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ABSTRACT 
NETWORK MONITORING SYSTEM USING MACHINE 

LEARNING COMPARATIVE ANALYSIS OF CLASSIFICATION 
TECHNIQUES FOR NETWORK TRAFFIC MONITORING 

 
KOTAN, BAYRAM 

M.Sc. in Electronics and Computer Engineering 
Supervisor: Assistant Professor Mohammed K. M. MADI  

September 2019 
124 pages 

 
Online network traffic classification continues to be the focus of long-term interest. 

Network traffic monitoring and analysis can be done for many different reasons. Generally, it 

provides raw data input for network monitoring, Quality of Service (QoS) and intrusion 

detection. Specifically, network traffic monitoring enables the network analyst to understand 

network resources use and identify network performance.  With this information, network 

analyst may adjust QoS policies to control and manage network resources. This aim is 

achieved by setting priorities for specific types of data in the network and logging the traffic 

to comply with the regulations. Network traffic monitoring can be used to create models for 

academic research. In this thesis, a machine-learning approach that accurately classifies 

network traffic using Decision Tree Algorithm (DT) is presented and implementing the 

Principal Component Analysis (PCA) Algorithm for reduction, side by side, to reach the best 

optimization. Machine learning technology will generate better solutions to monitor and 

classify network traffic as a result of highly accurate data mining technics and advanced 

statistics. The purpose of this thesis is to build a Network Monitoring System (NMS) using 

modern machine learning technologies that works in both online and offline modes. DT 

algorithm; one of the available data mining algorithms; is used to build the classifier of 

network.  The experiment’s results showed that NMS based system has 97.7486 % accuracy 

(ACC) in successfully classifying the network traffic.  

 

 

 

 

Keywords: Machine Learning, Artificial Intelligence, Traffic Classification, Decision Tree 

Algorithm, Principal Component Analysis Algorithm, KDD CUP99 dataset. 
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ÖZET 
NETWORK MONITORING SYSTEM USING MACHINE 

LEARNING COMPARATIVE ANALYSIS OF CLASSIFICATION 
TECHNIQUES FOR NETWORK TRAFFIC MONITORING 

 
KOTAN, BAYRAM 

Yüksek Lisans Tezi, Elektronik Bilgisayar Müh. Bölümü 
Tez Yöneticisi: Assistant Professor Mohammed K. M. MADI 

Eylül 2019 
124 sayfa 

 
Çevrimiçi ağ trafiği sınıflandırması, uzun vadeli ilginin odak noktası olmaya devam 

ediyor. Ağ trafiğini izleme ve Ağ trafiği analizi birçok farklı yoldan yapılabilir. Genellikle, ağ 

trafiğini izleme, hizmet kalitesi (QoS) ve izinsiz giriş tespiti için ham veri girişi sağla. 

Özellikle, ağ trafiğini izleme, ağ analistine ağ kaynaklarını nasıl kullandığını anlama ve ağ 

performansını belirleme olanağı sağlar. Bu bilgi ile ağ analisti, ağ kaynaklarını kontrol etmek 

ve yönetmek için QoS politikalarını ayarlayabilir. Bu amaca, ağdaki belirli veri tipleri için 

önceliklerin ayarlanması ve trafiğin yönetmeliklere uyması için günlüğe kaydedilmesi ile 

ulaşılmaktadır. Ağ trafiğinin izlenmesi akademik araştırma için modeller oluşturmak için 

kullanılabilir. Bu tezde, en yakın optimizasyona ulaşmak için Karar Ağacı Algoritmasını 

(DT) kullanarak ve Temel Bileşen Analizi (PCA) Algoritmasını kullanarak ağ trafiğini doğru 

şekilde sınıflandıran bir makine öğrenme yaklaşımı sunulmaktadır. Makine öğrenimi 

teknolojisi, yüksek doğrulukta veri madenciliği teknikleri ve ileri istatistiklerin bir sonucu 

olarak ağ trafiğini izlemek ve sınıflandırmak için daha iyi çözümler üretecektir. Bu tezin 

amacı, hem çevrimiçi hem de çevrimdışı olarak çalışan modern makine öğrenme 

teknolojilerini kullanarak bir Ağ İzleme Sistemi (NMS) inşa etmektir. DT algoritması 

(mevcut veri madenciliği algoritmalarından biri) ağın sınıflandırıcısını oluşturmak için 

kullanılır. Deney sonuçları, NMS tabanlı sistemin ağ trafiğini başarılı bir şekilde 

sınıflandırmada %97,7486 doğruluğa (ACC) sahip olduğunu göstermiştir. 

 

 

 

 

Anahtar Kelimeler: Makine Öğrenmesi, Yapay Zekâ, Trafik Sınıflandırması, K-En Yakın 

Komşular Algoritması, Temel Bileşen Analizi Algoritması, KDD CUP99 veri seti. 
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CHAPTER 1 
 

INTRODUCTION 
 
1.1 Introduction 

Internet is evolving to a tremendous and ubiquitous network of networks, containing 

increasingly huge data and digital media communication, and generating enormous revenues 

every day to all businesses worldwide. Data transmission is managed by simple protocols; 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP); without 

monitoring, inspection and intelligent control over the traffic built in functionality (Cerf & 

Kahn, 1974). Businesses and governments need applications to classify and monitor network 

traffic, manage its resources and detect possible anomalies to protect their investments and 

interests.  In general, the Internet traffic is the product of a complex system containing 

diverse of networks, hosts, applications and different clients interacting with each other.  

Network traffic classification (monitoring) has attracted great attention nowadays 

(Karagiannis, Papagiannaki, & Faloutsos, 2005; Kim et al., 2008; Lim et al., 2010; Nguyen, 

Armitage, & Tutorials, 2008; Wu, Min, Li, & Javadi, 2009). Classification of traffic flows 

according to production applications has very important part in security and network 

management, like QoS control, intrusion detection and lawful interception (Xiang, Zhou, 

Guo, & Systems, 2008). Our days, billions of devices use Internet resources. Every device 

sends requests for connection to other devices and exchange data over the Internet.  As a 

result, huge amount of traffic will be generated, so classification is necessary; not only for 

QoS or for maintaining availability of resources; but also, for efficient processing of 

information.  

Manual labeling of data samples is mostly tiring, time wasting and costly. This 

complexity is continuously increasing by wide range of network applications are produced 

every day. Therefore, we need a system that can learn and apply. In this context, it will be 

more useful to apply machine learning. 

Network monitoring can be succeeded through port-based traffic classification 

methods (Ioffe & Szegedy, 2015), payload-based classification methods (Deep packet 

inspection) (Ioffe & Szegedy, 2015) and flow features-based classification methods (Machine 

learning and statistical feature) (Ioffe & Szegedy, 2015). Many classification methods have 

been suggested (Auld, Moore, & Gull, 2007; Crotti, Gringoli, Pelosato, & Salgarelli, 2006), 

as interest in traffic classification increases. Port based method is known as one of the best 
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techniques for network traffic classification (Namdev, Agrawal, & Silkari, 2015). This 

method uses network ports that are firstly registered in Internet Assigned Numbers Authority 

(IANA). However, this method has failed in correctly classifying Point to Point (P2P) 

applications, which use unregistered network port number and uses dynamic port numbering 

(Karagiannis, Broido, & Faloutsos, 2004).  Payload based methods gives better classification 

results (Karagiannis et al., 2004). Yet, this method fails to classify   encrypted traffic. Note 

that many network applications use encryption to protect data from detection (Haffner, Sen, 

Spatscheck, & Wang, 2005; Sen, Spatscheck, & Wang, 2004). Many network classification 

methods have been proposed using machine learning to monitor network traffic. We will 

propose a technique for classifying network traffic based on ML. Machine Learning Method 

gives very accurate results in traffic classification (Namdev et al., 2015). This Method uses 

training and testing data sets to classify unknown traffic classes. 

1.2 Statement of the Problem 

Network specialists work day in and day out attempting to sift through incredible 

amounts of data from network (server logs, network packets and network controllers). 

