
 

T.C. 

HASAN KALYONCU UNIVERSITY 

GRADUATE SCHOOL OF 

NATURAL AND APPLIED SCIENCES 

 

 

A COMPARATIVE STUDY OF DEEP LEARNING 

METHODS ON FLEXURAL BUCKLING LOAD PREDICTION OF 

ALUMINUM ALLOY COLUMNS 

 

 

M.Sc. THESIS 

IN 

ELECTRONICS AND COMPUTER ENGINEERING 

 

 

 

 

 

Supervisor 

Assist. Prof. Dr. Bülent HAZNEDAR 

 

 

 

 

 

 

 

 

 

 

 

Zeliha Begüm KILINÇ 

 

January 2020



ii 

 

 

A COMPARATIVE STUDY OF DEEP LEARNING 

METHODS ON FLEXURAL BUCKLING LOAD PREDICTION OF 

ALUMINUM ALLOY COLUMNS 
 

 

 

 

 

M.Sc. Thesis 

In 

Electronics and Computer Engineering 

Hasan Kalyoncu University 

 

 

 

 

 

 

 

 

Supervisor 

Asst. Prof. Dr. Bülent HAZNEDAR 

 

 

 

 

 

 

 

 

 

 

Zeliha Begüm KILINÇ 

January 2020 
 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020 [ZELİHA BEGÜM KILINÇ] 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

 



ii 

 

ABSTRACT 

 

A COMPARATIVE STUDY OF DEEP LEARNING METHODS ON FLEXURAL 

BUCKLING LOAD PREDICTION OF ALLIMINUM ALLOY COLUMNS 

 

KILINÇ, Zeliha Begüm 

M.Sc. in Electronic - Computer Engineering 

Supervisor: Asst. Prof. Dr. Bülent HAZNEDAR 

January 2020 

In recent years, aluminum alloy columns have been widely used in construction fields. This is 

due to the light weight of aluminum alloys, high corrosion resistance, long life, low 

maintenance costs, the possibility of recovery, versatility of the metal and the possibility to 

obtain endless variety of profiles has many advantages. The calculation of the critical 

buckling loads of the columns is the most important issue. However, it is known that heat 

treated aluminum alloys have higher proof stress yield strength than non-heat treated 

aluminum alloys. In this study, buckling load estimation of heat treated aluminum alloy 

columns is made by using deep learning method and soft computing techniques and 

laboratory test results are compared. Sequential Model is used while using deep learning 

method. Adam, Adamax, Nadam, Adadelta, Adagrad, RMSProp and SGD and the optimizer 

functions of deep learning are evaluated separately. In addition, the results are evaluated using 

both MAE and MSE Loss functions for each optimizer. As a result of the study, it is 

understood that the optimizer and loss functions used together are more successful when 

estimating value for the dataset using deep learning model. 

 

 

 

 

Keywords: Prediction of buckling load, Aluminum alloy columns, Soft computing, Deep 

learning, Artificial neural network 
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ÖZET 

 

ALÜMİNYUM ALAŞIMLI KOLONLARIN EĞİLME BURKULMA YÜKÜ TAHMİNİ 

ÜZERİNE DERİN 

ÖĞRENME YÖNTEMLERİNİN KARŞILAŞTIRMALI BİR ÇALIŞMASI 

KILINÇ, Zeliha Begüm 

Yüksek Lisans, Elektronik Bilgisayar Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Bülent HAZNEDAR 

Ocak 2020 

Son yıllarda, Alüminyum alaşımlı sütunlar inşaat alanlarında çok yaygın kullanılmaktadır. 

Bunun sebebi alüminyum alaşımlarının hafifliği, yüksek korozyon direnci, uzun ömürlülüğü, 

düşük bakım maliyetleri, geri kazanma imkanı, metalin çok yönlülüğü ve sonsuz değişik 

şekilde profil elde edebilme olanağı gibi pek çok avantaja sahip olmasıdır. Kolonların kritik 

burkulma yüklerinin hesaplanması ise buradaki en önemli konudur. Bu problem çeşitli 

hesaplama teknikleri ve bilinen yaklaşımlar kullanılarak giderilmeye çalışılsa da doğrusal 

olmayan sonuçları içermektedir. Bu da kritik burkulma yükü tahminini zorlaştırmaktadır. 

Buna rağmen, Isıl işlem görmüş alüminyum alaşımlarının ısıl işlem görmemiş alüminyum 

alaşımlarına göre daha yüksek prova gerilimi verim mukavemetine sahip olduğu 

bilinmektedir. Bu çalışmada, ısıl işlem görmüş alüminyum alaşımlı kolonların derin öğrenme 

yöntemi kullanılarak burkulma yükü tahmini yapılmış softcomputing teknikleri ve laboratuvar 

ortamından alınan test sonuçları ile karşılaştırılmıştır. Derin öğrenme yöntemi kullanılırken 

Sequential Modelinden yararlanılmıştır. Derin öğrenmenin optimizer fonksiyonlarından olan 

Adam, Adamax, Nadam, Adadelta, Adagrad, RMSProp ve SGD ve kullanılarak  ayrı ayrı 

değerlendirilmiştir. Ayrıca, her bir optimizer için hem MAE hem de MSE Loss fonksiyonları 

kullanılarak sonuçlar değerlendirilmiştir. Çalışmanın sonucunda, derin öğrenme modelinin 

kullanıldığı veriseti için değer tahmini yaparken birlikte kullanılan hangi Optimizer ve Loss 

fonksiyonları ikilisinin daha başarılı olduğu anlaşılmıştır. 

 

 

Anahtar Kelimeler: Burkulma tahmini, Alüminyum alaşımlı kolonlar, Yapay sinir ağları, 

Derin Öğrenme. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Overview 

Aluminum alloys are non-linear metallic materials with round stress-strain curves not well 

represented by simplified elastic-excellent plastic material. Some aluminum alloys have 

tensile strength up to 600 MPa. In general, some aluminum alloys which are not very suitable 

for high temperatures can easily be used up to temperatures up to 300 ° C. Aluminum; It has 

high corrosion resistance in many chemical media including air, water, saline and 

petrochemicals. Maintaining its mechanical properties at low temperatures is another 

outstanding feature of aluminum. In general, the welding properties of high strength 

aluminum alloys are not good. For this reason, aircraft are produced using riveted joints. 

However, there is a high-strength aluminum alloy that can be welded, albeit in a small 

number. 

Heat treatment for aluminum alloys is generally limited to processes applied to increase the 

strength and hardness of machined and cast alloys which may exhibit precipitation hardening. 

Heat treatment to increase the strength of aluminum alloys; solution; dissolution of the phases 

(formation of solid solution), quenching; formation of supersaturated structure, aging; 

precipitation of dissolved atoms at room temperature or higher (precipitation hardening). 

27% of the aluminum alloys produced annually in the world are used in the construction 

sector. It is used in the Both of  non-structural elements (doors, windows, facade cladding ...) 

and structural elements (bridge decks, wide span roofing, panels and shell structures). 

Aluminum alloys are also used as formwork for on-site concrete casting. By producing 

composite elements with fiber-reinforced polymer and carbon-reinforced polymer materials, 

the relatively low elasticity of aluminum can be removed. Nowadays, aluminum has become 

the most widely used metal after steel. However, the buckling estimates of the aluminum 

alloy are a major problem for aluminum alloy columns. 
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Recently, deep learning methods have been used in many fields and they are improving day 

by day. It is known that the amount of dataset is important when training the network in deep 

learning methods. The more training and test data the success of the model is increasing. 

However, even when there is not enough data, it is possible to achieve successful results even 

in small data sets by changing the variables such as epoch, mini-batch, layer number and 

optimizer method correctly. Since the dataset used in this study is not very large, it is utilized 

in the variables of hyper parameters. 

The objective of this paper is to analyze the application of  deep learning modelling for 

strenght prediction of aluminum alloy columns failing by flexural buckling. Sequential Model 

(SM) is presented as deep learning techniques used in the study. Adam, Adamax, Nadam, 

Adadelta, Adagrad, SGD and RMSProp optimizers which are  the functions to SM is used. 

Also MAE,MSE are used as loss functions.The training and test sets for deep learning model 

are obtained from Cevik et al., (2009) related with the subject of ‘Flexural buckling load 

prediction of aluminum alloy columns using soft computing techniques’.  This paper also 

deals with comparative of the results of the soft computing techniques and deep learning 

modelling. These results are the statistical methods of RMSE, MSE, MAD, MAE, MAPE, 

MEAN, STD respectively.The proposed deep learning model is presented in explicit form to 

be used in practical applications. 

The other chapters are explained below:  

- Chapter 2, is a literature survey which is related on previous studies on aluminum alloy 

columns, deep learning and analyses according to GEP (Gene-Expression Programming) and 

NN (Neural Networks) accuracy. 

- Chapter 3, general the background of the study about flexural buckling load prediction of the 

aluminum alloy columns datasets utilize in deep learning. 

- Chapter 4, illustrates the broad scope of the necessary process and analyses that can be 

accomplished with deep learning. 

- Chapter 5, discusses the results obtained from processing and analysis of the study. 

- Chapter 6, related with the overall results. 
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CHAPTER 2 

BACKGROUND & LITERATURE REVIEW 

2.1 Aluminum Alloy Columns 

Yuanqing et al. (2017), experimental and numerical and numerical investigations of the 

behavior of extruded aluminum alloy I section columns with fixed pin end conditions against 

compression buckling have been conducted. A total of 11 column tests, including two pieces 

of heat-treated aluminum 6061-T6 and 6063-T5, are performed to obtain the results of 

compressed buckling strengths. Before the column tests are performed, the material properties 

of the two aluminum alloys are decided and determined from tensile coupon tests, while the 

first local and global geometric defects are measured differently by experimental techniques 

to reach different values. Using the ABAQUS software system in a comfortable way, finite 

element (FE) models have been developed to help explain the linearity of the material and the 

defects found in the initial shape, ie geometry. FE models also provide reliable simulation of 

the tightened buckling behavior with the fixed connection end conditions of the columns 

verified, verified and tested according to the test results given as a result of the entered data. 

Based on its test and numerical results, all calculation methods in current design standards, 

including European, Chinese, American and Australian / New Zealand specifications, are 

evaluated in detail. It has been shown that the design provisions of all four standards provide 

relatively conservative strength estimates, especially for aluminum alloys with a tensile 

hardening capacity that makes them more specific.  

Studies have been made to develop a finite element model to investigate the buckling 

movements of some aluminum columns exposed to fire. The results of this model were 

verified and validated in the results of the experiments. Considering a parametric study with 

the help of the finite element model, it was concluded in EN 1999-1-2 that as a result of the 

bending movements of the aluminum columns exposed to fire, the simple calculation model 

could not give accurate estimation of the resistance against buckling in fire. This paper 

proposes a different way of suggesting an alternative design model by emphasizing the stress-

strain relationship of aluminum alloys at high temperatures. Estimates of this model give 

approximate values to the results found in the finite element model (Maljhaars, 2009).  
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Wang et al. (2017) showed that the failure behavior of the aluminum alloy elements which are 

faced with the axial compression load and failed in the general buckling mode is moved and 

focused on the finite element simulation. The column elements play a major role in extrusion 

production using approximately a new heat-treated aluminum alloy 6082-T6. Thus, it is not 

difficult to say that it is produced. We have tried to develop an accurate finite element model 

for the simulation of aluminum alloy columns and have been quite successful. The developed 

finite element model shows that it can predict the damaged shapes and final loads of the 

columns tested according to the experimental results, but some notes have been entered. A 

parametric study has been carried out on the stability of aluminum alloy column elements 

which fail with general alloys. A suitable column curve is recommended for the aluminum 

alloy design; it is slightly more conservative than the current Chinese curve in GB50429. 

Rasmussen et al. al (2000) forms a column curve formulation that can produce accurate 

strength for extruded aluminum alloys that fail to bend bending. The formulation uses a 

simple extension of the Perry curve and checked its validity for all alloys used in practice. It is 

believed that the material properties are typically expressed in terms of Ramberg-Osgood 

parameters obtained from a stud column test of the finished product. First, the formulation has 

been shown to be able to produce ECCS a, b- and c-column curves closely for aluminum 

alloys. Secondly, a better agreement is reached by accepting ECCS's recommendations based 

on the column curve selection based on the alloy type (heat treated or not heat treated). In 

addition, the tests can be obtained using the column curve formulation proposed on paper 

compared to the column curves of ISO. 

2.2 Deep Learning 

Deep learning is a machine learning type that try to teaches computers to do what comes 

naturally to humans; learn by using example. Deep learning is the clef technology behind 

driverless cars, unmanned aerial vehicles, enabling them to get to know a stop sign or to 

seperate a pedestrian from a lamppost. It is the clef  to voice control in user devices like 

phones, tablets, wireless headset, TVs, and hands-free speakers. Deep learning is getting lots 

of attention lately and for good reason. It is achieving results that are not possible before. 
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Deep learning has attracted a lot of attention in recent years and for good reasons. Results not 

previously possible. Recent advances in deep learning have improved to the point where deep 

learning performs better than humans in some tasks, such as classifying objects in images. 

While deep learning is first theoretical in the 1980s, there are two main reasons why it has 

been useful recently; Deep learning must have a large amount of tagged data in the system. 

For example, the development of vehicles without drivers requires millions of photos, images, 

pictures and thousands of hours of video. Deep learning requires significant computing 

power; High-performance GPUs have a parallel architecture that is efficient for deep learning. 

When combined with clusters or cloud computing, this allows development teams to reduce 

training time from weeks to hours or less for a deep learning network (Abdulkader, 2019). 

Shalev-Shwartz and Ben-David (2014) explained that a machine can as well memorize e-

mails which are labelled as spam and non-spam in order to establish relations and differentiate 

the types from each other in future encounters, which in the end makes a perfect example for 

“Machine Learning”. The term “Machine Learning” became more popular in the past decades 

and a conceptually well-known approach among many individuals.  

The methodologies introduced and developed in the style of machine learning enable a large 

number of automation capabilities to be used to solve many problems in different research 

areas. Again, different types of algorithms are used to find different solutions to problems 

related to machine learning and give different perspectives to research or problem area. (İnce, 

2019). 

