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ABSTRACT 

VISUAL PLACE RECOGNITION WITH DTW BASED  

ENCODED DEEP FEATURES 

 

TELLO, Ammar 

M.Sc. in Electronics and Computer Eng. 

Supervisor: Asst.Prof.Dr. Saed ALQARALEH 

January 2020, 55 pages 

 

 

 

Visual Place Recognition (VPR) techniques have opened the possibilities for 

autonomous robots and driverless cars to localize itself in a cheap and accurate way 

using only visual input. Previously, sensors-based system, which uses GPS and 

distance sensors were frequently used. However, its disadvantages such as the cost and 

the vulnerability to the signal inference, in addition to the quality improvement in the 

visual sensor (Camera) lead to replacing such systems with visual-based systems. This 

system-based is capable of getting input rich with information that is important for a 

wide range of applications including VPR. As a result, many visualization techniques 

were examined and multiple categories of image descriptors were injected into some 

localization algorithms, for the purpose of making a system that is able to be aware of 

the surrounding environment just like humans.  

In this thesis, a new VPR approach is introduced.  This approach uses the Dynamic 

Time Warping (DTW) and features extracted from a Convolutional Neural Network 

(CNN) architecture that will be encoded by the Fisher Vector (FV). In more detail, the 

features are extracted from a pre-trained CNN, then, fed into FV to be encoded and 

finally pushed to the DTW algorithm that will be used to find the best matches between 

the reference images and the new coming images (test images). In addition, the 

performance of different CNN architectures was investigated to find the best 

architecture fit with DTW, and the performance of all layers from all architectures was 

compared as well. Furthermore, the advantage of replacing the handcrafted features 

with deep features was also studied.  

As the main aim of this work is to develop a robust approach that can face real-life 

challenges, the deep features are encoded with FV, which we believe can lead to 
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getting more robust features. Our approach was evaluated against other classical 

approaches, SVM in particular, which was outperformed by our approach especially 

when it is required to process dataset(s) that has some challenges such as the viewpoint 

and/or appearance.   

 

 

Key Words: Dynamic time warping, Deep features, Fisher Vector, CNN, Image 

sequence matching, Visual place recognition.  
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ÖZET 

VISUAL PLACE RECOGNITION WITH DTW BASED 

ENCODED DEEP FEATURES 

 

TELLO, Ammar 

Yüksek Lisans Tezi, Elektronik-Bilgisayar Müh. 

Tez Yöneticisi: Dr. Öğr. Üyesi. Saed ALQARALEH 

Ocak 2020, 55 sayfa 

 

 

 

Optik Yer Tanımlama (VPR) teknikleri otonom robotların ve sürücüsüz araçların, bir 

tek görsel girdiler kullanarak ucuz ve doğru bir şekilde yer belirleme imkanı 

sağlamaktadır. Önceden, Global Konumlandırma Sistemini kullanan algılayıcı tabanlı 

sistem GPS ve bunun yanı sıra mesafe algılayıcısı sık kullanılmıştır. Ancak, sinyal 

sonuç çıkarımında maliyet ve korunmasızlık gibi dezavantajlar ve bunula birlikte 

görsel algılayıcı (Kamera) kalite geliştirmesi gibi sistemlerin, görsel tabanlı 

sistemlerle değiştirilmesine yol açmaktadır. 

Bu sistem tabanlı cihazı bilgi ile zengin bir girdi elde edebilir ve VPR dahil, çok çeşitli 

uygulamalar için dikkate değer bir öneme sahiptir. Sonuç olarak, birçok görüntüleme 

tekniği incelenmiş ve farklı görüntü tanımlayıcıları yerelleştirme algoritmalarına 

yerleştirilmiş ve çevredeki ortamın farkında olacak bir sistem tıpkı insan gibi yapmayı 

amaçlanmaktadır.  

Bu tezde, yeni bir VPR yaklaşımı gösterilmiş ve Dinamik Zaman Çarpıtma (DTW) 

tekniği kullanılarak Fisher Vector (FV) vasıtasyla kodlanacak olan Evrişimli Sinir Ağı 

(CNN) yapısından çıkarılan özellikleri kullanılmıştır. Daha ayrıntılı anlatmak 

gerekirse, özellikler; önceden eğitilmiş bir CNN'den ihraç edilir, daha sonra 

kodlanması için FV'ye beslenir, sonunda DTW algoritmasına itilir ve referans 

görüntüler ve yeni gelen görüntüler arasında (test görüntüleri) en iyi eşleşmeleri 

bulmak için bu şekilde kullanılır. Ayrıca, DTW'ye en fit olanı bulmak için farklı CNN 

yapılarının performansı araştırıldı ve tüm yapı katmanlarının performansı 

karşılaştırıldı. Bundan başka, el yapımı özelliklerin, derin özelliklerle değiştirme 

avantajı da incelenmiştir. 