Nowadays billions of devices use internet resources. Every device sends requests for 

connection to other devices and exchange data over the internet.  As a result, huge amount of 

traffic will be generated in network, so classification is necessary for network management 

(Park, Tyan, & Kuo, 2006). 

In addition, to monitor all the packets traffic simultaneously on a network will be not 

easy. (A. Moore, Hall, Kreibich, Harris, & Pratt, 2003). Protocols overlapping or protocol 

layering complicate the fast monitoring and extraction of the features. To overcome these 

challenges, machine learning technology is one of the best solutions. 

1.3 Specific objectives 

The primary purpose of this study is to apply the machine learning methods in the 

network traffic classification and to evaluate the results. To achieve this goal, the following 

goals should be considered: 

• To examine the methods available for classifying network traffic using ML. 

• To draft the methods taxonomy identified and provide the advantage, the 

disadvantages and weakness. 

• To evaluate the performance of the identified method and compare it with 

other methods. 
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1.4 Significance of the Study 

This thesis aims at building a network monitoring system that use Machine Learning 

for classifications of network packets. This can be achieved by using fast machine learning 

algorithms that can process and analyze network traffic. In a short description, we will 

accurately define traffic classes by maximizing the Detection Rate (DR), determining the 

class of any packet recorded on the basis of recognized classification patterns. During the 

training stage, these classification patterns are produced to raise the detection rate. The 

significance of this study lies in describing and analyzing the best method of Network 

Monitoring that can be used for Machine Learning. 

1.5 Organization of Thesis 

The thesis is comprised of five chapters. Chapter two provides theoretical background 

consisting of a general NMS, a short overview of NMS methods, the definition of Knowledge 

Discovery Data Mining (KDD CUP99 data set), DT and PCA algorithms. Chapter 3 provides 

the methodology, architecture of the system and the system suggested. Chapter 4 provides the 

implementation and outcomes of the suggested system. Chapter 5 provides findings for 

conclusion and suggestions for the next researchers. 
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CHAPTER 2 
 

BACKGROUND AND RELATED WORKS 
 
2.1 Introduction 

Before the implementation of the proposed system, an adequate research has been 

conducted on the published literature on this subject. In this section, a summary of the 

mentioned research and investigation will be discussed. 

2.2 Literature Review 

From security monitoring to QoS measurements, in network management traffic 

classification (monitoring) has extensive applications. Researchers mostly apply machine 

learning techniques to flow statistical feature-based classification methods recently. 

Network Monitoring can be achieved through the following methods (Ioffe & 

Szegedy, 2015):  

• Port based traffic classification 

• Payload based classification (Deep packet inspection) 

• Flow features-based (Machine learning and statistical feature) 

Before discussing those classifications methods, we have to know what these classes 

are. Table 2.1 shows network classes. 

 

Table 2.1: Network Classes (Auld et al., 2007; Li & Moore, 2007)  
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2.2.1 Port based classification 

This is the oldest way of performing traffic classification. Its assumption is 

application servers use well known ports for client to initiate communication. Such ports are 

registered in the IANA list of registered ports (Schneider, 1996): 

80: HTTP 

22: SSH 

20, 21: FTP 

25: SMTP 

53: DNS 

143: IMAP 

161, 162: SNMP 

It is enough to intercept the TCP/UDP packet header to infer the server-side 

application. For TCP flows, the SYN (synchronize) packet is enough.  

Port based classification is very simple and fast to implement. There is no need to 

inspect payload but checking the packet headers will be sufficient. It is often used on 

firewalls and access control lists. Nevertheless, many applications have not ports registered 

with IANA. Even if they have well known ports, they may use others like they may hide 

behind port 80. Ports are randomly/dynamically allocated in some cases, and port-based 

classification fails on NAT (Network Address Translator) and IP (Internet Protocol) tunnels. 

TCP Segment and UDP Datagram Header Format (Degermark, 1999) is shown Figure 

2.1. 
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Figure 2.1: TCP Segment and UDP Datagram Header Format (Degermark, 1999) 

For network traffic classification port-based method is a perfect. This method 

implicates ports that are firstly registered in IANA. However, this method has failed owing to 

increase of P2P applications, that use unregistered number (dynamic port numbers) with 

IANA  (Karagiannis, Broido, Brownlee, Claffy, & Faloutsos, 2003; A. W. Moore & 

Papagiannaki, 2005). 

2.2.2 Payload based classification 

It is such methods that inspects the TCP or UDP payloads of captured packets looking 

for:  

• Known protocol behaviors (protocol decoding) 

• Specific - application data (pattern matching) 

They are also called as Deep Packet Inspection (DPI) methods as they inspect the 

content of the payload (Porter, 2005). Payload based classification can identify many 

protocols that port-based classification cannot do, and it has higher accuracy rate. In payload-

based classification first eight packets will be sufficient for the process. Real-time application 

is possible as it can classify traffic in short time. As this method inspects payload, it fails to 

classify encrypted communication. This method generates high processing loads on CPU 

(Central Processing Unit). Protocol decoding is a very complex operation as it requires deep 

information of the all protocols. It is used for only given popular protocol types and it is hard 

to keep such decoders up to date. 
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Payload Based methods give definitive results in classification. However, many 

network applications, called encrypted data network applications, use encryption to protect 

their data from detection so payload-based methods cannot classify them, and fail 

(Karagiannis et al., 2004). 

2.2.3 Flow feature-based classification 

Flow feature based classification methods are capable of overcoming the problems of 

payload-based and port-based classification techniques. It uses statistical properties of the 

characteristics (features) of each flow to judge the protocol/application type. That is why, 

those methods are also known as statistical methods or machine learning methods. In general, 

there are two machine learning methods. 

1-Supervized classification: In supervised methods, the machine is trained by using 

data which is well "labeled." It indicates that with the correct answer some data is tagged. It 

can be contrasted with learning in the presence of a supervisor or teacher. A supervised 

learning algorithm draws on labeled training data and helps guess unexpected results. It 

requires time and technical knowledge from a team of extremely qualified information 

researchers to successfully build, scale, and deploy precise monitored machine learning 

models. In addition, data scientists need to reconstruct models to ensure that their insights 

remain true until their data modifications. Supervised classifications make traffic recognition 

(one versus all classification) especially attractive. Training on all classes that are expected to 

be seen is important for multi-classification  (Kotsiantis, Zaharakis, & Pintelas, 2007). 

2- Unsupervised classification: Unsupervised methods such as clustering may reveal 

naturally different classes or even new applications. Clusters need to be labeled, for example 

they can be labeled directly by human. Clusters may not map to applications one to one. One 

application may dominate multiple clusters, or vice versa. It may be very hard to map back 

from a single cluster to a source application(Hinton, Sejnowski, & Poggio, 1999). 

Preparing data for machine learning initiatives can be accomplished by following the 

six critical phases below:  

1-Data (flows) acquisition (input): This aspect concerns the capture of packets 

passing through the entire network. 

2-Feature extraction: After data capture and (possibly) sampling, both supervised 

and unsupervised techniques extract flow features. Some works use up to 250 features per 

flows.  Example features: 
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- Flow duration in seconds 

- Data volume per flow 

- Number of packets per flow 

- TCP port 

- Packet inter arrival time (mean, variance, etc.) 

- Payload size (mean, variance)  

3-Feature selection:  Feature Selection is a process of selection a subset of relevant 

features from all features, which is used to make model building. 

4-Training: Training is the most crucial phase, so how well the system performs on 

the data provided to the system depends on the algorithms used. At this phase, the system is 

trained with previously provided training data to ensure that it recognizes the patterns in the 

data. 

5-Validation: In this phase of validation, the algorithm used to train the machine is 

better accurate and efficient.  

6-Testing (output): The test data is used in this phase to see how well the machine can 

predict on the basis of its training new answers. 

2.3 Related Works 

In this thesis, machine learning and statistical feature method which is flow feature-

based classification will be used to implement NMS.  

