

T.C.

HASAN KALYONCU UNIVERSITY

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK ANOMALIES

MANAGEMENT

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENT FOR MASTER DEGREE OF

M. Sc. THESIS

IN

ELECTRONICS AND COMPUTER ENGINEERING

KURBAN KOTAN

TEMMUZ 2019

M
.S

c. in
 E

lectron
ics an

d
 C

om
p

u
ter E

n
gin

eerin
g

JU
L

Y
 2019

K
U

R
B

A
N

 K
O

T
A

N

 i

Comparative Analysis of Classification Techniques for
Network Anomalies Management

A Thesis Submitted In Partial Fulfilment of the
Requirement for Master Degree Of

M. Sc. THESIS

IN

ELECTRONICS AND COMPUTER ENGINEERING

HASAN KALYONCU UNIVERSITY

Supervisor

Assist. Prof. Dr. Mohammed K. M. MADI

Kurban KOTAN

July 2019

 ii

©2019 [Kurban KOTAN].

 iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Kurban KOTAN

 Signature

 v

ABSTRACT
COMPARATIVE ANALYSIS OF CLASSIFICATION

TECHNIQUES FOR NETWORK ANOMALIES MANAGEMENT
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR MASTER DEGREE OF

KOTAN, KURBAN
M.Sc. in Electronics and Computer Engineering

Supervisor: Assist. Prof. Dr. Mohammed K. M. MADI
July 2019
116 pages

Today, the rapid development in technology is enabling billions of devices to

communicate with each other. This development requires new network technologies

to allow all these devices to connect to network easily. In recent years, cyber-attacks

have been a serious threat to governments, businesses and individuals. Many Intrusion

Detection Systems, which were designed to prevent these cyber-attacks failed.

Intrusion Detections Systems (IDS) could not sufficiently recognize the attacks and

the cunning ways the attackers used, resulting in inefficient IDS solution and

vulnerable networks. It would be a much smarter solution to counteract attacks by

using machine learning based systems that is the result of data mining and statistics.

This approach will provide a more efficient IDS solution than a conventional IDS

solution based on attack recognition techniques. The purpose of this thesis is to

propose a method for Network Anomaly Detection System (NADS) using machine

learning algorithms with the aim of enhancing the processes of the network

troubleshooting, and raising the efficiency of the maintenance processes. This study

compares the performance of four selected machine learning classifiers with each

other. The selected algorithms are: K-Nearest Neighbors (KNN), K-means, Naïve

Bayes and Random Forest. This comparison is conducted to detect the network

anomaly and analyze the performance of the classification framework. This

comparison is conducted to provide recommendations related to the framework

selection. The above mentioned algorithms are implemented and tested on KDD

CUP99 intrusion detection dataset that is widely used to evaluate intrusion detection

prototypes. The experimental outcomes demonstrate that KNN algorithm perform well

in terms of accuracy and computation time. Furthermore the results show that KNN

has a successful detection of potential threat of 98.0379 % of all known attacks.

 vi

Keywords: Network Security, Machine Learning, Artificial Intelligence, Anomaly

Detection, K-Nearest Neighbors Algorithm, Principal Component Analysis

Algorithm, KDD CUP99 dataset.

 vii

ÖZET
COMPARATIVE ANALYSIS OF CLASSIFICATION

TECHNIQUES FOR NETWORK ANOMALIES MANAGEMENT
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR MASTER DEGREE OF

KOTAN, KURBAN
Yüksek Lisans Tezi, Elektronik Bilgisayar Müh. Bölümü
Tez Yöneticisi: Dr. Öğr. Üyesi Mohammed K. M. MADI

Temmuz 2019
116 sayfa

Bugün, teknolojideki hızlı gelişme milyarlarca cihazın birbiriyle iletişim

kurmasını sağlıyor. Bu gelişme, tüm bu cihazların ağa kolayca bağlanabilmesi için

yeni ağ teknolojilerini gerektirir. Son yıllarda, siber saldırılar hükümetler, işletmeler

ve bireyler için ciddi bir tehdit oluşturuyor. Bu siber saldırıları önlemek için tasarlanan

birçok saldırı tespit sistemi başarısız oldu. Saldırı Tespit Sistemleri (IDS) saldırıları ve

saldırganların kullandığı kurnazca yollarını yeterince tanıyamadığından yetersiz IDS

çözümü ve savunmasız ağlarla sonuçlandı. Veri madenciliği ve istatistiğin bir sonucu

olan makine öğrenmesi tabanlı sistemler kullanmak saldırıları önlemek için çok daha

akıllıca bir çözüm olacaktır. Bu yaklaşım, saldırı tanıma tekniklerine dayanan klasik

IDS çözümüne kıyasla daha verimli bir IDS çözümü getirecektir. Bu tezin amacı, ağ

sorun giderme işlemlerini geliştirmek ve bakım işlemlerinin verimliliğini artırmak

amacıyla makine öğrenmesini kullanarak Ağ Tabanlı Anomali Tespit Sistemi (NADS)

için bir yöntem önermektir. Bu çalışma, seçilen dört makine öğrenme sınıflandırma

algoritmasının performansını birbiriyle karşılaştırmaktadır. Seçilen algoritmalar

şunlardır: K-En Yakın Komşular (KNN), K-Means, Naïve Bayes ve Random Forest.

Bu karşılaştırma ağ anomalisini tespit etmek ve sınıflandırma çerçevesinin

performansını analiz etmek içindir. Bu karşılaştırma, çerçeve seçimi ile ilgili öneriler

sunmak için yapılmıştır. Yukarıda belirtilen algoritmalar, izinsiz giriş tespit

prototiplerini değerlendirmek için yaygın olarak kullanılan KDD CUP99 izinsiz giriş

tespit veri setinde uygulanır ve test edilir. Deneysel sonuçlar KNN algoritmasının

doğruluk ve hesaplama süresi açısından iyi çalıştığını göstermektedir. Ayrıca,

KNN'nin bilinen tüm saldırıların % 98.0379’luk potansiyel tehdidin başarılı bir şekilde

tespit ettiğini göstermiştir.

 viii

Anahtar Kelimeler: Ağ Güvenliği, Makine Öğrenimi, Yapay Zeka, Anomali Tespiti,

K-En Yakın Komşular Algoritması, Temel Bileşen Analizi Algoritması, KDD CUP99

veri seti.

 ix

This research work is dedicated to my family, my parents and teachers for

strengthening me, and giving me resources and wisdom to finish this project.

 x

ACKNOWLEDGEMENTS

I want to express my gratitude and thanks to my major professor, Assistant

Professor Mohammed K. M. MADI for his kindness and patience during this study,

for his commitment and perseverance with me that enabled me to complete this work.

 xi

TABLE OF CONTENTS

ABSTRACT .. v

ÖZET ... vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xvii

CHAPTER 1

INTRODUCTION

1.1 Problem Statement .. 2

1.2 Research Objectives .. 3

1.3 Significance of the Study .. 3

1.4 Background of the Study .. 3

CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Introduction ... 5

2.2 Misuse Detection .. 5

2.3 Anomaly Detection ... 6

2.4 KDD CUP 99 Data Set ... 6

2.5 Literature Review ... 7

2.5.1 Statistical Analysis for Network Anomaly Detection 9

2.5.2 Classification-based NAD .. 10

2.5.3 Clustering and outlier-based NAD ... 10

2.5.4 Soft Computing .. 11

2.5.5 Knowledge-based NAD .. 12

2.5.6 Combination learners.. 13

2.6 K-Nearest Neighbor (KNN) Algorithm .. 13

2.7 K-Means Classification Algorithm ... 15

2.8 Naïve Bayes Classification Algorithm ... 16

2.9 Random Forest Classification Algorithm ... 17

2.10 Principal Component Analysis (PCA) Algorithm .. 18

2.11 NADS Algorithm .. 18

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Methodology (Or Process) of CRISP-DM ... 20

3.1.1 Business Understanding ... 21

3.1.2 Data Understanding .. 21

 xii

3.1.3 Data Preparation ... 24

3.1.3.1 Integrating data .. 24

3.1.3.2 Data Pre-processing ... 26

3.1.4 Modeling .. 28

3.1.4.1 Classification .. 28

3.1.4.2 Prediction ... 29

3.1.5 Evaluation ... 29

3.1.6 Deployment .. 29

3.2 System Structure ... 29

3.3 The Proposed System ... 30

CHAPTER 4

NADS SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction ... 33

4.2 System Structure ... 33

4.3 Performance Metrics ... 34

4.3.1 Confusion Matrix ... 34

4.4 Experiments and Results ... 36

4.4.1 System Accuracy Results ... 71

4.4.2 Classification Speed Results Based On Number of Feature Used 71

4.4.3 Memory Allocation Results .. 71

CHAPTER 5

CONCLUSION

REFERENCES ... 75

APPENDICES .. 78

Appendix: A .. 78

Appendix: B .. 79

Appendix: C .. 81

Appendix: D .. 82

Appendix: E .. 82

Appendix: F .. 90

Appendix: G .. 94

 xiii

LIST OF TABLES

Table 2.1: Distributions of attack classes in 1999 KDD cup dataset 7

Table 2.2: The NADS Algorithm ... 18

Table 3.1: Training Dataset of NADS .. 22

Table 3.2: Test Dataset of NADS .. 23

Table 3.3: OSI Layers .. 26

Table 4.1: Confusion Matrix for Binary Case .. 34

Table 4.2: Example Confusion Matrix of NADS Whish Is Multiclass 36

Table 4.3: Experiment 1 ... 37

Table 4.4: Experiment 2 ... 41

Table 4.5: Experiment 3 ... 44

Table 4.6: Experiment 4 ... 47

Table 4.7: Experiment 5 ... 50

Table 4.8: Scalability Experiments for KNN Algorithm ... 54

Table 4.9: Scalability Experiments for KM Algorithm ... 56

Table 4.10: Scalability Experiments for NB Algorithm .. 58

Table 4.11: Scalability Experiments for RF Algorithm ... 60

Table 4.12: Feature Scaling Experiments for KNN ... 62

Table 4.13: Feature Scaling Experiments for KM Algorithm.................................... 64

Table 4.14: Feature Scaling Experiments for NB .. 66

Table 4.15: Feature Scaling Experiments for RF Algorithm 68

 xiv

LIST OF FIGURES

Figure 1.1: Network Anomaly Detection Methods .. 1

Figure 2.1: Classification-based NAD .. 10

Figure 2.2: Clustering and outlier-based NAD ... 11

Figure 2.3: An Example of KNN Algorithm .. 14

Figure 2.4: Different boundaries separating the two classes with different values of k

