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ABSTRACT
COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK ANOMALIES MANAGEMENT
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR MASTER DEGREE OF

KOTAN, KURBAN
M.Sc. in Electronics and Computer Engineering
Supervisor: Assist. Prof. Dr. Mohammed K. M. MADI
July 2019
116 pages

Today, the rapid development in technology is enabling billions of devices to
communicate with each other. This development requires new network technologies
to allow all these devices to connect to network easily. In recent years, cyber-attacks
have been a serious threat to governments, businesses and individuals. Many Intrusion
Detection Systems, which were designed to prevent these cyber-attacks failed.
Intrusion Detections Systems (IDS) could not sufficiently recognize the attacks and
the cunning ways the attackers used, resulting in inefficient IDS solution and
vulnerable networks. It would be a much smarter solution to counteract attacks by
using machine learning based systems that is the result of data mining and statistics.
This approach will provide a more efficient IDS solution than a conventional IDS
solution based on attack recognition techniques. The purpose of this thesis is to
propose a method for Network Anomaly Detection System (NADS) using machine
learning algorithms with the aim of enhancing the processes of the network
troubleshooting, and raising the efficiency of the maintenance processes. This study
compares the performance of four selected machine learning classifiers with each
other. The selected algorithms are: K-Nearest Neighbors (KNN), K-means, Naive
Bayes and Random Forest. This comparison is conducted to detect the network
anomaly and analyze the performance of the classification framework. This
comparison is conducted to provide recommendations related to the framework
selection. The above mentioned algorithms are implemented and tested on KDD
CUP99 intrusion detection dataset that is widely used to evaluate intrusion detection
prototypes. The experimental outcomes demonstrate that KNN algorithm perform well
in terms of accuracy and computation time. Furthermore the results show that KNN

has a successful detection of potential threat of 98.0379 % of all known attacks.



Keywords: Network Security, Machine Learning, Artificial Intelligence, Anomaly
Detection, K-Nearest Neighbors Algorithm, Principal Component Analysis
Algorithm, KDD CUP99 dataset.
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OZET
COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK ANOMALIES MANAGEMENT
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR MASTER DEGREE OF

KOTAN, KURBAN
Yiiksek Lisans Tezi, Elektronik Bilgisayar Miih. Boliimii
Tez Yoneticisi: Dr. Ogr. Uyesi Mohammed K. M. MADI
Temmuz 2019
116 sayfa

Bugiin, teknolojideki hizli gelisme milyarlarca cihazin birbiriyle iletisim
kurmasini sagliyor. Bu gelisme, tiim bu cihazlarin aga kolayca baglanabilmesi i¢in
yeni ag teknolojilerini gerektirir. Son yillarda, siber saldirilar hiikiimetler, isletmeler
ve bireyler i¢in ciddi bir tehdit olusturuyor. Bu siber saldirilar1 nlemek i¢in tasarlanan
birgok saldir1 tespit sistemi basarisiz oldu. Saldir1 Tespit Sistemleri (IDS) saldirilar: ve
saldirganlarin kullandig1 kurnazca yollarini yeterince tantyyamadigindan yetersiz IDS
¢Oziimii ve savunmasiz aglarla sonuglandi. Veri madenciligi ve istatistigin bir sonucu
olan makine 6grenmesi tabanli sistemler kullanmak saldirilar1 6nlemek i¢in ¢ok daha
akillica bir ¢oziim olacaktir. Bu yaklasim, saldir1 tanima tekniklerine dayanan klasik
IDS ¢ozlimiine kiyasla daha verimli bir IDS ¢ézlimii getirecektir. Bu tezin amaci, ag
sorun giderme iglemlerini gelistirmek ve bakim islemlerinin verimliligini artirmak
amaciyla makine 6grenmesini kullanarak Ag Tabanli Anomali Tespit Sistemi (NADS)
icin bir yontem Onermektir. Bu calisma, se¢ilen dort makine 6grenme siniflandirma
algoritmasimin performansint birbiriyle karsilagtirmaktadir. Segilen algoritmalar
sunlardir: K-En Yakin Komsular (KNN), K-Means, Naive Bayes ve Random Forest.
Bu karsilastirma ag anomalisini tespit etmek ve siniflandirma ¢ergevesinin
performansini analiz etmek i¢indir. Bu karsilastirma, ¢erceve se¢imi ile ilgili dneriler
sunmak ic¢in yapilmistir. Yukarida belirtilen algoritmalar, izinsiz giris tespit
prototiplerini degerlendirmek i¢in yaygin olarak kullanilan KDD CUP99 izinsiz giris
tespit veri setinde uygulanir ve test edilir. Deneysel sonuclar KNN algoritmasinin
dogruluk ve hesaplama siiresi agisindan iyi calistigini gostermektedir. Ayrica,
KNN'in bilinen tiim saldirilarin % 98.0379’luk potansiyel tehdidin basarili bir sekilde

tespit ettigini gostermistir.
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Anahtar Kelimeler: Ag Giivenligi, Makine Ogrenimi, Yapay Zeka, Anomali Tespiti,
K-En Yakin Komsular Algoritmasi, Temel Bilesen Analizi Algoritmasi, KDD CUP99

verl setl.
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CHAPTER 1
INTRODUCTION

Network anomalies (network intrusions, network overload conditions, denial
of service attacks and malicious/hostile activities) can cause network failures for both
private and public entities. Malicious individuals and groups routinely employ cyber-
attacks that target businesses and governments in what is now known as cyber-
terrorism (Gable 2010). The goal is to cause fear and changes in behavior to affect
political or ideological ends. Internet and computer networks are increasing day by day
and the number of computers connected to the internet and computer networks are
increasing and diversifying. On the other hand, cybersecurity (Cybersecurity is the
protection of internet connected systems, hardware, software and data from cyber-
attacks) threats are growing every day. Because of these factors, cybersecurity is
becoming more complex and costly. Developing flexible and adaptable security-
oriented approaches along with new types of attacks that are constantly emerging is a
very difficult task. Therefore, anomaly intrusion detection techniques and systems for

networks are very innovative to achieve the necessary protection.

The Network Anomaly Detection System (NADS) monitors computer
networks and identifies any deviations from the normal profile to detect new attacks.
Thus, it takes appropriate action. In this context, it is indispensable and very important
for the network. Network anomaly detection (NAD) can be achieved through
Statistical-based, Clustering and outlier-based, Classification-based, Knowledge-
based, Soft computing and Combination learner based (Baliga, Kamat et al. 2007).

These are shown in Figure 1.1.

| Network Anomaly Detection Methods |

Statistical

Classification Based

Clustering and
Qutlier Based

I

Soft Computing

Knowledge Based

Combination Learners

Figure 1.1: Network Anomaly Detection Methods (Baliga, Kamat et al. 2007)



For statistical based NAD an anomaly is an observation. Observation is
suspected of being partially or completely unrelated because observation is not
generated by the assumed model (Bhuyan, Bhattacharyya et al. 2013). Therefore, any
generated traffic with a low probability of occurrence are considered as anomalies.
Based on training datasets, classification based NAD tries to assign new data samples
to categories (Bhuyan, Bhattacharyya et al. 2013). Any object can be defined by its
properties (or features). Clustering is to categorize new sets of objects into clusters
(groups) by using a measurement distance or a specific correlation for it. The objects
which are in the same set are more related to each when compare to object in the other
sets (Garcia-Teodoro, Diaz-Verdejo et al. 2009). Soft computing is sufficient for
NADS because it is impossible to find certain solutions sometimes. Soft computing is
usually thought of as encompassing methods (Patcha and Park 2007). Knowledge
based methods use host or network events first, then check these against predefined
rule sets and known attack patterns (Baliga, Kamat et al. 2007). Combination learners
combine multiple methods then partition them into three different categories: Fusion-
based methods, Hybrid methods and Ensemble-based methods (Garcia-Teodoro, Diaz-
Verdejo et al. 2009). The machine learning approach as developed in this thesis will

be Statistical-based.
1.1 Problem Statement

After firewall, ADS is protecting the network. Nowadays researchers focus on
ADSs but however ADSs have low detection rate, low accuracy rate and high false

alarm rate (Kathareios, Anghel et al. 2017).

Many studies have been carried out on the topic of network traffic modeling
using machine learning (Mahoney and Chan 2002, Williams, Zander et al. 2006, Lippi,
Bertini et al. 2013). K-Nearest Neighbors (KNN) classifier can achieve superior
performance similar to Support Vector Machine (SVM) and Neural Networks, which
are parametric classifiers. KNN, SVM and Neural Networks are in top of evaluated
machine learning algorithms. In contrast to the parametric classifiers, KNN classifier
has several important advantages (Duda, Hart et al. 2001). For KNN Classifier,
memory requirements are high and KNN Classifier is susceptible to cure of
dimensionality (Liao, Vemuri et al. 2007). We will focus on the KNN classifier, which

can reduce the memory requirements and sensitivity to cure of dimensionality by using



less number of the input features instead of using hundreds or thousands of features.
However, we will compare it other algorithms, like K-Means Classifier, Naive Bayes

Classifier and Random Forest Classifier, to compare its performance.

Using machine learning for anomaly detection enhances the speed of detection
of structural errors, defects or frauds. Detecting anomalies across an entire network
system is a very broad proposition. Here we focus on local area network (LAN)

anomalies detection using machine learning.
1.2 Research Objectives

The aim of this research is to use the machine learning techniques for network

anomalies detection in LAN. In order to do this, the following objectives are identified:

a) Toresearch the available methods for the network anomalies detection using

machine learning.

b) To outline the identified methods taxonomy and identify the advantages,

disadvantages and weaknesses of the identified method.
c¢) To evaluate the performance of the identified method.
1.3 Significance of the Study

This thesis's aim is establishing a network based anomaly detection system with
machine learning to detect abnormal behavior of network traffic. This can be achieved

by using fast machine learning algorithms that can process and analyze network traffic.

In a brief summary, Detection Rate (DR) will be increased to maximum and
NADS will uncover and precisely identify new attacks. The system will use the known
attack pattern in phase of training in order to increase detection rate which is actually

machine learning.
1.4 Background of the Study

There are five chapters in this thesis. Theoretical background of generic NADS,
a brief explanation of methods of NADS, Knowledge Discovery Data mining (KDD
CUP99 data set) description, K Nearest Neighbor algorithms, K-Means algorithm
(KM), Naive Bayes algorithm (NB), Random Forest algorithm (RF) and Principal
Component Analysis algorithm (PCA) are presented in chapter two. Chapter three

presents the methodology and system structure. Implementation and experimental



results from the proposed system and comparison of the system with other
classification algorithms were presented in chapter four. Conclusions, limitations and

suggestions for future work are presented at chapter five.



CHAPTER 2
BACKGROUND AND RELATED WORKS

2.1 Introduction

Network security is getting more and more importance than ever because
computer networks are growing enormous with sensitive information and network
based services on them. And internet and networks are exposed to increasing number
of security threats. There is a big problem on detection of the growing new intrusion
types: Labeling of the network data instances by human is usually troublesome, take
too much time and expensive. Developing adaptive security oriented and flexible
methods are very hard by new types of attacks appearing incessantly. Because of this,
against malicious activities protecting target networks and systems, NADS are

important technology.

The different methods of NAD are represented under this chapter and it is
divided into six main categories (Bhuyan, Bhattacharyya et al. 2013):

e Soft computing

e Clustering and outlier-based
e C(lassification-based

e Statistical-based

e Combination learner

e Knowledge-based

In consideration of their advantages and drawbacks under this chapter, these

six categories will be briefly explained.
2.2 Misuse Detection

In a misuse detection, which is an approach of detecting network attacks, first
abnormal system behaviors are defined then all other behaviors are defined as normal.
Anomaly detection approach defines normal behaviors first and then defines all other
behaviors as abnormal. Therefore, it stands against this approach. In misuse detection

everything unknown is normal. Using attack signatures in an intrusion detection



system is an example for misuse detection. Generally, term of misuse detection is used

to all kinds of computer misuse (Helman, Liepins et al. 1992).
2.3 Anomaly Detection

In anomaly detection, it supposes that intrusions are anomalies that differ from
normal behaviors. Generally, anomaly detection creates a profile for normal behaviors
and marks them, which deviate largely from the profile, as attacks. Main advantage of
anomaly detection is that it can detect unknown attacks. Disadvantage of anomaly
detection is that it has high false positive rate because anomalies are not necessarily
intrusive in practice. In addition, attacks that do not clearly deviate from normal

activities cannot be detected by anomaly detection (Gaber and Discovery 2012).
2.4 KDD CUP 99 Data Set

In KDD-99 the Fifth International Conference on Knowledge Discovery and
Data Mining, The Third International Knowledge Discovery and Data Mining Tools
Competition was held and a data set was used for network intrusion detector. That data
set is KDD Cup 99. Network intrusion detector was built as which predicts intrusions
(or attacks) and label them bad connections and predicts normal connections and label

them as normal.

There are standard set of data to be audited in this dataset, which simulated in
a military network environment and contains a wide range of intrusions. Since 1999,
it has been used wildly for the anomaly detection methods. This data set was built
based on the data captured in DARPA'98 evaluation program. DARPA'98 had been
obtained from 7 weeks of network traffic. And it contains about 5 million connection
records. Each connections is about 100 bytes. Dataset is raw binary tcp dump data and

it is about 4GB.

KDD training data set includes about 5 million connection vectors. Every
vector includes 41 features, which is labeled normal or an attack (Tavallaee, Bagheri

et al. 2009). 41 features of vectors are shown in Appendix B.
Attacks fall into one of the following four categories:

Denial of Service Attack (DoS): DoS is any type of attack that attackers
prevent users from accessing the service. In this attack type, attacker usually sends

excessive messages and asks the network (or server) to authenticate requests, which



have void return addresses. When network (or server) sends the authentication
approval, network (or server) will not be able to find attacker's return address and
before closing the connection, it will cause the server to wait. When the server ends
the connection, attacker sends same type of messages. Therefore, the process of
authentication and server waiting process will begin again and it will keep the network

(or server) busy.

User to Root Attack (U2R): In this type of attacks, attacker gets on the system
with normal user account and then attacker abuses security vulnerabilities to obtain

super user privileges.