For the authors in (Zhou, Li, & Yang, 2007), in generic, four stages of traffic 

classification with ML algorithms are shown in Figure 2.2. Network packets that captured 

online by packet sniffing are first inputs, but these inputs can be prepared offline too. Then 

packets are classified into vectors according to protocols, source port, source IP address, 

destination port and destination IP address. In the second stage vector features are calculated 

which is features extraction. When dataset is huge, for decreasing search space of machine 

learning algorithm, in order to get a subset of the vector features (decreasing vector 

dimensions) data sampling can be performed. These features are used in features selection 

(filtering) stage. In this stage, unnecessary features are filtered, and important and necessary 

features are selected. Finally, on the last step machine learning algorithm is done (Zhou et al., 

2007). 
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Figure 2.2: Traffic Classification Process by Machine Learning (Zhou et al., 2007) 

The most important part of machine learning based network monitoring is algorithm 

which is used for classifications.  

2.4 Support Vector Machine Classification Algorithm 

SVM algorithm is similar with Logistic Regression (LR). The both algorithms try to 

find the best line separating the two classes. The algorithm allows the line to be drawn from 

the most distant places in two classes of the line(Cortes & Vapnik, 1995). It is a classifier that 

is non-parametric. SVM may also classify linear and nonlinear information, but typically 

attempt to classify information as linear. There are numerous of kernels that can be used in 

SVM classification algorithm like sigmoid, polynomial, linear and radial basis function 

(RBF) (Scholkopf et al., 1997). 
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Pros of SVM is: 

• With clear margin of separation, it operates really well. 

• It is efficient in spaces of high dimensions. 

• It is efficient if the number of samples exceeds the number of dimensions. 

• It uses in the decision function a subset of training points (called support 

vectors), so it is also efficient in memory. 

Cons of SVM is: 

• • If the data set is big, it does not perform well because the necessary training 

time in this case is greater. 

• When the data set has more noise, it does not perform very well because the 

target classes overlap. 

• SVM does not provide direct probability estimates, they are computed using a 

costly five-fold cross-validation. 

 

 

Figure 2.3: Support Vector Machine Classification 
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Figure 2.4: Pseudo code of Support Vector Machine Algorithm 

 

2.5 Decision Tree Classification Algorithm 

Decision Tree (DT) Classifier is widely used classification method. It poses a series of 

definite answered questions about the attributes of the test data. After it receive an answer 

each time, another question is asked until a decision about the class label of each data is 

reached (Shalev-Shwartz & Ben-David, 2014). 

 

Pros of DT is: 

• It is easy to understand and interpret, perfect for visual representation.  

• It can work with numerical and categorical features. 

• It requires little data preprocessing. 

• It is fast for inference. 

Cons of DT is: 

• It tends to over fit. 
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Figure 2.5: A Decision Tree Classification Algorithm Example 

2.6 Logistic Regression Classification Algorithm 

LR classifier assigns a discrete set of classes to observations. By using the logistic 

sigmoid function,  , LR transforms its output into a probability value that 

can be mapped to two or more separate classes (Hosmer & Lemeshow, 2000). 

 

 

Figure 2.6: A Logistic Regression Classification Algorithm Example 
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Pros of LR is: 

• It is very efficient and highly interpretable. 

• LR doesn’t require too many computational resources. 

• It doesn’t require input features to be scaled. 

Cons of LR is: 

• It doesn’t perform well when feature space is too large 

• It doesn’t handle large number of categorical features/variables well 

• Non-linear problems cannot be solved by LR so it needs transformations for 

non-linear features. 

• It relies on entire data. 

• LR can only predict a categorical outcome. 

• It is vulnerable to overfitting. 

 
2.7 Deep Learning 

Deep learning (DL) is primarily neural networks and is usually tailored to machine 

learning. Most deep learning methods use neural network architectures. That is why they are 

often referred to as deep neural networks. It teaches computers to do what comes naturally to 

humans and it learns from example. DL classifier contains 3 type of layers: input, output and 

hidden. Each layer contains at least one interconnected node. In data set, classifier detects 

complex structure, and it changes its internal parameters to calculate the prior layers (LeCun, 

Bengio, & Hinton, 2015; Schmidhuber, 2015). 

 

Figure 2.7: Neural Network Illustration 
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Figure 2.8: Deep Learning Illustration 

 
Pros of DL is: 

• DL has very high performance. 

• DL lowers the need for engineering features. 

• DL is an architecture that can comparatively readily tailored to fresh issues. 

Cons of DL is: 

• Large amounts of data are required 

• DL is extremely costly to train computationally. 

• It has little to do with a powerful theoretical basis. 

 
2.8 Gaussian Naïve Bayes (GNB) 

GNB Classifier is modeled on the Bayesian Theorem (Webb, Boughton, & Wang, 

2005). Bayesian theorem allows us to use the naïve independence assumption to indicate the 

conditional probability as follows:               

 

 

 

The following rule is used to classify the sample since P(X) is continuous for a specified 

example: 
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Estimation of maximum a posteriori (MAP) is generally utilized to estimate the 

parameters in the naïve Bayes model, inclusive of P(y) and P(xi|y); the preceding is the 

frequency of samples in the training set with class y. In addition, Gaussian naïve Bayes uses 

the classification by assuming the probability of Gaussian characteristics: 

 

where the maximum probability is estimated for the parameters σy and µy. Because of 

its simplicity and extreme speed compared to more advanced methods (Lou et al., 2014). 

Illustration of GNB classifier is show in Figure 2.9. 

 

 

Figure 2.9: Illustration of GNB Classification Algorithm 
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Pros of GNB is: 

• GNB is simple and quick to predict class of test data set. 

• GNB operates well in multi class prediction. 

Cons of GNB is: 

• If categorical variable has a category that was not observed in training data 

set, then GNB cannot make a prediction. 

• It is bad estimator. 

 
 
2.9 Principal Component Analysis (PCA) Algorithm 

PCA is reducing the dimensionality of a data set consisting of many variables 

correlated with each other while keeping the variation present in the dataset, up to the 

maximum extent. 

 

Figure 2.10: A PCA Algorithm Example 

The proposed system will use PCA algorithm to reduce features. 
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2.10 KDD (Knowledge Discovery Data mining) CUP 99 Data set Description  

KDD CUP99 is based on data captured by Stolfo et al in the DARPA'98 IDS 

evaluation program. Since 1999, it has used anomaly detection techniques for assessment. It 

has been using widely popular. DARPA'98 is about 4 gigabytes data. This data is 7 weeks of 

network traffic and it is compressed raw “binary” TCP dump. There are 5 million connection 

records in this data. As a row, every connection of this data called a vector. Each vector is 

about 100 bytes. Test data is about fortnight of network traffic and includes about 2 million 

vectors. Training data includes about 5 million vectors. Each vector includes 41 features. 
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CHAPTER 3 
 

METHODOLOGY 
 
3.1 Machine Learning Workflow 

In this chapter, the theoretical description of the system will be presented following 

the Machine Learning Workflow methodology. PCA algorithm will be used in Data pre-

processing step and DT algorithm will be used for classification and regression predictive 

problems in the Train Model step and Test Data step. 

Machine Learning Workflow consists of five main stages of a project and it defines 

tasks in every stages and relationships between them.  These steps are illustrated below: 

 

 

Figure 3.1: The Machine Learning Workflow 

When we construct NMS, we will apply the steps of the machine learning workflow 

in our machine learning system. 

3.1.1 Gathering Data 

In the first stage of NMS, packets that passed through the entire network are being 

grabbed and any packet that targeted to any node of the network can be grabbed by 

Wireshark network application which contains packet decoder. Wireshark is a free and open-

source packet analyzer. Wireshark can convert network packets into other file types. In 

addition to capturing all features, Wireshark also catches data and time fields and display them 

in this stage. Typical packets information gathered by Wireshark illustrated in Figure 3.2. All 

packets that have been captured will be processed in the next stage for analyzing. 
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Figure 3.2: Captured and converted network packets by Wireshark 

As shown in the Figure 3.3, the client can capture Wireshark packets and convert 

them to a csv file containing vectors of features in each row of the file shown in Figure 3.6. 

