6T0¢ 439N Ld3S

Burassulbug Ja1ndwo) pue SIIU0I93|T Ul IS IN

NVLOA NVHAVE

T.C.
HASAN KALYONCU UNIVERSITY
GRADUATE SCHOOL OF
NATURAL & APPLIED SCIENCES

NETWORK MONITORING SYSTEM USING MACHINE
LEARNING

COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK TRAFFIC
MONITORING

M. Sc. THESIS
IN
ELECTRONICS AND COMPUTER ENGINEERING

BAYRAM KOTAN
SEPTEMBER 2019

Network Monitoring System Using Machine Learning

Comparative Analysis of Classification Techniques for
Network Traffic Monitoring

M. Sc. THESIS
IN
ELECTRONICS AND COMPUTER ENGINEERING
HASAN KALYONCU UNIVERSITY

Supervisor

Assistant Professor Mohammed K. M. MADI

Bayram KOTAN
SEPTEMBER 2019

©2019 [Bayram KOTAN].

GRADUATE SCHOOL OF NATURAL &
APPLIED SCIENCES INSTITUTE
M.Sc. ACCEPTANCE AND APPROVAL FORM

Electronics-Computer Engineering M.Sc. (Master Of Science) programme
student Bayram KOTAN prepared and submitted the thesis titled “Network
Monitoring System Using Machine Learning Comparative Analysis Of
Classification Techniques For Network Traffic Monitoring” defendant
successfully on the date of/..../.... and accepted by the jury as an M.Sc. Thesis.

Position Title. Name and Surname Signature:

Department/University

Jury Head Assist. Prof. Dr. Tolgay KARA

Electrical and Electronics Engineering
Department
Gaziantep University

M.Sc. Supervisor Assist. Professor Mohammed K. M. MADI 7/ /\)0

Jury Member / (//L

Computer Engineering Department
Hasan Kalyoncu University

Jury Member Assist. Prof. Dr. Saed AL-QARALEH @

Computer Engineering Department
Hasan Kalyoncu University

This thesis is accepted by the jury members selected by the institute
management board and approved by the institute management board.

Dokiiman no: ENS.FR.31 Yayin Tarihi: 26.03.2018 Rev no/Tarih: 00/--

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results
that are not original to this work.

Bayram KOTAN

Signature

Ve

ABSTRACT
NETWORK MONITORING SYSTEM USING MACHINE
LEARNING COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK TRAFFIC MONITORING

KOTAN, BAYRAM
M.Sc. in Electronics and Computer Engineering
Supervisor: Assistant Professor Mohammed K. M. MADI
September 2019
124 pages

Online network traffic classification continues to be the focus of long-term interest.
Network traffic monitoring and analysis can be done for many different reasons. Generally, it
provides raw data input for network monitoring, Quality of Service (QoS) and intrusion
detection. Specifically, network traffic monitoring enables the network analyst to understand
network resources use and identify network performance. With this information, network
analyst may adjust QoS policies to control and manage network resources. This aim is
achieved by setting priorities for specific types of data in the network and logging the traffic
to comply with the regulations. Network traffic monitoring can be used to create models for
academic research. In this thesis, a machine-learning approach that accurately classifies
network traffic using Decision Tree Algorithm (DT) is presented and implementing the
Principal Component Analysis (PCA) Algorithm for reduction, side by side, to reach the best
optimization. Machine learning technology will generate better solutions to monitor and
classify network traffic as a result of highly accurate data mining technics and advanced
statistics. The purpose of this thesis is to build a Network Monitoring System (NMS) using
modern machine learning technologies that works in both online and offline modes. DT
algorithm; one of the available data mining algorithms; is used to build the classifier of
network. The experiment’s results showed that NMS based system has 97.7486 % accuracy

(ACC) in successfully classifying the network traffic.

Keywords: Machine Learning, Artificial Intelligence, Traffic Classification, Decision Tree
Algorithm, Principal Component Analysis Algorithm, KDD CUP99 dataset.

OZET
NETWORK MONITORING SYSTEM USING MACHINE
LEARNING COMPARATIVE ANALYSIS OF CLASSIFICATION
TECHNIQUES FOR NETWORK TRAFFIC MONITORING

KOTAN, BAYRAM
Yiksek Lisans Tezi, Elektronik Bilgisayar Muh. Bolimi
Tez Yoneticisi: Assistant Professor Mohammed K. M. MADI
Eylul 2019
124 sayfa

Cevrimici ag trafigi siniflandirmasi, uzun vadeli ilginin odak noktasi olmaya devam
ediyor. Ag trafigini izleme ve Ag trafigi analizi bir¢ok farkli yoldan yapilabilir. Genellikle, ag
trafigini izleme, hizmet kalitesi (QoS) ve izinsiz giris tespiti i¢in ham veri girisi sagla.
Ozellikle, ag trafigini izleme, ag analistine ag kaynaklari nasil kullandigini anlama ve ag
performansini belirleme olanagi saglar. Bu bilgi ile ag analisti, ag kaynaklarin1 kontrol etmek
ve yonetmek i¢in QoS politikalarini ayarlayabilir. Bu amaca, agdaki belirli veri tipleri i¢in
onceliklerin ayarlanmasi ve trafigin yonetmeliklere uymasi i¢in giinliige kaydedilmesi ile
ulagilmaktadir. Ag trafiginin izlenmesi akademik arastirma icin modeller olusturmak igin
kullanilabilir. Bu tezde, en yakin optimizasyona ulagsmak i¢in Karar Agact Algoritmasini
(DT) kullanarak ve Temel Bilesen Analizi (PCA) Algoritmasini kullanarak ag trafigini dogru
sekilde simiflandiran bir makine 6grenme yaklasimi sunulmaktadir. Makine Ogrenimi
teknolojisi, yliksek dogrulukta veri madenciligi teknikleri ve ileri istatistiklerin bir sonucu
olarak ag trafigini izlemek ve siniflandirmak i¢in daha iyi ¢ozlimler iiretecektir. Bu tezin
amaci, hem c¢evrimi¢i hem de g¢evrimdisi olarak c¢alisan modern makine Ogrenme
teknolojilerini kullanarak bir Ag Izleme Sistemi (NMS) insa etmektir. DT algoritmasi
(mevcut veri madenciligi algoritmalarindan biri) agmn smiflandiricisini olusturmak igin
kullanilir. Deney sonuglari, NMS tabanli sistemin ag trafigini basarili bir sekilde
siniflandirmada %97,7486 dogruluga (ACC) sahip oldugunu gostermistir.

Anahtar Kelimeler: Makine Ogrenmesi, Yapay Zeka, Trafik Simiflandirmasi, K-En Yakin
Komgular Algoritmasi, Temel Bilesen Analizi Algoritmasi, KDD CUP99 veri seti.

vi

| dedicate this research to my family, my parents and teachers for their endless

support and encouragement in completing this thesis.

vii

I would like to express my sincere gratitude and deep appreciations to my major
professor, Assistant Professor Mohammed K. M. MADI, who showed an extreme
engagement with my work, guided me through the uphill of research, and always pointing the

right direction to reach my objectives.

viii

TABLE OF CONTENTS

ABSTRARCT ..ottt bbbttt b bbb bbb n e %
L 4 N TP PRT PP Vi
TABLE OF CONTENTS ...ttt et iX
LIST OF TABLES ...ttt st Xi
LIST OF FIGURESooit ittt Xii
LIST OF ABBREVIATIONS ..o XVi

CHAPTER 1

INTRODUCTION

1.1 INErOAUCTION.eiieie ettt sttt nbe e nreas 1
1.2 Statement of the Problem ... 2
1.3 SPECITIC ODJECLIVES ...t 2
1.4 Significance 0f the StUAY ..o 3
1.5 0rganization OF TNESIS.......c.cciiieiiiereeiesiese e saeeneenreas 3

CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 INEFOTUCTION. ...ttt ettt bbbt esbe e e nreas 4
2.2 LITEratUre REVIEBWc.eiiiiiiiiiieiti ettt sttt et sb ettt nreas 4
2.2.1 Port based ClassifiCatioN...........ccocuiieiiiiiiicc e 5
2.2.2 Payload based ClassifiCationccccueveiiieiiiie e 6
2.2.3 Flow feature-based clasSifiCation............cocvviiiriiiiiieie e, 7
2.3 REIAIEA WOTKS. ...ttt 8
2.4 Support Vector Machine Classification Algorithmccoccovviiiiiiiininin, 9
2.5 Decision Tree Classification Algorithm ..o, 11
2.6 Logistic Regression Classification Algorithm ..., 12
2.7 DEEP LEAMING....cuieie e iieeiteeie st este et e et et e s te e e e e et estaetesneesteenaeeneenseens 13
2.8 Gaussian Naive Bayes (GNB)ccccoviiveiiiieiiee e 14
2.9 Principal Component Analysis (PCA) Algorithmcccccevvevviii i, 16
2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description.... 17

CHAPTER 3

METHODOLOGY

3.1 Machine Learning WOrKFIOW...........cccviieiiiii i 18
3.1.1 Gathering Dat@..........ccccveiueiieiieie s se e sae e nreas 18
3.1.2 Data Preparationcccccveieieeresieseesiesseesiee e s e ssaesassneesseessesssessesssesneessens 20
3.1.3 Train Model (ClasSifiCatioN)...........ceiieruiiiriieierie e 24
3.1.4 Test Data (PrediCtion)ccciieieiiesieceie e 24
LD IMPIOVE ...ttt b e n e 25
3.2 SYSEM ATCNITECIUIE......eeveeie et sae e erees 25

3.3 The Prop0SEd SYSEM.....ccuveiueeieiieeieeiie st esie e te et e e e e e steeneesreas 26

CHAPTER 4
NMS SYSTEM IMPLEMENTATION AND RESULTS
o gL (0o [0 Tox oo TSR RRURPRR 29
4.2 SYStEM ATCHITECIUIE......eiciveciiet e sre e nnees 29
4.3 Performance METIICS......ccuoiuiiiiiiieieie et 30
4.3.1 Confusion MatrixX (CIM)ccveieiieieiie et 30
4.4 EXperiments and RESUILS........ccoiiiieiiiie e 32
4.5 DISCUSSION ...ttt etee ettt sttt sttt et e st e besseesb e et e sreesbeenbesbeesbeeneenreas 68
4.5.1 System ACCUIaCY RESUILS.........c.oiiiiiiieiieriee e 68
4.5.2 Classification Speed RESUILS..........cccviieiieiicie e 69
4.5.3 Memory AllOCation RESUILS.........c.ccveiiiieiicc e 70
4.5.3 Other Algorithms RESUILScveiveiiiieiiee e 71
CHAPTER 5
CONCLUSION
DL RESUIL ..t et ettt b ae e nre e 74
REFERENGCES. ...ttt ettt 75
APPENDICES ..ottt b bbbt 78
N o] 0L 410 LD A S SRRSSSR 78
APPENTIX: Bttt aea e reeaenres 81
APPENTIX: Coe ettt sttt a e nbe e nreas 83
APPENTIX: Dbt nbe e nreas 86
APPENTIX: E o eenreas 90
N o] 0L 40 LD A S USRSS SR 94
N o] 01 40 D A SR USRSSSSI 98
APPENTIX: H.ooeeeee et re e e nre e 103

Table 2.1:
Table 3.1:
Table 3.2:
Table 3.3:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:
Table 4.9:
Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 4.15
Table 4.16

Table 4.17

LIST OF TABLES

Network Classes (Auld et al., 2007; Li & Moore, 2007).......ccccccvevververnenne. 4
Hustration Of OST LaYEIS.....cc.ccveiieiicie e 20
NMS Training DataSel..........cccueieiiiieriesiere e e 22
NIMS TESt DALASEL ..o 23
Confusion Matrix (CM) (Tavallaee et al., 2009)c.cccveveriveriveierinerienn 31
An Example CM for NMS (Stallings, 2003)ccccceeveevvereniieieeie e, 31
First Scenario of 1St EXPerimentcccovvevieienienesie e 33
2nd Experiment of First SCENAI0........covvvieiieiiiie e 36
3rd Experiment of FIrst SCENAIIO.........ccvveveiieeiieie e 39
4th Experiment of First SCENario..........ccvvvevevieiieeie e 42
5th Experiment of First SCENArio.........ccoovrveieeniiie e 45
Scalability Experiments for Support Vector Machine Algorithm 48
Scalability Experiments for Decision Tree Algorithmcccccovvennne. 50
: Scalability Experiments for Logistic Regression Algorithm................... 52
- Scalability Experiments for DL Algorithm ..., 54
- Scalability Experiments for GNB Algorithm ..o, 56
: Standard Scaler Experiments for SVM Algorithm...........cccccoovveivinnen, 58
: Standard Scaler Experiments for Decision Tree Algorithm 60
: Standard Scaler Experiments for Logistic Regression Algorithm........... 62
: Standard Scaler Experiments for DL Algorithm ..., 64
: Standard Scaler Experiments for GNB Algorithmcccccoevevvinnnen, 66

Xi

LIST OF FIGURES

Figure 2.1: TCP Segment and UDP Datagram Header Format (Degermark, 1999)..... 6
Figure 2.2: Traffic Classification Process by Machine Learning (Zhou et al., 2007)...9
Figure 2.3: Support Vector Machine Classificationcccccvvvveniennninie e 10
Figure 2.4: Pseudo code of Support Vector Machine Algorithmccccceivennne 11
Figure 2.5: A Decision Tree Classification Algorithm Example...........cccccevevvennne. 12
Figure 2.6: A Logistic Regression Classification Algorithm Example....................... 12
Figure 2.7: Neural Network HIUStrationcccooeviieniiniiie e 13
Figure 2.8: Deep Learning HIUSLrationccocoieiieiieiieiiee e e 14
Figure 2.9: lllustration of GNB Classification Algorithmcccccccevvvevviie e, 15
Figure 2.10: A PCA AIlgorithm EXamplecccoviieiiiieiieieeie e 16
Figure 3.1: The Machine Learning WOrkflow...........c.ccooeiiiiiinnninencee e 18
Figure 3.2: Captured and converted network packets by Wiresharkccc....... 19
Figure 3.3: Wireshark is capturing the packets in real time...........cccoccevvvevveveivennene 19
Figure 3.4: Phases for package decoding (Wolpert & Macready, 1997)c.c....... 20
Figure 3.5: The phase of pre-processing data (Wolpert & Macready, 1997).............. 21
Figure 3.6: Sample vectors of NMS’s KDD dataset.........ccccceoviieneninnenninie e 23
Figure 3.7: A General architecture of an NMS..........cocoiiieiiiii e 25
Figure 3.8: Training Phase’s BIOCK Diagramcccoccevvievieresiese e 27
Figure 3.9: Testing Phase’s Block Diagramccccoveiieniiiinieneniesee e 28
Figure 4.1: NMS System arChiteCtUIecccviiiiiiiee e 30
Figure 4.2: DR & ACC Comparison for the 1st EXperiment...........cccccovvevvevervennenne 33
Figure 4.3: Training and Testing Time Comparison for the 1st Experiment.............. 34
Figure 4.4: Memory Consume Comparison for the 1st Experiment.............cccccoeeuenne. 34
Figure 4.5: Screenshot of 1St EXPeriment.........cccooveiiienieniiie e e 35
Figure 4.6: Outputs for the 15t EXPErimentcccooveieiiieni e 35

Xii

Figure 4.7: DR & ACC Comparison for the 2nd EXperimentccccoevveververnenne 36
Figure 4.8: Training and Testing Time Comparison for the 2nd Experiment............. 37
Figure 4.9: Memory Consume Comparison for the 2nd Experiment............c.ccceeue..e. 37
Figure 4.10: Outputs for 2nd EXPEriment...........cccvevverierieeieerieseeseesesee e see e see s 38
Figure 4.11: DR & ACC Comparison for the 3rd Experiment..........c.ccccoecvevervennenne. 39
Figure 4.12: Training and Testing Time Comparison for the 3rd Experiment 40
Figure 4.13: Memory Consume Comparison for the 3rd Experiment...............c.c....... 40
Figure 4.14: Outputs for 3rd EXPErimentcccevverenieeieerieseeseee e sie e 41
Figure 4.15: DR & ACC Comparison for the 4th Experimentccccoevvevervennenne. 42
Figure 4.16: Training and Testing Time Comparison for the 4th Experiment............ 43
Figure 4.17: Memory Consume Comparison for the 4th Experimentccce.... 43
Figure 4.18: Output for 4th EXPErimentccocveieeenieeie e sie e eie e 44
Figure 4.19: DR & ACC Comparison for the 5th Experimentcccccceeevevevvennenne. 45
Figure 4.20: Training and Testing Time Comparison for the 5th Experiment............ 46
Figure 4.21: Memory Consume Comparison for the 5th Experimentcc...... 46
Figure 4.22: Output for 5th EXPerimentccccvevveieiieene e 47
Figure 4.23: DR & ACC Comparison for SVM Algorithm..........ccccccvvvevviveivennenn, 48
Figure 4.24: Training and Testing Time Comparison for SVM Algorithm................ 49
Figure 4.25: Memory Consume Comparison for SVM Algorithm...........ccccccevvennne 49
Figure 4.26: DR & ACC Comparison for DT Algorithm..........ccccccvevviieiviie e 50
Figure 4.27: Training and Testing Time Comparison for DT Algorithm................... 51
Figure 4.28: Memory Consume Comparison for DT Algorithm...........ccoccveiiiienene 51
Figure 4.29: DR & ACC Comparison for LR Algorithm..........cccocceviinniiiniienienn 52
Figure 4.30: Training and Testing Time Comparison for LR Algorithm 53
Figure 4.31: Memory Consume Comparison for LR Algorithmccccceevvvennne. 53
Figure 4.32: DR & ACC Comparison for DL Algorithm..........cccccceevviieiniie e, 54

xiii

Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41.:
Figure 4.42:
Figure 4.43:
Figure 4.44:
Figure 4.45:
Figure 4.46:
Figure 4.47:
Figure 4.48:
Figure 4.49:
Figure 4.50:
Figure 4.51:
Figure 4.52:
Figure 4.53:
Figure 4.54:
Figure 4.55:
Figure 4.56:
Figure 4.57:

Figure 4.58:

Training and Testing Time Comparison for DL Algorithm................... 55
Memory Consume Comparison for DL Algorithm.............ccccoeeveinnne. 55
DR & ACC Comparison for GNB Algorithm.........c.cccoeiiiiiieninenn, 56
Training and Testing Time Comparison for GNB Algorithm................ 57
Memory Consume Comparison for GNB Algorithm............ccccccvevennenn, 57
DR & ACC Comparison for SVM Algorithm.........ccccceviirieiieniennnn, 58
Training and Testing Time Comparison for SVM Algorithm................ 59
Memory Consume Comparison for SVM Algorithm.............cccceeeennen, 59
DR & ACC Comparison for DT Algorithm........cccccevveeviviieivececienen, 60
Training and Testing Time Comparison for DT Algorithm................... 61
Memory Consume Comparison for DT Algorithm.............ccccooeveinne. 61
DR & ACC Comparison for LR Algorithmccccceevvevviieiiiieceen, 62
Training and Testing Time Comparison for LR Algorithm 63
Memory Consume Comparison for LR Algorithmcccoeeiveinnnne. 63
DR & ACC Comparison for DL Algorithm.........cccccevveiiininiienieen, 64
Training and Testing Time Comparison for DL Algorithm................... 65
Memory Consume Comparison for DL Algorithm............ccccceveeiennenn, 65
DR & ACC Comparison for GNB Algorithm.........c.ccccooiiiiiiicninnnn, 66
Training and Testing Time Comparison for GNB Algorithm................ 67
Memory Consume Comparison for GNB Algorithm............c.cccccvnnen. 67
K-Fold Cross Validation ... 68
Number of Features versus Detection Rate..............ccocvevviiiiiciiniicnnn, 69
Number of Features versus Accuracy Rate..........ccoccevveerviiinnneieneennnnn, 69
Number of Features versus Training TIMe.........cccooeriereniieneerenienienn, 70
Number of Features versus Testing TiMeccccovvvevieerveiieveere e, 70
Features versus Memory AHOCAtIONccccviveiveie s 71

Xiv

Figure 4.59: Experiment of Support Vector Machine Classification Algorithm 72

Figure 4.60: Experiment of Logistic Regression Classification Algorithm................ 72
Figure 4.61: Experiment of Deep Learning Algorithm ..., 73
Figure 4.62: Experiment of Gaussian Naive Bayes Algorithmc.cccccvevvivene. 73

XV

ACC
CM
CPU
DARPA
DL
DPI
DR
DT
FN
FP
FTP
GNB
IANA
1P
IDS
KDD
KDD CUP99
LAN
LR
MAC
NAT
NMS
PCA
P2P
PSP

LIST OF ABBREVIATIONS

: Accuracy Rate

: Confusion Matrix

: Central Processing Unit

: Defense Advanced Research Project Agency
: Deep Learning

: Deep Packet Inspection

: Detection Rate

: Decision Tree

: False Negative

: False Positive

: File Transferring Protocol

. Gaussian Naive Bayes

- Internet Assigned Numbers Authority

. Internet Protocol

. Intrusion Detection System

: Knowledge Discovery and Data

: Knowledge Discovery and Data Mining CUP1999
: Local Area Network

. Logistic Regression

: Media Address Control

: Network Address Translation

: Network Monitoring System

: Principal Component Analysis
: Peer to peer

: Percentage of Successful Prediction

Xvi

QoS
RBF
SVM
SYN
TN

TP
TPR
TCP
TCP/IP
UDP

Npcap

: Quality of Service

: Radial Basis Function

: Support Vector Machine

: Synchronize

: True Negative

: True Positive

: True Positive Rate

: Transmission Control Protocol

: Transmission Control Protocol/Internet Protocol
: User Datagram Protocol

: Packet Capture Library for Windows

Xvii

CHAPTER 1
INTRODUCTION

1.1 Introduction

Internet is evolving to a tremendous and ubiquitous network of networks, containing
increasingly huge data and digital media communication, and generating enormous revenues
every day to all businesses worldwide. Data transmission is managed by simple protocols;
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP); without
monitoring, inspection and intelligent control over the traffic built in functionality (Cerf &
Kahn, 1974). Businesses and governments need applications to classify and monitor network
traffic, manage its resources and detect possible anomalies to protect their investments and
interests. In general, the Internet traffic is the product of a complex system containing

diverse of networks, hosts, applications and different clients interacting with each other.

Network traffic classification (monitoring) has attracted great attention nowadays
(Karagiannis, Papagiannaki, & Faloutsos, 2005; Kim et al., 2008; Lim et al., 2010; Nguyen,
Armitage, & Tutorials, 2008; Wu, Min, Li, & Javadi, 2009). Classification of traffic flows
according to production applications has very important part in security and network
management, like QoS control, intrusion detection and lawful interception (Xiang, Zhou,
Guo, & Systems, 2008). Our days, billions of devices use Internet resources. Every device
sends requests for connection to other devices and exchange data over the Internet. As a
result, huge amount of traffic will be generated, so classification is necessary; not only for
QoS or for maintaining availability of resources; but also, for efficient processing of

information.

Manual labeling of data samples is mostly tiring, time wasting and costly. This
complexity is continuously increasing by wide range of network applications are produced
every day. Therefore, we need a system that can learn and apply. In this context, it will be
more useful to apply machine learning.

Network monitoring can be succeeded through port-based traffic classification
methods (loffe & Szegedy, 2015), payload-based classification methods (Deep packet
inspection) (loffe & Szegedy, 2015) and flow features-based classification methods (Machine
learning and statistical feature) (loffe & Szegedy, 2015). Many classification methods have
been suggested (Auld, Moore, & Gull, 2007; Crotti, Gringoli, Pelosato, & Salgarelli, 2006),

as interest in traffic classification increases. Port based method is known as one of the best

techniques for network traffic classification (Namdev, Agrawal, & Silkari, 2015). This
method uses network ports that are firstly registered in Internet Assigned Numbers Authority
(IANA). However, this method has failed in correctly classifying Point to Point (P2P)
applications, which use unregistered network port number and uses dynamic port numbering
(Karagiannis, Broido, & Faloutsos, 2004). Payload based methods gives better classification
results (Karagiannis et al., 2004). Yet, this method fails to classify encrypted traffic. Note
that many network applications use encryption to protect data from detection (Haffner, Sen,
Spatscheck, & Wang, 2005; Sen, Spatscheck, & Wang, 2004). Many network classification
methods have been proposed using machine learning to monitor network traffic. We will
propose a technique for classifying network traffic based on ML. Machine Learning Method
gives very accurate results in traffic classification (Namdev et al., 2015). This Method uses

training and testing data sets to classify unknown traffic classes.
1.2 Statement of the Problem

Network specialists work day in and day out attempting to sift through incredible
amounts of data from network (server logs, network packets and network controllers).
Nowadays billions of devices use internet resources. Every device sends requests for
connection to other devices and exchange data over the internet. As a result, huge amount of
traffic will be generated in network, so classification is necessary for network management
(Park, Tyan, & Kuo, 2006).

In addition, to monitor all the packets traffic simultaneously on a network will be not
easy. (A. Moore, Hall, Kreibich, Harris, & Pratt, 2003). Protocols overlapping or protocol
layering complicate the fast monitoring and extraction of the features. To overcome these
challenges, machine learning technology is one of the best solutions.

1.3 Specific objectives

The primary purpose of this study is to apply the machine learning methods in the
network traffic classification and to evaluate the results. To achieve this goal, the following

goals should be considered:
e To examine the methods available for classifying network traffic using ML.

e To draft the methods taxonomy identified and provide the advantage, the
disadvantages and weakness.

e To evaluate the performance of the identified method and compare it with
other methods.

1.4 Significance of the Study

This thesis aims at building a network monitoring system that use Machine Learning
for classifications of network packets. This can be achieved by using fast machine learning
algorithms that can process and analyze network traffic. In a short description, we will
accurately define traffic classes by maximizing the Detection Rate (DR), determining the
class of any packet recorded on the basis of recognized classification patterns. During the
training stage, these classification patterns are produced to raise the detection rate. The
significance of this study lies in describing and analyzing the best method of Network

Monitoring that can be used for Machine Learning.
1.5 Organization of Thesis

The thesis is comprised of five chapters. Chapter two provides theoretical background
consisting of a general NMS, a short overview of NMS methods, the definition of Knowledge
Discovery Data Mining (KDD CUP99 data set), DT and PCA algorithms. Chapter 3 provides
the methodology, architecture of the system and the system suggested. Chapter 4 provides the
implementation and outcomes of the suggested system. Chapter 5 provides findings for

conclusion and suggestions for the next researchers.

BACKGROUND AND RELATED WORKS

2.1 Introduction

Before the implementation of the proposed system, an adequate research has been
conducted on the published literature on this subject. In this section, a summary of the

CHAPTER 2

mentioned research and investigation will be discussed.

2.2 Literature Review

From security monitoring to QoS measurements, in network management traffic
classification (monitoring) has extensive applications. Researchers mostly apply machine
learning techniques to flow statistical feature-based classification methods recently.

Network Monitoring can be achieved through the following methods (loffe &

Szegedy, 2015):

e Port based traffic classification

o Payload based classification (Deep packet inspection)

e Flow features-based (Machine learning and statistical feature)

Before discussing those classifications methods, we have to know what these classes

are. Table 2.1 shows network classes.

Table 2.1: Network Classes (Auld et al., 2007; Li & Moore, 2007)

Network Classes | Example Applications
BULK ftp, ftp data

DATABASE postgres, sqlnet oracle, ingres
INTERACTIVE | ssh, klogin, rlogin, telnet
MAIL imap, pop3, smtp
SERVICES X11, dns, ident, ldap, ntp
WWwWw http

P2pP BitTorrent

ATTACK DoS, Probe

GAMES Half-Life

MULTIMEDIA | Windows Media Player, Real Time

2.2.1 Port based classification

This is the oldest way of performing traffic classification. Its assumption is
application servers use well known ports for client to initiate communication. Such ports are
registered in the IANA list of registered ports (Schneider, 1996):

80: HTTP

22: SSH

20, 21: FTP

25: SMTP

53: DNS

143: IMAP

161, 162: SNMP

It is enough to intercept the TCP/UDP packet header to infer the server-side
application. For TCP flows, the SYN (synchronize) packet is enough.

Port based classification is very simple and fast to implement. There is no need to
inspect payload but checking the packet headers will be sufficient. It is often used on
firewalls and access control lists. Nevertheless, many applications have not ports registered
with IANA. Even if they have well known ports, they may use others like they may hide
behind port 80. Ports are randomly/dynamically allocated in some cases, and port-based
classification fails on NAT (Network Address Translator) and IP (Internet Protocol) tunnels.

TCP Segment and UDP Datagram Header Format (Degermark, 1999) is shown Figure
2.1.

TCP Segment Header Format

Bit# | 0 7|8 15 | 16 23 | 24 31
0 Source Port Destination Port

32 Sequence Number

64 Acknowledgment Number

96 |Data foseti Res Flags Window Size

128 Header and Data Checksum Urgent Pointer

160... Qptions

s >

UDP Datagram Header Format

Bit# | 0 7|8 15 | 16 23 [24 31
0 | Source Port Destination Part
32 | Length Header and Data Checksum

Figure 2.1: TCP Segment and UDP Datagram Header Format (Degermark, 1999)

For network traffic classification port-based method is a perfect. This method
implicates ports that are firstly registered in IANA. However, this method has failed owing to
increase of P2P applications, that use unregistered number (dynamic port numbers) with
IANA (Karagiannis, Broido, Brownlee, Claffy, & Faloutsos, 2003; A. W. Moore &
Papagiannaki, 2005).

2.2.2 Payload based classification

It is such methods that inspects the TCP or UDP payloads of captured packets looking

for:
¢ Known protocol behaviors (protocol decoding)
e Specific - application data (pattern matching)

They are also called as Deep Packet Inspection (DPI) methods as they inspect the
content of the payload (Porter, 2005). Payload based classification can identify many
protocols that port-based classification cannot do, and it has higher accuracy rate. In payload-
based classification first eight packets will be sufficient for the process. Real-time application
is possible as it can classify traffic in short time. As this method inspects payload, it fails to
classify encrypted communication. This method generates high processing loads on CPU
(Central Processing Unit). Protocol decoding is a very complex operation as it requires deep
information of the all protocols. It is used for only given popular protocol types and it is hard

to keep such decoders up to date.

Payload Based methods give definitive results in classification. However, many
network applications, called encrypted data network applications, use encryption to protect
their data from detection so payload-based methods cannot classify them, and fail
(Karagiannis et al., 2004).

2.2.3 Flow feature-based classification

Flow feature based classification methods are capable of overcoming the problems of
payload-based and port-based classification techniques. It uses statistical properties of the
characteristics (features) of each flow to judge the protocol/application type. That is why,
those methods are also known as statistical methods or machine learning methods. In general,

there are two machine learning methods.

1-Supervized classification: In supervised methods, the machine is trained by using
data which is well "labeled.” It indicates that with the correct answer some data is tagged. It
can be contrasted with learning in the presence of a supervisor or teacher. A supervised
learning algorithm draws on labeled training data and helps guess unexpected results. It
requires time and technical knowledge from a team of extremely qualified information
researchers to successfully build, scale, and deploy precise monitored machine learning
models. In addition, data scientists need to reconstruct models to ensure that their insights
remain true until their data modifications. Supervised classifications make traffic recognition
(one versus all classification) especially attractive. Training on all classes that are expected to

be seen is important for multi-classification (Kotsiantis, Zaharakis, & Pintelas, 2007).

2- Unsupervised classification: Unsupervised methods such as clustering may reveal
naturally different classes or even new applications. Clusters need to be labeled, for example
they can be labeled directly by human. Clusters may not map to applications one to one. One
application may dominate multiple clusters, or vice versa. It may be very hard to map back

from a single cluster to a source application(Hinton, Sejnowski, & Poggio, 1999).

Preparing data for machine learning initiatives can be accomplished by following the

six critical phases below:

1-Data (flows) acquisition (input): This aspect concerns the capture of packets

passing through the entire network.

2-Feature extraction: After data capture and (possibly) sampling, both supervised
and unsupervised techniques extract flow features. Some works use up to 250 features per
flows. Example features:

- Flow duration in seconds

- Data volume per flow

- Number of packets per flow

- TCP port

- Packet inter arrival time (mean, variance, etc.)
- Payload size (mean, variance)

3-Feature selection: Feature Selection is a process of selection a subset of relevant

features from all features, which is used to make model building.

4-Training: Training is the most crucial phase, so how well the system performs on
the data provided to the system depends on the algorithms used. At this phase, the system is
trained with previously provided training data to ensure that it recognizes the patterns in the
data.

5-Validation: In this phase of validation, the algorithm used to train the machine is

better accurate and efficient.

6-Testing (output): The test data is used in this phase to see how well the machine can

predict on the basis of its training new answers.
2.3 Related Works

In this thesis, machine learning and statistical feature method which is flow feature-
based classification will be used to implement NMS.

For the authors in (Zhou, Li, & Yang, 2007), in generic, four stages of traffic
classification with ML algorithms are shown in Figure 2.2. Network packets that captured
online by packet sniffing are first inputs, but these inputs can be prepared offline too. Then
packets are classified into vectors according to protocols, source port, source IP address,
destination port and destination IP address. In the second stage vector features are calculated
which is features extraction. When dataset is huge, for decreasing search space of machine
learning algorithm, in order to get a subset of the vector features (decreasing vector
dimensions) data sampling can be performed. These features are used in features selection
(filtering) stage. In this stage, unnecessary features are filtered, and important and necessary
features are selected. Finally, on the last step machine learning algorithm is done (Zhou et al.,
2007).

Preparing Dataset

From Packets

Offline e Traces I > | Extraction Flow J

. ~ |
Online L Paclet Sniffing J_. &

 j
| Flow Attribute Model J | Flow Statistics J
Traffic Statistic
Computation Yy

Data Sampling J

v Y
Machine
Machine Learning ‘ Learning Machine
Training Process Features i L Learning
Filtering/ Algorithm
Selection
A | A 4
QoS Mapping etc. l Results Evaluation

Classification Results

Figure 2.2: Traffic Classification Process by Machine Learning (Zhou et al., 2007)

The most important part of machine learning based network monitoring is algorithm

which is used for classifications.
2.4 Support Vector Machine Classification Algorithm

SVM algorithm is similar with Logistic Regression (LR). The both algorithms try to
find the best line separating the two classes. The algorithm allows the line to be drawn from
the most distant places in two classes of the line(Cortes & Vapnik, 1995). It is a classifier that
IS non-parametric. SVM may also classify linear and nonlinear information, but typically
attempt to classify information as linear. There are numerous of kernels that can be used in
SVM classification algorithm like sigmoid, polynomial, linear and radial basis function
(RBF) (Scholkopf et al., 1997).

Pros of SVM is:
e With clear margin of separation, it operates really well.
e ltis efficient in spaces of high dimensions.
e ltis efficient if the number of samples exceeds the number of dimensions.

e It uses in the decision function a subset of training points (called support

vectors), so it is also efficient in memory.

Cons of SVM is:

e < If the data set is big, it does not perform well because the necessary training

time in this case is greater.

e When the data set has more noise, it does not perform very well because the
target classes overlap.

e SVM does not provide direct probability estimates, they are computed using a
costly five-fold cross-validation.

Support Vectors

.....