Remote to Local Attack (R2L): This is type of attacks that attacker gets access
to a local user's computer on system over the internet by sending packets, in order to

expose the machines security vulnerabilities and exploit privileges.

Probing Attack (probe): This is type of attacks that attacker scans a computer
or a networking device, in order to expose the machines vulnerabilities and exploit

privileges for later use.

Percentages of these attacks in KDD dataset are shown in Table 2.1.

Table 2.1: Distributions of attack classes in 1999 KDD cup dataset (Ahmed and
Mahmood 2015, Aljawarneh, Aldwairi et al. 2018)

2.5 Literature Review

In networking, the ADSs are distinctively used to help in detecting anomalies
in data of a network. This detection is made possible because the anomalous always
occurs in the form of patterns. Nevertheless, other studies have depicted modeling of
data in a sequential fashion in the process of detecting subsequences which are

anomalous (Parmar and Patel 2017).



A review as well as a survey which has been conducted by (Lazarevic, Ertoz et
al. 2003), on anomaly detection. In his review, it is established that the emergence of
anomaly-based systems for detecting intrusion have been possible to develop
numerous systems which can be utilized to effectively track novel attacks which have
been waged on a given system. This has been possible through utilization of techniques
such as maintaining a high DR of about 98% as well as a low rate of alarm of 1%. In
his analysis, it is clear that he postulates that despite the fact that despite the efficiency
level of the anomaly-based approaches in attack detections, the signature-based
detections seem to be preferable in the event that there is a need for mainstream

implementation of intrusion in a detection system.

In the same perspective, (Dasgupta, Ji et al. 2003) , projects that in enhancing
the effectiveness of the anomaly detection systems, it is important to pay distinctive
focus on the immunity-based techniques. The reason is that the technique does not
focus on offering a remedy to anomalies in the system but it helps the network to be
able to remain immune to any form of intrusion. Their analysis is relevant to this study
because it offers an alternative to ensuring that the anomaly detection system is
developed in a way that the focus is not only on detection of breach but also in
enhancing protection of the system from any potential breach. In this way, the
application of the immunity-based techniques is an emerging branch of the Artificial

Intelligence (Al) and this is very important in the application of security.

The problem of anomaly detection system has been a concern of many
intellectuals and this has led to the development of further mechanisms that can be
effectively diploid to enhance not only detection of an anomaly but also protection of
the system from any form of intrusion. Dorothy E. Denning (Denning 1987) in her
analysis presents the detection of anomaly intrusion in a system should be detected in
real time. In her opinion, this is very important because it helps in instituting measures
that can help reverse the intrusion and block any further intrusion that can be incurred
in the system. In this perspective in her analysis, she developed a system that enhanced
real-time detection of system anomaly intrusions. The system developed by Dorothy
E. Denning (Denning 1987) has the capacity of detecting a form of intrusion whether
it is a break-in, a penetration as well as other forms of intrusion. This helps in ensuring
that the system is under constant surveillance and protection. In her system, the

foundation of the detection is on the hypothesis that through monitoring a system's



audit records for any abnormal patterns of use in the system, it is possible to detect a
security violation in the system. In her system, she mentions that to make this possible
there is every need to ensure that a profile that is utilized to represents the subject’s
behavior has to be maintained. This should be done with respect to the object in terms
of metrics as well as statistical models. In the same way, in order to be able to enhance
the real-time detection of the anomalies, a rule that enables the system to acquire
knowledge about the behavior of the intruder from the audit records will enhance
effectiveness in anomalous behavior detection. The important of this model presented
by Dorothy E. Denning (Denning 1987) is that it operates independently of any other
system. It also does not depend on the application environment of the system in
question or under threat of attack, it has to be independent of the system vulnerability
as well as the type of intrusion. In this way, it is possible to have a framework for the

general-purpose intrusion-detection expert system.
2.5.1 Statistical-based NAD

For statistical-based NAD, because of not generating from the stochastic model
assumed an anomaly is an observation, which is suspected of being partially or
completely irrelevant (Bhuyan, Bhattacharyya et al. 2013). Therefore, samples are
anomalies because they have low probability of being generated. This method has two
types: (a) parametric and (b) non-parametric. Parametric methods learn knowledge of
distribution and they predict the parameters from data that is given, while
nonparametric methods do not (Bhuyan, Bhattacharyya et al. 2013). Namely,
parametric methods suppose that network data has certain distribution while non-
parametric methods do not. Parametric methods make assumptions about statistical
characteristics of the given data. There is no need prior knowledge about normal
activity for this method and this is advantage of this it and these methods give accurate
alert of malicious activities (Garcia-Teodoro, Diaz-Verdejo et al. 2009, Bhuyan,
Bhattacharyya et al. 2013). However, until the network traffic composed during the
attack is considered normal, they are vulnerable to be used to by attackers. Setting
values for different parameters and metrics is hard, especially balancing between false
positives and negatives (Bhuyan, Bhattacharyya et al. 2013). Those are disadvantages
of statistical based NAD.



2.5.2 Classification-based NAD

In classification-based NAD, any object can be defined using properties or
features. Based on training datasets, classification-based NAD tries to appoint new
data samples to categories (Bhuyan, Bhattacharyya et al. 2013). In linear classification,
it tries to draw a line between classes but the boundary might be nonlinear (Bhuyan,
Bhattacharyya et al. 2013) as in Figure 2.1. By integrating new data, they are able to
improve their execution that is why these classification methods are proper for training
and testing (Bhuyan, Bhattacharyya et al. 2013). These are advantages of
classification-based NAD. In addition, for known anomalies subject to appropriate
thresholds these methods have very high detection rate (Bhuyan, Bhattacharyya et al.
2013). They are very sensitive to classifying hypotheses, which is the main
disadvantage of classification based NAD. In addition, they are unable to detect
unidentified anomalies until appropriate training datasets are given (Bhuyan,

Bhattacharyya et al. 2013).
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Figure 2.1: Classification-based NAD (Bhuyan, Bhattacharyya et al. 2013)
2.5.3 Clustering and outlier-based NAD

In clustering, it categorizes new sets of objects into groups and these groups
are called clusters. It use a specific correlation or measurement distance during
clustering. Observations are more related in same set to each other (Garcia-Teodoro,
Diaz-Verdejo et al. 2009). As it is shown in Figure 2.2(a), in the most common
application of clustering it consists of choosing representative points for each cluster.
This is shown in Figure 2.2(a) as two dimensions. There are series of unidentified

observations and by drawing ellipses around them; they are grouped into five clusters
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(Bhuyan, Bhattacharyya et al. 2013). In Figure 2.2(b), we see that the outliers

(abnormal data points) are separated from the normal clusters, which are non-existent

clusters (Bhuyan, Bhattacharyya et al. 2013). In small-scale datasets, one of the main

advantage for these methods it is able to find outliers easily. On the other hand, its

computational complexity might be higher as compared to other NAD methods.
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Figure 2.2: Clustering and outlier-based NAD (Bhuyan, Bhattacharyya et al. 2013)

2.5.4 Soft Computing

For NAD, this method is sufficient because finding precise solutions is

impossible sometimes (Patcha and Park 2007, Hamamoto, Carvalho et al. 2018).

Methods of soft computing are shown below:

Artificial Neural Networks: Artificial Neural Networks has been
motivated from its inception by the recognition that the human brain
computes in an entirely different way from the conventional digital
computer. Artificial Neural Networks are established tools for various
applications such as data clustering, feature extraction and anomalous

pattern identification in a network.

Genetic algorithm (GA): Genetic algorithms (GAs) represent a
computational model-based on principles of evolution and natural

selection.

Artificial immune systems: Artificial Immune Systems represent a

computational method inspired by the principles of the human immune
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system. The human immune system is adept at performing anomaly
detection. The anomaly detection in the human immune system
classifies certain external objects that enter the body as undesirable

antigens, i.e., objects that may cause illness.

e Colony algorithms: Colony algorithms are probabilistic techniques for
solving computational problems that can be reformulated to find

optimal paths through graphs.

e Rough Sets: Rough sets have been effectively used in classification
systems, where complete knowledge of the system is not available. A
classifier aims to form various classes where members of a class are not
noticeably different. These indiscernible or indistinguishable objects
are viewed as basic building blocks (concepts) used to build a
knowledge base about the real world. This kind of uncertainty is

referred to as rough uncertainty.

e Fuzzy Sets: The concept of fuzzy logic provides a language with syntax
and local semantics for translating qualitative knowledge about a

problem to be solved.

These methods have high flexibility and adaptability. This is advantages of soft
computing-based anomaly detection methods. Consuming high resource are their
disadvantages. So in lack of normal traffic data, the training of the systems becomes

very hard.
2.5.5 Knowledge-based NAD

These methods check network or host events against known attack patterns and

predefined rule sets. Knowledge based contains methods as shown down:
e Rule-based and expert system approaches
e Ontology and logic-based approaches

Advantages of these methods are scalability flexibility and robustness. If there
are available training datasets for normal and anomalies both, these methods have high
detection rate. Drawbacks of those methods are the costs and time consumption.
Detecting unknown anomalies is very hard for knowledge based NAD (Garcia-

Teodoro, Diaz-Verdejo et al. 2009).
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2.5.6 Combination learners

This method combines multiple methods first. Then it divides these combined

methods into three different categories, which are shown below:

e Fusion-based methods: Some methods of Fusion-based methods work
in high dimensional feature spaces to extract and concatenate different
semantic meanings. Others of Fusion-based methods attempt to
combine classifiers trained on different features divided on the basis of

hierarchical abstraction levels or the types of information contained.

e Hybrid methods: To overcome the limitations of the high false positive
rate of anomaly detection and unknown intrusions of misuse detection,
hybrid methods make use of features from approaches and get high

accuracy.

e Ensemble-based methods: Ensemble-based methods are to weigh
individual classifiers first and then combine them to get an overall

classifier that outperforms all of them.
These methods cost a lot (Garcia-Teodoro, Diaz-Verdejo et al. 2009).
2.6 K-Nearest Neighbor (KNN) Algorithm

K-Nearest Neighbors algorithm is a very simple technique that is used in data
mining. All available points are stored first and then KNN classifies new points

according to similarity criteria using distance functions as follow:

e Euclidean :\/Z{-‘zl(xi —¥i)?
e Manhattan : ¥X, |x;-yi|

1
o Minkowski : (Z:;l(lxi‘YiDq)a
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Feature x

Pseudo Code of K-Nearest Neighbors algorithm is
1-Load the data
2-Assign k value (In our example k value will be 1)
3-Iterate steps for all training data points to get predicted class

i- Calculate the distance between each points by using any distance function.
ii- Sort distances values in ascending order.

iii- From the sorted array, get the first top k points.

iv- Specify the class that contains most of these points.

v- Assign the point as specified class member.

An example of the KNN algorithm is shown in Figure 2.3.
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Figure 2.3: An Example of KNN Algorithm
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Boundaries that separates two classes according to different k values are shown

at Figure 2.4.
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Figure 2.4: Different boundaries separating the two classes with different values of k

KNN is easy to be understood when there are few predictors .It is useful and
easy to build models which are non-standard types. For example, text is non-standard

type and if model contains text it is useful to use KNN (Omar, Ngadi et al. 2013).

Some other data classification algorithms that briefly described after this

section will be compared with the KNN algorithm.
2.7 K-Means Classification Algorithm

K-Means Classification Algorithm is unsupervised. At beginning, it calculates
initial class means by equally distributing them in the data space. Then by using a
minimum distance measurement method, iteratively it groups data points into the
nearest class. In every iteration, it recalculates every class means and according to
these new means, it regroups observations. Until the maximum number of iterations is
reached or the number of observations in each class changes by less than the selected

observations change threshold this iteration continues.
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Figure 2.5: An Example of K-Means Classification Algorithm

KM has low complexity but it is obligation to specify k value because it is
unsupervised. Disadvantages of KM are that it is sensitive to outlier data points and

noise and initial assignment of centroids may change the result too much.

2.8 Naive Bayes Classification Algorithm

This Classifier is based on the Bayesian Theorem, (A\B) = % , and it
is especially suited to use if features dimensions are high. It can often perform better

than complex classification methods despite its simplicity.
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Mame Give Birth CanFly |Lwein Water] Have Legs Class
human YEs no no yES mammals
python no no no no non-mammals
salmon no no YES no non-mammals
whiale yes no s no mammals
frog no no sometimes |ypes non-mammals
komodo no no no yes non-mammals
bat YEs Vs no VES mammals
pigeon no Vs no YES non-mammals
cat yes no no yBISs mammals
leopard shark |yes no yes no non-mammals
turt e no no sometimes |yes non-mammals
peEnguin no no sometimes |yes non-mammals
porcupine yes no Mo e S mammals
ol no no Yes no non-mammals
salamander no no sometimes |yes non-mammals
gila monster  |no no no Vas non-mammals
platypus no no no Yas mammals
ol no yes no YES non-mammals
dolphin YEs no s no mammals
aagle no s no YES non-mammals

Give Birth CanFly |[Live in Water|] Have Legs Class

yes no yes no 7

A: attributes
M: mammals

N: non-mammals

P(A[M):Exgxgxgzﬂﬂﬁ
7 i T 7

P(A|N) :Lxmxixi =0.0042
13 13 13 13
P(A[M)P(M)zU‘UGXE—?;J:U.UZI

P(A| N)P(N)=0.004 x% =0.0027

P(A|M)P{M) > P{A|N)P(N)

=> Mammals

Figure 2.6: An Example Question of Naive Bayes Classification Algorithm and Its
Answer (Han, Pei et al. 2011)

2.9 Random Forest Classification Algorithm

Random Forest is a supervised, most flexible and easy to use algorithm. A

forest that it has more trees is more robust. RF create decision trees on randomly

selected data first. Then it gets prediction from each tree. At last, by means of voting,

it selects the best solution.
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Figure 2.7: Illustration of Random Forest Classification Algorithm
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2.10 Principal Component Analysis (PCA) Algorithm

PCA (Jolliffe 1986) is a most used method in data processing and dimension

(size) reduction with many applications in social sciences, engineering and biology.

Some examples include the handwritten, zip code classification and human face

recognition. Nowadays it is used widely in data mining and machine learning.

