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ABSTRACT 

 

CLASSIFICATION OF MICROARRAY GENE EXPRESSION CANCER 

DATA BY USING ARTIFICIAL INTELLIGENCE METHODS  

MUMBUÇOĞLU, Mehmet Şükrü 

M.Sc. in Computer Engineering 

Supervisor:  Asst. Prof. Dr. Bülent HAZNEDAR 

July 2019, 145 pages 

 

Today, the development of computer technologies has affected the studies in many 

areas. Advances in molecular biology and computer technologies have revealed the 

science of bioinformatics. Rapid developments in the field of bioinformatics have 

contributed greatly to the solution of many problems waiting to be solved in this field. 

The classification of DNA microarray gene expressions is one of these problems. DNA 

microarray studies are a technology used in the field of bioinformatics. DNA 

microarray data analysis plays a very effective role in the diagnosis of diseases related 

to genes such as cancer. By determining gene expressions depending on the type of 

disease, it can be determined with great success rate whether any individual possesses 

the diseased gene. The use of high-performance classification techniques on 

microarray gene expressions is of great importance to determine whether an individual 

is healthy. 

There are many methods for classifying DNA microarrays. Support Vector Machines, 

Naive Bayes, k-Nearest Neighbour, Decision Trees, such as many statistical methods 

are widely used. However, when these methods are used alone, they do not always 

give high success rates in classifying microarray data. Therefore, the use of artificial 

intelligence-based methods to achieve high success rates in the classification of 

microarray data is seen in the studies. 

In this study, in addition to these statistical methods, it is aimed to obtain higher 

success rates by using a method such as ANFIS based on artificial intelligence. K-

Nearest Neighbourhood, Naive Bayes and Support Vector Machines were used as 

statistical classification methods. Here, studies on two different cancer data, namely 

breast and central nervous system cancer, have been conducted. 

According to the information obtained from the results, it was found that artificial 

intelligence based ANFIS technique was more successful than statistical methods. 

Keywords: Microarray Gene Expression, Data mining, Feature selection, 

Classification, ANFIS 
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ÖZET 

 

YAPAY ZEKA YÖNTEMLERİ KULLANILARAK MIKROARRAY GEN 

İFADE KANSER VERİLERİNİN SINIFLANDIRILMASI 

MUMBUÇOĞLU, Mehmet Şükrü 

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi:  Asst. Prof. Dr. Bülent HAZNEDAR 

Temmuz 2019, 145 sayfa 

 

Günümüzde bilgisayar teknolojilerinin gelişmesi ile birçok alanda yapılan çalışmaları 

etkilemiştir. Moleküler biyoloji ve bilgisayar teknolojilerinde meydana gelen 

gelişmeler biyoinformatik adlı bilimi ortaya çıkarmıştır. Biyoinformatik alanında 

meydana gelen hızlı gelişmeler, bu alanda çözülmeyi bekleyen birçok probleme çözüm 

olma yolunda büyük katkılar sağlamıştır. DNA mikroarray gen ekspresyonlarının 

sınıflandırılması da bu problemlerden birisidir. DNA mikroarray çalışmaları, 

biyoinformatik alanında kullanılan bir teknolojidir. DNA mikroarray veri analizi, 

kanser gibi genlerle alakalı hastalıkların teşhisinde çok etkin bir rol oynamaktadır. 

Hastalık türüne bağlı gen ifadeleri belirlenerek, herhangi bir bireyin hastalıklı gene 

sahip olup olmadığı büyük bir başarı oranı ile tespit edilebilir. Bireyin sağlıklı olup 

olmadığının tespiti için, mikroarray gen ekspresyonları üzerinde yüksek performanslı 

sınıflandırma tekniklerinin kullanılması büyük öneme sahiptir. 

DNA mikroarray’lerini sınıflandırmak için birçok yöntem bulunmaktadır. Destek 

Vektör Makinaları, Naive Bayes, k-En yakın Komşu, Karar Ağaçları gibi birçok 

istatistiksel yöntemler yaygın olarak kullanlmaktadır. Fakat bu yöntemler tek başına 

kullanıldığında, mikroarray verilerini sınıflandırmada her zaman yüksek başarı 

oranları vermemektedir. Bu yüzden mikroarray verilerini sınıflandırmada yüksek 

başarı oranları elde etmek için yapay zekâ tabanlı yöntemlerin de kullanılması yapılan 

çalışmalarda görülmektedir.  

Bu çalışmada, bu istatistiksel yöntemlere ek olarak yapay zekâ tabanlı ANFIS gibi bir 

yöntemi kullanarak daha yüksek başarı oranları elde etmek amaçlanmıştır. İstatistiksel 

sınıflandırma yöntemleri olarak K-En Yakın Komşuluk, Naive Bayes ve Destek 

Vektör Makineleri kullanılmıştır. Burada Göğüs ve Merkezi Sinir Sistemi kanseri 

olmak üzere iki farklı kanser veri seti üzerinde çalışmalar yapılmıştır. 

Sonuçlardan elde edilen bilgilere göre, genel olarak yapay zekâ tabanlı ANFIS 

tekniğinin, istatistiksel yöntemlere göre daha başarılı olduğu tespit edilmiştir.  

 

Anahtar Kelimeler: Mikrodizi gen ifadeleri, Veri madenciliği, Öznitelik seçimi, 

Sınıflandırma, ANFIS
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CHAPTER 1  

INTRODUCTION 

1.1. General 

 

Since the ancient times, the branches of science which are concerned by humanity are 

called basic sciences and the problems encountered are classified among these 

disciplines and solutions have been sought. In time, problems arose where several of 

the basic disciplines were to find solutions, and interdisciplinary work gained 

importance. The new disciplines have emerged with the increase of the issues that need 

to be studied in the same interdisciplinary. Bioinformatics is one of these disciplines. 

Bioinformatics; In addition to the field of biology, the integration of chemistry and 

medical science with information sciences, mathematics and statistics has emerged as 

a result of the collection of information about biological events and the evaluation of 

the collected information. Bioinformatics, based on the use of information 

technologies in the solution of biological problems, helps to explain biological 

phenomena at the molecular level. In bioinformatics, biological information is 

obtained numerically and stored in databases. Bioinformatics plays a very important 

role in medical sciences. In recent years, applications in medical sciences have focused 

on gene expression analysis. Generally, the expressions of cells affected by different 

diseases are compiled and compared with healthy cells and the diagnosis is made from 

the differences (Polat & Karahan, 2009). 

Thanks to developments in the world of science, interest in the field of microarray 

studies is increasing day by day. DNA microarray studies are a very comprehensive 

technology used in molecular biology and medicine. DNA microarray data analysis; It 

plays an important role in the identification of diseases associated with genes such as 

cancer. The relevant genes for the type of disease can be determined and can be 

calculated in the high probability that any individual is patient or intact. For this, high 

performance classification methods are very important in microarray data (Korkem, 

2013).
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Data mining has contributed to classification methods for bioinformatics. 

Classification; It is a method used to reveal hidden patterns in the database. By 

classification, the database is divided into small homogeneous groups according to 

certain characteristics. Classification is an analysis technique that shows which class a 

new parent belongs to and is based on a learning algorithm. The purpose of this 

algorithm is; creating a classification model, which class to belong to an unknown data 

is to determine the class. Different methods are used to access information in data 

mining. There are many algorithms that belong to these methods. Many studies have 

been conducted on which of these algorithms give better results and different results 

have been obtained from the studies. The main reasons for obtaining different results 

are the pre-processing on the data, the choice of the parameters of the selection of the 

parameters, the selection of the parameters of the algorithms used and the 

differentiation of the programs in which the classification methods are applied. 

The aim of this study is to divide the data obtained from cancer cells into the correct 

classes in the targeted bioinformatics field. With the correct classification, important 

findings can be obtained. In the classification of microarray gene expression data, these 

statistical classification methods and Adaptive Neural-Fuzzy Inference Systems 

(ANFIS) are used. 

Support Vector Machines, K-Nearest Neighbourhood, Naive Bayes statistical 

classification algorithms are used as methodology. The data to which the classification 

methods are applied are the microarray gene expressions. These gene expressions 

(Zhu, Ong, & Dash, 2007) are the data of patients with Breast Cancer and Central 

Nervous System Cancer from the site of Shenzhen University (Shenzhen University, 

2018) 

In this study, both statistical methods and recently started to be studied by researchers 

and artificial intelligence-based ANFIS method, which has recently started to enter the 

literature, has been classified by using as hybrid. 

Apart from the methods used to classify the data commonly used in the literature, new 

approaches to classifying microarray gene expression data by using this ANFIS have 

been used to compare the performance of these new approaches with commonly used 

methods. 
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1.2. Structure of Thesis 

 

The organization of the thesis is as follows; In the first chapter, the theoretical 

information about data mining is given and then it is emphasized that the data to be 

used in this thesis is microarray gene expression data and theoretical information is 

given about these data. It is revealed that the microarray data to be studied will be 

processed by the classification method which is one of the data mining methods after 

the normalization process. Besides, the theoretical information about the classification 

is given and what kind of classification methods will be used in this study is explained. 

In the second part of the thesis, the classification tools used in the study are discussed 

and information about these programs is given. Then, microarray gene expression data 

to be used in the study is high-dimensional data to reduce the size of these data, 

Correlation-based feature selection method is given information about. Information 

about Naive Bayes, Support Vector Machines, K-Nearest Neighbour methods and 

Artificial Intelligence-based ANFIS, which will be used to classify diminished 

microarray data, has been given information about ANFIS. Then, the models to be 

applied and the appropriate arrangements are discussed. 

In the third chapter, information about the parameters used in the study was given and 

information was given about similar studies. In the last chapter, the results were 

compared with the previous studies and recommendations were made. 
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CHAPTER 2  

GENERAL INFORMATION 

 

2.1.History of Data Mining 

 

In the 1950s, mathematicians worked on data mining techniques to reveal artificial 

intelligence and machine learning areas in the fields of logic and computer science. In 

the 1960s, the statisticians discovered regression analysis and the greatest likelihood 

estimation, which were the first steps in data mining. In the following 20 years, firstly, 

the classification of the data and the establishment of the relational links between these 

classes and the concept of database have been revealed. In the 1990s, the first steps of 

the discovery of knowledge were created in the database and a data warehouse was 

developed for large databases. Data mining has been widely used at the same time with 

new technologies. 

2.2.Data Mining 

 

Data mining is the process of automatically extracting structured information from 

databases. This process is a special part of the general process called information 

discovery from databases (Fayyad, 1997). 

Data mining is the process of discovering interesting information, such as models, 

patterns, relationships, deviations, and meaningful structures derived from databases 

where a large number of data is stored (Han, Cheng, Xin, & Yan, 2007). 

Fayyad and friends. data mining is a step in the knowledge discovery process in 

databases that consists of applying data analysis and discovery algorithms that, under 

acceptable computational efficiency limitations, produce a particular enumeration of 

patterns (or models) over the data (Fayyad, Piatetsky-Shapiro, & Smyth, 1996).
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In recent years, information collection has become much easier, but the effort needed 

to uncover the peculiarities of the information in hand has increased greatly in large-

scale databases (De Falco, Della Cioppa, & Tarantino, 2002). 

 

The rapid increase in data collection and storage technologies has led to an over-

expansion of data in storage types such as data base, data or warehouse (Zhou, 2013). 

In contrast, the number of scientists, engineers and analysts remains unchanged 

(Vahaplar & İnceoğlu, 2001). 

 

For example; In the field of clinical treatment, there are difficulties in discovering 

information from growing volume data. The continuous collection of the physiological 

parameters of the patients under observation now leads to the emergence of enormous 

volumes of information. Growing amounts of data prevent medical professionals 

performing manual analysis from performing their tasks. Many concealed and 

potentially beneficial relationships cannot be recognized by the analyst (Tan, Yu, 

Heng, & Lee, Evolutionary computing for knowledge discovery in medical diagnosis, 

2003). 

 

Traditional techniques allow you to prove your own hypothesis. As shown in Figure 

2.1, approximately 5% of all relationships can be found in this way. Data mining is a 

gateway to the remaining 95% relations (Distilleries, 1999). 

 

 

 

Figure 2.1. Relations (Distilleries, 1999) 
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Many of the time large databases are searched for unknown or unprecedented 

relationships, trends and patterns. These relationships or tendencies are generally 

assumed by engineers, analysts or market researchers, but these relationships need to 

be proved by the data from which they are obtained. New information it helps users 

do their job better (Kamrani, Rong, & Gonzalez, 2001). In general, the increase in 

interest in data mining can be explained by the following factors (Telcioğlu, 2007); 

 

1. In the 1980s, companies created data bases for their customers, competitors 

and products. These databases are like potential goldmines. These data, which 

exceeds millions, contain confidential information and can easily be accessed 

using the SQL (Structured Query Language) database query language or other 

superficial query languages. SQL is just a query language and helps to find 

information under  

2. previously known limitations. Data mining algorithms typically become 

evident in subgroups of the database or in appropriate clusters. In many 

instances, repeatable SQL queries are used and the average results are obtained. 

It is possible to do this manually, but it is quite tiring and long-lasting. 

3. 2. Network usage on computers continues to improve. This makes it easier to 

connect to the database. Thus, a link can be made between the demographic 

data file and the client file and identification of the specific population groups 

can be established. 

4. Over the last few years, the techniques of machine learning have improved. 

Neural networks, genetic algorithms, and other simple feasible learning 

techniques make it easy to create interesting links with databases. 

5. The relationship between the customer and the service provider sends personal 

information from the computer at the service desk to the central information 

systems. Marketers and insurers also want to use these newly acquired 

techniques. 

 

2.3.Data Mining and Interdisciplinary Relationship 

 

The VM is a multi-disciplinary approach and incorporates many techniques. The close 

link between data mining and machine learning, statistics and database technologies 
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can be easily seen. These disciplines aim to find interesting associations and patterns 

within the data. Figure 2.2 shows the interdisciplinary relationship with data mining 

(Özbakır, Baykasoğlu, & Kulluk , 2008). 

 

2.4.Applications of Data Mining 

 

If the application areas of data mining are mentioned briefly (Han & Kamber, 2018); 

• Marketing: Identifying customers' buying habits, demographic information, 

campaign products, new customers without losing existing customers earning, 

market basket analysis, customer relationship management and sales forecast 

areas are the most common data mining application areas. 

• Banking and Insurance: In determining the correlation between different 

financial indicators; in determining credit card fraud, evaluating credit 

requests, determining customer profile according to credit card expenditures, 

determining insurance fraud and requesting new policy will be used intensively 

in the estimation of customers. 

• Biology, Medicine and Genetics: Plant species breeding, gene map analysis 

and detection of genetic diseases, detection of cancer cells, the discovery and 

classification of new virus species, physiological parameters are used in the 

analysis and evaluation. 

Data Mining

Database 
Technologies

Statistics

Visualization 
Techniques

Other 
Disciplines

Knowledge 
Science

Machine Learning

 

Figure 2.2. Interdisciplinary relationship with data mining 
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• Chemistry: The discovery and classification of new chemical molecules are 

used in the discovery of feed and drug species. 

• Image Recognition and Robot Vision Systems: It is used in techniques such as 

obstacle recognition, road recognition, face recognition and fingerprint 

recognition by means of the images determined by various sensors. 

• Space Science and Technology: Planet surface shapes and planetary 

settlements are used to group new galaxies and group stars according to their 

positions. 

• Text Mining: It is used to obtain meaningful relationships between very large 

and meaningless text heaps. 

• Scientific, Engineering and Health Care Data: Today, scientific data have 

become more complicated than job site data. 

 

2.5.Data Mining Process 

 

Data mining techniques and data discovery process consists of the following steps. 

1. Collection of Data 

2. Cleaning of Data 

3. Integration of Data 

4. Converting Data 

5. Data Mining 

6. Pattern Evaluation 

7. Information Presentation (Han & Kamber, Data mining: concepts and 

techniques (the Morgan Kaufmann Series in data management systems), 

2000). 
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Figure 2.3. Knowledge discovery process 

 

If we want to handle data mining in more detail, we need to follow the steps below. 

• Analysis of the problem and understanding of the data 

• Data selection 

• Data analysis and preparation 

• Data reduction and conversion 

• Attributes selection 

• Reducing the dataset size 

• Normalization 

• Combining 

• Selection of data mining method 

• Data mining process 

• Visualization 

• Evaluation 

• Use of information and evaluation of results according to the target 

The general experimental procedure, which is based on the narrow and broad meanings 

of data mining, consists of the 5 steps mentioned in Figure 2.4. 

 

Figure 2.4. Data mining process steps 

Determination 
of the Problem

Data Collection
Pre-processing 
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of Model

Interpretation 
of Model
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2.5.1. Determining the Problem and Understanding the Data 

 

Identifying the problem and understanding the data constitute the first stage of the 

application of data mining. In order to determine the problem and to understand the 

data in the best way, the following steps can be reached by following the following 

rules: 

• The problem is not clearly defined to provide tangible benefits. 

• Possible result should be determined 

• It should be determined how to use the result. 

• Problems and data should be understood as much as possible. 

• The problem should be transformed into model 

• Assumptions must be determined. 

• The model should be cyclically improved. 

• The model should be simplified as much as possible. 

• The instability of the model should be defined. 

• The uncertainty of the model should be defined. 

Depending on the nature of the problem and the data, expert support may be required 

in the relevant field after these rules are followed and the cooperation with the expert 

and the data mining workers can be more successful (Kantardzic, 2003). 

 

2.5.2. Data Collection 

 

This stage is about how data is collected. There are two different approaches in the 

process of data collection. Experiment designed if the process is carried out under 

expert supervision; if done without expert control, it is called an observational 

approach. The data used in the same known sample is important in terms of 

establishing, testing and implementing the model. 
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2.5.3. Preparation of Data 

 

“In the data mining process, the preparation of the data, where the most time is spent, 

contributes between 75% and 90% of the success of the process. Preparation of data 

set from weak or non-existent data is responsible for the failure of the process” 

(Goldberg, Ohno, Esfarjani, & Kawazoe, 1989). The process of preparing the data is 

not independent of the other steps of the data mining process. “All the processes 

performed at each step of data mining together help us obtain a new and more advanced 

data set” (Kantardzic, 2003). Preparation of data; It consists of missing, wide-spread, 

conflicting data collected from real life, fusion and conversion of data, reduction of 

data volume, disruption of data. 

 

2.5.3.1.  Clearing data 

 

The data clearing phase consists of filling in missing values, defining incompatible 

data, verifying conflicting data or removing it from the data set. 

At this stage, the following methods can be used for defining and replacing the missing 

parents: 

a) Records with missing values can be discarded from the data set. 

b) A general constant can be used to replace the missing values. 

c) The mean value of the variable is calculated using all data and this value can be used 

instead of the missing value. 

d) It can be used instead of the missing value by calculating the variable average of 

the samples of only one class instead of all the data of the variable” (Özkan, 2008). 

 

2.5.3.2.  Data fusion and conversion 

 

In order to integrate data obtained from different sources in a fusion process, some 

procedures have to be done. These processes include metadata, correlation analysis, 

data conflict detection, and the elimination of semantic mismatch. The conversion of 
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data is the process of introducing data into a form that will give better results in data 

mining application (Kantardzic, 2003). 