Width

Figure 2.3: Support Vector Machine Classification

10

e If o; > Othen the distance of x, from the separating hyperplane is M
— Support vectors - points with associated «, > 0

¢ The decision function f(x) is computed from support vectors as

)= yaxx,

i=1
=> prediction can be fast if o, are sparse (i.e., most are zero)

+ Non-linearly-separable case: can generalize to allow “slack” constraints

* Non-linear SVMs: replace original x vector with non-linear functions of x
— “kernel trick” : can solve high-d problem without working directly in high d

» Computational speedups: can reduce training time to near- linear
— e.g Platt's SMO algorithm, Joachim's SVMLight

Figure 2.4: Pseudo code of Support Vector Machine Algorithm

2.5 Decision Tree Classification Algorithm

Decision Tree (DT) Classifier is widely used classification method. It poses a series of
definite answered questions about the attributes of the test data. After it receive an answer
each time, another question is asked until a decision about the class label of each data is
reached (Shalev-Shwartz & Ben-David, 2014).

Pros of DT is:
e Itis easy to understand and interpret, perfect for visual representation.
e It can work with numerical and categorical features.
e It requires little data preprocessing.

e ltis fast for inference.

Cons of DT is:

e |t tends to over fit.

11

B B e
N /N

| yes exce\llent fa‘ir
s w G

Figure 2.5: A Decision Tree Classification Algorithm Example

2.6 Logistic Regression Classification Algorithm
LR classifier assigns a discrete set of classes to observations. By using the logistic

sigmoid function, p(x) = m , LR transforms its output into a probability value that

can be mapped to two or more separate classes (Hosmer & Lemeshow, 2000).

Frobatility

Figure 2.6: A Logistic Regression Classification Algorithm Example

12

Pros of LR is:
e Itis very efficient and highly interpretable.
e LR doesn’t require too many computational resources.
e It doesn’t require input features to be scaled.
Cons of LR is:
e It doesn’t perform well when feature space is too large
e It doesn’t handle large number of categorical features/variables well

e Non-linear problems cannot be solved by LR so it needs transformations for

non-linear features.
e ltrelies on entire data.
e LR can only predict a categorical outcome.

e Itis vulnerable to overfitting.

2.7 Deep Learning

Deep learning (DL) is primarily neural networks and is usually tailored to machine
learning. Most deep learning methods use neural network architectures. That is why they are
often referred to as deep neural networks. It teaches computers to do what comes naturally to
humans and it learns from example. DL classifier contains 3 type of layers: input, output and
hidden. Each layer contains at least one interconnected node. In data set, classifier detects
complex structure, and it changes its internal parameters to calculate the prior layers (LeCun,
Bengio, & Hinton, 2015; Schmidhuber, 2015).

—
Ay (x)
—_—
+1 LayerL,
+1
LayerL;
LayerlL, LayerlL,

Figure 2.7: Neural Network Illustration
13

| Hidden 1 | Hidden2 !

. Input

Figure 2.8: Deep Learning Illustration

Pros of DL is:

e DL has very high performance.

e DL lowers the need for engineering features.

e DL is an architecture that can comparatively readily tailored to fresh issues.
Cons of DL is:

e Large amounts of data are required

o DL is extremely costly to train computationally.

e It has little to do with a powerful theoretical basis.

2.8 Gaussian Naive Bayes (GNB)

GNB Classifier is modeled on the Bayesian Theorem (Webb, Boughton, & Wang,

2005). Bayesian theorem allows us to use the naive independence assumption to indicate the

conditional probability as follows:

PO)PX\y) PO, P(X\y)
P(X) P(X)

Py\X) =

The following rule is used to classify the sample since P(X) is continuous for a specified

example:

14

Tt
v = argmax,, P(yv) 1_[P(X;\y)
i=1

Estimation of maximum a posteriori (MAP) is generally utilized to estimate the
parameters in the naive Bayes model, inclusive of P(y) and P(xily); the preceding is the
frequency of samples in the training set with class y. In addition, Gaussian naive Bayes uses

the classification by assuming the probability of Gaussian characteristics:

1 ()
X; —

PX\Y) = — EXP(—;—Z
2nay, oy

)

where the maximum probability is estimated for the parameters oy and py. Because of
its simplicity and extreme speed compared to more advanced methods (Lou et al., 2014).

Illustration of GNB classifier is show in Figure 2.9.

weight (kg)

heigr‘;t (cm) * P(xla)=p(h,|a)p(w|a)

i ; P(xlc)=p(h,|c)p(w|c)
P(x|la)P(a)

(“h,c’gi.c) P(aix)=P(x|a)P(a)+P(x|c)P(c)

Figure 2.9: Illustration of GNB Classification Algorithm

15

Pros of GNB is:
e GNB is simple and quick to predict class of test data set.
e GNB operates well in multi class prediction.

Cons of GNB is:

e If categorical variable has a category that was not observed in training data
set, then GNB cannot make a prediction.

e [tis bad estimator.

2.9 Principal Component Analysis (PCA) Algorithm

PCA is reducing the dimensionality of a data set consisting of many variables
correlated with each other while keeping the variation present in the dataset, up to the

maximum extent.

o
g E o ' o ;
. _',//
. 8 o
o " .
2 o o @
o o - & R
o SOt o
- o
. °. 0 Lo
& 7 %0 . 'f% o
SRR
80 Lo
g o
- o -
.') ° o
o~ "G o o
g | .\ R - 8
N)
. o
o
g - T T T T
20 40 60 80 100 120

Figure 2.10: A PCA Algorithm Example

The proposed system will use PCA algorithm to reduce features.

16

2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description

KDD CUP99 is based on data captured by Stolfo et al in the DARPA'98 IDS
evaluation program. Since 1999, it has used anomaly detection techniques for assessment. It
has been using widely popular. DARPA'98 is about 4 gigabytes data. This data is 7 weeks of
network traffic and it is compressed raw “binary” TCP dump. There are 5 million connection
records in this data. As a row, every connection of this data called a vector. Each vector is
about 100 bytes. Test data is about fortnight of network traffic and includes about 2 million

vectors. Training data includes about 5 million vectors. Each vector includes 41 features.

17

CHAPTER 3
METHODOLOGY

3.1 Machine Learning Workflow

In this chapter, the theoretical description of the system will be presented following
the Machine Learning Workflow methodology. PCA algorithm will be used in Data pre-
processing step and DT algorithm will be used for classification and regression predictive

problems in the Train Model step and Test Data step.

Machine Learning Workflow consists of five main stages of a project and it defines

tasks in every stages and relationships between them. These steps are illustrated below:

Get Data Train Model Improve

Clean, Prepare
& Manipulate Data

Figure 3.1: The Machine Learning Workflow

When we construct NMS, we will apply the steps of the machine learning workflow

in our machine learning system.
3.1.1 Gathering Data

In the first stage of NMS, packets that passed through the entire network are being
grabbed and any packet that targeted to any node of the network can be grabbed by
Wireshark network application which contains packet decoder. Wireshark is a free and open-
source packet analyzer. Wireshark can convert network packets into other file types. In
addition to capturing all features, Wireshark also catches data and time fields and display them
in this stage. Typical packets information gathered by Wireshark illustrated in Figure 3.2. All

packets that have been captured will be processed in the next stage for analyzing.
18

1 "Ho."™, "Time", "Source”, "Destination”, "Protocol™, "Length™, "Info™

= "it,"0.000000","Dell 3c:38:d1", "Broadcast", "ARP","6€0","Who has 192.168.105.137? Tell 192.168.104.112"
3 mzZm, "0,0222€4","192,.168.104.200","239,.255.255,250", "SSDE", "382", "NOTIFY * HITE/1.1 "
51932","1%2,.168,.104.200","235%,255.255. 250", "55DB", "431", "NOTIFY * HTTP/1.1 "

104", ,™192,168.104.200","2349,.255.255, 250", "SSDE", 447", "NOTIFY * HITP/1.1 "
393","192.168.104.200","239,255.255. 250", "ODP", "637", "34455 > 3702 Len=595"
455","1%2,.1658.104.113","192.168.105,.255", "NBN5S", "92", "Name query NB DIFFERENTIA.RU<OO>"
827","Dell 86:2e:8d", "Broadcast™,"ARP","€0","Who has 152.168.104.367? Tell 192.168.104.157"
gE9m, "192,168.104.159"™ "239 ,255,255,250", "UDP", "637", "34455 > 3702 Len=595"

017","Dell 3c:38:d1", "Broadcast”, "RRP", "€0","Who has 192.1€8.105.1377 Tell 192.1€8.104.112"

s mgmomgl1
5 mgm omg2
& mgmomg2
7 "e","0.2
: 3

4

6

]

ngn w
in, .,

[T T, R N 8)

-
g, "o,

0 "gm, U0,
Figure 3.2: Captured and converted network packets by Wireshark

As shown in the Figure 3.3, the client can capture Wireshark packets and convert

them to a csv file containing vectors of features in each row of the file shown in Figure 3.6.

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
ma e x| € = = -

[M]]ppply a display filter T] - +

No. Time Source Destination Protocol Length Info
659 33.291741623 16.16.10.11 34.218.159.168 TLSvi.2 524 Application Data
660 33.202114967 34.218.159.169 10.16.16.11 TCP 60 443 —~ 43784 [ACK] Seq=2967 Ack=796 Win=64248 Len=0

9 1 1 T ik - e ;
663 33.477649773 34.218.159.169 2 e Message
664 33.520503330 10.10 34. C 5 =35040 Len=a

667 33.734086272 9 B TLSv1.2 928 Appli ion Data
668 33.734134108 .10, .218.159. TCP — 443 [ACK] =37960 Len=0

» Frame 1: 84 bytes on wire (672 bits), 84 bytes captured (672 bits) on interface B
» Ethernet II, Src: Vmware 65:d6:e@ (©0:8c:29:65:d6:e@), DSt: Vmware e9:c1:26 (09:50:56:€9:c1:26)
» Internet Protocol Version 4, Src: 10.10.10.11, Dst: 37.59.46.15

» User Datagram Protocol, Src Port: 56831, Dst Port: 53

+ Domain Name System (query)

80 50 56 €9 c1 26 8@ Gc 29 65 d6 €0 B8 00 45 00 PV. & . e E

B0 46 bb c4 40 60 48 11 1d 84 0a Ga Ga Ob 25 3b F- @@ %;
28 of c3 6f 66 35 €@ 32 61 a2 dB e7 61 06 06 B1 (-o052a
00 00 00 06 68 68 6c 64 65 74 65 63 74 70 6f 72 d etectpor
74 61 6c 07 66 69 72 65 66 6f 78 63 63 6f 6d 89 tal fire fox com
80 01 00 01
@ 7 eth0: <live capture in progress> Packets: 678 - Displayed: 678 (100.0%) Profile: Default

Figure 3.3: Wireshark is capturing the packets in real time

As shown in Figure 3.4, the packet decoder takes packets from the network interface
via the Npcap library, and identifies which protocol is in use for a grabbed packet. Npcap is
used to grab packets from the network, it is library, which works under windows operating
system. Data acquisition is also referred to as data acquisition using the Npcap library.
Wireshark will be used in the NMS to capture packets using the Npcap library and for

processing step their format will be converted.

The packets stored in the dataset will then be sent for pre-processing (Wolpert & Macready,
1997).

19

Table 3.1: Illustration of OSI Layers

Layer Function Example
Application — Layer 7 Services that are used with end user SMTP
applications.

Presentation — Layer 6

Formats the data so that it can be
viewed by the user.

JPG, GIF, HTTPS, SSL, TLS

Encrypt and decrypt.
Session —Layer 5 Establishes/ends connections NetBIOS, PPTP
between two hosts.
Transport — Layer 4 Responsible for the transport protocol TCP, UNDP
end error handling

Network — Layer 3

Reads the IP address from the packet.

Router, Layer 3 Switches

Data Link — Layer 2

Reads the MAC address from the
data packet.

Switches

Physical —Layer |

Send data on the physical wire.

Hubs, NICS, Cable

Preprocessor

Figure 3.4: Phases for package decoding (Wolpert & Macready, 1997)

3.1.2 Data Preparation

Figure 3.5 demonstrates the pre-processing steps of the data before the Train model,
which includes the training process. Generally, pre-processing data is necessary for all tasks
of machine learning. Pre-processing of data is based on extracting information from header
and load for the packages. Then new statistical features will be created from the header and
the load. Pre-processing generally consists of dataset creation, data cleaning, integration, and
feature construction, feature selection, reduction, and normalization. The most related steps

for NMS are briefly explained below (Tavallaee, Bagheri, Lu, & Ghorbani, 2009).

20

—

Dataset Creation

—

Feature Extraction

Feature Scalling

Figure 3.5: The phase of pre-processing data (Wolpert & Macready, 1997)

Dataset Creation: For classification and prediction, it is representative network
traffic. The KDD dataset that is used for NMS, were composed from some normal network
logs through weeks. The dataset is compressed raw binary TCP dump. There are 5 million
connection records in this data. As a row, every connection of this data called a vector. Each

vector is about 100 bytes. Each vector contains 41 features.

The table below shows the part of the data set of the KDD Cup utilized in the
suggested NMS.

21

Table 3.2: NMS Training Dataset
BULK

INTERACTIVE

MAIL

MEDIA
OTHER

SERVICE

wWiww

Grand Total

domain
domain_u
Bco_i
finger
other
private

red_i

urh_i

urp_i

22

373
3.798

219
79
5.598

220

5862
389
468

5632

7.366

14
537

380

97.278

Table 3.3: NMS Test Dataset

BULK ftp 2381
Ttp_data 110.020

INTERACTIVE shell 2
ssh (=}

telnet 1313

MAIL imapd 3
pop_3 531

smtp 55.0585

MEDIA X1l &0
OTHER auth 1.5905
domain 2.202
domain_u _

eco_i 2.587

finger 2906

other 3.193

private 12

urh_i 156

urp_i 2905

SERVICE ecr_i 2.099
ntp_u 3.061

time 200
VW http
RLC 236
Grand Total 5.943.606

1,tcp, smtp, SF, 2383, 332,0,0,0,0,0,1,9,0,0,0,0,0,90,0,0,0,1,2,0.00,0.00,0,00,0.00,1,00,0.00,1.00,46,120,0.83,0.0%,0.02,0.02,0.00,0.00,0.00,0.,00, normal.
0, tcp, smtp, 5F, 1030, 327,90,0,0,0,0,1,0,0,0,0,1,0,90,0,0,0,2,4,0.00,0.00,0.00,0.00,1.00,0.00,0.75,47,121,0.83,0.0%,0.02,0.02,0.00,0.00,0.00,0.00,normal.
0, udp, demain_u, SF, 30,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0.00,0.00,0.00,0.00,1.00,0.00,0.75, 48, 43,0.15,0.08,0.15,0.05,0.00,0.00, 0.00,0.00, normal.
o, tcp, smtp, SF, 606, 328,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0,00,0.00,0,00,1.00,0.00,0.00,49,122,0,82,0.08,0,02,0.02,0,00,0.00,0,00,0.00,normal.
o, tep, smep, SF, 1153, 329,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,50,123,0.82,0.08,0.02,0.02,0.00,0.00,0.00,0.00, normal.
0, top, smtp, SF, 926, 328,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,51,124,0.82,0.08,0.02,0.02,0.00,0.00,0.00,0.00, normal.
0, tcp, smtp, SF, 130%, 326,0,0,0,0,0,1,0 +0,1,1,0.00,0.00,0.00,0.00,1.00,0. 125,0.83,0.08,0.02,0.02,0.00,0.00,0.00,0.00, normal
0, udp, domain_u, SF, 30,0,0,0,0,0,0,0,0 ,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00, 0.1%,0.08,0.15,0.05,0.00,0.00,0.00,0.00,normal .
0, udp, demain_u, sF, 30,0,0,0,0,0,0,0,0 ,0,1,3,0.00,0.00,0.00, ,0.17,0.07,0.17,0.04,0.00,0.00,0.00,0.00, normal.
0, udp, domain_u,sF, 30,0,0,0,0,0,0,0,0 +0,1,2,0.00,0.00,0.00, .1.00,55,46,0.18,0.07,0.1%8,0.04,0.00,0.00,0.00,0.00, normal.
0, tep, smtp, SF, 1491, 327,0,0,0,0,0,1,0 ,0,2,1,0.00,0.00,0.00,0.00,0.50,1.00,0.00,56,126,0.7%,0.07,0.02,0.02,0.00,0.00,0.00,0.00, normal.
0, tep, smtp, 5F, 807, 276,0,0,0,0,0,1,0, ,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,57,127,0.79,0.07,0.02,0.02,0.00,0.00,0.00,0.00, normal.
0. tep, smtp, 5F, 1014, 332, 0, 0, 0.0, 0,1,0,0,0,0,0,0,90,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,58,128,0.7%,0.07,0.02,0.02,0.00,0.00,0.00,0.00,normal.

Figure 3.6: Sample vectors of NMS’s KDD dataset

23

Features Extraction: Classification of packets relies on the network connection
feature values. Extraction of features requires the captured network packets as an input and
extracts features from these packets as output. In port-based classification, basic features are
extracted from the header of packets (protocol type, service, flag etc.). In payload
classification, content features are extracted from payload of packets (logged in, etc.).

Statistical features (count, srv_count, etc.) manually are computed.

Feature Scaling: This stage is a method for standardizing the range of independent
variables or dataset features. Since the range of values of raw data varies widely, objective
functions will not work properly without normalization in some machine learning algorithms.

There are two types of feature scaling (loffe & Szegedy, 2015):

Standardization: Data standardization is the process of rescaling one or more features
so that features have 0 mean value and a standard deviation of 1. Standardization assumes
that data has a Gaussian distribution. This does not strictly have to be true, but the technique

is more effective if features distribution is Gaussian.

Normalization: Normalization is the process of rescaling one or more features to the
range of 0 to 1. This means that the largest value for each feature is 1 and the smallest value
is 0.

After feature scaling, vectors are suitable as input to machine learning algorithms.