Figure 2.8: An Example of PCA Algorithm

PCA Algorithm will be used for reduction features before using K-Nearest

Neighbors classifier in proposed system, which is in Chapter 3 and Chapter 4.

2.11 NADS Algorithm

The pseudo code of the NADS is shown below. It shows the general functions

and working steps of the NADS system.

Table 2.2: The NADS Algorithm

1.

S AT U oA

Start

Read training file.

Train the System

Capture network packets by Wireshark application and extract features vectors.
If vector is normal Than

Mark the vector is normal.

Else

Mark the vector as abnormal.

End
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In this thesis, one of the efficient and easiest data-mining algorithm called
KNN Algorithm is applied. Experimental results on the KDDCUP99 data set show that
our approach is very effective in detecting network intrusion. Especially detection rate
is 98.0379 %. It is observed that the proposed NADS works much better in terms of
detection rate and accuracy rate when it is applied to KDD99 dataset compared with
other algorithms (Farid, Harbi et al. 2010, Rao, Srinivas et al. 2011, Shanmugavadivu,
Nagarajan et al. 2011).
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CHAPTER3
RESEARCH METHODOLOGY

3.1 Methodology

This chapter presents the NADS, which is machine-learning system for
anomalies detection system by using K-Nearest Neighbors Algorithm for classification
and Principal Component Analysis Algorithm for dimension reduction in frame of
CRISP-DM (Cross-Industry Standard Process for Data Mining) Methodology. It
describes typical phases of a project, tasks in every phase and relationships between
these tasks as a methodology. It provides a conspectus of the data-mining life cycle as

a process model. It contains six steps as follow:

1. Business Understanding: What is the problem we are dealing with?

2. Data Understanding: What is the data we are working with?

3. Data Preparation: What are the transformations and extractions to be done
on the data?

4. Modeling: What is the data model we should use?

5. Evaluation: Does the model meet the project goals?

6. Deployment: How should we use the model we developed

Business ﬂ' Data
Understanding Understanding
Data
a Preparation
Deployment

N

Figure 3.1: CRISP-DM
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We will follow the steps of the CRISP-DM methodology in our machine

learning system.
3.1.1 Business Understanding

This is first step of the Methodology (Process) is about description of the
problem, defining situation, determining goals and success criteria and determining
project plan. Chapter one of this thesis is “business understanding” step of

methodology. Business understanding of this thesis briefly is:

Network anomalies can cause network failures for both private and public
entities. Internet and computer networks are getting larger day by day and by the
number of devices connected to it is increasing and getting various. Because of these
factors, cybersecurity is becoming more complex and costly. Developing flexible and
adaptable security-oriented approaches along with new types of attacks that are
constantly emerging is a very difficult task. Therefore, anomaly intrusion detection
techniques and systems for networks are very innovative to achieve the necessary

protection.
3.1.2 Data Understanding

This step of the Methodology (Process) is about understanding of data. Those
are gathering data, identify data, investigating data and verifying data quality.
Subchapter 2.4 is “data understanding” step of methodology. The following table
shows the part of the KDD Cup dataset which is used in proposed system NADS. Data

understanding of this thesis briefly is:

KDD Cup 99 data set was used for network intrusion detector. Network
intrusion detector was built as which predicts intrusions (or attacks) and label them bad
connections and predicts normal connections and label them as normal. KDD training
data set includes about 5 million connection vectors. Every vector includes 41 features,

which is labeled normal or an attack. Attacks are generally as follow:
DoS, U2R, R2L and Probe.

Percentages of these attacks in KDD dataset which are used for training and

testing phases are shown in Table 3.1 and Table 3.2.
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Table 3.1: Training Dataset of NADS

normal normal

dos back
land
neptune
pod 201
smurf 2.646
teardrop 892

probe ipsweep 3.599
nmap 1.493
portsweep 2931
satan 3.633

u2r buffer_overflow 30
loadmodule S
perl 3
rootkit 10

r2l ftp_write 8
guess_passwd 53
imap 11
multihop 7
phf 4
spy 2
warezclient 850
warezmaster 20

Grand Total 125973
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Table 3.2: Test Dataset of NADS

normal normal
dos back
land
neptune
pod
smurf
teardrop
probe ipsweep 710
nmap 301
portsweep 587
satan 691
u2r buffer_overflow 6
loadmodule 1
rootkit 4
r2l ftp_write )
guess_passwd 10
imap S
multihop 2
phf 2
Spy 1
warezclient 181
warezmaster 7
Grand Total 25.192

Figure 3.2 represents some sample vectors of NADS; these vectors were
collected from the KDD CUP99 data set, which consists of normal and abnormal

behavior for network traffic.
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0, tcp, finger, $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,272,24,1,1,0,0,0.09,0.05,0, 255, 24, 0.09,0.05,0,0,1,1,0, 0, neptune, 18
6181, tep, IRC, RSTO, 955, 3814, 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,0,107,11,0.1,0.02,0.01,0,0,0,0.1,1,normal,, 18
0, tcp, http, SF, 193,793¢,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 5, 5,0, 0, 0,0, 1,0, 0, 73, 255, 1, 0, 0. 01, 0.02,0,0, 0, 0, normal, 21

0, tcp, finger, s0,0,9,0,0,0,0,9,0,0,9,0,9,0,0,90,0,0,0,63,17,1,1,0,0,0.27,0.06, 0, 143, 42,0.26,0.03,0.01,0.05,1,0.88,0, 0, neptune, 18
0, tcp,private,REJ, 0,0,0,0,0,9,0,0,0,0,9,0,0,0,0,0,0,0, 149%,5,0,0,1,1,0.03,0.06, 0, 255, 2,0.01,0.07,0,0,0,0, 1, 1, neptune, 21
0, tcp, http, SF, 161,311,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,17, 30,0,0,0,0,1,0,0.07,17, 255, 1,0,0.0¢,0.06,0,0, 0, 0, normal, 21
0,udp, other, SF, 516, 4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,179, 179, 0,0, 0,0, 1, 0, 0,178,179, 1, 0, 1,0, 0,0, 0, 0, normal, 17

Figure 3.2: Sample vectors of NADS’s KDD dataset

23



3.1.3 Data Preparation

This step of the Methodology (Process) is about integrating data from multi

sources, formatting data, feature extraction, cleaning data, constructing data (derive

attributes-transformation, filling in missing values) and feature selection.

3.1.3.1 Integrating data

In this part, NADS catches all packets in network (or it will input training file

or testing file). All packets in the network is captured. In captured packets, data and

time fields are displayed which are data and packet captured time. Typical packets

showed in Figure 3.3. All captured packets will be monitored and can be saved for

analyzing.

W00~ h B W

10
11

13
14
15
16
17

: No.,"Time","Source","Destination","Protocol”,"Length","Info"

1,"0.000000","HewlettP_9b:cb:bl","Broadcast","ARP","60","Who has 192.168.104.36? Tell 192.168.104.60"

:2,”0.019654","192.158.104.219","224.188. 188.188","UDP","298","39048 > 34952 Len=256"
_3,"&020685"."192‘]58‘104,219","224.18& 188.188","UDP","298","39048 > 30583 Len=256"
_4,"D.02?025","feBO::11ba:Slc?:adﬁlzaSSb","ffGZ::1:3",“LLMN R","86","Standard query 0x57a4 A isatap”
_5,"D.028068","192,168.104.68","224.0.0.252","LLM NR","66","Standard query 0x57a4 A isatap”
|6,"0.039366","Dell_86:3e:ad","Broadcast”,"ARP","60","Who has 192.168.104.36? Tell 192.168.104.41"

7,"0.039367","Dell_86:3e:ad","Broadcast”,"ARP","60","Who has 192.168.104.18? Tell 192.168.104.41"
8,"0.039367","Dell_86:3e:ad","Broadcast”,"ARP","60","Who has 192.168.104.30? Tell 192.168.104.41"

|9,"0.086602","192.158.104.113","152.168.105.255","NBNS","BZ","Name query NB QIBRASOB.RU<00>"
110,"0.125713","fe80::11ba:51c7:ad61:a89b","ff02::1:3","LLMNR", "86", "Standard query 0x57a4 A isatap”
12|
112,"0.144095", "Shuttle_40:7e:56","Broadcast","ARP","60","Who has 169.254.109.1527 Tell 192.168.105.2"
113,"0.161825","00:09:7d:86:84:16", "Broadcast","ARP","60","Who has 87.118.124.104? Tell 192.168.104.214"

11,"0.126806","192.168.104.68","224.0.0.252","LLMNR","66","Standard query 0x57a4 A isatap"

14,"0.209501","Shuttle_40:7e:56","Broadcast","ARP","60","Who has 169.254.110.1527 Tell 192.168.105.2"

:15,"O.23485?","Shutt|e_40:?e:56","Broadcast","ARP","60","Wh0 has 169.254.89.1527 Tell 192.168.105.2"

1A "N 22A858" "Shuttla AN-T7a'SA" "Rrnadract” "ARD" "AN" "Whn hac 1AQ 754 QN 15727 Tall 197 1A% 108 2"

Figure 3.3: Captured and converted network packets by Wireshark

First step of proposed system is packet capture. All packets of the real network

traffic is captured in this step. This process runs in promiscuous mode. It captures all

packets and then stores them as a set of traffic flows in data storage file.

In Figure 3.4 the user can capture packets by Wireshark and convert them csv

file which contains features vectors in every line of the file showed in Figure 3.2.
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Figure 3.4: The application that deal with real packet capturing
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Packet decoder are shown in Figure 3.5. The packet decoder grabs packets from

Data Link layer via WinPcap library, and defines which protocol is in use for any

packet captured. WinPcap is a packet capture library that runs under the Windows

operating system and captures packets from the network via the data link layer, the

second layer of the OSI.

Wireshark is a multiplatform. It is open source application interface. It is used

for monitoring network packets and convert them into other file types. In our thesis,

we will use Wireshark which use WinPcap library to capture packets and convert their

format for data pre-processing step.

Then, the packet stored in data structure is sent for data pre-processing stage

(Rao, Srinivas et al. 2011).
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Table 3.3: OSI Layers

WinPcap Decode Data Link

¥

Decode Metwork

Y

Decode Transport Preprocessor

. S

Figure 3.5: Stages of packet decoder (Rao, Srinivas et al. 2011)
3.1.3.2 Data Pre-processing

Data pre-processing steps are shown in Figure 3.6. Data pre-processing means
extracting information about the packet connection from its header and create new

statistical features from data.

Standard data pre-processing steps contain dataset creation, data cleaning,
integration, feature construction to derive new higher-level features, feature selection
to choose the optimal subset of relevant features, reduction, optimization and

normalization.
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Most appropriate steps for NADS are now described below (Shanmugavadivu,

Nagarajan et al. 2011):

Dataset Creation: This step contains identifying representative network traffic,
which are packets information and some statistical information gathered from network,
for the training and the testing phases. These dataset features of proposed system were
created from several normal network sessions through weeks of normal work on the
network, like dataset KDD CUP99 that we use for NADS. The features have been
processed to get the values of the basic and statistical features that are considered normal

and abnormal values for the network traffic.

Features Extraction: Detecting anomalies depend on the values of features
gathered packets from network. In this step system extracts basic features from packets
header (such as protocol type, service, flag etc.) or extracts content features from
payload of packets (such as logged in, etc.) or computes statistical values in order to

create new features (like count, srv_count, etc.).

Feature Scaling: This step is a technique for standardizing range of features
of data or independent variables. Feature scaling is also known as data normalization.
In data processing, it is generally performed during the data preprocessing step. In
some machine learning algorithms, if the range of values of raw data varies widely
without normalization objective functions will not work properly. For instance, most
of classifiers calculate the distance between two points by using Euclidean distance. If
one of the features has a broad range of values, the distance will be governed by this
particular feature. Because of this, the range of all features should be normalized first
so that each feature contributes approximately proportionately to the final distance

(Ioffe and Szegedy 2015):
) Standardization
° Normalization

Reduction: Reduction is used to determine whether multiple dimensions are
related to each other and it is used to decrease the dimensions of the dataset by

discarding any unnecessary or unrelated features.

After data pre-processing these feature vectors are suitable as input to machine

learning algorithms.
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Figure 3.6: The stages of data pre-processing data (Shanmugavadivu, Nagarajan et
al. 2011)

3.1.4 Modeling

This step of the Methodology (Process) is about selecting machine learning
model (consider computer resources, computation time, number of features, business
needs), generating test design (train/test split, cross validation, simulation
[chronological order]), building model and assessing model. The most relevant steps of

Modeling of Methodology for NADS are described below.
3.1.4.1 Classification

Classification is a method of determining what group a certain observation
belongs to by classifier algorithm. For example, categorizing plants, animals, and other
life forms into different taxonomies by biologists are classification. Classification is
one of the primary uses of machine learning and data mining. In order to determine the

correct category for a given observation, following are done by machine learning:
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e Applies a classification algorithm to identify shared characteristics of

certain classes.
e Compares those characteristics to the data it is trying to classify.

e Uses that information to estimate how likely it is that observation

belongs to a particular class.

Then the train data is being classified by algorithms and the system is trained
with the train data. In the prediction step, the trained system estimates vectors to

determine whether the data is normal or not.
3.1.4.2 Prediction

In this stage, value of machine-learning is realized. Finally, trained system is
used to predict the outcome and it labels packets as normal or as attack types. This
stage is responsible with deciding whether an event or set of events are intrusion or

not.
3.1.5 Evaluation

This step of the Methodology (Process) is about evaluating results in terms of
business needs, reviewing process and determining next step. “Evaluation” step will be

discussed in chapter four of this thesis.
3.1.6 Deployment

This step of the Methodology (Process) is about planning and deploying the
model and planning monitoring and maintenance process. “Deployment” step will be

discussed in chapter five of this thesis.
3.2 System Structure

NADS classifies and identifies each connection vector to normal or intrusion
types. Then results are displayed as alert. The NADS contains data aggregation, data
pre-processing, classification, prediction and response stages. In “Data aggregation”
stage, data is captured from network traffic by Wireshark network monitoring
application and then data is used to train and to test the NADS in “Classification” and
“Prediction” stages. In NADS, data for train is provided by KDD CUP99 dataset and
“Pre-processing” stage regulates the data to ensure an efficient configuration of the

classification system. KNN classification algorithm is used to build the proposed
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NADS and classify the intrusion attacks in offline mode and online mode by
cooperation of PCA and Wireshark network monitoring application. The last stage of
NADS, "Response” displays the important information and informs the security

analyst. Security analyst analyzes the risks, and then takes proper actions.