 

Figure 3.3: Wireshark is capturing the packets in real time 

As shown in Figure 3.4, the packet decoder takes packets from the network interface 

via the Npcap library, and identifies which protocol is in use for a grabbed packet. Npcap is 

used to grab packets from the network, it is library, which works under windows operating 

system. Data acquisition is also referred to as data acquisition using the Npcap library. 

Wireshark will be used in the NMS to capture packets using the Npcap library and for 

processing step their format will be converted. 

The packets stored in the dataset will then be sent for pre-processing (Wolpert & Macready, 
1997). 
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Table 3.1:  Illustration of OSI Layers 

 

 

Figure 3.4: Phases for package decoding (Wolpert & Macready, 1997) 

 
 
3.1.2 Data Preparation 

Figure 3.5 demonstrates the pre-processing steps of the data before the Train model, 

which includes the training process. Generally, pre-processing data is necessary for all tasks 

of machine learning. Pre-processing of data is based on extracting information from header 

and load for the packages. Then new statistical features will be created from the header and 

the load. Pre-processing generally consists of dataset creation, data cleaning, integration, and 

feature construction, feature selection, reduction, and normalization. The most related steps 

for NMS are briefly explained below (Tavallaee, Bagheri, Lu, & Ghorbani, 2009). 
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Figure 3.5: The phase of pre-processing data (Wolpert & Macready, 1997) 

 

 

Dataset Creation: For classification and prediction, it is representative network 

traffic. The KDD dataset that is used for NMS, were composed from some normal network 

logs through weeks. The dataset is compressed raw binary TCP dump. There are 5 million 

connection records in this data. As a row, every connection of this data called a vector. Each 

vector is about 100 bytes.  Each vector contains 41 features. 

The table below shows the part of the data set of the KDD Cup utilized in the 

suggested NMS. 
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Table 3.2: NMS Training Dataset 
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Table 3.3: NMS Test Dataset 

 

 

 

Figure 3.6: Sample vectors of NMS’s KDD dataset 
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Features Extraction: Classification of packets relies on the network connection 

feature values. Extraction of features requires the captured network packets as an input and 

extracts features from these packets as output. In port-based classification, basic features are 

extracted from the header of packets (protocol type, service, flag etc.). In payload 

classification, content features are extracted from payload of packets (logged in, etc.). 

Statistical features (count, srv_count, etc.) manually are computed. 

Feature Scaling: This stage is a method for standardizing the range of independent 

variables or dataset features. Since the range of values of raw data varies widely, objective 

functions will not work properly without normalization in some machine learning algorithms. 

There are two types of feature scaling (Ioffe & Szegedy, 2015): 

Standardization: Data standardization is the process of rescaling one or more features 

so that features have 0 mean value and a standard deviation of 1. Standardization assumes 

that data has a Gaussian distribution. This does not strictly have to be true, but the technique 

is more effective if features distribution is Gaussian. 

Normalization: Normalization is the process of rescaling one or more features to the 

range of 0 to 1. This means that the largest value for each feature is 1 and the smallest value 

is 0. 

 After feature scaling, vectors are suitable as input to machine learning algorithms. 

Reduction: This is utilized to reduce the dimensions (count) of features by dismissing 

any excessive or irrelevant features. 

3.1.3 Train Model (Classification) 

Classification is a method by which classifier specifies which group belongs to a 

particular observation, such as when biologists categorize crops, animals and other life forms 

into separate taxonomies. It is one of the main uses of information science and machine 

learning. 

Then algorithms classify the train data and train data train the system. In the final 

stage, the trained system estimates vectors to determine if the data is normal or not.  

3.1.4 Test Data (Prediction) 

The machine learning value is realized in this step. The trained model is used in this 

phase to forecast the result and it labels packets with the class name it belongs to. This step is 

the phase of deciding which class the package belongs to. 
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3.1.5 Improve 

It covers the evaluation of the results from the technical point of view according to the 

test values, arranging and sending of the observing and support model and arranging process. 

Selecting the most efficient model by looking at the test results enters this stage. Improve step 

of methodology will be discussed in chapter five which is the last chapter of this thesis. 

3.2 System Architecture 

The NMS includes data gathering, data pre-processing, classification, prediction and 

response stages. In data gathering stage, Wireshark captures data from network and then data 

is used in the classification and prediction stages to train and test the NMS. In NMS, KDD 

CUP99 provides train data and pre-processing data controls the data to assure an effective 

configuration of the classification system. DT classification algorithm is used by PCA 

algorithm and Wireshark network monitoring application to build the suggested NMS and 

classify network traffic in online and offline mode. The last NMS phase response shows 

important data and tells the network administrator to take appropriate action. 

In Figure 3.7 a general NMS architecture is illustrated. It shows a general 

architecture of an NMS. 

 

Figure 3.7: A General architecture of an NMS 
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The most considerable part of the NMS is to classify network packets by service 

types, then dispatch a copy of the record to the network administrator. As a result, the 

network administrator takes proper action by updating the monitoring systems on the 

network. 

3.3 The Proposed System 

NMS has two phases as follows:  

I. Training. 

II. Testing. 

Training phase which is shown in Figure 3.8, consists of three steps and those steps 

are listed below: 

• Input dataset. 

• Train the system by dataset. 

• DT algorithm classifies and PCA algorithm deducts dimensions, and NMS 

classifies the packets by classes that determined in feature extraction phase. 

Output of this phase is trained system. 
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Figure 3.8: Training Phase’s Block Diagram 

In Figure 3.9 the testing stage is illustrated. It consists of 3 steps and those steps can 

be described as bellow: 

• Input trained system.  

• Learning machine (trained system) classifies network traffic (testing file in 

offline mode). 

• Generate monitoring report as output. It is the last phase in the suggested 

system NMS. Important information is displayed, and system informs the 

network administrator for further actions 
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Figure 3.9: Testing Phase’s Block Diagram 
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CHAPTER 4 
 

NMS SYSTEM IMPLEMENTATION AND RESULTS 
 
4.1 Introduction 

The application of the suggested NMS will be presented in this section by using the 

DT and PCA algorithms. Then we will compare DT algorithm of the NMS with other 

algorithms. This chapter provides a comparison of the test results of NMS with the different 

codes given in the Appendix. NMS is designed as it is in a LAN network with a WAN 

connection. It is programmed in Python language and implementation of the code is highly 

suitable for the most of networks types. 

4.2 System Architecture 

In Figure 4.1 the suggested NMS system is illustrated. It is comprised of the below 

components: 

• Router which will be used for routing network packages. 

• Switch for receiving, processing and forwarding the packets. 

• PC, which runs NMS. 

• Network Administrator is to monitor the network. 

• LAN with five clients, one firewall, one switch, one router and two access 

point. 
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Figure 4.1: NMS system architecture 

4.3 Performance Metrics 

4.3.1 Confusion Matrix (CM) 

CM is a measure of efficiency. It is utilized for problems where there can be at least 

two output classes. It is shown as a table with four cells. Columns are actual values and rows 

are predicted values, and it is showed in Table 4.1. 

True Positive (TP): Actual value is positive, and prediction is positive 

True Negative (TN): Actual value is positive, and prediction is negative 

False Positive (FP): Actual value is negative, and prediction is positive 

False Negative (FN): Actual value is negative, and prediction is negative 
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Table 4.1: Confusion Matrix (CM) (Tavallaee et al., 2009) 
 

 

 

 

 

 

 

 

A confusion matrix for binary class problem is show in Table 4.1. and a confusion 

matrix for multiclass problem is shown in Table 4.2. 