2.3 Overview Studies 

Çevik et al. (2009) tried to apply soft calculation techniques for the calculation of strength, ie 

strength, of heat-treated rolled aluminum alloy columns that failed with bending buckling. 

Neural networks (NN) and genetic programming (GP) are used as computational techniques 

on experimental data obtained from the literature. It has been found that the proposed NN and 

GEP models are more accurate than the existing models and related codes (EC9 and ISO), 

which are preferred and proposed by Rasmussen from the previous analytical terms and codes 

applied and used. 
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According to Üner (2019), the study is investigate whether more information can be extracted 

from this remaining set of experiments with a deep learning-based approach. They experiment 

with 6 different deep learning architectures that use gene expression data from the LINCS 

L1000 project, chemical structure fingerprints of drugs, SMILES string representation of drug 

structure, and the atomic structure of the drug molecules. The multilayer perceptron (MLP) 

based model which uses chemical structures and gene expression features achieve 88% 

microAUC and 79% macro-AUC, thus offering better performance in comparison to the state-

of-the-art studies on side effect prediction. They observe that the chemical structure is more 

predictive than the gene expression profiles despite the fact that the features are extracted with 

different deep learning models. Finally, the convolutional neural network-based model that 

uses only SMILES strings of the drugs provides 82% macro-AUC, and 88%micro-AUC 

improvements, better performing than the models that use gene expression and chemical 

structure features simultaneously. 

Abdulkader (2019), the main purpose of this study is to define and create new VO2max 

prediction models with the help of deep learning (DL). Data set was tried to be separated into 

training and test data by using 70-30%, 80-20% split rate and 10 times cross validation. When 

the comparison was applied, the aim of the study was to develop the VO2max estimation 

models based on Multi-Layer Sensor (MLP), Support Vector Machine (SVM) and Single 

Decision Tree (SDT). The performance of the estimation models was evaluated using the 

Standard Estimation Error (SEE) and Multiple Correlation Coefficient (R). As a result, DL 

VO2max can be used easily and safely in the desired branch. 

Yetiş (2019), studied within the scope of this thesis, 2D floor plans and facade drawings 

collected and / or produced from scratch are used as data sets. These data are semantically 

divided into three different Convolutionary Neural Networks to obtain relevant architectural 

information, because with the widespread use of Deep Learning, it shows promising success 

in solving a wide range of problems. Semantically segmented drawings are then converted to 

3D models using Digital Geometry Processing methods. Finally, a web application was 

defined on the system in order to allow any user to choose, buy and use 3D models 

comfortably and easily. In 2D, the results of two different case studies are evaluated for the 

results given by semantic segmentation and in 3D, and different comparisons are made with 

different measurement methods to represent the accuracy of the process to the system. As a 
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result, this work has been done and made possible by recommending and applying the most 

advanced methods, recommending an automated process for the reconstruction of 3D models 

and making this system easily and easily available even for a person without technical 

knowledge. 

Paker (2019) delineated nowadays with the increase in biological knowledge, the use of deep 

learning in bioinformatics and computational biology has increased. Deep learning is widely 

used to classify and analyze biological sequences. In recent years, deep neural network 

architectures such as Convolutional and Recurrent Neural Networks have been developed to 

achieve more successful results compared to classical machine learning algorithms. The 

problem discussed in this thesis is a bioinformatics problem. Therefore, it is discussed 

whether the given microRNA molecule binds to the mRNA molecule. MicroRNAs (miRNAs) 

are ~ 21-23 base length non-coding RNA molecules that play an important role in gene 

expression. After transcription, they target mRNAs and cause mRNA degradation or 

translation inhibition. Rapid and efficient determination of the binding sites of miRNAs is a 

major problem in bioinformatics. In this thesis, a deep learning approach based on Long Short 

Term Memory (LSTM) has been developed with the help of an existing duplex sequence 

model. The study provides a comparative approach based on different data sets and 

configurations. In addition, a web interface has been developed to efficiently and quickly 

identify human miRNA target regions and provide a visual interface to the end user. 

Compared to the six classical machine learning methods, the proposed LSTM model gives 

better results in terms of some evaluation criteria. 

Pala (2019) has sought to systematically compare systematic videos using challenging 

conditions and conditions using some of the deeper learning-based methods recently 

developed to assist the facial recognition system and make it work better and more 

comfortably. Openface, VGGFace2 and Arcface tried to make evaluations in 3 different deep 

learning models and succeeded. The results of the UvA-NEMO video dataset for Pala make a 

difference in their work by showing that even the most successful deep learning-based face 

recognition methods provide poor performance in difficult distortions such as noise, blur and 

contrast. 
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Tanimu (2019) examined the identification of cracks in infrastructure such as roads and 

bridges that may cause future problems. The methods of detecting cracks are examined in two 

groups as destructive and non-destructive. This study aims to analyze the cracks in the 

materials using ground radar analysis due to its many advantages compared to other methods. 

In this study, a laboratory environment is created and ground radar and thermal image 

measurements of various blocks with and without fractures are made in different shapes and 

materials. After visual and thermal analysis, GPR raw data are analyzed by wavelet transform 

and entropy methods. Finally, the continuous wavelet transform coefficients are classified, 

separated and divided into different forms and branches with the help of the possibilities 

provided by the deep learning methods, especially with convolutional neural network. In 

addition, they have tried and used a case study of a bridge used for the aforementioned 

previous research studies to test the methods on a larger scale. The results show that the 

proposed Wavelet-CNN crack detection method is more useful and better than direct 

detection of cracks from raw data or b-scan signals. In this way, this system is preferred. 

Munir (2019) examined to classify a single handwriting character so that the handwriting text 

can be translated into a digital form. To classify a complete word or text, the first step is to 

correctly recognize the lines of text. A text line detection system has been developed that can 

detect all text lines according to the curvature angle of the text lines by dividing the original 

image of an A4 scanned document. Each letter image in the text lines is identified and given 

as an introduction to the deep learning network for later recognition. A set of data from our 

own handwriting, which includes 2200 images of each letter, is also used, together with a 

public data set for the educational disruption of the deep learning network. A total of 26 x 

7800 = 202, 800 pictures are used for the training of the artificial neural network. A GUI 

system has been designed that can retrieve a scanned document in image science using 

MATLAB and provide text line detection, letter detection and letter recognition results.  

Süberk (2019) conducted point estimation using the help of deep learning methods of building 

density in some images of remote sensing optics. The aim of the project is to minimize the 

mean square error of the estimated intensity by introducing and applying architectural 

changes to the deep learning network and using and opting for increased educational data. 

The results obtained or reached show that it is possible to easily and quickly predict the 

density of the building using vanilla convolutional neural networks (CNN) aids. Adding the 
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sigmoid layer to the system, reducing the network to a small data set and data amplification 

for easy amplification significantly increases its accuracy in regression. Data amplification is 

the most accurate or preferred method to reduce the mean square root error in this thesis. 

Soydaş (2019) studied the subject of aircraft detection from satellite imagery is discussed, and 

different neural network architectures based on deep learning technique with traditional 

methods have been trained and tested. For the test, labeling is performed manually on the 

images containing the airport regions. An algorithm has been developed for rapid detection 

and high performance in large scale images, and the use of different architectures and the 

effects of training methods on success have been examined. In the study, firstly the literature 

is searched and different approaches are examined and then information about machine 

learning basics is shared. Deep learning, which is examined as a subtitle of machine learning, 

is also studied and mentioned. Convolutional neural networks, which constitute the most 

important point of the backbone of the study, have been introduced into the system and 

introduced to the system and the basic concepts have been emphasized. Many of the object 

detection models that work with the help of deep learning techniques use convective neural 

networks as feature extractors. Therefore, in the methodology section of the study, the 

sections where CNN and object detection architectures intersect are examined and discussed 

from different angles and the latest technology detection architectures are examined. The 

sliding window method and maximum printing algorithms are used safely and easily for the 

fast and high performance detection of large scale satellite images. 

Rasheed (2019) examined the deep learning from different frameworks. Our study then 

focuses on object detection with a deep learning technique and compares which methods are 

suitable for the detection of one or more dogs. For object detection, firstly, classification and 

placement of objects in the image are provided. Object detection is a difficult issue involving 

computer vision and machine learning. In this study, the most impressive results are achieved 

by applying various deep learning techniques with the help of machine learning and computer 

vision, because deep learning has become one of the most popular and widely used methods 

in research communities. The convolutional neural network is a subtype that easily overcomes 

some competitions in its views on the computer system in the deep neural network, because 

good results are easily achieved and are well suited for use in object detection tasks. Based on 

the latest research of the discoveries in recent research, the technique appropriate for the 
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studies to be made or to be conducted is considered to be the Faster R-CNN (Faster R-CNN) 

preferred for classifying images from multiple dog species. R-CNN, which is faster for object 

detection and classification, passes several different and distant paths, especially for detection. 

The R-CNN method, which is faster especially in terms of accuracy and speed, is generally 

preferred. This provides a faster R-CNN trained to classify and detect dog images. 

According to Çakır (2019), study analyzed the effectiveness of supervised and unattended 

deep learning algorithms in detecting zero-day attacks. We conducted analyzes on different 

deep learning models and compared the performance of these algorithms with each other. The 

models tested are deep learning algorithms, forward neural networks, recursive neural 

networks and convolutional neural networks. Test results showed that unguided deep learning 

methods are successful in detecting attacks with an accuracy score of 95.3% and a f1-score of 

97%. In addition to the test sets produced in the same environment as the training set, test sets 

created in different environments from the training set are used to test the deep learning 

methods. These tests showed that although deep learning methods cannot detect every attack 

in sets created in different environments, some attacks can detect low false positive rates. 

Özgenel (2019) explained data design term as introduced to describe end to end process of 

problem solving with deep learning algorithms which is suitable for broad range of 

applications including problems in architecture. Data design defined as a holistic approach 

embracing the process from problem (re)formulation to evaluation of the results considering 

the interrelations of decisions made throughout the process. In this context, data design in 

architecture is exemplified with the task of crack detection in buildings in order to minimize 

subjectivity in the course of evaluating the results. For this purpose, the relation between data 

and deep learning framework, case specific evaluation requirements and strategies for 

enhancing the performance are inspected through image classification and semantic 

segmentation applications for crack detection. Concordantly, this study contributes to the 

literature not only with the introduction and framing of data design but also with the proposal 

of crack detection specific evaluation metrics for both image classification and segmentation 

applications and a novel method is proposed employing quad tree and deep learning 

algorithms in conjunction for semantic segmentation of objects with limited visual features.  
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As a result, data design and respective consequences are discussed in depth and demonstrated 

regarding the case dependency, decisions taken in the course of implementation and their 

influences to both process and the results.  

Tienin (2019) examined the main purpose of this study is to compare traditional image 

processing methods with deep learning techniques. First, a two-class classification study is 

conducted. The aim of this study is to differentiate between cloud images and non-cloud 

images. Convolutional Neural Networks and SoftmaxWithLoss function are used for 

estimation and classification. In the training phase, 92% accuracy is achieved after fine tuning 

of the model. In the next step, detection and segmentation is performed on cloud images using 

image processing techniques. At this stage, edge detection methods and watershed algorithm 

are applied. In the third stage, Full Convolutional Networks (THA, FCN) and U-NET deep 

learning methods are used for segmentation. Segmentation of cloud images is provided by 

two different deep learning methods. U-NET is found to be 87% as Dice coefficient and 45% 

as loss during the training phase. FCN network, stochastic slope drop, Adam's momentum and 

Nesterov momentum techniques have been applied to different training methods and the 

highest success is achieved with Adam's momentum technique is 63.12%. 

Sorkun (2018), focused on statistical time series estimation methods. The aim of this study is 

to investigate the suitability and competitiveness of time series estimation methods with deep 

learning on solar radiation data. In this context, time series estimation on solar irradiation is 

made by using the regenerative neural network variation Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU) models. By optimizing the parameters, values are found to 

form the model that best represents the solar radiation data. The seasonal performances of 

established RNN models and other machine learning methods are compared and a hybrid 

model is proposed according to experimental results. Finally, the effect of additional 

meteorological parameters on solar radiation estimation is investigated. The results show that 

LSTM and GRU models are suitable and competitive for estimating time series over 1 hour 

horizon on solar radiation data. Experiments have shown that the hybrid approach and 

additional meteorological parameters improve the performance of the model.  

Anwer (2017) defined deep learning which is used in medical filed, to propose deep learning 

based clinical support system for diagnosis breast cancer. Deep learning is a subfield of 

machine learning to solve problems of artificial intelligence. This study aims to investigate 
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whether the deep learning approaches are also capable of producing successful results in the 

medical area. Many of deep learning algorithms have been used in the diagnosis of breast 

cancer, such as fully connected neural networks and recurrent neural network, the new order 

is the first time that the new architecture of convolution neural networks is used to diagnosis 

breast cancer. Wisconsin Breast Cancer datasets from the UCI Machine Learning repository is 

used to test the ability of deep learning different techniques. The experiments with deep 

learning approaches show a promising direction towards supporting medical decision making. 

Eriş (2018) aimed to use the deep learning methods which have been successful in many use 

cases in judicial evidence examinations. For this purpose, a method of extracting evidence to 

assist in forensic examinations is proposed using deep learning object detection algorithms. 

The results show that the classification of images obtained from digital evidences according 

to their contents can be performed 93% faster using deep learning. It has also been shown that 

human errors will be reduced as a result of classification. It is aimed to integrate the proposed 

method into the forensic evidence analysis software tools by applying it to audio, text and 

video data as well as image data in further studies. 