The system structure is shown in Figure 3.7. It presents a generic structure of

NADS.
==
Internet
i i VF:reN:III ///’
- — //’
Anomaly Detection System

Undate Enéwall / worh station

WOrk station

i\

Switch 8
-l ™

Securty Analyst

Figure 3.7: A Generic structure of NADS

The most important part of the NADS is to detect abnormal behavior and
classify them, and then inform the Security Analyst. Whereupon, Security Analyst
takes proper actions, through updating the database of the protection systems

(Firewall, Antivirus Servers etc.) on the network.
3.3 The Proposed System
NADS consists of two phases:
e Training phase
e Testing phase.

In Figure 3.8 training phase is shown and there are three steps in training

phase, which are summarized as follows:
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1. Input: Input KDD CUP99 dataset.
il. Process: Train the system.

iii. Output: NADS uses the KNN algorithm for classification, PCA
algorithm for reduction and as a result, it classifies connections as normal or as attack

and it gives attack type. Output of this phase is Trained System.

Start |

e

| Input KDD CUPS9
Training Data Set

.

Generate Machine Learning Object (Model)

l

‘ Apply KNN and PCA Algorithms To Prepare Training Model ‘

v
{ e '-

Figure 3.8: Block Diagram of Training Phase.

Testing phase is shown in Figure 3.9 and there are three steps in testing phase,

which are summarized as follows:
1. Input: Input Trained System is the first step in the testing phase.

il. Process: Trained System (Machine Learning Object) classifies

connections as normal or attack types instantly (or testing file in offline mode).

iil. Output: System generates monitoring.
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Start

| KNN and PCA
I'I Algorithms Applied
[ Trained System

YES Cnline Mode? NO

- Caplure Network Packets By Wireshark Application. Input Test File
< Convert Them For Testing.

!

Trained System (Machine Learning Object) To Test Data

.

Generate Monitoring

| End

Figure 3.9: Block Diagram of Testing Phase.
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CHAPTER4
NADS SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction

Chapter four presents implementation of the proposed system by using KNN
and PCA algorithms that are described in chapters two with their main points. This
chapter also compares KNN algorithm with K-Means, Naive Bayes and Random
Forest algorithms which were explained in chapter two. All algorithms were compared
with each other using them in NADS. The system is implemented on a computer which
is connected to the LAN and this LAN has WAN connection. NADS were built by
using machine-learning which was coded in Python programming language and it can

be applied on most networks.

4.2 System Structure
NADS main components are listed below and it is shown in Figure 4.1.
1. Router, it is used for packets routing in network.

2. Switch which is configured in promiscuous mode. It is used for network

packets switching and sniffing network packets.

3. NADS, captures packets, pre-processing, classifying attacks or normal

connections and warning.
4. Security analyst, takes an appropriate prevention according to warnings.

5. LAN, it contains seven clients, one switch, one router, one firewall.
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Anomaly Deteclion System
Update Eirewall

Figure 4.1: System Architecture of NADS
4.3 Performance Metrics
4.3.1 Confusion Matrix

Confusion matrix (CM) is a performance measurement. It is used for machine
learning classification problems which has two or more classes as output. It is a table,
which contains four different combinations. Those are predicted values and actual
values and these values are explained below. Confusion matrix is used to measure the
performances of NADS in this thesis. If this measurement is adapted to NADS,

following result will be gotten.

Table 4.1: Confusion Matrix for Binary Case (Stallings 2003)

PREDICTED VALUES
Anomaly Normal
=2 & Anomaly TP FP
= =
G =
Sg) »>| Normal FN TN
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1. True Positive (TP): Number of correctly predicted packets as attacks
by system (Stallings 2003).

2. True Negative (TN): Number of correctly predicted packets as normal
by system (Stallings 2003).

3. False Positive (FP): Number of normal packets, which are predicted as

attacks (Stallings 2003).

4. False Negative (FN): Number of attack packets which are predicted as
normal (Stallings 2003).

There are standard metrics for evaluating network anomalies detections which
are shown below. Percentage of Successful Prediction (PSP), namely Detection Rate
(DR) and Accuracy Rate (ACC) are most satisfactory metrics ratios. DR is the ratio
between the number of correctly detected attacks and the total number of attacks as in
Equation (4.1). Accuracy is a ratio of the total number of correctly classified attacks
and normal connections divide to the total number of connections as in Equation (4.2)

(Stallings 2003).
4.3.1 Sensitivity-Detection Rate (DR) or True Positive Rate (TPR):

Sensitivity is a ratio of the total number of correctly classified positive examples
divide to the total number of positive examples. High DR indicates the class is correctly
recognized (Stallings 2003).

TP TP
DR =TPR = —

P TP+FN (41

4.3.2 Accuracy:

Accuracy is a ratio of the total number of correctly classified positive and
negative examples divide to the total number of examples (Stallings 2003).

TP +TN

Accuracy = Total

(4.2)
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4.2.

Example Confusion Matrix of NADS which is for multiclass is shown in Table

Table 4.2: Example Confusion Matrix of NADS Which Is Multiclass

PREDICTED VALUES

Normal | Probe DoS R2L U2R

n Normal 9223 10 0 1 0
=

= | Probe 0 13432 9 8 0
=

: DoS 2 12 2275 0 0
=

= | R2L 1 9 0 199 0
<

U2R 0 1 0 3 7

4.4 Experiments

In this section, we apply four scenarios, where each scenario consists of several
experiments, and we summarize experimental results to detect the network anomaly

over KDDCUP99 data set. These scenarios are explained as below:

Scenario 1: In order to see effect of the PCA algorithm five experiments were
carried out on KDD CUP99 dataset by using KNN Algorithm. The conditions of these

experiments are as follow:

Experiment 1: 125,973 lines of KDD CUP99 dataset were used for training

and 25,192 lines for testing, but 41 features were selected.

Experiment 2: 125,973 lines of KDD CUP99 dataset were used for training
and 25,192 lines for testing, but 30 features were selected.

Experiment 3: 125,973 lines of KDD CUP99 dataset were used for training
and 25,192 lines for testing, but 20 features were selected.

Experiment 4: 125,973 lines of KDD CUP99 dataset were used for training
and 25,192 lines for testing, but 10 features were selected.

Experiment 5: 125,973 lines of KDD CUP99 dataset were used for training

and 25,192 lines for testing, but 5 features were selected.
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Scenario 1 Implementation:

The results of first experiment can be seen in Table 4.3. The first experimental
result indicated that KNN algorithm achieved a DR percent of 98.0379 % as highest
compared with other algorithms. Highest ACC Rate is 99.9603 % that achieved by
KNN algorithm. Highest DR percent for Normal achieved by RF algorithm, highest
DR percent for Probe achieved by RF algorithm, highest DR percent for DoS achieved
by KNN and RF algorithms, highest DR percent for R2L achieved by KNN algorithm,
and highest DR percent for U2R achieved by KNN algorithms. Lowest time taken to
train is 0.128126 second that achieved by NB algorithm and lowest time taken to test
1s 0.08962 second achieved by NB algorithm. In addition, lowest memory usage is

0.307209 GB that achieved by KM algorithm.

Table 4.3: Experiment 1

KNN KM NB RF

DR (%) 98.0379 47.1663 52.2071 96.2549
ACC (%) 99.9603 68.756 88.3773 99.9563
DR For Normal (%) 99.9776 69.797 90.4825 99.9926
DR For Probe (%) 99.7815 44.9104 80.166 99.9563
DR For DoS (%) 100 74.713 89.4303 100

DR For R2L (%) 99.5215 0.9569 0.9569 99.5074
DR For U2R (%) 90.909 45.4545 0 81.8182
Mean Of Cross V. (%) 99.6539 1.6965 88.4578 99.8396
Time For Train (second) 0.66159 3.872822 0.128126 7.694642
Time For Test (second) 1.139292 0.009377 0.006212 0.026766
Memory (GB) 0.304344 0.300694 0.505257 0.308975
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The comparison of DR and ACC ratios of all algorithms with each other is
shown in Figure 4.2. The comparison of training and testing times of all algorithms
with each other is shown in Figure 4.3. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.4.

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
40,0000%
20,0000%

0,0000%
DR (%) ACC (%)

HKNN mK-Means ™ Naive Bayes & Random Forest

Figure 4.2: Comparison of DR & ACC of First Experiment

Training Time & Testing Time

al

Training (second) Testing (second)

8,0
7,0
6,0
5,0
4,0
3,0
2,0

0,0

mKNN mK-Means ™ Naive Bayes ™ Random Forest

Figure 4.3: Comparison of Training and Testing Time of First Experiment
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Figure 4.4: Comparison of Memory Consume of First Experiment

mKNN m®mK-Means

Memory

Memory (GB)

m Naive Bayes

= Random Forest

Screen shot of first experiment is shown in Figure 4.5 and screen shot of the

program code for first experiment is shown in Figure 4.6.
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K-Nearest Neighbors Classifier

Train and Test Data read...

There are 5 attack type

Attacks name are:

['dos’, ‘u2r’, 'r2l1', 'probe’, 'normal’]

Attack type mapping created...

Train and Test data labels created...

Decomposed features created...

Number of features used : 41

Time taken to perform 5-fold cross validation : 8.204882
Cross validation scores :

[©.99611065 ©.99646769 ©.99618957 ©.99682451 ©.99710237]
Mean score of 5-fold cross validation : ©.996539

Time taken to train final model : ©.669883

Predictions made using final model...

Time taken to make predictions on test data : 1.222388
Memory used : ©.318832 GB CPU usage : 30.400000
Confusion matrix :

[[13446 o 1 2 @]
[ 5 2284 ) ) e]
[ e @ 9234 ) e]
[ e o @ 208 1]
[ e o o 1 10]]

Accuracy score on test data is : ©.999603

For normal, Detection Rate is ¥ 99.9776935e8811@6
For probe, Detection Rate is % 99.78156400174748
For dos, Detection Rate is ¥ 100.0

For r2l, Detection Rate is ¥ 99.5215311e047847
For u2r, Detection Rate is ¥ 90.9090909090909

DR is ¥ 98.03797590482557

Figure 4.6: Experiment 1 of KNN

The results of second experiment can be seen in Table 4.4. The second
experimental result indicated that KNN algorithm achieved a DR percent of 98.1387
% as highest compared with other algorithms. Highest ACC Rate is 99.9603 % that
achieved by KNN algorithm. Highest DR percent for Normal achieved by KNN
algorithm, highest DR percent for Probe achieved by KNN algorithm, highest DR
percent for DoS achieved by KNN algorithm, highest DR percent for R2L achieved
by KNN algorithm, and highest DR percent for U2R achieved by KM algorithm.
Lowest time taken to train is 0.179758 second that achieved by NB algorithm and
lowest time taken to test is 0.007657 second achieved by KM algorithm. In addition,
lowest memory usage is 0.300423 GB that achieved by NB algorithm.
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Table 4.4: Experiment 2

KNN KM NB RF
DR (%) 98.1387 22.0586 61.1676 92.2005
ACC (%) 99.9603 2.0999 58.6377 99.9166
DR For Normal (%) 99.9702 0.2007 30.374 99.9553
DR For Probe (%) 99.8252 0.131 95.8934 99.8252
DR For DoS (%) 99.9891 5.1765 90.0152 99.9783
DR For R2L (%) 100 4.7846 35.0101 97.6076
DR For U2R (%) 90.909 100 54.5455 63.6363
Mean Of Cross V. (%) 99.6348 1.6953 58.6594 99.6483
Time For Train (second) 0.566747 3.098525 0.179758 8.095981
Time For Test (second) 0.923757 0.007657 0.047077 0.028039
Memory (GB) 0.307774 0.395073 0.300423 0.538746

The comparison of DR and ACC ratios of all algorithms with each other is
shown in Figure 4.7. The comparison of training and testing times of all algorithms
with each other is shown in Figure 4.8. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.9.

Detection Rate & Accuracy Rate

100,0000%
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20,0000%

0,0000%
DR (%) ACC (%)

B KNN mK-Means ™ Naive Bayes Random Forest

Figure 4.7: Comparison of DR & ACC of Second Experiment
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Figure 4.8: Comparison of Training and Testing Time of Second Experiment
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Figure 4.9: Comparison of Memory Consume of Second Experiment
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Screen shot of the program code for second experiment is shown in Figure 4.10.

K-Nearest Neighbors Classifier

Train and Test Data read...

There are 5 attack type

Attacks name are:

['dos’, 'u2r', 'r2l1', "probe’', 'normal’]

Attack type mapping created...

Train and Test data labels created...

Decomposed features created...

Number of features used : 3@

Time taken to perform 5-fold cross validation : 6.673927
Cross validation scores :

[©.9959519 ©.99634863 ©.99591173 ©.99662605 ©.9969039 ]
Mean score of 5-fold cross validation : ©.996348

Time taken to train final model : ©.566747

Predictions made using final model...

