Simplified) Bishop's Method proposed by Alan W. Bishop of 

Imperial College is a method for calculating the stability of slopes. It is an extension 

of the Method of Slices. By making some simplifying assumptions, the problem 

becomes statically determinate and suitable for hand calculations. 

The method has been shown to produce factor of safety values within a few percent 

of the "correct" values. In this methof Factor of Safty is give as follows:  

 

                                    Eq (2.2) 

Where : 

                                               Eq ( 2.3) 

c'- is the effective cohesion. 

Φ' -  is the effective internal angle of internal friction. 

b - is the width of each slice, assuming that all slices have the same width. 

W - is the weight of each slice. 

u -  is the water pressure at the base of each slice. 
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2.14 Drainge control for MSE walls 

In the usuall design of MSE wall system     are a ssumed  to     contain “free drainge” 

components, which means that the water will easily dischared through the reinforced 

soil mass. This is  expected but only if sand  and gravels (free – draining ) are used 

in the reinforced soil zone. 

 If silt or clay ( poorly draining) soils are used, they must be used with proper 

drainage components. Of course, if sands and/or gravels are used throughout the 

reinforced soil system then such drainage controls are essentially not necessary. Four 

situations of  specific drainage control must be considered in the design of MSE 

walls when using silt and/or clay soil backfills in the reinforced soil zone. 

 

2.14.1  Retained Soil Drainage 

Groundwater drainage from the retained soil zone can be large which is  particularly 

a concern in cut-sections (Figure 2. 21), and  if hambered  by a low permeability 

backfill soil will cause the mobilization of hydrostatic pressure. In this case a back 

drain must be used between the retained soil and reinforced zone (Figure 2.22  a, b, 

c) Note that due to the difficulty in constructing vertical layers of soil, it is 

recommended  to  forms a vertical continuation of the base. 

 

 

Figure 2.21 Groundwater exiting from retained soil zone in cut-situation  

(Koerner  and Koerner, 2012)  
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(a) 

 

 

(b)  
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Geotextile draingrge filter     marin discharge pipe  flow to outlet 

 (if required)                          

Blanket drain 6 in (125 mm) min. 

chimney drain (extend top 0.7H 

or max. elev. of ground water 

 rise 



 

 

 

 

(c)  

 

Figure 2.22  Various approaches to providing back drainage behind MSE  walls:  

(a) Back drain using sand, (b) Back drain using drainage geocomposite, (c) Use of 

continuous and intermittent geocomposite back drains when using fine grained soils 

in the reinforced soil zone (Koerner  and Koerner, 2012)  

 

  

 
 

2.14.2  Drainage from Paved Surfaces and Adjacent Structure 

The familir reason for constructing a wall is to gain horizontal space along the upper 

surface this space generally required for parking, storage area, roadways, and 

buildings and homes. 

By so doing, The accumulated flow (rainwater and snowmelt) which is coming from 

these surfaces should  collected in a catch basin, inlet, or manhole located within the 

reinforced soil zone in order to prevent it from flowing over the top of the wall. 

Whenever, the  reinforced  zone consists of poor drainage soil (silts and/or clays) it 

will be very dangerous to bring the accumulated water into the reinforced zone . 

Furthermore, if there is no very good  compaction control, such design should be 

prevented. 
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Settlement of the drainage system,  

 

will increase by increasing the outward deformation of the wall itself, and this is 

behaviour usually leads to  leakage and may be cause pipe breakage as shown in the  

Figure ( 2.23). 

 

 

 

Figure  2.23  internal drainage failures (Koerner  and Koerner, 2012)  

 

 

The solution to this situation is shown in Figure (2.24). Here is the drainge flows 

should directed away from the face of the wall to the end of the reinforced soil zone . 

At this location, the inlet and pipe transmission system is constructed. Thus the 

reinforcement is not interrupted in any way. Furthermore, if leakage occurs at this 

location, it can be accumulated and transmitted into the back drain and eventually 

out of the system via the base drain ( Koerner  and Koerner, 2012) . 
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                                        (a)                                            (b) 

 

 

(c) 

Figure 2.24  Recommended backgrading from wall face and shifting of internal 

drainage systems from within to behind the reinforced soil zone : (a) Customary 

internal drainage for surface water within reinforced soil zone, (b) Recommended 

external drainage for surface water behind reinforced soil zone, (c) Recommended 

external drainage for surface water coupled with back/base drain (Koerner  and 

Koerner, 2012) 
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2.14.3 Waterproofing Backfilled Surface 

The water and snowmelt which  accumulate on the ground surface when using low 

permeability soils in the reinforced zone, it often infiltrates into the backfill soil 

forming  hydrostatic pressure against the wall facing causing  deformation or may be 

led to actual collapse. 

In this case a geomembrane covering used to cover  the surface as shown in Figure 

(2.25). 

 

 

 

Figure 2.25  Use of a geomembrane waterproofing layer above the reinforced soil 

zone (Koerner  and Koerner, 2012)  

 

 

2.14.4 Tension Crack Sealing 

When dealing with the silt and or clay backfilled soil, tension cracks usually  occur  

at the end of the reinforcement (Figure 2.26). This occurs primarily due to volume 

decrease of the reinforced soil mass, but also due to the outward deformation of the 

wall facing (Koerner  and  Koerner, 2012). 
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When these surface  tension cracks   fill with water, which lead to  forming 

hydrostatic pressure against the reinforced soil mass. 

With increasing of the wall movement, a set of masonry blocks start to falls off of its 

supporting layer. The rows of blocks still fails until the wall face collapses and 

majority of the reinforced soil mass  remains behind, as illustrate in Figure (2.27). 

The solution of this type of external drainage issue is to select a good quality of 

geomembrane waterproofing (high extensibility, flexibility, and durability),  extend 

it  beyond the reinforcement soil zon and onto retained soil zone. 

 

 

 

 

Figure  2.26 Tension cracks occurring exactly at the end of the wall reinforcement  

(Koerner  and Koerner, 2012)  
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     (a)                                                 (b)                                         (c) 

 

              (d)                                      (e)                                            (f) 

 

Figure 2.27 Modular block wall collapse progression due to hydrostatic pressure in 

tension cracks: (a) Crack forms, water enters and pressure is mobilized, (b) Wall 

deforms; pressure continues, (c) Deformations continiouse single block dislodges 

and drops to toe of wall, (d) Overlying blocks drop accordingly, (e) blocks 

progressively drop along with gravel and some backfill soil, (f)  after the wall facing 

collapses; majority of the MSE mass remains behind (Koerner  and Koerner, 2012)  
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CHAPTER III 

 

 

NUMERICAL ANALYSIS 

 
 

3.1 Overview of plaxis software  

The two-dimensional finite element program PLAXIS version 8.0 is a finite element 

software program developed in the Netherlands for analysis of deformation in geo-

structures and geotechnical engineering problems.  

It is equipped with features to deal with various aspects of geotechnical structures 

and construction processes using  excellent theoretically  computational procedures. 

Geotechnical applications require advanced constitutive models for the simulation of 

the non linear, time dependent and anisotropic behaviour of soils and/or rock, also 

Special procedures are required to deal with hydrostatic and non hydrostatic pore 

pressures in the soil because the soil is multi phase material. Although the modelling 

of the soil itself is an important issue. Many projects involve the modelling of 

structures and the interaction between the structures and the soil. 

PLAXIS 2D software has been optimised to accurately simulate this highly non-

linear behaviour. 

Typical PLAXIS 2D applications include: assessing street level displacements 

during the tunnel construction, consolidation analysis of embankments, soil 

displacements around an excavation pit, dam stability during different water levels, 

stability of retaining walls and much more. 