Reduction: This is utilized to reduce the dimensions (count) of features by dismissing

any excessive or irrelevant features.
3.1.3 Train Model (Classification)

Classification is a method by which classifier specifies which group belongs to a
particular observation, such as when biologists categorize crops, animals and other life forms
into separate taxonomies. It is one of the main uses of information science and machine

learning.

Then algorithms classify the train data and train data train the system. In the final

stage, the trained system estimates vectors to determine if the data is normal or not.
3.1.4 Test Data (Prediction)

The machine learning value is realized in this step. The trained model is used in this
phase to forecast the result and it labels packets with the class name it belongs to. This step is

the phase of deciding which class the package belongs to.

24

3.1.5 Improve

It covers the evaluation of the results from the technical point of view according to the
test values, arranging and sending of the observing and support model and arranging process.
Selecting the most efficient model by looking at the test results enters this stage. Improve step

of methodology will be discussed in chapter five which is the last chapter of this thesis.
3.2 System Architecture

The NMS includes data gathering, data pre-processing, classification, prediction and
response stages. In data gathering stage, Wireshark captures data from network and then data
is used in the classification and prediction stages to train and test the NMS. In NMS, KDD
CUP99 provides train data and pre-processing data controls the data to assure an effective
configuration of the classification system. DT classification algorithm is used by PCA
algorithm and Wireshark network monitoring application to build the suggested NMS and
classify network traffic in online and offline mode. The last NMS phase response shows

important data and tells the network administrator to take appropriate action.

In Figure 3.7 a general NMS architecture is illustrated. It shows a general

architecture of an NMS.

Firewall

Q
78
@ -

Network Monitoring System Network Administrator

Switch

PC1 AP

Figure 3.7: A General architecture of an NMS

25

The most considerable part of the NMS is to classify network packets by service
types, then dispatch a copy of the record to the network administrator. As a result, the

network administrator takes proper action by updating the monitoring systems on the
network.

3.3 The Proposed System
NMS has two phases as follows:
I. Training.
Il. Testing.

Training phase which is shown in Figure 3.8, consists of three steps and those steps
are listed below:

e Input dataset.
e Train the system by dataset.

e DT algorithm classifies and PCA algorithm deducts dimensions, and NMS
classifies the packets by classes that determined in feature extraction phase.

Output of this phase is trained system.

26

Input KDD CUP99
Training Data Set

Generate Machine Learning Object (Model)

Apply DT and PCA Algorithms To Prepare Training Model

Figure 3.8: Training Phase’s Block Diagram

In Figure 3.9 the testing stage is illustrated. It consists of 3 steps and those steps can

be described as bellow:
e Input trained system.

e Learning machine (trained system) classifies network traffic (testing file in

offline mode).

e Generate monitoring report as output. It is the last phase in the suggested
system NMS. Important information is displayed, and system informs the

network administrator for further actions

27

DT and PCA
Algorithms Applied
Trained System

ﬁlﬂude?

Capture Network Packets By Wireshark
Application.

I t Test Fil
Convert Them For Testing. nput Test File

Trained System (Machine Learning Object) To Test Data

Generate Monitoring

Figure 3.9: Testing Phase’s Block Diagram

28

CHAPTER 4
NMS SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction

The application of the suggested NMS will be presented in this section by using the
DT and PCA algorithms. Then we will compare DT algorithm of the NMS with other
algorithms. This chapter provides a comparison of the test results of NMS with the different
codes given in the Appendix. NMS is designed as it is in a LAN network with a WAN
connection. It is programmed in Python language and implementation of the code is highly
suitable for the most of networks types.

4.2 System Architecture

In Figure 4.1 the suggested NMS system is illustrated. It is comprised of the below
components:

Router which will be used for routing network packages.

e Switch for receiving, processing and forwarding the packets.
e PC, which runs NMS.

e Network Administrator is to monitor the network.

e LAN with five clients, one firewall, one switch, one router and two access
point.

29

Firewall |

Switch

PC1 AP .
Network Monitoring System Network Administrator

Figure 4.1: NMS system architecture

4.3 Performance Metrics
4.3.1 Confusion Matrix (CM)

CM is a measure of efficiency. It is utilized for problems where there can be at least
two output classes. It is shown as a table with four cells. Columns are actual values and rows

are predicted values, and it is showed in Table 4.1.
True Positive (TP): Actual value is positive, and prediction is positive
True Negative (TN): Actual value is positive, and prediction is negative
False Positive (FP): Actual value is negative, and prediction is positive

False Negative (FN): Actual value is negative, and prediction is negative

30

Table 4.1: Confusion Matrix (CM) (Tavallaee et al., 2009)

PREDICTED VALUES
Positive Negative
Positive TP FN
28
2 3
0l
< > | Negative FP TN

A confusion matrix for binary class problem is show in Table 4.1. and a confusion

matrix for multiclass problem is shown in Table 4.2.

Table 4.2: An Example CM for NMS (Stallings, 2003)

PREDICTED VALUES
WWwW MAIL | OTHER | INTERACTIVE | BULK | SERVICE | MEDIA
WWW 475767 1036 59 22 35 10 0
” MAIL 804 49996 204 110 119 3 0
tﬁ OTHER 133 205 38163 66 111 1312 9
; INTERACTIVE 67 250 146 691 34 0 1
(E) BULK 24 116 | 107 22 21423 1 0
< SERVICE 0 1 939 0 3 3780 0
MEDIA 2 1 5 12 3 0 6

Standard metrics are shown below for evaluating network monitoring. The most
commonly used evaluation metrics are the detection rate (DR) and the accuracy rate. As
shown in Equation (4.1), DR is calculated as the ratio of the number of correctly classified
vectors to the total number of class vectors and as shown in as in Equation (4.2), Accuracy is
the ratio of number of correct predictions to the total number of input samples (Tavallaee et
al., 2009).

31

Sensitivity-Detection Rate (DR) or True Positive Rate (TPR): It is a ratio of the total

number of positive examples that are correctly classified divide into the total number of
positive examples. High recall shows that the class is identified correctly (Tavallaee et al.,
2009).

TP TP
DR=TPR=—

= (4.1)
P TP+ FN

Accuracy: It is the ratio of the correctly labeled examples to the whole pool of example
(Tavallaee et al., 2009).

TP+TN
Accuracy = ——— (4.2)
Total

4.4 Experiments and Results
There will be four scenarios that contains experiments to classify network traffic over

KDDCUP99 data set by using DT, LG, SVM, DL and GNB algorithms in NMS in this

section.

Scenario 1: 5 experiments were performed on KDD CUP99 dataset by using SVM,
DT, LR, GNB and DL classification algorithms individually. These experiments’ requirements

described as below:

Experiment 1: 97,278 rows of KDD CUP99 dataset are chosen for the training and
595,798 rows for testing, however all forty-one features are chosen.

Experiment 2: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only thirty features are chosen.

Experiment 3: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only twenty features are chosen.

Experiment 4: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only ten features are chosen.

Experiment 5: 97,278 rows of KDD CUP99 dataset are chosen for the training and

595,798 rows for testing, however only five features are chosen.
Scenario 2: To test scalability of NMS, there will tree different size of KDD data set.

Scenario 3: In this scenario standard non-scalar algorithms were applied and compared

to each other to see the outcome of feature scaling on the classification.

Scenario 4: To avoid impact of unbalanced data on classification.
32

Scenario 1:

The 1% experimental outcome showed that the DT classifier reached the largest DR
rate of 79.8813% compared to other classifiers. The maximum ACC rate is 98.9923 % that
reached by DL classifier. The maximum value of DR rate for network classes was reached
by DT classifier. Although the training time is long, DL classifier reached by a high DR rate.
The minimum time taken to train is 0.156394 seconds that reached by GNB classifier and
minimum time taken to test is 0.12333 seconds achieved by DT classifier. Moreover, the

minimum memory usage is 0.741154 GB that reached by DT classifier.

Table 4.3: First Scenario of 1% Experiment

EXPERIMETNS
SVM DT LR DL GNB
DR (%) 51.1479 79.8813 | 56.0539 78.8496 51.4787
ACC (%) 96.2793 97.7486 | 96.1568 98.9923 84.0907
DR for WWW (%) 99.7406 99.8135 | 99.6165 99.6575 95.4771
DR for MAIL (%) 82.7367 83.6521 84.9207 90.6064 49.8243
DR for OTHER (%) 96.7149 94.6473 | 92.5823 96.3380 26.0731
DR for INTERACTIVE (%) 1.1774 63.9192 | 11.5222 0 46.7619
DR for BULK (%) 77.6656 96.5887 | 72.0186 97.4803 20.9560
DR for SERVICE (%) 0 82.6169 31.7171 68.0890 97.1204
DR for MEDIA (%) 0 37.9310 0 99.7761 24.1379
MEAN OF CROSS V. (%) 96.0249 97.9379 | 95.7114 98.9900 75.5659
TRAINING TIME(SECOND) | 45.529160 | 5.581684 | 7.594568 | 122.242404 | 0.156394
TESTING TIME(SECOND) 335.489777 | 0.12333 | 0.102367 | 32.621607 | 2.362087
MEMORY(GB) 0.743065 | 0.741154 | 0.813011 | 0.977589 0.758854
Detection Rate & Accuracy Rate

100.0000%

80.0000%

60.0000%

40.0000%

20.0000%

0.0000%

DR (%)

ACC (%)

B Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.2: DR & ACC Comparison for the 1% Experiment

33

Training Time & Testing Time

350.0
300.0
250.0
200.0
150.0
100.0

50.0

Training (second) Testing (second)

B Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression W Deep Learning

Figure 4.3: Training and Testing Time Comparison for the 1% Experiment

Memory

0.8
0.6
0.4
0.2

Memory (GB)

M Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.4: Memory Consume Comparison for the 1% Experiment

34

CsE%=0 pEEREG HE=EnE BEX A2 € 9 oo =4

Fbr 1 Db A T X S bt £ B et Sai B s #=
0 e theghber oyt B £y . a
- e | he - Parme Tree See Vakar -

. s ate 3 S8 MRS

Clasted (S35TSE, A1) mresp(C[400MSEMa-01, -1.5I4TI190-01, -1.08SEIACTASON, ..., ..

fect of pandas.core.series mdule

REEs
P WS

estiseel Seedes (S95TE,)

R R R A

rotal fastid (6976, 41) ¥

fostid (sTITE, A1) w

(0L 7.M43971, 3. VEATIMGE- 0, 5. BRSNISHA-UE, Loes v

1 Series (9027 Seeles sbfect of pandas e series meule

8=
mro

Els B Eagom-
=

67 % {andTise-starsTise})

Permissrs: RW Ind-cl-baer CBF [nosdng ASCH Lne B Columer 26 Mamony: 82%

Figure 4.5: Screenshot of 1% Experiment

Decision Tree Classifier

Train and Test Data read...

There are 7 classes to be monitored

Classes are:

['NNN', "MAIL', 'OTHER', "INTERACTIVE', 'BULK', 'SERVICE', 'MEDIA']
Service type mapping created...

Train and Test data labels created...

Decomposed features created...

Mumber of features used : 41

Time taken to perform 5-fold cross validation : 28.76185183
Cross validation scores

[@.960899491 @.95486525 ©.934991 @.98678935 B.98885346]
Mean score of 5-fold cross wvalidation @ ©.979379

Time taken to train final model : 5.637815

Predictions made using final model...

Time taken to make predictions on test data : ©.128385
Memory used : B8.983337 GBE CPU usage : 19.200888
Confusion matrix :

[[476048 654 45 76 110 8 2]
[6332 42868 390 63 1589 @ 2]
[117 197 37858 38 362 1401 34]
[74 172 118 76@ 67 @ 6]
[63 385 343 21 20953 7 1]
[@ 1 s1e @ 18 3902 @]
[1 1 3 8 5 @ 11]]

Accuracy score on test data is : B.977486

For WWW Class, Detection Rate is ¥ 98.63517789188871

For MAIL Class, Detection Rate is ¥ 96.99825929159495

For OTHER Class, Detection Rate is ¥ 95.78889353118127

For INTERACTIVE Class, Detection Rate is ¥ 79.8319327731@924
For BULK Class, Detection Rate is ¥ 98.72133782885681

For SERWICE (Class, Detection Rate is ¥ 73.37344366491162

For MEDIA Class, Detection Rate is % 19.642857142857142

Figure 4.6: Outputs for the 1 Experiment
35

The 2" result showed that DT classifier reached a DR rate of 75.8523 % as
maximum value compared with other classifiers. The maximum ACC rate is 98.8568 % that
reached by DL classifier. The maximum DR rate for network classes was reached by DT
classifier. Although the training time is long, DL classifier reached a high DR rate. The
minimum time taken to train is 0.13955 seconds that reached by GNB classifier and
minimum time taken to test is 0.088197 seconds reached by LR classifier. Moreover, the
minimum memory usage is 0.685406 GB that reached by Support Vector Machine classifier.

Table 4.4: 2" Experiment of First Scenario

EXPERIMETNS
SVM DT LR DL GNB
DR (%) 51.6828 75.8523 | 56.0486 74.3756 55.0105
ACC (%) 96.3691 97.5658 96.1539 98.8568 86.6332
DR for WWW (%) 99.7381 99.8775 996160 98.5109 95.1472
DR for MAIL (%) 83.6306 80.7244 84.8973 60.0671 51.4228
DR for OTHER (%) 96.7249 94.8773 | 92.5823 96.6456 71.4717
DR for INTERACTIVE (%) 2.8595 57.6955 | 11.5222 0 38.2674
DR for BULK (%) 77.7255 96.7685 | 72.0047 97.1703 11.9946
DR for SERVICE (%) 1.1009 83.7814 | 31.7171 68.5300 92.6318
DR for MEDIA (%) 0 17.2413 0 99.7057 24.1379
MEAN OF CROSS V. (%) 96.1174 97.5987 95.7083 98.9100 82.9959
TRAINING TIME(SECOND) | 34.305190 | 3.192578 | 6.628949 | 120.981310 0.139555
TESTING TIME(SECOND) 257.928970 | 0.097885 | 0.088197 | 30.250127 1.819185
MEMORY(GB) 0.685406 0.698105 | 0.799507 0.985912 0.740261
Detection Rate & Accuracy Rate

100.0000%

80.0000%

60.0000%

40.0000%

20.0000%

0.0000%

M Gaussian Naive Bayes

Logistic Regression

DR (%)

B Support Vector Machine

M Deep Learning

ACC (%)

Decision Tree

Figure 4.7: DR & ACC Comparison for the 2" Experiment

36

Training Time & Testing Time

300.0
250.0
200.0
150.0
100.0

50.0

Training (second) Testing (second)

B Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression W Deep Learning

Figure 4.8: Training and Testing Time Comparison for the 2"! Experiment

Memory

0.8
0.6
0.4
0.2

Memory (GB)

M Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.9: Memory Consume Comparison for the 2! Experiment

37

Decision Tree Classifier

Train and Test Data read...

Service type mapping created...

There are 7 classes to be monitored

Classes are:

["Wid", 'MAIL', 'OTHER', "INTERACTIVE', 'BULK', 'SERVICE', 'MEDIA']
Train and Test data labels created...

Decomposed features created...

Mumber of features used : 3@

Time taken to perform 5-fold cross wvalidation : 13.394881
Cross wvalidation scores :

[@.95554756 @.98867633 ©.9842714 @.987509 8.97193891]
Mean score of 5-fold cross wvalidation : @.975987

Time taken to train final model : 3.435826

Predictions made using final meodel...

Time taken to make predictiocns on test data : ©.899846
Memory used : @.882497 GB CPU usage : 18.700088
Confusion matrix

[[476345 3901 a3 28 115 7 2]
[7675 41368 366 174 1661 :) 8]
[116 286 37956 114 262 1343 8]
[61 2880 144 686 98 ;) 8]
[65 320 247 56 208932 18 3]
[1 @ 756 :) 9 3957 8]
[1 1 & 11 5) 511

Accuracy score on test data is : B.975658

For WWW Class, Detection Rate is ¥ 98.36473493796773

For MAIL Class, Detection Rate is ¥ 97.36884934318941

For OTHER Class, Detection Rate is ¥ 96.8467786813363

For INTERACTIVE Class, Detection Rate is ¥ 64.17212347988774
For BULK Class, Detection Rate is ¥ 98.7895324518192

For SERVICE Class, Detection Rate is ¥ 74.42166635328669

For MEDIA Class, Detection Rate is % 31.25

Figure 4.10: Outputs for 2" Experiment

The 3™ experimental result showed that DT classifier reached a DR rate of 76.6766
% as maximum value compared with other classifiers. The maximum ACC rate is 98.8694
% that reached by DL classifier. The maximum DR rate for network classes was reached by
DT classifier. Although the training time is long, DL classifier reached a high DR rate. The
minimum time taken to train is 0.121520 seconds that reached by GNB classifier and the
minimum time taken to test is 0.074805 second reached by LR classifier. Moreover, the

minimum memory usage is 0.513020 GB that reached by SVM classifier.