 

2.5.3.3.  Discrete data and conceptual hierarchy 

 

Displacement of data is a condition that is applied on continuous variables. The 

following techniques are used for disrupting parents; integration, histogram analysis 

and entropy. 

Continuous rendering of discrete data if the numerical based algorithm will be used in 

the conversion phase of the data; If categorical-based algorithms are to be used, 

continuous data should be discontinued. 

 

2.5.4.  Establishing the Model 

 

At the stage of determining the appropriate model for the defined problem, as many 

models as possible are established and the models are tried. Therefore, the stages of 

data preparation and model building are a recurring phase until they reach the model 

that is considered to be the best. 

 

2.5.5. Model Interpretation 

 

When the model is sufficient to meet the expected objectives, a more broad-based 

process-based assessment is made. In the evaluation process, whether the model is 

established correctly, what can be used in the future, different data, such as the 

expansion of the model includes. 
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2.6.Data Mining Models 

 

Data mining models are divided into two parts based on estimation and descriptive: 

• Models based on estimation: classification, curve fitting, time series 

• Descriptive models: bundling, summarizing, correlation rules 

 

2.7.Learning Methods in Data Making 

 

There are 3 different types of learning in data mining: 

 

2.7.1. Supervised Learning 

 

Purpose of supervised learning; learn the relationship between input and output values. 

Thus, an output value for a new input value can be estimated. Classification 

algorithms, especially traditional statistical techniques including regression, artificial 

neural networks (ANN), Decision Tree, Rule Induction, K-means Clustering, K 

Nearest-Neighbour and support vector machines (SVM) are examples of supervised 

learning. 

 

2.7.2. Unsupervised Learning 

 

The purpose of unsupervised learning is to find the most appropriate way of showing 

the input values (data). There are many different approaches. Information 

maximization, minimum cross entropy, minimum reconstruction error. Data 

compression, distribution estimation; Various applications of unsupervised learning, 

such as data source separation, data visualization, can be used as pre-processing for 

supervised learning. Clustering is the most basic uncontrolled learning method 

(Herbrich, Graepel, & Obermayer, 1999).  Also, self-organized maps is another 

method of unsupervised learning. 
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2.7.3. Reinforcement Learning 

 

Supported learning is a learning method that models the way animals learn. The learner 

takes action and only receives feedback from the changes in the environment due to 

his / her action. Dynamic resource allocation is an example of learning through game 

playing and temporal difference learning. 

 

2.8.Data Mining Techniques 

 

Data mining techniques are used successfully in various fields. His main areas of 

application are marketing, banking, insurance, stock market, telecommunication, 

health and medicine, industry, science and engineering applications. Some of the data 

mining techniques are as follows (Işık, 2006); 

• Association Analysis 

• Classification 

• Cluster Analysis 

• Identification and Isolation 

• Uniform Analysis 

• Evolutionary Analysis 

 

Data mining, which is defined as the process of converting large size and fast data to 

meaningful information as a result of various analyses, is the most widely used 

technique for classification and clustering problems. 

 

2.8.1. Classification Problem 

 

The classification problem consists of assigning objects to each set of attributes and to 

the predefined class labels. For each data in the data set, the attribute class and the 

class label are included. Based on these data, the resulting classifier model derives 

short and meaningful veins that can be used to classify subsequent records. In classed 
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classification problems, class labels are available. The aim here is to derive models 

that fit a specific purpose on objects with a class label (Rastogi & Shim, 2000). The 

classification model is used for data mining purposes such as Identification, 

Estimation, Association Analysis, Cluster Analysis (Tan, Steinbach, & Kumar, 2006). 

 

• Description: The classification model can serve as an explanatory tool to 

distinguish the objects of different classes. For example, body temperature for 

both biologists and others; it would be useful to have a descriptive model that 

explains that such characteristics as skin, fertility, and a vertebrate describe a 

vertebrate as a mammal, reptile, bird or fish (Tan, Steinbach, & Kumar, 2006). 

• Prediction: Classification deals with discrete outputs such as yes/no, 

mammalian/reptile/ bird. The estimation deals with the outputs that receive 

continuous values. The estimation is used to find values for unknown 

continuous variables such as income level, number of votes, future sales 

forecast when some input data are given (Tan, Steinbach, & Kumar, 2006). 

• Association Analysis: Association analysis is a model that defines certain 

types of data relationships. When a product is purchased, the purchase of 

another product alongside this product gives a rule of association. For example, 

in a supermarket, shopping is examined and determining which product is 

purchased with which product is related to the rules of association 

(Silahtaroğlu, 2008). 

 

2.8.2. Clustering Problem 

 

Clustering analysis is one of the most important areas of data mining; The aim is to 

collect objects that are similar to each other in a cluster, and those that do not. 

Uniqueness is determined on the basis of the properties that define objects. Clusters 

are created by marking groups of similar objects or by having differences with other 

groups. In terms of machine learning, each cluster represents a hidden pattern, and 

applied learning is an unsupervised learning. In statistics, multivariate statistical 

estimation is used in the areas of sound and picture recognition, DNA analysis, 

geographic information systems and related fields (Silahtaroğlu, 2008). 
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2.9. Classification Model 

 

Classification is the basic mental that advances through complex events, such as a set 

of objects defined by high-level data, to small and descriptive units, classes, 

infrastructures, or parts that serve to better control or express, and by assigning new 

states to those thousands of classes from existing classes. it is a skill (Bock, 2002). The 

main algorithms used in the classification can be listed as follows; 

• Decision trees, 

• Artificial neural networks, 

• Evolutionary Algorithms, 

• K-closest neighbour, 

• Bayesian classifiers, 

• Swarm intelligence techniques, 

• Dummy-based reasoning, 

• Rough cluster approach, 

• Fuzzy cluster approach 

 

2.9.1. Decision Trees 

 

Decision trees are the techniques used in data mining to describe the data and to 

estimate the tree and tree rules to be used in estimating. The decision tree is in a tree 

structure similar to the flow diagram, each branch representing the result of a test, and 

leaf nodes representing the classes. If you classify an unknown instance, the attribute 

values are tested against the decision tree. A new example enters the root section of 

the tree. This new sample tested in the root is sent to a lower node according to the test 

result. This process continues until the new sample reaches any leaf node. All 

Examples that come into a particular leaf of the tree are classified in the same way. 

There is only one path from root to each leaf. This path defines a rule used to classify 

samples (Han & Kamber, 2018). Figure 2.5 shows an exemplary decision tree 

structure. 
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Figure 2.5. An example decision tree structure 

 

A decision tree helps in the data discovery as follows (Murthy, 1998); 

• It reduces the volume of data by making the data that is protected as a property 

and presenting an accurate summary more compacted. 

• The discovery tree discovers whether or not it contains well-distributed class 

objects, so that classes can be interpreted correctly in the concept of 

significance theory. 

• The data in the form of a tree in the form of maps, so you can go back from the 

branches of the tree to the root of the forecast values can be produced. These 

values can be used to estimate the output of a new data or query. 

 

Basic decision trees are divided into two groups (Quinlan, 1993). These; 

• Classifiers from the machine learning community: 1D3, C4.5, CART. 

• Classifiers for large databases: SLIO, SPRINT, SONAR, Rainforest. 

 

One of the biggest advantages is that decision trees can easily be converted into 

classification rules. Other advantages can be listed as follows; 

• The establishment is cheap, 

• Effective operation in noisy data, 

• Exploring the distinctive features of classes, 

Does 
s/he 
smoke?

Age

Low risk High risk

Diet

High Risk
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• Easy integration into database systems, 

• Easy to interpret, 

• Good reliability. 

 

2.9.2. Artificial Neural Networks 

 

Another data mining technique used for estimation and classification is artificial neural 

networks. Neural networks are signal processing systems that attempt to mimic the 

biological nervous system by presenting a mathematical model of multiple neuronal 

compositions connected to a network (Haykin & Lippmann, 1994) (Horne, 1993). In 

ANN, the aim is to mimic the behaviour of the human brain (Setiono, Leow, & Thong, 

2000). Neurons are found in the input and output layers and, if any, in hidden layers 

or layers. When a neuron is identified as significant, the weights associated with this 

neuron are changed. This means that the neuron will be more effective than other 

neurons that are at the same level as the neuron itself. Artificial neural networks learn 

by adjusting the weights between neurons. Figure 2.6 shows the structure of a simple 

neural network. 

 

Figure 2.6. Structure of artificial neural networks 

The positive and negative aspects of artificial neural networks in terms of data mining 

are as follows; 
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• Wide range of application areas, 

• They produce better results in complex situations, 

• Studying on continuous and categorical data, 

• They cannot express their results clearly, 

• There is no guarantee that the result is the best result. 

 

2.9.3. Evolutionary Algorithms 

 

Evolutionary algorithms, inspired by the natural evolution process, are widely used in 

classification and rule extraction in data mining. In contrast to radian-based 

techniques, evolutionary algorithms intelligently evaluate the performance of multiple 

candidate solutions and intelligently scan the search space and approach the global 

best (Michalewicz, 2013). 

In general, evolutionary algorithms include all algorithms with population and 

selection-based genetic operators that generate a new search point in search space. 

These algorithms are genetic algorithms (GA), genetic programming (GP), 

evolutionary programming (EP), and evolutionary strategies (ES). These approaches 

differ from each other according to the operators they use, the models they are applied 

to, the selection methods and the compliance functions. GA and GP are evolutionary 

models at the genetic level. In optimization used in evolutionary strategies, the 

structures of individuals in the population are tried to be optimized. Various 

behavioural characteristics of individuals are made parametrically and these values are 

developed at the time of optimization. Evolutionary programming uses the highest 

level of abstraction, emphasizing the adaptation of the behavioural characteristics of 

various species (Wong & Leung, 2006). 

 

2.9.4. k-Nearest Neighbour 

 

It is a classifier algorithm based on the distance between points. In this algorithm, the 

number of points for each sample is taken into account and the process is performed 

accordingly. k nearest neighbour algorithm is a simpler method than other classifier 

algorithms. Although it is simple, it has proved its success in many studies and is one 
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of the most widely used classifier algorithms (Kuncheva, 1995) (Ho, Shu, & Chen, 

1995). 

When the studies are examined, it is seen that Euclidean distance is used although there 

are different distance types. The Euclidean distance is an algorithm based on the square 

root of the sum of the squares of the distance difference between the points. In this 

distance calculation, the values belonging to the attributes in the training set and the 

distance to the attributes in the test set are examined (Enas & Choi, 1986). 

A separate value is calculated and the sample is labelled with the highest value class 

label. Another important point here is how many adjacent values are considered. 

Although k coefficient 3 is generally taken in the literature, this value may vary 

according to the data set. However, the coefficient n must be single numbers. 

 

Euclidean Distance Calculation: 

 i  = number of attributes; 

X = a set of attributes belonging to the test set; 

Y = a set of attributes belonging to the training set; 

    

2 2 2

1 1 2 2( ) ( ) ... ( )i id x y x y x y= − + − + + −                                 (2.1) 

 

2.9.5. Bayes Classifiers 

 

Bayesian classifiers are statistical classifiers. As a possibility given to a particular 

class, they can predict the possibility of class membership in advance (Han & Kamber, 

2018). In addition, Bayes classifiers operating on large databases have very high 

performance in terms of speed and accuracy. Bayesian classifiers can work effectively 

with the lowest error rate when the probability distribution of the data is given (Sydow, 

1977). 
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Bayes classifiers are simple classifiers that require a single scan of the data. Therefore, 

they can achieve high accuracy and speed in large data stacks. Their performances are 

sufficiently competitive to compete with decision trees and neural networks (Mitra & 

Acharya, 2005). 

The following equations are used to estimate the data for a class for the Naive Bayes 

classifier:   
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In the equation, μ represents the mean, zrefers to the standard deviation, and x is the 

attribute. 

P(X|Ci) means the probability that the X attribute is in the Ci class. 

 

2.9.6. Swarm Intelligence 

 

Swarm intelligence is defined as the development of a collective intelligence of a 

group of simple individuals in an autonomous structure (Bonabeau & Theraulaz, 

2000). The definition of herd intelligence was first used in 1989 by Gerardo Beni and 

Jing Wang (Beni & Wang, 1993) in the concept of cellular robotic systems. Flock 

Intelligence is based on collective behaviour work in decentralized, self-directed 

systems. Examples of such systems are available in nature. Examples include ant 

colonies, bird swarms, bacterial moulds, bee colonies, and a swarm of fish. 

The concept of herd intelligence includes different algorithms, including ant colony 

optimization and track optimization. These algorithms are used successfully in 

optimization. Nowadays, geo-intelligence techniques have been used in the field of 

data mining and the applications show that these techniques can achieve good results 

in classification. 
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2.9.7. Status-Based Reasoning (SBR) 

 

The SBR classifiers first proposed by Schank (Schank, 1982) are example-based 

classifiers. DTN learns through experience and benefits from the similarities and 

differences of the problems encountered before. Unlike the closest neighbour 

classifiers that store educational examples as dots in Euclidean space, the examples or 

situations stored by the DTN are complex symbolic definitions. Unlike artificial neural 

networks, status-based reasoning classifiers do not generalize. 

New approaches to the DTN include finding a good measure of similarity, 

developing effective techniques for indexing educational situations and combining 

solutions. 

 

2.9.8. Rough Set Approach 

 

Initially, the rough set approach proposed by Pawlak (Pawlak, Rough sets-theoretical 

aspect of reasoning about data, 1991) is used to find structural relationships in noisy 

data that are not definitive in classification, and is applied to discrete variables. The 

rough set approach is based on the assumption that, in contrast to the approach in which 

the cluster is defined only with elements of the cluster and that no additional 

information is available about the elements of the cluster, there is a need for some 

information about the space at the beginning to define a cluster. The basis of the rough 

cluster approach is the inability to distinguish. 

The cluster, which forms the basis of information and is a set of the same objects, is 

called the elementary cluster. Any combination of elementary sets is called a “definite” 

cluster, otherwise it is referred to as “rough” cluster. Each coarse cluster has elements 

that cannot be classified as elements of the cluster itself or as elements of the 

complementary set, which are called "boundary line elements" (Binay, 2002). 

The coarse cluster approach is based on the establishment of equivalence classes in an 

educational data handled. All data samples that make up an equivalence class are 

indistinguishable. The rough set definition for a given class is estimated by two sets; 

these are “bottom approach” and “top approach”. The bottom approach is strictly 

composed of all objects that belong to the class. The upper approach includes all the 
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objects that belong to the class. The difference between the lower and upper 

approaches constitutes the boundary zone (Pawlak & Skowron, Rough set rudiments, 

1999). Decision rules are created for each limit. In general, in the rough cluster 

approach, the decision tables are used to show the rules (Han & Kamber, Data mining: 

concepts and techniques, 2018). 

 

2.9.9. Fuzzy Set Approach 

 

The fuzzy set approach proposed by Zadeh and based on fuzzy logic is concerned with 

uncertainty. Fuzzy logic provides almost accurate and efficient methods for identifying 

the behaviour of complex, poorly defined or mathematically not easily analysed 

systems (Zadeh, 195). In other words, fuzzy logic creates a platform for the use of 

uncertain and indefinite information. They use an accuracy value of 0-1 rather than a 

definite distinction between categories. 

 

2.10.Classification Data Mining 

 

2.10.1. Classification Rules 

 

Classification is the process of using a model set of models or functions that define 

data classes and concepts, in order to use the model obtained to estimate the classes of 

class label unknown objects [16]. The classification process generally uses 

consultative learning methods to create a classification model from databases. When 

the output class is given a known set of examples, the purpose of classification is to 

discover hidden relationships between variables and classes (Tan, Yu, Heng, & Lee, 

2003). Decision limits in classification are established to distinguish samples from 

different classes (Mitra & Acharya, 2005). 

Classification rules are one of the most preferred methods for the representation of the 

output in data mining applications. This is because it is easy for the user to understand 

and interpret the rules. A leading part of a rule, such as tests of decision trees in nodes, 
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includes the test series, the next part of which refers to the classes or classes covered 

by that rule (Witten & Frank, 2005). 

 

The general form of a rule (also known as a ‘conditional expression’) is exemplified 

as: 

IF antecedent THEN consequence 

 

Two types of rules can be defined, namely characterisation rules and discriminant 

rules. With characterisation rules, the objective is to find rules that describe the 

properties of a concept. Characterisation rules have the form: 

IF concept THEN characteristic 

 

With discriminant rules, the objective is to find rules that allow the selection 

(discrimination) of the objects (data records), belonging to a given concept (class), 

from the rest of the objects (data records or classes). Discriminant rules have the form: 

 

IF characteristic THEN concept 

Note that the inverse implication of the characteristic rule is not a discriminant rule. 

The concept attribute of a property is defined by a set of variables and their respective 

values, which are decisive for a given concept. When a dataset of n records, which 

contains a special dc variable, expressed as a class (decision) variable, is considered, 

the dc variable splits the records in the data set into parts that are expressed as classes 

and classify the records, separating them into discrete subsets that are defined by the 

value of the class variable. The number of discrete subsets here is equal to the number 

of classes available in the dataset. 
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2.10.2. Classification Rule Extraction 

 

Classification rule extraction aims to discover a small set of rules in the database to 

create an accurate classifier (Nel, 2004) (Brieman, Friedman, Olshen, & Stone, 

Classification and regression trees, 1984). Rule extraction process, information from 

a data set, symbolic, continuous or discrete information stored in the data set (De 

Falco, Della Cioppa, & Tarantino, 2002) (Rouwhorst & Engelbrecht, 2000). 

The main purpose of the rule is to reveal the hidden information in the data in a clear 

way, to reveal the previously unknown relationships, to provide the ability to identify 

and identify (Parpinelli, Lopes, & Freitas, 2002). The rules obtained by classification 

rule extraction are have characteristics (Nel, 2004); 

• Must be understandable, 

• Short, simple, clear and clean, 

• Define the data correctly 

• Rules should not be repeated, 

• They should be useful, 

• Summarize the data in the data. 

Rule extraction from databases not only serves for rule-based classification, but also 

provides a better perspective to the problem being addressed with the linguistic 

knowledge discovered (Tan, Yu, & Ang, 2006). 

 

A rule that performs the classification of samples in a dataset is often referred to as the 

classifier. Classification rule extraction techniques are divided into rule-based methods 

and non-rule-based methods (Tan , Yu, & Ang, 2006). 

• Rule-based methods: Rule-based classification methods extract confidential 

information directly from the data and users can easily understand this 

information. C4.5 decision tree, decision tables and so on. examples of rule-

based methods. 

 

• Non-rule-based methods: Non-rule-based classification methods generally 

give more accurate results than rule-based classification methods, but they 
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cannot present the information they acquire because they behave like a black 

box. Generally, non-rule classifiers such as artificial neural networks can 

achieve very good classification accuracy, but they are not competitive in terms 

of intelligibility. Support vector machines, artificial neural networks, linear 

genetic programming are examples of non-rule-based methods. 

When creating a rule set to classify a dataset, a local, global, or local-global hybrid 

algorithm is used in two stages: training and testing. In the first stage, classification 

rules are learned from a data set composed of classified records. The data set used in 

this step is called the training data set. This type of learning is called the concept. 