 ... 15

Figure 2.5: An Example of K-Means Classification Algorithm 16

Figure 2.6: An Example Question of Naïve Bayes Classification Algorithm and Its

Answer .. 17

Figure 2.7: Illustration of Random Forest Classification Algorithm 17

Figure 2.8: An Example of PCA Algorithm ... 18

Figure 3.1: CRISP-DM ... 20

Figure 3.2: Sample vectors of NADS’s KDD dataset .. 23

Figure 3.3: Captured and converted network packets by Wireshark 24

Figure 3.4: The application that deal with real packet capturing 25

Figure 3.5: Stages of packet decoder .. 26

Figure 3.6: The stages of data pre-processing data .. 28

Figure 3.7: A Generic structure of NADS .. 30

Figure 3.8: Block Diagram of Training Phase. ... 31

Figure 3.9: Block Diagram of Testing Phase. .. 32

Figure 4.1: System Architecture of NADS ... 34

Figure 4.2: Comparison of DR & ACC of First Experiment 38

Figure 4.3: Comparison of Training and Testing Time of First Experiment 38

Figure 4.4: Comparison of Memory Consume of First Experiment 39

Figure 4.5: Experiment 1 of KNN .. 39

 xv

Figure 4.6: Experiment 1 of KNN .. 40

Figure 4.7: Comparison of DR & ACC of Second Experiment 41

Figure 4.8: Comparison of Training and Testing Time of Second Experiment 42

Figure 4.9: Comparison of Memory Consume of Second Experiment 42

Figure 4.10: Experiment 2 of KNN .. 43

Figure 4.11: Comparison of DR & ACC of Third Experiment 44

Figure 4.12: Comparison of Training and Testing Time of Third Experiment 45

Figure 4.13: Comparison of Memory Consume of Third Experiment 45

Figure 4.14: Experiment 3 of KNN .. 46

Figure 4.15: Comparison of DR & ACC of Fourth Experiment 47

Figure 4.16: Comparison of Training and Testing Time of Fourth Experiment 48

Figure 4.17: Comparison of Memory Consume of Fourth Experiment 48

Figure 4.18: Experiment 4 of KNN .. 49

Figure 4.19: Comparison of DR & ACC of Fifth Experiment 50

Figure 4.20: Comparison of Training and Testing Time of Fifth Experiment 51

Figure 4.21: Comparison of Memory Consume of Fifth Experiment 51

Figure 4.22: Experiment 5 of KNN .. 52

Figure 4.23: Comparison of DR & ACC for KNN Algorithm..................................... 54

Figure 4.24: Comparison of Training and Testing Time for KNN Algorithm 55

Figure 4.25: Comparison of Memory Consume KNN Algorithm 55

Figure 4.26: Comparison of DR & ACC for KM Algorithm 56

Figure 4.27: Comparison of Training and Testing Time for KM Algorithm 57

Figure 4.28: Comparison of Memory Consume KM Algorithm 57

Figure 4.29: Comparison of DR & ACC for NB Algorithm .. 58

Figure 4.30: Comparison of Training and Testing Time for NB Algorithm 59

Figure 4.31: Comparison of Memory Consume NB Algorithm 59

 xvi

Figure 4.32: Comparison of DR & ACC for RF Algorithm .. 60

Figure 4.33: Comparison of Training and Testing Time for RF Algorithm 61

Figure 4.34: Comparison of Memory Consume RF Algorithm 61

Figure 4.35: Comparison of DR & ACC for KNN Algorithm..................................... 63

Figure 4.36: Comparison of Training and Testing Time for KNN Algorithm 63

Figure 4.37: Comparison of Memory Consume KNN Algorithm 64

Figure 4.38: Comparison of DR & ACC for KM Algorithm 65

Figure 4.39: Comparison of Training and Testing Time for KM Algorithm 65

Figure 4.40: Comparison of Training and Testing Time for KM Algorithm 66

Figure 4.41: Comparison of DR & ACC for NB Algorithm .. 67

Figure 4.42: Comparison of Training and Testing Time for NB Algorithm 67

Figure 4.43: Comparison of Memory Consume NB Algorithm 68

Figure 4.44: Comparison of DR & ACC for RF Algorithm .. 69

Figure 4.45: Comparison of Training and Testing Time for RF Algorithm 69

Figure 4.46: Comparison of Memory Consume RF Algorithm 70

Figure 4.47: K-Fold Cross Validation .. 71

Figure 4.48: Experiment of KM Algorithm .. 72

Figure 4.49: Experiment of NB Algorithm .. 73

Figure 4.50: Experiment of RF Algorithm ... 73

 xvii

LIST OF ABBREVIATIONS

ACC : Accuracy Rate

ADS : Anomaly Detection System

AI : Artificial Intelligence

CM : Confusion Matrix

CRISP-DM : Cross-Industry Standard Process for Data Mining

DARPA : Defense Advanced Research Project Agency

DoS : Denial of Service

DR : Detection Rate

FN : False Negative

FP : False Positive

ICMP : Internet Control Message Protocol

ID : Intrusion Detection

IDS : Intrusion Detection System

IP : Internet Protocol

KDD : Knowledge Discovery and Data

KDD CUP99 : Knowledge Discovery and Data Mining CUP1999

KM : K-Means

KNN : K-Nearest Neighbors

LAN : Local Area Network

NADS : Network-based Anomaly Detection System

NAD : Network-based Anomaly Detection

NB : Naïve Bayes

PCA : Principal Component Analysis

PSP : Percentage of Successful Prediction

 xviii

RF : Random Forests

R2L : Remote to Local

SVM : Support Vector Machine

TCP : Transmission Control Protocol

WAN : Wide Area Network

WinPcap : Windows Packet Capturing

TN : True Negative

TP : True Positive

TPR : True Positive Rate

U2R : User to Root

UDP : User Datagram Protocol

TCP : Transmission Control Protocol

TCP/IP : Transmission Control Protocol/Internet Protocol

 1

CHAPTER 1

INTRODUCTION

Network anomalies (network intrusions, network overload conditions, denial

of service attacks and malicious/hostile activities) can cause network failures for both

private and public entities. Malicious individuals and groups routinely employ cyber-

attacks that target businesses and governments in what is now known as cyber-

terrorism (Gable 2010). The goal is to cause fear and changes in behavior to affect

political or ideological ends. Internet and computer networks are increasing day by day

and the number of computers connected to the internet and computer networks are

increasing and diversifying. On the other hand, cybersecurity (Cybersecurity is the

protection of internet connected systems, hardware, software and data from cyber-

attacks) threats are growing every day. Because of these factors, cybersecurity is

becoming more complex and costly. Developing flexible and adaptable security-

oriented approaches along with new types of attacks that are constantly emerging is a

very difficult task. Therefore, anomaly intrusion detection techniques and systems for

networks are very innovative to achieve the necessary protection.

The Network Anomaly Detection System (NADS) monitors computer

networks and identifies any deviations from the normal profile to detect new attacks.

Thus, it takes appropriate action. In this context, it is indispensable and very important

for the network. Network anomaly detection (NAD) can be achieved through

Statistical-based, Clustering and outlier-based, Classification-based, Knowledge-

based, Soft computing and Combination learner based (Baliga, Kamat et al. 2007).

These are shown in Figure 1.1.

Figure 1.1: Network Anomaly Detection Methods (Baliga, Kamat et al. 2007)

 2

For statistical based NAD an anomaly is an observation. Observation is

suspected of being partially or completely unrelated because observation is not

generated by the assumed model (Bhuyan, Bhattacharyya et al. 2013). Therefore, any

generated traffic with a low probability of occurrence are considered as anomalies.

Based on training datasets, classification based NAD tries to assign new data samples

to categories (Bhuyan, Bhattacharyya et al. 2013). Any object can be defined by its

properties (or features). Clustering is to categorize new sets of objects into clusters

(groups) by using a measurement distance or a specific correlation for it. The objects

which are in the same set are more related to each when compare to object in the other

sets (Garcia-Teodoro, Diaz-Verdejo et al. 2009). Soft computing is sufficient for

NADS because it is impossible to find certain solutions sometimes. Soft computing is

usually thought of as encompassing methods (Patcha and Park 2007). Knowledge

based methods use host or network events first, then check these against predefined

rule sets and known attack patterns (Baliga, Kamat et al. 2007). Combination learners

combine multiple methods then partition them into three different categories: Fusion-

based methods, Hybrid methods and Ensemble-based methods (Garcia-Teodoro, Diaz-

Verdejo et al. 2009). The machine learning approach as developed in this thesis will

be Statistical-based.

1.1 Problem Statement

After firewall, ADS is protecting the network. Nowadays researchers focus on

ADSs but however ADSs have low detection rate, low accuracy rate and high false

alarm rate (Kathareios, Anghel et al. 2017).

Many studies have been carried out on the topic of network traffic modeling

using machine learning (Mahoney and Chan 2002, Williams, Zander et al. 2006, Lippi,

Bertini et al. 2013). K-Nearest Neighbors (KNN) classifier can achieve superior

performance similar to Support Vector Machine (SVM) and Neural Networks, which

are parametric classifiers. KNN, SVM and Neural Networks are in top of evaluated

machine learning algorithms. In contrast to the parametric classifiers, KNN classifier

has several important advantages (Duda, Hart et al. 2001). For KNN Classifier,

memory requirements are high and KNN Classifier is susceptible to cure of

dimensionality (Liao, Vemuri et al. 2007). We will focus on the KNN classifier, which

can reduce the memory requirements and sensitivity to cure of dimensionality by using

 3

less number of the input features instead of using hundreds or thousands of features.

However, we will compare it other algorithms, like K-Means Classifier, Naïve Bayes

Classifier and Random Forest Classifier, to compare its performance.

Using machine learning for anomaly detection enhances the speed of detection

of structural errors, defects or frauds. Detecting anomalies across an entire network

system is a very broad proposition. Here we focus on local area network (LAN)

anomalies detection using machine learning.

1.2 Research Objectives

The aim of this research is to use the machine learning techniques for network

anomalies detection in LAN. In order to do this, the following objectives are identified:

a) To research the available methods for the network anomalies detection using

machine learning.

b) To outline the identified methods taxonomy and identify the advantages,

disadvantages and weaknesses of the identified method.

c) To evaluate the performance of the identified method.

1.3 Significance of the Study

This thesis's aim is establishing a network based anomaly detection system with

machine learning to detect abnormal behavior of network traffic. This can be achieved

by using fast machine learning algorithms that can process and analyze network traffic.

In a brief summary, Detection Rate (DR) will be increased to maximum and

NADS will uncover and precisely identify new attacks. The system will use the known

attack pattern in phase of training in order to increase detection rate which is actually

machine learning.

1.4 Background of the Study

There are five chapters in this thesis. Theoretical background of generic NADS,

a brief explanation of methods of NADS, Knowledge Discovery Data mining (KDD

CUP99 data set) description, K Nearest Neighbor algorithms, K-Means algorithm

(KM), Naïve Bayes algorithm (NB), Random Forest algorithm (RF) and Principal

Component Analysis algorithm (PCA) are presented in chapter two. Chapter three

presents the methodology and system structure. Implementation and experimental

 4

results from the proposed system and comparison of the system with other

classification algorithms were presented in chapter four. Conclusions, limitations and

suggestions for future work are presented at chapter five.

 5

CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Introduction

Network security is getting more and more importance than ever because

computer networks are growing enormous with sensitive information and network

based services on them. And internet and networks are exposed to increasing number

of security threats. There is a big problem on detection of the growing new intrusion

types: Labeling of the network data instances by human is usually troublesome, take

too much time and expensive. Developing adaptive security oriented and flexible

methods are very hard by new types of attacks appearing incessantly. Because of this,

against malicious activities protecting target networks and systems, NADS are

important technology.

The different methods of NAD are represented under this chapter and it is

divided into six main categories (Bhuyan, Bhattacharyya et al. 2013):

 Soft computing

 Clustering and outlier-based

 Classification-based

 Statistical-based

 Combination learner

 Knowledge-based

In consideration of their advantages and drawbacks under this chapter, these

six categories will be briefly explained.

2.2 Misuse Detection

In a misuse detection, which is an approach of detecting network attacks, first

abnormal system behaviors are defined then all other behaviors are defined as normal.

Anomaly detection approach defines normal behaviors first and then defines all other

behaviors as abnormal. Therefore, it stands against this approach. In misuse detection

everything unknown is normal. Using attack signatures in an intrusion detection

 6

system is an example for misuse detection. Generally, term of misuse detection is used

to all kinds of computer misuse (Helman, Liepins et al. 1992).