 

 

 

44 



3.2 General modelling aspects by plaxis software 

With PLAXIS 2D the geometry of the model defined as the representation of the 

physical problem and it is consist points, lines, and clusters which used to define soil 

layers, structural elements and loads.  

The geometry can be easily defined in the soil and structures modes, after which 

independent solid models can automatically be intersected and meshed. The staged 

construction mode allows for simulation of construction and excavation processes by 

activating and deactivating soil clusters and structural objects.  

The calculation kernel enables a realistic simulation of the non linear, time 

dependent and anisotropic behaviour of soils and/or rock. Since soil is a multi phase 

material, special procedures allow for calculations dealing with hydrostatic and non 

hydrostatic pore pressures in the soil. The output consists of a full suite of 

visualization tools to check the details of the 2D underground soil-structure model. 

The analysis prosses started in input program,  and it is  carried out  in  the sequence 

indicated below. 

 3.2.1 Composing a geometry model  

The geometry is the representation of the physical problem. Principle, first by using  

the geometry line option which have several functions (or properties). The user can 

define graphical input of geometry contour, construction stage and the physical 

boundaries of the geometry. Plates are structural objects used to model slender 

structures in the ground with a significant flexural rigidity or normal stiffness. Plates 

can be used to simulate the walls, shells or linings extending in z-direction. Geogrids 

are slender structures  with their normal stiffness generally used to model 

reinforcement. Interfaces used to model the interaction between the reinforcement 

and the soil, interfaces  are used as intermediate between smooth and fully rough,  

then boundary conditions and then loading. 
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3.2.1.1 Soil properties 

The behaviour of Soil and rock under load can be descibed as  a highly non-linear 

stress-strain behaviour, which  can be modeled at several levels of sophistication .  

 

Table 3.1 : Units 

Type Unit 

 

Length 

Force 

Time 

 

m 

kN 

day 

 

 

Table 3.2 : Model Dimensions 

 Min.             Max. 

 

X 

Y 

 

0                  21 

0                  11 

 

 

 

Table 3.3 : The Model 

Model Plain strain 

 

Element 

 

15- node 
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The first order approximation of real  soil behaviour is the well-known model of 

Mohr-Coulomb. There are  five basic input parameters which are required in Mohr-

coulomb model. Namely a Young’s modulus E, a Poisson’s ratio ν, a cohesion c, a 

friction angle φ, and a dilatancy angle ψ. 

The material properties and model parameters for soil clusters are entered in material 

data sets. The material properties of interfaces which are related to the soil properties 

are entered in the same data sets as the soil properties . 

 

PLAXIS 2D can handle cohesionless sands (c = 0), but some options may not 

perform well.To avoid complications, the  value of cohesion will assumed to be 

equal to 1 kN/m
2
, this value  is usually used during analysis. 

 

In the case of full drainge due to high permeability and also if dry soil are used , no 

excess  pore pressure are generated. The behaviour of the soil will be described as 

drained behaviour which also can be used to simulate  long term soil behaviour 

without the need to model the precise history of consolidation and undrained loading. 

 

Undrained behaviour used for full development of excess pore pressure. In the case 

of low permeability soil and/or high rate of loading the flow of pore water can be 

neglected. 
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Table 3.4 Soil data parameters 

 

Mohr-Coulomb 

 

Foundation 

soil 

(1) 

Loose 

sand 

(2) 

Dense 

sand 

(3) 

Clayey soil 

 

Type of the soil 

 

Drained 

 

Drained 

 

Drained 

 

Drained 

γunsat [kN/m³] 

 

22 16 17 20.4 

γsat [kN/m³] 

 

24 20 20 20.4 

kx [m/day] 

 

1 1 1 1.1E-5 

ky [m/day] 

 

1 1 1 1.1E-5 

Eref [kN/m²] 

 

60000 10000 35000 2.2E+5 

ν [-] 

 

0.25 0.3 0.35 0.3 

  cref 

 

[kN/m²] 1 

 

1 1 25 

φ [°] 

 

45 33 40 35 

ψ [°] 

 

15 3 10 0 

Rinter. [-] 

 

0.65 0.67 0.67 0.67 
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3.2.1.2 MSE Wall Facing 

Plates are structural objects  used to model slender structures in the ground  with a 

significant flextural rigidity (or bending stiffness) and a normal stiffness. The input 

of stiffness parameters is completed by Poisson’s ratio. 

 

plate can be used to simulate the influence of walls extending in Z- direction. The 

vertical component of the MSE facing units were modeled using “plate” (beam) and  

it is able to sustain axial forces. 

A footing is also provided at the base of the facing wall by using “plate” element.  It 

is  used for alignment purposes only and served no structural purpose. A concrete 

footing protection block was cast at the toe of the wall at the early stages of 

construction to prevent the base of the wall from significantly pushing out (Row and 

Skinner,  2001). 

The block walls and the footing, both are made of concrete. The input parameters for 

plates are flextural rigidity (EI), Normal stiffness (EA),  and element thickness. 

 

 

Table 3.5  Plate data sets parameters 

 

Identification 

 

EA 

[kN/m] 

 

 

EI 

[kNm²/m] 

 

 

W 

[kN/m/m] 

 

 

ν  

[-] 

 

 

Diaphragm wall  
 

 

5.00E+06 

 

 

2.6041E+04 

 

3.75 

 

0 

 

Footing 

 

5.00E+06 

 

 

8.50E+03 

 

 

10 

 

0 
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3.2.1.4 Geogrid 

Geogrid are Structural elements  often combined together to simulate the mechanical 

behaviour of real engineering structures and it is used to model soil reinforcements. 

  

Geogrids are slender structures with a normal stiffness but with no bending stiffness, 

it sustain tensile forces and no compression force.  

The only material property of geogrid is an elastic normal (axial) stiffness EA, which 

can be specified in the material data base.  

 

In the calculation phases the geogrids can be activated or de-activated  by using 

staged construction as loading input. 

 

 

 

Table 3.6  Geogrid data sets parameters 

 

Identification 

EA 

[kN/m] 

ν  

[-] 

 

Geogrid 

 

1100 

 

0 
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3.2.1.5 Interface Element 

Each interface has assigned to it is “virtual thickness” which is an imaginary 

dimension used to define the material properties of interface. The higher the virtual 

thickness led to generation  more elastic deformation. 

 

The virtual thickness should be small because interface element are supposed to 

generate very little elastic deformation. A typical application of interface would be to 

model the interaction between the sheet pile and the soil, which is intermediate 

between smooth and fully rough. The roghness of the interaction is modelled by 

choosing a suitable value for the strength reduction factor in the interface (Rinter). 

 

Generally the  effect of interface  is a reduction of contact friction, thus enabling a 

more realistic modelling of the mechanical behaviour than a perfectly “glued” 

contact type, which would be what one obtains without introducing any interface. 

Therefore, interface elements allow relative displacements between structure and 

subsoil. 

 A typical value of   Rinter = 0.67   is used for the fill soil. 

 

3.2.1.6 Boundary Condition 

On selecting standard fixities from loads menu PLAXIS 2D automatically impose a 

set of general boundary conditions to the geometry model.  

PLAXIS 2D offers the “standard fixities” option In order to prevent horizontal 

displacements on the left and right side of the mesh and horizontal and vertical 

displacements at the bottom. 