Therefore, this process is called concept learning (Uran, 2005). In the second step, the 

rules learned in the first stage are applied to a test dataset and the accuracy of the rules 

is evaluated. The test dataset also contains class values, such as a training dataset. 

 

2.10.3. Basic Criteria in Evaluation of Classification Methods 

It is perhaps the most widely used technical classification in data mining (Larose, 

2005). There is a categorical target variable in the classification. The data mining 

model deals with a set of records that contain information about this target variable, as 

well as input variables. The following criteria are commonly used to evaluate 

classification methods (Uran, 2005). 

• Predictive accuracy, 

• Rule intelligibility, 

• Speed and scalability, 

• Time required to build the model, 

• Time required to use the model, 

• Sturdiness, 

• Addressing noise and blank values, 

• Interest 

Predictive accuracy: Determining the predictive accuracy is very important because it 

will determine which accuracy the classifier will discover previously unseen samples. 

There are techniques used to estimate holdout, cross-validation, bootstrapping and 

leave-one-out accuracy (Han & Kamber, 2018). 
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Resistance and cross-validation are the most common methods for evaluating classifier 

accuracy. The data discussed in these techniques are randomly divided into pieces. In 

the method of resistance, the data is divided into two independent parts: training and 

test sets. Usually, two-thirds of the data is considered as a set of education and the 

remaining one as a test set. The training set is used to obtain the classifier and the 

classifier's accuracy is obtained by the test set. Because only a portion of the initial 

data is used to obtain the classifier, the resistivity technique is a pessimistic technique. 

In the k-fold cross-validation technique, data is divided into random size pieces of 

equal size. Training and testing procedures are repeated k times. For each repetition, a 

different set of k is used as the test set, and the remaining k-1 is used as a training set. 

The accuracy estimate is calculated by dividing the total number of correct 

classifications from the iterations by the number of initial data samples. In general, 10-

fold cross-validation is a recommended technique for determining the classifier 

accuracy due to its low threshold and variance. In the cross-validation technique, a 

maximum of 10 is used as a result of the detailed tests performed on a large number 

of datasets with different learning techniques. There is also theoretical knowledge to 

support it (Witten & Frank, 2005). 

The preloading method is a statistical method based on modifiable sampling. In the 

methods described previously, the training and test are generated without changing the 

data sets, i.e. the same sample cannot be re-selected once after it has been selected, but 

it is an example of the data set by modifying to create the basic set of instruction in the 

boot. 

The one-out-and-drop method simply refers to n-fold cross-characterization to indicate 

the number of samples in the dataset. In this method, each sample is excluded and the 

learning method is trained with the remaining samples. The test is performed on the 

excluded sample, the accuracy value will be either positive or negative. The result of 

the test on each sample, i.e. n is centred on the result of the test, and this mean value 

indicates the final accuracy value. 

 

Rule comprehensibility: Another important criterion of classification rule extraction 

is the intelligibility of the model. The understanding of the model means that it can be 

easily understood and interpreted by users. 



 

28 

 

Speed and scalability: Speed and scalability are the criteria used in the evaluation of 

the rules obtained in the classification rule extraction. 

Robustness: Robustness is another criterion used in the evaluation of classification 

methods, but it is not used as frequently as accuracy and clarity. Strength is a measure 

of the sensitivity to educational data or disturbances in the initial field information. 

Interest: In addition to the criteria described above, another criterion that must be 

taken into account in the classification rule is interest. For end user (Kaur, Wasan, Al-

Hegami, & Bhatnagar, 2006); 

 

• If the rules contradict the user's knowledge and expectations (unexpected 

rules), 

• If users can and can do something with the rules (available), 

• It is interesting if it adds information(new) to the user's previous information. 

 

2.10.4. Micro and Macro Evaluation of Classification Rules 

Evaluation of the rules is of great importance in the classification process. Most of the 

existing rule learning algorithms are based on the individual rule evaluation criteria. 

However, the performance of the rule extraction system and the classification process 

are taken into account in the evaluation of the set of rules. This requires the 

combination of single rule and rule set evaluation criteria. Rule evaluation criteria are 

determined by analysing the relationship between the leading and subsequent part of 

the rule in the 2X2 contingency table. Table 2.1 shows an example contingency table. 

 

Table 2.1. 2x2 Conditionality Table 

 Class Wrong Class Total 

Leading TP FP 
 

Leading provided 

Wrong Leading FN TN 
Leading not 

Provided 

Total Class Provided Class not Provided Data Set 
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When a rule is used to classify a given example of training; four cases occur as positive 

true (TP), positive false (FP), negative true (TN) and negative false (FN) (Tan , Yu, & 

Ang, A dual-objective evolutionary algorithm for rules extraction in data mining, 

2006). Positive true and negative true, true classifications; positive false and negative 

false, express false classifications. 

• Positive true (TP): The rule predicts that the class is positive, and the given 

class of example is positive. 

• Negative true (TN): The rule estimates that the class is negative and the class 

of the given example is negative. 

• Positive false (FP): The rule estimates that the class is positive, but the class 

of the given example is negative. 

• Negative False (FN): The rule predicts that the class is negative, but the class 

of the given example is positive. 

Yao and Zhou (Yao & Zhou, 2008) divided the rule evaluation criteria into two as 

macro and micro evaluation according to the number of rules assessed. In the second 

stage, they classified the macro evaluation criteria into two groups as overlapping and 

non-overlapping rules according to the relationship between rules in a cluster. 

Micro evaluation is based on singular rules. Many existing rules of assessment have 

been proposed for micro-assessment. These criteria are used to determine the stop 

criterion in rule production and to produce high quality rules for classification 

purposes. However, evaluation according to the individual rules may result in 

overlapping results. 

Macro evaluation is based on a rule set. Because there are multiple rules for making a 

decision, it is more evident than micro-evaluation. In macro evaluation, if the object 

in the treated space provides a maximum rule in a rule set, the rules are rules that do 

not conflict, if they provide more than one rule, they are conflicting rules. They also 

divided the conflicting rules into two as consistent and contradictory rules. If an object 

provides one or more rules in the same class, the rules are consistent, if they provide 

at least two different classes with multiple rules, they are conflicting rules. 

Micro evaluation criteria are designed to demonstrate the power of individual rules. 

The formulas for the most commonly used micro-performance assessment criteria are 

given in (2.4) - (2.7). 
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Correctness
TP TN

TP TN FP FN

+
=

+ + +
                                         (2.4)                                 

Correctness is a measure of the extent to which the set rule reflects the data set and is 

found by dividing the total number of samples in the data set by the number of correctly 

classified samples. 

Reliability=
TP

TP FP+
                                 (2.5)

                                                               

Reliability in classification refers to the ratio of objects that provide both the class and 

the leading part within the objects that provide the leading part of the rule, and take 

values from 0 to 1. 

Support
TP

TP FN
=

+
                                         (2.6)

                                                  

A support criterion is a measure of the acceptability of a rule and takes values from 0 

to 1. In classing problems, the support class gives the ratio of objects that provide the 

leading part in the objects that provide the correct one. 

Generality
TP FP

N

+
=                                  (2.7)

    

Generally, the entire data set refers to the part that provides the leading part of the rule. 

The generality evaluation criterion, such as reliability and support, also takes values 

from 0 to 1. The number of variables can be used as a measure of complexity in micro 

rules. This criterion is determined by the number of variables in the leading part of the 

rule. 

 

Macro evaluation focuses on evaluating the performance of the whole rule inference 

system, rather than evaluating the performance of each individual rule of the system. 

Macro performance evaluation criteria can be calculated as follows. Correctness; 
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Number of samplesclassified by ruleset correctly
Correctness=

Number of samplesina dataset
                                  (2.8) 

 

In the macro evaluation, the truth expresses the accuracy of the rule set and is found 

by dividing the total number of samples in the dataset by the number of instances 

classified correctly. Reliability; 

Number of samplesclassified by ruleset correctly
Reliability=

Number of instancesclassified by the ruleset
                                (2.9)

            

Reliability returns the proportion of correctly classified objects within the objects 

classified by the rule set. Support gives the proportion of objects classified correctly 

by the set of rules within all objects (Equation 1.7); 

Number of samplesclassfied by ruleset correctly
Support=

Number of samplesina dataset
                                 (2.10) 

 

The generality of a rule set indicates the ratio of objects covered by the rule set within 

the objects in the data set and is calculated by the following formula; 

 

Number of samplescovered by ruleset
Generality=

Number of instancesina ruleset
                             (2.11)                                   

In macro evaluation, the number of variables as a measure of complexity is calculated 

by calculating the number of variables in the rule set. The number of rules is expressed 

by the number of rules in the rule set. 

 

2.10.5. Rule Representation 

 

The first decision in classification rule extraction is how many rules will be coded in 

a solution (Bojarczuk, Lopes, Freitas, & Michalkiewicz, 2004). There are two 

approaches to this problem: the Michigan approach and the Pittsburgh approach. In 
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the Michigan approach, each set of solutions contains a rule, while a number of rules 

in the Pittsburgh approach make up a set. 

The Pittsburgh approach is more suited to classifying the whole set of rules because of 

its ability to evaluate and, as a result, takes into account the rule interactions. The 

quality of the rules obtained by this approach is easy to assess. 

The Michigan approach has the advantage of low processing time as it contains 

uncomplicated solutions. However, due to the fact that it treats a rule at once, rule 

interactions are taken into account, which is the main obstacle to the predictive 

accuracy of the rule set. 

After deciding whether a single rule or multiple rules are to be encoded in the solution 

array, it must be decided how to encode the arrays. While high-level rule 

representation can be used, binary encoding is the most common and simplest form of 

coding (Uran, 2005). One approach to symbolic variables (variables with discrete 

values) is to use one bit per value. In this case, a variable with N values will be 

represented by a sub-bit of N bits. For example, if a color variable with {red, white, 

black, yellow} values is considered, subset k 1010, will represent the colour to be red 

or black. In this approach, if the bit values of all sub-sequences of a variable are 1, the 

test result of this variable will return continuously, in other words, this variable will 

not be part of the leading part of the rule. This is a critical factor considering the 

generality of the rule. The extraction of some variables creates simpler rules and 

prevents conflicts. 

Another approach for binary coding is to display the index value of a variable in binary 

form. With this representation, short sub-sequences are obtained, especially for 

variables containing a large number of elements. In this approach, it is necessary to 

use a different technique such as trivial bit to extract the variable from the rule. 

For continuous (numerical) variables, an intermittent technique is usually required. If 

the variable values are integers or decimal places, the variable can be converted 

directly into binary. Although there are very simple cutting techniques that can be 

used, the interruption process can be very complex and may affect the success of the 

rules. There are two types of cuts: consultant and non-consultant. In non-consulted 

interruptions, variable values are discontinued without using class information, 
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whereas in class-level interruptions, class values are also included in the interruption 

process and discontinued (Witten & Frank, 2005). 

 

2.10.6. Compliance Function 

 

The second most important decision that must be given in the classification is the 

fitness function, ie the objective function to be used. The eligibility function for 

classification rule extraction is often selected according to the purpose of the 

classification process and the rule-of-use structure used. The maximization of the 

predictive accuracy is often the first objective, and the predictive accuracy is simply 

calculated as the ratio of the correctly categorized samples to the samples in the 

training set. Spears and De Jong (De Jong, Spears, & Gordon, 1994) proposed the 

following conformity function, which presents a non-linear threshold to correctly 

classified samples. 

 

Eligibility (series i) =  percentage of correctly classified samples2                    (2.12) 

 

However, this function cannot effectively penalize misclassifications caused by 

individual rules, which may cause a performance problem. This is especially true when 

rules are shown by the Michigan approach, because interactions between rules are not 

taken into account. To mitigate this problem, not only the positive correct and negative 

truth (correctly classified examples), but also the fit functions that take into account 

different variations of the positive false and negative false (misclassified examples) 

values can be used. 

Measurement of interest is often more complex. For example, Noda (Romao, Freitas, 

& Gimenes, 2004) proposed a method that calculates the gain of information from 

each variable in the leading part of the rule, depending on the weights assigned by 

users. 
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2.11.Gene Expression 

 

Although the cells in the human body all contain the same genetic material, the same 

genes are not active in each cell. The knowledge of which gene is active and which 

does not exist gives biologists information about how these cells normally function 

and how the cells will be affected when certain genes are not functioning properly. 

This activity is called gene expression of the cell (Özcan, 2014). 

Each cell contains the same genetic information. However, skin cells, kidney, liver, 

blood, brain cells are different from each other. These differences are due to the 

different expression of genes in different cells (Lüleyap, 2008). 

In the past, biologists have been able to measure the gene expression data of several 

genes at the same time, and the gene expression data of thousands of genes can be 

measured simultaneously with the development of DNA (Deoxyribonucleic acid) 

microchip technology (Özcan, 2014). 

After the gene sequences produced with the human genome project, the new objective; 

Finding how these genes express their expression, ie removing mRNA profiles, was to 

show how they relate to other genes, and thus to determine which genes play a role in 

certain diseases. The type of a cell or phase it is in relates to the mRNA expression of 

that cell. By studying the expression levels of previously unidentified genes and 

comparing them with the mRNA expressions of other known genes, it is attempted to 

obtain information about the functions of those genes (Lüleyap, 2008). 

 

2.12.Microarray Technology 

 

The rapid development of computer technology in parallel with molecular biology 

brought the two disciplines closer together. Thus, microarray (gene chip), which is one 

of the end points that biotechnology can reach conceptually, has emerged. The first 

attempts of the microarray technique were performed by Shalon and Schena (Bal & 

Budak, 2012). 

Microarray technology offers new analytical methods that allow the investigation of 

many genes at the same time, unlike traditional methods. Although this technique is 
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especially medicine; biology, microbiology and genetics. Many microarray types are 

available for different purposes (Şimşek, 2013). 

DNA microarray technology; it is a method of simultaneously examining the levels of 

expression (expression level) and DNA changes of thousands of genes (Shakya, 

Ruskin, Kerr, Crane, & Becker, 2010). 

In traditional methods of molecular biology, the principle “one gene in one experiment 

gen is generally valid. So; Seeing all of the gene functions in the same study is difficult 

with conventional methods. New methods, also known as gene chip technology, allow 

the entire genome to be viewed, which allows simultaneous interaction of thousands 

of genes. The first attempts of microarray technologies based on the study of thousands 

of genes in a single study were carried out by Schena in the early 1990s. This 

technology is a technology that allows for the examination of the expression level of 

multiple genes at a time and allows thousands of DNA to be analysed at the same time 

(Bal & Budak, 2012). 

DNA microarray technology, monitoring the activity of many genes at the same time; 

be a fast method; the time-consuming analysis of all results, as well as the advantages 

of comparing the activities of genes in patients and healthy cells, and categorizing 

diseases as subgroups; the results may be too complex to interpret; it also has some 

disadvantages, such as the fact that the results are not sufficiently quantitative and are 

quite expensive (Liu, Bebu, & Li, 2010). 

Measurement of gene expression using microarrays is feasible in many areas of 

biology and medicine. For example, microarrays can be used to identify disease-

related genes by comparing gene expression in a diseased and normal cell. In another 

study, DNA microarray analysis was performed for major depression in postmortern 

prefrontal cortex from brain tissue. Gene expression models of patients with major 

depression and control group were compared and 99 genes were expressed differently 

in major depression (İpekdal, 2011). 

Generate expression profile of DNA microarray (also known as gene chip, DNA chip 

or biochip). In other words, in order to monitor the expression level of thousands of 

genes at the same time, a solid surface such as glass, plastic or silicon chip is attached 

to the array. 
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Although there are some minor differences in methods and methods of expression, 

definitions such as DNA array, DNA chip and microchip are used to express similar 

applications (Bier, et al., 2008). 

 

2.12.1. Production of Microarray and Working Logic 

 

It is a new and powerful technology that has been started to be developed in the mid-

90s and allows for the collective examination of gene expression in cells and tissues. 

All the genes of a microorganism can be placed on a microscope slide scale and the 

expression levels of thousands of genes can be studied simultaneously in a single 

experiment. DNA microarray analysis consists of the following steps (Figure 2.7): 

 

Figure 2.7. DNA microarray process steps (Bal & Budak, 2012)  

 

1. Preparation of microarray 

2. Preparation and labelling of samples to be tested 

3. Hybridization 

4. Washing 

5. Stimulation of labels 

6. Image scanning / Data processing-analysis 

 



 

37 

 

1. Preparation of Chip: Microarray as a support material usually glass, plastic 

silicone, etc. solid surfaces are used. These solid surfaces are treated prior to 

spotlighting in order to facilitate binding of the nucleic acids by increasing the 

electrostatic interaction. DNA microarray chips are cDNA (complement DNA) 

chips. cDNA chips are generated by spotting 500-2000 base pairs of cDNAs or 

Expressed Sequenced Tagged (EST) clones from the cDNA clone library into the 

slides by special printers (multi-end mechanical printers, ink-jet printers, etc.). 

cDNA chips are mostly used for expression analysis. No matter how the chips are 

obtained, the result is a platform in which there are a large number of homologous 

DNAs in each probe, where different probes contain different DNA chains and are 

ready for hybridization with suitably prepared samples (Figure 2.8). 

 

Figure 2.8. The appearance of DNA microarrays (Bal & Budak, 2012) 

 

2. Preparation and Labelling of Samples: Sample preparation in the DNA 

microarray method is an important step, and the target mRNAs isolated from both 

state samples for the study are translated into cDNA by reverse transcriptase. The 

resulting cDNAs are labelled with radioactive or fluorescent markers. For 

radioactive marking, radioisotopes, such as 33P, are generally used for radioactive 

marking, while cyanine dyes such as Cyanine (Cy3, Cy5) are used for fluorescent 

marking. Cy3, which gives a green colour and Cy5 which gives red colour, are the 

most commonly used dyes due to various advantages. 

 

3. Hybridization: The mixture of labelled cDNAs is incubated on the microarray to 

provide hybridization. If there are complementary sequences with microarray 

probes in the sample, they will hybridize to probes at the end of this process. 
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4. Washing: After the hybridization step, washing is required to remove structures 

such as nonspecific signal foci and non-probe linked media in the environment. It 

is an important stage for the correct evaluation of the reaction. 

5. Stimulation of labels: Hybridization in the microarray, which is hybridized with 

the samples in the sample and removed from the non-washing-bound material, is 

made visible. The goal is to make the sequences that hybridize to the microarray 

appear visible or evaluable (Figure 2.10). The process is carried out using the 

warning resources appropriate to the nature of the label used and the type of 

scanners. 