Time taken to make predictions on test data : @.923757
Memory used : ©.307774 GB CPU usage : 36.900000
Confusion matrix :

[[13445 1 1 2 e]
[ 4 2285 ) o e]
i 2z @ 9233 o e]
[ o o e 209 e]
[ e o e 1 10]]

Accuracy score on test data is : ©.9996@3

For normal, Detection Rate is ¥ 99,97825301174809
For probe, Detection Rate is ¥ 99.82525120139799
For dos, Detection Rate is ¥ 99.98917845700671
For r2l, Detection Rate is ¥ 1ee.@

For u2r, Detection Rate is ¥ 98.9090929292909

DR is ¥ 98.13875411584874

Figure 4.10: Experiment 2 of KNN

The results of third experiment can be seen in Table 4.5. The third
experimental result indicated that KNN algorithm achieved a DR percent of 98.1249
% as highest compared with other algorithms. Highest ACC Rate is 99.9603 % that
achieved by KNN algorithm. Highest DR percent for Normal achieved by KNN
algorithm, highest DR percent for Probe achieved by RF algorithm, highest DR
percent for DoS achieved by KNN algorithm, highest DR percent for R2L achieved
by KNN algorithm, and highest DR percent for U2R achieved by KNN algorithm.
Lowest time taken to train is 0.159209 second that achieved by NB algorithm and
lowest time taken to test is 0.006390 second achieved by KM algorithm. In addition,
lowest memory usage is 0.289413 GB that achieved by RF algorithm.
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Table 4.5: Experiment 3

KNN KM NB RF
DR (%) 98.1249 47.1649 71.1073 88.0633
ACC (%) 99.9603 68.752 87.5318 99.8492
DR For Normal (%) 99.9776 69.7895 86.6979 99.9108
DR For Probe (%) 99.7378 44.9104 89.2093 99.8253
DR For DoS (%) 100 74.713 88.4882 99.9567
DR For R2L (%) 100 0.9569 36.5957 95.1691
DR For U2R (%) 90.909 45.4545 54.5455 45.4545
Mean Of Cross V. (%) 99.5793 1.6572 87.5497 99.5428
Time For Train (second) | 0.438048 2.465096 0.159209 5.836239
Time For Test (second) 0.568895 0.00639 0.033312 0.026006
Memory (GB) 0.295273 0.383064 0.289391 0.289413

The comparison of DR and ACC ratios of all algorithms with each other is
shown in Figure 4.11. The comparison of training and testing times of all algorithms
with each other is shown in Figure 4.12. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.13.

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
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20,0000%

0,0000%
DR (%) ACC (%)

B KNN mK-Means M Naive Bayes Random Forest

Figure 4.11: Comparison of DR & ACC of Third Experiment
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Figure 4.12: Comparison of Training and Testing Time of Third Experiment
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Figure 4.13: Comparison of Memory Consume of Third Experiment
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Screen shot of the program code for third experiment is shown in Figure 4.14.

K-Nearest Neighbors Classifier

Train and Test Data read...

There are 5 attack type

Attacks name are:

['dos', ‘u2r’', 'r2l’', 'probe’, 'normal’]

Attack type mapping created...

Train and Test data labels created...

Decomposed features created...

Number of features used : 20

Time taken to perform S5-fold cross validation : 4.706389
Cross validation scores :

[@.99555503 ©.99567392 ©.99531635 ©.99595126 ©.99646727]
Mean score of 5-fold cross validation : ©.995793

Time taken to train final model : ©.438@43

Predictions made using final meodel...

Time taken to make predictions on test data : ©.568895
Memory used : ©.295273 GB CPU usage : 33.200000
Confusion matrix :

[[13446 ) 2 1 e]
[ 5 2283 1 ) e]
[ e @ 9234 ) e]
[ e ) @ 209 e]
[ o 0 o 1 10]]

Accuracy score on test data is : ©.999603

For normal, Detection Rate is ¥ 99.97769350881106
For probe, Detection Rate is ¥ 99.73787680209699
For dos, Detection Rate is ¥ 1@0.0

For r2l, Detection Rate is % 1@@.0

For u2r, Detection Rate is ¥ 9©.9092909090989

DR is ¥ 98.1249322439998

Figure 4.14: Experiment 3 of KNN

The results of fourth experiment can be seen in Table 4.6. The fourth
experimental result indicated that KNN achieved a DR percent of 94.1806 % as
highest compared with other algorithms. Highest ACC Rate is 99.8849 % that
achieved by KNN algorithm. Highest DR percent for Normal achieved by KNN
algorithm, highest DR percent for Probe achieved by RF algorithm, highest DR
percent for DoS achieved by KNN algorithm, highest DR percent for R2L achieved
by KNN algorithm, and highest DR percent for U2R achieved by KNN algorithm.
Lowest time taken to train is 0.132482 second that achieved by NB algorithm and
lowest time taken to test is 0.005167 second achieved by KM algorithm. In addition,
lowest memory usage is 0.277580 GB that achieved by NB algorithm.
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Table 4.6: Experiment 4

KNN KM NB RF

DR (%) 94.1806 51.9481 66.115 91.9289
ACC (%) 99.8849 69.2323 88.7028 99.5475
DR For Normal (%) 99.8735 69.7821 89.3895 99.487
DR For Probe (%) 99.7378 449104 84.7532 99.7816
DR For DoS (%) 100 74.713 89.3546 99.8484
DR For R2L (%) 98.5645 61.244 30.7143 96.8912
DR For U2R (%) 72.7272 9.0909 36.3636 63.6364
Mean Of Cross V. (%) 99.4721 1.3816 88.9175 99.3816
Time For Train (second) | 0.300025 1.947047 0.132482 4.24552
Time For Test (second) 0.306337 0.005167 0.016904 0.024888
Memory (GB) 0.282036 0.372643 0.27758 0.279289

The comparison of DR and ACC ratios of all algorithms with each other is
shown in Figure 4.15. The comparison of training and testing times of all algorithms
with each other is shown in Figure 4.16. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.17.

Detection Rate & Accuracy Rate

100,0000%
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20,0000%

0,0000%
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B KNN mK-Means ™ Naive Bayes Random Forest

Figure 4.15: Comparison of DR & ACC of Fourth Experiment
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Figure 4.16: Comparison of Training and Testing Time of Fourth Experiment
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Figure 4.17: Comparison of Memory Consume of Fourth Experiment
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Screen shot of the program code for fourth experiment is shown in Figure 4.18.

K-Nearest Neighbors Classifier

Train and Test Data read...

There are 5 attack type

Attacks name are:

['dos', ‘u2r', 'r2l', 'probe’, 'normal’]

Attack type mapping created...

Train and Test data labels created...

Decomposed features created...

Number of features used : 10

Time taken to perform 5-fold cross validation : 2.6165€9
Cross validation scores :

[©.99452316 ©.99464201 ©.99464158 ©.99476045 ©.9950383 ]
Mean score of S-fold cross validation : ©.994721

Time taken to train final model : @.300025

Predictions made using final model...

Time taken to make predictions on test data : @.306337
Memory used : ©.282036 GB CPU usage : 16.100000
Confusion matrix :

[[13432 e 15 1 1]
[ 5 2283 1 ) e]
[ e e 9234 ) e]
[ 3 ) @ 206 e]
[ 2 ) o 1 8]]

Accuracy score on test data is : ©.998849

For normal, Detection Rate is ¥ 99.87359654992936
For probe, Detection Rate is ¥ 99.73787680209699
For dos, Detection Rate is ¥ 100.0

For r2l, Detection Rate is % 98.56459330143541
For u2r, Detection Rate is % 72.72727272727273

DR is ¥ 94.1806678761469

Figure 4.18: Experiment 4 of KNN

The results of fifth experiment can be seen in Table 4.7. The fifth experimental
result indicated that KNN achieved a DR percent of 92.5403 % as highest compared
with other algorithms. Highest ACC Rate is 99.8690 % that achieved by KNN
algorithm. Highest DR percent for Normal achieved by KNN algorithm, highest DR
percent for Probe achieved by KNN algorithm, highest DR percent for DoS achieved
by KNN algorithm, highest DR percent for R2L achieved by KNN algorithm, and
highest DR percent for U2R achieved by KNN algorithm. Lowest time taken to train
is 0.124872 second that achieved by NB algorithm and lowest time taken to test is
0.004403 second achieved by KM algorithm. In addition, lowest memory usage is
0.272610 GB that achieved by NB algorithm.
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Table 4.7: Experiment 5

KNN KM NB RF

DR (%) 92.5403 11.3342 65.3491 88.644
ACC (%) 99.869 5.4224 88.3773 99.742
DR For Normal (%) 99.9033 0.2007 90.4826 99.8736
DR For Probe (%) 99.7378 49.5849 80.166 99.6068
DR For DoS (%) 99.9025 2.1009 89.4304 99.8159
DR For R2L (%) 99.5215 4.7846 66.6667 98.4694
DR For U2R (%) 63.6363 0 0 45.4545
Mean Of Cross V. (%) 99.3499 0.8269 88.4578 99.2133
Time For Train (second) 0.231077 1.207119 0.124872 2.755741
Time For Test (second) 0.127503 0.004403 0.005636 0.024517
Memory (GB) 0.27552 0.366207 0.27261 0.274162

The comparison of DR and ACC ratios of all algorithms with each other is
shown in Figure 4.19. The comparison of training and testing times of all algorithms
with each other is shown in Figure 4.20. The comparison of memory consume of all

algorithms with each other is shown in Figure 4.21.

Detection Rate & Accuracy Rate
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B KNN mK-Means M Naive Bayes Random Forest

Figure 4.19: Comparison of DR & ACC of Fifth Experiment
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Figure 4.20: Comparison of Training and Testing Time of Fifth Experiment
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Figure 4.21: Comparison of Memory Consume of Fifth Experiment
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Screen shot of the program code for fifth experiment is shown in Figure 4.22.

K-Nearest Neighbors Classifier

Train and Test Data read...

There are 5 attack type

Attacks name are:

['dos', "u2r', "r2l", 'probe’, "normal’]

Attack type mapping created...

Train and Test data labels created...

Decomposed features created...

Number of features used : 5

Time taken to perform 5-fold cross validation : 1.753162
Cross validation scores :

[©.99297535 ©.99364979 ©.99345082 ©.993683872 ©.99372842]
Mean score of 5-fold cross validation : ©.993499

Time taken to train final model : ©.231077

Predictions made using final model...

Time taken to make predictions on test data : @.1275@3
Memory used : @.27552@0 GB CPU usage : 15.3@0000
Confusion matrix :

[[13436 1 3 a4 5]
[ 5 2283 1 ) e]
[ 9 @ 9225 e e]
[ 2 o @ 208 e]
[ 2 o ) 2 711

Accuracy score on test data is : ©.998690

For normal, Detection Rate is ¥ 99.98333853818127
For probe, Detection Rate is ¥ 99.73787680209699
For dos, Detection Rate is % 99.908253411306043
For r2l, Detection Rate is ¥ 99.52153110047347
For u2r, Detection Rate is ¥ 63.63636363636363

DR is ¥ 92.54032883803616

Figure 4.22: Experiment 5 of KNN

Scenario 2: Testing the scalability of NADS by using different size of KDD CUP data

set.

Scenario 2 Implementation: In order to see the scalability of NADS 3 different size
of KDD CUP data set were used as fallow:

1- 125,793 vector of KDD dataset were used to train NADS and 25,192 lines for

testing.

2- 494,021 vector of KDD dataset were used to train NADS and 25,192 lines for

testing.

3- 1,000,000 vector of KDD dataset were used to train NADS and 25,192 lines for

testing.
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As a result, the first experimental indicated that KNN achieved a DR percent
of 98.0379 % as highest compared with other algorithms. Highest ACC Rate is
99.9603 % that achieved by KNN algorithm. Highest DR percent for Normal achieved
by RF algorithm, highest DR percent for Probe achieved by RF algorithm, highest
DR percent for DoS achieved by KNN and RF algorithms, highest DR percent for
R2L achieved by KNN algorithm, and highest DR percent for U2R achieved by KNN
algorithm. Lowest time taken to train is 0.128126 second that achieved by NB
algorithm and lowest time taken to test is 0.08962 second achieved by NB algorithm.
In addition, lowest memory usage is 0.307209 GB that achieved by KM algorithm.

The second experimental result indicated that RF algorithm achieved a DR
percent of 94,8460 % as highest compared with other algorithms. Highest ACC Rate
is 99.903 % that achieved by KNN algorithm. Highest DR percent for Normal
achieved by RF algorithm, Highest DR percent for Probe achieved by KNN
algorithm, highest DR percent for DoS achieved by KNN algorithm, highest DR
percent for R2L achieved RF algorithm, and highest DR percent for U2R achieved by
KNN and KM algorithms. Lowest time taken to train is 0.517239 second that achieved
by NB algorithm and lowest time taken to test is 0.006631 second achieved by NB
algorithm. In addition, lowest memory usage is 0.246151 GB that achieved by KNN

algorithm.

The third experimental result indicated that RF algorithm achieved a DR
percent of 77.4958 % as highest compared with other algorithms. Highest ACC Rate
is 91.5092 % that achieved by KNN algorithm. Highest DR percent for Normal
achieved by RF algorithm, highest DR percent for Probe achieved by KNN algorithm,
highest DR percent for DoS achieved by KNN algorithm, highest DR percent for R2L
achieved by RF algorithm, and highest DR percent for U2R achieved by KM
algorithm. Lowest time taken to train is 1.079136 second that achieved by NB
algorithm and lowest time taken to test is 0.006515 second achieved by NB algorithm.
In addition, lowest memory usage is 0.456940 GB that achieved by KNN algorithm.
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The results of experiments for KNN can be seen in Table 4.8.

Table 4.8: Scalability Experiments for KNN Algorithm

1. Exp. 2. Exp. 3. Exp.

DR (%) 98.0379 94.1442 65.4249
ACC (%) 99.9603 99.1862 91.5092
DR For Normal (%) 99.9776 99.5538 96.9737
DR For Probe (%) 99.7815 98.2088 96.8108
DR For DoS (%) 100 99.2744 84.0805
DR For R2L (%) 99.5215 82.7751 12.9186
DR For U2R (%) 90.909 90.909 36.3636
Mean Of Cross V. (%) 99.6539 95.2493 99.2649
Time For Train (second) | 0.66159 190.729492 | 184.077617
Time For Test (second) 1.139292 1.826953 7.139832
Memory (GB) 0.304344 0.246151 0.45694

For KNN, the comparison of DR and ACC ratios of all experiments with each other

is shown in Figure 4.23. The comparison of training and testing times of all

experiments with each other is shown in Figure 4.24. The comparison of memory

consume of all experiments with each other is shown in Figure 4.25.
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Figure 4.23: Comparison of DR & ACC for KNN Algorithm
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Figure 4.24: Comparison of Training and Testing Time for KNN Algorithm
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Figure 4.25: Comparison of Memory Consume KNN Algorithm
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The results of experiments for KM can be seen in Table 4.9.