Figure (3.1) represent the modeling configuration used for MSE wall simulation and 

analysis. The model indicates geometry with all dimensiones, boundary (standard 

fixities) conditions, clusters,  and structural objects (facing, foundatin, and 

reinforcement).  
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Figure 3. 1 Geometry Model with all structural elements 
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7 m 

4 m 

20 m 

25 m 

 

Geogrid 

0.5 m 

Backfill soil 

Foundation soil 

(Lime stone) 

6 m 



3.2.2 Creating and assigning data sets 

 Enter model parameters which include soil properties and material properties of 

structure as data sets, then sorted  in a material database. The database sets of 

properties are assigned to the soil  clusters or to the corresponding structural objects 

in the geometry model. 

In modelling soil behaviour PLAXIS 2D supports various models to simulate the 

behaviour of soil such as the linear elastic model, Mohr-Coulomb model, jointed 

rock model, hardening soil model, soft soil model, soft soil creep model and other 

user define models. 

 

3.2.3 Generating a finite element mesh 

 The material properties should be assigned  to all  structural objects and clusters 

after completing the model geometry, then performing the finit element  calculations 

by dividing the geometry into finit element. A composition of finite elements is 

called a mesh. The basic type of element in  amesh is 15-node tringular element or 6- 

node tringular element (Figure 3.2). 

The 15 – node triangle is very accurate element that has produced high quality stress 

results for difficulte problems, but at the same time it led to slow calculation and 

high memory consumption. 

 

 

Figure 3.2 position of nodes and stress point in the soil elements 

 (http:// learnplaxis. blogspot.com.tr) 
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Meshing is very important  in obtaining a realistic result. In PLAIS 2D version 8 

software the user should to choose one from five types of meshing: very coarse, 

coarse, medium, very fine and fine. 

A too coarse meshing is unfavorite choice because it is fails to capture the subtle 

changes in the stresses generated in different parts of the medium, especially at the  

stress concentrations points. On the other hand, a too fine mesh is uneconomic 

because it is consume very long time to complete calculation process. Hence, a trade-

off is required to obtain an approximately accurate solution in a reasonable time. 

 PLAXIS 2D version 8.0 allows simulation of a fully automatic mesh generation for 

finite element analyses. 

The two vertical boundaries were free to move vertically and were considered to be 

fixed in the horizontal boundary direction. The foundation soil is not considered in 

this analysis because it was assumed to be stiff soil. Therefore,  the bottom boundary 

has been modeled as fixed boundary.  Mesh generation are illustrated in Figure (3.3).  

 

Figure 3.3  Generated Mesh at initial condition 
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3.2.4 Generation initial Pore Water Pressure  

The water pressure is generated on the basis of phreatic level. The geometry for all 

cases of backfill soil does not involve water pressure, which means the presence of 

the water table was not observed during soil analysis. 

Therfore, a pheartic level is automatically placed at the bottom of the geometry. The 

resultant generated pore pressure distribution is shown in Figure (3.4). 

 

 

 

 
 

Figure 3.4 Active Pore Pressure 
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 3.2.5 Generating initial conditions 

 Once the geometry has been created and finite element mesh has been generated, the 

initial stress state and the initial configuration must be specified. This is done by the 

initial conditions part of the input program. Finite element model used in this 

analysis is plain strain model.  

 

Displacements and strains in z-direction are assumed to be zero. However, normal 

stresses in z direction are fully taken into account. The 15-node triangle, used in this 

study, is a very accurate element that has produced high quality stress results for 

difficult problems. 

 

 The initial stress forming in soil body is influenced by the history of the soil 

formation and by the weight of the material. This stress in characterized by initial 

vertical effective stress. The initial horizontal effective stress is related to initial 

vertical effective stress by coffitient of lateral earth pressure. 

 

In PLAXIS 2D, the effective initial stress analysis is done by K0 procedure. The 

result after the development of initial effective stress is as illustrated in Figure  (3.5). 
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Figure 3.5  Effectıve Stress Distribution 
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

4.1 Numerical Analysis for MSE walls  

Finite element analysis was carried out using commercial software PLAXIS  2D 

version 8.0. Seven different parametras are studied to investigate their effecte on 

Horizontal displacements of the wall face and Axial force development on geogid 

layers. The results are compared and reported in this chapter.  

 

4.1.1 Deformed Mesh 

Figure (4.1) shows deformed mesh. The performance of the wall in the software is 

basically depends upon the mesh data in which the project has been generating. The 

figure  clearly shows the outward displacement of the facing wall and the bend shape 

of geogrids which is scaled to ensure that the deformation are visible. 

 

Figure 4.1. Deformed Mesh 
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4.1.2 Displacement 

Figure (4.2)  shows the total displacement of all nodes as arrows, which is an 

indication of their relative magnitude and direction. The direction of displacement is 

indicated by red arrows and the length of each arrow represents the magnitude of the 

displacement at the corresponding point. 

 

Figure (4.3)  shows contour lines of the total displacement  which is lablled. Each 

color in contour plot corresponds to limited range of displacement which  is 

presented at the right of the figure by index. Red color represent the highest 

displacement zone, when there is  decrease in the displacement, the color of the 

legend changes gradually from red to blue. The blue colored zone represents the  

zero displacement area. 

 

Figure (4.4) show color shading of the total displacement. An index is presented with 

the displacement values at the color boundaries. 

 

Figure 4.2  Total displacement as Arrows 
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Figure 4.3  Total displacement as contour lines 

 

 

 

Figure  4.4  Total displacement as color shading 
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4.1.3 stresses on the soil 

Figure (4.5) show the  total effective principal stresses. The stress is increases with 

the depth of wall. 

 

 

Figure 4.5  Effective mean stresses 
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4.1.4 Movement of the Facing wall 

 Figure (4.6) presents the displacement and forces acting on the facing wall. The 

displacement, which is specifies the change in position of a point in reference to a 

previous position. In simple terms, it's the difference between the initial position and 

the final position of an object. 

 

Figure 4.6 (a) shows the total displacement along the facing wall. The maximum 

total displacement  occurs at the top point of the facing wall. As the depth of facing 

wall increases, the value of total displacement decreases.  

 

Figure 4.6 (b) & (c ) present the vertical and horizontal movement of wall 

respectively. 

The maximum horizontal displacement is found at the top point of the wall and as 

depth increases, the displacement reduces. The movement is very small and the 

direction of movement is opposite at the bottom portion of wall, which is pushed 

down under the natural soil. 

 

Figure 4.6 (d) indicate the axial force  diagram along the facing wall. 

The maximum value of axial force  occurs at the lowest point of the wall just above 

the foundation soil.  

 

Figure 4.6 (e) & (f) indicate the shear force and bending moment diagram along the 

facing wall. 
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                ( a )                                ( b )                                        ( c ) 

  

        ( d )                              ( e )                                     ( f ) 

 

 

Figure ( 4.6 ) 

 

 (a) Total displacements     (b) Horizontal displacements    (c) Vertical displacements 

 (d) Axial force                   (e) Bending moments                 (f) Shear force 
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4.1.5 Analysis of Geogrid Behavior 

Geogrids are placed in horizontal layers to unify the mass of the composite MSE 

wall structure to increase the resistance of the wall to the destabilizing forces 

generated by the retained soils and surcharge loads. 

 

To achieve a composite MSE wall structure, geogrids must possess adequate tensile 

strength, be placed in sufficient layers, and develop sufficient connection and 

anchorage capacity to hold the composite MSE structure together.  

  

Figure (4.7) represent the axial force in geogrid. Figures (4.8), (4.9), (4.10) represent 

the Total, Horizontal, and Vertical displacement in geogrid. The displacements 

generally increase toward the top of the wall and it  decreasing with increasing the 

depth below the top of the wall.  

Due to high confining pressure behind rigid facing, the location of the overall 

reaction force becomes closer to the facing.  