Bu çalışmanın ana hedefi, Hayatın farklı gerçek zorluklarıyla yüzleşebilecek sağlam 

bir yaklaşım geliştirmek ve FV ile kodlanmış derin özellikleri daha sağlam özellikler 
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elde edilmesine yol açabileceğine inanıyoruz. Basettiğimiz bu girişm diğer klasik 

yaklaşımlara karşı ters olduğu değerlendirilmişti, Özellikle SVM olanı bizim 

yaklaşımımızdan ve bilhassa veri kümeleri işlenmesi gerektiğinde daha iyi performans 

gösterip yalnız açı ve / veya görünüm gibi bazı zorlukları bulunmaktadır. 

 

Anahtar Kelimeler: Dinamik Zaman Çarpıtma, Derin Özellikler, Fisher Vector, 

CNN, Görüntü Dizisi Eşlemesi, Görsel Yer Tanımlama. 
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CHAPTER 1  

INTRODUCTION 

Visual Place Recognition (VPR) refers to how the robot can localize itself using only 

a visual input of a revisited place. In the last decade, the (VPR) or what called Visual 

Localization, received significant attention from the research community due to the 

importance of this task in the robotic field especially for autonomous robots and self-

driving cars. It is considered as a challenging problem as appearance can change for 

the same place over seasons and from day to night and even changes to the place itself, 

also the variation in viewpoint when the same place revisited again is also a big 

challenge. Some examples of these challenges are depicted in Figure 1.1. Even though 

that there are other methods exist for localization task, like Global Positioning System 

(GPS) based methods, VPR is still preferable due to the significant information that 

can be retrieved from images and also because of the lack of GPS info in terms of 

occlusion and absence of the signal. 
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Figure 1.1 Examples of the challenges faced by the VPR systems. a) The appearance 

of the same place on day and night, b) Appearance of the same place in summer and 

winter, c) Appearance of the same place from different viewpoints. 

1.1 Problem Statement 

Dozens of works in the literature tried to solve the VPR problem as shown in (Lowry 

et al., 2015). In general, the following components, which are explained in detail in 

the following chapter, are essential in such systems: 1) Visual Map, 2) Feature 

Extraction and 3) Localization. Other components like visual perception, motion 

estimation, and decision which is the output of this system as depicted in Figure 1.2 

can be available too. Quite good efforts were made on the different VPR components 

using general-purpose datasets like ImageNet (Krizhevsky et al., 2012) and special-

purpose datasets like Places (Zhou et al., 2017) and SPED (Chen et al., 2017a) which 

are specified for the VPR tasks. In addition, in these studies many feature extraction 

approaches including handcrafted and deep features were investigated, these features 

are integrated with various localization algorithms to achieve the localization task in 

the best accurate way.  

As a result, VPR algorithms like SeqSLAM and FAB-MAP were introduced, which 

was a big step towards the perfect VPR system. SeqSLAM was great in terms of the 

way used to deal with the VPR problem which was simplified into two main problems: 

the first one is to find the best match locally by defining the most similar neighborhood 

reference images from the visual map, and the second one is to find the best match 

through the selected reference images. Also, FAB-MAP was the first approach that 

attempted to solve the VPR problem as a sequence matching instead of image to image 

matching method.    
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Despite all these efforts, there still some drawbacks in the existing approaches need to 

be solved. For example, SeqSLAM has achieved a great performance unless it was 

vulnerable to the drastic changes in the environment because it was taking the whole 

image as an input for the localization step. FAB-MAP also has a drawback in the long-

term navigation due to the changes in the appearance which make it not suitable for 

such cases. 

So, there still a need to find some approach that is able to perform the localization task 

in a way that is comparable to what humans are capable of.  

Introducing a new approach by improving two main components, i.e., feature 

extraction and localization modules, that can give promising results in achieving the 

VPR task, is our aim. For the localization algorithm, a Dynamic Programming (DP) is 

used represented by Dynamic Time Warping (DTW) which is a sequence alignment 

algorithm that was used for the first time in visual recognition by (Hafez et al., 2019) 

to find the best matches among the distance matrix between a reference and test 

datasets. Then, we integrated the DTW with the well-known deep features, after that, 

these features were encoded by the Fisher Vector (FV) algorithm. 

 

Figure 1.2 Visual Place Recognition Schematic Diagram. 

 

1.2 Motivation and Objectives 

The main motivation of this work is to make a breakthrough in the way of treating the 

VPR problem by introducing a new approach based on DTW that has achieved 

promising results in (Hafez et al., 2019), which we have further improved by 

integrating the encoded deep features. In other words, this combination made to get 
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the benefits from both, the DTW and the encoded Deep Features to come with a VPR 

approach capable of manipulating with different VPR challenges. The main goals that 

this thesis was attempted to achieve are described as follows: 

• Introducing a new VPR approach that can deal with different VPR challenges. 

• Investigate the best Convolutional Neural Network (CNN) architecture that 

gives the best performance when integrated with DTW and finds the best layer 

in this architecture. 

• Find the benefit of using Deep Features instead of handcrafted features.  