Kutlu (2019) delineated in recent years, artificial intelligence algorithms are one of the most 

researched and developed applications. Machine learning, artificial neural networks, 

classification, clustering algorithms are used in artificial intelligence applications. One of 

these methods is deep learning. Deep learning is an advanced machine learning class. Using 

the Deep Learning method, video analysis, image classification, speech recognition and 

natural language processing are very successful. The data and experiences to be provided by 

the projects that will cover the areas of Deep Learning and Unmanned Aerial Vehicles will 

contribute to the development of high value-added products in these technologies by 

increasing the number of qualified studies on these issues. In this study, a control software 

that evaluates image data from unmanned aerial vehicles and makes various inferences 

(classification, positioning, marking) is created. By using the method of retraining the last 

layers of the pre-trained artificial neural network models with our data set, it is tried to reduce 

the training time and increase the success. In these studies, 2 pre-educated models are used 

and as a result of training of these models, as a result of 190 thousand step training, 25.39 and 

27.87 mAP values are reached. 
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Kantepe (2019) producted recommendation system is designed using the deep learning 

method AutoEncoder. This designed recommendation system is implemented using the 

Python language on the TensorFlow platform. MovieLens 1M dataset is used which consists 

of the movie ratings ranging from 1 to 5 and collected by the GroupLens researchers from the 

users of MovieLens website. The study is written in four sections. Furthermore, it is tried to 

find the best optimization algorithm to improve the success of the system and the effect of 

increasing the amount of data that is analyzed. The results of the algorithms of Gradient 

Descent, Gradient Descent with Momentum, RmsProp and Adam are depicted in both tables 

and graphs. In the third section, findings are evaluated and as a result, the Adam is shown to 

be the best algorithm with 1,363 points of test error. It is observed that the more data a 

training set has, the more successful the recommendation system is. In the fourth section, all 

the results from the processes mentioned above are summarized and the studies which can be 

conducted in order to implement a better recommendation system as future plans are stated. 

Koyun and Afşin (2017), used 2160000 characters to train the convolutional neural network. 

The authors state that the method developed by themselves is better when compared to the 

OCR tool embedded in the Matlab environment. 

Uçar and Bingöl (2018), have briefly introduced the layers of DKSA (Deep Convolutional 

Neural Networks), which is a kind of deep learning and is widely used in image processing 

applications, and gave information about their architecture. Using the Caffe program to 

implement DKSAs, the authors built the applications on two computers with embedded 

Nvidia Jetson TK1 / TX1 development cards and Nvidia GTX550 / GTX960 graphics cards. 

On the cards and the computer, they use the LeNet network to recognize handwritten 

numbers, and in their assessment of performance, speed and accuracy, they stated that GPUs 

are faster than CPUs, although they are close to accuracy. 

In the study conducted by Büber and Şahingöz in 2017, it is aimed to perform image 

processing by using deep learning approach and to recognize numerical characters. In the 

application, 50000 data from MNIST data set consisting of handwriting pictures taken from 

250 different people are used for training and 10000 data are used for testing. In addition, the 

effects of hyperparameters on the performance of the algorithm should be determined before 

using the deep learning method. The authors stated that the success rate of the numerical 

hyper parameters determined to be used in the test step for the best case is 94.75%. 
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In 2016, Kaynar et al. presented a deep learning-based approach to automatically detect spam 

mail. Authors using 2 different data sets used 75% of the data in Turkish and English data sets 

for educational purposes and 25% for testing purposes. The proposed model is a classifier 

with 2 deep auto encoders connected back to back and a softmax layer at the outputs. This 

classifier has a 98% success rate. 

In the studies conducted by Işık and Artuner in 2016, it is aimed to identify the radio signals 

received through Software Based Radio with deep learning neural networks. The authors 

made a convolutional neural network study with the images obtained from the Signal 

Identification Wiki and used 82 of 137 images for training, 22 for verification and the 

remaining 33 for testing. It is stated that 82% performance is achieved at the end of the 

operation of the Caffe platform-trained network.  

Light and Artuner (2016) worked on recognition of radio signals with deep learning Neural 

Networks. In their work, the authors state that they aim to correctly identify the properties of 

fabrics with a distinctive texture rather than detecting fabric defects. They used 1000 sample 

data, 153 of which are incorrect during the training phase, and 100 of which 60 are error-free 

during the testing phase. The authors concluded that the proposed method yielded 88% 

success. 

In 2017, the study conducted by Razavi and Yalçın aimed to identify the plant type from 

images collected from smart agricultural stations. The authors proposed a deep learning 

method that can automatically extract attributes from two-dimensional plant images. In the 

construction of CNN architecture, 4800 images of 16 plant classes in TARBIL data set are 

used. The authors state that 3 different deep learning methods are used, the CNN-based 

approach works on 16 kinds of plants with an accuracy of approximately 97.47% and the 

classification accuracy is better than other methods. Yalçın examined to automatically 

identify human activities in RGB-D video images. Yalçın wanted to classify the activities of 

people from skeletal movements and deep learning through 3D skeletal joint data. The raw 

data from human images are pre-processed with operations such as translation, rotation and 

scaling. Using the Human3.6M activity data set for the training of the proposed method, the 

author used a model with 5 hidden layers as a deep understanding network, 47 neurons per 

layer, a non-instructional learning rate of 0.001 and an instructional learning rate of 0.12. 
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Arık et al. 2017, delineated a system that classifies skin lesions for the detection of melanoma 

by deep learning methods is proposed. In this study, approximately 65% of 1279 healthy and 

diseased images from ISIC archive are used for education and 35% for testing. The authors 

stated that because of the data limitation, the system they recommended is 70% successful 

and expert dermatologists predicted the disease at an average rate of 75%. 

Yetkin and Hamamcı (2016), worked on a deep learning-based method for estimating the 

relative exposure between the patient's planar image and the previously taken head MR 

images is presented. In practice, the MR volume obtained from a healthy subject using the 3D 

gradient-echo sequence is used. After this volume is rendered in 3D, 324 images are obtained 

with 18 different light angles, and 260 images are used for training and 64 for testing in the 

convolutional neural network. 

(Shahbazi et al. 2014) studied the elastic buckling of smart lightweight column structures 

integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite 

element modeling of Smart lightweight columns is found using ANSYS® software. Then, the 

first buckling load of the structure is calculated using eigenvalue buckling analysis. To 

determine the accuracy of the present finite element analysis, a compression study is carried 

out with literature. Later, parametric studies for length variations, width, and thickness of the 

elastic core and of the piezoelectric outer layers are performed and the associated buckling 

load data sets for artificial intelligence are gathered. Finally, the application of soft 

computing-based methods including artificial neural network (ANN), fuzzy inference system 

(FIS), and adaptive neuro fuzzy inference system (ANFIS) are carried out. The comparison of 

the results reveal that, the ANFIS model with Gaussian membership function provides high 

accuracy on the prediction of the buckling load in smart lightweight columns, providing better 

predictions compared to other methods. However, the results obtained from the ANN model 

using the feed-forward algorithm are also accurate and reliable. 

Yuan and Bao (2018) assessed a guided wave (GW)-CNN based fatigue crack diagnosis 

method is proposed. GW features extracted from GW signals of different excitation-acquiring 

paths with different excitation frequencies are employed as the input of a trained CNN for 

fatigue crack diagnosis. An experiment verification is performed on a kind of attachment lug 

specimen, which is an important connecting component on aircraft structures. The results 

show that this proposed method is promising. 
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Shon et al. developed a deep conditional generative model for structured output prediction 

using Gaussian latent variables. The model is trained efficiently in the framework of 

stochastic gradient variational Bayes, and allows for fast prediction using stochastic feed-

forward inference. In experiments, we demonstrate the effectiveness of our proposed 

algorithm in comparison to the deterministic deep neural network counterparts in generating 

diverse but realistic structured output predictions using stochastic inference. Furthermore, the 

proposed training methods are complimentary, which leads to strong pixel-level object 

segmentation and semantic labeling performance on Caltech-UCSD Birds 200 and the subset 

of Labeled Faces in the Wild dataset. 

Merwe, analyzed the most effective column design method is to be found by comparing the 

different column design criteria and methods of design which are in use for different 

materials. The materials under consideration are carbon and low-alloy steels (structural 

steels), stainless steels and an aluminum alloy that is regarded as suitable for structural design. 

Durmuş et. al (2006) Effects of ageing conditions at various temperatures, load, sliding speed, 

abrasive grit diameter in 6351 aluminum alloy have been investigated by using artificial 

neural networks. The experimental results are trained in an ANNs program and the results are 

compared with experimental values. It is observed that the experimental results coincided 

with ANNs results. 

Hassan et. al (2009) studied the potential of using feed forward backpropagation neural 

network in prediction of some physical properties and hardness of aluminum–copper/silicon 

carbide composites synthesized by compocasting method. Two input vectors are used in the 

construction of proposed network; namely weight percentage of the copper and volume 

fraction of the reinforced particles. Density, porosity and hardness are the three outputs 

developed fromthe proposed network. Effects of addition of copper as alloying element and 

silicon carbide as reinforcement particles to Al–4 wt.% Mg metal matrix have been 

investigated by using artificial neural networks. The maximum absolute relative error for 

predicted values does not exceed 5.99%. Therefore, by using ANN outputs, satisfactory 

results can be estimated rather than measured and hence reduce testing time and cost. 
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Kechagias et. al assesed Al7075 alloy surface quality, achieved in slot milling, constitutes the 

subject of the current research study. Twenty seven slots are cut using different cutting 

conditions by a KC633M drill-slot end mill cutter. The independent variables considered are 

the depth of cut (ap, mm), cutting speed (Vc, m/min), and feed rate (f,mm/rev). Process 

performance is estimated using the statistical surface texture parameters Ra, RSm, and Rt; all 

measured in microns. To predict the surface roughness within the limits of the parameters 

involved, an artificial feed forward back propagation neural network model is designed for the 

data obtained. 
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CHAPTER 3 

MATERIALS & METHODS 

3.1 Aluminum Alloy Columns 

Aluminum tubular elements are used in curtain walls, space structures and other structural 

applications. Aluminum tubular elements are normally made of aluminum for heat treatment 

because heat treatment alloys have higher yield stress than important properties of non-heat 

treated alloys. Aluminum structural elements are specially based on ultimate strength of 

compact sections. Because of this, it is necessary to investigate the behavior and design of 

aluminum columns, plates, beams and beam-columns of slender sections. Although aluminum 

alloys are well suited for a variety of applications in structures, their unique material 

properties make structural reactions different from steel. In the literature, important 

experimental researches about Aluminum column test have been made. Although aluminum 

alloys are well suited for some applications in marine structures, their unique material 

characteristics make the structural response different than steel. When structural elements are 

subjected to compressive loads, the buckling and collapse capacity is one of the most crucial 

factors governing the design. Ultimate strength of longitudinally stiffened panels is very 

important because it governs the structural capacity. Such panels are subjected to longitudinal 

compression, transverse compression, shear, and local bending. As the mechanical properties 

of aluminum alloy typically vary more significantly between the parent metal, weld metal and 

HAZ (Heat Affected Zone), as compared to those of steel, it would be anticipated that the 

existing formulations for steel structures may not be accurate when applied to aluminum alloy 

panels. The scope of research on the extensive experimental data and numerical data made in 

the European Construction Steels Convention (ECCS) in the 1960s and 1970s. Based on the 

results of these tests, column curves of welds referred to as ECCS a-, b- and c-curves (ECCS, 

1978) are recommended for aluminum alloys, where a- and b-curves are accepted by ECCS. 

Heat treated and non-heat treated alloys, respectively. The major difference in the sequence of 

different curves for all heat-treated and non-heat-treated alloys is that the greater difference in 

softening of non-heat-treated alloys is greater than for heat-treated alloys. ECCS column 

curves cannot be used in accordance with the design as they are in tabular form. 
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Liu et. al. 2015 presented experimental and quantitative research on the buckling behavior of 

shape alloyed aluminum columns under axial compression. The structural component having 

the cross section examined is generally used as columns in an aluminum alloy framed 

structure as shown in Figure 3.1 (a). The Fiber Reinforced Plastic (FRP) wall can be easily 

fixed to the channel of the section as shown in Figure 3.1 (b). 

 

Figure 3.1. Application of aluminum alloy column with section. 

Advantages of using aluminum alloys as a structural material are high strength / weight ratio, 

formability, electrical-thermal conductivity, recycle, light weight, corrosion resistance and 

production purpose. There are the disadvantages of using aluminum alloys for structural 

applications, such as the aluminum modulus, which is roughly one third of the steel and 

causes the aluminum element to fail easily by buckling. Previous research of aluminum 

structural elements focused mainly on the ultimate strength of compact (non-thin) sections. 

However, the use of aluminum thin-walled sections has increased in recent years. In 

aluminum structures, welds are divided into two types: (1) transverse welds, (2) longitudinal 

welds, to share their effects on element strength. While transverse welds are often used in 

connections, longitudinal welds are used for the production of built-up elements. However, 

there is little research on the behavior of aluminum columns containing transverse welds. 
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Therefore, it is necessary to investigate the behavior and design of aluminum columns, beams 

and beam columns of thin sections. 

3.2 Artificial Intelligence (AI) 

From the beginning of time to the end, it went hand in hand with technological advances to 

improve the lives of people. Since the first tools and the discovery of the wheel, technology, 

the concrete offspring of human intelligence, has made humanity longevity, comfort, and 

provided means for understanding the cosmos that surrounds it (Makaritou, 2019). The 

disrupting processes are named Revolutions denoting that those events are abrupt and radical 

in nature. The progress of a human kind and civilizations has been driven by the progress of 

technology. Though, perception of a word technology of a modern person might be associated 

more with a digital technology, such as computers, internet and smartphones, for the ancient 

people, their technology are invention of the wheel and utilization of simple tools (Rahimov, 

2019). In fact, since human beings survive in a digital age, it is very important to examine and 

investigate related issues further and make logical predictions to come to a conclusion and 

eventually prepare for developments in future differences in industries. Artificial intelligence 

can be broadly defined as the intelligence formed by software programs in machines, which 

can be seen as similar to the natural intelligence shown in humans and other animals. In 

practice, intelligence is attributed to artificial entities when those entities simulate human-like 

functions such as learning and problem solving features (Özmen, 2019). Artificial intelligence 

applications are used in many areas to make everyday life more convenient and efficient. 