 

Figure 2.9. Stimulation and fluorescence of labels (Bal & Budak, 2012) 

  

 

6. Image Scanning / Data Processing-Analysis: This is the stage where the 

fluorescent or radioactive signal on the microarray is collected. For this process, 

fluorescent signal detectors such as confocal or charge coupled device (CCD) or 

phosphor imager detectors for radioactive signals are used which measure the light 

intensity in the microarray spots. All detectors are connected to a special computer, 

the program of the software and the detectors. A large number of incoming data is 

evaluated by these software. During scanning, the detectors determine the signal 

intensity in each microarray probe generated by the hybridized samples. The 

scanning results are processed by software to make meaningful data. Indexes 

marked with Cy3 in the example; If the probe is hybridized to the cDNA in the 

target probe, then that probe will emit red colour if the green colour is hybridized 

with Cy5-labeled sequences, and the probe will emit yellow if both Cy3 and Cy5 

labelled sequences hybridize evenly (Figure 2.11). The processing and analysis of 

data includes various processes such as normalization, filtering, clustering, and 

pattern identification (Bal & Budak, 2012).  
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2.12.2. Usage Areas of Microarrays 

 

• Removal of gene expression profiles 

• Polymorphism analysis 

• Mutation Analysis 

• DNA sequence analysis 

• Evolutionary studies 

• The presence, development, optimization and clinical evaluation of potential 

therapeutic agents 

The most conspicuous use of the Microarray technique is to measure differences 

in gene expression. All of the genes transcribed from genomic DNA are called 

transcriptome or gene expression profiles. Although the genome is cell-to-cell, the 

gene expression profile is rapidly changing according to the conditions in which 

the cell is present. Following the changes in the expression levels of genes under 

various conditions, important clues about the functions of the proteins encoded by 

these genes can be obtained. 

DNA microarray is used extensively to characterize gene expression 

differentiation in cancer cells. For example, approximately 5500 genes expressed 

by human lung epithelial cells can be compared with lung cancer tissue genes. 

Thus, it is possible to obtain information about the genes that play a role in the 

process of cancerization. Another important role in cancer treatment is the ability 

to classify cancerous cells according to their gene expression status. 

 

2.12.3. Advantages of Microarray Technology 

 

Generate a general view of gene expression models. A gene expression profile can be 

determined for a given environment of a particular cell type, and this profile can be 

compared to this method by different cell types and gene expression profiles under 

different environmental conditions. It is possible to analyse several thousand genes in 

a short time and quite practically. Since there is an automation-based system, the 

likelihood of human error is very low (Bal & Budak, 2012). 
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2.13.Literature Review 

 

Many studies have been done for microarray analysis in the field of bioinformatics, 

one of which is the work of D.H Tran et al. (Tran, Ho, Pham, & Satou, 2011). Tran 

and his colleagues conducted the classification and analysis studies on tumour samples 

of microRNA (miRNA) expression profiles and thousands of miRNAs can be studied 

simultaneously thanks to microarray technology. Tran and his colleagues used 223 

samples with 151 miRNA attributes in their studies, which were used by Gloub and 

his colleagues (Lu, et al., 2005). SVM was applied as a classification algorithm and 

the samples were divided into 2 classes (tumour-normal). As a result, the values in 

Table 2.2. were obtained. 

 

Table 2.2. Accuracy, sensitivity and AUC values of classification algorithms applied 

by Tran et al. 

SVM Kernel 

Function 
Accuracy Sensitivity AUC 

RBF 0,92 0,98 0,98 

Linear 0,95 0,95 0,97 

Polynomial 0,93 0,95 0,96 

 

 

In another study, X.Fan et al. (Huang, Fang, & Fan, 2010) applied the microarray 

analysis in the liver, hepatitis, colon, leukaemia and lymphatic cancer cells. In the 

study in which hepatotox data set was used, classification was performed using 318 

samples with 20500 gene attribute (Lobenhofer, et al., 2008). The colon cancer data 

set (Alon, et al., 1999) consists of 2000 genes and 62 samples, leukaemia dataset 

consists (Golub, et al., 1999) of 7129 genes and 72 samples, and lymphatic cancer data 

set (Alizadeh, et al., 2000) consists of 4026 genes and 96 samples. The results of the 

study are as in Table 2.3. 

 

Table 2.3. Accuracy of classification algorithms applied to hepatatox, colon, 

leukaemia and lymph cells by X. Fan et al. 
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Applied 

Classification 

Algorithm 

Hepatatoks Colon Cancer 
Lymph 

Cancer 
Leukaemia 

Decision Trees 0,901 0,817 0,943 0,966 

SVM 0,886 0,813 0,961 0,945 

KNN 0,873 0,795 0,892 0,926 

 

D. Liu and his friends (Chen, Yang, Liu, & Liu, 2011) were divided into 2 classes with 

999 samples of 699 samples with his research in the Wisconsin Diagnostic Breast 

Cancer (WDBC) cell database (Uci Machine Learning Reporsitory, 2018). SVM was 

used as the classification algorithm and the training and test data were divided into 50-

50%, 70-30%, 80-20%, respectively. The results of the study are as in Table 2.4. 

 

Table 2.4. The accuracy of the SVM algorithm applied to the WDBC breast cancer 

cells by D.Liu et al. 

Applied Classification 

Algorithm 

Training-Test Cluster 

Percentages 
Accuracy Values 

SVM 

%50-50 0,95 

%70-30 0,96 

%80-20 0,96 

 

C. Chakraborty and colleagues (Krishnan, Banerjee, Chakraborty, & Ajoy, 2010) have 

also analysed the microarray of WDBC cells in their studies. The aim of this study was 

to determine the high accuracy of SVM in breast cancer. Two types of data sets were 

used in the study. The first of these data sets consists of 699 examples, with 9 attributes 

and 2 classes. In the other dataset, 569 sample is divided into 2 classes with 10 

attributes. While SVM algorithm was applied to these data sets, the polynomial and 

Gaussian functions of SVM were used. The results obtained are as in Table 2.5. 

 

Table 2.5. C. Chakraborty et al. WDBC on breast cancer cells SVM algorithm applied 

with polynomial and Gauss kernels sensitivity and specificity values 

 
Dataset-1 Dataset-2 

Polynomial Gauss Polynomial Gauss 

Sensitivity 0,9775 1 0,9269 0,945 

Specificity 0,9762 0,9879 0,9256 0,9298 
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In another study, M. Acı and M. Avcı (Acı & Avcı, 2011) tried the K-ENK algorithm 

in the WDBC cells database. As previously noted, the WDBC dataset consists of 699 

examples of 9 attributes and 2 classes. The distance values which are important in K-

ENK algorithm are taken as Manhattan, Euclid and Minkowski respectively. The 

values in Table 2.6 show the results of the study.  

Table 2.6. M. Acı and M. Avcı's false sample numbers classified in WDBC cells by 

K-ENK algorithm for different distances 

* Manhattan Euclidean Minkowski 

k=1 14 10 17 

k=2 16 17 15 

k=3 15 18 15 

k=4 19 16 21 

k=5 17 19 20 

* The above values show incorrectly classified sample numbers. 

 

B. Han et al. (Han, Li, Chen, Zhu, & Dai, 2011) have studied microarray analysis 

studies in leukaemia, brain tumours, colon and prostate cancer cells. Sample datasets 

attribute selection methods, respectively 1, 5, 10, 20, 50, 100 it is divided into genes 

and then classifying algorithms were used. SVM, KNN, RF, NB were used as 

classification algorithms. Table 2.7 shows the classification accuracy values for 5, 10 

and 20 attributes of colon cancer cell. 

 

Table 2.7. Accuracy values of different classification algorithms applied in colon 

cancer cells using 5, 10, 20 attributes by B. Han 

Applied Classification 

Algorithm 

Number of genes 

5 10 20 

SVM 0,840 0,863 0,851 

KNN 0,853 0,903 0,886 

RF 0,846 0,866 0,886 

NB 0,887 0,911 0,866 

 

https://www.google.com/search?q=Minkowski&spell=1&sa=X&ved=0ahUKEwiY-drv5PDjAhWkl4sKHSDPC3QQBQgsKAA
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In the study (Li & Liu, 2010) conducted by D. Li et al., Data sets in the University of 

California's machine learning data warehouse were used. Data sets were used as 

Echocardiogram, WDBC, BUPA liver and PIMA diabetes data (Uci Machine 

Learning Reporsitory, 2018). As a classification algorithm, Gauss and polynomial 

kernels and SVM algorithm was applied. Data sets are divided into 5, 10, 20, 30, 50, 

100 educational examples, respectively. Table 2.8 shows the results of the studies. 

Table 2.8. Accuracy values of the SVM algorithm in which Echocardiogram, WDBC, 

Bupa and Pima are applied using Gauss and polynomial kernels on data sets by D. Li 

and friends. 

Echocardiogram Dataset 

SVM Kernel Function 
Education Sample Numbers 

5 10 20 30 

SVM-Gauss 67,17 74,33 84,17 86,50 

SVM-Polynomial 64,50 67,67 73,00 74,17 

WDBC Dataset 

SVM Kernel Function 
Education Sample Numbers 

5 10 20 30 

SVM-Gauss 52,73 57,60 62,90 74,10 

SVM-Polynomial 52,73 53,56 57,88 55,38 

BUPA Liver Dataset 

SVM Kernel Function 
Education Sample Numbers 

5 10 20 30 

SVM-Gauss 49,32 51,53 54,57 56,35 

SVM-Polynomial 51,27 51,92 54,50 56,42 

PIMA Diabetes Dataset 

SVM Kernel Function 
Education Sample Numbers 

5 10 20 30 

SVM-Gauss 55,00 59,22 60,87 60,03 

SVM-Polynomial 55,03 60,05 61,68 61,68 

 

In the microarray based cancer classification study, X.Wang and O.Gotoh (Wang & 

Gotoh, 2010) tried different classification algorithms on the nervous system, colon, 

lung, prostate, breast cancer cells and leukaemia samples. SVM, NB, KNN and KA 

were applied as classification algorithms. Table 2.9 shows the classification results of 

colon cancer with 5, 10, 20, 50 and 100 attributes. 
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Table 2.9. Accuracy values of different classification algorithms used by Gotoh using 

a set of 5, 10, 20, 50 and 100 attributes by X.Wang and O.Gotoh 

Colon Cancer Dataset 

Applied Classification 

Algorithm 

Number of genes 

5 10 20 50 100 

SVM 59,68 82,26 88,71 83,87 87,10 

NB 75,81 80,65 79,03 77,42 74,19 

KNN 67,74 82,26 85,48 85,48 88,71 

KA 61,29 79,03 83,87 74,19 88,71 
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CHAPTER 3  

METHOD 

 

In the study, the open-source Java-based Weka program program for the classification 

of low-dimensional microarray gene expression data was used so that the dimensions 

of the microarray gene expression data were reduced by using the attribute selection 

methods. Thanks to this program, statistical and artificial intelligence-based methods 

were used to classify microarray data and their performance on microarray gene data 

were compared with each other. 

Thus, artificial intelligence-based classification methods, which are among the new 

methods used in the literature, have been used in this study. 

 

3.1. Weka Program 

 

Weka is an open-source data mining program developed by the University of Waikato 

in New Zealand, which incorporates machine learning algorithms, has a functional 

graphical interface, and is developed with the Java programming language (Witten & 

Frank, 2005). Weka various data pre-processing, classification; Includes regression, 

association rules, clustering and visualization tools. Algorithms can be applied to the 

data set directly or by calling from the Java code (Hall, et al., 2009) (Patterson, Liu, 

Turner, Concepcion, & Lynch, 2008). It is also suitable for developing new machine 

learning algorithms. 

Weka supports all steps of data mining, such as the processing of raw data, statistical 

evaluation of learning methods on data, and visual monitoring of raw data and the 

model extracted from raw data. It includes many data pre-processing filters as it has a 

wide range of learning algorithms. Weka hosts 4 basic applications called Explorer, 

Experimenter, Knowledge Flow and Simple CLI. 
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Figure 3.1. Weka user interface 

 

When the program is executed, the user interface in Figure 3.1 is displayed. This 

interface screen contains the main menu consisting of the “Program”, “Visualization”, 

“Tools” and “Help” menus and the "Applications" sections, which are “Explorer”, 

“Experimenter”, “Knowledge Flow” and “Simple CLI”. The Explorer option in the 

“Applications” section contains a general graphical user interface that contains 

instructions that can be made on existing data. The Experimenter option is a user 

interface that allows one or more algorithms to be applied and monitored on one or 

more datasets. The "Knowledge Flow" option works like Simulink in Matlab, or the 

Explorer Window, which has drag-and-drop functionality like LabVIEW to National 

Instruments. User can use “Explorer” or “Knowledge Flow” options depending on 

preference. The last option, “Simple CLI”, allows you to process through the command 

screen! 
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Figure 3.2. Tabs in Explorer 

 

Figure 3.2 shows the tabs in the "Explorer" option of the Weka data mining program. 

Under this tab, there are menus such as association, classification, clustering, property 

visualization, selection and also provides information about the attributes and classes 

of the data on this page. 

 

Figure 3.3. Weka "Classify" tab 
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In Figure 3.3, in the "Classify" tab, a user interface screen with various classification 

algorithms is displayed. One of the many classifier algorithms such as "Bayes", 

"SMO", "lBk", "J48" is selected under this interface. 

 

Figure 3.4. "Test Options" title 

 

In Figure 3.4, there are options on how to use the training set and test set in the "Test 

Options" section. 

• Use training set: Assesses the classifier on how well it predicts the class of 

the occasions it was prepared on. 

• Supplied test set: Assesses the classifier on how well it predicts the class of a 

lot of examples stacked from a record. Tapping on the 'Set… ' secure carries 

an exchange enabling you to pick the document to test on. 

• Cross-validation: Assesses the classifier by cross-approval, utilizing the 

quantity of folds that are entered in the 'Folds' content field. 

• Percentage split: Assesses the classifier on how well it predicts a specific level 

of the information, which is waited for testing. The measure of information 

held out relies upon the worth entered in the '%' field (Svetlana) 
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Figure 3.5. The "Select Attributes" tab 1 

 

 

 

Figure 3.6. The "Select Attributes" tab 2 
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In Figure 3.5 and Figure 3.6, dimension reduction is performed using one of the 

attribute selection methods in the "Select attributes" tab. 

 

3.2. Attribute Selection 

 

The attribute selection is a subset of attributes that has been reduced from all attributes, 

and possibly have better classification performance. Qualification selection has proved 

to be a critical requirement when it comes to achieving accurate and reliable cancer 

classification results using mRNA information. WrapperSubsetEval, CfsSubsetEval 

(correlation based) and ChiSquareSubsetEval algorithms have been used in this study. 

 

• WrapperSubsetEval: Assesses property sets by utilizing a learning plan. 

Cross approval is utilized to assess the exactness of the learning plan for a lot 

of traits. 

• CfsSubsetEval: Assesses the value of a subset of properties by considering the 

individual prescient capacity of each component alongside the level of excess 

between them. Subsets of highlights that are profoundly associated with the 

class while having low intercorrelation are liked. 

• ChiSquareSubsetEval: Assesses the value of a quality by registering the 

estimation of the chi-squared measurement as for the class.  

 

3.3. Arff File Format 

 

An ARFF (Attribute-Relation File Format) file is an ASCII content document that 

portrays a rundown of occurrences sharing a lot of characteristics. ARFF records were 

created by the Machine Learning Project at the Department of Computer Science of 

The University of Waikato for use with the Weka AI programming. 

ARFF files have two distinct sections. The first section is the Header information, 

which is followed the Data information. (Weka, 2018) 
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The Header of the ARFF record contains the name of the connection, a rundown of 

the characteristics (the sections in the information), and their sorts. A model header 

on the standard IRIS dataset looks like as Figure 3.7 

 

Figure 3.7. The header information of standard IRIS dataset 

 

The Data of the ARFF file looks like as Figure 3.8 

 

Figure 3.8. The data information of standard IRIS dataset 
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Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and 

@DATA declarations are case insensitive. 

 

3.3.1.The ARFF Header Section 

 

The ARFF Header area of the document contains the connection revelation and trait 

presentations. 

@relation Declaration: The relation name is defined as the first line in the ARFF file. 

The format is: 

    @relation <relation-name>    

where <relation-name> is a string. The string must be quoted if the name includes 

spaces. 

The @attribute Declarations: Attribute declarations take the form of an ordered 

sequence of @attribute statements. Each attribute in the data set has its 

own @attribute statement which uniquely defines the name of that attribute and its 

data type. The order the attributes are declared indicates the column position in the 

data section of the file. For example, if an attribute is the third one declared then Weka 

expects that all that attributes values will be found in the third comma delimited 

column. The format for the @attribute statement is: 

 

    @attribute <attribute-name> <datatype> 

    

where the <attribute-name> must start with an alphabetic character. If spaces are to be 

included in the name then the entire name must be quoted. (Weka, 2018) 

 

3.3.2.ARFF Data Section 

The ARFF Data section of the file contains the data declaration line and the actual 

instance lines. 
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@data Declaration: The @data declaration is a single line denoting the start of the 

data segment in the file. The format is:  

@data    

Instance data: Each instance is represented on a single line, with carriage returns 

denoting the end of the instance. Attribute values for each instance are delimited by 

commas. They must appear in the order that they were declared in the header section 

(i.e. the data corresponding to the nth @attribute declaration is always the nth field of 

the attribute). 

 

3.4. Classification Methods  

 

3.4.1.Naive Bayes (NB) 

 

It is a classification system dependent on Bayes' Theorem with a suspicion of 

autonomy among indicators. In basic terms, a Naive Bayes classifier expect that the 

nearness of a specific component in a class is irrelevant to the nearness of some other 

element. For instance, an organic product might be viewed as an apple in the event that 

it is red, round, and around 3 creeps in width. Regardless of whether these highlights 

rely upon one another or upon the presence of different highlights, these properties 

autonomously add to the likelihood that this organic product is an apple and that is the 

reason it is known as ‘Naive’ 

Naive Bayes model is anything but difficult to manufacture and especially valuable 

for exceptionally enormous informational collections. Alongside straightforwardness, 

Naive Bayes is known to beat even exceptionally refined order strategies. (Naive 

Bayes, 2018) 

Bayes theorem provides a way of calculating posterior probability ( | )P c x  from 

( )P c , ( )P x  and ( | )P x c . Look at the equation below: 
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Class Prior ProbabilityLikelihood

Posterior
Probability Predictor Prior Probability

1 2

( | ) ( )
( | )

( )

( | ) ( | ) * ( | ) *...* ( | ) * ( )n

P x c P c
P c x

P x

P c X P x c P x c P x c P c

=

=

                                (3.1) 

Above, 

• ( | )P c x is the posterior probability of class (c, target) 

given predictor (x, attributes). 

• ( )P c  is the prior probability of class. 

• ( | )P x c  is the probability which is the likelihood of indicator given class. 

• ( )P x  is the prior probability of predictor. (Naive Bayes, 2018) 

 

How Naive Bayes algorithm works? 

 

Let’s understand it using an example. Beneath I have a preparation informational index 

of climate and relating target variable 'Play' (recommending conceivable outcomes of 

playing). Presently, we have to group whether players will play or not founded on 

climate condition. How about we pursue the underneath ventures to perform it. 

Step 1: Convert the informational index into a recurrence table 

Step 2: Make Likelihood table by finding the probabilities like Overcast likelihood = 

0.29 and likelihood of playing is 0.64.. 

 

Figure 3.9. Naive Bayes likelihood table 
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Step 3: Presently, utilize Naive Bayesian condition to compute the back likelihood for 

each class. The class with the most noteworthy back likelihood is the result of forecast. 

Problem: Players will play if climate is radiant. Is this announcement is right? 

We can solve it using above discussed method of posterior probability.  

( | ) ( | ) * ( ) / ( )P Yes Sunny P Sunny Yes P Yes P Sunny=   

Here we have ( | ) 3/) 0,33P Sunny Yes = = , ( ) 5 /14 0,36P Sunny = = , 

( ) 9 /14 0,64P Yes = = . 