 

 

 

Figure  4.7  Axial force in geogrid 
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Figurre  4.8  Total displacement in geogrid 

 

 

 

Figure 4.9   Horizontal displacement in geogrid 

 

 

 

Figure  4.10  Vertical displacement in geogrid 
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4.2 Parametric studies 

The most common parameters which effect on the behaviour  of MSE wall   are 

studied in this current research and they are  presented in Table 4.1. 

Different properties of geogrid (length, spacing, and strength) and different position 

of traffic surcharge load in the reinforced zone behind the facing of MSE wall.  

Different value of  the wall hight and the facing thickness,  all of these parameters 

analysis with three types of  backfill soil loose sandy soil, dense sandy soil, and 

clayey soil. An adequate amount of graphs and charts are provided to represent the 

effect of various parameters on the final extreme horizontal  displacement of the 

MSE wall and the axial force in geogrid. 

The resultes are compared under different conditions. These values are taken as they 

are the typical values that are generally used to design MSE wall. 
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Table 4.1 Presentation of different Parameters and their typical values used in this 

study 

 

 

NO.  

 

PARAMETERS 

 

UNITS 

 

VALUES USED 

IN THE STUDY 

 

NOTES 

 

1 

 

MSE Wall height 

(H) 

 

m 

 

4, 7, 10 

 

_ 

 

2 

 

 

 

Geogrid length 

(L/H) ratio 

 

_ 

 

0.3, 0.5, 0.7,  1,  

1.3 

This analysis was 

conducted for three 

wall height 

H = 4, 7, 10 m 

 

3 

 

 

 

Geogrid strength 

(EA) 

 

kN/m 

 

1000, 3000, 

6000 

This analysis was 

conducted for three  

wall height 

H = 4, 7, 10 m 

 

4 

 

Geogrid vertical 

spacing (Sv) 

 

m 

 

0.3,  0.5, 0.7 

 

_ 

 

5 

 

Face element 

thickness 

(D) 

 

m 

 

0.25, 0. 30, 0.35,  

0.4 

 

 

_ 

 

6 

 

 

Traffic surcharge 

load 

 

kN/m
2
 

 

20 

 

_ 

 

7 

 

Angle of internal 

friction ( φ ) 

 

[°] 

 

 

30,  33,  40,  42 

 

_ 
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4.2.1 Effect of Wall  Height  ( H ) on Horizontal Displacement & Axial Force in 

Geogrid 

 

Design Parameters: 

The height of the wall (H) are  4, 7, and 10 m, geogrid stifness (EA) = 1100 kN/m, 

vertical spacing between geogrid layers (Sv) = 0.5 m, face element  thickness (D) = 

0.25 m,  Reinforcement length  to  height ( L/H ) ratio = 0.7. 

This analysis was carried out for three different type of backfill soil, in order to see 

the effect of wall height on horizontal displacement and axial force in the 

reinforcement layers. 
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Figure 4.11 Effect of wall height and backfill soil type on  horizontal displacement 

 

Figure (4.11) shows the effect of wall height and back fill soil type on horizontal 

displacement of MSE wall. As can be seen from the Figure, horizontal displacement 

increase with increasing the height of the wall for loose and dense sandy soil. 

In  granular backfill soil  increasing the value of friction angel will reduce the 

displacement; because stronger backfill soil will give more friction between the 

geogrid and soil interface, which will  reduce the movement of wall. Internal friction 

angel (φ)  between soil and geogrid depends on soil friction angel. So, when φ 

increases, (φ inter ) also increases;  which results in decreased displacement   of     the 
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 MSE wall. Reduction in displacement is around 58% when the percent change in 

internal firiction angle is 21%. 

 It is interesting to note that change in the height of the the wall has no effect on the 

face displacement of the wall for calyey soil. This may be due to effect of cohesion 

of the calyey soil that hold soil together without reinforcement to a cerain height. 
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CLAYEY SOIL
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Figure 4.12  Effect of wall height on geogrid axial force  in: (a) loose sandy soil, 

(b) Dense sandy soil, (d)  clayey soil  

 

Figures 4.12 (a), (b), (c) show the change in the axial force on geogrid layers for 

different height and soil types. Generally, the axial force developed in geogrid layers 

increase with increasing the height of the wall. 

 

For garanular backfill soil, maximum force was developed at the mid hight of the 

wall independent of the internal friction angle.  For clayey backfill soil the position 

of the reinforcement layer on which maximum tensile force occurs is located at an 

elevation nearby 25 percent of the total height (measured from the base of the wall). 
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4.2.2 Effect of Reinforcement  Length to Height (L/H) on Horizontal 

displacement & Axial force in Geogrid 

 

Design Parameters: 

This analysis  was conducted on a MSE wall with  height (H) = 4, 7, and 10 m, 

geogrid stifness (EA) = 1100 kN/m, vertical spacing between geogrid layers (Sv) = 

0.5 dm, face element thickness (D) = 0.25 m, reinforcement length  to height ( L/H ) 

ratio = 0.3, 0.5, 0.7, 1, and 1.3. 

This analysis was carried out for three different type of backfill soil, in order to see 

the effect of (L/H) ratio on horizontal displacement and axial force in the 

reinforcement layers. 

 

 

 

 

Figure  4 .  1 3   Rankine active failure zone 
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The effective length of the geogrids along which frictional resistance is developed 

may be conservatively taken as the length that extends beyond the limits of the 

Rankine active failure zone (Figure 4.13), which makes an angel of (45 - Φ/2) with 

the vertical. A reduction in the horizontal displacement occurred when the length of 

the reinforcement extended beyond the Rankine failure plane. So when geogrid 

length increases (the length beyond the failure line increases), it will  gives more 

frictional resistance with the backfill soil. 
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Figure 4.14  Effect of  reinforcement length on horizontal displacement in 

(a) Loose   sandy soil,  (b) Dense sandy soil,  (c) Clayey soil  

 

 

Generally, the results show the maximum  wall deformation increases as the 

reinforcement length is reduced from 0.7 to 0.5.  

In case of loose sand,  a significant reduction in horizontal movement occurred for an 

increase in L/H ratio from 0.5 to 0.7  for H = 7 m & 10 m.  When L/H increased from 

0.7 to 1 avery small decrease observed in wall deformation especially for H= 4 m &7 

m. There is no observed change in  horizontal  displacements when  L/H > 1, as show 

in  Figure  1.14 (a). 

 

 In case of dense sand,  for wall  height H = 10 m, the horizontal displacement 

decrease when L/H change from 0.5 to  0.7,  while there is small  change in horizontal  

displacements  when the L/H > 0.7. Increasing L/H ratio have no significant  effect on 

horizontal displacement in  H= 4 & 7 m,  the displacements neither increase nor 

decrease and this shows that the soil has reached its state of equilibrium as shown in 

Figure 1.14  (b). 

In clayey soil  there is no effect of geogrids length on displacements as shown in 

Figure 1.14 (c). The results of FEM analysis show a good agreement with the results 

of the studying conducted by Kibria et al., (2014);  Mahmood (2009). 
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The analysis performed by Kibria et al., (2014) on MSE wall with height equall to 4, 

8, and 12 m, the ratio of reinforcement length to wall height  0.3–1.0. The results 

showed that a significant reduction in horizontal movement occurred for an increase 

in L/H ratio from 0.5 to 0.7.   
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WALL HEIGHT = 10 m
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(c) 

Figure 4.15    Effect of  reinforcement length and type of reinfrced soil 

on  horizontal displacement for (a) H= 4 m, (b) H= 7 m, (c) H= 10 m  

 

As shown in Figures 4.15 (a), (b), (c) geogrid length  shows  significant effect in case 

of  loose sand even in case of H = 4 m, which means that deformation increase with 

decrese length of geogride and angle of internal friction for backfill soil in 

reinforcement zone. Generally, The choice of 70% of height for minimum 

reinforcement length is one of design specification and the designer’s preference. 