• Investigate the effect of encoding the deep features with FV in terms of 

performance.  

• Finally, evaluate the performance of the proposed approach against the Support 

Vector Machine (SVM) classifier which is a classifier used widely as the last 

layer in CNN architectures.   

1.3 Contributions 

The main contribution of this work is two folds:  

i) Introducing a new VPR algorithm that utilizes DTW and deep features encoded 

using fisher vector. In more detail, the proposed algorithm formulates the DTW as 

a visual place recognition system. The feature maps are extracted from a selected 

convolution layer after applying the test and the reference image sequences as an 

input to the network and these features are encoded using FV based. Then, the DTW 

algorithm aligns the two sequences resulted from encoding features by matching 

each test image to the closest image in the reference sequence of images. 

ii) The different layers from the VGG16, ResNet50 and HybridNet networks are 

explored to identify the layers that are best performing with the DTW algorithm for 

visual place recognition.  

Figure 1.3 shows the output images produced by the DTW algorithm corresponding to 

an example input image while using different kinds of features.  
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Figure 1.3 Examples of the output of DTW using different features where the 

difference between the test image and the ground truth image are shown in red. 

1.4 Organization of the Thesis and Publications 

The rest of this work is organized as follows: The background chapter (CHAPTER 2) 

explains the main techniques used in this thesis. LITERATURE REVIEW (CHAPTER 

3) contains a review of the milestone works in the VPR field. DTW BASED 

ENCODED DEEP FEATURES (CHAPTER 4) contains details about the proposed 

approach, EXPERIMENTAL EVALUATION AND ANALYSIS (CHAPTER 5) 

presents the results of the experiments done through this thesis to achieve the goals 

described in the section (1.2) of this chapter. CONCLUSION (CHAPTER 6) is to give 

a brief about the outcomes of this work and some headlines for possible directions for 

future work. 

 

It is worth mentioning that a conference paper (Hafez et al., 2019) titled as “Visual 

Place Recognition by DTW-based sequence alignment” was published on “SIU 2019” 

SIVAS, Turkey. Also, another paper was submitted to the IEEE conference “ICRA 

2020” and it is under evaluation until the time of writing this thesis. One more paper 

is expected to be published into the “SIU 2020” conference as a result of this work.
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CHAPTER 2  

BACKGROUND 

2.1 Visual Place Recognition Components 

As mentioned in Chapter 1, the VPR systems share the following main components: 

1) Visual Map: which is represented by the images of the visited place or generally the 

environment, and these images are considered as references, while the new coming 

images are called test images. 2) Feature Extraction: In this step, each image is 

represented by a descriptor that is formulated through some feature extraction 

algorithm(s), which works on finding the most important representatives inside the 

image. 3) Localization: This component is responsible for finding the best matches 

between reference and test images, so, the robot can localize itself according to the 

place that the matched reference image referred to. In the next two sections, more 

details about Feature Extraction and Localization are given. 

2.2 Features Extraction 

In general, there are two types of features that can be extracted from images, 

handcrafted features and deep features. 

2.2.1 Handcrafted Features 

These features represent images using the information present in the image itself. 

SIFT, HoG, and LDB (Lowe, 1999; Dalal and Triggs, 2005; Yang and Cheng, 2013), 

are examples of efficient and frequently used handcrafted descriptors.  

2.2.1.1 Scale-Invariant Feature Transforms (SIFT) 

SIFT algorithm is a way of detecting and describing the local features in images with 

scale-invariant, i.e., the same features at different scales are detected as similar 

features. This is done through different steps started with detecting the features (Key 
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points) using the second derivative of Gaussian or what called Laplacian of Gaussian 

(LoG) where different standard deviation (𝜎) values are used to detect the features on 

different scales. The calculation of LoG is simplified using Difference of Gaussian 

(DoG) as follows:  

𝜕𝐺

𝜕𝜎
=  𝜎Δ2𝐺 (2.1) 

 

𝜎Δ2𝐺 =
𝜕𝐺

𝜕𝜎
=

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)

𝑘𝜎 − 𝜎
 (2.2) 

 

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎) ≈ (𝑘 − 1)𝜎2Δ2𝐺 (2.3) 

 

Where 𝐺 is the Gaussian density function. So, to calculate the LoG, the Gaussian with 

different 𝜎 values are applied on the image, then, each two consequence results are 

subtracted to get the DoG, this procedure should be repeated for different scales, where 

the image is down-sampled in a pyramid way, and for each scale of image, different 𝜎 

values are applied. In other words, DoG is calculated at different scales of images and 

different 𝜎 values. Then, the key points are extracted, where each pixel is compared 

with its 26 neighbors, 8 in the current and 18 in the two adjacent scales. If this pixel is 

larger or smaller than all its neighbors, then it can be selected as a key point. However, 

some of the selected key points are outliers and must be eliminated. This is done 

through two methods, the first one is based on Taylor series for DoG: 