38

Table 4.5: 3" Experiment of First Scenario

EXPERIMETNS
SVM DT LR DL GNB
DR (%) 56.8923 76.6766 55.5178 73.9691 60.4801
ACC (%) 96.6302 98.7969 96.1393 98.8694 90.2403
DR for WWW (%) 99.7343 99.7605 | 99.6135 97.7406 95.1244
DR for MAIL (%) 85.1881 96.6683 84.8368 58.2278 61.3143
DR for OTHER (%) 93.0723 94.4548 92.5798 96.1108 83.9420
DR for INTERACTIVE (%) 3.3641 53.4903 7.9058 0 30.3616
DR for BULK (%) 80.2793 96.9898 | 72.0140 97.3861 72.0278
DR for SERVICE (%) 36.6080 81.5795 | 31.6747 68.5345 63.3495
DR for MEDIA (%) 0 13.7931 0 99.7839 17.2413
MEAN OF CROSS V. (%) 96.2161 97.6234 95.6980 98.8300 87.7698
TRAINING TIME(SECOND) | 64.876303 | 2.557625 | 5.147132 | 118.425041 | 0.121520
TESTING TIME(SECOND) | 181.408424 | 0.085482 | 0.074805 | 34.845944 | 1.351757
MEMORY (GB) 0.513020 | 0.646824 | 0.628727 | 0.877766 0.712097
Detection Rate & Accuracy Rate

100.0000%

80.0000%

60.0000%

40.0000%

20.0000%

0.0000%

M Gaussian Naive Bayes

DR (%)

ACC (%)

M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.11: DR & ACC Comparison for the 3" Experiment

39

Training Time & Testing Time

200.0
150.0
100.0

50.0

0.0
Training (second) Testing (second)

M Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.12: Training and Testing Time Comparison for the 3™ Experiment

Memory

0.8
0.6
0.4
0.2

Memory (GB)

M Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.13: Memory Consume Comparison for the 3" Experiment

40

Decision Tree Classifier

Train and Test Data read...

Service type mapping created...

There are 7 classes to be monitored

Classes are:

['NNN', 'MAIL', "OTHER', "INTERACTIVE', 'BULK', 'SERWICE', 'HEDIA']
Train and Test data labels created...

Decomposed features created...

Mumber of features used : 28

Time taken to perform 5-fold cross validation : 9.152325
Cross validation scores :

[8.95164191 2.97998544 @,95391159 @.954758462 8.98892?41]
Mean score of 5-fold cross wvalidation : @.976234

Time taken to train final model : 2.557285%

Predictions made using final model...

Time taken to make predictions on test data : @.887738
Memory used : ©.662579 GBE CPU usage : 28.000008
Confusion matrix :

[[475787 947 55 74 47 12 7]
[985 49520 232 284 368 1 5]
[116 221 37781 118 452 1204 25]
[62 216 141 636 134 @ @]
[62 257 255 78 21048 1 @]
[@ 1 868 @ 1 3853 @]
[@ 4 7 g 5 @ 4]]

Accuracy score on test data is : B.957969

For Wk Class, Detection Rate is ¥ 99.759923546586089

For MAIL Class, Detection Rate is ¥ 96.78358573522227

For OTHER Class, Detection Rate is ¥ 96.83955362363085

For INTERACTIVE Class, Detection Rate is ¥ 57.24572457245725
For BULK Class, Detection Rate is ¥ 95.46712645764327

For SERVICE Class, Detection Rate is ¥ 74.65687448413523

For MEDIA Class, Detection Rate is ¥ 9.75689756897561

Figure 4.14: Outputs for 3 Experiment

The 4" experimental result showed that DT classifier reached by a DR rate of
98.6031 % as maximum compared with other classifiers. The maximum ACC rate is
98.5930 % that reached by DL classifier. The maximum DR rate for network classes was
reached by DT classifier. The minimum time taken to train is 0.099856 seconds that reached
by GNB classifier and minimum time taken to test is 0.063542 second reached by LR
classifier. Moreover, minimum memory usage is 0.595535 GB that reached by DT classifier.

41

Table 4.6: 4" Experiment of First Scenario

EXPERIMETNS
SVM DT LR DL GNB
DR (%0) 58.9431 98.6031 53.9965 73.8632 64.4817
ACC (%) 97.3076 76.3247 95.9443 98.5930 91.6638
DR for WWW (%) 99.6966 99.6125 99.5991 96.6327 95.4873
DR for MAIL (%) 87.0130 95.6105 | 83.4081 60.0000 72.5544
DR for OTHER (%) 93.2948 946473 | 92.9448 97.1305 86.8871
DR for INTERACTIVE (%) 0 52.6492 | 0.2523 0 54.3313
DR for BULK (%) 94.9522 96.3124 | 70.0963 94.7365 72.1707
DR for SERVICE (%) 37.6455 80.6478 | 31.6747 69.0048 52.6995
DR for MEDIA (%) 0 13.7931 0 99.5379 17.2413
MEAN OF CROSS V. (%) 97.1300 97.3664 95.4338 98.5400 90.4417
TRAINING TIME(SECOND) | 13.486251 | 1.229930 | 2.607169 | 122.421115 | 0.099856
TESTING TIME(SECOND) | 121.162376 | 0.070930 | 0.063542 | 40.892389 0.720488
MEMORY(GB) 0.736279 0.595535 | 0.699520 0.845486 0.692577
Detection Rate & Accuracy Rate

100.0000%

80.0000%

60.0000%

40.0000%

20.0000%

0.0000%

DR (%)

ACC (%)

B Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.15: DR & ACC Comparison for the 4" Experiment

42

Training Time & Testing Time

140.0
120.0
100.0
80.0
60.0
40.0
20.0

Training (second) Testing (second)

B Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression W Deep Learning

Figure 4.16: Training and Testing Time Comparison for the 4" Experiment

Memory

0.8
0.6
0.4

0.2

Memory (GB)

M Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.17: Memory Consume Comparison for the 4" Experiment

43

Decision Tree Classifier

Train and Test Data read...

Service type mapping created...

There are 7 classes to be monitored

Classes are:

["Wi", '"MAIL', "OTHER', 'INTERACTIVE', 'BULK', 'SERVICE', "MEDIA']
Train and Test data labels created...

Decomposed features created...

Mumber of features used : 18

Time taken to perform 5-fold cross validation : 4.855816
Cross wvalidation scores :

[9.94958631 8.986877911 8.98175276 8.98283129 9.9?33?935]
Mean score of 5-fold cross validation : ©.973664

Time taken to train final model : 1.242173

Predictions made using final model...

Time taken toc make predictiens on test data : @.878374
Memory used : ©.614639 GB CPU usage : 17.108800
Confusion matrix :

[[475081 17@2 49 49 34 13 1]
[1584 48987 225 193 3@8 1 18]
[136 224 37858 139 287 1332 23]
[69 227 17@ 626 96] 1]
[52 254 214 60 21110] 3]
[:] 2 904 8 @ 3889 @]
[2 2 10 9 2] 4]]

Accuracy score on test data is : 8.936831

For WwWW Class, Detection Rate is ¥ 99.63827748728624

For MAIL Class, Detection Rate is ¥ 95.3@915599828788

For OTHER Class, Detection Rate is ¥ 96.813187927973/2

For INTERACTIVE Class, Detection Rate is ¥ 57.74987749677491
For BULK Class, Detection Rate 1s ¥ 96.67878811192813

For SERVICE Class, Detection Rate is % 73.8894277488582

For MEDIA Class, Detection Rate is ¥ 8.8

Figure 4.18: Output for 4" Experiment

The fifth experimental result showed that DT classifier reached a DR rate of 74.2333
% as maximum value compared with other classifiers. The maximum ACC rate is 97.6861
% that reached by DT classifier. The maximum DR rate for network classes was reached by
DT classifier. The minimum time taken to train is 0.090653 seconds that reached by GNB
classifier and the minimum time taken to test is 0.056931 seconds reached by LR classifier.

Moreover, the minimum memory usage is 0.543766 GB that reached by SVM classifier.

44

Table 4.7: 51" Experiment of First Scenario

EXPERIMETNS

SVM DT LR DL GNB
DR (%) 51.0742 74.2333 46.0962 65.5014 60.2825
ACC (%) 94.9800 97.6861 93.1589 97.5127 92.1700
DR for WWW (%) 98.1749 99.1493 98.5924 91.5607 96.5625
DR for MAIL (%) 83.8746 91.9626 68.1649 13.3333 70.4582
DR for OTHER (%) 96.1374 93.5248 95.4598 90.5986 88.1997
DR for INTERACTIVE (%) 0.8410 38.0151 | 0.1682 0 0.5046
DR for BULK (%) 73.7703 94.2285 52.2426 95.3255 66.6897
DR for SERVICE (%) 4.7215 78.6152 | 8.0457 68.6417 58.1833
DR for MEDIA (%) 0 241379 | 0 99.0499 41.3793
MEAN OF CROSS V. (%) 94.7029 96.5276 92.5555 97.2300 90.9701
TRAINING TIME(SECOND) | 14.668287 | 0.515767 | 1.083124 | 121.528057 | 0.090653
TESTING TIME(SECOND) 136.944998 | 0.062312 | 0.056931 | 37.436296 | 0.464589
MEMORY (GB) 0.543766 0.569656 | 0.683208 | 0.838245 0.689236
Detection Rate & Accuracy Rate
100.0000%
80.0000%
60.0000%
40.0000%
20.0000%
0.0000%

M Gaussian Naive Bayes

Logistic Regression

DR (%)

M Deep Learning

ACC (%)

M Support Vector Machine B Decision Tree

Figure 4.19: DR & ACC Comparison for the 5™ Experiment

45

Training Time & Testing Time

140.0
120.0
100.0
80.0
60.0
40.0
20.0

Training (second) Testing (second)

B Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression W Deep Learning

Figure 4.20: Training and Testing Time Comparison for the 5" Experiment

Memory

1.000000
0.800000
0.600000
0.400000
0.200000

0.000000

Memory (GB)

M Gaussian Naive Bayes M Support Vector Machine B Decision Tree

Logistic Regression M Deep Learning

Figure 4.21: Memory Consume Comparison for the 5™ Experiment

46

Decision Tree Classifier

Train and Test Data read...

Service type mapping created...

There are 7 classes to be monitored

Classes are:

["', 'MAIL", "OTHER', 'INTERACTIVE', 'BULK', 'SERVICE', "MEDIA']
Train and Test data labels created...

Decomposed features created...

Mumber of features used : 5

Time taken to perform 5-fold cross wvalidation : 2.285563
Cross validation scores :

[8.934?345? B.97224792 @8.97481367 B.97388712 @.9786971]
Mean score of 5-fold cross wvalidation : B.965276

Time taken to train final model : ©.583835

Predictions made using final model...

Time taken to make predictions on test data : 8.857651
Memory used : 8.591826 GBE CPU usage : 15.1866808
Confusion matrix :

[[472872 383@ 60 31 117 15 4]
[3111 47118 212 198 585 5 7]
[143 242 37409 159 466 1562 18]
[51 228 182 452 271 2 3]
[1@9 555 321 229 208441 38 8]
[@ 1 991 8 1@ 3713 @]
[4 1 5 8 4 @ 711

Accuracy score on test data is : @.976861

For Wi Class, Detection Rate is % 99.28238998467321

For MAIL Class, Detection Rate is ¥ 98.65512265512265

For OTHER Class, Detection Rate is ¥ 95.47983665135273

For INTERACTIVE Class, Detection Rate is ¥ 41.65898617511521
For BULK Class, Detection Rate is ¥ 93,363478573606

For SERVICE Class, Detection Rate is ¥ 69.7@152855565984

For MEDIA Class, Detection Rate is ¥ 14.89361782127659%

Figure 4.22: Output for 5 Experiment

Scenario 2: Three experiments were carried out to see the scalability of NMS as

fallow:

1- We have used 125,793 vector of KDD dataset to train NMS and 595,798 rows for testing.

2- We have used 494,021 vector of KDD dataset to train NMS and 595,798 rows for testing.

3- We have used 1,000,000 vector of KDD dataset to train NMS and 595,798 rows for testing.
Outcomes are illustrated as follows.

Experimental result showed that SVM classifier reached highest DR rate in first and
second experiments and DT classifier achieved highest DR rate in third experiment
compared with other classifiers. SVM classifier achieved highest ACC rate in all
experiments compared with other classifiers. Highest DR rate for network classes was

achieved by SVM classifier.

47

Table 4.8: Scalability Experiments for Support VVector Machine Algorithm

1.Experiment

2.Experiment

3.Experiment

DR (%) 42.2910 40.1904 43.8707
ACC (%) 96.1984 96.1737 97.0856
DR for WWW (%) 99.7536 98.7353 99.7483
DR for MAIL (%) 81.2358 82.2468 85.4379
DR for OTHER (%) 96.9249 96.7174 93.1648
DR for INTERACTIVE (%) 25.7359 7.3170 175777
DR for BULK (%) 76.9695 75.6972 98.9074
DR for SERVICE (%) 0 0 0

DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 0 0 0
MEAN OF CROSS V. (%) 80.5173 98.2594 95.1001
TRAINING TIME(SECOND) 941.402687 3500.292585 | 18861.513270
TESTING TIME(SECOND) 1504.380082 686.375096 2062.129607
MEMORY(GB) 0.605934 0.366829 0.970428

Detection Rate & Accuracy Rate

100,0000%

80,0000%

60,0000%

40,0000%

20,0000%

0,0000%

DR{%)

m 1. Experiment

| 2. Experiment

ACC (%)

u 3. Experiment

Figure 4.23: DR & ACC Comparison for SVM Algorithm

48

Training Time & Testing Time

20000
15000
10000

5000

Training Time {second) Testing Time {second)

m 1. Experiment m2. Experiment m 3. Experiment

Figure 4.24: Training and Testing Time Comparison for SVM Algorithm

Memory

0,8
0,6
0,4

0,2

Memory {GB)

m 1. Experiment m2. Experiment m 3. Experiment

Figure 4.25: Memory Consume Comparison for SVM Algorithm

49

Table 4.9: Scalability Experiments for Decision Tree Algorithm

1.Experiment 2.Experiment 3.Experiment

DR (%) 34.0963 32.7188 52.4999
ACC (%) 60.2649 89.8068 92.6321
DR for WWW (%) 63.0867 98.6618 97.8930
DR for MAIL (%) 25.4274 69.1993 79.3933
DR for OTHER (%) 77.8519 54.8838 82.0395
DR for INTERACTIVE (%) 11.9428 23.4650 74.0958
DR for BULK (%) 56.4329 27.7877 90.1673
DR for SERVICE (%) 34.1943 17.0230 12.9790
DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 37.9310 3.4482 37.9310
MEAN OF CROSS V. (%) 80.1712 95.4338 95.2322
TRAINING TIME(SECOND) 8.857297 20.935107 55.359079
TESTING TIME(SECOND) 0.115061 0.139380 0.137375
MEMORY/(GB) 0.870491 1.029617 1.368744

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
40,0000%

20,0000%

0,0000%

DR (%) ACC (%)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.26: DR & ACC Comparison for DT Algorithm

50

Training Time & Testing Time

60
50
10
30
20

10

Training Time {second) Testing Time {second)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.27: Training and Testing Time Comparison for DT Algorithm

Memory

1,4
1,2

0,8
0,6
0,4
0,2

Memory (GB)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.28: Memory Consume Comparison for DT Algorithm

51

Table 4.10: Scalability Experiments for Logistic Regression Algorithm

1.Experiment 2.Experiment 3.Experiment

DR (%) 28.3212 33.0188 31.3164
ACC (%) 90.4110 91.2449 77.6468
DR for WWW (%) 99.4093 98.0661 78.0004
DR for MAIL (%) 44.4218 77.8300 97.0899
DR for OTHER (%) 96.7049 81.9445 96.7874
DR for INTERACTIVE (%) 0 0 0

DR for BULK (%) 14.3548 8.3529 9.9064
DR for SERVICE (%) 0 30.9760 0.0635
DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 0 0 0
MEAN OF CROSS V. (%) 79.1297 98.0784 95.2067
TRAINING TIME(SECOND) 3.236786 10.060068 19.838131
TESTING TIME(SECOND) 0.067650 0.071333 0.066887
MEMORY(GB) 0.722469 0.867374 1.019993

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
40,0000%

20,0000%

0,0000%

DR (%) ACC (%)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.29: DR & ACC Comparison for LR Algorithm

52

Training Time & Testing Time

20
15
10
5
A
0
Training Time {second) Testing Time {second)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.30: Training and Testing Time Comparison for LR Algorithm

Memory

1,2

0,8
0,6
0,4
0,2

Memory (GB)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.31: Memory Consume Comparison for LR Algorithm

53

Table 4.11: Scalability Experiments for DL Algorithm

1.Experiment 2.Experiment 3.Experiment
DR (%) 20.5481 17.7597 12.6341
ACC (%) 2.28902 3.6543 3.3543
DR for WWW (%) 47.4525 99.5948 99.9396
DR for MAIL (%) 40.0000 0 0
DR for OTHER (%) 0 54,5995 7.5688
DR for INTERACTIVE (%) 6.7200 0 0.0049
DR for BULK (%0) 90.7609 0 0
DR for SERVICE (%) 0 5.6533 6.1942
DR for REMOTE (%) 0 0 0
DR for DATABASE (%) 0 0 0
DR for MEDIA (%) 0 0 0
MEAN OF CROSS V. (%) 83.8800 98.7800 98.5800
TRAINING TIME(SECOND) 164.890413 657.273461 1354.568521
TESTING TIME(SECOND) 46.122825 43.937499 44.832119
MEMORY(GB) 1.136715 1.256710 1.273716
Detection Rate & Accuracy Rate

25,0000%

20,0000%

15,0000%

10,0000%

0,0000%

DR (%) ACC (%)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.32: DR & ACC Comparison for DL Algorithm

54

Training Time & Testing Time

1400
1200
1000
800
600
400
200

Training Time {second) Testing Time {second)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.33: Training and Testing Time Comparison for DL Algorithm

Memory

1,3
1,25
1,2

1,15

1,1

1,05

Memory (GB)

m1. Experiment 2. Experiment m 3. Experiment

Figure 4.34: Memory Consume Comparison for DL Algorithm

55

Table 4.12: Scalability Experiments for GNB Algorithm

1.Experiment 2.Experiment 3.Experiment

DR (%) 30.0925 37.2135 37.9236
ACC (%) 57.7956 85.0720 61.5967
DR for WWW (%) 68.5697 92.3539 61.5412
DR for MAIL (%) 14.9933 44.6834 60.9805
DR for OTHER (%) 2.8275 94.6448 89.7972
DR for INTERACTIVE (%) 27.5862 30.6980 36.4171
DR for BULK (%) 15.9636 24.2658 27.0594
DR for SERVICE (%) 99.5130 0 0

DR for REMOTE (%) 0 0 0

DR for DATABASE (%) 0 0 0

DR for MEDIA (%) 41.3793 48.2758 65.5172
MEAN OF CROSS V. (%) 39.8331 75.6497 69.2628
TRAINING TIME(SECOND) 0.220978 0.865924 1.784725
TESTING TIME(SECOND) 3.015205 3.018600 3.043701
MEMORY(GB) 1.014290 1.455036 1.349602

Detection Rate & Accuracy Rate

100.0000%
80.0000%
60.0000%
40.0000%

20.0000%

0.0000%
DR (%) ACC (%)

B 1.Experiment M 2.Experiment M 3.Experiment

Figure 4.35: DR & ACC Comparison for GNB Algorithm

56

Training Time & Testing Time

3.5

2.5

15

0.5

Training Time (second) Testing Time (second)

B 1.Experiment M2.Experiment M 3.Experiment

Figure 4.36: Training and Testing Time Comparison for GNB Algorithm

Memory

15

0.5

Memory (GB)

B 1.Experiment M2.Experiment M 3.Experiment

Figure 4.37: Memory Consume Comparison for GNB Algorithm

Scenario 3:

In order to see the impact of feature scaling, an experiment without feature scaling

(standard scaler) was implemented to all classifiers and the experimental outcome showed that
DT classifier reached the largest DR percentage of 84,9629 percent compared to other
algorithms. Maximum ACC rate is 99.4449 % that reached by DT classifier. Maximum DR

rate for network classes was reached by DT classifier. The minimum time taken to train is

57

6.371368 seconds that reached by DT classifier and the minimum time taken to test is
0.059934 second reached by LR classifier. Moreover, the minimum memory usage is
0.285355 GB that reached by SVM classifier.