Table 4.2: An Example CM for NMS (Stallings, 2003) 
  PREDICTED VALUES 
  WWW MAIL OTHER INTERACTIVE BULK SERVICE MEDIA 

A
C

T
U

A
L

 V
A

L
U

E
S 

WWW 475767 1036 59 22 35 10 0 

MAIL 804 49996 204 110 119 3 0 

OTHER 133 205 38163 66 111 1312 9 

INTERACTIVE 67 250 146 691 34 0 1 

BULK 24 116 107 22 21423 1 0 

SERVICE 0 1 939 0 3 3780 0 

MEDIA 2 1 5 12 3 0 6 

 

Standard metrics are shown below for evaluating network monitoring. The most 

commonly used evaluation metrics are the detection rate (DR) and the accuracy rate. As 

shown in Equation (4.1), DR is calculated as the ratio of the number of correctly classified 

vectors to the total number of class vectors and as shown in as in Equation (4.2), Accuracy is 

the ratio of number of correct predictions to the total number of input samples (Tavallaee et 

al., 2009). 

 

 

 
PREDICTED VALUES 

Positive Negative 
A

C
T

U
A

L
  

V
A

L
U

E
S Positive TP FN 

Negative FP TN 
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Sensitivity-Detection Rate (DR) or True Positive Rate (TPR): It is a ratio of the total 

number of positive examples that are correctly classified divide into the total number of 

positive examples. High recall shows that the class is identified correctly (Tavallaee et al., 

2009). 

 

Accuracy: It is the ratio of the correctly labeled examples to the whole pool of example 

(Tavallaee et al., 2009). 

 

4.4 Experiments and Results 

There will be four scenarios that contains experiments to classify network traffic over 

KDDCUP99 data set by using DT, LG, SVM, DL and GNB algorithms in NMS in this 

section.  

Scenario 1: 5 experiments were performed on KDD CUP99 dataset by using SVM, 

DT, LR, GNB and DL classification algorithms individually. These experiments’ requirements 

described as below: 

Experiment 1: 97,278 rows of KDD CUP99 dataset are chosen for the training and 

595,798 rows for testing, however all forty-one features are chosen.  

Experiment 2: 97,278 rows of KDD CUP99 dataset are chosen for the training and 

595,798 rows for testing, however only thirty features are chosen. 

Experiment 3: 97,278 rows of KDD CUP99 dataset are chosen for the training and 

595,798 rows for testing, however only twenty features are chosen. 

Experiment 4: 97,278 rows of KDD CUP99 dataset are chosen for the training and 

595,798 rows for testing, however only ten features are chosen. 

Experiment 5: 97,278 rows of KDD CUP99 dataset are chosen for the training and 

595,798 rows for testing, however only five features are chosen. 

Scenario 2: To test scalability of NMS, there will tree different size of KDD data set. 

Scenario 3: In this scenario standard non-scalar algorithms were applied and compared 

to each other to see the outcome of feature scaling on the classification. 

Scenario 4: To avoid impact of unbalanced data on classification.  
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Scenario 1: 

The 1st experimental outcome showed that the DT classifier reached the largest DR 

rate of 79.8813% compared to other classifiers. The maximum ACC rate is 98.9923 % that 

reached by DL classifier. The maximum value of DR rate for network classes was reached 

by DT classifier. Although the training time is long, DL classifier reached by a high DR rate. 

The minimum time taken to train is 0.156394 seconds that reached by GNB classifier and 

minimum time taken to test is 0.12333 seconds achieved by DT classifier. Moreover, the 

minimum memory usage is 0.741154 GB that reached by DT classifier. 

Table 4.3: First Scenario of 1st Experiment 
 EXPERIMETNS 

 SVM DT LR DL GNB 
DR (%) 51.1479 79.8813 56.0539 78.8496 51.4787 
ACC (%) 96.2793 97.7486 96.1568 98.9923 84.0907 
DR for WWW (%) 99.7406 99.8135 99.6165 99.6575 95.4771 
DR for MAIL (%) 82.7367 83.6521 84.9207 90.6064 49.8243 
DR for OTHER (%) 96.7149 94.6473 92.5823 96.3380 26.0731 
DR for INTERACTIVE (%) 1.1774 63.9192 11.5222 0 46.7619 

DR for BULK (%) 77.6656 96.5887 72.0186 97.4803 20.9560 
DR for SERVICE (%) 0 82.6169 31.7171 68.0890 97.1204 

DR for MEDIA (%) 0 37.9310 0 99.7761 24.1379 
MEAN OF CROSS V. (%) 96.0249 97.9379 95.7114 98.9900 75.5659 
TRAINING TIME(SECOND) 45.529160 5.581684 7.594568 122.242404 0.156394 
TESTING TIME(SECOND) 335.489777 0.12333 0.102367 32.621607 2.362087 
MEMORY(GB) 0.743065 0.741154 0.813011 0.977589 0.758854 

 

 

Figure 4.2: DR & ACC Comparison for the 1st Experiment 
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Figure 4.3: Training and Testing Time Comparison for the 1st Experiment 

 

 

 

 

 

Figure 4.4: Memory Consume Comparison for the 1st Experiment 
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Figure 4.5: Screenshot of 1st Experiment 

 

 

Figure 4.6: Outputs for the 1st Experiment 
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The 2nd result showed that DT classifier reached a DR rate of 75.8523 % as 

maximum value compared with other classifiers. The maximum ACC rate is 98.8568 % that 

reached by DL classifier. The maximum DR rate for network classes was reached by DT 

classifier. Although the training time is long, DL classifier reached a high DR rate. The 

minimum time taken to train is 0.13955 seconds that reached by GNB classifier and 

minimum time taken to test is 0.088197 seconds reached by LR classifier. Moreover, the 

minimum memory usage is 0.685406 GB that reached by Support Vector Machine classifier. 

Table 4.4: 2nd Experiment of First Scenario 
 EXPERIMETNS 
 SVM DT LR DL GNB 
DR (%) 51.6828 75.8523 56.0486 74.3756 55.0105 
ACC (%) 96.3691 97.5658 96.1539 98.8568 86.6332 
DR for WWW (%) 99.7381 99.8775 996160 98.5109 95.1472 
DR for MAIL (%) 83.6306 80.7244 84.8973 60.0671 51.4228 
DR for OTHER (%) 96.7249 94.8773 92.5823 96.6456 71.4717 
DR for INTERACTIVE (%) 2.8595 57.6955 11.5222 0 38.2674 

DR for BULK (%) 77.7255 96.7685 72.0047 97.1703 11.9946 
DR for SERVICE (%) 1.1009 83.7814 31.7171 68.5300 92.6318 

DR for MEDIA (%) 0 17.2413 0 99.7057 24.1379 
MEAN OF CROSS V. (%) 96.1174 97.5987 95.7083 98.9100 82.9959 
TRAINING TIME(SECOND) 34.305190 3.192578 6.628949 120.981310 0.139555 
TESTING TIME(SECOND) 257.928970 0.097885 0.088197 30.250127 1.819185 
MEMORY(GB) 0.685406 0.698105 0.799507 0.985912 0.740261 

 

 

 

Figure 4.7: DR & ACC Comparison for the 2nd Experiment 
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Figure 4.8: Training and Testing Time Comparison for the 2nd Experiment 

 
 

 

 

Figure 4.9: Memory Consume Comparison for the 2nd Experiment 
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Figure 4.10: Outputs for 2nd Experiment 

The 3rd experimental result showed that DT classifier reached a DR rate of 76.6766 

% as maximum value compared with other classifiers. The maximum ACC rate is 98.8694 

% that reached by DL classifier. The maximum DR rate for network classes was reached by 

DT classifier. Although the training time is long, DL classifier reached a high DR rate. The 

minimum time taken to train is 0.121520 seconds that reached by GNB classifier and the 

minimum time taken to test is 0.074805 second reached by LR classifier. Moreover, the 

minimum memory usage is 0.513020 GB that reached by SVM classifier. 
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Table 4.5: 3rd Experiment of First Scenario 
 EXPERIMETNS 
 SVM DT LR DL GNB 
DR (%) 56.8923 76.6766 55.5178 73.9691 60.4801 
ACC (%) 96.6302 98.7969 96.1393 98.8694 90.2403 
DR for WWW (%) 99.7343 99.7605 99.6135 97.7406 95.1244 
DR for MAIL (%) 85.1881 96.6683 84.8368 58.2278 61.3143 
DR for OTHER (%) 93.0723 94.4548 92.5798 96.1108 83.9420 
DR for INTERACTIVE (%) 3.3641 53.4903 7.9058 0 30.3616 