𝐷𝑜𝐺(𝑋) = 𝐷𝑜𝐺 +
𝜕𝐷𝑜𝐺𝑇

𝜕𝑋
𝑋 +

1

2
𝑋𝑇 𝜕2𝐷𝑜𝐺

𝜕𝑋2
𝑋, Where    𝑋 = (𝑥, 𝑦, 𝜎)𝑇  (2.4) 

So, for each (𝑋), if the |𝐷𝑜𝐺(𝑋)| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then, this value can be considered as 

an accepted key point, otherwise, it is considered as an outlier. The second method is 

based on Hessian matrix: 

𝐻 = [
𝐷𝑜𝐺𝑥𝑥 𝐷𝑜𝐺𝑥𝑦

𝐷𝑜𝐺𝑥𝑦 𝐷𝑜𝐺𝑦𝑦
] (2.5) 

Where the elements are the derivatives of 𝐷𝑜𝐺 according to the shown subscript. The 

trace and determinant of this matrix are given as follows: 

𝑇𝑟(𝐻) = 𝐷𝑜𝐺𝑥𝑥 + 𝐷𝑜𝐺𝑦𝑦 = 𝜆1+𝜆2 (2.6) 
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𝐷𝑒𝑡(𝐻) = 𝐷𝑜𝐺𝑥𝑥𝐷𝑜𝐺𝑦𝑦 − (𝐷𝑜𝐺𝑥𝑦)2 =  𝜆1𝜆2 (2.7) 

Where 𝜆1 and 𝜆2 are the eigenvalues of the H. The outliers are rejected when r>10, 

where: 𝑟 =
𝜆1

𝜆2
 

Then, after eliminating the outliers, a descriptor for each key point should be computed 

using the orientation and magnitude of a 16x16 patch around each keypoint. A 

weighted histogram can be formulated by dividing the patch into 4x4 regions, and for 

each region, a histogram weighted by magnitude and consists of 8 bins is calculated. 

A 128-length descriptor is formulated for each key point, and the whole image can be 

described by all descriptors related to the detected keypoints.  

2.2.1.2 Histogram of Gradients (HoG) 

HoG is a global descriptor that divides the image into several blocks where each block 

is represented by several cells and each cell consists of several pixels. For each cell, a 

histogram of gradient is computed, where the gradient orientation is quantized into a 

specific number of bins and weighted by the gradient magnitude just like in SIFT. The 

gradient of an image along X and Y axis can be calculated using Sobel filter which 

can be described as follows: 

 

Figure 2.1 Sobel Filter, a) For X direction, b) For Y direction 

The magnitude and orientation can be calculated using equations (2.8) and (2.9) 

respectively. 

𝑔 =  √𝑔𝑥
2 + 𝑔𝑦

2 (2.8) 

𝜃 = arctan (
𝑔𝑦

𝑔𝑥
) (2.9) 

 

The descriptors for all cells are concatenated to formulate a descriptor for the image. 

The blocks can share some cells according to the stride parameter which specify the 

number of pixels that each block is shifted from its neighbor. 
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2.2.1.3 Local Difference Binary (LDB) 

LDB is a local binary descriptor, where the key points are detected, then described by 

LDB. The detecting process could be done based any keypoint detector like FAST and 

ORB algorithms. For each keypoint, a patch that surrounds this keypoint is defined, 

and each patch is divided into n*n grids. For each pair of grids, the following function 

is performed: 

𝜏(𝐹𝑢𝑛𝑐(𝑖), 𝐹𝑢𝑛𝑐(𝑗)) ≔ {
1        𝑖𝑓(𝐹𝑢𝑛𝑐(𝑖) − 𝐹𝑢𝑛𝑐(𝑗)) > 0 𝑎𝑛𝑑 𝑖 ≠ 𝑗

0                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.10) 

Where 𝑖 and 𝑗 are different grids, and 𝐹𝑢𝑛𝑐(. ) is a function applied on the grid. This 

function is one of three different functions as follows: 

𝐹𝑢𝑛𝑐𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) ≔
1

𝑚
∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑘)

𝑘=1~𝑚
 (2.11) 

𝐹𝑢𝑛𝑐𝑑𝑥(𝑖) ≔ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑥(𝑖) (2.12) 

𝐹𝑢𝑛𝑐𝑑𝑦(𝑖) ≔ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑦(𝑖) (2.13) 

Where 𝐹𝑢𝑛𝑐𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(.) is the average intensity in the grid, m is the number of pixels 

in that grid. 𝐹𝑢𝑛𝑐𝑑𝑥(. ) is the gradient along x direction, and 𝐹𝑢𝑛𝑐𝑑𝑦(𝑖) is the gradient 

along y direction. So, for each two grids, three binary bits are calculated.  The size of 

each grid is very important in terms of robustness and distinctiveness where smaller 

size means more distinctiveness and larger size gives more robustness, so, to achieve 

both, multiple grid sizes are applied. The full LDB descriptor is formulated through 

concatenating all calculated binary strings from all grids. It is important to note that 

bit selection procedure is applied to achieve higher efficiency in terms of the time of 

matching descriptors and the needed storage to maintain the final descriptors. This 

process is done through one of two approaches: 1) Random selection: where n bits are 

selected from the full LDB descriptor randomly, 2) Entropy-based selection: where 