There is considerable evidence that walls experience greater deformation with 

shorter reinforcement “L/H” ratios (L/H< 0.7). 
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DENSE SANDY SOIL WALL HEIGHT = 7 m
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Figure 4.11  Effect of  reinforcement length on geogrid axial force for (a) Loose 

sandy soil, (b) Dense sandy soil, ( c) Clayey soil 

 

As shown in the Figures 4.16 (a), (b), (c) when L/H is greater than about 0.7, there is 

no variation in  the geogrid axial force and when the ratio L/H is decreased   below  

0.7, there is a slight  increase the geogride axial force. The same results was observed 

in the study conducted by  Ho and Rowe (1996).  
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According to Ho and Rowe (1996), when the ratio L/H is decreased below 0.7, there 

is a substantial increase in all the forces required for equilibrium. The lateral thrust 

pushes the reinforced soil block from behind and produces a moment about the toe of 

the wall, inducing higher vertical and horizontal stresses towards the front of the 

wall. The vertical stress may increase beyond the theoretical overburden value (i.e. 

v = γ h) despite the presence of the resistance from facing/soil interface friction. 

 

 

4.2.3 Effect of Reinforcement Stiffness (EA) on Horizontal Displacement & 

Axial Force in Geogrid 

 

Design Parameters: 

This analysis  was conducted on  MSE wall with  height (H) = 4, 7, and 10 m, 

geogrid stiffness (EA) = 1000, 3000, and 6000 kN/m, vertical spacing between 

geogrid layers (Sv) = 0.5 m, face element thickness (D) = 0.25 m,   reinforcement 

length  to height ( L/H ) ratio = 0.7. 

This analysis was carried out for three different type of backfill soil , in order to see 

the effect of geogrid stiffness on horizontal displacement and the axial force in the 

reinforcement layers. 
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DENSE SANDY SOIL
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Figure 4.17  Effect of geogride stiffness and wall height on horizontal displacement 

in: (a) Loose sandy soil, (b) Dense sandy soil, (c) Clayey soil  

 

The variations in horizontal displacement with reinforcement stiffness were 

identified for three MSE  wall height  H = 4, 7, and 10 m . 

 

The illustrated results shows that horizontal displacement decreased with an increase 

in the reinforcement stiffness for all reinforcement wall height.  
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The results observed from figures  4.17 (a), (b), (c) are Similar to the results which 

have been reported by Kibria et al., (2014);  Oyebile (2011).  

 

The reinforced soil wall studied by Oyebile (2011),  provides support to the lower 

side of the Egnatia motor park. Awide range of geogrid stiffness used in this study ( 

range between 1.00E+02 to 1.00E+15 kN/m). A previous study  conducted by this 

author indicated that the  horizontal  displacements changes immediately uponfurther 

reduction in the stiffness of the geogrids even though the rate of change is smaller 

compared to the preceding rate of change in the stiffness of the geogrids. This result 

shows a wide range of values of geog`rids stiffness for steady and stable 

displacements of the reinforced wall. 

 

As shown in Figures 4.17 (a), (b)  it was observed that the effect of stiffness was not 

significant at a wall height of 4 m, but there  is a substantial decrease in horizontal 

displacement in H= 7 m & 10 m. The range of movement decreased from 172 to 

55mm in case of loose sand, and from 65mm to 18 mm for case of dense sand, for an 

increase  of  stiffness from 1000 to 30000 kN/m, at H = 10 m. Horizontal 

deformation of the wall increased significantly at a stiffness lower than 3000 kN/m.  

 

In clayey backfill soil Figure 4.17 (c), a substantial change in horizontal 

displacement had not occurred at  stiffness greater than 3000 kN/m. the effect of 

stiffness was not significant at a wall height of 4 m. 

Cohesive soil always allow less displacement. But Cohesionless soil with the same 

strength shows relatively large displacement.  
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( c ) 

Figure 4.18 Effect of geogride stiffness  and backfill soil type on horizontal 

displacement for:  (a) H= 10 m, (b) H= 7 m, (c) H= 4 m  

 

From Figures 4.18 (a), (b), (c), it can be shown that  the horizontal deformation of 

wall face element increase with increasing MSE wall height, horizontal deformation 

decrease with increasing geogrid stiffness, and finally horizontal deformation 

increase with decreasing angle of internal friction for backfill reinforcement soil. 
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DENSE SANDY SOIL
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Figure 4.19  Effect of geogride stiffness  on geogrid axial force in: (a) Loose sandy 

soil, (b) Dense sandy soil,  (c) Clayey soil  
 

Effect of geogrid strength on axial force mobilized in reinforcement layers  shown in 

the  Figures 4.19 (a), (b), respectively. These Figures show that; the geogrid strength 

has no significant effect on axial force developed. The pattern of the reinforcement 

axial force   are the same for a different  computed case by PLAXIS in the study 

conducted by Mahmood (2009). 
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This author study the  effect of geogrid strength on axial force developed at upper & 

lower most geogrid in MSE wall with height 4 m; without water and with water. The 

results indicated that the geogrid strength has no significant effect on axial force 

developed. 

 

A reinforced soil system provides resisting force to maintain equilibrium condition in 

the MSE wall.When geogrid strength increases, the pull out stress of geogrid is also 

increased. So, it requires more force to displace the geogrids from their original 

position. Tensile failure of the reinforcement at any level leads to progressive 

collapse of the wall. Again, when geogrid strength is inadequate, then geogrid 

breaking may occur, which will increase the displacement. Slip at soil reinforcement 

interface may occur, while geogrid strength is insufficient. Slip at the soil 

reinforcement leads to redistribution of stresses and progressive deformation of the 

wall. 

 

4.2.4 Effect of Reinforcement Vertical Spacing (Sv) on Horizontal displacement 

& Axial force in Geogrid 

 

Design Parameters: 

This analysis  was conducted on  MSE wall with  height (H) = 7 m, geogrid stifness 

(EA) = 1100 kN/m, vertical spacing between geogrid layers (Sv) = 0.3, 0.5, and 0.7 

m,  face element thickness (D) = 0.25 m,  reinforcement length to  height ( L/H ) 

ratio = 0.85. 

This analysis was carried out for three different type of backfill soil, in order to see 

the effect of (Sv)  on horizontal displacement and axial force in the reinforcement 

layers. 
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CLAYEY SOIL
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Figure 4.20  Effect of  vertical spacing  on horizontal displacement in: (a) Loose 

sandy soil, (b) Dense sandy soil, (c) Clayey soil  

 

Figures 4.20 (a), (b)   shows that  horizontal displacements increase rapidly with 

increase in verticall spacing of geogrids. The range of movement increased  from 66 

mm to 76 mm in case of loose sand, and from 26 mm to 34 mm for case of dense 

sand, for an increase  of  geogrid vertical spacing from 0.3 m  to 0.7 m at H = 7 m.  

This meanse  that displacements increase by nearly 15% for loose sand and 31% for 

dense sand. This behaviour reported herein agrees well with other case studies by Ho 

and Row (1996); Oyegbile (2011).       