Table 4.13: Standard Scaler Experiments for SVM Algorithm

With Standard Without Standard

Scaler Scaler
DR (%0) 51.1479 43.2610
ACC (%) 96.2793 87.0701
DR for WWW (%) 99.7406 99.9997
DR for MAIL (%) 82.7367 11.2889
DR for OTHER (%) 96.7149 70.2692
DR for INTERACTIVE (%) 1.1774 9.5878
DR for BULK (%) 77.6656 16.9593
DR for SERVICE (%) 0 87.8255
DR for MEDIA (%) 0 6.8965
MEAN OF CROSS V. (%) 96.0249
TRAINING TIME(SECOND) 45.529160 10286.497473
TESTING TIME(SECOND) 335.489777 4208.674068
MEMORY(GB) 0.743065 0.285355

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
40,0000%

20,0000%

0,0000%

DR (%) ACC (%)

m With Standard Scaler m Without Standard Scaler

Figure 4.38: DR & ACC Comparison for SVM Algorithm

58

Training Time & Testing Time

12000
10000
8000
6000
4000

2000

Training Time {second) Testing Time {second)

m With Standard Scaler m Without Standard Scaler

Figure 4.39: Training and Testing Time Comparison for SVM Algorithm

Memory

0,8
0,6
0,4

0,2

Memory (GB)

m With Standard Scaler m Without Standard Scaler

Figure 4.40: Memory Consume Comparison for SVM Algorithm

59

Table 4.14: Standard Scaler Experiments for Decision Tree Algorithm

With Standard Without Standard
Scaler Scaler
DR (%) 79.8813 84.9649
ACC (%) 97.7486 99.4449
DR for WWW (%) 99.8135 99.9201
DR for MAIL (%0) 83.6521 99.1607
DR for OTHER (%0) 94.6473 96.6574
DR for INTERACTIVE (%) 63.9192 83.2632
DR for BULK (%0) 96.5887 98.7138
DR for SERVICE (%) 82.6169 86.0046
DR for MEDIA (%) 37.9310 31.0344
MEAN OF CROSS V. (%) 97.9379 08.4581
TRAINING TIME(SECOND) 5.581684 6.371368
TESTING TIME(SECOND) 0.12333 0.132308
MEMORY/(GB) 0.741154 0.761307

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
40,0000%

20,0000%

0,0000%

DR (%) ACC (%)

m With Standard Scaler m Without Standard Scaler

Figure 4.41: DR & ACC Comparison for DT Algorithm

60

Training Time & Testing Time

Training Time ({second) Testing Time {second)

L= T ¥ S R o L = B

m With Standard Scaler m Without Standard Scaler

Figure 4.42: Training and Testing Time Comparison for DT Algorithm

Memory

0,765
0,76
0,755
0,75
0,745
0,74
0,735
0,73

Memory (GB)

m With Standard Scaler m Without Standard Scaler

Figure 4.43: Memory Consume Comparison for DT Algorithm

61

Table 4.15: Standard Scaler Experiments for Logistic Regression Algorithm

With Standard Without Standard
Scaler Scaler

DR (%) 56.0539 26.6159
ACC (%) 96.1568 82.0567
DR for WWW (%) 99.6165 97.7371
DR for MAIL (%0) 84.9207 10.8751
DR for OTHER (%0) 92.5823 28.6382
DR for INTERACTIVE (%) 11.5222 23.9697
DR for BULK (%0) 72.0186 25.0910
DR for SERVICE (%) 31.7171 0

DR for MEDIA (%) 0 0

MEAN OF CROSS V. (%) 05,7114 75.0696
TRAINING TIME(SECOND) 7.594568 9.285133
TESTING TIME(SECOND) 0.102367 0.059934
MEMORY/(GB) 0.813011 0.683086

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
40,0000%

20,0000%

0,0000%

DR (%} ACC (%)

m With Standard Scaler m Without Standard Scaler

Figure 4.44: DR & ACC Comparison for LR Algorithm

62

Training Time & Testing Time

10

Training Time {second) Testing Time {second)

m With Standard Scaler m Without Standard Scaler

Figure 4.45: Training and Testing Time Comparison for LR Algorithm

Memory

0,35
0,8
0,75
0,7

0,65

0,6

Memory (GB)

m With Standard Scaler m Without Standard Scaler

Figure 4.46: Memory Consume Comparison for LR Algorithm

63

Table 4.16: Standard Scaler Experiments for DL Algorithm

With Standard Without Standard

Scaler Scaler
DR (%) 78.8496 0.5201
ACC (%) 98.9923 0.036410
DR for WWW (%) 99.6575 3.6409
DR for MAIL (%0) 90.6064 0
DR for OTHER (%0) 96.3380 0
DR for INTERACTIVE (%) 0 0
DR for BULK (%0) 97.4803 0
DR for SERVICE (%) 68.0890 0
DR for MEDIA (%) 09,7761 0
MEAN OF CROSS V. (%) 98.9900 31.0300
TRAINING TIME(SECOND) 122.242404 127.661013
TESTING TIME(SECOND) 32.621607 37.999987
MEMORY/(GB) 0.977589 1.094322

Detection Rate & Accuracy Rate

100,0000%
80,0000%
60,0000%
40,0000%

20,0000%

0,0000%
DR (%} ACC (%)

m With Standard Scaler m Without Standard Scaler

Figure 4.47: DR & ACC Comparison for DL Algorithm

64

Training Time & Testing Time

140
120
100
80
60
40
20

Training Time {second) Testing Time {second)

m With Standard Scaler m Without Standard Scaler

Figure 4.48: Training and Testing Time Comparison for DL Algorithm

Memory

1,1

1,05

0,95

0,9

Memory (GB)

m With Standard Scaler m Without Standard Scaler

Figure 4.49: Memory Consume Comparison for DL Algorithm

65

Table 4.17: Standard Scaler Experiments for GNB Algorithm

With Standard Without Standard
Scaler Scaler
DR (%) 51.4787 51.6904
ACC (%) 84.0907 67.7983
DR for WWW (%) 95.4771 69.1700
DR for MAIL (%0) 49.8243 98.8250
DR for OTHER (%0) 26.0731 38.4234
DR for INTERACTIVE (%) 46.7619 33.7258
DR for BULK (%0) 20.9560 13.8846
DR for SERVICE (%) 97.1204 97.4592
DR for MEDIA (%) 24,1379 10.3448
MEAN OF CROSS V. (%) 75.5659 69.3296
TRAINING TIME(SECOND) 0.156394 0.156402
TESTING TIME(SECOND) 2.362087 2.348045
MEMORY(GB) 0.758854 0.846127

Detection Rate & Accuracy Rate

100.0000%
80.0000%
60.0000%
40.0000%

20.0000%

0.0000%

DR (%) ACC (%)

W With Standard Scaler B Without Standard Scaler

Figure 4.50: DR & ACC Comparison for GNB Algorithm

66

Training Time & Testing Time

Training Time (second) Testing Time (second)

S N W s g~

B With Standard Scaler W Without Standard Scaler

Figure 4.51: Training and Testing Time Comparison for GNB Algorithm

Memory

0.77
0.76
0.75

0.74

0.73

Memory (GB)

B With Standard Scaler B Without Standard Scaler

Figure 4.52: Memory Consume Comparison for GNB Algorithm

Scenario 4:

K-fold cross validation is applied to the algorithm to understand the impact of data

unbalance and each class accuracy is calculated in each experiment.

Model performance is evaluated in machine learning based on an error metric to
determine the model's accuracy. This evaluation is not very accurate since the accuracy

acquired for one test set may vary greatly from the accuracy acquired for another test set. K-

67

fold cross validation solves evaluation problem by dividing the dataset into folds and making

sure that each fold is used as a testing set at some point. Figure 4.53 shows the K-fold cross

validation algorithm:

1.

2.

Iteration 1

Iteration 2

Iteration 3

Iteration k

4.5 Discussion

Divide the dataset into k equal parts.
Use k-1 parts for training and 1 part for testing.
Repeat the procedure k times, rotating the test dataset.

Determine a performance metric for all iterations.

Data Set

Training Folds Test Fold

i
——— c——

—

Figure 4.53: K-Fold Cross Validation

Specifically, the following parameters are discussed in terms of memory allocation,

classification speed and system accuracy to explain the outcomes of the experiment.

4.5.1 System Accuracy Results

The DT algorithm has greater efficiency compared to other algorithms, where its

classification accuracy is 97.6861 %. The aim of our research is to classify network packets

while enhancing the generation of DR rate and ACC rate. Moreover, Figure 4.54 shows that

our system can classify data set vectors at an elevated average DR rate of 74.2333%.

68

DR

120.0000%
100.0000%
Q,
80.0000% ~o ——g
60.0000% 6__————————___.__\
T — - .
40.0000%
20.0000%
0.0000%
0 5 10 15 20 25 30 35 40 45
—8—GNB —8—5VM DT RF —@—DL
Figure 4.54: Number of Features versus Detection Rate
Accuracy
120.0000%
100.0000% *—= P r'y o
f—f———-—o\.\.
80.0000%
60.0000%
40.0000%
20.0000%
0.0000%
0 5 10 15 20 25 30 35 40 45
—8—GNB —8—5VM DT RF —@—DL

Figure 4.55: Number of Features versus Accuracy Rate

4.5.2 Classification Speed Results

Figure 4.56 indicates the duration of the training versus the number of features. DT
algorithm second lowest training duration and DT is one of the algorithms that has lowest
testing duration that was shown in Figure 4.57.

69

Time(second)

140.0
120.0 r—o— - — °
100.0

80.0
60.0
40.0
20.0

0.0 s s = o
0 5 10 15 20 25 30 35 40 45

—8—GNB —@—5VM DT RF —@—DL

Figure 4.56: Number of Features versus Training Time

Time(Second)
400.0
350.0
300.0
250.0
200.0
150.0
100.0

50.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

—8—GNB —8—5VM DT RF —@—DL

Figure 4.57: Number of Features versus Testing Time

4.5.3 Memory Allocation Results

The memory usage versus number of features is indicated in Figure 4.52. The DT
algorithm utilizes 5 features that uses 0.569656 GB, while it uses 41 features using time
0.741154.

70

Memory(GB)

1.200000
1.000000

E——

0.800000
0.600000
0.400000
0.200000
0.000000

GNB SVM DT RF ——DL

Figure 4.58: Features versus Memory Allocation

The number of instances is an effective factor on the percentage of the classification
accuracy and the training and testing time. In terms of training time, the suggested NMS

using the DT algorithm outperforms all algorithms as it has the minimum time.

The suggested NMS using the DT algorithm outperforms all other algorithms with

regard to DR 79.8813 percent results and it has the largest speed in the comparison lists.

The proposed NMS using the DT algorithm has the second highest ACC rate of
97.7486 %. The proposed NMS achieves best performance in terms of ACC rate, DR rate
and highest speed.

4.5.3 Other Algorithms Results

Screenshots of experiments for SVM, LR, DL and GNB are shown Figure 4.59,
Figure 4.60, Figure 4.61 and Figure 4.62. It can be seen that DL gives closest results to the DT

algorithm.

71

Support Vector Machine Classifier

Train and Test Data read...

Service type mapping created...

There are 7 classes to be monitored

Classes are:

['Widd®, 'MAIL', 'OTHER', 'INTERACTIVE', '"BULK', "SERVICE', 'MEDIA']
Train and Test data labels created...

Decomposed features created...

Number of features used : 41

Time taken to perform 5-fold cross validation : 283.223855
Cross validation scores

[@.9487986 ©.96873594 ©.95935688 ©.97835921 8.96149496]
Mean score of 5-fold creoss validation : @.968249

Time taken to train final model @ 45.52916@

Predictions made using final model...

Time taken to make predictions on test data : 335.489777
Memory used : ©.743865 GBE CPU usage : 25.500080

Confusion matrix

[[475692 684 153 e 4e@ @ 8]
[7825 42391 a5 @ 974 & @]
[14e 2B 38685 @ 1154 @]
[14 370 79 14 712 @ 8]
[28 196 4629 @ 16348 @ @]
[5 @ 4718 @ @ @ 8]
[@ @ 18 & 11 & @]]

Accuracy score on test data is : @.962793

For W, Detection Rate is % 99.74863225343814

For MAIL, Detection Rate is ¥ 82.73674759934421

For OTHER, Detection Rate is ¥ 96.71491787294683

For INTERACTIVE, Detection Rate is ¥ 1.1774688584525736
For BULK, Detection Rate is ¥ 77.665608641681649

For SERVICE, Detection Rate is ¥ @.8@

For MEDIA, Detecticn Rate is ¥ 8.8

DR is ¥ 51.14798917842975

Figure 4.59: Experiment of Support Vector Machine Classification Algorithm

Logistic Regression Classifier

Train and Test Data read...

Service type mapping created...

There are 7 classez to be monitored

Classes are:

['NNN'r 'MAIL', 'OTHER', 'INTERACTIVE', 'BULK', 'SERVICE', 'MEDIA']
Train and Test data labels created...

Decomposed features created...

Number of features used : 41

Time taken to perform 5-fold cross validation : 38.8193858
Cross validation scores

[8.93198811 8.96212355 @.,95978188 8.97898573 8.9689294?]
Mean score of 5-fold cross validation : ©.957114

Time taken to train final model : 7.594568

Predictions made using final model...

Time taken to make predictions on test data : ©.182367
Memory used : 8.813811 GB CPU usage : 17.280080
Confusion matrix :

[[47518@ 153@ 154 48 1e3 2 @]
[7313 43518 93 51 263 1 @]
[1se 788 37832 39 568 1422 @]
[35 873 75 137 66 3 @]
[82 1426 4539 12 15623 11 @]
[1 @ 3208 @ 24 1498 @]
[@] 6 12 2 @ e]]

Accuracy score on test data is : 8.961568

For WwWW, Detection Rate is ¥ 99.61658476276343

For MAIL, Detection Rate iz ¥ B84.9287588414396

For OTHER, Detection Rate is ¥ 92.58231455786395

For INTERACTIVE, Detection Rate is ¥ 11.52228763666947
For BULK, Detecticn Rate is ¥ 72.81862351918755

For SERVICE, Detecticn Rate is ¥ 31.7171289434685136
For MEDIA, Detection Rate is ¥ 8.8

DR iz ¥ 56.85394546596174

Figure 4.60: Experiment of Logistic Regression Classification Algorithm

72

Deep Learning Classifier

Train and Test Data read...

Service type mapping created...

There are 7 classes to be monitored

Classes are:

["widd', "MAIL', 'OTHER', 'INTERACTIVE', 'BULK', 'SERVICE', 'MEDIA']
Train and Test data labels created...

Decomposed features created...

Number of features used : 41

Time taken to perform 5-fold cross validation : 474.372798
Mean score of 5-fold cross validation: 98.99%

Time taken to train final model : 122.242484

Predictions made using final model...

Time taken to make predictions on test data : 32.621687
Memory used : @.97758% GB CPU usage : 59.500000

Confusion matrix :

[[21242 6 19 7 23 8 10]
[23 762 15 @ 23 @ 18]
[239 3@l 5@3e8e & 569 2 8e2]
[@ B @ @ @ @ @]
[121 66 120 2 37334 644 3]
[1 @ @ @ 1897 4869 a]
[76 54 773 12 153 @ 476887]]

Accuracy score on test data is : 8.989923

For Wk, Detection Rate is ¥ 99.65751817968567

For MAIL, Detection Rate is ¥ 99.6064289274673

For OTHER, Detection Rate is ¥ 96.33380658852371
For INTERACTIVE, Detection Rate is ¥ @

For BULK, Detection Rate is ¥ 97.4883519674143

For SERVICE, Detection Rate is ¥ 68.88982275769745
For MEDIA, Detection Rate is ¥ 99.77617336885758
DR is % 78.84964196880658

Figure 4.61: Experiment of Deep Learning Algorithm

Gaussian MNaive Bayes Classifier

Train and Test Data read...

Sservice type mapping created...

There are 7 classes to be monitored

Classes are:

["wid', "MAIL", '"OTHER', 'INTERACTIVE', '"BULK', 'SERVICE', 'MEDIA']
Train and Test data labels created...