Table 4.9: Scalability Experiments for KM Algorithm

1. Exp. 2. Exp. 3. Exp.
DR (%) 47.1663 29.6809 16.1885
ACC (%) 68.756 6.375 1.3774
DR For Normal (%) 69.797 0.258 0.2899
DR For Probe (%) 44.9104 47.4006 0
DR For DoS (%) 74.713 5.0573 3.1405
DR For R2L (%) 0.9569 4.7846 4.7846
DR For U2R (%) 45.4545 90.909 72.7272
Mean Of Cross V. (%) 1.6965 2.8465 6.2429
Time For Train (second) | 3.872822 9.982122 23.515026
Time For Test (second) 0.009377 0.009005 0.008977
Memory (GB) 0.300694 0.82386 1.203556

For KM, the comparison of DR and ACC ratios of all experiments with each other is
shown in Figure 4.26. The comparison of training and testing times of all
experiments with each other is shown in Figure 4.27. The comparison of memory

consume of all experiments with each other is shown in Figure 4.28.
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Figure 4.26: Comparison of DR & ACC for KM Algorithm
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Figure 4.27: Comparison of Training and Testing Time for KM Algorithm
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Figure 4.28: Comparison of Memory Consume KM Algorithm
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The results of experiments for NB can be seen in Table 4.10.

Table 4.10: Scalability Experiments for NB Algorithm

1. Exp. 2. Exp. 3. Exp.

DR (%) 52.2071 51.6936 50.8574
ACC (%) 88.3773 86.0432 79.9817
DR For Normal (%) 90.4825 94.5052 82.9727
DR For Probe (%) 80.166 88.9035 96.1992
DR For DoS (%) 89.4303 75.0596 73.381
DR For R2L (%) 0.9569 0 1.7341
DR For U2R (%) 0 0 0
Mean Of Cross V. (%) 88.4578 93.2765 95.5095
Time For Train (second) 0.128126 0.517239 1.079136
Time For Test (second) 0.006212 0.006631 0.006515
Memory (GB) 0.505257 0.975502 1.12112

For NB, the comparison of DR and ACC ratios of all experiments with each other is
shown in Figure 4.29. The comparison of training and testing times of all
experiments with each other is shown in Figure 4.30. The comparison of memory

consume of all experiments with each other is shown in Figure 4.31.
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Figure 4.29: Comparison of DR & ACC for NB Algorithm
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Figure 4.30: Comparison of Training and Testing Time for NB Algorithm
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Figure 4.31: Comparison of Memory Consume NB Algorithm
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The results of experiments for RF can be seen in Table 4.11.

Table 4.11: Scalability Experiments for RF Algorithm

1. Exp. 2. Exp. 3. Exp.
DR (%) 92.2005 94.846 77.4958
ACC (%) 99.9166 99.087 90.3541
DR For Normal (%) 99.9553 99.7769 97.6801
DR For Probe (%) 99.8252 97.204 91.5684
DR For DoS (%) 99.9783 99.112 81.2216
DR For R2L (%) 97.6076 96.319 80.6452
DR For U2R (%) 63.6363 81.8182 36.3636
Mean Of Cross V. (%) 99.6483 95.606 99.4851
Time For Train (second) 8.095981 13.321269 | 34.635815
Time For Test (second) 0.028039 0.029124 0.029161
Memory (GB) 0.538746 0.969166 1.249306

For RF, the comparison of DR and ACC ratios of all experiments with each other is

shown in Figure 4.32. The comparison of training and testing times of all

experiments with each other is shown in Figure 4.33. The comparison of memory

consume of all experiments with each other is shown in Figure 4.34.
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Figure 4.32: Comparison of DR & ACC for RF Algorithm
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Figure 4.33: Comparison of Training and Testing Time for RF Algorithm
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Figure 4.34: Comparison of Memory Consume RF Algorithm

As the size of the dataset used increases, the memory usage size of the algorithm will
increase.
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Scenario 3: Testing the effect of feature scaling on classification.
Scenario 3 Implementation:

In order to see the effect of feature scaling on classification, codes without feature
scaling (Standard Scaler) are compared with the codes with feature scaling. The results

of experiments for KNN can be seen in Table 4.12.

Table 4.12: Feature Scaling Experiments for KNN

With Standard Scale Without Standard Scale

DR (%) 98.0379 99.8544
ACC (%) 99.9603 99.8968
DR For Normal (%) 99.9776 99.9703
DR For Probe (%) 99.7815 99.3884
DR For DoS (%) 100 99.9134
DR For R2L (%) 99.5215 100

DR For U2R (%) 90.909 100

Mean Of Cross V. (%) 99.6539 99.5467
Time For Train (second) 0.66159 0.687662
Time For Test (second) 1.139292 1.195943
Memory (GB) 0.304344 0.29446
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For KNN, the comparison of DR and ACC ratios of experiments with each other is
shown in Figure 4.35. The comparison of training and testing times of experiments
with each other is shown in Figure 4.36. The comparison of memory consume of

experiments with each other is shown in Figure 4.37.

DR & ACC
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Figure 4.35: Comparison of DR & ACC for KNN Algorithm
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Figure 4.36: Comparison of Training and Testing Time for KNN Algorithm
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Figure 4.37: Comparison of Memory Consume KNN Algorithm

Without a standard scaler for KNN, the experiment gives a better result because
numerical data is not being used in any mathematical process in KNN algorithm. The

results of experiments for KM can be seen in Table 4.13.

Table 4.13: Feature Scaling Experiments for KM Algorithm

With Standard Scale Without Standard Scale
DR (%) 47.1663 20
ACC (%) 68.756 36.6545
DR For Normal (%) 69.797 0
DR For Probe (%) 44.9104 0
DR For DoS (%) 74.713 100
DR For R2L (%) 0.9569 0
DR For U2R (%) 45.4545 0
Mean Of Cross V. (%) 1.6965 0.00000000000003
Time For Train (second) | 3.872822 1.659936
Time For Test (second) 0.009377 0.008598
Memory(GB) 0.300694 0.413994
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For KM, the comparison of DR and ACC ratios of experiments with each other is
shown in Figure 4.38. The comparison of training and testing times of experiments
with each other is shown in Figure 4.39. The comparison of memory consume of

experiments with each other is shown in Figure 4.40.
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Figure 4.38: Comparison of DR & ACC for KM Algorithm
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Figure 4.39: Comparison of Training and Testing Time for KM Algorithm
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Figure 4.40: Comparison of Training and Testing Time for KM Algorithm
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The results of experiments for NB can be seen in Table 4.14.

Table 4.14: Feature Scaling Experiments for NB

With Standard Scale

Without Standard Scale

DR (%) 52.2071 27.9698
ACC (%) 88.3773 38.7861
DR For Normal (%) 90.4825 3.9854

DR For Probe (%) 80.166 8.3879

DR For DoS (%) 89.4303 97.8774
DR For R2L (%) 0.9569 2.3256

DR For U2R (%) 0 27.2727
Mean Of Cross V. (%) 88.4578 38.8377
Time For Train (second) 0.128126 0.206092
Time For Test (second) 0.006212 0.063926
Memory (GB) 0.505257 0.312431

66




For NB, the comparison of DR and ACC ratios of experiments with each other is
shown in Figure 4.41. The comparison of training and testing times of experiments
with each other is shown in Figure 4.42. The comparison of memory consume of

experiments with each other is shown in Figure 4.43.
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Figure 4.41: Comparison of DR & ACC for NB Algorithm
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Figure 4.42: Comparison of Training and Testing Time for NB Algorithm

67



0,6
0,5
0,4
0,3
0,2

0,1

Memory

B With Standard Scaler

Figure 4.43: Comparison of Memory Consume NB Algorithm
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The results of experiments for RF can be seen in Table 4.15.

Table 4.15: Feature Scaling Experiments for RF Algorithm

With Standard Scale Without Standard Scale

DR (%) 92.2005 96.2967
ACC (%) 99.9166 99.9365
DR For Normal (%) 99.9553 99.9926
DR For Probe (%) 99.8252 99.6942
DR For DoS (%) 99.9783 99.9783
DR For R2L (%) 97.6076 100

DR For U2R (%) 63.6363 81.8182
Mean Of Cross V. (%) 99.6483 99.7904
Time For Train (second) 8.095981 9.033393
Time For Test (second) 0.028039 0.025188
Memory (GB) 0.538746 0.312523
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For RF, the comparison of DR and ACC ratios of experiments with each other is
shown in Figure 4.44. The comparison of training and testing times of experiments
with each other is shown in Figure 4.45. The comparison of memory consume of

experiments with each other is shown in Figure 4.46.
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Figure 4.44: Comparison of DR & ACC for RF Algorithm
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Figure 4.45: Comparison of Training and Testing Time for RF Algorithm
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Figure 4.46: Comparison of Memory Consume RF Algorithm

Scenario 4: Testing the effect of imbalanced data on classification.

Scenario 4 Implementation: In order to see the effect of data imbalance, K-fold cross

validation is applied to algorithm and every class accuracy are calculated in every

experiment.

K-fold cross validation is a statistical method, in order to reduce variability and

to avoid bias that involves partitioning the dataset into subsets, training the dataset on

a subset and use the other subset to evaluate the model’s performance (Kohavi 1995).

Steps of K-fold cross validation is:

1.
2.
3.
4.

the iterations.

Divide the dataset into k equal parts.
Use 1 part for testing and k-1 parts for training.
Repeat the procedure k times, rotating the test dataset.

Determine an expected performance metric based on the results across

Representation of K-fold cross validation is shown in Figure 4.47.
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Figure 4.47: K-Fold Cross Validation
4.5 Results

Detection rate and accuracy rate, classification speed and memory allocation

are discussed to clarify results.

4.5.1 Detection Rate and Accuracy Rate Results

The KNN algorithm has accuracy performance of 99.9603 %. This also shows
that KNN has better accuracy performance compared to other classification
algorithms. The aim of our research is to detect many attacks and classify them while
maximizing the generation of DR and minimizing test time. Experiments show that
NADS which use KNN algorithm is able to detect most of the attacks for the KDD
CUP99 data set at a high DR rate of 98.0379 %

4.5.2 Classification Speed Results

KNN uses 0.661590s for training and 1.139292s for testing phases. In terms of
training time, KNN has better speed performance compared to other classification
algorithms. In terms of testing time, KNN has not much difference than others

algorithm because testing time takes very small value for each algorithms.
4.5.3 Memory Allocation Results

Results shows that memory allocation for KNN is very small. The KNN
algorithm uses 0.304344 GB. Using less memory will cause the system to perform

more efficiently because it is dealing with less data.
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4.5.4 Overall Discussion

The number of examples is an influential factor on the percentage of the
classification accuracy and the training and testing time. The proposed NADS using
the NB algorithm outperforms all algorithms in terms of training time since it has the

lowest time. NADS using KM algorithm has lowest testing according to experiments.

With respect to DR 98.0379% performance, the proposed NADS using the
KNN algorithm outperforms all other algorithms. But it has the second lowest speed

in the comparison list.

With respect to Accuracy 99.9603% performance, KNN Algorithm
outperforms all other algorithms. KNN achieves better performance for the anomaly

detection at second highest speed.

In Figure 4.48, Figure 4.49 and Figure 4.50 first experiment of first scenario
for KM, NB and RF are shown. Confusion matrix of RF algorithm is the one which is

most similar with confusion matrix of KNN algorithm.

K-Means Classifier
Train and Test Data read...
There are 5 attack type
Attacks name are:
['dos®, ‘u2r', 'r21', ‘'probe', 'normal’]
Attack type mapping created...
Train and Test data labels created...
Decomposed features created...
Number of features used : 41
Time taken to perform 5-fold cross validation : 19.089063
Cross validation scores :
[16.93528674 17.27679116 16.92365334 16.92899478 16.76692781]
Mean score of 5-fold cross validation : ©.016965
Time taken to train final model : 3.872822
Predictions made using final model...
Time taken to make predictions on test data : ©.009377
Memory used : ©.380694 GB CPU usage : 14.100000
Confusion matrix :
[[9387 558 33 3205 266]
[ 8 1e28 89 339 825]
[ 195 1382 6899 7e1 57]
[ 68 10 1 2 128]
[ 5 e e 1 511
Accuracy score on test data is : ©.68756@
For normal, Detection Rate is % 69.79701@93@18e68
For probe, Detection Rate is ¥ 44.91844124071647
For dos, Detection Rate is ¥ 74.71301711067792
For r2l, Detection Rate is ¥ ©.956937799@43@622
For u2r, Detection Rate is ¥ 45.45454545454545
DR is ¥ 47.166390507032716

Figure 4.48: Experiment of KM Algorithm
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Naive Bayes Classifier

Train and Test Data read...

There are 5 attack type

Attacks name are:

['dos', 'u2r', 'r21', 'probe’, 'normal’]

Attack type mapping created...

Train and Test data labels created...

Decomposed features created...

Number of features used : 5

Time taken to perform 5-fold cross validation : ©.827913
Cross validation scores :

[©.88395444 ©.88724401 ©.88342462 ©.88250705 ©.88576192]
Mean score of 5-fold cross validation : ©.884578

Time taken to train final model : ©.128126

Predictions made using final model...

Time taken to make predictions on test data : ©.006212
Memory used : ©.505257 GB CPU usage : 9.902000
Confusion matrix :

[[12169 1229 Se 1 o]
[ 147 1835 307 [ o]
[ 883 93 8258 ) o]
[ 187 20 ] 2 o]
£ 1 ) ) ) el]

Accuracy score on test data is : ©.883773

For normal, Detection Rate is ¥ 90.48256375938732
For probe, Detection Rate is ¥ 8@.166€1135867191
For dos, Detection Rate is ¥ 89.43036603855317
For r2l, Detection Rate is ¥ ©.9569377990430622
For u2r, Detection Rate is % ©.0

DR is % 52.2071757911311

Figure 4.49: Experiment of NB Algorithm

Random Forest Classifier

Train and Test Data read...

There are 5 attack type

Attacks name are:

[‘dos’, 'u2r', 'r2l1', 'probe’, 'normal’]

Attack type mapping created...

Train and Test data labels created...

Decomposed features created...