Now, ( | ) 0,33*0,64 / 0,36 0,60P Yes Sunny = = , which has higher probability. 

Naive Bayes utilizes a comparable technique to foresee the likelihood of various class 

dependent on different qualities. This calculation is for the most part utilized in content 

characterization and with issues having different classes. 

 

3.4.2.Support Vector Machines (SVM) 

 

Support Vector Machine (SVM) is a supervised machine learning algorithm which can 

utilized for both characterization or relapse difficulties. Be that as it may, it is for the 

most part utilized in characterization issues. In this calculation, we plot every datum 

thing as a point in n-dimensional space (where n is number of highlights you have) 

with the estimation of each component being the estimation of a specific arrange. At 

that point, we perform order by finding the hyper-plane that separate the two classes 

great (look at the below figures). 

https://courses.analyticsvidhya.com/courses/introduction-to-data-science-2?utm_source=blog&utm_medium=understandingsupportvectormachinearticle
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Figure 3.10. Support Vector Machine 

 

Support Vectors are basically the co-ordinates of individual perception. Support 

Vector Machine is a boondocks which best isolates the two classes (hyper-plane/line). 

 

How does Support Vector Machine work? 

 

Above, we got acquainted with the way toward isolating the two classes with a 

hyper-plane. Presently the consuming inquiry is "How might we recognize the 

privilege hyper-plane?". 

Let’s understand: 

• Identify the right hyper-plane (Scenario-1): Here, we have three hyper-

planes (A, B and C). Now, identify the right hyper-plane to classify star and 

circle. 

 

Figure 3.11. Support Vector Machine Scenario 1 
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You need to remember a thumb rule to identify the right hyper-plane: “Select the 

hyper-plane which segregates the two classes better”. In this scenario, hyper-plane “B” 

has excellently performed this job. 

• Identify the right hyper-plane (Scenario-2): Here, we have three hyper-

planes (A, B and C) and all are segregating the classes well. Now, how can we 

identify the right hyper-plane? 

 

Figure 3.12. Support Vector Machine Scenario 2-a 

 

Here, expanding the separations between closest information point (either class) and 

hyper-plane will assist us with deciding the privilege hyper-plane. This separation is 

called as Margin. Let’s look at the Figure 3.13: 

 

Figure 3.13. Support Vector Machine Scenario 2-b 
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Above, you can see that the margin for hyper-plane C is high when contrasted with 

both An and B. Thus, we name the privilege hyper-plane as C. Another lightning 

purpose behind choosing the hyper-plane with higher edge is strength. On the off 

chance that we select a hyper-plane having low edge, at that point there is high chance 

of miss-classification 

• Identify the right hyper-plane (Scenario-3): Hint: Use the rules as discussed 

in previous section to identify the right hyper-plane 

 

Figure 3.14. Support Vector Machine Scenario 3 

 

Some of you may have chosen the hyper-plane B as it has higher edge contrasted with 

A. Be that as it may, here is the trick, SVM chooses the hyper-plane which orders the 

classes precisely preceding augmenting edge. Here, hyper-plane B has an arrangement 

mistake and A has ordered all effectively. Along these lines, the privilege hyper-plane 

is A. 

• Can we classify two classes (Scenario-4)? : Below, we can't isolate the two 

classes utilizing a straight line, as one of star lies in the region of other(circle) 

class as an anomaly.  



 

59 

 

 

Figure 3.15. Support Vector Machine Scenario 4-a 

 

As we have just referenced, one star at opposite end resembles an anomaly for star 

class. SVM has an element to disregard exceptions and discover the hyper-plane 

that has most extreme edge. Thus, we can say, SVM is vigorous to anomalies. 

 

Figure 3.16. Support Vector Machine Scenario 4-b 

 

• Find the hyper-plane to segregate to classes (Scenario-5): In the situation 

beneath, we can't have direct hyper-plane between the two classes, so how does 

SVM order these two classes? Till now, we have just taken a gander at the 

linear hyper-plane. 
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Figure 3.17. Support Vector Machine Scenario 5-a 

 

VM can take care of this issue. Effectively! It takes care of this issue by presenting 

extra element. Here, we will include another element 2 2z x y= + . Presently, how 

about we plot the information focuses on pivot x and z: 

 

Figure 3.18. Support Vector Machine Scenario 5-b 

 

In above plot, points to consider are: 

• All values for z would be positive always because z is the squared sum of both 

x and y, 

• In the original plot, red circles appear close to the origin of x and y axes, 

leading to lower value of z and star relatively away from the origin result 

to higher value of z. 
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In SVM, it is anything but difficult to have a straight hyper-plane between these two 

classes. Be that as it may, another consuming inquiry which emerges is, should we 

have to add this element physically to have a hyper-plane. No, SVM has a method 

called the part trap. These are capacities which takes low dimensional info space and 

change it to a higher dimensional space for example it changes over not detachable 

issue to distinguishable issue, these capacities are called portions. It is for the most part 

valuable in non-direct detachment issue. Simply put, it does some extremely complex 

data transformations, then find out the process to separate the data based on the labels 

or outputs you’ve defined. (Understaing Support Vector Machine, 2018). 

When we look at the hyper-plane in original input space it looks like a circle: 

 

Figure 3.19. Support Vector Machine Scenario 5-c 

 

 

3.4.3.Bagging 

 

Bagging is a method for generating multiple versions of the predictor and uses them 

to obtain a clustered estimator. Clustering averages these versions while estimating the 

numerical output and applies the plurality vote principle when predicting the class. 

Bagging can increase accuracy if the mix of the set of instruction leads to significant 

changes in the configured predictor (Brieiman, 1996). 
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3.4.4.One-R 

 

One-R or "One Rule" is a simple algorithm proposed by R. C. Holt. This algorithm 

generates a rule for each feature in the training data, and then the rule with the smallest 

error rate is selected according to the One-R (Novakovic, Minic, & Veljovic, 2010). 

 

3.4.5.Decision Tree 

 

Decision trees are a popular and powerful tool used for classification and prediction 

purposes. Decision trees provide a convenient alternative for viewing and managing 

large sets of business rules, allowing them be translated in a way that allows humans 

to understand them and apply the rules constraints in a database so that records falling 

into a specific category are sure to be retrieved. (What is a Decision Tree, 2018) 

Decision trees generally consist of the following four steps: 

1. Structuring the issue as a tree by making end hubs of the branches, which are 

related with a particular way or situation along the tree. 

2. Assigning subject probabilities to each represented event on the tree. 

3. Assigning adjustments for outcomes. This could be a particular dollar sum or 

utility worth that is related with a specific situation. 

4. Identifying and choosing the proper course(s) of activity dependent on 

investigations. 

 

Figure 3.20. Decision Tree 
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3.4.6.Fuzzy k- Nearest Neighbour (Fuzzy k-NN) 

 

Fuzzy logic concept was first introduced in 1965 by Prof. Lotfı Asker Zadeh. This 

logic is based on the principle of mathematical modelling of computer-based 

expressions that people use in their daily life. In classical methods, the sharp transitions 

of decisions made with 1 or 0 are softened with fuzzy logic and can be expressed with 

interim values. 

The fuzzy k-closest neighbouring method is a classification algorithm such as the k-

nearest neighbour method but it is separated from the k-nearest neighbour method by 

the expression of its results. The fuzzy k nearest neighbour algorithm assigns class 

membership to a sample vector instead of assigning the vector to a specific class. The 

fact that an element belongs to a cluster or a class belongs to the concept of a classic 

set (membership = 1) or is not (membership = 0). 

In fact, it is not clear whether an element belongs to a cluster completely or not. So 

this element must have a degree of belonging (membership value) for that cluster or 

class. This membership value can be infinite between 0 and 1. In fuzzy algorithms, 

while classifying the sample to be tested, information is given on how much it belongs 

to that class, as well as to identify its class. This information, for example, is the 

membership value for that class. The advantage of the fuzzy k-closest neighbouring 

method over the k-closest neighbouring method is that the fuzzy k-closest 

neighbouring method contains more information. 

In the fuzzy k-closest neighbouring method, the membership values specified for the 

sample to be tested provide a level of assurance for the resulting classification. For 

example; If we consider that there are two classes, we assume that the membership 

values for a sample to be tested are calculated with the membership value of 0.89 to a 

class and the membership value with the value of 0.11 to the other class; We can easily 

decide by looking at the number of membership values in the decision that the class 

with 0.89 membership value is the class of the sample to be tested. 

For a different example; If we assume that there are three classes, then it may not be 

possible to make a definitive decision in the classification of the sample to be tested if 

the membership to be tested is calculated as 0.55 membership value, the membership 

value of the second class is 0.44 and the membership to the third class is calculated as 
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0.01 membership value. But we can be sure that it does not belong to the third class. 

In this case, different methods can be examined by trying the sample to be tested in 

order to understand the class. because the sample to be tested shows a high degree of 

membership in both classes. 

As a result; The fuzzy k-closest neighbour algorithm is the answer to the question of 

how much the test sample belongs to a particular class, rather than classifying a test 

sample unknown to the nearest neighbour algorithm. In the fuzzy k-closest neighbour 

algorithm, the value of how much it belongs to class 0 is calculated, in addition to the 

knowledge of belonging to a class for the sample or not. This value is used to classify, 

for example, (Eren, 2008). 

 

3.4.7.Single Layer Perceptron 

 

The perceptron machine learning algorithm was devised in 1957 by Frank Rosenblatt 

at Cornell University. It is executed here as a supervised learning algorithm, meaning 

a desired, or known, output exists. We train the perceptron to do our bidding based on 

how closely its guesses at each iteration correspond to the known output. 

We can think of the perceptron as a group of n input neurons that communicate at n 

synapses with a single output neuron. Each input neuron receives an input xi, and 

the affect of this stimulation on the output neuron depends on the strength wi of the 

synaptic connection between them. Training the perceptron involves changing these 

synaptic weights over many iterations to arrive at the set of weights w1...wn producing 

an output o that matches our desired output, y. 

 

Figure 3.21. Synaptic weights   updated upon every iteration determine how much 

each input ( ) contributes to the output (o) of the perceptron. 
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Our training routine will consider binary inputs and outputs. Specifically, each input 

neuron is either stimulated ( 1ix = ) or not ( 0ix = ), and the output (a weighted sum of 

binary inputs) is either 1 or 0. 

 

You may be wondering how an output that is a weighted sum of 1’s and 0’s is restricted 

to being either 1 or 0. We appeal to basic principles of neuroscience and realize that 

neural firing is an all-or-none event. In other words, a neuron fires (o=1) if the 

weighted sum of inputs exceeds a given threshold, and doesn’t fire (o=0) if it does not 

reach threshold. To simplify matters, we set this threshold to 0 and pass our weighted 

sum θ to a threshold function ( )f   which returns a 1 if 0   and a 0 if 0  . 

To train a perceptron, you are coding a learning algorithm that governs the evolution 

of synaptic weights over time. How do these weights change? (Perceptron, 2018) 

 

The Perceptron Learning Algorithm 

 

At each iteration j , the perceptron calculates the output based on the current input 

pattern (a vector of 1... nx x  values) and weights (a vector of 1... nw w  values), then 

updates the weights based on how much its output o differs from the desired output y

.The algorithm involves three basic steps at each j: The current output is given by 

1

1, 0.
( ) ( )

0, 0.

n
j

i i

i

if
o f w x where f

if




=


= = 


                                 (3.2) 

The difference between 
jo  and desired output y can be calculated as 

j jd y o= −                                   (3.3)

    

Each weight is then updated by iW  where 

1... ,j j

i i i i iW d x for i n w w w = = = +                                  (3.4)

      

with l as the learning rate that scales changes in weight. (Perceptron, 2018) 
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3.4.8.Multilayer Perceptron 

 

A multilayer perceptron (MLP) is a perceptron that teams up with additional 

perceptrons, stacked in several layers, to solve complex problems. 

The diagram below shows an MLP with three layers. Each perceptron in the first layer 

on the left (the input layer), sends outputs to all the perceptrons in the second layer 

(the hidden layer), and all perceptrons in the second layer send outputs to the final 

layer on the right (the output layer). 

 

Figure 3.22. Multilayer Perceptron 

 

Each perceptron sends multiple signals, one signal going to each perceptron in the next 

layer. For each signal, the perceptron uses different weights. In the diagram above, 

every line going from a perceptron in one layer to the next layer represents a different 

output. Each layer can have a large number of perceptrons, and there can be multiple 

layers, so the multilayer perceptron can quickly become a very complex system. 

The multilayer perceptron has another, more common name—a neural network. A 

three-layer MLP, like the diagram above, is called a Non-Deep or Shallow Neural 

Network. An MLP with four or more layers is called a Deep Neural Network. 

One difference between an MLP and a neural network is that in the classic perceptron, 

the decision function is a step function and the output is binary. In neural networks 

that evolved from MLPs, other activation functions can be used which result in 

outputs of real values, usually between 0 and 1 or between -1 and 1. This allows for 

probability-based predictions or classification of items into multiple labels. 

(Perceptrons and Multi-layer Perceptrons, 2018) 

 

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
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3.4.9.Radial Based Artificial Neural Networks 

 

 (RBF) systems are feed-forward systems prepared utilizing a directed preparing 

calculation. They are commonly arranged with a solitary shrouded layer of units whose 

initiation capacity is chosen from a class of capacities called premise capacities. While 

like back engendering in numerous regards, spiral premise capacity systems have a 

few focal points. They as a rule train a lot quicker than back engendering systems. 

They are less helpless to issues with non-stationary data sources on account of the 

conduct of the spiral premise capacity concealed units.  

 

Promoted by Moody and Darken (1989), RBF systems have demonstrated to be a 

helpful neural system design. The real contrast between RBF arranges and back 

proliferation organizes (that is, multi-layer perceptron prepared by Back Propagation 

calculation) is the conduct of the single concealed layer. As opposed to utilizing the 

sigmoidal or S-moulded actuation work as in back spread, the shrouded units in RBF 

systems utilize a Gaussian or some different premise piece work. Each shrouded unit 

goes about as a privately tuned processor that figures a score for the match between 

the information vector and its association loads or focuses. As a result, the premise 

units are very particular example locators. The loads associating the premise units to 

the yields are utilized to take straight blends of the shrouded units to item the last 

grouping or yield. 

 

The Structure of the RBF Networks 

 

Radial Basis Functions are first presented in the arrangement of the genuine 

multivariable insertion issues. Broomhead and Lowe (1988), and Moody and Darken 

(1989) were the first to misuse the utilization of outspread premise works in the 

structure of neural systems. The structure of a RBF arranges in its most essential 

structure includes three completely various layers (Figure 3.23.). 
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Figure 3.23. Structure of the Standard RBF network 

 

The input layer is made up of source nodes (sensory units) whose number is equal to 

the dimension p of the input vector u. 

 

Hidden layer 

 

The second layer is the concealed layer which is made out of nonlinear units that are 

associated straightforwardly to the majority of the hubs in the info layer. It is of 

sufficiently high measurement, which fills an alternate need from that in a multilayer 

perceptron. 

 

Each hidden unit takes its input from all the nodes at the components at the input layer. 

As mentioned above the hidden units contains a basis function, which has the 

parameters centre and width. The centre of the basis function for a node i at the hidden 

layer is a vector ci whose size is the as the input vector u and there is normally a 

different centre for each unit in the network. First, the radial distance di, between the 

input vector u and the centre of the basis function ci is computed for each unit i in the 

hidden layer as  i id u c= −  using the Euclidean distance. 

 

The output hi of each hidden unit i is then computed by applying the basis function G 

to this distance ( , )i i ih G d = . 
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As it is shown in Figure 0.25, the basis function is a curve (typically a Gaussian 

function, the width corresponding to the variance, i  ) which has a peak at zero 

distance and it decreases as the distance from the centre increases. 

 

 

Figure 3.24. The response region of an RBF hidden node around its centre as a 

function of the distance from this centre. 

 

For an input space 
2u R , that is 2M = , this corresponds to the two dimensional 

Gaussian centred at ic  on the input space, where also 2

ic R , as it is shown in Figure 

3.25. 

 

 

Figure 3.25. Response of a hidden unit on the input space for 
2u R  

 

Output layer 

 

The transformation from the input space to the hidden unit space is nonlinear, whereas 

the transformation to the hidden unit space to the output space is linear. The thj  output 

is computed as 0 1
( ) 1,2,..,

L

j j j ij ii
x f u w w h j M

=
= = + = . 
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Mathematical model 

 

In summary, the mathematical model of the RBF network can be expressed as: 

 

( ), : N Mx f u f R R= →   

0

1

( ) ( ) 1,2,...,
L

j j j ij i

i

x f u w w G u c j M
=

= = + − =    

where is the Euclidean distance between u and ic  . 

 

 

3.4.10.Adaptive Neuro Fuzzy Inference System (ANFIS) 

 

An adaptive neuro-fuzzy inference system or versatile system based fluffy deduction 

framework (ANFIS) is a sort of counterfeit neural system that depends on Takagi–

Sugeno fluffy induction framework. The procedure was created in the mid-1990s. 

Since it coordinates both neural systems and fluffy rationale standards, it can possibly 

catch the advantages of both in a solitary structure. Its derivation framework relates to 

a lot of fuzzy IF–THEN rules that have learning ability to inexact nonlinear capacities. 

(Adaptive Neuro Fuzzy Inference System, 2019) 

This section describes a class of Neuro-Fuzzy alongside the models and learning 

methods of versatile systems. The fundamental system structure is a superset of a wide 

range of neural system standards with directed learning ability. Neuro-Fuzzy 

frameworks, is the mix of ANN with fluffy frameworks, as a rule have the benefit of 

permitting a simple interpretation of the last framework into a lot of on the off chance 

that rules, and the fuzzy system can be seen as a neural system structure with learning 

conveyed all through association qualities (19011). Research and applications on 

neuro-fuzzy deduction methodology clarified that neural and fluffy half breed 

frameworks are useful in fields, for example, the appropriateness of existing 

calculations for fake neural systems (ANNs), and direct adjustment of learning 

verbalized as a lot of fuzzy etymological standards. A versatile system, as its name 

suggests, is a system structure comprising of hubs and directional connections, by and 

large info yield conduct is controlled by the estimations of an accumulation of 

modifiable parameters through which the hubs are associated (Jang, Neuro-Fuzzy 
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Modelling procedures of the IEEE, 1995) The versatile framework utilizes a half and 

half learning calculation to distinguish parameters of Sugeno-type fuzzy derivation 

frameworks. It applies a blend of the least-squares technique and the back-engendering 

inclination drop strategy for preparing FIS participation work parameters to imitate a 

given preparing informational collection (Rezaei, Hosseini, & Mazinani, 2014). The 

system learns in two primary stages. In the forward period of the learning calculation, 

resulting parameters distinguish the least squares gauge. In the retrogressive stage, the 

blunder signals, which are the subsidiaries of the squared mistake regarding every hub 

yield, engender in reverse from the yield layer to the info layer. In this regressive pass, 

the reason parameters are refreshed by the angle plunge calculation. Learning or 

preparing period of the neural system is a procedure to decide parameter esteems to 

adequately fit the preparation information. ANFIS preparing can utilize elective 

calculations to decrease the blunder of the preparation. A blend of the slope plunge 

calculation and a least squares calculation is utilized for a compelling quest for the 

ideal parameters. The principle advantage of such a cross breed approach is, that it 

combines a lot quicker, since it decreases the inquiry space measurements of the 

backpropagation technique utilized in neural systems (Hamdan & Garibaldi, 2010). 