Decomposed features created...

Number of features used : 41

Time taken to perform 5-fold cross validation : 1.283931
Cross walidation scores :

[@.73513541 @.74134832 B.53726543 0.77118186 ©.693450854]
Mean score of 5-fold cross walidation : @.755659

Time taken to train final model : ©.156394

Predictions made using final model...

Time taken to make predictions on test data : 2.362887
Memory used : @.758854 GB CPU usage : 36.400000
Confusion matrix :

[[455358 4787 443 2466 141 11925 1889]

[21977 25528 0985 664 76 1589 497]
[13e31 644 18429 188 28 14899 788]
[@ 167 14 556 218 31 283]
[3 7528 294 266 4546 8514 542]
[@ @ 1@l 5 12 4587 18]
[@ 5 1 7 @ 3 711

Accuracy score on test data is : 8.848987

For WWk, Detection Rate is ¥ 95.47718455854816

For MAIL, Detection Rate is ¥ 49.824342259348896

For OTHER, Detecticn Rate is ¥ 26.87315182879572

For INTERACTIVE, Detection Rate is ¥ 46.76198486122792
For BULK, Detection Rate is ¥ 28.956868777945884

For SERVICE, Detection Rate is ¥ 97.12847427482533

For MEDIA, Detection Rate is % 24.137931834482758

DR is ¥ 51.473722513595365

Figure 4.62: Experiment of Gaussian Naive Bayes Algorithm

73

CHAPTER 5

CONCLUSION
5.1 Result
Network monitoring addresses all level of network operation from basic connectivity
to application throughput. The aim of this paper is to suggest a Network Monitoring System
using Machine Learning that assists to classify network packages. The proposed NMS
utilizes the DT algorithm for classification and PCA algorithm for dimension (feature)

reduction, and it classifies connections by network classes.

Experimental results suggested that using the DT and PCA algorithms, the suggested
NMS system reached a high classification ACC rate of 97,7486 %. Compared to all other

algorithms, it is the best performance.

The DT algorithm exceeds all other training algorithms as it has the minimum time for
execution. But it was not possible to check how will the data behaves on a larger network and
some service types are classified as 'other’ due to they were belong to many classes. As a
future study, the suggested NMS system can also be analyzed using other classification
algorithms or proposed NMS system can be modified to capture network packets without
cooperation of Wireshark and Npcap Library or other data sets can be experimented with the
suggested NMS system.

74

REFERENCES

Auld, T., Moore, A. W., & Gull, S. F. J. I. T. 0. n. n. (2007). Bayesian neural networks for
internet traffic classification. 18(1), 223-239.

Cerf, V., & Kahn, R. J. . T. 0. c. (1974). A protocol for packet network intercommunication.
22(5), 637-648.

Cortes, C., & Vapnik, V. J. M. |. (1995). Support-vector networks. 20(3), 273-297.

Crotti, M., Gringoli, F., Pelosato, P., & Salgarelli, L. (2006). A statistical approach to IP-level
classification of network traffic. Paper presented at the 2006 IEEE International Conference
on Communications.

Degermark, M. (1999). IP header compression.

Haffner, P., Sen, S., Spatscheck, O., & Wang, D. (2005). ACAS: automated construction of
application signatures. Paper presented at the Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data.

Hinton, G. E., Sejnowski, T. J., & Poggio, T. A. (1999). Unsupervised learning: foundations
of neural computation: MIT press.

Hosmer, D., & Lemeshow, S. J. N. Y., NY, US. (2000). Applied logistic regression. 2nd
edWiley.

loffe, S., & Szegedy, C. J. a. p. a. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift.

Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., & Faloutsos, M. J. U. 0. C., Riverside,
USA, Tech. Rep. (2003). File-sharing in the Internet: A characterization of P2P traffic in the
backbone.

Karagiannis, T., Broido, A., & Faloutsos, M. (2004). Transport layer identification of P2P
traffic. Paper presented at the Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement.

Karagiannis, T., Papagiannaki, K., & Faloutsos, M. (2005). BLINC: multilevel traffic
classification in the dark. Paper presented at the ACM SIGCOMM computer communication
review.

Kim, H., Claffy, K. C., Fomenkov, M., Barman, D., Faloutsos, M., & Lee, K. (2008). Internet
traffic classification demystified: myths, caveats, and the best practices. Paper presented at
the Proceedings of the 2008 ACM CoNEXT conference.

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. J. E. a. i. a. i. c. e. (2007). Supervised machine
learning: A review of classification techniques. 160, 3-24.

LeCun, Y., Bengio, Y., & Hinton, G. J. n. (2015). Deep learning. 521(7553), 436.

Li, W., & Moore, A. W. (2007). A machine learning approach for efficient traffic
classification. Paper presented at the 2007 15th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems.

75

Lim, Y.-s., Kim, H.-c., Jeong, J., Kim, C.-k., Kwon, T. T., & Choi, Y. (2010). Internet traffic
classification demystified: on the sources of the discriminative power. Paper presented at the
Proceedings of the 6th International COnference.

Lou, W., Wang, X., Chen, F., Chen, Y., Jiang, B., & Zhang, H. J. P. 0. (2014). Sequence
based prediction of DNA-binding proteins based on hybrid feature selection using random
forest and Gaussian naive Bayes. 9(1), e86703.

Moore, A., Hall, J., Kreibich, C., Harris, E., & Pratt, I. (2003). Architecture of a network
monitor. Paper presented at the Passive & Active Measurement Workshop.

Moore, A. W., & Papagiannaki, K. (2005). Toward the accurate identification of network
applications. Paper presented at the International Workshop on Passive and Active Network
Measurement.

Namdev, N., Agrawal, S., & Silkari, S. J. P. C. S. (2015). Recent advancement in machine
learning based internet traffic classification. 60, 784-791.

Nguyen, T. T., Armitage, G. J. J. I. C. S., & Tutorials. (2008). A survey of techniques for
internet traffic classification using machine learning. 10(1-4), 56-76.

Park, J., Tyan, H.-R., & Kuo, C.-C. J. (2006). Internet traffic classification for scalable qos
provision. Paper presented at the 2006 IEEE International Conference on Multimedia and
Expo.

Porter, T. J. S. F. (2005). The perils of deep packet inspection. 6.
Schmidhuber, J. J. N. n. (2015). Deep learning in neural networks: An overview. 61, 85-117.

Schneider, P. J. D. O. A. S., Cambridge, MA. (1996). TCP/IP traffic Classification Based on
port numbers. 2138(5).

Scholkopf, B., Sung, K.-K., Burges, C. J., Girosi, F., Niyogi, P., Poggio, T., & Vapnik, V. J.
I.t. 0. S. P. (1997). Comparing support vector machines with Gaussian kernels to radial basis
function classifiers. 45(11), 2758-2765.

Sen, S., Spatscheck, O., & Wang, D. (2004). Accurate, scalable in-network identification of
p2p traffic using application signatures. Paper presented at the Proceedings of the 13th
international conference on World Wide Web.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory
to algorithms: Cambridge university press.

Stallings, W. J. U. S. R., New Jersey, USA. (2003). Network Security Essentials-Applications
and Standards Pearson Education.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the
KDD CUP 99 data set. Paper presented at the 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications.

Webb, G. I., Boughton, J. R., & Wang, Z. J. M. |. (2005). Not so naive Bayes: aggregating
one-dependence estimators. 58(1), 5-24.

Wolpert, D. H., & Macready, W. G. J. I. t. 0. e. c. (1997). No free lunch theorems for
optimization. 1(1), 67-82.

76

Wu, Y., Min, G, Li, K., & Javadi, B. (2009). Performance analysis of communication
networks in multi-cluster systems under bursty traffic with communication locality. Paper
presented at the GLOBECOM 2009-2009 IEEE Global Telecommunications Conference.

Xiang, Y., Zhou, W., Guo, M. J. I. T. 0. P., & Systems, D. (2008). Flexible deterministic
packet marking: An ip traceback system to find the real source of attacks. 20(4), 567-580.

Zhou, Z.-H., Li, H., & Yang, Q. (2007). Advances in Knowledge Discovery and Data
Mining: 11th Pacific-Asia Conference, PAKDD 2007, Nanjing, China, May 22-25, 2007,
Proceedings (Vol. 4426): Springer.

77

Appendix: A

APPENDICES

Attributes description of KDD CUP 99 dataset.

No. | Network attributes Description Type

1 Duration Duration of the connection in second. Continuous

2 Protocol type Connection protocol (e.g. TCP, UDP, Discrete
ICMP).

3 Service Destination service (e.g. telnet, ftp, http, Discrete
pop3...)

4 Flag Status flag of the connection (e.g. REJ, SF, | Discrete

S0...)

5 Src bytes Bytes sent from source to destination Continuous

6 dst bytes Bytes sent from destination to source Continuous

7 Land 1 if connection is from /to the same Discrete

host/port; 0 otherwise

8 | Wrong fragment Number of wrong fragments Continuous

9 Urgent Number of urgent packets Continuous

10 Hot Number of” hot” indicators Continuous

11 | Num failed logins Number of failed logins Continuous

12 Logged in 1 if successfully logged in; 0 otherwise Discrete

13 | Num compromised Number of “compromised” conditions Continuous

14 Root shell 1 if root shell is obtained; 0 otherwise Continuous

15 Su attempted 1 if "as root” command attempted; Continuous
0 otherwise

78

No. | Network attributes Description Type

16 Num _root Number of root accesses Continuous

17 | Num file creations Number of file creation operations Continuous

18 Num_shells Number of shell prompts Continuous

19 | Num access files | Number of operations on access control | Continuous
files

20 | Num_outbound cmds | Number of outbound commands in an ftp | Continuous

session
21 Is_host login 1 1f the login belongs to the “hot” list; 0 | Discrete
otherwise
22 Is guest login 1 1f the login 15 a ** guest” logm; 0 Discrete
otherwise
23 count Number of connections to the same host | Continuous
as the current connection in the past two
seconds
24 Srv_ count Number of connections to the same | Continuous
service as current connection in the past
two seconds

25 Serror_rate No. of connections that have “ SYN” | Continuous
errors

26 Srv_ Serror_rate No. of connections that have “ SYN” | Continuous
eITOrS

27 Rerror rate No. of connections that have “ REI” | Continuous
errors

28 Srv_rerror_rate No. of connections that have “ REI” | Continuous
eITOrS

29 | Same rerror rate No. of connections to the same service | Continuous

30 Diff Srv_rate No. of connections to different services | Continuous

31 | Srv_Diff host rate No. of connections to different hosts | Continuous

32 Dst_host count Count of connections having the same | Continuous

destination host
33 | Dst_host Srv count | Count of connections having the same | Continuous

destination host and using the same
service

79

No. Network attributes Description Type
34 | Dst host Same rate Count of connections having the Continuous
same destination host and using the
same service
35 | Dst host Diff Srv No. of different services on the Continuous
rate current host
36 Dst host No. of connections to current host | Continuous
Same src port rate having the same src port
37 | Dst_host Srv_Diff | No. of connections to same service | Continuous
host rate coming from different hosts
38 | Dst host serror rate No. of connections to the current Continuous
host that have an SO error
39 | Dst host Srv serror | No. of connections to the current | Continuous
rate host and specified service that have
an SO error
40 | Dst host rerror rate No. of connections to the current Continuous
host that have an RST error
41 | Dst host rerror rate No. of connections to the current Continuous

host and specified service that have
an RST error

80

Appendix: B

Content of Field Names.csv file.

ftp data BULK

other OTHER
private OTHER

http WWW
remote_job | REMOTE
name OTHER
netbios_ns WWW

BCO | OTHER

mtp MAIL

telnet INTERACTIVE
finger OTHER
domain_u OTHER
supdup OTHER

uucp path BULK

£39 50 DATABASE
smip MAIL

csnet ns OTHER

uucp BULK
netbios dgm | OTHER
urp_i OTHER

auth OTHER
domain OTHER

ftp BULK

bgp SERVICE
Idap SERVICE

ecr i SERVICE
gopher BULK

vmnet OTHER
systat INTERACTIVE
http 443 WWW

efs INTERACTIVE
whois INTERACTIVE
imap4 MAIL
iso_tsap DATABASE
echo INTERACTIVE
klogin INTERACTIVE
link SERVICE
sunrpc REMOTE
login INTERACTIVE
kshell REMOTE
sgl_net DATABASE

81

time SERVICE
hostnames SERVICE
EXEC MAIL

ntp u SERVICE
discard OTHER

nnip WWwWwW
courier OTHER

ctf INTERACTIVE
ssh INTERACTIVE
daytime SERVICE
shell INTERACTIVE
netstat INTERACTIVE
pop 3 MAIL

nnsp OTHER

IRC WA

pop 2 MAIL
printer INTERACTIVE
tim i OTHER
pm_dump DATABASE
red i OTHER
nethios ssn | OTHER

rje REMOTE
X1l MEDIA
urh_i OTHER

http 8001 WA

aol WWW
http_2784 WWAWW
tftp_u BULK
harvest OTHER

82

Appendix: C

Content of Service Types.csv file.

ftip data BULK

other OTHER.

private, OTHEE.

http, WWW

remote 1ob EEMOTE

name OTHER

netbios_ns WWW

eco 1,0THER

mtp MAIL

telnet INTERACTIVE

finger OTHEE

domain_u,0THER

supdup, OTHER

uucp path BULK

Z39 50 DATABASE

smtp MAIL

csnet ns OTHER

vucp BULK

netbios dgm OTHER

urp i, OTHER

auth OTHER

domain OTHER

fip BULK

bep.SERVICE

ldap.SERVICE

ecr_1,.SERVICE

gopher BULK

vmnet, OTHER

systat INTERACTIVE

http_ 443 WWW

efs INTERACTIVE

whois INTERACTIVE

83

imapd MAIL

1s0_tsap DATABASE

echo INTERACTIVE

klogin INTERACTIVE

link SERVICE

sunrpc, REMOTE

login INTERACTIVE

kshell REMOTE

sql net DATABASE

time SERVICE

hostnames SERVICE

exec MAIL

ntp_u.SERVICE

discard OTHER

nntp. WWW

courter, OTHEER.

ctf INTERACTIVE

ssh INTERACTIVE

daytime SERVICE

shel INTERACTIVE

netstat INTERACTIVE

pop_ 3 MAIL

nnsp OTHEE.

IRC.WWW

pop 2. MAIL

printer, INTERACTIVE

tim_i.OTHER

pm_dump DATABASE

red i,OTHER

netbios ssn OTHER

rje. REMOTE

X11 MEDIA

urh_i,OTHER

http 8001 WWW

aol. WWW

84

http_ 2784 WWW

tfp uBULK

harvest OTHER

85

Appendix: D

Python Code of Support Vector Machine Algorithm

t accuracy_score
.metrics i confusion_matrix
.preprocessing import LabelEncoder
.preprocessing rt MinMaxScaler
.decomposition import PCA

cross_val_score
psutil

05

print("s
train =
test =

columns = pd.read_
columns.columns = [°
train.columns = columns
test.columns = columns['na

serviceType = pd.read_csv

pe.columns = [Nz

iceType[

train["]
test[’

86

1'].drop_duplicates())

print(’
print(classesName)

trainLabel = trai
testLabel = te

train.drop([’
test.drop([‘s
print("Train

= LabelEncode
le.fit(train[col])
train[col] = le.transform{train[col])
lel = LabelEncoder()
lel.fit(test[col])
test[col] = lel.transform(te

scaler = MinMa

train = scaler.fit_transform(train})
test = scaler.fit_transform(test)
total = np.concatenate([train, test])}

train = pca.transform(train)
test = pca.transform(test)

87

print("Nu f features d : * % train.shape[1])

% (endTime-startTime))
print(

print(

primt(5 d : " % score.mea

startTime

SVC2 = SVC(

SvC2.fit(train, trainLabel)

endTime = time.clock()

print("Time taken n fin model : h ndTime-startTim
print("Pr

startTime

pred = SVC2.predict(test)

endTime = time.clock()

cpulsage = psutil.cpu_percent()

pid = os.getpid()

py = psutil.Process(pid)

memoryUse = py.memory_info()[8] / 2. **

print("Ti : icti n : " % (endTime-startTime))
print("n i : GE CPU - % (yUse, cpuUsage))

con_matrix = confusion_matrix(y_pred=pred, y_tr stLabel, labels = classesNa
print(/

rint(con matrix)

88

acc = accuracy_score(y_pred=pred, y_true
print() st data

sumDr &

range({con_matrix.shape[1]):
if i 1= 3

det_rate += con_matrix[i][j]
on_matrix[i][i] != @ (det_rate + con_matrix[i][i]) != @:
det_rate =188* con_matrix[i][i]/{det_rate + con_matrix[i][i])
sumDr += det_rate

+ classesName[i] + ", D tate is ' str(det_rate))

print({"F

89

Appendix: E

Python Code of Decision Tree Algorithm

‘n.metrics accuracy_score
‘n.metric confusion_matrix
.preprocessing import LabelEncoder
t MinMaxScaler
t PCA

s_val_score

train = pd.read_csv(
test = pd.read_csv(
print{"Train

columns = pd.read_c
columns.columns = ['r
train.columns = columns[’
test.columns = columns[' nar

serviceType = pd.read_csv(
s = ["Nan

range(len(servi

iceMap[serviceTyp i rviceType['T

train["label ai 1-map
test['label 3 "].map(serv

90

trainLabel = trai
testlLabel = tes

train.drop([: , inplace=
test.drop([» inplace
print(“Trair

["protoc
= LabelEncod
le.fit(train[col])
train[col] = le.transform(train[col])
= LabelEncoder()
lel.fit(test[col])
test[col] = lel.transform(test[col])

caler = MinMaxScaler
i ale

scaler.fit_transform(
otal = np.concatenate([train,

91

(total)
pca.transform(train)
= pca.transform(test)

y
print(“"Num n : " % train.shape[1])

startTime = time.clock()
onTr

score = cross_val_scor

endTime = time.cl

print{"Time t : " % (endTime-startTime))

print(” i

print(

print(r \ : " % score.mean

lassifier(random_state = 8)
inLabel)
endTime = time.clock(
print("Tim Fina : ¢ (endTime-startTim
print(” i y 1

startTime = time.clock()
pred = DT2.predict(test)
endTime = time.clock()
cpuUsage = psutil.cpu_percent()
pid = os.getpid()
py = psutil.Process(pid)
memoryUse = py.memory_info()[@e] /
: (endTime-startTime))
% (memoryu cpuUsage))