2.3 Anomaly Detection

In anomaly detection, it supposes that intrusions are anomalies that differ from

normal behaviors. Generally, anomaly detection creates a profile for normal behaviors

and marks them, which deviate largely from the profile, as attacks. Main advantage of

anomaly detection is that it can detect unknown attacks. Disadvantage of anomaly

detection is that it has high false positive rate because anomalies are not necessarily

intrusive in practice. In addition, attacks that do not clearly deviate from normal

activities cannot be detected by anomaly detection (Gaber and Discovery 2012).

2.4 KDD CUP 99 Data Set

In KDD-99 the Fifth International Conference on Knowledge Discovery and

Data Mining, The Third International Knowledge Discovery and Data Mining Tools

Competition was held and a data set was used for network intrusion detector. That data

set is KDD Cup 99. Network intrusion detector was built as which predicts intrusions

(or attacks) and label them bad connections and predicts normal connections and label

them as normal.

There are standard set of data to be audited in this dataset, which simulated in

a military network environment and contains a wide range of intrusions. Since 1999,

it has been used wildly for the anomaly detection methods. This data set was built

based on the data captured in DARPA'98 evaluation program. DARPA'98 had been

obtained from 7 weeks of network traffic. And it contains about 5 million connection

records. Each connections is about 100 bytes. Dataset is raw binary tcp dump data and

it is about 4GB.

KDD training data set includes about 5 million connection vectors. Every

vector includes 41 features, which is labeled normal or an attack (Tavallaee, Bagheri

et al. 2009). 41 features of vectors are shown in Appendix B.

Attacks fall into one of the following four categories:

Denial of Service Attack (DoS): DoS is any type of attack that attackers

prevent users from accessing the service. In this attack type, attacker usually sends

excessive messages and asks the network (or server) to authenticate requests, which

 7

have void return addresses. When network (or server) sends the authentication

approval, network (or server) will not be able to find attacker's return address and

before closing the connection, it will cause the server to wait. When the server ends

the connection, attacker sends same type of messages. Therefore, the process of

authentication and server waiting process will begin again and it will keep the network

(or server) busy.

User to Root Attack (U2R): In this type of attacks, attacker gets on the system

with normal user account and then attacker abuses security vulnerabilities to obtain

super user privileges.

Remote to Local Attack (R2L): This is type of attacks that attacker gets access

to a local user's computer on system over the internet by sending packets, in order to

expose the machines security vulnerabilities and exploit privileges.

Probing Attack (probe): This is type of attacks that attacker scans a computer

or a networking device, in order to expose the machines vulnerabilities and exploit

privileges for later use.

Percentages of these attacks in KDD dataset are shown in Table 2.1.

Table 2.1: Distributions of attack classes in 1999 KDD cup dataset (Ahmed and
Mahmood 2015, Aljawarneh, Aldwairi et al. 2018)

2.5 Literature Review

In networking, the ADSs are distinctively used to help in detecting anomalies

in data of a network. This detection is made possible because the anomalous always

occurs in the form of patterns. Nevertheless, other studies have depicted modeling of

data in a sequential fashion in the process of detecting subsequences which are

anomalous (Parmar and Patel 2017).

 8

A review as well as a survey which has been conducted by (Lazarevic, Ertoz et

al. 2003), on anomaly detection. In his review, it is established that the emergence of

anomaly-based systems for detecting intrusion have been possible to develop

numerous systems which can be utilized to effectively track novel attacks which have

been waged on a given system. This has been possible through utilization of techniques

such as maintaining a high DR of about 98% as well as a low rate of alarm of 1%. In

his analysis, it is clear that he postulates that despite the fact that despite the efficiency

level of the anomaly-based approaches in attack detections, the signature-based

detections seem to be preferable in the event that there is a need for mainstream

implementation of intrusion in a detection system.

In the same perspective, (Dasgupta, Ji et al. 2003) , projects that in enhancing

the effectiveness of the anomaly detection systems, it is important to pay distinctive

focus on the immunity-based techniques. The reason is that the technique does not

focus on offering a remedy to anomalies in the system but it helps the network to be

able to remain immune to any form of intrusion. Their analysis is relevant to this study

because it offers an alternative to ensuring that the anomaly detection system is

developed in a way that the focus is not only on detection of breach but also in

enhancing protection of the system from any potential breach. In this way, the

application of the immunity-based techniques is an emerging branch of the Artificial

Intelligence (AI) and this is very important in the application of security.

The problem of anomaly detection system has been a concern of many

intellectuals and this has led to the development of further mechanisms that can be

effectively diploid to enhance not only detection of an anomaly but also protection of

the system from any form of intrusion. Dorothy E. Denning (Denning 1987) in her

analysis presents the detection of anomaly intrusion in a system should be detected in

real time. In her opinion, this is very important because it helps in instituting measures

that can help reverse the intrusion and block any further intrusion that can be incurred

in the system. In this perspective in her analysis, she developed a system that enhanced

real-time detection of system anomaly intrusions. The system developed by Dorothy

E. Denning (Denning 1987) has the capacity of detecting a form of intrusion whether

it is a break-in, a penetration as well as other forms of intrusion. This helps in ensuring

that the system is under constant surveillance and protection. In her system, the

foundation of the detection is on the hypothesis that through monitoring a system`s

 9

audit records for any abnormal patterns of use in the system, it is possible to detect a

security violation in the system. In her system, she mentions that to make this possible

there is every need to ensure that a profile that is utilized to represents the subject`s

behavior has to be maintained. This should be done with respect to the object in terms

of metrics as well as statistical models. In the same way, in order to be able to enhance

the real-time detection of the anomalies, a rule that enables the system to acquire

knowledge about the behavior of the intruder from the audit records will enhance

effectiveness in anomalous behavior detection. The important of this model presented

by Dorothy E. Denning (Denning 1987) is that it operates independently of any other

system. It also does not depend on the application environment of the system in

question or under threat of attack, it has to be independent of the system vulnerability

as well as the type of intrusion. In this way, it is possible to have a framework for the

general-purpose intrusion-detection expert system.

2.5.1 Statistical-based NAD

For statistical-based NAD, because of not generating from the stochastic model

assumed an anomaly is an observation, which is suspected of being partially or

completely irrelevant (Bhuyan, Bhattacharyya et al. 2013). Therefore, samples are

anomalies because they have low probability of being generated. This method has two

types: (a) parametric and (b) non-parametric. Parametric methods learn knowledge of

distribution and they predict the parameters from data that is given, while

nonparametric methods do not (Bhuyan, Bhattacharyya et al. 2013). Namely,

parametric methods suppose that network data has certain distribution while non-

parametric methods do not. Parametric methods make assumptions about statistical

characteristics of the given data. There is no need prior knowledge about normal

activity for this method and this is advantage of this it and these methods give accurate

alert of malicious activities (Garcia-Teodoro, Diaz-Verdejo et al. 2009, Bhuyan,

Bhattacharyya et al. 2013). However, until the network traffic composed during the

attack is considered normal, they are vulnerable to be used to by attackers. Setting

values for different parameters and metrics is hard, especially balancing between false

positives and negatives (Bhuyan, Bhattacharyya et al. 2013). Those are disadvantages

of statistical based NAD.

 10

2.5.2 Classification-based NAD

In classification-based NAD, any object can be defined using properties or

features. Based on training datasets, classification-based NAD tries to appoint new

data samples to categories (Bhuyan, Bhattacharyya et al. 2013). In linear classification,

it tries to draw a line between classes but the boundary might be nonlinear (Bhuyan,

Bhattacharyya et al. 2013) as in Figure 2.1. By integrating new data, they are able to

improve their execution that is why these classification methods are proper for training

and testing (Bhuyan, Bhattacharyya et al. 2013). These are advantages of

classification-based NAD. In addition, for known anomalies subject to appropriate

thresholds these methods have very high detection rate (Bhuyan, Bhattacharyya et al.

2013). They are very sensitive to classifying hypotheses, which is the main

disadvantage of classification based NAD. In addition, they are unable to detect

unidentified anomalies until appropriate training datasets are given (Bhuyan,

Bhattacharyya et al. 2013).

Figure 2.1: Classification-based NAD (Bhuyan, Bhattacharyya et al. 2013)

2.5.3 Clustering and outlier-based NAD

In clustering, it categorizes new sets of objects into groups and these groups

are called clusters. It use a specific correlation or measurement distance during

clustering. Observations are more related in same set to each other (Garcia-Teodoro,

Diaz-Verdejo et al. 2009). As it is shown in Figure 2.2(a), in the most common

application of clustering it consists of choosing representative points for each cluster.

This is shown in Figure 2.2(a) as two dimensions. There are series of unidentified

observations and by drawing ellipses around them; they are grouped into five clusters

 11

(Bhuyan, Bhattacharyya et al. 2013). In Figure 2.2(b), we see that the outliers

(abnormal data points) are separated from the normal clusters, which are non-existent

clusters (Bhuyan, Bhattacharyya et al. 2013). In small-scale datasets, one of the main

advantage for these methods it is able to find outliers easily. On the other hand, its

computational complexity might be higher as compared to other NAD methods.

Figure 2.2: Clustering and outlier-based NAD (Bhuyan, Bhattacharyya et al. 2013)

2.5.4 Soft Computing

For NAD, this method is sufficient because finding precise solutions is

impossible sometimes (Patcha and Park 2007, Hamamoto, Carvalho et al. 2018).

Methods of soft computing are shown below:

 Artificial Neural Networks: Artificial Neural Networks has been

motivated from its inception by the recognition that the human brain

computes in an entirely different way from the conventional digital

computer. Artificial Neural Networks are established tools for various

applications such as data clustering, feature extraction and anomalous

pattern identification in a network.

 Genetic algorithm (GA): Genetic algorithms (GAs) represent a

computational model-based on principles of evolution and natural

selection.

 Artificial immune systems: Artificial Immune Systems represent a

computational method inspired by the principles of the human immune

 12

system. The human immune system is adept at performing anomaly

detection. The anomaly detection in the human immune system

classifies certain external objects that enter the body as undesirable

antigens, i.e., objects that may cause illness.

 Colony algorithms: Colony algorithms are probabilistic techniques for

solving computational problems that can be reformulated to find

optimal paths through graphs.

 Rough Sets: Rough sets have been effectively used in classification

systems, where complete knowledge of the system is not available. A

classifier aims to form various classes where members of a class are not

noticeably different. These indiscernible or indistinguishable objects

are viewed as basic building blocks (concepts) used to build a

knowledge base about the real world. This kind of uncertainty is

referred to as rough uncertainty.

 Fuzzy Sets: The concept of fuzzy logic provides a language with syntax

and local semantics for translating qualitative knowledge about a

problem to be solved.

These methods have high flexibility and adaptability. This is advantages of soft

computing-based anomaly detection methods. Consuming high resource are their

disadvantages. So in lack of normal traffic data, the training of the systems becomes

very hard.

2.5.5 Knowledge-based NAD

These methods check network or host events against known attack patterns and

predefined rule sets. Knowledge based contains methods as shown down:

 Rule-based and expert system approaches

 Ontology and logic-based approaches

Advantages of these methods are scalability flexibility and robustness. If there

are available training datasets for normal and anomalies both, these methods have high

detection rate. Drawbacks of those methods are the costs and time consumption.

Detecting unknown anomalies is very hard for knowledge based NAD (Garcia-

Teodoro, Diaz-Verdejo et al. 2009).