ANFIS are the fuzzy Sugeno model put in structure of the versatile framework which 

serves in model structure and approval of created model to encourage preparing and 

adjustment (Roy, 2005). 

 

Architecture of ANFIS 

 

An adaptive network is a multilayer feed-forward system made out of hubs associated 

by coordinated connections, in which every hub plays out a specific capacity on its 

approaching sign to produce a solitary hub yield. Each connection in a versatile system 

indicates the heading of sign stream starting with one hub then onto the next; no loads 

is related with the connection. All the more explicitly, the setup of a versatile system 

plays out a static hub work on its approaching sign to produce a solitary hub yield and 

every hub capacity is a parameterized work with modifiable parameters; by changing 

these parameters, the hub capacities just as the general conduct of the versatile system, 

are changed. Figure 3.25 demonstrates whole framework engineering comprises of 

five layers, to be specific fuzzy layer, item layer, standardized layer, de-fuzzy layer 
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and all out yield layer. With info/yield information for given arrangement of 

parameters, the ANFIS strategy models a fuzzy induction framework (FIS) whose 

enrolment work parameters are tuned (balanced) utilizing either a backpropagation 

calculation alone, or in change with a least squares sort of technique. The primary 

target of the ANFIS is to decide the ideal estimations of the proportional fuzzy 

induction framework parameters by applying a learning calculation. The parameter 

improvement is done in such a route during the instructional course that the mistake 

between the objective and the genuine yield is limited. A cross breed calculation is 

utilized for enhancement, which is the mix of least square gauge and inclination 

plummet strategy. The parameters to be enhanced in ANFIS are the reason parameters. 

These parameters characterize the state of the participation capacities (Patel & Parekh, 

2014). So as to diminish the blunder measure, any of a few advancement schedules 

can be connected in the wake of establishing MFs. The parameter set of a versatile 

system enables fuzzy frameworks to gain from the information they are demonstrating. 

This paper expects that versatile framework under thought has two data sources V1 

and V2 and one yield f. Give us a chance to investigate a first request Takagi, Sugeno 

and Kang (TSK) fuzzy derivation framework containing two rules: 

 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓(𝑣 𝑖𝑠 𝑉1) 𝑎𝑛𝑑 (𝑑 𝑖𝑠 𝐷1) 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑣 + 𝑞1𝑑 + 𝑟1 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓(𝑣 𝑖𝑠 𝑉2) 𝑎𝑛𝑑 (𝑑 𝑖𝑠 𝐷2) 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑣 + 𝑞2𝑑 + 𝑟2 

 

Where 𝑝1 , 𝑝2 , 𝑞1 , 𝑞2 , 𝑟1 and 𝑟2 are linear parameters and 𝑉1 , 𝑉2 , 𝐷1 and 𝐷2 are 

non linear parameters, in which V1 and D1 are the membership functions of ANFIS 

(antecedent). 𝑝1, 𝑞1 , 𝑟1 are the consequent parameters (Pratama, Rajab, & Joo, 

2011). To reflect versatile capacities, we utilize both circle and square. A circle 

demonstrates fixed hub while square shows versatile hub for example the parameter 

can be changed during adjusting or preparing. ANFIS is made from mix of fluffy 

rationale and neural system. 

While structuring of ANFIS model, it is critical that the quantity of preparing ages, the 

quantity of enrolment capacities and the quantity of fuzzy guidelines ought to be tuned 

precisely. Mapping of those parameters is exceedingly critical for the framework since 

it might lead framework to over fit the information or won't almost certainly fit the 
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information. This modifying can be acquired by utilizing a mixture calculation joining 

the least-squares strategy and the inclination plummet technique with a mean square 

mistake strategy. The lesser distinction between ANFIS yield and the ideal target 

implies a superior (increasingly exact) ANFIS framework. So, we will in general 

decrease the preparation blunder in the preparation procedure (Uc, Karahoca, & 

Karahoca, 2013). The incorporation between fluffy rationale and neural system to be 

specific fuzzy neural system (FNN) has been normal and grown; by and large the 

course of action of fuzzy rationale and the neural system is called as ANFIS. Neural 

framework has numerous data sources and furthermore has different yields, yet the 

fluffy rationale has abundant information sources and single yield, so the blend of this 

two is known as ANFIS. 

 

 

Figure 3.26. Basic architecture of ANFIS 

 

Layers of ANFIS 

 

For simplicity, the fuzzy inference system is under consideration of two inputs v, d 

and one output f. A brief summary of five layers of the ANFIS algorithm is shown 

below. 

Layer 1 

 

Each input node i  in this layer is an adaptive node which produce membership grade 

of linguistic label. It is a fuzzy layer, in which  and d are input of system. 1,iO  is the 
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output of the 
thi  node of layer l . Each adaptive node is a square node with square 

function represented using Eq. (3.5): 

 

1, ,

1, ,

( ) 1,2

( ) 1,2

i v i

j d j

O v for i

O v for j





= =

= =
                                  (3.5)

    

  

Where 
1,iO  and 

1, jO denote output function 
,v iµ  and 

,d jµ denote membership function. 

For example, if we choose triangular membership function, , ( )v iµ v is given by: 

( ) max min( , ),0i i
vi

i i i i

v a c v
v

b a c b


 − −
=  

− − 

                                 (3.6)

      

Where  , ,i i ia b c are the parameter of triangular membership function? In another 

example, if we choose 
, ( )v iµ v  to be bell shaped is given by: 

2

1
( )

1

ib

i

i

v

v c

a

 =
  − 

+   
   

                                (3.7)

    

Where  , ,i i ia b c  are the parameter set that changes shapes of M.F accordingly? Value 

of ia  and ic  that can be adjusted to vary the centre and width of membership function 

and then ib is used to control slopes at crossover points of next membership function. 

Parameters in this layer are referred to as “premise parameter”. 

 

Layer 2 

 

This layer checks weights of each membership function, it receives input values iv  

from first layer and acts as a membership function to represent fuzzy sets of respective 

input variables. Every node in this layer is fixed node labelled with M and output is 
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calculated via product of all incoming signals. The output in this layer can be 

represented using Eq. (3.9):  

 

2, , ( ). ( ), 1,2i i v i Djo w v d i = = =                                  (3.9) 

 

Which are the firing strengths of the rules. In general, any T-norm operator that 

performs fuzzy AND can be used as a node function in this layer. 

 

Layer 3 

 

Every node in this layer is fixed marked with circle labelled with N , indicating 

normalization to the firing strength from previous layer. This layer performs pre-

condition matching of fuzzy rules, i.e. they compute activation level of each rule, the 

number of layers being equal to number of fuzzy rules. The 
thi   node in this layer 

calculate ratio of 
thi rule’s strength to the sum of all rules firing strength. The output of 

this layer can be expressed as 𝑤𝑖 using Eq. (2.10): 

3,

1 2

, 1,2i
i i

w
O w i

w w
= = =

+
                                  (3.10) 

For convenience, outputs of this layer will be called as normalized firing strengths. 

 

Layer 4 

 

This layer provides output values y, resulting from the inference of rules. The resultant 

output is simply a product of normalized firing rule strength and first order polynomial. 

Weighted output of rule represented by node function as: 

4, ( ) , 1,2i i i i i i iO w f w p v q d r i= = + + =                               (3.11)
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Where 
4,iO represents layer 4 output. In this layer, 

,i ip q and ir are linear parameter or 

consequent parameter. 

 

Layer 5 

 

This layer is called output layer which sums up all the inputs coming from layer 4 and 

transforms fuzzy classification results into crisp values. This layer consists of single 

fixed node labelled as “∑”. This node computes summation of all incoming signals 

calculated using Eq. (2.12). 

5,

1 2

, 1,2
i ii

i i ii

w f
O w f i

w w
= = =

+


                               (3.12)   

                 

Thus, it is observed that when the values of premise parameter are fixed, the overall 

output of the adaptive network can be expressed as linear combination of a consequent 

parameter. Constructed network has exactly the same function as a Sugeno fuzzy 

model. Overall output of a system (z) can be expressed as in Eq. (2.13). It can be 

observed that ANFIS architecture consists of two adaptive layers, namely the first 

layer and the fourth layer. The three modifiable parameters { , , }i i ia b c are so-called 

premise parameter in first layer and in the fourth layer, there are also three modifiable 

parameters { , , }i i ip q r pertaining to the first order polynomial. These parameters are so-

called consequent parameters (Efosa & Akwukwuma, 2013). 

1 2
1 2

1 2 1 2 1
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z w p Q q M m F r

w p Q q M m F r

−

= + + +
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= + + + +
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                              (3.13)

                                                                                                                   

Learning Algorithm of ANFIS 

 

Neuro-adaptive learning techniques bless with a strategy for the fuzzy demonstrating 

method to learn data about an informational collection. It processes the enrolment 

work parameters that best enable the related fuzzy surmising framework to follow the 
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given information/yield information. The parameters related with the participation 

capacities changes through the learning procedure (Power). So as to all the more 

effectively adapt to true issues, the errand of the learning calculation for this 

engineering is to tune all the modifiable parameters, to plan the ANFIS yield 

coordinate the preparation information. To improve the rate of combination, the half 

breed system can be prepared by a cross breed learning calculation joining least square 

technique and inclination plunge strategy can be utilized. The least squares technique 

can be utilized to recognize the ideal estimations of the subsequent parameter on the 

layer 4 with reason parameter fixed. Angle vector gives a proportion of how well the 

fluffy deduction framework is displaying the information/yield information for a given 

arrangement of parameters. At the point when the slope vector is acquired, any of a 

few streamlining schedules can be connected so as to modify the parameters to 

diminish some mistake measure. At the point when the reason parameters are not fixed, 

at that point the hunt space increases and the combination of the preparation turns out 

to be slower. The cross-breed calculation is made out of a forward pass (LSM) and a 

backward pass (GDM). When the ideal ensuing parameters are discovered, in reverse 

pass begins. In the regressive pass, mistakes are spread in reverse and the reason 

parameters relating to the fluffy sets in the info area refreshed by slope drop strategy 

(Roy, 2005). ANFIS utilizes a blend of least squares estimation and back-spread for 

participation work parameter estimation. Two goes in the half and half learning 

calculation for ANFIS appeared in Table 3.1. 

 

Table 3.1. Passes of Hybrid learning algorithm 

 Forward pass Backward pass 

Premise parameters Fixed Gradient descent 

Consequent 

parameters 
Least square Fixed 

Signals Node outputs Error signals 

 

 

The output error is utilized to adjust the reason parameters by methods for a standard 

back-engendering calculation to limit the mean square blunder capacity characterized 
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by Eq. (2.14). It has been demonstrated that this cross-breed calculation exceptionally 

effective in preparing the ANFIS (Jang, ANFIS :Adaptive-Network-Based Fuzzy 

Inference System, 1993). 

 

2

1
E( )= ( ) ( ) ( )

m T T T

i ii
z a e e z A z A   

=
− = = − −                               (3.14)

                          

Where e z A= −  is the error vector produced by a specific choice of 𝜃? In Eq. (3.14) 

the squared error is minimized and is called the least squares estimator (LSE) [7]. 

Therefore, the hybrid learning algorithm can be applied directly. More specifically, the 

error signals proliferate backward and the premise parameters are updated by Gradient 

Descent (GD) and node outputs go forward until layer 3 and the consequent parameters 

are identified by the Least Squares (LS) method. This hybrid learning is structured as 

by defining, linear and nonlinear parameters are illustrious each iteration (epoch) of 

GD update the nonlinear parameters, LS follows to identify the linear parameters 

(Power). 

 

3.5. Methods of Evaluation of Classification Results 

 

3.5.1.Confusion Matrix 

 

A confusion matrix is a table that outlines different predictions and test results and 

contrasts them with real-world values. Perplexity grids are utilized in measurements, 

information mining, AI models and other AI applications. A confusion matrix can 

likewise be called an error matrix. 

Confusion matrices are utilized to make the top to bottom examination of factual 

information quicker and the outcomes simpler to peruse clear data visualization. The 

tables can help investigate blames in insights, information mining, legal sciences and 

therapeutic tests. An intensive investigation enables clients to choose what results 

show how blunders are made as opposed to just evaluating execution. 

https://searchbusinessanalytics.techtarget.com/definition/data-visualization
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Confusion matrices use a simple format to log predictions. In the columns of a 

confusion matrix for an AI model, the potential forecasts are adjusted on the right-

hand side and the facts along the top. In the columns underneath the realities, 

expectations or results are recorded. Results can incorporate the right sign of a positive 

as a true positive or a negative as a true negative as well as an incorrect positive as 

a false positive or an incorrect negative as a false negative. 

3.5.2.MAE and RMSE 

 

MAE measures the average magnitude of the errors in a set of predictions, without 

considering their direction. It’s the average over the test sample of the absolute 

differences between prediction and actual observation where all individual differences 

have equal weight. 

 

1

1 N

i i

i

MAE y y
N =

= −                                (3.15) 

If the absolute value is not taken (the signs of the errors are not removed), the average 

error becomes the Mean Bias Error (MBE) and is usually intended to measure average 

model bias. MBE can convey useful information, but should be interpreted cautiously 

because positive and negative errors will cancel out. 

 

RMSE is a quadratic scoring rule that also measures the average magnitude of the error. 

It’s the square root of the average of squared differences between prediction and actual 

observation. 

 

1 2( )

1

n
RMSE y y

j jn j

= −
=

                               (3.16) 

 

Both MAE and RMSE express average model forecast mistake in units of the variable 

of intrigue. The two measurements can extend from 0 to ∞ and are not interested toward 

mistakes. They are adversely arranged scores, which means lower esteems are better.  

https://whatis.techtarget.com/definition/false-positive
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Taking the square foundation of the normal squared blunders makes them intrigue 

suggestions for RMSE. Since the mistakes are squared before they are arrived at the 

midpoint of, the RMSE gives a moderately high weight to huge blunders. This implies 

the RMSE should be progressively helpful when huge mistakes are especially 

unfortunate. The three tables underneath show models where MAE is unfaltering and 

RMSE increments as the change related with the recurrence conveyance of blunder 

extents likewise increments (MAE and RMSE, 2019). 

 

3.5.3.AUC and ROC Curve 

 

AUC - ROC curve is a performance measurement for classification problem at various 

thresholds settings. ROC is a probability curve and AUC represent degree or measure 

of separability. It tells how much model is capable of distinguishing between 

classes. Higher the AUC, better the model is at predicting 0s as 0s and 1s as 1s. By 

analogy, Higher the AUC, better the model is at distinguishing between patients with 

disease and no disease. 

The ROC curve is plotted with TPR against the FPR where TPR is on y-axis and FPR 

is on the x-axis. 

 

/ e /
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TPR R call Sensitivity
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+

                               (3.17) 
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=

+
                               (3.18) 

1
FP

FPR Specificity
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= − =
+

                               (3.19) 

 

An excellent model has AUC near to the 1 which means it has good measure of 

separability. A poor model has AUC near to the 0 which means it has worst measure of 

separability. In fact, it means it is reciprocating the result. It is predicting 0s as 1s and 

1s as 0s. And when AUC is 0.5, it means model has no class separation capacity 

whatsoever (Understanding AUC, ROC Curve, 2019). 
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CHAPTER 4  

EXPERIMENTAL STUDIES 

 

 

4.1.Datasets Used, Microarray Expression Profiles and Results Taken for 

Cancer Cell Gene 

 

The classification technique, which is one of the data mining functions, is now widely 

used in many fields. Previously, classical statistical classification methods (logistic 

regression, variance analysis, linear regression analysis) were used to classify data in 

many areas. However, with the inadequate classification of these methods over time, 

statistical methods have been developed and started to be used. Some of these 

statistical methods developed are Support Vector Machines, Decision Trees, Bayesian 

Networks, Relationship-based classifiers, and k-nearest neighbouring method. 

 

These statistical classification methods have been used in many fields recently, and 

the most used fields are engineering and especially medicine. Because of the recent 

microarray gene studies in the field of medicine, there has been a large increase in the 

size of the data and the current statistical methods have been used to classify these 

data. 

 

In addition to the statistical methods currently used extensively, researchers have 

recently been interested in the field of artificial intelligence in order to be able to rank 

higher in data mining. The reason why researchers are seeking artificial intelligence-

based classification methods is that they think they can be an alternative to statistical 

methods and whether these methods can yield better results than statistical methods in 

classification.
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This study includes both classification by statistical methods and classification by 

ANFIS based on artificial intelligence and comparison of these two methods. As far 

as the researches in the literature are found, statistical methods and ANFIS methods 

have been used for classification and studies have been done to compare the 

performance of these classification methods with each other! 

 

The gene expression data set used is the data of Breast Cancer and CNS Cancer patients 

from the University of Shenzhen [a1]. Using these data sets, classification successes 

were compared. 

 

The breast cancer data set consists of 97 samples and 24482 genes. 51 of the samples 

were normal and 46 of them were tumour patients. The central nervous system cancer 

data set consists of 60 samples and 7130 genes. 39 of the samples were normal and 21 

of them were tumour patients. Table 4.1 shows it. 

 

Table 4.1. Breast cancer and CNS cancer data set information 

 
Number of 

Sample 

Number of Patients 

with Cancer 

Number of Normal 

Patients 

Number 

of 

Genes 

Breast Cancer 97 46 51 24482 

CNS Cancer 60 21 39 7130 

 

 

Classification algorithms; open source, Java programming language written with the 

Weka program was implemented. As a classification algorithm, frequently used 

statistical classification algorithms such as Support Vector Machines, K-Nearest 

Neighbourhood and Naive Bayes were used. 3 different attribute selection methods 

were applied for all classification methods. These attribute selection methods are; 

WrapperSubsetEval, CfsSubsetEval (correlation based) and ChiSquareSubsetEval. In 

Section 3.2, these methods are mentioned in detail. For the accuracy values resulting 

from the classification, the disturbance matrices are calculated and the AUC value 

below the drawn ROC curve is calculated.  
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While the K-nearest neighbour classifier is used, 4 different values are based on the K 

value of 1,3,5,7. At the same time, while the nearest neighbour classifier is used in 

Weka program, the research algorithm is used LinearNNSearch by default. 

LinearNNSearch applies the brute force search algorithm for the nearest neighbour 

search. 

In the Weka program, when using the Support vector machine (SMO) classifier, 

PolyKernel is used as the default because it has better performance.  

Two different microarray gene expression cancer data sets were used in the study. First 

of all, classification algorithms were applied on this cancer data without selection of 

features. 3 different classification algorithms were used in this classification process. 

Two different methods, k-fold cross validation and split percentage, were used to 

determine the training and test sets during this classification process. The k-fold cross 

validation, which is the first of these methods, has a value of k 5, with 2,4,6,8,10; the 

other method, the split percentage, the education and test set rate 66 percent and 70 

percent were used as 2 different values.  

 

4.1.1. Classification without Attribute Selection 

 

a) Results from Breast Cancer dataset in Table 4.2, Table 4.3. The AUC 

results of the classification algorithms applied are shown in Figure 4.1, 

Figure 4.2, Figure 4.3 and the graphical representation of the accuracy 

values is expressed as in Figure 4.4. 