LDB descriptors for a training dataset is generated to make a matrix of size (N x 

number of records) where N is the length of the LDB descriptor for one image. For 

each matrix column, the entropy is calculated as follows: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑖 = −𝑃𝑖(1) log(𝑃𝑖(1)) − 𝑃𝑖(0) log(𝑃𝑖(0))       (1 ≤ 𝑖 ≤ 𝑁) (2.14) 

𝑃𝑖(1) is the probability of having 1 in column i and 𝑃𝑖(0) the probability of having 0 

in the same column. The final LDB descriptor is generated from n columns with the 

highest entropies.   
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2.2.2 Deep Features 

Using this method, the image is represented using the output of a specific Layer from 

a CNN model. In this thesis, we considered the layers of the VGG16, ResNet50 and 

HybridNet networks (Zhang et al., 2015; He et al., 2016; Chen et al., 2017a). The 

details of the Deep feature are presented in the next section. 

2.2.2.1 Features from Pre-trained CNN Networks 

In general, CNN composed of a number of layers such as convolution layer, which 

mainly aims to detect local conjunctions of features from the previous layer and 

mapping their appearance to a feature map, pooling layer that responsible for reducing 

the size of the activation maps, and ReLU layer, which can be considered as special 

implementation aims to combine non-linearity and rectification layers. Nowadays, 

multiple CNN models are available and can be integrated and considered as good 

choices for improving any image retrieval systems. The following are some successful 

deep Conv Net examples. AlexNet (Krizhevsky et al., 2012) was one of the first deep 

networks that defeat classification traditional methodologies. In general, it consists of 

5 convolutional layers followed by 3 fully connected (FC) layers. VGGNet (Zhang et 

al., 2015) consists of 16 convolutional layers and can be considered as one of the most 

preferred choices for extracting features from images. In addition, the weight 

configuration of the VGGNet is publicly available and has been used in many other 

applications. GoogleNet (Szegedy et al., 2015) consists of 22 layers, however, it has 

significantly reduced the number of used parameters by using several very small 

convolutions, which leads to reducing the number of parameters to 4 million. Overall, 

it has achieved performance close to the human-level. More recently, ResNet (He et 

al., 2016) was proposed with a novel architecture based on skip connections and 

features. Heavy batch normalization was introduced. Hence, the system can be trained 

using 152 layers while still having lower complexity than other models. Another model 

that was developed for VPR applications is known as HybridNet (Chen et al., 2017a). 

It consists of 6 convolutional layers followed by two FC layers. This CNN architecture 

initialized with weights taken from CaffeNet (Krizhevsky et al., 2012) as both models 

have the same dimensions for the first five layers, then, the HybridNet was fine-tuned 

on the SPED dataset which was also proposed in the same work. Details about VGG16, 

ResNet50, and HybridNet are shown in Table 2.1, Table 2.2 and Table 2.3 

respectively. Also, Figure 2.2 shows the visualization of VGG16. 
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Table 2.1 VGG16 architecture layers including the output size of each layer, the kernel 

size and the number of feature maps in each layer. 

Layer name Output size Kernel size, Number of Feature maps 

conv1_x 112×112 [
3 × 3, 64
3 × 3, 64

] 

conv2_x 56×56 [
3 × 3, 128
3 × 3, 128

] 

conv3_x 28×28 [
3 × 3, 256
3 × 3, 256
3 × 3, 256

] 

conv4_x 14×14 [
3 × 3, 512
3 × 3, 512
3 × 3, 512

] 

conv5_x 7×7 [
3 × 3, 512
3 × 3, 512
3 × 3, 512

] 

FC 6 1×1 4096 

FC 7 1×1 4096 

Softmax 1×1 1000 

 

 

Table 2.2 ResNet50 architecture layers including the output size of each layer, the 

kernel size and the number of feature maps in each layer. 

Layer name Output size Kernel size, Number of Feature maps 

conv1 112×112 7×7, 64, stride 2 

conv2_x 56×56 

3×3 max pool, stride 2 

[
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3 

conv3_x 28×28 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

conv4_x 14×14 [
1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 6 

conv5_x 7×7 [
1 × 1, 512
3 × 3, 512
1 × 1, 2048

] × 3 

Softmax 1×1 1000 

 

 



 

12 

 

Table 2.3 HybridNet architecture layers including the output size of each layer, the 

kernel size and the number of feature maps in each layer. 