 13

2.5.6 Combination learners

This method combines multiple methods first. Then it divides these combined

methods into three different categories, which are shown below:

 Fusion-based methods: Some methods of Fusion-based methods work

in high dimensional feature spaces to extract and concatenate different

semantic meanings. Others of Fusion-based methods attempt to

combine classifiers trained on different features divided on the basis of

hierarchical abstraction levels or the types of information contained.

 Hybrid methods: To overcome the limitations of the high false positive

rate of anomaly detection and unknown intrusions of misuse detection,

hybrid methods make use of features from approaches and get high

accuracy.

 Ensemble-based methods: Ensemble-based methods are to weigh

individual classifiers first and then combine them to get an overall

classifier that outperforms all of them.

These methods cost a lot (Garcia-Teodoro, Diaz-Verdejo et al. 2009).

2.6 K-Nearest Neighbor (KNN) Algorithm

K-Nearest Neighbors algorithm is a very simple technique that is used in data

mining. All available points are stored first and then KNN classifies new points

according to similarity criteria using distance functions as follow:

 Euclidean :ට∑ ሺ𝑥 െ 𝑦ሻଶ
ୀଵ

 Manhattan : ∑ |x୧-y୧|
୩
୧ୀଵ

 Minkowski : ሺ ሺ|x୧-y୧|ሻ୯୩

୧ୀଵ
ሻ

భ
౧

 14

Pseudo Code of K-Nearest Neighbors algorithm is

 1-Load the data

2-Assign k value (In our example k value will be 1)

3-Iterate steps for all training data points to get predicted class

i- Calculate the distance between each points by using any distance function.

ii- Sort distances values in ascending order.

iii- From the sorted array, get the first top k points.

iv- Specify the class that contains most of these points.

v- Assign the point as specified class member.

An example of the KNN algorithm is shown in Figure 2.3.

Figure 2.3: An Example of KNN Algorithm

 15

Boundaries that separates two classes according to different k values are shown

at Figure 2.4.

Figure 2.4: Different boundaries separating the two classes with different values of k

KNN is easy to be understood when there are few predictors .It is useful and

easy to build models which are non-standard types. For example, text is non-standard

type and if model contains text it is useful to use KNN (Omar, Ngadi et al. 2013).

Some other data classification algorithms that briefly described after this

section will be compared with the KNN algorithm.

2.7 K-Means Classification Algorithm

K-Means Classification Algorithm is unsupervised. At beginning, it calculates

initial class means by equally distributing them in the data space. Then by using a

minimum distance measurement method, iteratively it groups data points into the

nearest class. In every iteration, it recalculates every class means and according to

these new means, it regroups observations. Until the maximum number of iterations is

reached or the number of observations in each class changes by less than the selected

observations change threshold this iteration continues.

 16

Figure 2.5: An Example of K-Means Classification Algorithm

KM has low complexity but it is obligation to specify k value because it is

unsupervised. Disadvantages of KM are that it is sensitive to outlier data points and

noise and initial assignment of centroids may change the result too much.

2.8 Naïve Bayes Classification Algorithm

This Classifier is based on the Bayesian Theorem, ሺ𝐴\𝐵ሻ ൌ ሺ\ሻሺሻ

ሺሻ
 , and it

is especially suited to use if features dimensions are high. It can often perform better

than complex classification methods despite its simplicity.

 17

Figure 2.6: An Example Question of Naïve Bayes Classification Algorithm and Its
Answer (Han, Pei et al. 2011)

2.9 Random Forest Classification Algorithm

Random Forest is a supervised, most flexible and easy to use algorithm. A

forest that it has more trees is more robust. RF create decision trees on randomly

selected data first. Then it gets prediction from each tree. At last, by means of voting,

it selects the best solution.

Figure 2.7: Illustration of Random Forest Classification Algorithm

 18

2.10 Principal Component Analysis (PCA) Algorithm

PCA (Jolliffe 1986) is a most used method in data processing and dimension

(size) reduction with many applications in social sciences, engineering and biology.

Some examples include the handwritten, zip code classification and human face

recognition. Nowadays it is used widely in data mining and machine learning.

Figure 2.8: An Example of PCA Algorithm

PCA Algorithm will be used for reduction features before using K-Nearest

Neighbors classifier in proposed system, which is in Chapter 3 and Chapter 4.

2.11 NADS Algorithm

The pseudo code of the NADS is shown below. It shows the general functions

and working steps of the NADS system.

Table 2.2: The NADS Algorithm

1. Start

2. Read training file.

3. Train the System

4. Capture network packets by Wireshark application and extract features vectors.

5. If vector is normal Than

6. Mark the vector is normal.

7. Else

8. Mark the vector as abnormal.

9. End

 19

In this thesis, one of the efficient and easiest data-mining algorithm called

KNN Algorithm is applied. Experimental results on the KDDCUP99 data set show that

our approach is very effective in detecting network intrusion. Especially detection rate

is 98.0379 %. It is observed that the proposed NADS works much better in terms of

detection rate and accuracy rate when it is applied to KDD99 dataset compared with

other algorithms (Farid, Harbi et al. 2010, Rao, Srinivas et al. 2011, Shanmugavadivu,

Nagarajan et al. 2011).

 20

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Methodology

This chapter presents the NADS, which is machine-learning system for

anomalies detection system by using K-Nearest Neighbors Algorithm for classification

and Principal Component Analysis Algorithm for dimension reduction in frame of

CRISP-DM (Cross-Industry Standard Process for Data Mining) Methodology. It

describes typical phases of a project, tasks in every phase and relationships between

these tasks as a methodology. It provides a conspectus of the data-mining life cycle as

a process model. It contains six steps as follow:

1. Business Understanding: What is the problem we are dealing with?

2. Data Understanding: What is the data we are working with?

3. Data Preparation: What are the transformations and extractions to be done

on the data?

4. Modeling: What is the data model we should use?

5. Evaluation: Does the model meet the project goals?

6. Deployment: How should we use the model we developed

Figure 3.1: CRISP-DM

 21

We will follow the steps of the CRISP-DM methodology in our machine

learning system.

3.1.1 Business Understanding

This is first step of the Methodology (Process) is about description of the

problem, defining situation, determining goals and success criteria and determining

project plan. Chapter one of this thesis is “business understanding” step of

methodology. Business understanding of this thesis briefly is:

Network anomalies can cause network failures for both private and public

entities. Internet and computer networks are getting larger day by day and by the

number of devices connected to it is increasing and getting various. Because of these

factors, cybersecurity is becoming more complex and costly. Developing flexible and

adaptable security-oriented approaches along with new types of attacks that are

constantly emerging is a very difficult task. Therefore, anomaly intrusion detection

techniques and systems for networks are very innovative to achieve the necessary

protection.

3.1.2 Data Understanding

This step of the Methodology (Process) is about understanding of data. Those

are gathering data, identify data, investigating data and verifying data quality.

Subchapter 2.4 is “data understanding” step of methodology. The following table

shows the part of the KDD Cup dataset which is used in proposed system NADS. Data

understanding of this thesis briefly is:

KDD Cup 99 data set was used for network intrusion detector. Network

intrusion detector was built as which predicts intrusions (or attacks) and label them bad

connections and predicts normal connections and label them as normal. KDD training

data set includes about 5 million connection vectors. Every vector includes 41 features,

which is labeled normal or an attack. Attacks are generally as follow:

DoS, U2R, R2L and Probe.

Percentages of these attacks in KDD dataset which are used for training and

testing phases are shown in Table 3.1 and Table 3.2.

 22

Table 3.1: Training Dataset of NADS

 23

Table 3.2: Test Dataset of NADS

Figure 3.2 represents some sample vectors of NADS; these vectors were

collected from the KDD CUP99 data set, which consists of normal and abnormal

behavior for network traffic.

Figure 3.2: Sample vectors of NADS’s KDD dataset

 24

3.1.3 Data Preparation

This step of the Methodology (Process) is about integrating data from multi

sources, formatting data, feature extraction, cleaning data, constructing data (derive

attributes-transformation, filling in missing values) and feature selection.

3.1.3.1 Integrating data

In this part, NADS catches all packets in network (or it will input training file

or testing file). All packets in the network is captured. In captured packets, data and

time fields are displayed which are data and packet captured time. Typical packets

showed in Figure 3.3. All captured packets will be monitored and can be saved for

analyzing.

Figure 3.3: Captured and converted network packets by Wireshark

First step of proposed system is packet capture. All packets of the real network

traffic is captured in this step. This process runs in promiscuous mode. It captures all

packets and then stores them as a set of traffic flows in data storage file.

In Figure 3.4 the user can capture packets by Wireshark and convert them csv

file which contains features vectors in every line of the file showed in Figure 3.2.

 25

Figure 3.4: The application that deal with real packet capturing

Packet decoder are shown in Figure 3.5. The packet decoder grabs packets from

Data Link layer via WinPcap library, and defines which protocol is in use for any

packet captured. WinPcap is a packet capture library that runs under the Windows

operating system and captures packets from the network via the data link layer, the

second layer of the OSI.

Wireshark is a multiplatform. It is open source application interface. It is used

for monitoring network packets and convert them into other file types. In our thesis,

we will use Wireshark which use WinPcap library to capture packets and convert their

format for data pre-processing step.

Then, the packet stored in data structure is sent for data pre-processing stage

(Rao, Srinivas et al. 2011).

 26

Table 3.3: OSI Layers

Figure 3.5: Stages of packet decoder (Rao, Srinivas et al. 2011)

3.1.3.2 Data Pre-processing

Data pre-processing steps are shown in Figure 3.6. Data pre-processing means

extracting information about the packet connection from its header and create new

statistical features from data.

Standard data pre-processing steps contain dataset creation, data cleaning,

integration, feature construction to derive new higher-level features, feature selection

to choose the optimal subset of relevant features, reduction, optimization and

normalization.

 27

Most appropriate steps for NADS are now described below (Shanmugavadivu,

Nagarajan et al. 2011):

Dataset Creation: This step contains identifying representative network traffic,

which are packets information and some statistical information gathered from network,

for the training and the testing phases. These dataset features of proposed system were

created from several normal network sessions through weeks of normal work on the

network, like dataset KDD CUP99 that we use for NADS. The features have been

processed to get the values of the basic and statistical features that are considered normal

and abnormal values for the network traffic.

Features Extraction: Detecting anomalies depend on the values of features

gathered packets from network. In this step system extracts basic features from packets

header (such as protocol type, service, flag etc.) or extracts content features from

payload of packets (such as logged in, etc.) or computes statistical values in order to

create new features (like count, srv_count, etc.).

Feature Scaling: This step is a technique for standardizing range of features

of data or independent variables. Feature scaling is also known as data normalization.

In data processing, it is generally performed during the data preprocessing step. In

some machine learning algorithms, if the range of values of raw data varies widely

without normalization objective functions will not work properly. For instance, most

of classifiers calculate the distance between two points by using Euclidean distance. If

one of the features has a broad range of values, the distance will be governed by this

particular feature. Because of this, the range of all features should be normalized first

so that each feature contributes approximately proportionately to the final distance

(Ioffe and Szegedy 2015):

 Standardization

 Normalization

Reduction: Reduction is used to determine whether multiple dimensions are

related to each other and it is used to decrease the dimensions of the dataset by

discarding any unnecessary or unrelated features.

 After data pre-processing these feature vectors are suitable as input to machine

learning algorithms.

 28

Figure 3.6: The stages of data pre-processing data (Shanmugavadivu, Nagarajan et
al. 2011)

3.1.4 Modeling

This step of the Methodology (Process) is about selecting machine learning

model (consider computer resources, computation time, number of features, business

needs), generating test design (train/test split, cross validation, simulation

[chronological order]), building model and assessing model. The most relevant steps of

Modeling of Methodology for NADS are described below.