Number of features used : 41

Time taken to perform 5-fold cross validation : 32.351665
Cross validation scores :

[©.99575346 ©.99662645 ©.99626895 ©.99638789 ©.99738022]
Mean score of 5-fold cross validation : ©.996483

Time taken to train final model : 8.095981

Predictions made using final model...

Time taken to make predictions on test data : ©.028@38
Memory used : ©.538746 GB CPU usage : 13.500000
Confusion matrix :

[[13443 2 1 3 o]
[ 4 2285 ] e e]
[ 2 @ 9232 o o]
[ 3 ) 1 204 1]
[ 4 [ ] ) 7]]

Accuracy score on test data is : ©.999166

For normal, Detection Rate is ¥ 99.95538701762213
For probe, Detection Rate is ¥ 99.82525120139799
For dos, Detection Rate is ¥ 99.97834091401343
For r2l, Detection Rate is ¥ 97.60765550239235
For u2r, Detection Rate is ¥ 63.63636363636363

DR is ¥ 92.20@5996543579

Figure 4.50: Experiment of RF Algorithm
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CHAPTER S
CONCLUSION

The main aim of this thesis is to propose a Network Anomaly Detection
System using machine learning, which helps to detect anomalies and respond with
appropriate actions. The purpose of the anomaly detection system is to reveal detectable
and undetected anomalies. The proposed NADS system uses the KNN Algorithm for
classification, PCA Algorithm for reduction and it classifies connections as normal or

abnormal.

Results show that the proposed NADS achieved highest classification ACC of
99.9603 % by using the KNN and PCA algorithms and second highest speed after NB
which has the highest speed. KNN performance is very high in terms of training time
since it has the second lowest time. But it was not possible to verify how the system
will behave on larger networks and using bigger dataset and it was not possible to

simulate and recreate all possible intrusions and attacks.

Many studies on NADS using machine learning have been recently carried out
and new technologies introduced. As a future study, this study can be expanded in
different ways such as using other packet sniffing technologies in NADS. In addition,
different data sets can be used to test the proposed NADS system.
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APPENDICES
Appendix: A
Machine Learning and Machine Learning Python Libraries

Machine learning is the data analytical method, basically based on algorithms,
math and statistics, that applies the ability of learning to machines through data which
gathered from the natural experience of humans and animals. We have used some

Python Libraries in building our NADS.
1. Numpy (Numerical Python)

Numpy that stands for Numerical Python contains some arrays that operates
rapid mathematical operations. Random numbers can be generated with the Numpy
Library. Many of mathematical operations can be performed from matrix

multiplication to linear algebra operations and Fourier transforms.
2. Pandas

Pandas is an easy-to-use, high-performance data configuration and data
analysis library. With this library data can be read and written from many different
sources such as excel, json, text (csv) and database. It contains table structures which
are one-dimensional as named Serie, 2-dimensional named as DataFrame. Pandas
tables can keep many different type of variables (digital, categorical, date etc.).
Important data processing steps, such as data conversion, filtering, can be easily

performed with this library.
3. Scikit-Learn

This widely used library has many machine learning algorithms. In addition to
these algorithms, this library also includes dimensional reduction, data processing and

model selection methods.

78



Appendix: B

Attributes description of KDD CUP 99 dataset.
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Appendix: C

‘Fields Name File’ shows types of attacks. ‘Attack Types File’ maps its

columns to the attack column of main file.

Fields Name File
A B &
1 !duration |.continuous_.
2 |protocol_type symbolic
3 |service symbolic
4 | flag symbolic
S .src_bytes continuous
6 | dst_bytes continuous
7 :Iand continuous
8 |wrong_fragment continuous
9 urgent continuous
10 hot continuous
11  num_failed_logins continuous
12 |logged_in continuous
13 'num_compromised continuous
14 root_shell continuous
15 su_attempted continuous
16 ' num_root continuous
17 |num_file_creations continuous
Attack Types File

A A ' B . €

1 back dos

2 |buffer_overflow u2r

3 |ftp_write r2l

4 guess_passwd r2l

5 imap r2l

6 |ipsweep probe

7 |land dos

8 |loadmodule ur

9 |multihop r2l

10 |neptune dos

11 |nmap probe

12 |perl u2r

13 |phf r2l

14 pod dos

15 | portsweep probe

16 | rootkit ur

17 |satan probe

18 |smurf dos
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Appendix: D

Python Code for K-Nearest Neighbor Classification Algorithm

1 import pandas as pd

2 import numpy as np

3 import time

4 from sklearn.metrics import accuracy score

5 from sklearn.metrics import confusion_mar.rix

(3 from sklearn.preprocessing import LabelEncoder

7 from skle=arn.preprocessing import MinMaxScaler

8 from sklearn.decomposition import PCA

a from sklearn.neighbors import KNeighborsClassifier

10 from sklearn.model selection import cross_val_score

11 import psutil

12 import os

13

14

15 print ("K- Neighbors Classi

1le # Reads the train and test data

17

18 $train = pd.read _csv('lMillion.csv', header=None)

1a #train = pd.read csv('S00K.csv', header=None)

20 train = pd.read“csv(‘ 1+.c3v', header=None)

21 test = pd.read csv('./ est+.csv', header=None)

22 print("Train and Test Data read...")

23

24

25

26 §# Reads "Field Names.csv". Use this to set the names of train and test data columns
27 columns = pd.read csv('Fizld Names.csv', header=None)

28 columns.columns = ['nams', 'type']

29 train.columns = columns['name']

30 test,.columns = columns('name']

31

32

33

34 # Read Attack Types.csv

35 ¢ Use this to create a mapping from attack types to final labels (Normal, Dos, R2L, Prob, U2R)
36 attackType = pd.read csv('Attack v', header=None)
37 attackIype.columns = ['Name', 'I

38 attackMap = {}

38

40

41

42 $find count of type from acctackType

43 attackIypeCount = len(attackType['T bl | .dzop_du,pl:ica\:es {))
44 attackNames = attackType['Type'].drop_duplicates().values.tolist()
45 print('There are ' + scr(accackTypeCount) + ' acttack type')
46 print('Attacks name are:')

s

print (attackNames)
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51 # Creates attackMap map which contains a mapping between actack type and the final label
52 for i in range(len(atcackType)):

53 attackMap[attackType['Name'][i]] = attackType['Typ='][i]

54 print ("Attack type mapping created...")

55

56

57

S8 # Add a new variable called 'label' which contains the final label
58 train['label'] = train['a:ta:k“:).l'pe'].nap[ar.l:acmap]

60 test('label'] = test['attack_type'].map(attackMap)

6l

62

63 # The variable 'label' is stored in different variables

64 # This is required to keep the dependent variable separate from the independenc variable

65 trainlabel = train['label']
66 testLabel = test['label']

67

68

€9

10 # attack_type and label variables are removed from the train and test data
71 # 3o only features are remained in train and test data

T2 train.drop(['attack_type', 'label'], axis=l, inplace=True)
73 test.drop(['attack_type', 'label'], axis=l, inplace=True)
74 print ("Train and Test data labels created...")

75

76

7

78 $# Transform the existing nominal variables into the integer coded variables using the LabelEncoder
78 for col in ('protocol_type', 'flag', 'service']:
80 le = LabelEncoder ()

8l lel = LabelEncoder ()

82 le.fit(train[col])

83 lel.fit(test[col])

B4 trainfcol] = le.transform(trainfcol])

85 test[col] = lel.transform(testcol])

ge

87

13

g9 § for Stadart Scaler

90 scaler = MinMaxScaler() $#scale between 0 and 1
a1 train = scaler.fi:_:ranstomt:ram)

a2 test = scaler.fit_transform(test)

94 total = np.concatenate([train, test] )

58 $# Decomposition features are generated for both train and test daca
ag pca = PCA(n_components=41, random state=100)

100 pca.fit(total)

101 train = pca.transform(train)

102 test = pca.transform(cest)
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105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

121

145
146
147
148
149
150
15T
152
153
154
155

print("Decomposed features created...")
print("Number of features used : %¥d" % train.shape[l])

# Performing k-fold Cross validation

starcTime = time.clock()

KNN = KNeighborsClassifier (n_neighbors = 1)

score = croas_val_scozc{KHN, train, trainlabel, cv=S5)

endTime = time.clock()

print{"Time taken to perform 5-fold cross validaction : %f" % (endTime - atarctTime))
print("Cross validation scores : ")

print(score)

print("Mean score of 5-fold cross validation : %f" % score.mean())

$ Final Testing and Evaluate Performance

# Train the KNN classifier model by original train data and got optimized parameter
startTime = time.clock()

KNN2 = KNeighborsClassifier(n_neighbors = 1)

EMN2.fit(train, trainLabel)

endTime = time.clock()

print("Time taken to train final model : %f" % (endTime - scarctTime))
print("Predictions made using final model...")

# Predictions for test data and evaluate its performance

startTime = time.clock()

pred = KNN2.predict (test)

endTime = time.clock()

cpuUsage = psutil.cpu percent()

pid = os.getpid()

py = psutil,Process (pid)

memoryUse = py.memory info() [0] / 2. ** 30

print("Time taken to make predictions on test data : %f" & (endTime - starcTime))
print ("Memory used : $%f GB CPU usage : $f" % (memoryUse, cpulUsage))

fcalculate scores and confusion matrix

Classes = ['normal‘', ‘'probe’', 'dos', 'r2l1','ulr’' ]

acc = accuracy_score(y_pred-pred, y_true—testLabel}

con_matrix = confusion matrix(y_pred=pred, y true=testlabel, labels=Classes)
print("Confusion matrix : ")

print (con_matrix)

# Print accuracy and detection rate
acc = accuracy_score (y_pred=pred, y true=testlabel)
print("Accuracy score on test data is : ¥" % acc)
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157 sumDr = 0
158 [Hfor i in range(con matrix.shape([0]):

158 det_rate = 0

160 H for j in range(con_matrix.shape[l]):

161 [ itit=3:

162 det_rate += con matrix[i] [j]

163 H if con matrix[i][i] != 0 or (det_rate + con_mactrix[i][i]) !'= O:
le4 det_rate =100* con matrix[i] [i]/(det_rate + con_matrix[i][i])
165 sumDr += det_rate

166 print("For " + Classes[i] + ", Detection Rate is ¥ " + str(det_rate))
167 [ else:

168 print("For " + Classes[i] + ", Detection Rate is % 0")

169

170 DR = sumDr/attackTypeCount
171 print("DR is & " + str(DR))
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Appendix: E

Python Code for K-Means Classification Algorithm

1 import pandas as pd

2 import numpy as np

3 import time

4 from sklearn.metrics import accuracy_score

5 from sklearn.metrics import confusion matrix

€ from sklearn.preprocessing import LabelEncoder

7 from sklearn.preprocessing import MinMaxScaler

g from sklearn.decomposition import ECA

] from sklearn.cluster import KMeans

10 from sklearn.model selection import cross_val score

11 import psutil

12 import os

13

14

15

16 print (" eans Classifier"

17 # Reads the train and test data

18

18 frrain = pd.read csv('lMillion.csv', header=None)

20 train = pd.read csv('S00K.csv', header=None)

21 #train = pd.read_csv('./KDDTrain+.csv', header=None)

22 test = pd.read csv('./KDDTest+.csv', header=None)

23 print({"Train and Test Data read...")

24

25

26

27 # Reads "Field Names.csv". Use this to set the names of train and test data columns
28 columns = pd.read csv('Field Names.csv', header=None)

29 columns,.columns = ['nams', 'type']

30 train.columns = columns['name’]

31 test.columns = columns|['name']

32

33

34

35 # Read Attack Types.csv

36 # Use this to create a mapping from attack types to final labels (Normal, Dos, R2L, Prob, U2R)
37 attackType = pd.read csv('Attack Types.csv', header=None)

8 attackIype.columns = ['Name',6 'Type']

38 attackMap = {}

40

+1

42

43 #find count of type from attackIyps

44 attackTypeCount = len(attackType('Type'].drop_duplicates())
45 attackNames = actackIype['Type'] .drap_duplica\:es {) .values,colist ()
46 print (' re are ' + scr(actackTypeCount) + ' attack type')
47 print('Atctacks name are:')

48 print (attackNames)
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# Creates atcackMap map which contains a mapping between attack type and the final label
for i in range(len(attackIype)):

attackMap[attackType['Name'][i]] = attackType['Type'][i]
print ("Attack type mapping created...")

# Add a new variable called 'label' which contains the final label
train['label'] = train['actack_type'].map(attackMap)
test['label'] = cesc['attack _type'].map(attacikMap)

# Transform the existing nominal variables into the integer coded variables using the LabelEncoder
for col in ['prot 1_type', 'flag’', 'service', 'label']:

le = LabelEncoder ()

lel = LabelEncoder ()

le.fiv(cvrainfcol])

lel.fit (vest[col])

trainfcol] = le.transform(craincol])

test[col] = lel,.transform(testcol])

# The variable 'label' is stored in different variables

# This is required to keep the dependent variable separate from the independent variable
trainlabel = train['label']

testLabel = test['label’]

# attack type and label variables are removed from the train and test data
# 30 only features are remained in train and test data
train.drop(('actack type', 'label'], axis=l, inplace=True)
test.drop((['actack typs', 'label'], axis=l, inplace=True)

print("Train and Test data labels created...")

# for Stadart Scaler

scaler = MinMaxScaler () $#scale between 0 and 1
train = scaler.fit_transform(train)

test = scaler.fit_transform(test)

total = np.concatenate([train, test] )

# Decomposition features are generated for both train and test data
pca = PCA(n components=41, random state=100)

pea.fit (total)

train = pca.cransform(train)

test = pca.transform(test)
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105 print{"Decomposed features created...")

106 print ("Number of features ussd : %d" % train.shape[l])

107

108

109

110 # Performing k-fold Cross validation

111 startTime = time,clock()

112 KMl = KMeans(n clusters = 5, init = 'random', random state=100)

113 HMl.fic(train, trainLabel)

114 score = abs(cross_val_score(EMl, train, trainlabel, cv=5)) /1000

115 endTime = time.clock()

116 print("Time taken to perform 5-fold cross validation : %" % (endTime - starcTime))
117 print({"Cross validation scores @ ")

118 print(score)

118 print("™Mzan score of 5-fold cross validaction : %£" % abs(score.mean()/1000))
120

121

122

123 # Final Testing and Evaluate Performance

124 § Train the KNN classifier model by original train dava and got optimized parameter
125 startTime = time.clock()

126 KM2 = KMeans(n clusters = 5, init = 'k-means++' )

127 KM2.fic(train, trainlabel)

128 endTime = time.clock()

128 print("Time taken to train final model : %f" & (endTime - scarcTime))

130 print({"Predictions made using final model...")