Layer name Output size Kernel size, Number of Feature maps 

conv1 55×55 11 × 11, 96 

conv2 27×27 5 × 5, 256 

conv3 13×13 3 × 3, 384 

conv4 13×13 3 × 3, 384 

conv5 13×13 3 × 3, 256 

conv6 6×6 3 × 3, 256 

FC 1×1 4096 

Softmax 1×1 4096 

 

  

Figure 2.2 A representation of VGG16 layers. 
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2.3 Encoding Features  

BOW, VLAD and FV are examples of encoding methods that enhance the features 

extracted through feature extraction algorithms. BOW, VLAD and FV are explained 

below. 

2.3.1 Bag of Words (BOW) 

BOW or BOVW (Bag of Visual Words) is the first encoding method that was used at 

the beginning for text retrieval, but then, it became used for image retrieval also. In 

this work we are interested in the encoding use of this algorithm. 

The first step is to detect and describe the features in the images using algorithms like 

SIFT, SURF, etc. The second step is to build what called Visual Codebook, this can 

be done by clustering the features extracted from the training dataset based some 

clustering algorithm like K-Means and its improvements. The centers of the generated 

clusters are representing the visual words, and now the visual codebook which consists 

of these visual words became ready to use in the testing phase. Finally, when a new 

image come, the distance between the extracted features from this image and the visual 

words should be calculated, each feature vector is assigned to the nearest center, and a 

histogram can be formulated which represents the number of occurrences of each 

visual word in the testing image, and according to it, the image can be classified into 

the category that the most occur visual word is refer to. Also, the generated histogram 

can be used as a descriptor that represents the image. 

2.3.2 Vector of Locally Aggregated Descriptors (VLAD) 

VLAD is another encoding method, the first and second steps are the same as BOW 

where the features should be extracted and clustered to make a visual codebook. To 

make a VLAD vector for image (𝐼) the residuals should be computed as follows: 

𝑣𝑐 = ∑𝑞𝑖𝑐 (𝑥𝑖 − 𝜇𝑐)

𝐾

𝑖=1

 (2.15) 

Where c is the number of cluster, q is the strength of the association with cluster, which 

has two constraints: 𝑞𝑖𝑐 > 0 and ∑ 𝑞𝑖𝑐 = 1𝑀
𝑐=1  where 𝑀 is the number of clusters. 

All residuals will be concatenated to formulate the VLAD vector of image (𝐼): 



 

14 

 

𝜙(𝐼) =

[
 
 
 
 
 
 
 
 

.

.

.
𝑣𝑐

.

.

.

.

. ]
 
 
 
 
 
 
 
 

 (2.16) 

2.3.3 Fisher Vector (FV) 

Fisher vector can be described as a way of producing a global descriptor for an image-

based on the local descriptors of its local regions, and it is the best among other 

encoding techniques. Its main steps are explained below. 

Step1: Gaussian Mixture Model (GMM) 

In general, the Gaussian Mixture Model (GMM) can be used as the step before using 

the selected encoding schemes, i.e., it is a soft clustering process for the extracted 

features. In more detail, as mentioned before, the features should be extracted from the 

image and described using one of the feature extraction methods, then, these features 

will be soft-assigned to clusters made by GMM. GMM can be described as a set of 

multivariate Gaussian distributions, represented as a sum of weighted Gaussian 

distribution functions based equation (2.17): 

𝑝(𝑥|𝜆) = ∑𝑤𝑐 𝑔(𝑥 |𝜇𝑐, Σ𝑐)

𝑀

𝑐=1

 (2.17) 

 

Where 𝑤𝑐  is the weight of the 𝑐 component, 𝑔(𝑥 |𝜇𝑐, Σ𝑐) is the Gaussian density 

function, 𝑥 is the data vector, 𝜇𝑐 is the mean of the 𝑐 Gaussian component and Σ𝑐 is 

the covariance matrix of the same component. And the Gaussian density function is 

given by equation (2.18): 

𝑔(𝑥 |𝜇𝑐, Σ𝑐) =
1

(2𝜋)𝐷/2 |Σ𝑐|1/2
exp {−

1

2
(𝑥 − 𝜇𝑐)

′  ∑ (𝑥 − 𝜇𝑐)
−1

𝑖
} (2.18) 

 

The mixture weights should meet the constraint  

∑𝑤𝑐 = 1

𝑀

𝑐=1

 (2.19) 
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As a result, The GMM can be summarized as follows: 

𝜆 = {𝑤𝑐 , 𝜇𝑐, Σ𝑐}      𝑐 = 1,… ,𝑀 (2.20) 

Where 𝑀 is the number of GMM components. Estimating the values of the GMM 

parameters (𝑤𝑐 , 𝜇𝑐 ,  Σ𝑐) is done through an iterative algorithm called Expectation 

Maximization, which has a concept of maximizing the likelihood of the GMM model, 

knowing that for each iteration, the GMM model is replaced with a new one that met 

the following constraint: 

𝑝(𝑋|𝜆̅) ≥  𝑝(𝑋|𝜆) (2.21) 

Where 𝜆̅ is the new model and 𝑝(𝑋|𝜆) is the likelihood of the 𝜆 model given in 

equation (2.22): 

𝑝(𝑋|𝜆) = ∏𝑝(𝑥𝑡|𝜆)

𝑇

𝑡=1

 (2.22) 

Here, T is the number of training vectors 𝑋 = {𝑥1, … , 𝑥𝑇}. 