92

con_matrix = x(y_ y_tr C seshame)
print(
print(con_m

acc
print(

sumDr = 8

range(con_matrix.shape[8]):
rate
j range(con_matrix.shape[1]):
ifil=3j

det_rate += con_matrix[i][j]

1 matrix[i][i] !=© (det_rate + con_matrix[i][i]) != a:
det_rate 8* con_matrix[i][1i]/ t_rate + con_matrix[i][i])
sumbDr + _rate
print("F + classesName[i] + ", Detection : : 3 et_rate))

print("F

DR sumDr/classe
print("DR 3

93

Appendix: F
Python Code of Logistic Regression Algorithm

pd
np

.metrics
‘n.metrics i confusion_matrix
.preproces: ~t LabelEncoder
.preproce MinMaxScaler
‘n.decomposition import PCA
.linear_model LogisticRegression
‘n.model_selection i cross_val_score

print("”
train = pd.read_csv(

test = pd.read_csv(.
print("Tr

columns = pd.read_c
columns.columns = [
train.columns = columns['n
test.columns = columns[

= pd.read_csv(
serviceType.columns ["Ma
serviceMa

erviceType[

94

train["1z
test['1:

= len(train[
me = train["l
print(’Th

trainLabel = trai
testLabel = te

train.drop([
test.drop([’

lel.fit(test[col])
test[col] = lel.transform(test[col])

scaler = MinMaxScal

train = scaler.fit_transform(trai
test = scaler.fit_transform

total = np.concatenate([train,

95

print(”

i

print(

andom_state = 8)
e(LR1, train, trainLabel, cv=5)

print("C
print(
print(d n: " % score.mea

startTime

LR2 = LogisticRegressi andom_state =
LR2.fit(train, t nLabel)

endTime = time.clock()

print("Time t

print("Pr

endTime = time.clock()
cpullsage = psutil.cpu_percent()
pid = os.getpid()
py = psutil.Process(pid)
memoryu y_info()[e] /
i : % (endTime-startTime)
% (memoryUse, cpulsage))

96

con_matrix = confusion_matrix(y pred=pred, y true=testlLabel, labels = c

print(n mat "y
print{con_matrix)

acc = accuracy_score(y_pred=pred, y_true=testlLabel)

print(td

sumDr
for 1 in range(con_matrix.shape[8]):
det_rate = @
for j in range(con_matrix.shape[1]):
ifil=3j
det_rate += con_matrix[i][3j]
if con_matrix[i][i] != @ or (det_rate + con_matrix[i][i]) != e:
det_rate =186* con matrix[i][i]/{det_rate + con_matrix[i][i])
sumbDr += det_rate
print(" + classesName[i] +

print(” + classesName[i] +

DR = sumDr/classesCount
print("D 8" r({D

97

+ str(det_rate))

Appendix: G

Python Code of Deep Learning Algorithm

‘n.metric accuracy_score
.metric confusion_matrix
.preprocessing import LabelEncoder

‘n.preprocessing MinMaxScaler
.decomposition i PCA

t cross_val score

ceras.models i
. layer
KerasClassifier

print("D

train = pd.re csvi . rair 1", head
test = pd. 5 D header=
print("Train

columns = pd.read_cs
columns.columns = [

train.columns = columns['n
test.columns = columns[

98

['p

le = LabelEn

le.fit(train[c

train[col] = le.transform(train[col])
lel = LabelEncoder()
lel.fit(test[col])

test[col] = lel.transform{test[col])

trainLabel
testLabel =

trainLabel = to_catego
testLabel = to_

train.drop(i 1 1'], axis=1, inplace=
test.drop([’ el'], axis=1, inplace=
print("Tra

99

scaler = MinMax5
train = scal

pca = PCA(n_components=41, random_state=188)
otal)
rain = pca.transform(train)
test = pca.transform(test)

print(’ .
print("N : "R ain.shape[1])

seed = 7
np.random. see

baseline_model

model

model.

model . adc ! tivation=

model . add (Dense(cl: unt, activatio

model.

100

startTime = time.clock()

DLC.fit(train, trainLabel, epo

endTime = time.clock()

print("Time n fina 1: ndTime - startTime))
print("Predi 1 1

startTime = time.clock()

pred = DLC.predict(test)
endTime = time.clock()

cpulsage = psutil.cpu percent()
pid = os.getpid()

Py = Pt
memorylUse

% (endTime - startTime))

print("m y : CPU 2 I % (memoryUse, cpulsage))

pred = to_categorical(pred, classesCount)
pred = np.array(pred)
testLabel = np.array(testLabel)

con_matrix = confusion_matrix(pred.argmax(axis=1},
print(’
print({con_matri

acc = accuracy score(pred.argmax(a), testLabel.argmax(
print(’ : i

sumbr = @
or i range({con_matrix.shape[8]):

8
range(con_matrix.shape[1]):

ifil=73j
det_ra con_matrix[i][]]

f con_matr i][i] != @ (det_rate + con_matrix[i][i]) !=
_rate =188* con_matrix[i][i]/(det_rate + con_matrix[i][i
sumDr += det_rate

print(" + classesName[i] +

101

et_rate))

sumbr = @
i range(con_matrix.shape[8]):
det_rate = @
j range(con_matrix.shape[1]):
if i 1=3
det_rate += con_matrix[i][]]
if con_matrix[i][i] != @ (det_rate + con_matrix[i][i]) !=
det_rate =188* con_matrix[i][i]/(det_rate + con_matrix[i][1]]
sumDr += det rate
print(“For " + classesName[i] +

print("For " + classesName[i] +

DR = sumDr/classesCount
print("DR is 7 + str(

102

Appendix: H

Gaussian Naive Bayes

NMS - Gaussian Naive Bayes.py X

_bayes import G
election

train = pd.read csv(
test = pd.rea
print("Tr

columns = pd.read_t
olumns.columns = [
train.columns = columns['n
test.columns = columns['n

serviceType
serviceType.

serviceMap=

viceType['T

103

train[’ ai ="].map(Map)
]-map(serviceMap)

op_duplicat
ount) +
print(’
print(classesName)

trainLabel = train[
testlLabel = test[’

train.dro , =1, inplace=
test.drop([abel axis=1, inplace=
print("Trai =

col ['
le = LabelEncode
t(train[col])
train[col] = le.transform(train[col])
lel = LabelEncoder()
Fit(test[col])
test[col] = lel.transform(test[col])

scaler = MinMaxSca

train 3 er

tes scaler.fit_transfo

total = np.concatenate([train, test])

104

pca = PCA(n_components=41, random_state=188)

pca.fit(total)
train = pca.transform(train)
test = pca.transform(

print(’
print(“Numb

startTime = time.clock()

GNB = GaussianNB()

score = cross_val score(GNE,
endTime = time.clock(
print("Time t

print(’

print

print(’

e = time ck()
aussianNB()

(train, trainLabel)
= time.clo

=G
fit
endTime
print("Time t

memorylse

print({"Time
print("M

>
" % train.shape[1])

train, trainLabel,

% score.mean

endTime-startTim

" % (endTime-startTime))
% (memoryUse, cpulUsage))

105

range(con_matrix.shape[1]):

if i 1= 3
det_rate +=
if con_matrix[i][i]

con_matrix[i][j]
=@ (det_rate + con_matrix[i][i])} !=
det_rate =180* con_matrix[i][i]/(det_rate + con_matrix[i][

+ str(det_rate))

DR = sumDr/classesCount
print('

106

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN

	doc01251720190920123218
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Scan44
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	ABSTRACT
	ÖZET
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF FIGURES

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1 Introduction
	1.2 Statement of the Problem
	1.3 Specific objectives
	1.4 Significance of the Study
	1.4 Significance of the Study
	1.5 Organization of Thesis

	CHAPTER 2
	CHAPTER 2
	BACKGROUND AND RELATED WORKS
	2.1 Introduction
	2.2 Literature Review
	Table 2.1: Network Classes (Auld et al., 2007; Li & Moore, 2007)
	2.2.1 Port based classification

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	BACKGROUND AND RELATED WORKS
	2.2 Literature Review
	2.2.1 Port based classification
	Figure 2.1: TCP Segment and UDP Datagram Header Format (Degermark, 1999)

	2.2.2 Payload based classification
	2.2.3 Flow feature-based classification

	2.3 Related Works
	Figure 2.2: Traffic Classification Process by Machine Learning (Zhou et al., 2007)

	2.4 Support Vector Machine Classification Algorithm
	Figure 2.3: Support Vector Machine Classification
	Figure 2.4: Pseudo code of Support Vector Machine Algorithm

	2.5 Decision Tree Classification Algorithm
	Figure 2.5: A Decision Tree Classification Algorithm Example

	2.6 Logistic Regression Classification Algorithm
	Figure 2.6: A Logistic Regression Classification Algorithm Example

	2.7 Deep Learning
	Figure 2.7: Neural Network Illustration
	Figure 2.8: Deep Learning Illustration

	2.8 Gaussian Naïve Bayes (GNB)
	Figure 2.9: Illustration of GNB Classification Algorithm

	2.9 Principal Component Analysis (PCA) Algorithm
	Figure 2.10: A PCA Algorithm Example

	2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description
	2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description

	CHAPTER 3
	METHODOLOGY
	3.1 Machine Learning Workflow
	Figure 3.1: The Machine Learning Workflow
	3.1.1 Gathering Data
	Figure 3.2: Captured and converted network packets by Wireshark
	Figure 3.3: Wireshark is capturing the packets in real time
	Table 3.1: Illustration of OSI Layers
	Table 3.1: Illustration of OSI Layers
	Figure 3.4: Phases for package decoding (Wolpert & Macready, 1997)

	3.1.2 Data Preparation
	Figure 3.5: The phase of pre-processing data (Wolpert & Macready, 1997)
	Table 3.2: NMS Training Dataset
	Table 3.2: NMS Training Dataset
	Table 3.3: NMS Test Dataset

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	METHODOLOGY
	3.1 Machine Learning Workflow
	3.1.2 Data Preparation
	Table 3.3: NMS Test Dataset
	Figure 3.6: Sample vectors of NMS’s KDD dataset

	3.1.3 Train Model (Classification)
	3.1.4 Test Data (Prediction)
	3.1.5 Improve
	3.1.5 Improve

	3.2 System Architecture
	Figure 3.7: A General architecture of an NMS

	3.3 The Proposed System
	Figure 3.8: Training Phase’s Block Diagram
	Figure 3.9: Testing Phase’s Block Diagram

	CHAPTER 4
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.1 Introduction
	4.2 System Architecture
	Figure 4.1: NMS system architecture

	4.3 Performance Metrics
	4.3.1 Confusion Matrix (CM)
	Table 4.1: Confusion Matrix (CM) (Tavallaee et al., 2009)
	Table 4.2: An Example CM for NMS (Stallings, 2003)

	4.4 Experiments and Results
	Table 4.3: First Scenario of 1st Experiment
	Figure 4.2: DR & ACC Comparison for the 1st Experiment
	Figure 4.3: Training and Testing Time Comparison for the 1st Experiment
	Figure 4.4: Memory Consume Comparison for the 1st Experiment
	Figure 4.5: Screenshot of 1st Experiment
	Figure 4.6: Outputs for the 1st Experiment

	Table 4.4: 2nd Experiment of First Scenario
	Figure 4.7: DR & ACC Comparison for the 2nd Experiment
	Figure 4.8: Training and Testing Time Comparison for the 2nd Experiment
	Figure 4.9: Memory Consume Comparison for the 2nd Experiment
	Figure 4.10: Outputs for 2nd Experiment

	Table 4.5: 3rd Experiment of First Scenario
	Figure 4.11: DR & ACC Comparison for the 3rd Experiment
	Figure 4.12: Training and Testing Time Comparison for the 3rd Experiment
	Figure 4.13: Memory Consume Comparison for the 3rd Experiment

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.4 Experiments and Results
	Table 4.5: 3rd Experiment of First Scenario
	Figure 4.14: Outputs for 3rd Experiment

	Table 4.6: 4th Experiment of First Scenario
	Figure 4.15: DR & ACC Comparison for the 4th Experiment
	Figure 4.16: Training and Testing Time Comparison for the 4th Experiment
	Figure 4.17: Memory Consume Comparison for the 4th Experiment
	Figure 4.18: Output for 4th Experiment

	Table 4.7: 5th Experiment of First Scenario
	Figure 4.19: DR & ACC Comparison for the 5th Experiment
	Figure 4.20: Training and Testing Time Comparison for the 5th Experiment
	Figure 4.21: Memory Consume Comparison for the 5th Experiment
	Figure 4.22: Output for 5th Experiment

	Table 4.8: Scalability Experiments for Support Vector Machine Algorithm
	Figure 4.23: DR & ACC Comparison for SVM Algorithm
	Figure 4.24: Training and Testing Time Comparison for SVM Algorithm
	Figure 4.25: Memory Consume Comparison for SVM Algorithm

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.4 Experiments and Results
	Table 4.9: Scalability Experiments for Decision Tree Algorithm
	Figure 4.26: DR & ACC Comparison for DT Algorithm
	Figure 4.27: Training and Testing Time Comparison for DT Algorithm
	Figure 4.28: Memory Consume Comparison for DT Algorithm

	Table 4.10: Scalability Experiments for Logistic Regression Algorithm
	Table 4.10: Scalability Experiments for Logistic Regression Algorithm
	Figure 4.29: DR & ACC Comparison for LR Algorithm
	Figure 4.30: Training and Testing Time Comparison for LR Algorithm
	Figure 4.31: Memory Consume Comparison for LR Algorithm

	Table 4.11: Scalability Experiments for DL Algorithm
	Figure 4.32: DR & ACC Comparison for DL Algorithm
	Figure 4.33: Training and Testing Time Comparison for DL Algorithm
	Figure 4.34: Memory Consume Comparison for DL Algorithm

	Table 4.12: Scalability Experiments for GNB Algorithm
	Table 4.12: Scalability Experiments for GNB Algorithm
	Figure 4.35: DR & ACC Comparison for GNB Algorithm
	Figure 4.36: Training and Testing Time Comparison for GNB Algorithm
	Figure 4.37: Memory Consume Comparison for GNB Algorithm

	Table 4.13: Standard Scaler Experiments for SVM Algorithm
	Figure 4.38: DR & ACC Comparison for SVM Algorithm
	Figure 4.39: Training and Testing Time Comparison for SVM Algorithm
	Figure 4.40: Memory Consume Comparison for SVM Algorithm

	Table 4.14: Standard Scaler Experiments for Decision Tree Algorithm
	Figure 4.41: DR & ACC Comparison for DT Algorithm
	Figure 4.42: Training and Testing Time Comparison for DT Algorithm
	Figure 4.43: Memory Consume Comparison for DT Algorithm

	Table 4.15: Standard Scaler Experiments for Logistic Regression Algorithm
	Figure 4.44: DR & ACC Comparison for LR Algorithm
	Figure 4.45: Training and Testing Time Comparison for LR Algorithm
	Figure 4.46: Memory Consume Comparison for LR Algorithm

	Table 4.16: Standard Scaler Experiments for DL Algorithm
	Figure 4.47: DR & ACC Comparison for DL Algorithm
	Figure 4.48: Training and Testing Time Comparison for DL Algorithm
	Figure 4.49: Memory Consume Comparison for DL Algorithm

	Table 4.17: Standard Scaler Experiments for GNB Algorithm
	Table 4.17: Standard Scaler Experiments for GNB Algorithm
	Figure 4.50: DR & ACC Comparison for GNB Algorithm
	Figure 4.51: Training and Testing Time Comparison for GNB Algorithm
	Figure 4.52: Memory Consume Comparison for GNB Algorithm

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	Network Monitoring System Using Machine Learning - Bayram KOTAN
	NMS SYSTEM IMPLEMENTATION AND RESULTS
	4.4 Experiments and Results
	Table 4.17: Standard Scaler Experiments for GNB Algorithm
	Figure 4.53: K-Fold Cross Validation

	4.5 Discussion
	4.5.1 System Accuracy Results
	Figure 4.54: Number of Features versus Detection Rate
	Figure 4.55: Number of Features versus Accuracy Rate

	4.5.2 Classification Speed Results
	Figure 4.56: Number of Features versus Training Time
	Figure 4.57: Number of Features versus Testing Time

	4.5.3 Memory Allocation Results
	Figure 4.58: Features versus Memory Allocation

	4.5.3 Other Algorithms Results
	Figure 4.59: Experiment of Support Vector Machine Classification Algorithm
	Figure 4.60: Experiment of Logistic Regression Classification Algorithm
	Figure 4.61: Experiment of Deep Learning Algorithm
	Figure 4.62: Experiment of Gaussian Naïve Bayes Algorithm

	CHAPTER 5
	CHAPTER 5
	CONCLUSION
	5.1 Result

	REFERENCES
	REFERENCES

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	APPENDICES
	APPENDICES
	Appendix: A
	Appendix: B
	Appendix: B
	Appendix: C
	Appendix: C
	Appendix: D
	Appendix: D

	Network Monitoring System Using Machine Learning - Bayram KOTAN
	APPENDICES
	Appendix: E
	Appendix: E
	Appendix: F
	Appendix: F
	Appendix: G
	Appendix: G
	Appendix: H
	Appendix: H