DR for BULK (%) 80.2793 96.9898 72.0140 97.3861 72.0278 
DR for SERVICE (%) 36.6080 81.5795 31.6747 68.5345 63.3495 

DR for MEDIA (%) 0 13.7931 0 99.7839 17.2413 
MEAN OF CROSS V. (%) 96.2161 97.6234 95.6980 98.8300 87.7698 
TRAINING TIME(SECOND) 64.876303 2.557625 5.147132 118.425041 0.121520 
TESTING TIME(SECOND) 181.408424 0.085482 0.074805 34.845944 1.351757 
MEMORY(GB) 0.513020 0.646824 0.628727 0.877766 0.712097 

 

 

 

 

Figure 4.11: DR & ACC Comparison for the 3rd Experiment 
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Figure 4.12: Training and Testing Time Comparison for the 3rd Experiment 

 
 

 

 

Figure 4.13: Memory Consume Comparison for the 3rd Experiment 
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Figure 4.14: Outputs for 3rd Experiment 

 

 

The 4th experimental result showed that DT classifier reached by a DR rate of 

98.6031 % as maximum compared with other classifiers. The maximum ACC rate is 

98.5930 % that reached by DL classifier. The maximum DR rate for network classes was 

reached by DT classifier. The minimum time taken to train is 0.099856 seconds that reached 

by GNB classifier and minimum time taken to test is 0.063542 second reached by LR 

classifier. Moreover, minimum memory usage is 0.595535 GB that reached by DT classifier. 
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Table 4.6: 4th Experiment of First Scenario 
 EXPERIMETNS 
 SVM DT LR DL GNB 
DR (%) 58.9431 98.6031 53.9965 73.8632 64.4817 
ACC (%) 97.3076 76.3247 95.9443 98.5930 91.6638 
DR for WWW (%) 99.6966 99.6125 99.5991 96.6327 95.4873 
DR for MAIL (%) 87.0130 95.6105 83.4081 60.0000 72.5544 
DR for OTHER (%) 93.2948 946473 92.9448 97.1305 86.8871 
DR for INTERACTIVE (%) 0 52.6492 0.2523 0 54.3313 

DR for BULK (%) 94.9522 96.3124 70.0963 94.7365 72.1707 
DR for SERVICE (%) 37.6455 80.6478 31.6747 69.0048 52.6995 

DR for MEDIA (%) 0 13.7931 0 99.5379 17.2413 
MEAN OF CROSS V. (%) 97.1300 97.3664 95.4338 98.5400 90.4417 
TRAINING TIME(SECOND) 13.486251 1.229930 2.607169 122.421115 0.099856 
TESTING TIME(SECOND) 121.162376 0.070930 0.063542 40.892389 0.720488 
MEMORY(GB) 0.736279 0.595535 0.699520 0.845486 0.692577 

 

 

 

Figure 4.15: DR & ACC Comparison for the 4th Experiment 
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Figure 4.16: Training and Testing Time Comparison for the 4th Experiment 

 

 

 

 

 

Figure 4.17: Memory Consume Comparison for the 4th Experiment 
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Figure 4.18: Output for 4th Experiment 

The fifth experimental result showed that DT classifier reached a DR rate of 74.2333 

% as maximum value compared with other classifiers. The maximum ACC rate is 97.6861 

% that reached by DT classifier. The maximum DR rate for network classes was reached by 

DT classifier. The minimum time taken to train is 0.090653 seconds that reached by GNB 

classifier and the minimum time taken to test is 0.056931 seconds reached by LR classifier. 

Moreover, the minimum memory usage is 0.543766 GB that reached by SVM classifier. 
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Table 4.7: 5th Experiment of First Scenario 
 EXPERIMETNS 
 SVM DT LR DL GNB 
DR (%) 51.0742 74.2333 46.0962 65.5014 60.2825 
ACC (%) 94.9800 97.6861 93.1589 97.5127 92.1700 
DR for WWW (%) 98.1749 99.1493 98.5924 91.5607 96.5625 
DR for MAIL (%) 83.8746 91.9626 68.1649 13.3333 70.4582 
DR for OTHER (%) 96.1374 93.5248 95.4598 90.5986 88.1997 
DR for INTERACTIVE (%) 0.8410 38.0151 0.1682 0 0.5046 

DR for BULK (%) 73.7703 94.2285 52.2426 95.3255 66.6897 
DR for SERVICE (%) 4.7215 78.6152 8.0457 68.6417 58.1833 

DR for MEDIA (%) 0 24.1379 0 99.0499 41.3793 
MEAN OF CROSS V. (%) 94.7029 96.5276 92.5555 97.2300 90.9701 
TRAINING TIME(SECOND) 14.668287 0.515767 1.083124 121.528057 0.090653 
TESTING TIME(SECOND) 136.944998 0.062312 0.056931 37.436296 0.464589 
MEMORY(GB) 0.543766 0.569656 0.683208 0.838245 0.689236 

 

 

 

 

 

Figure 4.19: DR & ACC Comparison for the 5th Experiment 

 



 46 

 

Figure 4.20: Training and Testing Time Comparison for the 5th Experiment 

 
 
 
 
 

 

 

Figure 4.21: Memory Consume Comparison for the 5th Experiment 
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Figure 4.22: Output for 5th Experiment 

Scenario 2:   Three experiments were carried out to see the scalability of NMS as 

fallow: 

1- We have used 125,793 vector of KDD dataset to train NMS and 595,798 rows for testing. 

2- We have used 494,021 vector of KDD dataset to train NMS and 595,798 rows for testing. 

3- We have used 1,000,000 vector of KDD dataset to train NMS and 595,798 rows for testing. 

Outcomes are illustrated as follows. 

Experimental result showed that SVM classifier reached highest DR rate in first and 

second experiments and DT classifier achieved highest DR rate in third experiment 

compared with other classifiers. SVM classifier achieved highest ACC rate in all 

experiments compared with other classifiers. Highest DR rate for network classes was 

achieved by SVM classifier.  
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Table 4.8: Scalability Experiments for Support Vector Machine Algorithm 
 1.Experiment 2.Experiment 3.Experiment 
DR (%) 42.2910 40.1904 43.8707 
ACC (%) 96.1984 96.1737 97.0856 
DR for WWW (%) 99.7536 98.7353 99.7483 
DR for MAIL (%) 81.2358 82.2468 85.4379 
DR for OTHER (%) 96.9249 96.7174 93.1648 
DR for INTERACTIVE (%) 25.7359 7.3170 17.5777 

DR for BULK (%) 76.9695 75.6972 98.9074 
DR for SERVICE (%) 0 0 0 
DR for REMOTE (%) 0 0 0 
DR for DATABASE (%) 0 0 0 
DR for MEDIA (%) 0 0 0 
MEAN OF CROSS V. (%) 80.5173 98.2594 95.1001 
TRAINING TIME(SECOND) 941.402687 3509.292585 18861.513270 
TESTING TIME(SECOND) 1504.380082 686.375096 2062.129607 
MEMORY(GB) 0.605934 0.366829 0.970428 
 

 

 

 

Figure 4.23: DR & ACC Comparison for SVM Algorithm 
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Figure 4.24: Training and Testing Time Comparison for SVM Algorithm 

 

 

 

Figure 4.25: Memory Consume Comparison for SVM Algorithm 
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Table 4.9: Scalability Experiments for Decision Tree Algorithm 
 1.Experiment 2.Experiment 3.Experiment 
DR (%) 34.0963 32.7188 52.4999 
ACC (%) 60.2649 89.8068 92.6321 
DR for WWW (%) 63.0867 98.6618 97.8930 
DR for MAIL (%) 25.4274 69.1993 79.3933 
DR for OTHER (%) 77.8519 54.8838 82.0395 
DR for INTERACTIVE (%) 11.9428 23.4650 74.0958 