For each EM iteration, the weights, means and covariance matrices are updated 

according to equations (2.23), (2.24) and (2.25) respectively 

𝑤̅𝑐 =
1

𝑇
∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

 (2.23) 

 

𝜇̅𝑐 = 
∑ 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆)𝑇

𝑡=1  𝑥𝑡

∑ 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆)𝑇
𝑡=1

 (2.24) 

 

𝜎𝑐
2 = 

∑ 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆)𝑇
𝑡=1  𝑥𝑡

2

∑ 𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)𝑇
𝑡=1

− 𝜇̅𝑐
2 (2.25) 

       

Where 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆) is the Posteriori of the 𝑐 component explained in equation (2.26), 

𝑥𝑡 is the data vector and 𝜆 is the current GMM model. The outcome of the EM 

algorithm is a GMM model that best fit with the given training data. 

𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆) =
𝑤𝑐 𝑔(𝑥𝑡 |𝜇𝑐, Σ𝑐)

∑ 𝑤𝑘 𝑔(𝑥𝑡 |𝜇𝑘, Σ𝑘)
𝑀
𝑘=1

 (2.26) 
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Step 2: Obtaining the Fisher Vector 

The fisher vector is built on fisher kernel which is responsible of finding the similarity 

between two data input using a generative model, in this case it is a GMM model. As 

a result, each component of each data vector has two elements computed as follows: 

𝑢𝑑𝑐 =
1

𝑇√𝜋𝑐

 ∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

 
𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐
 (2.27) 

 

𝑣𝑑𝑐 =
1

𝑇√2𝜋𝑐

 ∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

[( 
𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐
)
2

− 1] (2.28) 

Where 𝑑 =  {1, … , 𝐾} is a component from the data vector 𝑥 with dimension 𝐾. 

The final fisher vector of image (𝐼) is represented as follows: 

𝜙(𝐼) =

[
 
 
 
 
 
 
 
 

.

.

.
𝑢𝑐

.

.
𝑣𝑐

.

. ]
 
 
 
 
 
 
 
 

 (2.29) 

The dimension of this fisher vector can be given in equation (2.30): 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹𝑉 =  𝑀 ×  𝐾 ×  2 (2.30) 

In this work, we are interested in the improved version of the Fisher Vector (Improved 

Fisher Vector (IFV)) (Perronnin et al., 2012), since it has been proved that it can get 

better performance compared to the classical FV. 

2.3.4 Improved Fisher Vector (IFV) 

Two more steps were added to the FV algorithm that leads to improve the performance. 

The first step is to normalize the FV for each dimension using the following function 

𝑓(𝜙) = 𝑠𝑖𝑔𝑛(𝜙)|𝜙|𝛼 (2.31) 

Where 𝛼 is a parameter in the range [0, 1]. 

The second step is to normalize the resulted FV from the previous step with L2 

normalization (2.32).  
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‖𝜙‖2 =
𝜙

√𝜙1
2 + 𝜙1

2 + ⋯ + 𝜙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹𝑉
2

 
(2.32) 

 

2.4 Localization 

The localization is a component that is responsible for deciding whether the current 

place is a new place or it’s a revisited place giving the corresponding image from the 

reference images (visual map). Many algorithms such as the DTW and SVM can be 

used for this purpose.  

2.4.1 DTW  

In general, the DTW can be used to align two sequences of images, in our case, it is 

the test and the priori annotated reference sequences, which is represented by the 

features vectors 𝐴𝑥𝑖 and 𝐴𝑦𝑗, where 𝑥𝑖 is an image in the test sequence and 𝑦𝑗 is an 

image in the reference sequence. Then, the distance between each two features vectors 

extracted from reference and test sequences is explained in equation (2.33) 

𝐷(𝑖, 𝑗) = 1 −  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖 , 𝑦𝑗) =  
|𝐴𝑥𝑖| .  |𝐴𝑦𝑗|

‖𝐴𝑥𝑖‖ ·  ‖𝐴𝑦𝑗‖
 (2.33) 

Briefly, the distance value between the image 𝑥𝑖 from the test sequence and the image 

𝑦𝑗 from reference sequence is stored in 𝐷(𝑖, 𝑗). It is worth mentioning that the proposed 

algorithm can work with any distance matrix such as cosine and Euclidean and 

independent of the selected cost function, the DTW will always follow the same set of 

steps. This distance matrix is depicted in Figure 2.3. However, in our work, the Cosine 

similarity was used, which make it necessary to make some changes to the way that 

DTW is follow to find the best path, details about these changes can be found on 

chapter 4 (DTW BASED ENCODED DEEP FEATURES). 