3.1.4.1 Classification

Classification is a method of determining what group a certain observation

belongs to by classifier algorithm. For example, categorizing plants, animals, and other

life forms into different taxonomies by biologists are classification. Classification is

one of the primary uses of machine learning and data mining. In order to determine the

correct category for a given observation, following are done by machine learning:

 29

 Applies a classification algorithm to identify shared characteristics of

certain classes.

 Compares those characteristics to the data it is trying to classify.

 Uses that information to estimate how likely it is that observation

belongs to a particular class.

Then the train data is being classified by algorithms and the system is trained

with the train data. In the prediction step, the trained system estimates vectors to

determine whether the data is normal or not.

3.1.4.2 Prediction

In this stage, value of machine-learning is realized. Finally, trained system is

used to predict the outcome and it labels packets as normal or as attack types. This

stage is responsible with deciding whether an event or set of events are intrusion or

not.

3.1.5 Evaluation

This step of the Methodology (Process) is about evaluating results in terms of

business needs, reviewing process and determining next step. “Evaluation” step will be

discussed in chapter four of this thesis.

3.1.6 Deployment

This step of the Methodology (Process) is about planning and deploying the

model and planning monitoring and maintenance process. “Deployment” step will be

discussed in chapter five of this thesis.

3.2 System Structure

NADS classifies and identifies each connection vector to normal or intrusion

types. Then results are displayed as alert. The NADS contains data aggregation, data

pre-processing, classification, prediction and response stages. In “Data aggregation”

stage, data is captured from network traffic by Wireshark network monitoring

application and then data is used to train and to test the NADS in “Classification” and

“Prediction” stages. In NADS, data for train is provided by KDD CUP99 dataset and

“Pre-processing” stage regulates the data to ensure an efficient configuration of the

classification system. KNN classification algorithm is used to build the proposed

 30

NADS and classify the intrusion attacks in offline mode and online mode by

cooperation of PCA and Wireshark network monitoring application. The last stage of

NADS, "Response” displays the important information and informs the security

analyst. Security analyst analyzes the risks, and then takes proper actions.

The system structure is shown in Figure 3.7. It presents a generic structure of

NADS.

Figure 3.7: A Generic structure of NADS

The most important part of the NADS is to detect abnormal behavior and

classify them, and then inform the Security Analyst. Whereupon, Security Analyst

takes proper actions, through updating the database of the protection systems

(Firewall, Antivirus Servers etc.) on the network.

3.3 The Proposed System

NADS consists of two phases:

 Training phase

 Testing phase.

In Figure 3.8 training phase is shown and there are three steps in training

phase, which are summarized as follows:

 31

i. Input: Input KDD CUP99 dataset.

ii. Process: Train the system.

iii. Output: NADS uses the KNN algorithm for classification, PCA

algorithm for reduction and as a result, it classifies connections as normal or as attack

and it gives attack type. Output of this phase is Trained System.

Figure 3.8: Block Diagram of Training Phase.

Testing phase is shown in Figure 3.9 and there are three steps in testing phase,

which are summarized as follows:

i. Input: Input Trained System is the first step in the testing phase.

ii. Process: Trained System (Machine Learning Object) classifies

connections as normal or attack types instantly (or testing file in offline mode).

iii. Output: System generates monitoring.

 32

Figure 3.9: Block Diagram of Testing Phase.

 33

CHAPTER 4

NADS SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction

Chapter four presents implementation of the proposed system by using KNN

and PCA algorithms that are described in chapters two with their main points. This

chapter also compares KNN algorithm with K-Means, Naïve Bayes and Random

Forest algorithms which were explained in chapter two. All algorithms were compared

with each other using them in NADS. The system is implemented on a computer which

is connected to the LAN and this LAN has WAN connection. NADS were built by

using machine-learning which was coded in Python programming language and it can

be applied on most networks.

4.2 System Structure

NADS main components are listed below and it is shown in Figure 4.1.

1. Router, it is used for packets routing in network.

2. Switch which is configured in promiscuous mode. It is used for network

packets switching and sniffing network packets.

3. NADS, captures packets, pre-processing, classifying attacks or normal

connections and warning.

4. Security analyst, takes an appropriate prevention according to warnings.

5. LAN, it contains seven clients, one switch, one router, one firewall.

 34

Figure 4.1: System Architecture of NADS

4.3 Performance Metrics

4.3.1 Confusion Matrix

Confusion matrix (CM) is a performance measurement. It is used for machine

learning classification problems which has two or more classes as output. It is a table,

which contains four different combinations. Those are predicted values and actual

values and these values are explained below. Confusion matrix is used to measure the

performances of NADS in this thesis. If this measurement is adapted to NADS,

following result will be gotten.

Table 4.1: Confusion Matrix for Binary Case (Stallings 2003)

PREDICTED VALUES

Anomaly Normal

A
C

T
U

A
L

V

A
L

U
E

S

Anomaly TP FP

Normal FN TN

 35

1. True Positive (TP): Number of correctly predicted packets as attacks

by system (Stallings 2003).

2. True Negative (TN): Number of correctly predicted packets as normal

by system (Stallings 2003).

3. False Positive (FP): Number of normal packets, which are predicted as

attacks (Stallings 2003).

4. False Negative (FN): Number of attack packets which are predicted as

normal (Stallings 2003).

There are standard metrics for evaluating network anomalies detections which

are shown below. Percentage of Successful Prediction (PSP), namely Detection Rate

(DR) and Accuracy Rate (ACC) are most satisfactory metrics ratios. DR is the ratio

between the number of correctly detected attacks and the total number of attacks as in

Equation (4.1). Accuracy is a ratio of the total number of correctly classified attacks

and normal connections divide to the total number of connections as in Equation (4.2)

(Stallings 2003).

4.3.1 Sensitivity-Detection Rate (DR) or True Positive Rate (TPR):

Sensitivity is a ratio of the total number of correctly classified positive examples

divide to the total number of positive examples. High DR indicates the class is correctly

recognized (Stallings 2003).

𝐷𝑅 ൌ 𝑇𝑃𝑅 ൌ
𝑇𝑃
𝑃

ൌ
𝑇𝑃

𝑇𝑃 𝐹𝑁
 ሺ4.1ሻ

4.3.2 Accuracy:

Accuracy is a ratio of the total number of correctly classified positive and

negative examples divide to the total number of examples (Stallings 2003).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 ሺ4.2ሻ

 36

Example Confusion Matrix of NADS which is for multiclass is shown in Table

4.2.

Table 4.2: Example Confusion Matrix of NADS Which Is Multiclass

 PREDICTED VALUES

 Normal Probe DoS R2L U2R

A
C

T
U

A
L

 V
A

L
U

E
S

 Normal 9223 10 0 1 0

Probe 0 13432 9 8 0

DoS 2 12 2275 0 0

R2L 1 9 0 199 0

U2R 0 1 0 3 7

4.4 Experiments

In this section, we apply four scenarios, where each scenario consists of several

experiments, and we summarize experimental results to detect the network anomaly

over KDDCUP99 data set. These scenarios are explained as below:

Scenario 1: In order to see effect of the PCA algorithm five experiments were

carried out on KDD CUP99 dataset by using KNN Algorithm. The conditions of these

experiments are as follow:

Experiment 1: 125,973 lines of KDD CUP99 dataset were used for training

and 25,192 lines for testing, but 41 features were selected.

Experiment 2: 125,973 lines of KDD CUP99 dataset were used for training

and 25,192 lines for testing, but 30 features were selected.

Experiment 3: 125,973 lines of KDD CUP99 dataset were used for training

and 25,192 lines for testing, but 20 features were selected.

Experiment 4: 125,973 lines of KDD CUP99 dataset were used for training

and 25,192 lines for testing, but 10 features were selected.

Experiment 5: 125,973 lines of KDD CUP99 dataset were used for training

and 25,192 lines for testing, but 5 features were selected.

 37

Scenario 1 Implementation:

The results of first experiment can be seen in Table 4.3. The first experimental

result indicated that KNN algorithm achieved a DR percent of 98.0379 % as highest

compared with other algorithms. Highest ACC Rate is 99.9603 % that achieved by

KNN algorithm. Highest DR percent for Normal achieved by RF algorithm, highest

DR percent for Probe achieved by RF algorithm, highest DR percent for DoS achieved

by KNN and RF algorithms, highest DR percent for R2L achieved by KNN algorithm,

and highest DR percent for U2R achieved by KNN algorithms. Lowest time taken to

train is 0.128126 second that achieved by NB algorithm and lowest time taken to test

is 0.08962 second achieved by NB algorithm. In addition, lowest memory usage is

0.307209 GB that achieved by KM algorithm.

Table 4.3: Experiment 1

 KNN KM NB RF

DR (%) 98.0379 47.1663 52.2071 96.2549

ACC (%) 99.9603 68.756 88.3773 99.9563

DR For Normal (%) 99.9776 69.797 90.4825 99.9926

DR For Probe (%) 99.7815 44.9104 80.166 99.9563

DR For DoS (%) 100 74.713 89.4303 100

DR For R2L (%) 99.5215 0.9569 0.9569 99.5074

DR For U2R (%) 90.909 45.4545 0 81.8182

Mean Of Cross V. (%) 99.6539 1.6965 88.4578 99.8396

Time For Train (second) 0.66159 3.872822 0.128126 7.694642

Time For Test (second) 1.139292 0.009377 0.006212 0.026766

Memory (GB) 0.304344 0.300694 0.505257 0.308975

 38

The comparison of DR and ACC ratios of all algorithms with each other is

shown in Figure 4.2. The comparison of training and testing times of all algorithms

with each other is shown in Figure 4.3. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.4.

Figure 4.2: Comparison of DR & ACC of First Experiment

Figure 4.3: Comparison of Training and Testing Time of First Experiment

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

DR (%) ACC (%)

Detection Rate & Accuracy Rate

KNN K‐Means Naïve Bayes Random Forest

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

Training (second) Testing (second)

Training Time & Testing Time

KNN K‐Means Naïve Bayes Random Forest

 39

Figure 4.4: Comparison of Memory Consume of First Experiment

Screen shot of first experiment is shown in Figure 4.5 and screen shot of the

program code for first experiment is shown in Figure 4.6.

Figure 4.5: Experiment 1 of KNN

0

0,1

0,2

0,3

0,4

0,5

0,6

Memory (GB)

Memory

KNN K‐Means Naïve Bayes Random Forest

 40

Figure 4.6: Experiment 1 of KNN

The results of second experiment can be seen in Table 4.4. The second

experimental result indicated that KNN algorithm achieved a DR percent of 98.1387

% as highest compared with other algorithms. Highest ACC Rate is 99.9603 % that

achieved by KNN algorithm. Highest DR percent for Normal achieved by KNN

algorithm, highest DR percent for Probe achieved by KNN algorithm, highest DR

percent for DoS achieved by KNN algorithm, highest DR percent for R2L achieved

by KNN algorithm, and highest DR percent for U2R achieved by KM algorithm.

Lowest time taken to train is 0.179758 second that achieved by NB algorithm and

lowest time taken to test is 0.007657 second achieved by KM algorithm. In addition,

lowest memory usage is 0.300423 GB that achieved by NB algorithm.