131

132

133

134 § Predictions for test data and evaluate its performance

135 startTime = time.clock()

136 pred = KM2.predict(cesc)

137 endTime = time.clock()

138 cpulUsage = psutil.cpu_percent()

138 pid = os.getpid()

140 py = psutil.Process(pid)

141 memorylse = py.memory info() (0] / 2. #+ 30

142 print("Time taken to make predictions on test data : ¥" % (endTime - startTime))
143 print("Memory used : % GE CPU usage : %£" % (memoryUse, cpuUsage))

154

145

146 fcalculate scores and confusion matrix

147 Classes = ['normal', 'probe', 'dos', 'r2l','u2z' ]

148 acc = accuracy_score(y pred=pred, y _true=testlabel)

149 con_matrix = confusion mactrix(y pred=pred, y truestesctlabel, labels= list(le.cransform(Classes))) #, labels=Classes
150 print("Confusion matrix : ")

151 print(con_matrix)
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sumDr = O
for i in range(con_matrix.shape[0]):
det_rate = 0
for j in range(con matrix.shape([l]):
if 4 Imj
det_rate += con_matrix[i][j]
if con_matrix[i][i] != 0 or (der_rate + con matrix[i][i]) != O:
det_rate =100% con matrix[i][i]/(det_rate + con_matrix[i][i])
sumDr += det_rate
print("For " + Classes[i] + ", Detection Rate is ¥ " + str(det_rate)})
else:
print("For " + Classes[i] + ", Detection Rate is % 0")

DR = sumDr/attackTypeCount
print("DR is & " + atr(DR))
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Appendix: F

Python Code for Naive Bayes Classification Algorithm

import pandas as pd

2 import numpy as np

3 import time

4 from sklearn.metrics import accuracy_score

5 from sklearn.metrics import confusion matrix

€ from sklearn.preprocessing import LabelEncoder

7 from sklearn.preprocessing import MinMaxScaler

8 from sklearn.decomposition import PCA

9 from sklearn.naive_bayes import GaussianNB

10 from sklearn.model selection import cross val score

11 import psutil

12 import os

13

15

16 print("Naive Bayes Classifier"

17 § Reads the train and test data

18

15 ftrain = pd.:ead_csv{'ll-ullion.csv', header=None)

20 frrain = pd.read csv('500K.csv', header=None)

21 train = pd.read csv('./ ain+.csv', header=None)

22 test = pd.read_csv('./¥DDTest+.csv', header=None)

23 print("Train and Test Data read...")

24

25

26

27 §# Reads "Field Names.csv". Use this to set the names of train and test data columns
28 columns = pd.read csv('Field Names.csv', header=None)

29 columns.columns = ['name', 'type']

30 train.columns = columns('name']

31 test.columns = columns['name']

32

33

34

35 §# Read Attack Types.csv

36 # Use this to create a mapping from attack types to final labels (Normal, Dos, R2L, Prob, UZR)
37 attackType = pd.read csv('Attack Types.csv', header=None)
38 attackType.columns = ['Name', 'Type']

39 attackMap = {}

40

41

42

43 $find count of type from attackTIype

44 attackTypeCount = len(attackType['Type'].drop duplicates())
45 attackNames = attackType(['Type'].drop duplicates().values.tolist()
46 print('There are ' + str(attackIypeCount) + ' attack type')
47 print('Attacks name are:')

48 print (attackNames)
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52 # Creates attackMap map which contains a mapping between attack type and the final label
53 for i in range(len(attackIype)):

54 attackMap[attackType['Name'][i]] = attackType['Type'][i]
55 print ("Attack type mapping created...")

56

57

58

59 # Add a new variable called 'label' which contains the final label
60 train['label'] = vrain['attack type'].map(attackMap)
6l test['label'] = test[’'attack type'].map(attackMap)

64 §# The variable 'label' is stored in different variables

65 § This is required to keep the dependent variable separate from the independent variable
66 trainlabel = train['label']

67 testlabel = tesc['label']

68

69

70

71 # attack_type and label variables are removed from the train and test data
72 # so only features are remained in train and test data

13 train.drop(['attack type', 'label'], axis=l, inplace=True)
74 test.drop(['actack _type', 'label'], axis=l, inplace=True)
75 print("Train and Test data labels created...")

76

7

8

79 §# Transform the existing nominal variables into the integer coded variables using the LabelEncoder
80 for col in ['protocol_type', 'flag', 'service']:
81 le = LabelEncoder()

82 lel = LabelEncoder ()

83 le.fit(train[col])

84 lel.fit(vest[col])

85 train[col] = le.transform(train[col])

86 test[col] = lel.transform(test[col])

87

88

89

90 # for Stadart Scaler
a1 scaler = MinMaxScaler() #scale between 0 and 1
a2 train = scaler.fit_transform(train)

a3 test = scaler.fit_transform(test)

94 total = np.concatenate([train, test] )

93

Se

97

98 $# Decomposition features are generated for both train and test data

99 pca = PCA(n_components=3, random state=100)
100 pca.fit(total)
101 train = pca.cransform(train)
102 test = pca.transform(test)
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105
106
107

108
110
111
112
113
114
11S
116
117
118
119
120
121
122
123

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

155

print ("Decomposed features created...")
print ("Number of features used : %d" % train.shape[l])

§ Performing k-fold Cross validation

startTime = time.clock()

GNB1 = GaussianNB()

score = cross_val_score(GNBl, train, trainLabel, cv=5)

endTime = time.clock()

print ("Time taken to perform 5-fold cross validation : %f" % (endTime - startTime))
print("Cross validation scores : ")

print (score)

print ("Mean score of 5-fold cross validation : %$f" & score.mean())

# Final Testing and Evaluate Performance

# Train the KNN classifier model by original train data and got optimized parameter
startTime = time.clock()

GNB2 = GaussianNB()

GNB2.fit(train, trainLabel)

endTime = time.clock()

print("Time taken to train final model : %f" % (endTime - startTime))

print ("Predictions made using final model...")

$# Predictions for test data and evaluate its performance

startTime = time.clock()

pred = GNB2.predict (test)

endTime = time.clock()

cpulUsage = psutil.cpu_percent()

pid = os.getpid()

py = psutil.Process(pid)

memoryUse = py.memory info() [0] / 2. ** 30

print("Time taken to make predictions on test data : %f" % (endTime - startTime))
print ("Memory used : %f GB CPU usage : $%f" % (memoryUse, cpuUsage))

fcalculate scores and confusion matrix

Classes = ['normal', 'probe', 'dos', 'r2l','u2r' ]

acc = accuracy score(y pred=pred, y true=testlabel)

can_mc:i.x = contu.sion_m:rix{y_pxed-ﬂpxed, y_:xue—tesuabel. labels=Classes)
print ("Confusion matrix : ")

print(con_matrix)

# Print accuracy and detection rate
acc = accuracy score(y pred=pred, y true=testlabel)
print ("Accuracy score on test data is : %f" % acc)
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157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171

Clfor i in range (con_ma:rix .shape[0]):

sumDr = 0

det_rate = 0

for j in range(con_matrix.shape[l]):

if i 1=3 :

det_rate += con_matrix[i][]j]
if con_matrix[i][i] !'= O or (det_rate + con matrix[i][i]) != O:
det_rate =100% con_matrix([i][i]/(det_rate + con_matrix[i][i])

sumDr += det_rate

print("For " + Classes[i] + ", D

else:

e

c

e

c

T

ion Rate i3 % " + str(det_rate))

print("For " + Classes[i] + ", Detection Rate is % Q")

DR = sumDr/attackTypeCount
print("DR is § " + str(DR))
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Appendix: G

Python Code for Random Forest Classification Algorithm

import pandas as pd
import numpy as np

1

3 import time

4 from sklearn.metrics import accuracy_score

S from sklearn.metrics import confusion matrix

[ from sklearn.preprocessing import LabelEncoder

7 from sklearn.preprocessing import MinMaxScaler

8 from sklearn.decomposition import PCA

g from sklearn.ensemble import RandomForestClassifier

10 from sklearn.model selection import cross_val score

1Y import psutil

12 import os

13

14

15

16 print ("Random Forest Classifier")

17 § Reads the train and test data

18

18 train = pd.:ead_cs':t'lﬁ;llion.csv', header=None)
20 §train = pd.:ead_csv:'SGOK.csv', header=None)
21 train = pd.:ead_csv(',; DDTrain+.csv', header=None)
22 test = pd.read csv('./KDDTest+.csv', header=None)
23 print{"Train and Test Data read...")
24
25
28
27 §# Reads "Field Names.csv". Use this to set the names of train and test data columns
28 columns = pd.read csv('Field Names.csv', header=None)
29 columns,.columns = ['nams’,

30 train.columns = columns('na

31 test.columns = columns['name’']

33

34

35 # Read Actack Types.csv

36 § Use this to create a mapping from attack types to final labels (Normal, Dos, R2L, Prob, U2R)
37 attackIype = pd.:ead_csv{'.‘-.:':e:k Types.csv', headers=Hone)

8 attacklype.columns = ['Name', 'I

38 attackMap = {}

40

41

42

43 #find count of type from attackTIype

44 attackTypeCount = len(attackIype[' '].drop_duplicates())
45 attackNames = attackType['Type'].drop_duplicates().values.tolist()
46 are ' + str(attackTypeCount) + ' attack type')
47 print('Attacks name are:')

48 print (attackNames)
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55

102
103
104

$# Creates attackMap map which contains a mapping between attack type and the final label
Ttnr i in range(len({accackType)):
attackMap[attackType['Nams'][i]]) = attackIype['Tvpe']([i]
print{"Attack type mapping created...")

# Add a new variable called 'label' which contains the final label
train['label'] = train['attack_type'].map(attackMap)
test['label'] = test['attack type'].map(attackiap)

§ The variable 'label' is stored in different variables

# This is required to keep the dependent variable separate from the independent variable
trainlabel = train['label']

testLabel = tesc['label’']

# attack_type and label variables are removed from the train and test data
$# so only features are remained in train and test data
train.drop(['attack_type', 'label'], axis=l, inplace=True)
test.drop(['actack_type', 'label'], axis=l, inplace=True)

print{"Train and Test data labels created...")

# Transform the existing nominal variables into the integer coded variables using the LabelEncoder
for col in ['protocol_type', 'flag', 'service']:

le = LabelEncoder()

lel = LabelEncoder()

le.fit(train(col))

lel.fit(test[col])

train[col] = le.cransform(trainfcol])

test[col] = lel.transform(testcol])

§ for Stadart Scaler

scaler = MinMaxScaler() #scale between 0 and 1
train = scaler.fit_transform(train)

Test = scale:.Iit_t:anatorn[test]

total = np.concatenate ([train, test] )

# Decomposition features are generated for both train and test data
pca = PCA(n_components=41, random state=100)

pca.fit(total)

train = pca.ctransform(train)

test = pca.transform(test)
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107 print ("Decomposed features created...")

108 print ("Number of features used : %¥d" % train.shape[l])

109

110

111

112 §# Performing k-fold Cross validation

113 startTime = time.clock()

114 RFC1 = RandomForestClassifier(n estimators = 10, criterion = 'entropy' )
315 score = cross_val score(RFCl, train, trainlabel, cv=3)

116 endTime = time.clock()

117 print ("Time taken to perform S5-fold cross validation : %f" & (endTime - sctartTime))
118 print ("Cross validation scores : ")

1149 print(scoze)

120 print ("Mean score of S-fold cross validation : %£" % score.mean())

121

122

123

124 §# Final Testing and Evaluate Performance

125 # Train the KNN classifier model by original train data and got optimized parameter
12¢ startTime = time.clock()

12T RFC2 = Randonroresct::l.assiﬂer(n_es:imtors = 10, criterion = 'entropy’' )

128 RFC2.fit (train, trainLabel)
129 endTime = time.clock()

130 print ("Time taken to train final model : %£f" & (endTime - startTime))
131 print ("Predictions made using final model...")

132

133

134

135 $# Predictions for test data and evaluate its performance

136 startTime = time.clock()

137 pred = RFC2.predict (test)

138 endTime = time.clock()

139 cpuUsage = psutil.cpu_percent()

140 pid = os.getpid()

141 pY = psutil.Process(pid)

142 memoryUse = py.memory info()[0] / 2. #* 30

143 print ("Time taken to make predictions on test data : $f" % (endTime - starctTime))
144 print ("Memory used : %f GB CPU usage : %f" % (memoryUse, cpulsage))

145

l4s
147 $calculate scores and confusion_matrix
148 Classes = ['normal’, 'probe', 'dos', 'r2l','uir' }

148 acc = accuracy_score(y_pred=pred, y_true=testlabel)
150 con_matrix = confusion matrix(y_pred=pred, y_true=testlabel, labels=Classes)
151 print("Confusion macrix : ")

152 print (con_matrix)

153

154

155 # Print accuracy and detection rate

156 acc = accuracy score(y pred=pred, y true=testlabel)
157 print ("Accuracy score on test data is : %f" % acc)
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158 sumDr = 0
160 [Hfor i in range(con_matrix.shape[0]):

16l det_rate = 0

le2 O for j in range(con_matrix.shape[l]):

163 H ifil=3j:

164 det_rate += con matrix([i][j]

165 o if con matrix[i][i] != 0 or (det_rate + con_matrix[i][i]) != O:
166 det_rate =100* con matrix[i][i]/(det_rate + con_matrix[i][i])
167 sumDr += det_rate

168 print("For " + Classes[i] + ", Detection Rate is % " + str(det_rate))
lea OH else:

170 print("For " + Classes[i] + ", Detection Rate is % 0")

171

172 DR = sumDr/attackTypeCount
173 print("DR is & " + str(DR))
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