 

 

Table 4.2. Success rate of classification of breast cancer data set without attribute 

selection 

Breast Cancer Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 57.732 55.670 59.794 58.763 60.825 57.576 48.276 

K3 59.794 57.732 58.763 58.763 58.763 63.636 65.517 

K5 71.134 64.949 59.794 61.856 62.887 60.606 65.517 

K7 69.072 65.979 61.856 67.010 67.010 60.606 62.069 

NB  

 
51.546 53.608 53.608 53.608 54.639 57.576 62.069 

SMO 
 

65.979 74.227 65.979 71.134 68.041 60.606 58.621 
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Table 4.3. Confusion matrix values after classification of Breast Cancer data set 

without attribute selection 

 

  

Table 4.4. MAE and RMSE values after classification of Breast Cancer data set 

without attribute selection 

 

Breast Cancer Data Set Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
24 22 10 36 31 15 relapse 

17 34 11 40 18 33 non-relapse 

4-Fold 
21 25 1 45 36 10 relapse 

16 35 0 51 15 36 non-relapse 

6-Fold 
22 24 1 45 32 14 relapse 

16 35 0 51 19 32 non-relapse 

8-Fold 
21 25 2 44 35 11 relapse 

15 36 1 50 17 34 non-relapse 

10-Fold 
21 25 2 44 32 14 relapse 

16 35 0 51 17 34 non-relapse 

Percentage Split 

%66 
6 8 0 14 7 7 relapse 

4 15 0 19 6 13 non-relapse 

%70 
5 6 0 11 5 6 relapse 

4 14 0 18 6 12 non-relapse 

Breast Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross Validation  

2-Fold 0.4 0.5072  0.4845 0.6961 0.3402 0.5833 

4-Fold 0.4064 0.5231 0.4639 0.6811 0.2577 0.5077 

6-Fold  0.4199 0.5465 0.4639 0.6811 0.3402 0.5833 

8-Fold 0.3994 0.536 0.4639 0.6811 0.2887 0.5373 

10-Fold 0.4233 0.5578 0.4536 0.6735 0.3196 0.5653 

Percentage Split 

%66 0.3950 0.5270 0.4242 0.6513 0.3939 0.6276 

%70 0.426 0.5417 0.3793 0.6159 0.4138 0.6433 
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Figure 4.1. ROC curve and AUC value after classification by applying KNN to breast 

cancer dataset without attribute selection (For 10-folds Cross Validation) 

 

 

 

 

Figure 4.2. ROC curve and AUC value after classification by applying NB to breast 

cancer dataset without attribute selection (For 10-folds Cross Validation) 
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Figure 4.3. ROC curve and AUC value after classification by applying SMO to breast 

cancer dataset without attribute selection (For 10-folds Cross Validation) 

 

 

 

 

Figure 4.4. The graphical representation of the accuracy values of Breast Cancer 

without attribute selection (For 10-folds Cross Validation) 

 

b) Results from CNS Cancer dataset in Table 4.4, Table 4.5. The AUC results 

of the classification algorithms applied are shown in Figure 4.5, Figure 4.6, 

Figure 4.7 and the graphical representation of the accuracy values is 

expressed as in Figure 4.8. 
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Table 4.5. Success rate of classification of CNS cancer data set without attribute 

selection 

 

 

Table 4.6. Confusion matrix values after classification of CNS Cancer data set 

without attribute selection 

 

 

 

 

 

 

CNS Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 51.667 51.667 60.000 60.000 56.667 40.000 38.889 

K3 61.667 61.667 61.667 61.667 56.667 40.000 33.333 

K5 63.333 58.333 65.000 60.000 65.000 40.000 27.778 

K7 63.333 58.333 63.333 56.667 63.333 55.000 38.889 

NB  
 68.333 56.667 63.333 61.667 61.667 60.000 55.556 

SMO  65.000 60.000 70.000 68.333 68.333 55.000 44.444 

CNS Cancer Data Set Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
10 11 6 15 5 16 relapse 

12 27 4 35 5 34 non-relapse 

4-Fold 
9 12 8 13 5 16 relapse 

11 28 13 26 8 31 non-relapse 

6-Fold 
10 11 11 10 10 11 relapse 

12 27 12 27 7 32 non-relapse 

8-Fold 
9 12 11 10 9 12 relapse 

11 28 13 26 7 32 non-relapse 

10-Fold 
9 12 11 10 10 11 relapse 

14 25 13 26 8 31 non-relapse 

Percentage Split 

%66 
2 6 1 7 2 6 relapse 

6 6 1 11 3 9 non-relapse 

%70 
2 6 1 7 1 7 relapse 

6 4 1 9 3 7 non-relapse 
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Table 4.7. MAE and RMSE values after classification of CNS Cancer data set without 

attribute selection 

 

 

 

 

 

Figure 4.5. ROC curve and AUC value after classification by applying KNN to CNN 

Cancer dataset without attribute selection (For 10-folds Cross Validation) 

 

CNS Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross 

Validation 

2-Fold 0.4348 0.5279 0.3167 0.5627 0.35 0.5916 

4-Fold 0.4672 0.5525 0.4334 0.6583 0.4 0.6325 

6-Fold 0.4507 0.5342 0.3667 0.6055 0.3 0.5477 

8-fold 0.4397 0.517 0.3833 0.6191 0.3167 0.5627 

10-Fold 0.4616 0.5345 0.3833 0.6191 0.3167 0.5627 

Percentage 

Split 
%66 0.5328 0.5939 0.4 0.6325 0.45 0.6708 

 %70 0.5547 0.616 0.4444 0.6667 0.5556 0.7454 
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Figure 4.6. ROC curve and AUC value after classification by applying NB to CNN 

Cancer dataset without attribute selection  (For 10-folds Cross Validation) 

 

 

 

Figure 4.7. ROC curve and AUC value after classification by applying SMO to CNN 

Cancer dataset without attribute selection (For 10-folds Cross Validation) 

 



 

90 

 

 

 

Figure 4.8. The graphical representation of the accuracy values of CNN Cancer 

without attribute selection (For 10-folds Cross Validation) 

 

4.1.2. Classification with Attribute Selection 

 

4.1.2.1. CfsSubsetEval 

 

Weka CfsSubsetEval evaluates the worth of a subset of attributes by considering the 

individual predictive ability of each feature along with the degree of redundancy 

between them. Subsets of features that are highly correlated with the class while having 

low intercorrelation are preferred. 

In this attribute selection scenario, BestFirst Search is used as the research method. It 

searches the space of attribute subsets by greedy hill climbing augmented with a 

backtracking facility. In this way, it is targeted to find genes that are thought to be 

more likely to give information about the disease. And then these reduced attributes 

and cancer data are subjected to classification. 

In this feature selection, the breast cancer attribute was reduced from 24482 to 138 and 

the CNS cancer was reduced from 7130 to 39. 

Table 4.8. Number of attributes with/without CfsSubsetEval 

Number of attributes 
No Attribute 

Selection 

With Attribute Selection by 

CfsSubsetEval 

Breast Cancer 24482 138 

CNS 7130 39 
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a) The Breast Cancer classification results of the data set being reduced after 

the attribute selection made using CfsSubsetEval are in Table 4.7, Table 

4.8. The AUC results of the classification algorithms applied are shown in 

Figure 4.9, Figure 4.10, Figure 4.11 and the graphical representation of the 

accuracy values is expressed as in Figure 4.12. 

 

 

Table 4.9. Breast cancer dataset classification success rate after attribute selection with 

CfsSubsetEval 

Breast Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 84.536 82.474 78.351 80.412 81.443 78.788 75.862 

K3 81.443 81.443 80.412 84.536 82.474 78.788 79.310 

K5 76.289 79.381 78.351 79.381 81.443 81.818 82.759 

K7 78.351 76.289 76.289 77.320 76.289 75.758 75.862 

NB  
 71.134 61.856 59.794 57.732 56.701 57.576 62.069 

SMO  87.629 81.443 83.505 85.567 84.536 84.849 75.862 

 

 

Table 4.10. Confusion matrix values after classification of Breast Cancer dataset with 

CfsSubsetEval 

 

 

Breast Cancer Data Set Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
35 11 21 25 40 6 relapse 

7 44 3 48 6 45 non-relapse 

4-Fold 
35 11 9 37 37 9 relapse 

7 44 0 51 9 42 non-relapse 

6-Fold 
33 13 7 39 38 8 relapse 

6 45 0 51 8 43 non-relapse 

8-Fold 
37 9 5 41 38 8 relapse 

6 45 0 51 6 45 non-relapse 

10-Fold 
35 25 5 41 37 9 relapse 

6 45 1 50 6 45 non-relapse 

Percentage Split 

%66 
9 5 0 14 13 1 relapse 

2 17 0 19 4 15 non-relapse 

%70 
7 4 0 11 8 3 relapse 

2 16 0 18 4 14 non-relapse 
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Table 4.11. MAE and RMSE values after classification of Breast Cancer dataset with 

CfsSubsetEval 

Breast Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross 

Validation 

2-Fold 0.2339 0.3562 0.2866 0.5323 0.1237 0.3517 

4-Fold 0.2259 
  

0.3777 
0.3865 0.6196 0.1856 0.4308 

6-Fold 0.2495 0.3854 0.4037 0.6343 0.1649 0.4061 

8-Fold 0.2085 0.3608 0.4249 0.6505 0.1443 0.3799 

10-Fold 0.2289 0.3763 
  

0.4297 
0.6537 0.1546 0.3932 

Percentage Split 

%66 
  

0.2451 
0.4091 0.4242 0.6513 0.1515 0.3892 

%70 0.2325 0.3905 0.3793 0.6159 0.2414 0.4913 

 

 

 

 

Figure 4.9. ROC curve and AUC value after classification by applying KNN to breast 

cancer dataset with CfsSubsetEval attribute selection  (For 10-folds Cross Validation) 
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Figure 4.10. ROC curve and AUC value after classification by applying NB to breast 

cancer dataset with CfsSubsetEval attribute selection (For 10-folds Cross Validation) 

 

 

 

Figure 4.11. ROC curve and AUC value after classification by applying SMO to breast 

cancer dataset with CfsSubsetEval attribute selection (For 10-folds Cross Validation) 
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Figure 4.12. The graphical representation of the accuracy values of Breast Cancer with 

CfsSubsetEval attribute selection (For 10-folds Cross Validation) 

 

b) The CNS Cancer classification results of the data set being reduced after 

the attribute selection made using CfsSubsetEval are in Table 4.9, Table 

4.10. The AUC results of the classification algorithms applied are shown 

in Figure 4.13, Figure 4.14, Figure 4.15 and the graphical representation of 

the accuracy values is expressed as in Figure 4.16. 

 

 

Table 4.12. CNS Cancer dataset classification success rate after attribute selection 

with CfsSubsetEval 

CNS Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 68.333 73.333 76.667 76.667 80.000 60.000 55.556 

K3 68.333 71.667 76.667 76.667 78.333 60.000 55.556 

K5 76.667 76.667 75.000 80.000 76.667 65.000 61.111 

K7 68.333 75.000 75.000 76.667 76.667 65.000 61.111 

NB  
 73.333 76.667 78.333 73.333 75.000 70.000 66.667 

SMO  85.000 88.333 93.333 88.333 88.333 75.000 77.778 
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Table 4.13. Confusion matrix values after classification of CNS Cancer dataset with 

CfsSubsetEval 

CNS Cancer Dataset Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
16 5 11 10 17 4 relapse 

14 25 6 33 5 34 non-relapse 

4-Fold 
15 6 14 7 17 4 relapse 

11 28 7 32 3 36 non-relapse 

6-Fold 
16 5 15 6 20 1 relapse 

9 30 7 32 3 36 non-relapse 

8-Fold 
18 3 15 6 17 4 relapse 

11 28 10 29 3 36 non-relapse 

10-Fold 
18 3 16 5 17 4 relapse 

10 29 10 29 3 36 non-relapse 

Percentage Split 

%66 
5 3 4 4 5 3 relapse 

5 7 2 10 2 10 non-relapse 

%70 
5 3 4 4 5 3 relapse 

5 5 2 8 1 9 non-relapse 

 

 

Table 4.14. MAE and RMSE values after classification of CNS Cancer dataset with 

CfsSubsetEval 

CNS Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross 

Validation 

2-Fold 0.3043 0.4605 0.2681 0.5061 0.15 0.3873 

4-Fold 0.2755 0.4181 0.2332 0.474 0.1167 0.3416 

6-Fold 0.2533 0.377 0.2156 0.4482 0.0667 0.2582 

8-Fold 0.2641 0.3913 0.2497 0.4841 0.1167 0.3416 

10-

Fold 
0.2585 0.3936 0.2466 0.4808 0.1167 0.3416 

Percentage Split 

%66 0.3689 0.5032 0.2774 0.5113 0.25 0.5 

%70 0.3906 0.5246 0.3143 0.5462 0.2222 0.4714 
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Figure 4.13. ROC curve and AUC value after classification by applying KNN to CNS 

Cancer dataset with CfsSubsetEval attribute selection (For 10-folds Cross Validation) 

 

 

Figure 4.14. ROC curve and AUC value after classification by applying NB to CNS 

Cancer dataset with CfsSubsetEval attribute selection (For 10-folds Cross Validation) 
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Figure 4.15. ROC curve and AUC value after classification by applying SMO to CNS 

Cancer dataset with CfsSubsetEval attribute selection (For 10-folds Cross Validation) 

 

 

 

Figure 4.16. The graphical representation of the accuracy values of CNS Cancer with 

CfsSubsetEval attribute selection (For 10-folds Cross Validation) 
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4.1.2.2.ChiSquaredAttributeEval 

 

ChiSquaredAttributeEval evaluates the worth of an attribute by computing the value 

of the chi-squared statistic with respect to the class. In this scenario, when selecting 

attributes, gene expressions whose rank values are different from zero are preferred. 

In this way, it is targeted to find genes that are thought to be more likely to give 

information about the disease. And then these reduced attributes and cancer data are 

subjected to classification. In this feature selection, the breast cancer attribute was 

reduced from 24482 to 819 and the CNS Cancer was reduced from 7130 to 73. 

 

Table 4.15. Number of attributes with/without ChiSquaredAttributeEval 

Number of attributes 
No Attribute 

Selection 

With Attribute Selection by 

ChiSquaredAttributeEval 

 

Breast Cancer 24482 819 

CNS Cancer 7130 73 

 

 

a) The Breast Cancer classification results of the data set being reduced after 

the attribute selection made using ChiSquaredAttributeEval are in Table 

4.12, Table 4.13. The AUC results of the classification algorithms applied 

are shown in Figure 4.17, Figure 4.18, Figure 4.19 and the graphical 

representation of the accuracy values is expressed as in Figure 4.20. 

 

 

Table 4.16. Breast Cancer dataset classification success rate after attribute selection 

with ChiSquaredAttributeEval 

Breast Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 79.381 80.412 79.381 81.443 79.381 81.818 75.862 

K3 78.351 79.381 78.351 79.381 77.320 75.758 72.414 

K5 76.289 76.289 79.381 78.351 80.412 75.758 68.966 

K7 77.320 73.196 76.289 78.351 78.351 75.758 72.414 

NB  
 67.010 59.794 59.794 57.732 58.763 60.606 65.517 

SMO  82.474 82.474 81.443 83.505 83.505 69.697 75.862 
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Table 4.17. Confusion matrix values after classification of Breast Cancer data set with 

ChiSquaredAttributeEval 

Breast Cancer Data Set Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
38 8 19 27 39 7 relapse 

13 38 5 46 10 41 non-relapse 

4-Fold 
37 9 8 38 38 8 relapse 

11 40 1 50 9 42 non-relapse 

6-Fold 
37 9 7 39 36 10 relapse 

12 39 0 51 8 43 non-relapse 

8-Fold 
36 10 5 41 38 8 relapse 

10 41 0 51 8 43 non-relapse 

10-Fold 
36 10 6 40 36 10 relapse 

12 39 0 51 6 45 non-relapse 

Percentage Split 

%66 
11 3 1 13 8 6 relapse 

5 14 0 19 4 15 non-relapse 

%70 
9 2 1 10 7 4 relapse 

6 12 0 18 3 15 non-relapse 

 

 

Table 4.18. MAE and RMSE values after classification of Breast Cancer dataset with 

ChiSquaredAttributeEval 

 

Breast Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross 

Validation 

2-Fold 0.2475 0.3893 0.3299 0.5744 0.1753 0.4186 

4-Fold 0.2395 0.3837 0.4021 0.6341 0.1753 0.4186 

6-Fold 0.2393 0.3867 0.3999 0.631 0.1856 0.4308 

8-Fold 0.2187 0.3625 0.4227 0.6501 0.1649 0.4061 

10-

Fold 
0.2459 0.3868 0.4124 0.6422 0.1649 0.4061 

Percentage Split 

%66 0.2751 0.4135 0.3939 0.6276 0.303 0.5505 

%70 0.2894 0.4146 0.3448 0.5872 0.2414 0.4913 
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Figure 4.17. ROC curve and AUC value after classification by applying KNN to breast 

cancer dataset with ChiSquaredAttributeEval attribute selection (For 10-folds Cross 

Validation) 

 

 

Figure 4.18. ROC curve and AUC value after classification by applying NB to breast 

cancer dataset with ChiSquaredAttributeEval attribute selection (For 10-folds Cross 

Validation) 
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Figure 4.19. ROC curve and AUC value after classification by applying SMO to 

Breast Cancer dataset with ChiSquaredAttributeEval attribute selection (For 10-folds 

Cross Validation) 

 

 

Figure 4.20. The graphical representation of the accuracy values of Breast Cancer with 

ChiSquaredAttributeEval attribute selection (For 10-folds Cross Validation) 

 

b) The CNS Cancer classification results of the data set being reduced after 

the attribute selection made using CfsSubsetEval are in Table 4.9, Table 

4.10. The AUC results of the classification algorithms applied are shown 

in Figure 4.13, Figure 4.14, Figure 4.15 and the graphical representation of 

the accuracy values is expressed as in Figure 4.16. 
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Table 4.19. CNS Cancer dataset classification success rate after attribute selection 

with ChiSquaredAttributeEval 

CNS Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 75.000 75.000 76.667 78.333 76.667 60.000 55.556 

K3 73.333 73.333 75.000 75.000 73.333 55.000 50.000 

K5 71.667 73.333 73.333 76.667 76.667 60.000 55.556 

K7 73.333 76.667 78.333 78.333 75.000 55.000 50.000 

NB  
 75.000 75.000 75.000 71.667 71.667 65.000 61.111 

SMO  81.667 86.667 90.000 91.667 91.667 70.000 66.667 

 

 

Table 4.20. Confusion matrix values after classification of CNS Cancer data set with 

ChiSquaredAttributeEval 

CNS Cancer Dataset Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
16 5 11 10 15 6 relapse 

11 28 5 34 5 34 non-relapse 

4-Fold 
16 5 13 8 15 6 relapse 

11 28 7 32 2 37 non-relapse 

6-Fold 
17 4 14 7 18 3 relapse 

11 28 8 31 3 36 non-relapse 

8-Fold 
17 4 13 8 19 2 relapse 

11 28 9 30 3 36 non-relapse 

10-Fold 
16 5 13 8 19 2 relapse 

11 28 9 30 3 36 non-relapse 

Percentage Split 

%66 
4 4 3 5 4 4 relapse 

5 7 2 10 2 10 non-relapse 

%70 
4 4 3 5 4 4 relapse 

5 5 2 8 2 8 non-relapse 
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Table 4.21. MAE and RMSE values after classification of CNS Cancer dataset with 

ChiSquaredAttributeEval 

CNS Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross 

Validation 

2-Fold 0.288 0.4425 0.2488 0.4977 0.1833 0.4282 

4-Fold 0.2536 0.4304 0.2548 0.4927 0.1333 0.3651 

6-Fold 0.2368 0.4022 0.2346 0.4704 0.1 0.3162 

8-Fold 0.2257 0.3976 0.2824 0.5299 0.0833 0.2887 

10-

Fold 

  

0.2256 
0.3931 0.28 0.5241 0.0833 0.2887 

Percentage Split 

%66 0.3852 0.5396 0.3459 0.5848 0.3 0.5477 

%70 0.4271 0.5689 0.3826 0.614 0.3333 0.5774 

 

 

 

Figure 4.21. ROC curve and AUC value after classification by applying KNN to CNS 

Cancer dataset with ChiSquaredAttributeEval attribute selection  (For 10-folds Cross 

Validation) 
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Figure 4.22. ROC curve and AUC value after classification by applying NB to CNS 

Cancer dataset with ChiSquaredAttributeEval attribute selection (For 10-folds Cross 

Validation) 

 

 

Figure 4.23. ROC curve and AUC value after classification by applying SMO to CNS 

Cancer dataset with ChiSquaredAttributeEval attribute selection  (For 10-folds Cross 

Validation) 
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Figure 4.24. The graphical representation of the accuracy values of CNS Cancer 

with ChiSquaredAttributeEval attribute selection  (For 10-folds Cross Validation) 

 

4.1.2.3. WrapperSubsetEval 

 

WrapperSubsetEval evaluates attribute sets by using a learning scheme. The 

“wrapper” method wraps a classifier in a cross-validation loop: it searches through the 

attribute space and uses the classifier to find a good attribute set. In this scenario the 

wrapper method uses a classifier in itself. SMO was accepted as a classifier with better 

performance in previous classifications. 