 41

Table 4.4: Experiment 2

 KNN KM NB RF

DR (%) 98.1387 22.0586 61.1676 92.2005

ACC (%) 99.9603 2.0999 58.6377 99.9166

DR For Normal (%) 99.9702 0.2007 30.374 99.9553

DR For Probe (%) 99.8252 0.131 95.8934 99.8252

DR For DoS (%) 99.9891 5.1765 90.0152 99.9783

DR For R2L (%) 100 4.7846 35.0101 97.6076

DR For U2R (%) 90.909 100 54.5455 63.6363

Mean Of Cross V. (%) 99.6348 1.6953 58.6594 99.6483

Time For Train (second) 0.566747 3.098525 0.179758 8.095981

Time For Test (second) 0.923757 0.007657 0.047077 0.028039

Memory (GB) 0.307774 0.395073 0.300423 0.538746

The comparison of DR and ACC ratios of all algorithms with each other is

shown in Figure 4.7. The comparison of training and testing times of all algorithms

with each other is shown in Figure 4.8. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.9.

Figure 4.7: Comparison of DR & ACC of Second Experiment

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

DR (%) ACC (%)

Detection Rate & Accuracy Rate

KNN K‐Means Naïve Bayes Random Forest

 42

Figure 4.8: Comparison of Training and Testing Time of Second Experiment

Figure 4.9: Comparison of Memory Consume of Second Experiment

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Training (second) Testing (second)

Training Time & Testing Time

KNN K‐Means Naïve Bayes Random Forest

0

0,1

0,2

0,3

0,4

0,5

0,6

Memory (GB)

Memory

KNN K‐Means Naïve Bayes Random Forest

 43

Screen shot of the program code for second experiment is shown in Figure 4.10.

Figure 4.10: Experiment 2 of KNN

The results of third experiment can be seen in Table 4.5. The third

experimental result indicated that KNN algorithm achieved a DR percent of 98.1249

% as highest compared with other algorithms. Highest ACC Rate is 99.9603 % that

achieved by KNN algorithm. Highest DR percent for Normal achieved by KNN

algorithm, highest DR percent for Probe achieved by RF algorithm, highest DR

percent for DoS achieved by KNN algorithm, highest DR percent for R2L achieved

by KNN algorithm, and highest DR percent for U2R achieved by KNN algorithm.

Lowest time taken to train is 0.159209 second that achieved by NB algorithm and

lowest time taken to test is 0.006390 second achieved by KM algorithm. In addition,

lowest memory usage is 0.289413 GB that achieved by RF algorithm.

 44

Table 4.5: Experiment 3

 KNN KM NB RF

DR (%) 98.1249 47.1649 71.1073 88.0633

ACC (%) 99.9603 68.752 87.5318 99.8492

DR For Normal (%) 99.9776 69.7895 86.6979 99.9108

DR For Probe (%) 99.7378 44.9104 89.2093 99.8253

DR For DoS (%) 100 74.713 88.4882 99.9567

DR For R2L (%) 100 0.9569 36.5957 95.1691

DR For U2R (%) 90.909 45.4545 54.5455 45.4545

Mean Of Cross V. (%) 99.5793 1.6572 87.5497 99.5428

Time For Train (second) 0.438048 2.465096 0.159209 5.836239

Time For Test (second) 0.568895 0.00639 0.033312 0.026006

Memory (GB) 0.295273 0.383064 0.289391 0.289413

The comparison of DR and ACC ratios of all algorithms with each other is

shown in Figure 4.11. The comparison of training and testing times of all algorithms

with each other is shown in Figure 4.12. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.13.

Figure 4.11: Comparison of DR & ACC of Third Experiment

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

DR (%) ACC (%)

Detection Rate & Accuracy Rate

KNN K‐Means Naïve Bayes Random Forest

 45

Figure 4.12: Comparison of Training and Testing Time of Third Experiment

Figure 4.13: Comparison of Memory Consume of Third Experiment

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Training (second) Testing (second)

Training Time & Testing Time

KNN K‐Means Naïve Bayes Random Forest

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Memory (GB)

Memory

KNN K‐Means Naïve Bayes Random Forest

 46

Screen shot of the program code for third experiment is shown in Figure 4.14.

Figure 4.14: Experiment 3 of KNN

The results of fourth experiment can be seen in Table 4.6. The fourth

experimental result indicated that KNN achieved a DR percent of 94.1806 % as

highest compared with other algorithms. Highest ACC Rate is 99.8849 % that

achieved by KNN algorithm. Highest DR percent for Normal achieved by KNN

algorithm, highest DR percent for Probe achieved by RF algorithm, highest DR

percent for DoS achieved by KNN algorithm, highest DR percent for R2L achieved

by KNN algorithm, and highest DR percent for U2R achieved by KNN algorithm.

Lowest time taken to train is 0.132482 second that achieved by NB algorithm and

lowest time taken to test is 0.005167 second achieved by KM algorithm. In addition,

lowest memory usage is 0.277580 GB that achieved by NB algorithm.

 47

Table 4.6: Experiment 4

 KNN KM NB RF

DR (%) 94.1806 51.9481 66.115 91.9289

ACC (%) 99.8849 69.2323 88.7028 99.5475

DR For Normal (%) 99.8735 69.7821 89.3895 99.487

DR For Probe (%) 99.7378 44.9104 84.7532 99.7816

DR For DoS (%) 100 74.713 89.3546 99.8484

DR For R2L (%) 98.5645 61.244 30.7143 96.8912

DR For U2R (%) 72.7272 9.0909 36.3636 63.6364

Mean Of Cross V. (%) 99.4721 1.3816 88.9175 99.3816

Time For Train (second) 0.300025 1.947047 0.132482 4.24552

Time For Test (second) 0.306337 0.005167 0.016904 0.024888

Memory (GB) 0.282036 0.372643 0.27758 0.279289

The comparison of DR and ACC ratios of all algorithms with each other is

shown in Figure 4.15. The comparison of training and testing times of all algorithms

with each other is shown in Figure 4.16. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.17.

Figure 4.15: Comparison of DR & ACC of Fourth Experiment

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

DR (%) ACC (%)

Detection Rate & Accuracy Rate

KNN K‐Means Naïve Bayes Random Forest

 48

Figure 4.16: Comparison of Training and Testing Time of Fourth Experiment

Figure 4.17: Comparison of Memory Consume of Fourth Experiment

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

Training (second) Testing (second)

Training Time & Testing Time

KNN K‐Means Naïve Bayes Random Forest

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Memory (GB)

Memory

KNN K‐Means Naïve Bayes Random Forest

 49

Screen shot of the program code for fourth experiment is shown in Figure 4.18.

Figure 4.18: Experiment 4 of KNN

The results of fifth experiment can be seen in Table 4.7. The fifth experimental

result indicated that KNN achieved a DR percent of 92.5403 % as highest compared

with other algorithms. Highest ACC Rate is 99.8690 % that achieved by KNN

algorithm. Highest DR percent for Normal achieved by KNN algorithm, highest DR

percent for Probe achieved by KNN algorithm, highest DR percent for DoS achieved

by KNN algorithm, highest DR percent for R2L achieved by KNN algorithm, and

highest DR percent for U2R achieved by KNN algorithm. Lowest time taken to train

is 0.124872 second that achieved by NB algorithm and lowest time taken to test is

0.004403 second achieved by KM algorithm. In addition, lowest memory usage is

0.272610 GB that achieved by NB algorithm.

 50

Table 4.7: Experiment 5

 KNN KM NB RF

DR (%) 92.5403 11.3342 65.3491 88.644

ACC (%) 99.869 5.4224 88.3773 99.742

DR For Normal (%) 99.9033 0.2007 90.4826 99.8736

DR For Probe (%) 99.7378 49.5849 80.166 99.6068

DR For DoS (%) 99.9025 2.1009 89.4304 99.8159

DR For R2L (%) 99.5215 4.7846 66.6667 98.4694

DR For U2R (%) 63.6363 0 0 45.4545

Mean Of Cross V. (%) 99.3499 0.8269 88.4578 99.2133

Time For Train (second) 0.231077 1.207119 0.124872 2.755741

Time For Test (second) 0.127503 0.004403 0.005636 0.024517

Memory (GB) 0.27552 0.366207 0.27261 0.274162

The comparison of DR and ACC ratios of all algorithms with each other is

shown in Figure 4.19. The comparison of training and testing times of all algorithms

with each other is shown in Figure 4.20. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.21.

Figure 4.19: Comparison of DR & ACC of Fifth Experiment

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

DR (%) ACC (%)

Detection Rate & Accuracy Rate

KNN K‐Means Naïve Bayes Random Forest

 51

Figure 4.20: Comparison of Training and Testing Time of Fifth Experiment

Figure 4.21: Comparison of Memory Consume of Fifth Experiment

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Training (second) Testing (second)

Training Time & Testing Time

KNN K‐Means Naïve Bayes Random Forest

0,000000

0,050000

0,100000

0,150000

0,200000

0,250000

0,300000

0,350000

0,400000

Memory (GB)

Memory

KNN K‐Means Naïve Bayes Random Forest

 52

Screen shot of the program code for fifth experiment is shown in Figure 4.22.

Figure 4.22: Experiment 5 of KNN

Scenario 2: Testing the scalability of NADS by using different size of KDD CUP data

set.

Scenario 2 Implementation: In order to see the scalability of NADS 3 different size

of KDD CUP data set were used as fallow:

 1- 125,793 vector of KDD dataset were used to train NADS and 25,192 lines for

testing.

 2- 494,021 vector of KDD dataset were used to train NADS and 25,192 lines for

testing.

 3- 1,000,000 vector of KDD dataset were used to train NADS and 25,192 lines for

testing.

 53

As a result, the first experimental indicated that KNN achieved a DR percent

of 98.0379 % as highest compared with other algorithms. Highest ACC Rate is

99.9603 % that achieved by KNN algorithm. Highest DR percent for Normal achieved

by RF algorithm, highest DR percent for Probe achieved by RF algorithm, highest

DR percent for DoS achieved by KNN and RF algorithms, highest DR percent for

R2L achieved by KNN algorithm, and highest DR percent for U2R achieved by KNN

algorithm. Lowest time taken to train is 0.128126 second that achieved by NB

algorithm and lowest time taken to test is 0.08962 second achieved by NB algorithm.

In addition, lowest memory usage is 0.307209 GB that achieved by KM algorithm.

The second experimental result indicated that RF algorithm achieved a DR

percent of 94,8460 % as highest compared with other algorithms. Highest ACC Rate

is 99.903 % that achieved by KNN algorithm. Highest DR percent for Normal

achieved by RF algorithm, Highest DR percent for Probe achieved by KNN

algorithm, highest DR percent for DoS achieved by KNN algorithm, highest DR

percent for R2L achieved RF algorithm, and highest DR percent for U2R achieved by

KNN and KM algorithms. Lowest time taken to train is 0.517239 second that achieved

by NB algorithm and lowest time taken to test is 0.006631 second achieved by NB

algorithm. In addition, lowest memory usage is 0.246151 GB that achieved by KNN

algorithm.

The third experimental result indicated that RF algorithm achieved a DR

percent of 77.4958 % as highest compared with other algorithms. Highest ACC Rate

is 91.5092 % that achieved by KNN algorithm. Highest DR percent for Normal

achieved by RF algorithm, highest DR percent for Probe achieved by KNN algorithm,

highest DR percent for DoS achieved by KNN algorithm, highest DR percent for R2L

achieved by RF algorithm, and highest DR percent for U2R achieved by KM

algorithm. Lowest time taken to train is 1.079136 second that achieved by NB

algorithm and lowest time taken to test is 0.006515 second achieved by NB algorithm.

In addition, lowest memory usage is 0.456940 GB that achieved by KNN algorithm.

 54

The results of experiments for KNN can be seen in Table 4.8.