 

Figure 4.20 (c), shows that the value of horizontal displacement increases steadily 

with an increase in spacing of geogrids. This observed behaviour is due to cohesive 

property of clayey soil. 
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Figure 4.21 Effect of vertical spacing  and backfill soil type on horizontal 

displacement 

 

Cohesive soil always allow less displacement  as shown in Figure (4.21). But 

cohesionless soil with the same vertical spacing shows relatively large displacement. 
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CLAYEY SOIL
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Figure 4.22  Effect of vertical spacing on geogrid axial force in: (a) Loose sandy soil,  

(b) Dense sandy soil, (c) Clayey soil  

 

Effect of Geogrid vertical spacing  on axial force developed at the geogrid layers  

shown in the  Figures 4.22 (a), (b), (c),  respectively. These figures show that, the 

axial force increasing with the increasing of geogrid vertical spacing (Sv) which have 

significant effect on force developed in geogrid layers embedded in the  different 

types of backfill soil used in this analysis. 

 

The horizontal stress acting on the facing and the connection loads can be reduced by 

using more layers of reinforcement. Reinforcement spaced too far apart leads to 

failure of the soil as if it were not reinforced at all. Thus, a close spacing is necessary 

to activate the reinforcement strength for the structure to be effective. closer 

reinforcement spacing increases internal stability, which means less facing 

deformation and less axial force developed. 

In order for reinforcement strength to be used, it must be mobilized. As the load is 

carried by the backfill between the reinforcements, the soil, which is much weaker 

than the geosynthetic; starts to slide against the reinforcement causing friction to 

develop, and mobilizing the reinforcement tensile strength.  
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4.2.5 Effect of Face Element Thickness (D) on Horizontal Displacement & Axial 

Force in Geogrid 

 

Design Parameters: 

The hight of the wall (H) = 7 m, geogrid stifness (EA) = 1100 kN/m, vertical spacing 

between geogrid layers (Sv) = 0.5 m, face element  thickness (D) = 0.25, 0.3, 0.35, 

and 0.4 m,  reinforcement length  to height ( L/H ) ratio = 0.85.  

This analysis was carried out for three different type of backfill soil, in order to see 

the effect of  face element thickness on horizontal  displacement and axial force in 

the reinforcement layers. 
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Figure 4.23  Effect of wall thickness and backfill soil type on horizontal 

displacement 
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CLAYEY SOIL
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Figure 4. 24 Effect of wall thickness and backfill soil type on horizontal 

displacement 

 
From Figure (4.23), it can be seen that increasing the wall thickness has no effect on 

extreme total displacement,  nor axial force developed in the geogrid layers. 

The facing plays a minor structural role in the stability of the structure. The facing 

element protects the soil and reinforcing elements from weathering effects and used 

to keep the backfill soil from flowing, Since the facing is the visible part of the  

structure. It also controls the aesthetics of the reinforced earth wall. 

The influence of facing panel thickness on the axial force is not  significant as 

illustrated in Figures 4.24  (a), (b), (c). 
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4.2.6 Effect of Traffic Surcharge Load Position on Horizontal Displacement & 

Axial Force in Geogrid 

 

Design Parameters: 

This analysis  was conducted on  MSE wall with  height (H) = 7 m, geogrid stifness 

(EA) = 1000 kN/m, vertical spacing between geogrid layers (Sv) = 0.5 m,  face 

element  thickness (D) = 0.25 m,  reinforcement length to height (L/H) ratio = 0.7, 

with shifting surcharge traffic load equal to 20 kN/m
2
 as illustrated in Figure 4.25 

(a), (b), (c). 

This analysis was carried out for three different type of backfill soil to see  the effect 

of  traffic surcharge load on  horizontal displacement, and maximum axial 

reinforcement force. 
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                                                                 ( b ) 

 

 

 

( c ) 

 

Figure 4.25  position of traffic surcharge load: (a) position 1, (b) position 2, (c) 

position 3 

 

Generally MSE walls may be subjected to a variety of loads, including concentrated 

vertical surcharge loads. In this case, an external uniform vehicular traffic live load 

as illustrated in Figure 4.25 (a), (b), (c), applied to the reinforced soil mass behind 

the wall facing .The effect of a surcharge load on the wall’s stability depends upon 

its magnitude and its location from the face of the wall. The closer the location of the 
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surcharge load to the wall, (i.e., back of the reinforced zone) the worse the impact on 

wall stability White (2010). That  is mean when the distance between the load and 

the wall face increase the axial load and horizontal displacement will decrease. 

According to White (2010), If the distance between  surcharge load and the wall is 

greater than a certain distance, then its effect is insignificant. This distance is known  

as the extent of active zone (LP). LP can be calculated as shown in the following 

equation: 

    L p = B +  H tan (45
°
 -  Error!φ f )                           Eq (4.1) 

Where:   

LP -  Extent of active zone. 

B -  Width of reinforced soil mass . 

In general, if the reinforced soil mass is reasonably stable, then surcharge loads 

located beyond the distance equal to the design height of wall (H) would not 

significantly impact the wall stability. 

H -  Design wall height .  

Thus, LP can also be roughly taken  equal to H, the design wall height (LP≈H). 

 

LOOSE SANDY SOIL

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

POSITION 1 POSITION 2 POSITION 3

H
o

ri
z

o
n

ta
l 

D
is

p
la

c
e

m
e

n
t 

(m
m

)

 

( a ) 

 

 

 

94 



DENSE SANDY SOIL

32

33

34

35

36

37

38

39

40

POSITION 1 POSITION 2 POSITION 3

H
o

ri
z

o
n

ta
l 

D
is

p
la

c
e

m
e

n
t 

(m
m

)

 

( b ) 

 

CLAYEY SOIL

0

0.5

1

1.5

2

2.5

3

3.5

POSITION 1 POSITION 2 POSITION 3

H
o

ri
z

o
n

ta
l 

D
is

p
la

c
e

m
e

n
t 

(m
m

)

 

( c )  

Figure 4.26  Effect of traffic surcharge load position on  horizontal displacement in : 

(a) Loose sandy soil, (b) Dense sandy soil, (c) Clayey soil  

 

The results shows that in granular soil the horizontal displacement of the wall facing 

decrease with increase the distance between traffic surcharge load and the wall face 

as illustrated in Figures 4.26 (a) and (b). The influence of traffic surcharge load 

position on the horizontal displacement  is not  significant in clayey  soil as 

illustrated in Figure 4.26 (c). 
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Figure 4.27  Effect of the surcharge load and   reinforced backfill soil type 

on horizontal displacement. 

 

Figure (4.27) shows that the greatest wall deformation happened in the case of loose 

sand backfill reinforcement soil. 
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Figure 4.28 Effect traffic asurcharge load position on geogrid axial force  in : (a) 

Loose sandy soil, (b) Dense sandy soil, (c) Clayey soil  

 

  

The axial force mobilized in the reinforcement layers rather reduce with increase the 

distance between traffic surcharge load and the wall as illustrated in Figures 4.28 (a), 

(b), (c). 
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4.2.7 Effect of Reinforcement Soil Friction Angle (φ) on Horizontal 

Displacement & Axial Force in Geogrid 

 

Design Parameters: 

This analysis  was conducted on  MSE wall with  height (H) = 7 m, geogrid stifness 

(EA) = 1100 kN/m, vertical spacing between geogrid layers (Sv) = 0.5 m, face 

element thickness (D) = 0.25 m,  reinforcement length to height (L/H) ratio = 0.85. 

  

This analysis was carried out for loose sand reinforced soil, with friction angle which  

rainging from 30° to 42° to see  the effect of  angle of internal friction on horizontal 

displacement, and maximum axial reinforcement force developed in geogrid layers.  
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Figure 4.29  Effect of soil reinforcement angle on horizontal displacement 

 

The results show that the wall deformations are significantly influenced by 

reinforced soil friction angle. The variations in horizontal displacement for the 

increase in reinforced-fill friction angle from 30° to 42° are presented in Figure 

(4.29). It was observed that the horizontal movement reduce with the increase in 

reinforced-fill friction angle. However, movement reduced from  81 mm to  48 mm 

for the 7 m wall height, an    increase in friction angle from 30° to 42°  caused a 69%  

reduction in displacement. 
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When the angle of internal friction greater than  40°  there is very small change in 

horizontal displacement. 