They are used to clean houses, take care of old or sick people, to work at dangerous jobs 

replacing human beings, to give medical advisory and healthcare services, to prevent 

fraudulent situations in finance, etc. AI is just one of the areas of computer science that aims 

to create intelligent machines that work and respond, such as human preparation, solutions to 

problems, speaking, recognizing, introducing, teaching and learning. Also, Artificial 

intelligence is a branch of computer science that aims to create intelligent machines. It has 

become an necessary part of the technology production. Research related with artificial 

intelligence is highly technical and specialized. The core problems of artificial intelligence 

contain programming computers for certain traits such as: Information, sensivity, becomes 

skilled, program solving, ability to manipulate and move objects (Okyay, 2018). 
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Also it can be defined as, ANN is a programming technique that uses a large number of cells 

that mimic the functions of the human brain and functional connections between these cells. 

The functions on the created network (Figure 3.2) are optimized by changing the variables on 

the neurons that symbolize each cell. Using the input and output data obtained, ANN is 

trained and it is tried to reduce the error between the outputs of the ANN and the outputs that 

should have. When this error level goes down to the minimum level, ANN training is 

accepted as complete (Kara, 2019). Artificial neural networks (ANNs) or connective systems 

can be used in conjunction with the so-called unlimited inspiration and intelligent computer 

systems using biological neural networks. Such systems or programs "learn" to successfully 

consider tasks, taking into account examples, without programming a particular system with 

specific rules. In recognizing images in the system, they can define the desired contents by 

analyzing the sample images entered in the system in a healthy way. For example, they can 

learn to identify images that contain cats. Using "cat" or "no cat" in the entered data according 

to the desired result and using the results to identify cats in other images. They do this without 

prior knowledge of cats, such as feathers, sharp ears, tail, whiskers and cat-like faces. Instead, 

they automatically generate descriptive properties from the samples they process. An ANN is 

based on a collection of connected units or nodes called artificial neurons that loosely model 

neurons in a brain in a biological system. In this collection, each neuron has connection tasks. 

Each link, ie neurons, can transmit a signal to other neurons, ie other links, such as synapses 

in a biological brain. An artificial neuron that receives a signal can then process it, understand 

it, and point to the neurons connected to it. In this way, they can work in a systematic way 

depending on each other. This enables communication between neurons. In embodiments of 

the ANN system, the signal in a connection is a real number, and the output of information 

from each neuron is calculated by a nonlinear function of the sum of its inputs. These 

functions are calculated differently. These connections are called edges. Knowledgeable 

neurons and so-called connecting edges typically have a weight adjusted as learning 

progresses. Weight increases or decreases the strength of the signal in a link.  

Neurons may have a threshold value at which a signal is sent only when the sum of the signals 

delivered exceeds this threshold. That is to say, the situation depends on the sum of the inputs. 

Typically, neurons exist in layers and are processed into the system in a healthy manner by 

means of edges. Different layers can perform different transformations in their input. 

Sometimes these conversions can be achieved. The signals probably cross the layers more 
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than once, and once this transition is made, the signals go from the first layer (the input layer) 

to the last layer (the output layer) as expected, and the system is completed. The major 

objective of the ANN approach is to solve the problems systematically, that is, not artificially, 

but as if they are natural within a human brain. However, over time, attention led to the 

fulfillment of specific tasks and deviations from biology. Over time, these problems led to 

different functions. ANNs have been used in a variety of tasks, including computer vision, 

communication, speech, processing, machine translation, social networks filtering for people, 

video games, medical diagnostics and even traditionally considered activities reserved for 

people. Over time, these tasks have made people's lives easier. 

 

Figure 3.2. General view of an ANN. 

Artificial neural networks are another data mining technique that should be used for 

estimation and classification. Neural networks are signal processing systems that attempt to 

mimic the biological nervous system by presenting a numerical data model of multiple 

neuronal compositions connected to a network (Haykin & Lippmann, 1994). Neurons 

founded in the input and output layers and hidden layers or layers, if any. When a neuron 

significantly entered the system, the weights associated with that neuron can change. This 
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means that the neuron will be more effective than other neurons of the same level as the 

neuron itself. Artificial neural networks learn by adjusting the weights between neurons. 

(Mumbuçoğlu, 2019). 

3.3 Deep Learning 

Deep Learning history can be traced back to 1943 when a computer model is developed by 

Walter Pitts and Warren McCulloch based on neural networks, with imitation of human brain. 

They used a combination of algorithms and mathematics they called “threshold logic” to 

mimic the thought process. Furthermore, in the 90s Yann LeCun & Yoshua Bengio (1995) 

take a further step from natural Multilayer Perceptron (MLP) with the sole purpose to reduce 

both high computational tasks and availability of high number of dimensions. Subsequent to 

that, a paper is published that presented a better pattern recognition system by canceling 

unrelated variables (Kamachy, 2019). 

With the importance and popularity of analysis task, lots of algorithms have been tried for 

having better scores for this. Various natural language processing and machine learning 

techniques are applied for accuracy classification. Recently, deep learning algorithms like 

CNN and LSTM networks have shown state of the good scores in accuracy analysis. These 

scores are high in the literature but they are not satisfactory for the implementation needs in 

real life. Therefore, it is an important interest area for researchers. People have been trying 

different combinations and ensembles of these deep learning methods for increasing accuracy 

(Kamış, 2019).  

Structurally, deep learning can be thought as a more complex form of artificial neural 

networks (ANN). There is a feed-forward structure in traditional neural networks. Each input 

neuron has a hidden layer to which each neuron is attached, and each neuron in the hidden 

layer is connected to each neuron in the output layer. For classification problems, the number 

of units in the output layer is equal 3 to the number of classes. Typically, a single linear 

output neuron is used to predict a continuous output. All connections in the network are lead 

from the input layer to the output layer, and it is possible to create deep networks by adding 

more hidden layers to which each neuron binds to each neuron in the following layer. Deep 

learning provides a very strong framework for the supervised learning process. By adding 

more units to a layer, a deep network can represent increased complexity functions. It is easy 
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to match an input vector to an output vector, with the help of human easily. But, that process 

can be accomplished through deep learning model with modeled large data sets and 

exemplary training samples. To put it more simply, classical (simple) neural networks have 

only one hidden layer, whereas deep neural networks have more than one hidden layer 

(Figure 3.3) (Paker, 2019). 

 

Figure 3.3. Difference between a simple neural network and a deep learning neural network. 

The main definition of DL is that it is a Neural Network with many hidden layers, so “deep” 

here refers to the depth of layers consisting more than 2 hidden layers. It provides automatic 

feature extraction by determining the properties of the input data which can be used as a 

pointer to label the input data accurately. Each layer extracts features from the output of 

previous layer. This is a revolution in computer vision tasks. In contrast, shallow networks 

required manual designs for feature extraction and a great amount of experience in the image 

processing field. On the other hand, transformations from input images to vectors led to losses 

of much interesting information. 

There are 7 main applications that are mainly practiced in DL (Hordri et. al 2016): 
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On the other hand, Deep learning is part of a family of artificial neural networks based on a 

broader and more useful machine and learning methods. In this way, healthy learning systems 

are established by working with artificial neural networks together with deep learning. 

Learning may not always be controlled. Learning in different forms can be controlled, semi-

controlled or not. Deep learning architectures such as deep neural networks, deep belief 

networks, repetitive neural networks and convoluted neural networks have been applied to 

fields such as computer vision, speech, communication, introduction, recognition, natural 

language processing, voice recognition, machine translation, bioinformatics, drug design. 

Deep learning has made human life easier as can be predicted after entering human life. 

Medical image analysis, material examination, and board game programs are comparable to 

human experts here, and in some cases have produced superior results. Usage area is 

increasing day by day.  

Deep Learning is a machine learning method. It allows us to train the data set and the artificial 

intelligence to predict the output after a given or desired information is input. In this way, it 

provides convenient classifications and to reach the result after the required details are entered 

in the required information as soon as possible. Both supervised and unsupervised learning 

can be used to train artificial intelligence. The more data input, the better artificial intelligence 

features will be revealed. Because as classifications enter, the desired data will be reached 

more easily, but on the other hand, as the data increases, things will become more complex, 

and as they become complex, undesirable shifts from artificial intelligence to machine 

learning will occur. As it becomes more complex, the shifts from machine learning to deep 

learning will begin and user will see how useful learning is. In the machine learning, the 
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experiences of human beings to date are introduced to the machine by means of parameters. 

Because how much data, parameters, experience is entered in technology, results will increase 

in direct proportion. After entering the information such as pear and apple shape, color, size, 

stalk, the result will be easily reached. However, deep learning can learn this different on its 

own. Only by showing the apple and pear to the deep learning system itself creates its own 

rules, to reveal the differences in color and shape are the main distinguishing features itself. 

Thus, it can perform its operations by creating its own discriminatory abilities without the 

need of basic human abilities. 

3.3.1 Deep Learning Library 

The so-called deep learning library is actually a library of software systems. There are 

multiple systems, soft wares. These are ; TensorFlow(Python), Caffe(Python), 

Theano(Python), Keras(Python), Torch(C++), Deeplearning4j(Java), Covnetjs(Java), 

Mxnet(Python), PyLearn2(Python), Deep Learn Toolbox-Matlab, Accord.NET(C#), Sci-Kit 

Learn(Python), Accord.MachineLearning. These software systems work in different ways 

from each other. The common points are software, many of which are used for deep learning. 

3.4 Keras 

Keras is a python library for deep learning. It also works with Theano or Tensorflow libraries, 

which are also based on symbolic operations and used for deep learning. GPU or CPU work 

on these basic libraries and helps to reach a conclusion. Since it is a higher level library, user 

can develop applications more easily than Theano or Tensorflow. It is quite common use. It is 

a library that can be easily used by many developers around the world. Also many examples 

can even find about the problem in the Kaggle competitions. There are two main API 

structures in Keras. The models to be installed can be designed by installing one of these two 

different main structures. Sequential models have to be designed in layers. But it is more 

simple and understandable, comfortable and easy to use. Functional structure is designed as 

functions. It makes it possible to design more flexible and advanced models. Since the input 

layer data will be used in the structure call the model, the input size of the data must be 

specified. It does not need to be specified for, because the other layers receive data from the 

preceding layer.  To get the results of the output layer, the output size must be determined. 

The output size is generally the output size of the layer before the last activation layer. 
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3.4.1 Keras Models 

There are two ways to create Keras models: sequential and functional.The sequential API 

gives user opportunities to create multiple layer models for most problems.It is limited that it 

does not allow models that share layers or have multiple inputs or outputs.Alternatively, the 

functional API allows to create models with much more flexibility because they can easily 

identify models where layers are connected to more layers than only previous and later 

layers.In fact, user can connect layers to another layer (literally). As a result, siamese 

networks and now it becomes possible to create complex networks such as networks. Keras is 

an API designed for human beings, not machines. Keras follows best practices for reducing 

cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions 

required for common use cases, and it provides clear and actionable feedback upon user error. 

This makes Keras easy to learn and easy to use. As a Keras user, user are more productive, 

allowing user to try more ideas than userr competition, faster which in turn helps user win 

machine learning competitions. This ease of use does not come at the cost of reduced 

flexibility: because Keras integrates with lower-level deep learning languages (in particular 

TensorFlow), it enables to implement anything user could have built in the base language. In 

particular, as keras, the Keras API integrates seamlessly with userr Tensor Flow workflows 

(Figure 3.4). 

 

Figure 3.4. Deep learning frameworks ranking. 

With over 250,000 individual users as of mid-2018, Keras has stronger adoption in both the 



28 

 

industry and the research community than any other deep learning framework except 

TensorFlow itself (and the Keras API is the official frontend of TensorFlow, via the tf.keras 

module).User are already constantly interacting with features built with Keras -- it is in use at 

Netflix, Uber, Yelp, Instacart, Zocdoc, Square, and many others. It is especially popular 

among startups that place deep learning at the core of their products. Keras is also a favorite 

among deep learning researchers, coming in terms of mentions in scientific papers uploaded 

to the preprint some server. Keras has also been adopted by researchers at large scientific 

organizations, in particular CERN and NASA. 

3.4.1.1 Functional API 

The Keras functional API is the way to go for defining complex models, such as multi-output 

models, directed acyclic graphs, or models with shared layers. This guide already familiar 

with the Sequential model. A layer instance is callable (on a tensor), and it returns a tensor. 

Input tensor(s) and output tensor(s) can then be used to define, such a model can be trained 

just like Keras Sequential models. With the functional API, it is easy to reuse trained models: 

Any model can treat as if it are a layer, by calling it on a tensor. Note that by calling a model 

just reusing the architecture of the model, user are also reusing its weights. 

3.4.1.2 Methods of Sequential 

Choosing the right file editing system for database records or digital files affects how much 

data can be done and how useful and efficient user system is. The more organized the files 

are, the more efficient the system works. Sequential file organization means that computers 

store their data, information, or files in a specific file, not in a location, but in a specific order 

based on the data or file type. This sequence is processed regularly and makes the system 

useful. Sequential file organization is transparent to the user, and the methods of organizing 

sequential files work with a variety of data and different operating system environments. It 

helps the system to be preferred according to the needs and to install files to suit the preferred 

system, to obtain effective data and to convert it into different ways. The simplest sequential 

file organization is to save the files in the order in which user create them. The first file is 

saved first, the next is second and so on. This method is straight forward and it lets user to 

delete files without disturbing the sequence. While the method lets user place newly created 

files at the end of the sequence, there is no indication of the location of information. The low 
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complexity of the organizational method means finding information takes a long time since a 

search has to look through every file, starting with the first one. Indexed sequential files solve 

this problem but at a cost of organizational simplicity. The system lists files or data in a pre-

determined order, such as alphabetically. When user creates a file, the system either has to 

insert the new file in the proper sequence or re-index the whole file list. It takes longer to 

create new files and place them in the index, but it takes less time to find information because 

user know where in the indexed system to start looking. When designing a sequential file 

system, user have to look at how often user need to search for data and how often user plan to 

add or change files. Archival-type systems constantly grow as user adds new files but 

searches are comparatively rare. A system that files the information in sequence, as user 

archives it, is appropriate. A call-center database is relatively static but subject to constant 

searches. It makes sense to use an alphabetical or other index that lets user find specific 

records quickly. The two critical parameters for sequential file organization methods are 

speed and storage space. When user store files sequentially, there is no room to later make a 

file bigger. The system either has to store the additional information elsewhere or it has to 

make room and resave all the files. Both methods take a lot of additional time. Sequential file 

systems solve this problem by reserving extra space for each file when the system creates it. 