DR for BULK (%) 56.4329 27.7877 90.1673 
DR for SERVICE (%) 34.1943 17.0230 12.9790 

DR for REMOTE (%) 0 0 0 

DR for DATABASE (%) 0 0 0 

DR for MEDIA (%) 37.9310 3.4482 37.9310 
MEAN OF CROSS V. (%) 80.1712 95.4338 95.2322 
TRAINING TIME(SECOND) 8.857297 20.935107 55.359079 
TESTING TIME(SECOND) 0.115061 0.139380 0.137375 
MEMORY(GB) 0.870491 1.029617 1.368744 

 

 

 

 

Figure 4.26: DR & ACC Comparison for DT Algorithm 
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Figure 4.27: Training and Testing Time Comparison for DT Algorithm 

 

 

 

 

Figure 4.28: Memory Consume Comparison for DT Algorithm 

 

 

 

 



 52 

Table 4.10: Scalability Experiments for Logistic Regression Algorithm 
 1.Experiment 2.Experiment 3.Experiment 

DR (%) 28.3212 33.0188 31.3164 
ACC (%) 90.4110 91.2449 77.6468 
DR for WWW (%) 99.4093 98.0661 78.0004 
DR for MAIL (%) 44.4218 77.8300 97.0899 
DR for OTHER (%) 96.7049 81.9445 96.7874 
DR for INTERACTIVE (%) 0 0 0 

DR for BULK (%) 14.3548 8.3529 9.9064 
DR for SERVICE (%) 0 30.9760 0.0635 

DR for REMOTE (%) 0 0 0 

DR for DATABASE (%) 0 0 0 

DR for MEDIA (%) 0 0 0 
MEAN OF CROSS V. (%) 79.1297 98.0784 95.2067 
TRAINING TIME(SECOND) 3.236786 10.060068 19.838131 
TESTING TIME(SECOND) 0.067650 0.071333 0.066887 
MEMORY(GB) 0.722469 0.867374 1.019993 

 

 

 

 

Figure 4.29: DR & ACC Comparison for LR Algorithm 
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Figure 4.30: Training and Testing Time Comparison for LR Algorithm 

 

 

 

Figure 4.31: Memory Consume Comparison for LR Algorithm 
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Table 4.11: Scalability Experiments for DL Algorithm 
 1.Experiment 2.Experiment 3.Experiment 
DR (%) 20.5481 17.7597 12.6341 
ACC (%) 2.28902 3.6543 3.3543 
DR for WWW (%) 47.4525 99.5948 99.9396 
DR for MAIL (%) 40.0000 0 0 
DR for OTHER (%) 0 54.5995 7.5688 
DR for INTERACTIVE (%) 6.7200 0 0.0049 

DR for BULK (%) 90.7609 0 0 
DR for SERVICE (%) 0 5.6533 6.1942 

DR for REMOTE (%) 0 0 0 

DR for DATABASE (%) 0 0 0 

DR for MEDIA (%) 0 0 0 
MEAN OF CROSS V. (%) 83.8800 98.7800 98.5800 
TRAINING TIME(SECOND) 164.890413 657.273461 1354.568521 
TESTING TIME(SECOND) 46.122825 43.937499 44.832119 
MEMORY(GB) 1.136715 1.256710 1.273716 

 

 

 

 

Figure 4.32: DR & ACC Comparison for DL Algorithm 
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Figure 4.33: Training and Testing Time Comparison for DL Algorithm 

 

 

 

 

Figure 4.34: Memory Consume Comparison for DL Algorithm 
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Table 4.12: Scalability Experiments for GNB Algorithm 
 1.Experiment 2.Experiment 3.Experiment 
DR (%) 30.0925 37.2135 37.9236 
ACC (%) 57.7956 85.0720 61.5967 
DR for WWW (%) 68.5697 92.3539 61.5412 
DR for MAIL (%) 14.9933 44.6834 60.9805 
DR for OTHER (%) 2.8275 94.6448 89.7972 
DR for INTERACTIVE (%) 27.5862 30.6980 36.4171 

DR for BULK (%) 15.9636 24.2658 27.0594 
DR for SERVICE (%) 99.5130 0 0 

DR for REMOTE (%) 0 0 0 

DR for DATABASE (%) 0 0 0 

DR for MEDIA (%) 41.3793 48.2758 65.5172 
MEAN OF CROSS V. (%) 39.8331 75.6497 69.2628 
TRAINING TIME(SECOND) 0.220978 0.865924 1.784725 
TESTING TIME(SECOND) 3.015205 3.018600 3.043701 
MEMORY(GB) 1.014290 1.455036 1.349602 

 

 

 

 

Figure 4.35: DR & ACC Comparison for GNB Algorithm 
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Figure 4.36: Training and Testing Time Comparison for GNB Algorithm 

 

 

 

 

Figure 4.37: Memory Consume Comparison for GNB Algorithm 

Scenario 3: 

In order to see the impact of feature scaling, an experiment without feature scaling 

(standard scaler) was implemented to all classifiers and the experimental outcome showed that 

DT classifier reached the largest DR percentage of 84,9629 percent compared to other 

algorithms. Maximum ACC rate is 99.4449 % that reached by DT classifier. Maximum DR 

rate for network classes was reached by DT classifier. The minimum time taken to train is 
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6.371368 seconds that reached by DT classifier and the minimum time taken to test is 

0.059934 second reached by LR classifier. Moreover, the minimum memory usage is 

0.285355 GB that reached by SVM classifier. 

Table 4.13: Standard Scaler Experiments for SVM Algorithm 
 With Standard 

Scaler 
Without Standard 

Scaler 
DR (%) 51.1479 43.2610 
ACC (%) 96.2793 87.0701 
DR for WWW (%) 99.7406 99.9997 
DR for MAIL (%) 82.7367 11.2889 
DR for OTHER (%) 96.7149 70.2692 
DR for INTERACTIVE (%) 1.1774 9.5878 

DR for BULK (%) 77.6656 16.9593 
DR for SERVICE (%) 0 87.8255 

DR for MEDIA (%) 0 6.8965 
MEAN OF CROSS V. (%) 96.0249  
TRAINING TIME(SECOND) 45.529160 10286.497473 
TESTING TIME(SECOND) 335.489777 4208.674068 
MEMORY(GB) 0.743065 0.285355 
 

 

 

 

Figure 4.38: DR & ACC Comparison for SVM Algorithm 
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Figure 4.39: Training and Testing Time Comparison for SVM Algorithm 

 

 

 

 

Figure 4.40: Memory Consume Comparison for SVM Algorithm 
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Table 4.14: Standard Scaler Experiments for Decision Tree Algorithm 
 With Standard 

Scaler 
Without Standard 

Scaler 
DR (%) 79.8813 84.9649 
ACC (%) 97.7486 99.4449 
DR for WWW (%) 99.8135 99.9201 
DR for MAIL (%) 83.6521 99.1607 
DR for OTHER (%) 94.6473 96.6574 
DR for INTERACTIVE (%) 63.9192 83.2632 

DR for BULK (%) 96.5887 98.7138 
DR for SERVICE (%) 82.6169 86.0046 

DR for MEDIA (%) 37.9310 31.0344 
MEAN OF CROSS V. (%) 97.9379 98.4581 
TRAINING TIME(SECOND) 5.581684 6.371368 
TESTING TIME(SECOND) 0.12333 0.132308 
MEMORY(GB) 0.741154 0.761307 

 

 

 

 

Figure 4.41: DR & ACC Comparison for DT Algorithm 
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Figure 4.42: Training and Testing Time Comparison for DT Algorithm 

 
 
 

 

 

Figure 4.43: Memory Consume Comparison for DT Algorithm 
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Table 4.15: Standard Scaler Experiments for Logistic Regression Algorithm 
 With Standard 