According to Kibria (2014), the interface friction between soil and reinforcement 

increases with an increase in reinforced-fill friction angle. An equilibrium condition 

in the reinforced mass occurs at a smaller force when the reinforced-fill friction angle 

is heigh. This might cause a reduction in displacement with an increase in reinforced-

fill friction angle.  
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Figure 4.30  Effect of soil reinforcement angle on geogrid axial force 

 

The maximum reinforcement force increases as the reinforced soil friction angle 

decrease as shown in Figure (4.30). A ccording to Biligin and Kim (2010); Mahmood 

(2009) the horizontal displacement of the wall face element  and axial force in 

geogrid layers reduced with increasing reinforced soil friction angle. The results 

obtained in the  Figurs (4.29 & 4.30) were in good agreement with the study 

conducted by the authors  mentioned above . 

The reinforcement force increasing approximately 45% when friction angle changes 

from 42° to 30° (Figure 4.30). 

 

 

 

 

99 



 

 

 

CHAPTER V 

 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion  

Following the results obtained from  static  analyses carried out on MSE wall   

presented in this research work which examined under different geometric 

parameters such as reinforcement length, reinforcement stiffness, vertical spacing 

between reinforcement layers, wall facing thickness, the position of imposed 

surcharge load, types of reinforced soil, and wall height. The effect of all these 

parameters on the forces developed in the reinforcement and wall deformation is 

examined, the following concluding remarks can be made: 

1) The behaviour of MSE wall are influenced significantly with these  parameters  

backfllsoil type, surcharge load positions, reinforcement stiffness, the vertical 

spacing between reinforcement layers, and reinforcement length. 

 

2) Increasing  stiffness  of reinforcement elements can result in  decreased 

deformations and it will end up with smaller displacement;  however, these effects 

are limited to up to certain values after which they fail to show any significant 

effects. So geogrid with higher strength is recommended to use. 

 

3) Increasing reinforcement stiffness in case of dense sand and clayey soil reduce the 

deformaton which required  minimum length to  reached its state of equilibrium 

comparsion with loose sand which require longer length to reduce face deformation. 

 

4) Increasing  length of reinforcement elements can result in  decreased deformations 

and it will end up with smaller displacement;  however, these  effects  are  limited  to 
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up to certain values after which they fail to show any significant effects. 

 

5) The shape of relative distribution of tensile force along the wall height is  

independent of the length of reinforcement layers, their tensile stiffness, their 

number,  thickness of face element, and also independent of the   friction angle  of 

backfill soil in reinforced  zone. 

 

6) In garanular backfill soil, the reinforcement layer on which maximum tensile force 

occurs is located  at the mid height of the wall. This position is  independent of the 

length of reinforcement layers, reinforcement stiffness, number of reinforcement 

layers,  thickness of face element, and also independent of the   friction angle  of 

backfill soil in reinforced  zone variables. 

 

7) Loose sandy soil  showed higher degrees of instability when it is used as backfill 

materials   in reinforced zone. 

 

8) Dense sandy soil  and clayey soil are more stable and suitable as a backfill 

materials   in reinforced zone. Generally, clayey soil shows less wall movements than 

cohesionless soil. Howeve; it  must be used with proper drainage components. 

 

9) There exists a wide range of values of geogrids stiffness and when the stiffness of 

the  geogrid is increased beyond certain limit, MSE wall behave  like brittle material 

which is undesirable behaviour. The failure of reinforced soil retaining wall will 

show brittle failure mode. 

 

10) Increasing vertical spacing between reinforcement layers will increase wall 

deformation for granular backfill soil,  but there is no significant effect in cohesion 

soil. the optimum value in this analysis is equal to 0.5 m.  
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5.2 Recommendations  

The following are the possible ways of improving this research work:  

 

1) By studying wrapped  faced  walls and make comparison with MSE walls with 

modular block wall unit in order to investigate and compare the general stability of 

these two walls.   

2) By studying the slope reinforcement wall  and and make comparison with verticall 

MSE walls  in order to investigate and compare the general stability of these two 

walls .  
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APPENDICES 

APPENDIX A  

HAND CALCULATION EXAMPLE 

Horizontal Backslope with traffic surcharge – Static analysis Geogrid with 100% 

coverage. The following example is  a modular block unit faced, geogrid soil 

reinforcement wall system. 

 

H = 4 m                                          L = 3.5 m 

V1 = γrHL                                      e = Eccentricity 

F1 = ½ γb H
2
 Ka.                             q = Traffic Surcharge = 20 kN/m

2
 

F2 = qHKa                                      R = Resultant of Vertical Forces                                              

(V1 +qL) 
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SOIL PROPERTIES 

  

 REINFORCED SOILS 

γr = 19.6 kN/m
3
                                              φr = 34                         c = 0 kPa 

Ka = tan
2
 (45 - φ/2)                    (Section 4.3B FHWA - Demo 82) 

                                                                   

      = tan
2
 (45-34/2) = 0.28 = Ka        

 

 

 RETAINED BACKFILL SOILS 

γb = 19.6 kN/m
3
                                             φb = 30                          c = 0 kPa 

 

 FOUNDATION SOILS 

γf = 19.6 kN/m
3
                                              φf = 30                          c = 0 kPa 

Ka = tan
2
 (45 - φ/2) = tan

2
 (45-30/2)               (Section 4.2d FHWA - Demo 82) 

     = Ka = 0.33 

 

EXTERNAL STABILITY 

H = 4 m 

B = L = 3.5 m (assumed L > 0.7 H   ) 

 

 LOADS 

V1 = γr HL = (19.6)(4)(3.5)                               =  274.4  kN/m 

V2 = qL = (20)(3.5)                                           = 70   kN/m 

R = ΣV = V1 + V2 = 274.4 + 70                        = 344.4 kN/m 

F1 = ½ γb H
2
 Ka = (0.5)(19.6)(4

2
)(0 .33)           = 51.75  kN/m 

F2 = q H Ka = (20)(4)(0.33)                               = 26.4  kN/m 

 

 MOMENTS 

M = Overturning Moment = F1 (H/3) + F2 (H/2) 

= (51.75)(4/3) + (26.4)(4/2)                              = 121.8  kN m/m = Mo 
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MRO = Resisting Moment = V1 (L/2)  = (274.4)(3.5/2) 

                                                                          = 480.2 kN m/m 

 

MRBP = Resisting Moment in Applied Bearing Pressure Calculation 

= V1 (L/2) + V2 (L/2) = 274.4(3.5/2) + 70(3.5/2) 

                                                                          = 602.7 kN m/m 

FSsliding = ΣPR    (Section 4.2e of FHWA - Demo 82) = V1 Tan φ, 

                 Σpd                                                                    (Fl + F2) 

where φ is the lesser of φr and φf 

= 274.4 Tan 30                                                  =2.03  > 1.5 

   (51.75+26.4) 

FSovertuming = MRO     = 480.2                           = 3.94 > 2.0 

                      MO           121.8 

 

 MAXIMUM APPLIED BEARING PRESSURE 

 

L/6 = 3.5/6                                                        = 0.58 m 

e = L - (MRBP - MO) 

      2       V1 + V2 

= 3.5 - (602.7 – 121.8)                                      = 0.35 m < 1.25 m 

     2      274.4 + 70 

L' = L - 2e = 3.5 - 2(0.35)                                 = 2.8  = L' 

σv = Max. Applied Bearing Pressure = V1 + qL = V1 + V2      (AASHTO 97 ) 