This avoids the delay but uses up a lot more space. When setting up the system, user has to 

decide whether time saved or space used is more valuable and use the corresponding method 

to organize the files.  

The method of sequential analysis is first attributed to Abraham Wald with Jacob Wolfowitz, 

W. Allen Wallis, and Milton Friedman at Columbia University's Statistical Research Group. 

At the same time, George Barnard led a group working on optional stopping in Great Britain. 

Another early contribution to the method is made by K.J. Arrow with D. Blackwell and M.A. 

Girshick. A similar approach is independently developed from first principles at about the 

same time by Alan Turing, as part of the Banburismus technique used at Bletchley Park, to 

test hypotheses about whether different messages coded by German Enigma machines should 

be connected and analysed together. This work remained secret until the early 1980s.Peter 

Armitage introduced the use of sequential analysis in medical research, especially in the area 

of clinical trials. Sequential methods became increasingly popular in medicine following 

Stuart Pocock's work that provided clear recommendations on how to control Type 1 error 

rates in sequential designs. 
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3.5 Optimizers of Sequential 

Adaptive Moment Estimation (Adam) is another method that computes adaptive learning 

rates for each parameter. In addition to storing an exponentially decaying average of past 

squared gradients  Vt like Adadelta and RMSprop, Adam also keeps an exponentially 

decaying average of past gradients mt, similar to momentum. Norms for large pp values 

generally become numerically unstable, which is why ℓ1ℓ1 and ℓ2ℓ2 norms are most 

common in practice. However, ℓ∞ℓ∞ also generally exhibits stable behavior. For this reason, 

the authors propose AdaMax (Kingma and Ba, 2015) and show that vtvt with ℓ∞ℓ∞ 

converges to the following more stable value. As we have seen before, Adam can be viewed 

as a combination of RMSprop and momentum: RMSprop contributes the exponentially 

decaying average of past squared gradients vtvt, while momentum accounts for the 

exponentially decaying average of past gradients mtmt. We have also seen that Nesterov 

accelerated gradient (NAG) is superior to vanilla momentum. 

Given the ubiquity of large-scale data solutions and the availability of low-commodity 

clusters, distributing SGD to speed it up further is an obvious choice. SGD by itself is 

inherently sequential: Step-by-step, we progress further towards the minimum. Running it 

provides good convergence but can be slow particularly on large datasets. In contrast, running 

SGD asynchronously is faster, but suboptimal communication between workers can lead to 

poor convergence. Additionally, we can also parallelize SGD on one machine without the 

need for a large computing cluster. The following are algorithms and architectures that have 

been proposed to optimize parallelized and distributed SGD. 

Whereas momentum can be seen as a ball running down a slope, Adam behaves like a heavy 

ball with friction, which thus prefers flat minima in the error surface Adam, an algorithm for 

first-order gradient-based optimization of stochastic objective functions, is introduced based 

on the thoughts and predictions made of adjustable simple moments. The procedures that need 

to be performed are easy to implement and pour into tools, are also very efficient in terms of 

calculations, require little memory, do not change in diagonal rescaling of gradients and are 

well suited for large problems in terms of data and / or parameters. This method is also 

suitable for non-stationary purposes and problems with very noisy and / or sparse gradients. 

Hyper parameters have intuitive interpretations and typically require minimal adjustments and 

adjustments. Empirical results show that Adam works well in practice and is compared to 
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other stochastic optimization methods. Finally, AdaMax, a variant of Adam based on the 

eternity norm (Kingma, 2014).  

Reddi, Kale and Kumar is working More recently, stochastic optimization methods, which 

have been successfully and successfully used in the training of deep networks such as 

RMSProp, Adam, Adadelta, Nadam, have been imposed on using gradient updates scaled 

with square roots of exponential moving averages of square past gradients. In many types of 

applications, e.g. learning with large output spaces, empirically it has been observed that these 

algorithms cannot approach an optimal result and solution (or a critical point in non-convex 

environments). One reason for such errors is the exponential moving average used in 

algorithms. Here is a clear example of a simple convex optimization setting where Adam 

cannot merge with the optimal solution, and user can see the exact problems in the previous 

analysis of the Adam algorithm. Conducted analyzes indicate that convergence problems can 

be corrected by equipping such algorithms with long term memory of past gradients, and that 

the Adam algorithm not only corrects convergence problems, but can also suggest new 

variants that often result in improved empirical performance. 

3.6 Evaluation Methods 

In many sciences, as mentioned, the use of qualitative or quantitative (concrete or abstract) 

methods has become a matter of debate, with particular schools of thought in each discipline 

favoring one method and disdains another. Qualitative methods argue that quantitative 

methods are meant to conceal the reality of the social events studied because they 

underestimate, ignore, ignore or neglect the most immeasurable factors. The modern tendency 

(and indeed the majority tendency throughout the history of social science) is to use eclectic 

approaches: quantitative methods can be used with a global qualitative framework, and 

qualitative methods can be used to understand the meaning of numbers generated by 

quantitative methods.  
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But even this practice has raised a debate as to whether quantitative and qualitative research 

methods are complementary: some investigators argue that combining these two different 

approaches to a research method is useful and that the social world helps create a more 

complete situation. They believe and trust that the epistemologies that support each approach 

are so divergent that they cannot be reconciled even in a research project (Gadd, 2006). 

3.6.1 MAD (Mean Absolute Deviation) 

The mean absolute deviation (or mean absolute deviation (MAD)) about a given point of a 

data set (or only "mean absolute deviation") is the average of the absolute deviations of the 

data given or the positive difference (Usually central values). It is a summary statistics of 

statistical distribution or variability. In the general form, the central point may be the mean, 

median, mode, or any central trend measure, or the result of any random data point associated 

with the given data set. The absolute values of the difference between the data points and their 

central tendencies are summed and divided by the number of data points. 

3.6.2 MAPE 

Many organizations focus primarily on the MAPE when assessing forecast accuracy. Most 

people are comfortable thinking in percentage terms, making the MAPE easy to interpret. It 

can also convey information when user doesn’t know the item’s demand volume. For 

example, telling user manager, "we are off by less than 4%" is more meaningful than saying 

"we are off by 3,000 cases," if user manager doesn’t know an item’s typical demand volume. 

The MAPE is scale sensitive and should not be used when working with low-volume data. 

Notice that because "Actual" is in the denominator of the equation, the MAPE is undefined 

when Actual demand is zero. Furthermore, when the Actual value is not zero, but quite small, 

the MAPE will often take on extreme values. This scale sensitivity renders the MAPE close to 

worthless as an error measure for low-volume data. 
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3.6.3 MEAN (Actual / Predicted) 

In statistics, a forecast error is the difference between the actual or real and the predicted or 

forecast value of a time series or any other phenomenon of interest. Since the forecast error is 

derived from the same scale of data, comparisons between the forecast errors of different 

series can only be made when the series are on the same scale.  

In simple cases, a forecast is compared with an outcome at a single time-point and a summary 

of forecast errors is constructed over a collection of such time-points. Here the forecast may 

be assessed using the difference or using a proportional error. By convention, the error is 

defined using the value of the outcome minus the value of the forecast. 

In other cases, a forecast may consist of predicted values over a number of lead-times; in this 

case an assessment of forecast error may need to consider more general ways of assessing the 

match between the time-profiles of the forecast and the outcome. If a main application of the 

forecast is to predict when certain thresholds will be crossed, one possible way of assessing 

the forecast is to use the timing-error—the difference in time between when the outcome 

crosses the threshold and when the forecast does so. When there is interest in the maximum 

value being reached, assessment of forecasts can be done using any of, the difference of times 

of the peaks the difference in the peak values in the forecast and outcome, the difference 

between the peak value of the outcome and the value forecast for that time point. Forecast 

error can be a calendar forecast error or a cross-sectional forecast error, when we want to 

summarize the forecast error over a group of units. If we observe the average forecast error 

for a time-series of forecasts for the same product or phenomenon, then we call this a calendar 

forecast error or time-series forecast error. If we observe this for multiple products for the 

same period, then this is a cross- sectional performance error (Grafe et al., 2010). 

3.6.4 Standart Deviation 

The standard deviation is a system used for a measure of the amount of variation or 

distribution of a set of values. A low standard deviation indicates that the values tend to be 

close to the average of the set, while a high standard deviation indicates that the values are 

spread over a wider range. In this way, the distance and proximity to the intended or targeted 

results are found. The standard deviation of a random variable, statistical population, data set 
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or probability distribution is the square root of its variance. In practice it is algebraically 

simpler, although less robust than the average absolute deviation. A useful feature of standard 

deviation is that, in contrast to variance, it is expressed in the same units as the data. In 

addition to expressing the variability of a population, standard deviation is commonly used to 

measure confidence in statistical results. For example, the margin of error in the query data is 

determined by calculating the expected standard deviation in the results if the same survey is 

performed more than once. This derivation of the standard deviation is often referred to as the 

mean while the estimate is called "standard error" or "standard error of average". If an infinite 

number of samples are drawn and an average is calculated for each sample, it is calculated as 

the standard deviation of all instruments to be calculated from this population.  The standard 

deviation of a population and the standard mean of a statistic derived from this population are 

quite different, but related. The reported error margin of a survey is calculated from the 

standard error of the mean. In science, many investigators report the standard deviation of 

experimental data, results, and, by convention, more than just two standard deviations from an 

empty expectation are considered statistically significant. Normal random error or change in 

measurements is thus distinguished from the possible original. Standard deviation is also 

important in finance where the standard deviation in the return on investment is a measure of 

the volatility of the investment. 

3.6.5 Correlation 

Correlation or dependence is any statistical relationship, whether causal or not, between two 

random variables or bivariate data. In the broadest sense correlation is any statistical 

association, though it commonly refers to the degree to which a pair of variables are linearly 

related. Familiar examples of dependent phenomena include the correlation between the 

physical statures of parents and their offspring, and the correlation between the demand for a 

limited supply product and its price.[citation needed] 

Correlations are useful because they can indicate a predictive relationship that can be 

exploited in practice. For example, an electrical utility may produce less power on a mild day 

based on the correlation between electricity demand and weather. In this example, there is a 

causal relationship, because extreme weather causes people to use more electricity for heating 

or cooling. However, in general, the presence of a correlation is not sufficient to infer the 

presence of a causal relationship. 
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CHAPTER 4 

RESULTS & DISCUSSIONS 

4.1 Overall Results 

In this section, the predictive results of the deep learning model using the data obtained from 

the study named ‘Flexural buckling load prediction of aluminum alloy columns using soft 

computing techniques are compared with the results obtained from soft computing techniques 

in the same study. Sequential model of the learning method of the optimizers Adam, Adamax, 

RMSprops, Nadam, Adagrad, Adadelta are used and the model compiled with MAE and MSE 

loss is run 10 times; optimum results are used for evaluation. Dataset is divided into training 

set and testing set. The training set is 70% and the test set is 30%. Experimental values for 

104 tests in Table 4.2 given with related material parameters. 

The description of material parameters are shown in Table 4.1 taken from Cevik et al., 

(2009).An analytical statement was proposed (Frey and Rondal, 1978; Rondal and Maquoi, 

1979) and was accepted by the ECCS. The calculation of the non-dimensional column 

strength is shown as: 

𝑋 =
1

𝜃 + √𝜑2 − 𝜆2
, 

𝜑 =
1

2
(1 + 𝜂 + 𝜆2), 

The constants of the material parameters are α,β,λ0,λ1. These are shown as: 
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where 𝜎0.2, L and r are the ultimate stress, effective length and Radius of gyration 

respectively. 

 

𝜒 =
𝜎𝑢

𝜎0.2
 ,   𝜆 = √

𝜎𝑢

𝜎𝐸0
,⁡⁡⁡𝜎𝐸0 =

π2𝐸0

(L/r)2
 

Table 4. 1. Description Table of Dataset 

Reference 
Ref. 

no 

Type 

(axis) 
Production Alloy E0 

𝛔0.2 n 

Djalaly and Sfintesco 1 I (minor) France 2017 72,600 310 7.15 

  2 I (minor) France 7020 70,630 320 18.12 

  3 I (minor) France 6081 68,670 288 16.16 

Bernard,Frey,Janss,andMassonnet(1973) 4 I (minor) Switzerland 7020 75,880 335 24.15 

  5 I (minor) Switzerland 7020 78,264 325 26.56 

  6 CHS Belgium 7020 72,170 340 35.78 

  7 CHS Switzerland 6082 67,300 299 29.45 

  8 CHS Norway 6082 74,650 245 19.94 

Kloppel and Barsch (1973) 9 major Germany 7020 72,100 330 33.6 

  10 major Germany 6082 72,100 293 29.9 

  11 CHS Germany 7020 72,100 330 33.6 

  12 CHS Germany 6082 72,100 293 29.9 

Arnault (1967) 13 I (minor) France 2017 73,575 312 11.9 

  14 I (minor) France 6081 68,670 288 66.3 

  15 I (minor) France 6082 68,670 315 22.5 

  16 I (minor) France 7020 71,120 322 37.3 

 

Table 4.2. Dataset of Study. 