Table 4.8: Scalability Experiments for KNN Algorithm

 1. Exp. 2. Exp. 3. Exp.

DR (%) 98.0379 94.1442 65.4249

ACC (%) 99.9603 99.1862 91.5092

DR For Normal (%) 99.9776 99.5538 96.9737

DR For Probe (%) 99.7815 98.2088 96.8108

DR For DoS (%) 100 99.2744 84.0805

DR For R2L (%) 99.5215 82.7751 12.9186

DR For U2R (%) 90.909 90.909 36.3636

Mean Of Cross V. (%) 99.6539 95.2493 99.2649

Time For Train (second) 0.66159 190.729492 184.077617

Time For Test (second) 1.139292 1.826953 7.139832

Memory (GB) 0.304344 0.246151 0.45694

For KNN, the comparison of DR and ACC ratios of all experiments with each other

is shown in Figure 4.23. The comparison of training and testing times of all

experiments with each other is shown in Figure 4.24. The comparison of memory

consume of all experiments with each other is shown in Figure 4.25.

Figure 4.23: Comparison of DR & ACC for KNN Algorithm

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

120,0000%

DR (%) ACC (%)

DR & ACC

1. Experiment 2. Experiment 3. Experiment

 55

Figure 4.24: Comparison of Training and Testing Time for KNN Algorithm

Figure 4.25: Comparison of Memory Consume KNN Algorithm

0

50

100

150

200

250

Training Time (second) Testing Time (second)

Training Time & Testing Time

1. Experiment 2. Experiment 3. Experiment

0

0,1

0,2

0,3

0,4

0,5

Memory (GB)

Memory

1. Experiment 2. Experiment 3. Experiment

 56

The results of experiments for KM can be seen in Table 4.9.

Table 4.9: Scalability Experiments for KM Algorithm

 1. Exp. 2. Exp. 3. Exp.

DR (%) 47.1663 29.6809 16.1885

ACC (%) 68.756 6.375 1.3774

DR For Normal (%) 69.797 0.258 0.2899

DR For Probe (%) 44.9104 47.4006 0

DR For DoS (%) 74.713 5.0573 3.1405

DR For R2L (%) 0.9569 4.7846 4.7846

DR For U2R (%) 45.4545 90.909 72.7272

Mean Of Cross V. (%) 1.6965 2.8465 6.2429

Time For Train (second) 3.872822 9.982122 23.515026

Time For Test (second) 0.009377 0.009005 0.008977

Memory (GB) 0.300694 0.82386 1.203556

For KM, the comparison of DR and ACC ratios of all experiments with each other is

shown in Figure 4.26. The comparison of training and testing times of all

experiments with each other is shown in Figure 4.27. The comparison of memory

consume of all experiments with each other is shown in Figure 4.28.

Figure 4.26: Comparison of DR & ACC for KM Algorithm

0,0000%

10,0000%

20,0000%

30,0000%

40,0000%

50,0000%

60,0000%

70,0000%

80,0000%

DR (%) ACC (%)

DR & ACC

1. Experiment 2. Experiment 3. Experiment

 57

Figure 4.27: Comparison of Training and Testing Time for KM Algorithm

Figure 4.28: Comparison of Memory Consume KM Algorithm

0

5

10

15

20

25

Training Time (second) Testing Time (second)

Training Time & Testing Time

1. Experiment 2. Experiment 3. Experiment

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Memory (GB)

Memory

1. Experiment 2. Experiment 3. Experiment

 58

The results of experiments for NB can be seen in Table 4.10.

Table 4.10: Scalability Experiments for NB Algorithm

 1. Exp. 2. Exp. 3. Exp.

DR (%) 52.2071 51.6936 50.8574

ACC (%) 88.3773 86.0432 79.9817

DR For Normal (%) 90.4825 94.5052 82.9727

DR For Probe (%) 80.166 88.9035 96.1992

DR For DoS (%) 89.4303 75.0596 73.381

DR For R2L (%) 0.9569 0 1.7341

DR For U2R (%) 0 0 0

Mean Of Cross V. (%) 88.4578 93.2765 95.5095

Time For Train (second) 0.128126 0.517239 1.079136

Time For Test (second) 0.006212 0.006631 0.006515

Memory (GB) 0.505257 0.975502 1.12112

For NB, the comparison of DR and ACC ratios of all experiments with each other is

shown in Figure 4.29. The comparison of training and testing times of all

experiments with each other is shown in Figure 4.30. The comparison of memory

consume of all experiments with each other is shown in Figure 4.31.

Figure 4.29: Comparison of DR & ACC for NB Algorithm

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

DR (%) ACC (%)

DR & ACC

1. Experiment 2. Experiment 3. Experiment

 59

Figure 4.30: Comparison of Training and Testing Time for NB Algorithm

Figure 4.31: Comparison of Memory Consume NB Algorithm

0

0,2

0,4

0,6

0,8

1

1,2

Training Time (second) Testing Time (second)

Training Time & Testing Time

1. Experiment 2. Experiment 3. Experiment

0

0,2

0,4

0,6

0,8

1

1,2

Memory (GB)

Memory

1. Experiment 2. Experiment 3. Experiment

 60

The results of experiments for RF can be seen in Table 4.11.

Table 4.11: Scalability Experiments for RF Algorithm

 1. Exp. 2. Exp. 3. Exp.

DR (%) 92.2005 94.846 77.4958

ACC (%) 99.9166 99.087 90.3541

DR For Normal (%) 99.9553 99.7769 97.6801

DR For Probe (%) 99.8252 97.204 91.5684

DR For DoS (%) 99.9783 99.112 81.2216

DR For R2L (%) 97.6076 96.319 80.6452

DR For U2R (%) 63.6363 81.8182 36.3636

Mean Of Cross V. (%) 99.6483 95.606 99.4851

Time For Train (second) 8.095981 13.321269 34.635815

Time For Test (second) 0.028039 0.029124 0.029161

Memory (GB) 0.538746 0.969166 1.249306

For RF, the comparison of DR and ACC ratios of all experiments with each other is

shown in Figure 4.32. The comparison of training and testing times of all

experiments with each other is shown in Figure 4.33. The comparison of memory

consume of all experiments with each other is shown in Figure 4.34.

Figure 4.32: Comparison of DR & ACC for RF Algorithm

0,0000%

20,0000%

40,0000%

60,0000%

80,0000%

100,0000%

120,0000%

DR (%) ACC (%)

DR & ACC

1. Experiment 2. Experiment 3. Experiment

 61

Figure 4.33: Comparison of Training and Testing Time for RF Algorithm

Figure 4.34: Comparison of Memory Consume RF Algorithm

As the size of the dataset used increases, the memory usage size of the algorithm will
increase.

0

5

10

15

20

25

30

35

40

Training Time (second) Testing Time (second)

Training Time & Testing Time

1. Experiment 2. Experiment 3. Experiment

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Memory (GB)

Memory

1. Experiment 2. Experiment 3. Experiment

 62

Scenario 3: Testing the effect of feature scaling on classification.

Scenario 3 Implementation:

In order to see the effect of feature scaling on classification, codes without feature

scaling (Standard Scaler) are compared with the codes with feature scaling. The results

of experiments for KNN can be seen in Table 4.12.

Table 4.12: Feature Scaling Experiments for KNN

 With Standard Scale Without Standard Scale

DR (%) 98.0379 99.8544

ACC (%) 99.9603 99.8968

DR For Normal (%) 99.9776 99.9703

DR For Probe (%) 99.7815 99.3884

DR For DoS (%) 100 99.9134

DR For R2L (%) 99.5215 100

DR For U2R (%) 90.909 100

Mean Of Cross V. (%) 99.6539 99.5467

Time For Train (second) 0.66159 0.687662

Time For Test (second) 1.139292 1.195943

Memory (GB) 0.304344 0.29446

 63

For KNN, the comparison of DR and ACC ratios of experiments with each other is

shown in Figure 4.35. The comparison of training and testing times of experiments

with each other is shown in Figure 4.36. The comparison of memory consume of

experiments with each other is shown in Figure 4.37.

Figure 4.35: Comparison of DR & ACC for KNN Algorithm

Figure 4.36: Comparison of Training and Testing Time for KNN Algorithm

97,0000%

97,5000%

98,0000%

98,5000%

99,0000%

99,5000%

100,0000%

100,5000%

DR (%) ACC (%)

DR & ACC

With Standard Scaler Without Standard Scaler

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Training Time (second) Testing Time (second)

Training Time & Testing Time

With Standard Scaler Without Standard Scaler

 64

Figure 4.37: Comparison of Memory Consume KNN Algorithm

Without a standard scaler for KNN, the experiment gives a better result because

numerical data is not being used in any mathematical process in KNN algorithm. The

results of experiments for KM can be seen in Table 4.13.

Table 4.13: Feature Scaling Experiments for KM Algorithm

 With Standard Scale Without Standard Scale

DR (%) 47.1663 20

ACC (%) 68.756 36.6545

DR For Normal (%) 69.797 0

DR For Probe (%) 44.9104 0

DR For DoS (%) 74.713 100

DR For R2L (%) 0.9569 0

DR For U2R (%) 45.4545 0

Mean Of Cross V. (%) 1.6965 0.00000000000003

Time For Train (second) 3.872822 1.659936

Time For Test (second) 0.009377 0.008598

Memory(GB) 0.300694 0.413994

0,288

0,29

0,292

0,294

0,296

0,298

0,3

0,302

0,304

0,306

Memory (GB)

Memory

With Standard Scaler Without Standard Scaler

 65

For KM, the comparison of DR and ACC ratios of experiments with each other is

shown in Figure 4.38. The comparison of training and testing times of experiments

with each other is shown in Figure 4.39. The comparison of memory consume of

experiments with each other is shown in Figure 4.40.

Figure 4.38: Comparison of DR & ACC for KM Algorithm

Figure 4.39: Comparison of Training and Testing Time for KM Algorithm

0,0000%

10,0000%

20,0000%

30,0000%

40,0000%

50,0000%

60,0000%

70,0000%

80,0000%

DR (%) ACC (%)

DR & ACC

With Standard Scaler Without Standard Scaler

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Training Time (second) Testing Time (second)

Training Time & Testing Time

With Standard Scaler Without Standard Scaler

 66

Figure 4.40: Comparison of Training and Testing Time for KM Algorithm

The results of experiments for NB can be seen in Table 4.14.

Table 4.14: Feature Scaling Experiments for NB

 With Standard Scale Without Standard Scale

DR (%) 52.2071 27.9698

ACC (%) 88.3773 38.7861

DR For Normal (%) 90.4825 3.9854

DR For Probe (%) 80.166 8.3879

DR For DoS (%) 89.4303 97.8774

DR For R2L (%) 0.9569 2.3256

DR For U2R (%) 0 27.2727

Mean Of Cross V. (%) 88.4578 38.8377

Time For Train (second) 0.128126 0.206092

Time For Test (second) 0.006212 0.063926

Memory (GB) 0.505257 0.312431

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Memory (GB)

Memory

With Standard Scaler Without Standard Scaler

 67

For NB, the comparison of DR and ACC ratios of experiments with each other is

shown in Figure 4.41. The comparison of training and testing times of experiments

with each other is shown in Figure 4.42. The comparison of memory consume of

experiments with each other is shown in Figure 4.43.

Figure 4.41: Comparison of DR & ACC for NB Algorithm

Figure 4.42: Comparison of Training and Testing Time for NB Algorithm

0,0000%

10,0000%

20,0000%

30,0000%

40,0000%

50,0000%

60,0000%

70,0000%

80,0000%

90,0000%

100,0000%

DR (%) ACC (%)

DR & ACC

With Standard Scaler Without Standard Scaler

0

0,05

0,1

0,15

0,2

0,25

Training Time (second) Testing Time (second)

Training Time & Testing Time

With Standard Scaler Without Standard Scaler

 68

Figure 4.43: Comparison of Memory Consume NB Algorithm

The results of experiments for RF can be seen in Table 4.15.