Scaler 
Without Standard 

Scaler 
DR (%) 56.0539 26.6159 
ACC (%) 96.1568 82.0567 
DR for WWW (%) 99.6165 97.7371 
DR for MAIL (%) 84.9207 10.8751 
DR for OTHER (%) 92.5823 28.6382 
DR for INTERACTIVE (%) 11.5222 23.9697 

DR for BULK (%) 72.0186 25.0910 
DR for SERVICE (%) 31.7171 0 

DR for MEDIA (%) 0 0 
MEAN OF CROSS V. (%) 95.7114 75.0696 
TRAINING TIME(SECOND) 7.594568 9.285133 
TESTING TIME(SECOND) 0.102367 0.059934 
MEMORY(GB) 0.813011 0.683086 

 

 

 

 

 

Figure 4.44: DR & ACC Comparison for LR Algorithm 
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Figure 4.45: Training and Testing Time Comparison for LR Algorithm 

 
 
 
 

 

 

Figure 4.46: Memory Consume Comparison for LR Algorithm 
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Table 4.16: Standard Scaler Experiments for DL Algorithm 
 With Standard 

Scaler 
Without Standard 

Scaler 
DR (%) 78.8496 0.5201 
ACC (%) 98.9923 0.036410 
DR for WWW (%) 99.6575 3.6409 
DR for MAIL (%) 90.6064 0 
DR for OTHER (%) 96.3380 0 
DR for INTERACTIVE (%) 0 0 

DR for BULK (%) 97.4803 0 
DR for SERVICE (%) 68.0890 0 

DR for MEDIA (%) 99.7761 0 
MEAN OF CROSS V. (%) 98.9900 31.0300 
TRAINING TIME(SECOND) 122.242404 127.661013 
TESTING TIME(SECOND) 32.621607 37.999987 
MEMORY(GB) 0.977589 1.094322 

 

 

 

 

Figure 4.47: DR & ACC Comparison for DL Algorithm 
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Figure 4.48: Training and Testing Time Comparison for DL Algorithm 

 
 
 
 

 

 

Figure 4.49: Memory Consume Comparison for DL Algorithm 
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Table 4.17: Standard Scaler Experiments for GNB Algorithm 
 With Standard 

Scaler 
Without Standard 

Scaler 
DR (%) 51.4787 51.6904 
ACC (%) 84.0907 67.7983 
DR for WWW (%) 95.4771 69.1700 
DR for MAIL (%) 49.8243 98.8250 
DR for OTHER (%) 26.0731 38.4234 
DR for INTERACTIVE (%) 46.7619 33.7258 

DR for BULK (%) 20.9560 13.8846 
DR for SERVICE (%) 97.1204 97.4592 

DR for MEDIA (%) 24.1379 10.3448 
MEAN OF CROSS V. (%) 75.5659 69.3296 
TRAINING TIME(SECOND) 0.156394 0.156402 
TESTING TIME(SECOND) 2.362087 2.348045 
MEMORY(GB) 0.758854 0.846127 

 

 

 

 

Figure 4.50: DR & ACC Comparison for GNB Algorithm 
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Figure 4.51: Training and Testing Time Comparison for GNB Algorithm 

 
 

 

 

Figure 4.52: Memory Consume Comparison for GNB Algorithm 

 

Scenario 4: 

K-fold cross validation is applied to the algorithm to understand the impact of data 

unbalance and each class accuracy is calculated in each experiment. 

Model performance is evaluated in machine learning based on an error metric to 

determine the model's accuracy. This evaluation is not very accurate since the accuracy 

acquired for one test set may vary greatly from the accuracy acquired for another test set. K-
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fold cross validation solves evaluation problem by dividing the dataset into folds and making 

sure that each fold is used as a testing set at some point. Figure 4.53 shows the K-fold cross 

validation algorithm: 

1. Divide the dataset into k equal parts. 

2. Use k-1 parts for training and 1 part for testing. 

3. Repeat the procedure k times, rotating the test dataset. 

4. Determine a performance metric for all iterations. 

 

Figure 4.53: K-Fold Cross Validation 

4.5 Discussion 

Specifically, the following parameters are discussed in terms of memory allocation, 

classification speed and system accuracy to explain the outcomes of the experiment. 

 
4.5.1 System Accuracy Results 

The DT algorithm has greater efficiency compared to other algorithms, where its 

classification accuracy is 97.6861 %. The aim of our research is to classify network packets 

while enhancing the generation of DR rate and ACC rate. Moreover, Figure 4.54 shows that 

our system can classify data set vectors at an elevated average DR rate of 74.2333%. 
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Figure 4.54: Number of Features versus Detection Rate 

 

 

 

Figure 4.55: Number of Features versus Accuracy Rate 

 
 
 
4.5.2 Classification Speed Results 

Figure 4.56 indicates the duration of the training versus the number of features. DT 

algorithm second lowest training duration and DT is one of the algorithms that has lowest 

testing duration that was shown in Figure 4.57. 
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Figure 4.56: Number of Features versus Training Time 

 

 

 

Figure 4.57: Number of Features versus Testing Time 

4.5.3 Memory Allocation Results 

The memory usage versus number of features is indicated in Figure 4.52. The DT 

algorithm utilizes 5 features that uses 0.569656 GB, while it uses 41 features using time 

0.741154. 
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Figure 4.58: Features versus Memory Allocation 

The number of instances is an effective factor on the percentage of the classification 

accuracy and the training and testing time. In terms of training time, the suggested NMS 

using the DT algorithm outperforms all algorithms as it has the minimum time. 

The suggested NMS using the DT algorithm outperforms all other algorithms with 

regard to DR 79.8813 percent results and it has the largest speed in the comparison lists. 

The proposed NMS using the DT algorithm has the second highest ACC rate of 

97.7486 %. The proposed NMS achieves best performance in terms of ACC rate, DR rate 

and highest speed. 

4.5.3 Other Algorithms Results 

Screenshots of experiments for SVM, LR, DL and GNB are shown Figure 4.59, 

Figure 4.60, Figure 4.61 and Figure 4.62. It can be seen that DL gives closest results to the DT 

algorithm.  
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Figure 4.59: Experiment of Support Vector Machine Classification Algorithm 

 

 

Figure 4.60: Experiment of Logistic Regression Classification Algorithm 
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Figure 4.61: Experiment of Deep Learning Algorithm 

 
 

 
 

Figure 4.62: Experiment of Gaussian Naïve Bayes Algorithm 
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CHAPTER 5 
 

CONCLUSION 
5.1 Result 

Network monitoring addresses all level of network operation from basic connectivity 

to application throughput. The aim of this paper is to suggest a Network Monitoring System 

using Machine Learning that assists to classify network packages. The proposed NMS 

utilizes the DT algorithm for classification and PCA algorithm for dimension (feature) 

reduction, and it classifies connections by network classes. 

Experimental results suggested that using the DT and PCA algorithms, the suggested 

NMS system reached a high classification ACC rate of 97,7486 %. Compared to all other 

algorithms, it is the best performance.  

The DT algorithm exceeds all other training algorithms as it has the minimum time for 

execution. But it was not possible to check how will the data behaves on a larger network and 

some service types are classified as 'other' due to they were belong to many classes. As a 

future study, the suggested NMS system can also be analyzed using other classification 

algorithms or proposed NMS system can be modified to capture network packets without 

cooperation of Wireshark and Npcap Library or other data sets can be experimented with the 

suggested NMS system. 
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 APPENDICES 
 

Appendix: A 

 
Attributes description of KDD CUP 99 dataset. 
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Appendix: B 

Content of Field Names.csv file. 
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Appendix: C 

Content of Service Types.csv file.  
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Appendix: D  

Python Code of Support Vector Machine Algorithm 
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Appendix: E 

Python Code of Decision Tree Algorithm 
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Appendix: F 

Python Code of Logistic Regression Algorithm 
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Appendix: G  

Python Code of Deep Learning Algorithm  
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Appendix: H  

Gaussian Naïve Bayes 
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