E (Mpa) 𝝈𝟎.𝟐 n L/r λ TEST (Mpa) GEP (Mpa) NN (Mpa) 

72600 310 7,15 10 0,211 312,9 312,3 297,5 

72600 310 7,15 50 1,055 225,4 218,5 235,3 

72600 310 7,15 70 1,477 143,8 139,3 147 

72600 310 7,15 85 1,793 97,6 95,74 102,2 

72600 310 7,15 100 2,109 74,4 66,16 72,7 

72600 310 7,15 120 2,531 51,4 41,72 49,73 

72600 310 7,15 150 3,164 33,8 22,7 34,24 

72600 310 7,15 10 0,214 321,5 322,6 347,1 

70630 320 18,12 50 1,072 237,4 219,2 231,4 
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70630 320 18,12 70 1,5 137,8 136,6 143,7 

70630 320 18,12 85 1,822 97,2 92,66 100 

70630 320 18,12 100 2,143 71 63,49 71,38 

70630 320 18,12 120 2,572 47,7 39,76 49,05 

70630 320 18,12 150 3,215 30,7 21,52 34 

70630 320 16,16 10 0,203 288,2 290,1 286 

68670 288 16,16 50 1,016 213,6 208,8 213,8 

68670 288 16,16 70 1,423 144 136,2 132,7 

68670 288 16,16 85 1,728 93,7 94,79 92,44 

68670 288 16,16 100 2,033 65,6 66,05 66,41 

68670 288 16,16 120 2,44 46,7 41,95 46,32 

68670 288 16,16 150 3,049 29,3 22,97 32,9 

68670 288 16,16 48,3 1,022 226 241,2 248,5 

75880 335 24,15 48,3 1,022 255,7 241,2 248,5 

75880 335 24,15 48,3 1,022 263,3 241,2 248,5 

75880 335 24,15 48,3 1,002 278,1 241,2 248,5 

78264 325 26,56 64,5 1,311 178,9 175,4 183,2 

78264 325 26,56 64,5 1,311 197,6 175,4 183,2 

78264 325 26,56 64,5 1,311 224,9 175,4 183,2 

78264 325 26,56 64,5 1,311 178,9 175,4 183,2 

78264 325 26,56 64,5 1,311 215 175,4 183,2 

78264 325 26,56 64,5 1,311 161,6 175,4 183,2 

78264 325 26,56 64,5 1,311 169,6 175,4 183,2 

78264 325 26,56 64,5 1,311 166,5 175,4 183,2 

78264 325 26,56 48,3 0,982 251,4 243,3 258,6 

78264 325 26,56 48,3 0,982 286,9 243,3 258,6 

78264 325 26,56 48,3 0,982 263,2 243,3 258,6 

78264 325 26,56 48,3 0,982 242 243,3 258,6 

78264 325 26,56 48,3 0,982 262 243,3 258,6 

78264 325 26,56 48,3 0,982 263,2 243,3 258,6 
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78264 325 26,56 48,3 0,982 257 243,3 258,6 

78264 325 26,56 48,3 0,982 281,9 243,3 258,6 

78264 325 26,56 32,4 0,659 290 300,2 295,1 

78264 325 26,56 32,4 0,659 288,7 300,2 295,1 

78264 325 26,56 32,4 0,659 298,7 300,2 295,1 

78264 325 26,56 32,4 0,659 310,1 300,2 295,1 

78264 325 26,56 32,4 0,659 282,9 300,2 295,1 

78264 325 26,56 32,4 0,659 283,7 300,2 295,1 

78264 325 26,56 32,4 0,659 301,6 300,2 295,1 

78264 325 26,56 32,4 0,659 295 300,2 295,1 

78264 325 26,56 41,2 0,9 271,4 269,5 275,5 

72170 340 35,78 41,2 0,9 265,6 269,5 275,5 

72170 340 35,78 41,2 0,9 274,9 269,5 275,5 

72170 340 35,78 41,2 0,9 264 269,5 275,5 

72170 340 35,78 41,2 0,9 275,7 269,5 275,5 

72170 340 35,78 51,2 1,086 201,7 202,5 203,6 

67300 299 29,45 51,2 1,086 197,6 202,5 203,6 

67300 299 29,45 51,2 1,086 206,5 202,5 203,6 

67300 299 29,45 51,2 1,086 219,9 202,5 203,6 

67300 299 29,45 51,2 1,086 203,9 202,5 203,6 

67300 299 29,45 51,2 1,086 194,2 202,5 203,6 

67300 299 29,45 51,2 1,086 202,8 202,5 203,6 

67300 299 29,45 51,2 1,086 203,2 202,5 203,6 

67300 299 29,45 28,9 0,527 208,6 237,6 202 

74650 245 19,94 28,9 0,527 200,3 237,6 202 

74650 245 19,94 28,9 0,527 197,9 237,6 202 

74650 245 19,94 28,9 0,527 192,7 237,6 202 

74650 245 19,94 51,9 0,947 163,6 193,4 164,3 

74650 245 19,94 51,9 0,947 155,1 193,4 164,3 

74650 245 19,94 51,9 0,947 191,4 193,4 164,3 
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74650 245 19,94 51,9 0,947 158,8 193,4 164,3 

74650 245 19,94 51,9 0,947 153,3 193,4 164,3 

74650 245 19,94 51,9 0,947 163,6 193,4 164,3 

74650 245 19,94 51,9 0,947 153,2 193,4 164,3 

74650 245 19,94 51,9 0,947 157,1 193,4 164,3 

74650 245 19,94 90 1,937 82,2 82,91 85,81 

72100 330 33,6 90 1,827 81,5 87,49 82,83 

72100 293 29,9 90 1,827 79 87,49 82,83 

72100 293 29,9 60 1,291 180,5 179,2 176,6 

72100 330 33,6 60 1,291 169,7 179,2 176,6 

72100 330 33,6 82 1,765 98,1 101,9 103,3 

72100 330 33,6 82 1,765 98,1 101,9 103,3 

72100 330 33,6 60 1,218 162,8 176,3 170,4 

72100 293 29,9 82 1,665 101 106 99,71 

72100 293 29,9 50 1,036 225,6 222,8 230,2 

73575 312 11,9 70 1,451 144,2 143,6 143,7 

73575 312 11,9 85 1,762 97,6 99,21 99,74 

73575 312 11,9 100 2,073 74,5 68,8 71,13 

73575 312 11,9 120 2,487 51,4 43,56 48,91 

73575 312 11,9 150 3,109 33,8 23,76 34,24 

73575 312 11,9 50 0,996 213,6 211,2 217,9 

68670 288 66,3 70 1,394 143,9 139,3 133,3 

68670 288 66,3 85 1,693 93,7 97,47 92,38 

68670 288 66,3 100 1,992 65,6 68,18 66,51 

68670 288 66,3 120 2,39 46,7 43,48 46,71 

68670 288 66,3 150 2,998 29,2 23,85 33,38 

68670 288 66,3 50 1,078 241,1 214,1 225,6 

68670 315 22,5 70 1,509 149 132,6 140 

68670 315 22,5 85 1,832 98,5 89,69 97,53 

68670 315 22,5 50 1,071 237,4 220,7 218 
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71120 322 37,3 70 1,499 137,8 137,6 134,1 

71120 322 37,3 85 1,82 97,2 93,43 93,53 

71120 322 37,3 100 2,141 70,9 64,02 67,46 

71120 322 37,3 120 2,569 47,7 40,12 47,26 

71120 322 37,3 150 3,212 30,8 21,71 33,47 

The flowchart of the application and execution of deep learning model used in the thesis and 

is shown in Figure 4.1. According to this chart, Firstly, The data set is scaled to give more 

correct results of Model. After that, the parameters of the model is defined and the dataset is 

trained and evaluated. If the execution count is smaller than 10; the application is executed 

until obtain the better results than soft computing techniques. If the execution count is equal 

10; the last results are taken for comparing. 
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Figure 4.1. The Flowchart of the Application of Model 
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4.2 Comparison of Nadam Optimizer’s Results and Laboratuar Test Results 

When Nadam is used as an optimizer and MAE is used as loss, the model's train and test 

accuracy are shown in Figure 4.2 Accuracy of Test dataset is 9.38 and Accuracy of Train 

Dataset is 82.99. Mean of Test Dataset 51.56 and mean of train dataset is 23.51. The results 

obtained by using both loss parameters with the Nadam optimizer of the deep learning method 

with GEP and NN are compared with the previous methods, GEP and NN is shown in Table 

4.3. For MSE, MAD, RMSE, MEAN and Correlation, the best results are seen in Nadam 

Optimizer and MAE Loss. For MAE, MAPE, the best results are seen in Nadam Optimizer 

and MSE Loss. In this case, it can be said that MAE loss function is more successful for 

Nadam optimizer in deep learning model. 

Table 4.3. Statistical Results of MAE and MSE loss for Nadam 

  MAD MSE RMSE MAE MAPE MEAN STD Correlation 

GEP 11.9448 300.4576 17.3337 0.0833 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 

NADAM 
& MAE 

6.4505 109.0971 10.4450 0.0384 3.8352 0.9992 0.0622 0.9920 

NADAM 
& MSE 

6.4625 123.1020 11.0951 0.0378 3.7775 1.0097 0.0611 0.9912 

 

Figure 4.2. Comparison testing  and training accuracy for Nadam Optimizer and MAE loss 
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In the graph in Figure 4.3, test results and model results are compared in terms of value. 

According to this graph, it can be said that the range with the highest deviations is between 

150-250 and the R² value is 0.9841. 

 

Figure 4.3. Comparison of Test Results and Predicted Results of Nadam Optimizer and MAE 

loss 

 

105 rows in the dataset is an example for the deep learning results for Nadam & MAE as seen 

in Figure 4.4. When the closeness to the correct result is examined, it is observed that in 64 of 

105 samples, deep learning model gives more realistic results than NN method. 
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Figure 4.4. Actual datas and predicted results for Nadam Optimizer&MAE loss 

 

The results of each line are compared with GEP and NN, which are the soft computing 

techniques, and the MAEs of the results obtained from the deep learning model are compared 

in Figure 4.5. As can be seen in the figure, the highest difference between the results belongs 

to GEP; it is observed that the points where the errors are minimum belong to the deep 

learning results. 
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Figure 4.5. MAE of Each Results for Nadam Optimizer and MAE loss 

 

Train and test accuracy of the model when Nadam is used as optimizer and MSE is used as 

loss in Figure 4.6 seen. The comparison of the test results of each row in the dataset with the 

estimation results from the model is as seen in Figure 4.7. Mean of Test Dataset 172.10 and 

mean of train dataset is 34.35. Std of Test Dataset is 165.86 and std of train dataset is 31.67. 
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Figure 4.6. Comparison testing  and training accuracy for Nadam Optimizer and MSE loss 

 

Figure 4.7. Actual datas and predicted results for Nadam Optimizer&MSE loss 

The comparison of the test results in the dataset with the estimation results from the model is 

shown in Figure 4.7. When the closeness to the correct result is examined, it is observed that 

the deep learning model gives more realistic results than the NN method in 67 of 105 
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samples. 

In the Figure 4.8, the test results and the model results are compared in terms of value. 

According to this graph, it can be said that the range with the most deviations is 150-200 and 

R² value is 0.9824. 

 

Figure 4.8. Comparison of Test Results and Predicted Results of Nadam Optimizer and MSE 

loss. 

The results of each line are compared with GEP and NN, which are Soft Computing 

techniques, and the MAEs of the results obtained from the deep learning model are compared 

in Figure 4.9. As shown in the figure, the value at the point where the differences between the 

results are highest belongs to GEP. Except for 6 points, deep learning results are found to be 

successful. 
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Figure 4.9. Mean Absolute Error of Each Results for Nadam Optimizer and MSE loss. 

4.3 Comparison of Adamax Optimizer’s Results and Laboratuar Test Results 

In Table 4.4, the results of GEP and NN and Adamax optimizer of the deep learning method 

are compared using the two loss parameters. According to this table, the best results for MAD, 

MAE, and MAPE are found in Adamax Optimizer and MAE Loss. ; In Correlation, MSE, 

RMSE, Optimizer and MSE Loss, the last one is for standard deviation and mean for NN 

method. In this case, MSE and MAE Loss functions for Adamax optimizer can be interpreted 

as having almost equal performance. 
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Table 4.4. Statistical Results of Adamax Optimizer. 

  MAD MSE RMSE MAE MAPE MEAN Std Correlation 

GEP 11.9448 300.4576 17.3337 0.0833 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 

ADAMAX 

& MAE 
5.8172 115.3379 10.7395 0.0337 3.3702 1.0169 0.0596 0.9922 

ADAMAX 

& MSE 
6.4842 110.5480 10.5142 0.0463 4.6345 1.0309 0.0657 0.9927 

Train and test accuracy of the model using Adamax as the optimizer and MAE as the loss as 

seen in Figure 4.10. The comparison of the test results of each row with the prediction results 

from the model is as presented in Figure 4.11. Accuracy of Test dataset is 9.38 and Accuracy 

of Train Dataset is 82.99.Mean of Test Dataset 59.002 and mean of train dataset is 23.730. 

Std of Test dataset is 91.266 and std of train dataset is 35.574. 

 

Figure 4.10.Comparison testing  and training accuracy for Adamax Optimizer and MAE loss. 
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Comparison of the test results in the dataset with the estimation results from the model as 

presented in Figure 4.11. When the closeness to the correct result is examined, it is observed 

that in 68 of 105 samples, deep learning model gives more realistic results than NN method. 

 

Figure 4.11.Actual datas and predicted results for Adamax Optimizer and MAE loss. 

 

In the graph in Figure 4.12, test results and model results are compared in terms of value. 

According to this graph, it can be said that the maximum deviations are between 160-180 and 

R² value is 0.9845. 
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Figure 4.12. Comparison of Test Results and Predicted Results of  Adamax Optimizer and 

MAE loss. 

The results of each line are compared with GEP and NN, which are the soft computing 

techniques, and the MAEs of the results obtained from the deep learning model are compared 

in Figure 4.13. As can be seen in the figure, it is observed that the points where the errors are 

minimum belong to the deep learning results. 
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Figure 4.13. MAE of Each Results for Adamax Optimizer and MAE. 

Train and test accuracy of the model using Adamax as the optimizer and MSE as the loss as 

seen in Figure 4.14. The comparison of the test results of each row with the prediction results 

from the model is as presented in Figure 4.15. Accuracy of Test dataset is 9.93 and Accuracy 

of Train Dataset is 78.40.Mean of Test Dataset 99.978 and mean of train dataset is 40.498. 

Std of Test dataset is 95.05 and std of train dataset is 37.953. 

 

Figure 4.14. Comparison testing  and training accuracy for Adamax Optimizer and MSE loss. 
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Comparison of the test results in the dataset with the estimation results from the model figure 

4.15 as in. When the closeness to the correct result is examined, it is observed that in 65 of 

105 samples, deep learning model gives more realistic results than NN method. 