In this way, it is targeted to find genes that are thought to be more likely to give 

information about the disease. And then these reduced attributes and cancer data are 

subjected to classification. 

In this feature selection, the breast cancer attribute was reduced from 24482 to 7 and 

the CNS cancer was reduced from 7130 to 15. 

 

Table 4.22. Number of attributes with/without WrapperSubsetEval 

Number of attributes 
No Attribute 

Selection 

With Attribute Selection by 

WrapperSubsetEval 

 

Breast Cancer 24482 7 

CNS Cancer 7130 15 
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a) The Breast Cancer classification results of the data set being reduced after 

the attribute selection made using WrapperSubsetEval are in Table 4.17, 

Table 4.18. The AUC results of the classification algorithms applied are 

shown in Figure 4.25, Figure 4.26, Figure 4.27 and the graphical 

representation of the accuracy values is expressed as in Figure 4.28. 

 

 

Table 4.23. Breast Cancer dataset classification success rate after attribute selection 

with WrapperSubsetEval 

Breast Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 75.258 78.351 77.320 73.196 75.258 78.788 75.862 

K3 80.412 78.351 77.320 75.258 77.320 66.667 68.966 

K5 79.381 81.443 80.412 84.536 81.443 69.697 72.414 

K7 76.289 81.443 76.289 78.351 80.412 75.758 75.862 

NB  
 77.320 78.351 78.351 79.381 79.381 78.788 79.310 

SMO  80.412 85.567 88.660 89.691 89.691 84.849 82.759 

 

 

Table 4.24. Confusion matrix values after classification of Breast Cancer data set with 

WrapperSubsetEval 

Breast Cancer Data Set Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
33 13 32 14 31 15 relapse 

6 45 8 43 4 47 non-relapse 

4-Fold 
35 11 34 12 36 10 relapse 

10 41 9 42 4 47 non-relapse 

6-Fold 
33 13 34 12 39 7 relapse 

9 42 9 42 4 47 non-relapse 

8-Fold 
33 13 34 12 40 6 relapse 

11 40 8 43 4 47 non-relapse 

10-Fold 
35 11 35 11 40 6 relapse 

11 40 9 42 4 47 non-relapse 

Percentage Split 

%66 
10 4 11 3 12 2 relapse 

7 12 4 15 3 16 non-relapse 

%70 
9 2 9 2 9 2 relapse 

7 11 4 14 3 15 non-relapse 
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Table 4.25. MAE and RMSE values after classification of Breast Cancer dataset with 

WrapperSubsetEval 

Breast Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross 

Validation 

2-Fold 0.3085 0.4044 0.2777 0.4245 0.1959 0.4426 

4-Fold 0.277 0.3914 0.2698 0.4193 0.1443 0.3799 

6-Fold 0.2938 0.4127 0.2763 0.4211 0.1134 0.3368 

8-Fold 0.2835 0.4029 0.2649 0.4083 0.1031 0.3211 

10-

Fold 
0.2937 0.4072 0.2676 0.4077 0.1031 0.3211 

Percentage Split %66 0.3251 0.4411 0.2879 0.44 0.1515 0.3892 

 %70 0.3122 0.4496 0.3041 0.4574 0.1724 0.4152 

 

 

 

Figure 4.25. ROC curve and AUC value after classification by applying KNN to breast 

cancer dataset with WrapperSubsetEval attribute selection  (For 10-folds Cross 

Validation) 
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Figure 4.26. ROC curve and AUC value after classification by applying NB to breast 

cancer dataset with WrapperSubsetEval attribute selection (For 10-folds Cross 

Validation) 

 

 

Figure 4.27. ROC curve and AUC value after classification by applying SMO to breast 

cancer dataset with WrapperSubsetEval attribute selection (For 10-folds Cross 

Validation) 
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Figure 4.28. The graphical representation of the accuracy values of Breast Cancer with 

WrapperSubsetEval attribute selection (For 10-folds Cross Validation) 

 

b) The CNS Cancer classification results of the data set being reduced after 

the attribute selection made using WrapperSubsetEval are in Table 4.9, 

Table 4.10. The AUC results of the classification algorithms applied are 

shown in Figure 4.13, Figure 4.14, Figure 4.15 and the graphical 

representation of the accuracy values is expressed as in Figure 4.16. 

 

 

Table 4.26. CNS Cancer dataset classification success rate after attribute selection 

with WrapperSubsetEval 

CNS Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 78.333 73.333 80.000 76.667 81.667 75.000 72.222 

K3 78.333 83.333 80.000 78.333 75.000 70.000 66.667 

K5 73.333 75.000 71.667 80.000 80.000 65.000 61.111 

K7 73.333 75.000 75.000 73.333 73.333 60.000 55.556 

NB  
 71.667 70.000 73.333 76.667 73.333 70.000 66.667 

SMO  78.333 90.000 93.333 93.333 93.333 70.000 77.778 
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Table 4.27. Confusion matrix values after classification of CNS Cancer data set with 

WrapperSubsetEval 

CNS Cancer Data Set Confusion Matrix 

 KNN(k=3) Naive Bayes SMO Class 

Cross Validation 

2-Fold 
9 12 8 13 8 13 relapse 

1 38 4 35 0 39 non-relapse 

4-Fold 
13 8 7 14 15 6 relapse 

2 37 4 35 0 39 non-relapse 

6-Fold 
13 8 9 12 17 4 relapse 

4 35 4 35 0 39 non-relapse 

8-Fold 
11 10 10 11 17 4 relapse 

3 36 3 36 0 39 non-relapse 

10-Fold 
10 11 8 13 17 4 relapse 

4 35 3 36 0 39 non-relapse 

Percentage Split 

%66 
3 5 2 6 2 6 relapse 

1 11 0 12 0 12 non-relapse 

%70 
3 5 2 6 4 4 relapse 

1 9 0 10 0 10 non-relapse 

 

 

Table 4.28. MAE and RMSE values after classification of CNS Cancer dataset with 

WrapperSubsetEval 

CNS Cancer Dataset MAE and RMSE 

 KNN(k=3) Naive Bayes SMO 

 MAE RMSE MAE RMSE MAE RMSE 

Cross 

Validation 

2-Fold 0.2772 0.4001 0.2876 0.5118 0.2167 0.4655 

4-Fold 0.2646 0.3724 0.2923 0.5257 0.1 0.3162 

6-Fold 0.2752 0.3869 0.2721 0.51 0.0667 0.2582 

8-Fold 0.2806 0.3846 0.2539 0.4876 0.0667 0.2582 

10-

Fold 
0.275 0.4007 0.2646 0.5013 0.0667 0.2582 

Percentage Split 

%66 0.4016 0.4707 0.3194 0.5528 0.3 0.5477 

%70 0.4089 0.4833 0.3589 0.5859 0.2222 0.4714 
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Figure 4.29. ROC curve and AUC value after classification by applying KNN to CNS 

Cancer dataset with WrapperSubsetEval attribute selection (For 10-folds Cross 

Validation) 

 

 

Figure 4.30. ROC curve and AUC value after classification by applying NB to CNS 

Cancer dataset with WrapperSubsetEval attribute selection (For 10-folds Cross 

Validation) 
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Figure 4.31. ROC curve and AUC value after classification by applying SMO to CNS 

Cancer dataset with WrapperSubsetEval attribute selection 

 

 

Figure 4.32. The graphical representation of the accuracy values of CNS Cancer with 

WrapperSubsetEval attribute selection (For 10-folds Cross Validation) 

 

4.1.2.4.Classification of CNN Cancer Dataset using CfsSubsetEval Feature 

Selection Method with ANFIS Technique 

 

After applying the CfsSubsetEval attribute selection method, the breast cancer 

attribute was reduced from 24482 to 138 and the CNS cancer was reduced from 7130 

to 39. 
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Table 4.29. Number of attributes with/without CfsSubsetEval 

Number of attributes 
No Attribute 

Selection 

With Attribute Selection by  

CfsSubsetEval 

Breast Cancer 24482 138 

CNS Cancer 7130 39 

 

a) After applying the CfsSubsetEval attribute selection method to the Breast 

Cancer dataset, the results obtained from the application of artificial 

intelligence based ANFIS technique to the reduced dataset are as follows. 

 

Table 4.30. Breast Cancer dataset classification success rate after attribute selection 

with CfsSubsetEval and ANFIS 

Breast Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

ANFIS 94.834 95.876 95.463 95.434 95.536 95.312 95.588 

 

Table 4.31. Train MAE, Test MAE and Train RMSE, Test RMSE values of Breast 

Cancer after attribute selection with CfsSubsetEval and ANFIS 

Breast Cancer Dataset MAE and RMSE 

 
Train 

MAE 

Test 

MAE 

Train 

RMSE 

Test 

RMSE 
ACC 

Cross 

Validation 

2-Fold 0.1895 0.8102 0.0723 0.6439 94.8342 

4-Fold 0.1940 1.0705 0.0756 0.7870 95.8762 

6-Fold 0.2066 1.1288 0.0856 0.8830 95.4630 

8-Fold 0.2054 1.1891 0.0847 0.8809 95.4342 

10-

Fold 
0.2064 0.8556 0.0853 0.6876 95.5364 

Percentage 

Split 

%66 0.2073 1.1411 0.0859 0.9156 95.3125 

%70 0.2011 0.8300 0.0809 0.7112 95.5882 
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b) After applying the CfsSubsetEval attribute selection method to the CNS 

Cancer dataset, the results obtained from the application of artificial 

intelligence based ANFIS technique to the reduced dataset are as follows. 

 

Table 4.32. CNS Cancer dataset classification success rate after attribute selection 

with CfsSubsetEval and ANFIS 

CNS Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

ANFIS 100 100 99.3333 99.5192 98.3333 100 100 

 

 

Table 4.33. Train MAE, Test MAE and Train RMSE, Test RMSE values of CNS 

Cancer after attribute selection with CfsSubsetEval and ANFIS 

CNS Cancer Dataset MAE and RMSE 

 
Train 

MAE 

Test 

MAE 

Train 

RMSE 

Test 

RMSE 
ACC 

Cross 

Validation 

2-Fold 0.1895 0.8102 0.0723 0.6439 94.8342 

4-Fold 0.1006 1.7509 0.0743 1.3419 100 

6-Fold 0.1560 1.1853 0.1205 0.7966 99.3333 

8-Fold 0.1646 1.3019 0.1247 0.8892 99.5192 

10-

Fold 
0.1785 1.1685 0.1358 0.8314 98.3333 

Percentage 

Split 

%66 0.2073 1.1411 0.0859 0.9156 95.3125 

%70 0.0431 1.2127 0.0317 0.9223 100 
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CHAPTER 5  

CONCLUSION AND EVALUATION 

 

In this study, microarray gene expression of breast and central nervous system cancer 

cells was first examined. DVM, K-Nearest Neighbourhood, Naive Bayes classification 

methods were applied through WEKA program without any touching (i.e. no attribute 

selection) of these cancer data. The microarray data set of these two cancer types is 

shown in Table 5.1. 

 

Table 5.1. Breast cancer and CNS cancer data set information 

 
Number of 

Sample 

Number of Patients 

with Cancer 

Number of Normal 

Patients 

Number 

of 

Genes 

Breast Cancer 97 46 51 24482 

CNS Cancer 60 21 39 7130 

 

While K-Nearest Neighbourhood classification method was applied to these two 

cancer datasets, 4 different k values were applied as 1,3,5,7. In addition, both cross 

validation and percentage split methods were used as training and test sets for these 

two types of cancer. For cross validation, 4 different values were applied, namely 

2,4,6,8,10, and 2 different ratios, 66% and 70%, were used for percentage split. The 

success rates of the classification process applied to data sets without attribute 

selection are shown in Table 5.2 and Table 5.3.
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Table 5.2. Success rate of classification of breast cancer data set without attribute 

selection 

Breast Cancer Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 57.732 55.670 59.794 58.763 60.825 57.576 48.276 

K3 59.794 57.732 58.763 58.763 58.763 63.636 65.517 

K5 71.134 64.949 59.794 61.856 62.887 60.606 65.517 

K7 69.072 65.979 61.856 67.010 67.010 60.606 62.069 

NB  

 
51.546 53.608 53.608 53.608 54.639 57.576 62.069 

SMO 
 

65.979 74.227 65.979 71.134 68.041 60.606 58.621 

  

 

Table 5.3. Success rate of classification of CNS cancer data set without attribute 

selection 

 

The success rates obtained from this procedure were found to be low. Afterwards, it 

was aimed to find the genes which are thought to be related to cancer by making feature 

selection process for these two types of cancer.  

Three different methods were used for attribute selection. These feature selection 

algorithms; CfsSubsetEval, ChiSquaredAttributeEval, and WrapperSubsetEval.  

 

For both Breast Cancer and CNS cancer; a significant increase was observed in the 

success rates obtained after the classification process was applied to the dataset 

obtained by selecting attribute with CfsSubsetEval compared to the success rate after 

classification without applying attribute selection. In the classification of Breast 

Cancer; the average success rate increased from 60,667 to 82.061 when the k value 

was selected as 3 in the classification made with KNN. The success rate in NB 

classification increased from 53,401 to 75,333. The success rate in SMO classification 

increased from 69,072 to 88,666. In the classification of CNS Cancer; the average 

CNS Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

 

 

KNN  

K1 51.667 51.667 60.000 60.000 56.667 40.000 38.889 

K3 61.667 61.667 61.667 61.667 56.667 40.000 33.333 

K5 63.333 58.333 65.000 60.000 65.000 40.000 27.778 

K7 63.333 58.333 63.333 56.667 63.333 55.000 38.889 

NB  
 68.333 56.667 63.333 61.667 61.667 60.000 55.556 

SMO  65.000 60.000 70.000 68.333 68.333 55.000 44.444 
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success rate increased from 60,667 to 74,333 when the k value was selected as 3 in the 

classification made with KNN. The success rate in NB classification increased from 

62,333 to 75,333. The success rate in SMO classification increased from 66,333 to 

88,666.  

For both Breast Cancer and CNS cancer; a significant increase was observed in the 

success rates obtained after the classification process was applied to the dataset 

obtained by selecting attribute with ChiSquaredAttributeEval compared to the success 

rate after classification without applying attribute selection. In the classification of 

Breast Cancer; the average success rate increased from 60,667 to 78,556 when the k 

value was selected as 3 in the classification made with KNN. The success rate in NB 

classification increased from 53,401 to 60,618. The success rate in SMO classification 

increased from 69,072 to 82,680. In the classification of CNS Cancer; the average 

success rate increased from 60,667 to 73,999 when the k value was selected as 3 in the 

classification made with KNN. The success rate in NB classification increased from 

62,333 to 73,666. The success rate in SMO classification increased from 66,333 to 

88,333.  

 

For both Breast Cancer and CNS cancer; a significant increase was observed in the 

success rates obtained after the classification process was applied to the dataset 

obtained by selecting attribute with WrapperSubsetEval compared to the success rate 

after classification without applying attribute selection. In the classification of Breast 

Cancer; the average success rate increased from 60,667 to 77,732 when the k value 

was selected as 3 in the classification made with KNN. The success rate in NB 

classification increased from 53,401 to 78,556. The success rate in SMO classification 

increased from 69,072 to 86,8042. In the classification of CNS Cancer; the average 

success rate increased from 60,667 to 78,999 when the k value was selected as 3 in the 

classification made with KNN. The success rate in NB classification increased from 

62,333 to 73. The success rate in SMO classification increased from 66,333 to 89,666.  

 

It is clearly seen that the success rates obtained by the classification process applied to 

the decreasing data set after attribute selection have been significantly increased for 
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both types of cancer in the success rates obtained as a result of the classification 

process applied without attribute selection. 

In another study; ANFIS technique based on artificial intelligence was applied to both 

cancer datasets reduced by applying CfsSubsetEval attribute selection process. The 

success rates obtained as a result of this procedure are given in Table 5.4 and Table 

5.5. 

 

Table 5.4. Breast Cancer dataset classification success rate after attribute selection 

with CfsSubsetEval and ANFIS 

Breast Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

ANFIS 94.834 95.876 95.463 95.434 95.536 95.312 95.588 

 

 

Table 5.5 CNN Cancer dataset classification success rate after attribute selection 

with CfsSubsetEval and ANFIS 

CNN Cancer 
Cross Validation Percentage Split 

2 4 6 8 10 66% 70% 

ANFIS 100 100 99.3333 99.5192 98.3333 100 100 

 

 

The success rates achieved as a result of the classification process using the ANFIS 

technique were found to have an accuracy value of almost 100 per cent over 95 per 

cent. This shows that only statistical methods alone do not yield much higher success 

rates. The artificial intelligence-based ANFIS technique has been observed to yield 

much better results on these data than most statistical classification methods. 

 

As a result, factors such as pre-processing of data sets, selection of classification 

algorithms and parameter selection and determination of the number of related 

attributes are the determining factors in the accuracy values of the classification. 

Making the right choices will yield better results in the field of bioinformatics and will 

shed light on clinical studies in the determination of disease for the future.
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