                                                                   L - 2e            L’ 

 

= 274.4 + 70                                                     = 123  kN/m
2
 

        2.8 

qult = Ult. Bearing Capacity of Fndn. Soil = Cf Nc + 0.5 (L -2e) γf Nγ 

(Section 4.2f of FHWA - Demo 82) 

Cf = Cohesion = 0 kN/m
2
 

 Nc = Dimensionless Bearing Capacity Coefficient 
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qult = 0.5 L' γf Nγ = (0.5) (2.8) (19.6)(22.4)                                  = 614.7 kN/m
2
 

FS bearing capacity = qult / σv = 614.7                                               = 5  > 2.5 

                                               123 

 

FSsliding AT BASE OF FIRST GRID (Bottom of the wall) 

F1 @ FIRST GRID = ½ γb( d17 )
2
 Ka 

                                 = (½) (19.6) (3.8)
2
 (0.33)                             =  46.7  kN/m 

F2 @ FIRST GRID = q d17 Ka. = (20) (3.8) (0.33)                     = 25  kN/m 

 

FSsliding = γr d17 L tanφr Ci  =  (19.6) (3.8) (3.5) (tan 34) (0.8) 

                      (Fl + F2)                             (51.75+26.4) 

 

FSsliding   = 1.8  > 1.5 

(at first grid) 

 

 INTERNAL STABILITY 

 

 

d1   = 0.5 m 

d 2 = 1 m 

d3  = 1.5 m 

d4   = 2 m 

d5  = 2.5 m 
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d6 = 3m 

d7 = 3.5m 

d8 =  4m 

 

V1 = d1 + ½ (d2 - d1) = 0.5 + ½ (1-0.5)                                               V1 = 0.75 m 

V2 = ½ (d2 - d1) + ½ (d3 - d2) = ½ (1- 0.5) + ½ (1.5 - 1)                      V2 = 0.5 m 

V3 = ½ (d3 - d2) + ½ (d4 - d3) = ½ (1.5 - 1) + ½ (2 – 1.5)                    V3 = 0.5 m 

V4 = ½ (d4 - d3) + ½ (d5 - d4) = ½ (2- 1.5) + ½ (2.5 - 2)                      V4 = 0.5 m 

V5 = ½ (d5 - d4) + ½ (d6 - d5) = ½ (2.5 - 2) + ½ (3- 2.5)                     V5 = 0.5 m 

V6 = ½ (d6 - d5) + ½ (d7 - d6) = ½ (3- 2.5) + ½ (3.5 - 3)                      V6 = 0.5 m 

V7 = ½ (d7 - d6) + (H-d7) = ½ (3.5 - 3) +  (4- 3.5)                               V7 = 0.75 m 

 

 

 TENSION CALCULATION AT EACH REINFORCEMENT LEVEL T(MAX) 

TMAX = σH SV = σH Vi                              (Section 4.3B - FHWA - Demo 82) 

σH = KAR (γR di + q)                                   (Section 4.3B - FHWA - Demo 82) 

 

Note: The geogrid strengths shown below were obtained using the following 

equation: 

Allowable Strength = (Ultimate Strength x Rc) / (FSuncertainties x FSID x FSD x Creep 

Reduction Factor) where: FSuncertainties = 1.5, FSID varies from 1.1 to 1.2 depending on 

geogrid type, and FSD = 1.1. The Creep Reduction Factor = 3.10. Rc is the percent 

coverage ratio. (100% coverage was assumed for this Example). 

 

LAYER 1 TMAX1 = (0.28)[(19.6)(0.5) + 20] (0.75) = 6.26 kN/m     = TMAX1  

LAYER 2 TMAX2 = (0.28)[(19.6)(1) + 20] (0.5) = 5.54 kN/m          = TMAX2  

LAYER 3 TMAX3 = (0.28)[(19.6)(1.5)+20](0.5) = 6.92 kN/m           = TMAX3 

LAYER 4 TMAX4 = (0.28)[(19.6)(2)+20](0.5) = 8.3l kN/m               = TMAX4 

LAYER 5 TMAX5 = (0.28)[(19.6)(2.5)+20](0.5) = 9.66 kN/m           = TMAX5 

LAYER 6 TMAX6 = (0.28)[(19.6)(3) + 20 (0.5) = 11.03 kN/m          = TMAX6 

LAYER 7 TMAX7 = (0.28)[(19.6)(3.5)+20](0.75) = 18.61 kN/m        = TMAX7 
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 PULLOUT CALCULATIONS AT EACH LAYER 

Tmax < (1 / FSPO)(F )(γ)(z)(Le)(C)(Rc)(α) 

Where FSPO = 1.5 F = tan φ Ci 

Rc = % coverage of reinforcement (may vary from 100% to 71%). Rc assumed to be 

100% for this example. 

Ci = interaction coefficient determined from pullout testing for a particular 

reinforcement type. 

 

 

 

 

C = 2  for geogrids Ci = 0.8 

γ = unit weight of soil. 

z = depth below top of wall. 

Le = length of reinforcement in resistance zone. 

α = scale effect correction factor (α = 1.0 determined in laboratory tests performed on 

the geogrids used in this Example). 

 

Layer 1            Le > 0.89 > 1 m                use Le = 1 m 

Layer 2           Le > 0.39 > 1 m                 use Le = 1 m 

Layer 3           Le > 0.33 > 1 m                 use Le = 1 m 

Layer 4           Le > 0.3 > 1 m                  use Le = 1 m 

Layer 5           Le > 0.27> 1 m                  use Le = 1 m 

Layer 6           Le > 0.26 > 1 m                 use Le = 1 m 

Layer 7           Le > 0.38 > 1 m                 use Le = 1 m 

 

 CALCULATE LA / LAYER 

LA = (H - di) tan (45 - φ/2)                    for geogrids (tan (45 - φ/2)) = 0.532 

LA1 = (4 - 0.5) (0.532)       = 1.862 m 

LA2 = (4 - 1) (0.532)          = 1.596 m 

LA3 = (4 - 1.5) (0.532)       = 1.33 m 

LA4 = (4 - 2) (0.532)           = 1.064 m 

 

112 



LA5 = (4 - 2.5) (0.532)        = 0.798 m 

LA6 = (4 - 3) (0.532)           = 0.532 m 

LA7 = (4 – 3.5) (0.532)       = 0.266 m 

 

 

 CALCULATE LT AND COMPARE TO DESIGN LENGTH 

(Geogrid lengths of 3.5 m control from external seismic stability analysis). 

Layer 1 LT1 = 1.862 + 1 = 2.862 <3.5                  ˆ use 3.5 m 

Layer 2 LT1 = 1.596 + 1 = 2.596 < 3.5                 ˆ use 3.5 m 

Layer 3 LT1 = 1.33 + 1 =     2.33 < 3.5                  ˆ use 3.5 m 

Layer 4 LT1 = 1.064 + 1 = 2.064 < 3.5                 ˆ use 3.5 m 

Layer 5 LT1 = 0.798 + 1 = 1.798 < 3.5                 ˆ use 3.5 m 

Layer 6 LT1 = 0.532 + 1 = 1.532 < 3.5                 ˆ use 3.5 m 

Layer 7 LT1 = 0.266 + 1 = 1.266 < .5                   ˆuse 3.5m 
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APPENDIX B 
SIZE AND SPECIFICATION OF GEOGRIDS 
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	2- Bishop's method
	The Modified (or Simplified) Bishop's Method proposed by Alan W. Bishop of Imperial College is a method for calculating the stability of slopes. It is an extension of the Method of Slices. By making some simplifying assumptions, the problem becomes st...