 

Figure 4.15. Actual datas and predicted results for Adamax Optimizer and MSE loss. 

In the graph in Figure 4.16, test results and model results are compared in terms of value. 

According to this graph, it can be said that the maximum deviations are between 200-250 and 

R² value is 0.9855. 
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Figure 4.16. Comparison of Test Results and Predicted Results of  Adamax Optimizer and 

MSE Loss 

The results of each line are compared with GEP and NN, which are the soft computing 

techniques, and the MAEs of the results obtained from the deep learning model are compared 

in Figure 4.17. As can be seen in the figure, the highest difference between the results belongs 

to GEP; it is observed that the points where the errors are minimum belong to the deep 

learning results. 

R² = 0,9855

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

A
ct

u
a

l

Predicted

ADAMAX&MSE



55 

 

 

Figure 4.17. MAE of Each Results for Adamax Optimizer and MSE. 

4.4 Comparison of Adam Optimizer’s Results and Laboratuar Test Results 

Table 4.5 compared the results obtained by using both loss parameters with the Adam 

optimizer of the deep learning method with GEP and NN. According to this table, the best 

results for MAD, MSE, RMSE, MEAN, correlation are found in Adam Optimizer and MAE 

Loss; MAE, MAPE, MEAN for the NN method. According to this situation, MAE Loss 

function is better for Adamax optimizer in deep learning model. 

 

Table 4.5. Statistical Results of Adam Optimizer. 

  MAD MSE RMSE MAE MAPE MEAN Std Correlation 

GEP 11.9448 300.4576 17.3337 0.0833 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 

ADAM 

& MAE 
6.5120 100.0853 10.0043 0.0441 4.4052 1.0138 0.0767 0.9928 

ADAM 

& MSE 
6.9639 112.9846 10.6294 0.0461 4.6051 1.0174 0.0628 0.9920 
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Train and test accuracy of the model using Adam as the optimizer and MAE as the loss 

according to Figure 4.18. The comparison of the test results of each row with the prediction 

results from the model is showed in Figure 4.19. Mean of Test Dataset 54,600 and mean of 

train dataset is 85,735. Std of Test dataset is 5.347 and std of train dataset is 35.642 for Adam 

optimizer and MAE loss. 

 

Figure 4.18. Comparison testing and training accuracy for Adam Optimizer and MAE loss. 

Comparison of the test results in the dataset with the prediction results from the model 

showed at Figure 4.19. When the closeness to the correct result is examined, it is observed 

that in 67 of 105 samples, deep learning model gives more realistic results than NN method. 
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Figure 4.19. Actual datas and predicted results for Adam Optimizer and MAE loss. 

 

In the graph in Figure.4.20, test results and model results are compared in terms of value. 

According to this graph, the range of 160-230 is the range with the highest deviation and R2 

value is 0.9857. 
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Figure 4.20. Comparison of Test Results and Predicted Results of Adam Optimizer and MAE 

loss. 

When the deep learning model of each row is run with GEP and NN using Adam Optimizer 

and MAE loss functions, the MAEs of the results are compared in Figure 4.21. As can be seen 

in the figure, the difference between the results at the point where the highest value belongs to 

GEP; the closest points to real values belong to deep learning. 
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Figure 4.21. MAE of Each Results for Adam Optimizer and MAE. 

Train and test accuracy of the model using Adam as the optimizer and MAE as the loss Figure 

4.22. The comparison of the test results of each row with the prediction results from the 

model is indicated in Figure4.23. Mean of Test Dataset 111.816 and mean of train dataset is 

40.457. Std of Test Dataset is 106.199 and std of traindataset is 37.961 for Adam optimizer 

and MSE loss. 

 

Figure 4.22. Comparison testing  and training accuracy for Adam Optimizer and MSE loss. 
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The comparison of the test results in the dataset and the estimation results from the model is 

as in figure 4.23. When the closeness to the correct result is examined, it is observed that in 

52 of 105 samples, deep learning model gives more realistic results than NN method. 

 

Figure 4.23. Actual datas and predicted results for Adam Optimizer and MSE loss. 

In the graph in Figure 4.24, test results and model results are compared in terms of value. 

According to this graph, deviations between 160-180 and 270-300 are maximum and R2 value 

is 0.9841 

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

1 4 7
1

0
1

3
1

6
1

9
2

2
2

5
2

8
3

1
3

4
3

7
4

0
4

3
4

6
4

9
5

2
5

5
5

8
6

1
6

4
6

7
7

0
7

3
7

6
7

9
8

2
8

5
8

8
9

1
9

4
9

7
1

0
0

1
0

3

Actual ADAM&MSE



61 

 

 

Figure 4.24. Comparison of Test Results and Predicted Results of Adam Optimizer and MSE 

loss. 

When the deep learning model of each row is run with GEP and NN using Adam Optimizer 

and MSE loss functions, the MAEs of the results are compared in Figure 4.25. As can be seen 

in the figure, the difference between the results at the point where the highest value belongs to 

GEP; When the closeness to real values is considered, it is seen that NN is ahead in some 

points and deep learning results are closer in some points. 
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Figure 4.25. MAE of Each Results for Adam Optimizer and MSE 

4.5 Comparison of Adadelta Optimizer’s Results and Laboratuar Test Results 

In Table 4.6, the results obtained by using both the loss parameters and the Adadelta 

optimizer of the deep learning method with the previous methods GEP and NN are compared. 

According to this table, the best results are found for MAD, MSE, RMSE, MAE, MAPE, 

MEAN and correlation. The standard deviation for Adadelta Optimizer and for MAE Loss  is 

much better than NN method. 

Table 4.6. Statistical Results of Adadelta Optimizer. 

  MAD MSE RMSE MAE MAPE MEAN Std Correlation 

GEP 11.9448 300.4576 17.3337 0.0833 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 

ADADELTA 

& MAE 
6.3152 114.0623 10.6800 0.0393 3.9315 1.0178 0.0649 0.9919 

ADADELTA 

& MSE 
7.2662 120.5526 10.9796 0.0460 4.5992 1.0031 0.0666 0.9915 
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When using Adadelta as optimizer and MAE as loss, the model's train and test accuracy is 

shown in Figure 4.26. The comparison of the test results of each row with the prediction 

results from the model likes in Figure 4.27. Mean of Test Dataset 50.836 and mean of train 

dataset is 23.599. Std of Test Dataset is 76.909 and std of train dataset is 35.286 for Adam 

optimizer and MAE loss. 

 

Figure 4.26. Comparison testing  and training accuracy for Adadelta Optimizer and MAE 

loss. 

Comparison of the test results in the dataset with the estimation results from the model 

illustrated in Figure 4.27. When the closeness to the correct result is examined, it is observed 

that in 63 of 105 samples, the deep learning model gave more realistic results than the NN 

method. 
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Figure 4.27.Actual datas and predicted results for Adadelta Optimizer and MAE loss. 

In the graph in Figure.4.28, the test results and the model results are compared in terms of 

value. According to this graph, the range of 230-280 is the range with the highest deviations 

and R2 value is 0.9838. 
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Figure 4.28.Comparison of Test Results and Predicted Results of  Adadelta Optimizer and 

MAE loss. 

When the deep learning model of GEP and NN of each row is run using Adadelta Optimizer 

and MAE loss functions, the MAEs of the results are compared in Figure 4.29. As can be seen 

in the figure, the difference between the results at the point where the highest value belongs to 

GEP; the closest points to real values belong to deep learning. 
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Figure 4.29. MAE of Each Results for Adadelta Optimizer and MAE. 

Train and test accuracy of the model when using Adadelta as optimizer and MAE as loss also 

seen in Figure 4.30. The comparison of the test results of each row in the dataset with the 

estimation results from the model is as in Figure 4.31.Mean of Test Dataset 111.792 and mean 

of train dataset is 46.638. Std of Test dataset is 106.252 and std of train dataset is 43.672 for 

Adam optimizer and MAE loss. 

 

Figure 4.30. Comparison testing  and training accuracy for Adadelta Optimizer and MSE 
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loss. 

Comparison of the test results in the dataset with the prediction results from the model is 

illustrated in Figure 4.31. When the closeness to the correct result is examined, it is observed 

that deep learning model gives closer to the real results than the NN method in 56 of 105 

samples. 

 

Figure 4.31. Actual datas and predicted results for Adadelta Optimizer and MSE loss. 

 

In the graph in Figure.4.32, test results and model results are compared in terms of value. 

According to this graph, the range of 270-290 and 180-210 are the ranges with the highest 

deviations and R² is 0.983. 
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Figure 4.32. Comparison of Test Results and Predicted Results of  Adadelta Optimizer and 

MSE loss. 

When the deep learning model of each row with GEP and NN is run using Adadelta 

Optimizer and MSE loss functions, the MAEs of the results are compared in Figure 4.33. 
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Figure 4.33. MAE of Each Results for Adadelta Optimizer and MSE. 

4.6 Comparison of Adagrad Optimizer’s Results and Laboratuar Test Results 

The model results that used Adagrad optimizer are shown in Table 4.7. 

Table 4.7. Statistical Results of Adagrad Optimizer. 

 
MAD MSE RMSE MAE MAPE MEAN Std Correlation 

GEP 11.9448 300.4576 17.3337 0.0833 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 

ADAGRAD & 

MAE 
6.9978 136.4832 11.6826 0.0452 4.5225 1.0068 0.0754 0.9902 

ADAGRAD & 

MSE 
7.0842 134.2247 11.5855 0.0459 4.5881 1.0077 0.0712 0.9903 

 

When using Adagrad as an optimizer and MAE as a loss, the model's train and test accuracy 

are also seen in Figure 4.34. The comparison of the test results for each row in the dataset 

with the predicted results from the model is demonstrated in Figure 4.35. Mean of Test 
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Dataset 71.730 and mean of train dataset is, 22.988. Std of Test Dataset is 110.752 and std of 

train dataset is 34.118 for Adagrad optimizer and MAE loss. 

 

Figure 4.34. Comparison testing  and training accuracy for Adagrad Optimizer and MAE 

loss. 

Comparison of the test results in the dataset with the estimation results from the model as in 

Figure 4.35..When the closeness to the correct result is examined, it has been observed that 

deep learning model gives closer results to the reality than the NN method in 64 of 105 

samples. 
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Figure 4.35. Actual datas and predicted results for Adagrad Optimizer and MAE loss. 

In the graph in Figure 4.36, test results and model results are compared in terms of value. 

According to this graph, the range of 220-270 is the range with the highest deviations and R2 

value is 0.9805 

 

Figure 4.36. Comparison of Test Results and Predicted Results of  Adagrad Optimizer and 

MAE loss. 
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When the deep learning model of GEP and NN of each line is run using Adagrad Optimizer 

and MAE loss functions, the differences between the results and the actual results are 

compared in Figure 4.37. As shown in the figure, the value at the point where the differences 

between the results are highest belongs to deep learning. 

 

Figure 4.37. MAE of Each Results for Adagrad Optimizer and MAE. 

When using Adagrad as optimizer and MSE as loss, the model's train and test accuracy are 

indicated in Figure 4.38. The comparison of the test results for each row in the dataset and the 

predicted results from the model is as in Figure 4.39. Mean of Test Dataset 130.897 and mean 

of train dataset is 42.285. Std of Test dataset is 125.127 and std of train dataset is 39.741 for 

Adagrad optimizer and MAE loss. 
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Figure 4.38. Comparison testing  and training accuracy for Adagrad Optimizer and MSE loss. 

Comparison of the test results in the dataset with the estimation results from the model seen in 

Figure 4.39. When the closeness to the correct result is examined, it is observed that deep 

learning model gave closer results to the reality than the NN method in 57 of 105 samples. 

 

Figure 4.39. Actual datas and predicted results for Adagrad Optimizer and MSE loss. 
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results. According to this graph, the range of 160-180 and 240-820 is the range with the 

highest deviations and R2 value is 0.9806. 

 

Figure 4.40. Comparison of Test Results and Predicted Results of  Adagrad Optimizer and 

MSE loss. 

When the deep learning model of GEP and NN of each row is run using Adagrad Optimizer 

and MSE loss functions, the differences between the results and the actual results are 

compared in Figure 4.41. As can be seen in the figure, the difference between the results at 

the highest point, although the value of deep learning is close to the point of 0 is also 

remarkable. 
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Figure 4.41. MAE of Each Results for Adagrad Optimizer and MSE. 

4.7 Comparison of RMSProp Optimizer’s Results and Laboratuar Test Results 

In Table 4.8, the results obtained by using both loss parameters are compared with the 

previous methods GEP and NN and RMSProp optimizer of deep learning method. According 

to this table, the best results for MAD, MAE, MAPE, RMSE, MSE, correlation are seen in 

RMSProp Optimizer and MAE Loss. In this case, we can say that the MAE loss function is 

more successful in the deep learning model for  RMSPROP Optimizer. 

Also, according to Standart Deviation evaluation results, NN method of soft computing 

techniques is better than deep Learning methods that used RMSProp Optmizer. 

Table 4.8. Statistical Results of RMSPROP Optimizer. 

  MAD MSE RMSE MAE MAPE MEAN STD Correlation 

GEP 11.9448 300.4576 17.3337 0.0833 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 
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RMSPROP 

& MAE 
6.5172 116.2108 10.7801 0.0388 3.8776 1.0213 0.0720 0.9925 

RMSPROP 

& MSE 
6.9357 117.9624 10.8611 0.0438 4.3766 1.0230 0.0628 0.9922 

 

When RMSPROP is used as an optimizer and MAE is used as a loss, the model's train and 

test accuracy are shown in Figure 4.42. 

 

Figure 4.42. Comparison testing  and training accuracy for RMSPROP Optimizer and MAE 

loss. 

The comparison of the test results for each row in the dataset and the predicted results from 

the model is as shown in Figure.4.43. Mean of Test Dataset 91.529 and mean of train dataset 

is 45.341.Std of Test Dataset is 142.794 and std of train dataset is 66.679 for RMSPROP 

optimizer and MAE loss. 
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Figure 4.43. Actual datas and predicted results for RMSPROP Optimizer and MAE loss. 