Table 4.15: Feature Scaling Experiments for RF Algorithm

 With Standard Scale Without Standard Scale

DR (%) 92.2005 96.2967

ACC (%) 99.9166 99.9365

DR For Normal (%) 99.9553 99.9926

DR For Probe (%) 99.8252 99.6942

DR For DoS (%) 99.9783 99.9783

DR For R2L (%) 97.6076 100

DR For U2R (%) 63.6363 81.8182

Mean Of Cross V. (%) 99.6483 99.7904

Time For Train (second) 8.095981 9.033393

Time For Test (second) 0.028039 0.025188

Memory (GB) 0.538746 0.312523

0

0,1

0,2

0,3

0,4

0,5

0,6

Memory (GB)

Memory

With Standard Scaler Without Standard Scaler

 69

For RF, the comparison of DR and ACC ratios of experiments with each other is

shown in Figure 4.44. The comparison of training and testing times of experiments

with each other is shown in Figure 4.45. The comparison of memory consume of

experiments with each other is shown in Figure 4.46.

Figure 4.44: Comparison of DR & ACC for RF Algorithm

Figure 4.45: Comparison of Training and Testing Time for RF Algorithm

88,0000%

90,0000%

92,0000%

94,0000%

96,0000%

98,0000%

100,0000%

102,0000%

DR (%) ACC (%)

DR & ACC

With Standard Scaler Without Standard Scaler

0

1

2

3

4

5

6

7

8

9

10

Training Time (second) Testing Time (second)

Training Time & Testing Time

With Standard Scaler Without Standard Scaler

 70

Figure 4.46: Comparison of Memory Consume RF Algorithm

Scenario 4: Testing the effect of imbalanced data on classification.

Scenario 4 Implementation: In order to see the effect of data imbalance, K-fold cross

validation is applied to algorithm and every class accuracy are calculated in every

experiment.

K-fold cross validation is a statistical method, in order to reduce variability and

to avoid bias that involves partitioning the dataset into subsets, training the dataset on

a subset and use the other subset to evaluate the model’s performance (Kohavi 1995).

Steps of K-fold cross validation is:

1. Divide the dataset into k equal parts.

2. Use 1 part for testing and k-1 parts for training.

3. Repeat the procedure k times, rotating the test dataset.

4. Determine an expected performance metric based on the results across

the iterations.

Representation of K-fold cross validation is shown in Figure 4.47.

0

0,1

0,2

0,3

0,4

0,5

0,6

Memory (GB)

Memory

With Standard Scaler Without Standard Scaler

 71

Figure 4.47: K-Fold Cross Validation

4.5 Results

Detection rate and accuracy rate, classification speed and memory allocation

are discussed to clarify results.

4.5.1 Detection Rate and Accuracy Rate Results

The KNN algorithm has accuracy performance of 99.9603 %. This also shows

that KNN has better accuracy performance compared to other classification

algorithms. The aim of our research is to detect many attacks and classify them while

maximizing the generation of DR and minimizing test time. Experiments show that

NADS which use KNN algorithm is able to detect most of the attacks for the KDD

CUP99 data set at a high DR rate of 98.0379 %

4.5.2 Classification Speed Results

KNN uses 0.661590s for training and 1.139292s for testing phases. In terms of

training time, KNN has better speed performance compared to other classification

algorithms. In terms of testing time, KNN has not much difference than others

algorithm because testing time takes very small value for each algorithms.

4.5.3 Memory Allocation Results

Results shows that memory allocation for KNN is very small. The KNN

algorithm uses 0.304344 GB. Using less memory will cause the system to perform

more efficiently because it is dealing with less data.

 72

4.5.4 Overall Discussion

The number of examples is an influential factor on the percentage of the

classification accuracy and the training and testing time. The proposed NADS using

the NB algorithm outperforms all algorithms in terms of training time since it has the

lowest time. NADS using KM algorithm has lowest testing according to experiments.

With respect to DR 98.0379% performance, the proposed NADS using the

KNN algorithm outperforms all other algorithms. But it has the second lowest speed

in the comparison list.

With respect to Accuracy 99.9603% performance, KNN Algorithm

outperforms all other algorithms. KNN achieves better performance for the anomaly

detection at second highest speed.

In Figure 4.48, Figure 4.49 and Figure 4.50 first experiment of first scenario

for KM, NB and RF are shown. Confusion matrix of RF algorithm is the one which is

most similar with confusion matrix of KNN algorithm.

Figure 4.48: Experiment of KM Algorithm

 73

Figure 4.49: Experiment of NB Algorithm

Figure 4.50: Experiment of RF Algorithm

 74

CHAPTER 5

CONCLUSION

The main aim of this thesis is to propose a Network Anomaly Detection

System using machine learning, which helps to detect anomalies and respond with

appropriate actions. The purpose of the anomaly detection system is to reveal detectable

and undetected anomalies. The proposed NADS system uses the KNN Algorithm for

classification, PCA Algorithm for reduction and it classifies connections as normal or

abnormal.

Results show that the proposed NADS achieved highest classification ACC of

99.9603 % by using the KNN and PCA algorithms and second highest speed after NB

which has the highest speed. KNN performance is very high in terms of training time

since it has the second lowest time. But it was not possible to verify how the system

will behave on larger networks and using bigger dataset and it was not possible to

simulate and recreate all possible intrusions and attacks.

Many studies on NADS using machine learning have been recently carried out

and new technologies introduced. As a future study, this study can be expanded in

different ways such as using other packet sniffing technologies in NADS. In addition,

different data sets can be used to test the proposed NADS system.

 75

REFERENCES

Ahmed, M. and A. N. J. A. o. D. S. Mahmood (2015). "Novel approach for network
traffic pattern analysis using clustering-based collective anomaly detection." 2(1):
111-130.

Aljawarneh, S., et al. (2018). "Anomaly-based intrusion detection system through
feature selection analysis and building hybrid efficient model." 25: 152-160.

Baliga, A., et al. (2007). Lurking in the shadows: Identifying systemic threats to
kernel data. 2007 IEEE Symposium on Security and Privacy (SP'07), IEEE.

Bhuyan, M. H., et al. (2013). "Network anomaly detection: methods, systems and
tools." 16(1): 303-336.

Dasgupta, D., et al. (2003). Artificial immune system (AIS) research in the last five
years. The 2003 Congress on Evolutionary Computation, 2003. CEC'03., IEEE.

Denning, D. E. J. I. T. o. s. e. (1987). "An intrusion-detection model." (2): 222-232.

Duda, R. O., et al. (2001). "Pattern classification." 1: 335-339.

Farid, D. M., et al. (2010). "Combining naive bayes and decision tree for adaptive
intrusion detection."

Gaber, M. M. J. W. I. R. D. M. and K. Discovery (2012). "Advances in data stream
mining." 2(1): 79-85.

Gable, K. A. J. V. J. T. l. L. (2010). "Cyber-Apocalypse Now: Securing the Internet
Against Cyberterrorism and Using Universal Jurisdiction as a Deterrent." 43: 57.

Garcia-Teodoro, P., et al. (2009). "Anomaly-based network intrusion detection:
Techniques, systems and challenges." 28(1-2): 18-28.

Hamamoto, A. H., et al. (2018). "Network anomaly detection system using genetic
algorithm and fuzzy logic." 92: 390-402.

 76

Han, J., et al. (2011). Data mining: concepts and techniques, Elsevier.

Helman, P., et al. (1992). Foundations of intrusion detection (computer security).
[1992] Proceedings The Computer Security Foundations Workshop V, IEEE.

Ioffe, S. and C. J. a. p. a. Szegedy (2015). "Batch normalization: Accelerating deep
network training by reducing internal covariate shift."

Kathareios, G., et al. (2017). Catch it if you can: Real-time network anomaly
detection with low false alarm rates. 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), IEEE.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. Ijcai, Montreal, Canada.

Lazarevic, A., et al. (2003). A comparative study of anomaly detection schemes in
network intrusion detection. Proceedings of the 2003 SIAM International Conference
on Data Mining, SIAM.

Liao, Y., et al. (2007). "Adaptive anomaly detection with evolving connectionist
systems." 30(1): 60-80.

Lippi, M., et al. (2013). "Short-term traffic flow forecasting: An experimental
comparison of time-series analysis and supervised learning." 14(2): 871-882.

Mahoney, M. V. and P. K. Chan (2002). Learning nonstationary models of normal
network traffic for detecting novel attacks. Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM.

Omar, S., et al. (2013). "Machine learning techniques for anomaly detection: an
overview." 79(2).

Parmar, J. D. and J. T. J. I. J. Patel (2017). "Anomaly Detection in Data Mining: A
Review." 7(4).

Patcha, A. and J.-M. J. C. n. Park (2007). "An overview of anomaly detection
techniques: Existing solutions and latest technological trends." 51(12): 3448-3470.

 77

Rao, K. H., et al. (2011). "Implementation of anomaly detection technique using
machine learning algorithms." 2(3): 25-31.

Shanmugavadivu, R., et al. (2011). "Network intrusion detection system using fuzzy
logic." 2(1): 101-111.

Stallings, W. J. U. S. R., New Jersey, USA (2003). "Network Security Essentials-
Applications and Standards Pearson Education."

Tavallaee, M., et al. (2009). A detailed analysis of the KDD CUP 99 data set. 2009
IEEE Symposium on Computational Intelligence for Security and Defense
Applications, IEEE.

Williams, N., et al. (2006). "A preliminary performance comparison of five machine
learning algorithms for practical IP traffic flow classification." 36(5): 5-16.

 78

APPENDICES

Appendix: A

Machine Learning and Machine Learning Python Libraries

Machine learning is the data analytical method, basically based on algorithms,

math and statistics, that applies the ability of learning to machines through data which

gathered from the natural experience of humans and animals. We have used some

Python Libraries in building our NADS.

1. Numpy (Numerical Python)

Numpy that stands for Numerical Python contains some arrays that operates

rapid mathematical operations. Random numbers can be generated with the Numpy

Library. Many of mathematical operations can be performed from matrix

multiplication to linear algebra operations and Fourier transforms.

2. Pandas

Pandas is an easy-to-use, high-performance data configuration and data

analysis library. With this library data can be read and written from many different

sources such as excel, json, text (csv) and database. It contains table structures which

are one-dimensional as named Serie, 2-dimensional named as DataFrame. Pandas

tables can keep many different type of variables (digital, categorical, date etc.).

Important data processing steps, such as data conversion, filtering, can be easily

performed with this library.

3. Scikit-Learn

This widely used library has many machine learning algorithms. In addition to

these algorithms, this library also includes dimensional reduction, data processing and

model selection methods.

 79

Appendix: B

Attributes description of KDD CUP 99 dataset.

 80

 81

Appendix: C

‘Fields Name File’ shows types of attacks. ‘Attack Types File’ maps its

columns to the attack column of main file.

Fields Name File

Attack Types File

 82

Appendix: D

Python Code for K-Nearest Neighbor Classification Algorithm

 83

 84

 85

 86

Appendix: E

Python Code for K-Means Classification Algorithm

 87

 88

 89

 90

Appendix: F

Python Code for Naïve Bayes Classification Algorithm

 91

 92

 93

 94

Appendix: G

Python Code for Random Forest Classification Algorithm

 95

 96

 97

	Pages from Comparative Analysis of Classification Techniques For Network Anomalies Management - Kurban KOTAN
	kurban 567171