In the Figure 4.44, test results and model results are compared in terms of value. According to 

this graph, the range of 270-300 is the range with the highest deviations and R2 is 0.985. 

 

Figure 4.44. Comparison of Test Results and Predicted Results of  RMSPROP Optimizer and 

MAE loss. 
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When the deep learning model of GEP and NN of each row is run using RMSPROP 

Optimizer and MAE loss functions, the differences between the results and the actual results 

are compared in Figure 4.45. As shown in the figure, the value at the point where the 

differences between the results are highest belongs to deep learning. 

 

Figure 4.45. MAE of Each Results for RMSPROP Optimizer and MAE. 

Train and test accuracy of the model when using RMSPROP as optimizer and MSE as loss in 

Figure 4.46 also seen. The comparison of the test results for each row in the dataset and the 

predicted results from the model is as in Figure.4.47. Mean of Test Dataset 106.457 and mean 

of train dataset is 49.272. Std of Test Dataset is 101.364 and std of train dataset is 46.305 for 

RMSPROP optimizer and MSE loss. 
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Figure 4.46. Comparison testing  and training accuracy for RMSPROP Optimizer and MSE 

loss. 

Comparison of the test results in the dataset with the prediction results from the model  is 

illustrated in Figure 4.47. When the closeness to the correct result is examined, it is observed 

that deep learning model gave closer results to the reality than the NN method in 60 of 105 

samples. 

 

Figure 4.47. Actual datas and predicted results for RMSPROP Optimizer and MSE loss. 
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In the Figure 4.48 graph is compared with the test results in terms of model results. According 

to this graph, the range of 240-300 is the range with the highest deviations and R2 is 0.9844 

 

Figure 4.48. Comparison of Test Results and Predicted Results of  RMSPROP Optimizer and 

MSE loss. 

When the deep learning model of GEP and NN of each row is run using RMSProp Optimizer 

and MSE loss functions, the differences between the results and the actual results are 

compared in Figure 4.49. As can be seen in the figure, the difference between the results is the 

highest point of the GEP and 2-3 points except RMSProp optimizer and MSE loss using the 

deep learning model generally achieves the best results. 
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Figure 4.49. MAE of Each Results for RMSPROP Optimizer and MSE. 

When using RMSPROP as optimizer and MSE as loss, the train and test accuracy of the 

model Figure 4.50. The comparison of the test results for each row in the data set and the 

estimation results from the model is as in Figure.4.51. Std of Test Dataset is 101.364 and std 

of train dataset is 46.305 for RMSPROP optimizer and MSE loss.

 

Figure 4.50. Comparison testing  and training accuracy for RMSPROP Optimizer and MSE 

loss. 

Comparison of the test results in the dataset with the estimated results from the model that 
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60 of 105 samples, deep learning model gives more realistic results than NN method. 

 

Figure 4.51. Actual datas and predicted results for RMSPROP Optimizer and MSE loss. 

In the graph, the test results and the model results are compared in terms of value in Figure 

4.52. According to this graph, the range of 240-300 is the range with the highest deviations 

and R2 value is 0.9844. 

 

Figure 4.52.  Comparison of Test Results and Predicted Results of  RMSPROP Optimizer 

and MSE loss. 
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When the deep learning model is run using the Adagrad Optimizer and MSE loss functions, 

the differences between the results and the actual results of each row are compared with GEP 

and NN, in Figure 4.53.As can be seen in the figure, the highest difference between the results 

is GEP’s result and 2-3 points except the RMSPROP optimizer and MSE loss using the deep 

learning model generally achieves the best results. 

 

Figure 4.53. MAE of Each Results for RMSPROP Optimizer and MSE Loss. 

4.8 Comparison of All Optizimer for MAE loss in Statistical Results 

When all the optimizers are compared for MAE loss according to the Table 4.9, it is seen that 

the best result for RMSE, MSE is taken from the deep learning model using Adam optimizer. 

For MAD, MAPE, MAE, Standard deviation and correlation, the best result appears to be the 

ADAMAX optimizer. 

Table 4.9. Statistical Results of All Optizimer for MAE loss. 

  MAD MSE RMSE MAE MAPE MEAN STD 
Correl

ation 

GEP 11.9448 300.4576 17.3337 0.0834 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 
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ADAM & 

MAE 
6.5120 100.0853 10.0043 0.0469 4.6943 1.0138 0.0767 0.9928 

ADADELTA&

MAE 
6.3152 114.0623 10.6800 0.0393 3.9315 1.0178 0.0649 0.9919 

ADAGRAD & 

MAE 
6.9978 136.4832 11.6826 0.0452 4.5225 1.0068 0.0754 0.9902 

RMSPROP & 

MAE 
6.5172 116.2108 10.7801 0.0388 3.8776 1.0213 0.0720 0.9925 

SGD & MAE 9.0132 166.9209 12.9198 0.0616 6.1643 1.0483 0.0867 0.9897 

NADAM & 

MAE 
6.4505 109.0971 10.4450 0.0384 3.8352 0.9992 0.0622 0.9920 

ADAMAX & 

MAE 
5.8172 115.3379 10.7395 0.0337 3.3702 1.0169 0.0596 0.9922 
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Also, The Comparison of All Optimizer’s results are shown in  Figure 4.54 for MAE Loss.  

 

Figure 4.54. Actual values and Predicted values of all Optimizer and MAE Loss. 

4.9 Comparison of All Optizimer for MSE loss in Statistical Results 

When all the optimizers are compared for MSE loss according to the Table 4.10, it is seen that 

the best result for MAD, MAE, MAPE is taken from the deep learning model using Nadam 

optimizer. The best results for RMSE, MSE and correlation are seen in ADAMAX optimizer, 

and in Adadeltada for Mean, standard deviation. In addition, it is observed that the NN model 

for standard deviation is closer to zero with a slight difference from deep learning algorithms. 

Table 4.10 Statistical Results of All Optizimer for MSE Loss. 

 
MAD MSE RMSE MAE MAPE MEAN STD Correlation 

GEP 11.9448 300.4576 17.3337 0.0834 8.3350 1.0322 0.1308 0.9782 

NN 7.2895 117.0553 10.8192 0.0419 4.1852 0.9988 0.0586 0.9915 

ADAM & 

MSE 
6.9639 112.9846 10.6294 0.0461 4.6051 1.0174 0.0628 0.9920 
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ADADELTA 

& MSE 
7.2662 120.5526 10.9796 0.0460 4.5992 1.0031 0.0666 0.9915 

ADAGRAD 

& MSE 
7.0842 134.2247 11.5855 0.0459 4.5881 1.0077 0.0712 0.9903 

RMSPROP 

& MSE 
6.9357 117.9624 10.8611 0.0438 4.3766 1.0230 0.0628 0.9922 

SGD & MSE 6.9947 121.6747 11.0306 0.0439 4.3891 1.0213 0.0638 0.9917 

NADAM & 

MSE 
6.4625 123.1020 11.0951 0.0378 3.7775 1.0097 0.0611 0.9912 

ADAMAX 

& MSE 
6.4842 110.5480 10.5142 0.0463 4.6345 1.0309 0.0657 0.9927 

The Comparison of All Optimizer’s Results are shown in Figure 4.55 for MSE Loss. 
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Figure 4.55. Actual values and Predicted values of all Optimizer and MSE Loss. 

4.10 Comparison of All Optimizer’s Results in Statistical Evaluations 

When evaluated in terms of MAD, as shown in Figure 4.56, it is seen that Deep Learning is 

generally more successful than soft computing. According to this graph, it can be said that 

SGD and MAE functions which are used as optimizer for Sequential model have the most 

unsuccessful results. The best results are obtained from the model using ADAMAX optimizer 

and MAE loss. 
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Figure 4.56. Mean Absolute Deviations of All Optimizers and Losses. 

 

When evaluated in terms of MSE, as shown in Figure 4.57, it is seen that Deep Learning is 

generally more successful than soft computing. According to this graph, we can say that the 

SGD and MAE functions used as the Optimizer for Sequential model have the most 

unsuccessful results. However, it is seen that it is between the GEP model and the NN model 

when compared to soft computing techniques. In other words, when the weakest deep 

learning method, SGD optimizer and MAE loss functions are used, the model gives better 

results compared to GEP and is slightly weaker than NN.  
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Figure 4.57.  Mean Square Errors of All Optimizers and Losses. 

 

When evaluated in terms of Standard Deviation, as shown in (Figure 4.58), it is seen that 

Deep Learning technique is slightly weaker than the soft computing techniques, although 

GEP is more successful than NN, although approximate values are obtained. According to 

this graph, we can say that the SGD and MAE functions used as the Optimizer for Sequential 

model have the most unsuccessful results. When comparing the deep learning methods, it can 

be said that SGD optimizer and MAE loss functions have the weakest performance, 

ADAMAX optimizer and MAE Loss functions have the best performance. 
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Figure 4.58. Standart Deviations of All Optimizers and Losses. 

 

When evaluated in terms of Correlation, as shown in Figure 4.59, Deep Learning is generally 

more successful than soft computing. According to this graph, it can be said that the SGD and 

MAE functions used as the Optimizer for Sequential model have the most unsuccessful 

results. However, it is seen that it is between the GEP model and the NN model when 

compared to soft computing techniques. In other words, when the weakest deep learning 

method, SGD optimizer and MAE loss functions are used, the model gives better results 

compared to GEP and is slightly weaker than NN. The best results are obtained from the 

model using ADAM Optimizer and MAE Loss. 
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Figure 4.59. Correlations(R) of All Optimizers and Losses. 

When evaluated in terms of RMSE, as shown in Figure 4.60, the results of the Deep Learning 

technique and the NN method of soft computing techniques are very similar. Despite these 

close values, deep learning generally resulted in fewer errors. According to this graph, we 

have the most unsuccessful results of the SGD and MAE functions used as Loss in the 

Sequential model for the dataset we have here. However, when compared to soft computing 

techniques, it is seen that it is better than both of GEP model and the NN model. In other 

words, when the weakest deep learning method, SGD optimizer and MAE loss functions are 

used, the model gives better results compared to GEP and is slightly stronger than NN. The 

best results are obtained from the model using NADAM Optimizer and MAE Loss. 
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Figure 4.60. Root Mean Square Errors(RMSE) of All Optimizers and Losses. 

 

When evaluated in terms of MAE, as shown in Figure 4.61, the results of the Deep Learning 

technique and the NN method from soft computing techniques are very similar. 

Despite these close values, deep learning generally resulted in fewer errors. 

According to this graph, the most unsuccessful results are the SGD and MAE functions used 

as Loss in the Sequential model for the dataset. 

However, it is seen that it is between the GEP model and the NN model when compared to 

soft computing techniques. In other words, when the weakest deep learning method, SGD 

optimizer and MAE loss functions are used, the model gives better results compared to GEP 

and is slightly better than NN. The best result is from the model using the ADAMAX 

Optimizer and MAE Loss. 
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Figure 4.61. Mean Absolute Errors(MAE) of All Optimizers and Losses. 

When evaluated in terms of MAPE, as shown in Figure 4.62, the results of the Deep Learning 

technique and the NN method of soft computing techniques are very similar. In general, the 

comparison results of the values are the same as those of the MAE. 

 

Figure 4.62. Mean Absolute Percentage Errors(MAPE) of All Optimizers and Losses. 
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The actual values and the estimated values are evaluated in terms of MEAN obtained from the 

ratio shown in Figure 4.63. According to this graph, we have the most unsuccessful results of 

the SGD and MAE functions used as Loss in the Sequential model for the dataset we have 

here. In the case of the weakest deep learning method SGD optimizer and MAE loss functions 

according to the data available, the model has remained weak from both soft computing 

techniques and other deep learning methods. Of all the best results are obtained from the 

model using the ADAM Optimizer and MAE Loss. 

 

Figure 4.63. Mean of All Optimizers and Losses for Average Rate of Results. 

The ratios of the each actual results and predicted results are shown in the Table 4.11.  
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Table 4. 11. The table of Mean(Actual/Predicted) of all Optimizers and Losses 
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CHAPTER 5 

CONCLUSION 

The aim of this study is to determine whether deep learning methods can be used to help the 

buckling load estimation of heat treated aluminum alloy columns and to analyze which 

method yields more successful results. Sequential is preferred as the model when applying 

deep learning method. Adam, Adamax, Adadelta, AdaGrad, Nadam, SGD, RMSProp 

optimizers are used. MAE and MSE Losses are used for each optimizer. Epoch number is 

kept constant as 4096 and results of all variations are considered and these results are 

evaluated in many respects. These evaluation methods are RMSE, MSE, MAE, MSE, MAD, 

STD, MEAN, and Correlation.  

When evaluation methods MAD, MAE, MAPE, and STD are considered; the best results are 

obtained from the model using ADAMAX optimizer and MAE loss functions. Evaluation 

results are obtained as MAD: 5.8172, MAE: 0.0337, MAPE: 3.3701, STD: 0.0595 

respectively. 

When analyzed according to MSE, RMSE, correlation methods; the best results are obtained 

from ADAM optimizer and MAE Loss functions. Evaluation results are obtained as MSE: 

100.0853, RMSE: 10.0042, correlation: 0.9928 respectively. When the MEAN results are 

analyzed, it is seen that the result of NN method (result: 0.9988) which is one of the soft 

computing techniques is closer to 1. The most successful MEAN result of the deep learning 

methods is ADADELTA optimizer and MSE Loss functions (result: 1.0030).  

When the dataset is analyzed; it is seen that the places where the errors are most intense, are 

the lines where different results are obtained although the same inputs are used in the test 

results. In these rows, Deep learning Model makes a classification; consequently, the results 

of the same inputs are the same. Estimates are inaccurate because they differ in laboratory 

results. 
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In general, deep learning methods have been successful in prediction of the buckling load of 

aluminum alloy columns. This method is expected to be more successful if larger dataset is 

used to guide future studies. According to the results of the study, it is recommended to use 

MAE as a loss function and ADAM or ADAMAX as an optimizer in estimation processes. 

The SGD optimizer has the weakest results so that, it is not recommended. 
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