After that, the Equation (2.34) is used to fill the cost matrix by accumulating the 

elements of the distance matrix (𝐷). In other words, in the developed algorithm, the 

(2.34) relation is used to fill the cost matrix, which represents the sum of the distance 

between current matching two images and the minimum of the cumulative distances 

of the neighboring images. 
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𝐶(𝑖, 𝑗)  =  𝐷(𝑖, 𝑗)  +  𝑚𝑖𝑛 {

𝐷(𝑖 −  1, 𝑗),

𝐷(𝑖, 𝑗 −  1),

𝐷(𝑖 −  1, 𝑗 −  1),

 (2.34) 

Whenever the matrix 𝐶 is filled out, DTW works on defining an optimal path of 

matches 𝑃, which is the result of backward tracing in the matrix 𝐶 choosing the 

previous elements with the lowest cumulative distance. Hence, the path through the 

elements of matrix 𝐶 that has the minimum sum of cost values 𝐶(𝑖, 𝑗) is the optimal 

path and can be interpreted as minimizing the following function. 

𝑄(𝑃) =  ∑𝐶(𝑖𝑙, 𝑗𝑙)

𝐿

𝑙=1

 (2.35) 

An example of this path is shown in Figure 2.4. For more details about DTW 

algorithm, the reader is referred to (Sakoe and Chiba, 1978; Kate et al., 2016; Petitjean 

et al., 2016).  

 

 

Figure 2.3 The distance matrix between the features vectors of the reference images 

and test images. 
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Figure 2.4 The best path between the reference images and test images using DTW. 
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CHAPTER 3  

LITERATURE REVIEW 

Visual Place Recognition (VPR) has been well studied in the literature because of the 

importance of this field in terms of achieving the localization task for autonomous 

robots and vehicles based visual input (Cummins and Newman, 2008). The recent 

researches about autonomous robots based on computer vision techniques and 

different categories of VPR approaches (Lowry et al., 2015) are summarized in the 

following sections. 

3.1 Autonomous Robots Based on Computer Vision 

Localization and Navigation are the key skills that autonomous robots should have to 

be able to recognize its current location and how to reach the desired destination(s). 

Different kinds of unmanned robots are existed, including Unmanned Ground Vehicles 

(UGVs) (Bojarski et al., 2016), Unmanned Aerial Vehicles (UAVs) (Milford et al., 

2011) and Unmanned Underwater Vehicles (UVVs) (Hong et al., 2016). Examples of 

those kinds are shown in Figure 3.1. 

 

 

Figure 3.1 Examples of autonomous robots. a) UAV, b) UGV, c) UUV. 

 

In this work, we focused on the VPR approaches in terms of UGVs like driverless  

cars. The most recent works in this field are focusing on using what called  

Visual Simultaneous Localization and Mapping (SLAM). In such methods, the sensors 
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responsible for the localization task like GPS are replaced or merged with a visual 

sensor that can make the localization and mapping tasks at the same time. One of the 

most recent works in this field called ORB-SLAM (Mur-Artal et al., 2015). This 

algorithm is initiated by describing the new coming frame based the Oriented FAST 

and Rotated BREIF (ORB) binary descriptor. In addition, this system contains a Place 

Recognition module based on the BOW to perform the re-localization procedure when 

the tracking module is lost. 

3.2 Approaches based on the Handcrafted Features 

This category can use local descriptors and/or global descriptors. For local descriptors, 

key points in the image should be detected, then, the region around each key point is 

described. For global descriptors, there is no need to detect the key points. Instead, a 

descriptor for the whole image is generated. 

3.2.1 Local Descriptors 

Local descriptors like scale-invariant feature transform (SIFT) (Lowe, 1999) and 

speeded-up robust features (SURF) (Bay et al., 2006) were used in the VPR 

approaches. In addition, the Fast Appearance-Based Mapping (FAB-MAP) algorithm 

(Cummins and Newman, 2008) is a sequence matching approach that is based on this 

category. In more detail, this approach performs the sequence matching between two 

sets of images using SURF features as descriptors encoded using Bag of visual words 

(BOW) algorithm. This is done by clustering the descriptors of the local regions 

generated by (SURF) into a predefined number of clusters, which is considered as a 

visual codebook obtained from the training dataset. Related to the testing dataset, it 

will be described through (SURF), where each local descriptor is assigned into the 

nearest cluster using KD-Tree algorithm. Moreover, the resulted visual words are used 

to build the mutual information graph, where the node refers to a visual word, and the 

weight on the edge connecting two nodes represents the mutual information. The 

spanning tree of this graph is what called Chow Liu tree which is a representation of 

the visual word distribution that works as a generative model, so, the coming images 

can be considered as a pre-visited location or a new location by knowing how likely it 

belongs to the available locations distributions. 
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3.2.2 Global Descriptors 

The second category, which uses descriptors such as Histogram of Gradients (HoG) 

(Dalal and Triggs, 2005) represents the whole scene with a global descriptor. 

SeqSLAM (Milford and Wyeth, 2012) is another sequence matching approach that 

manipulates images by getting a global descriptor for the image, and then it calculates 

the distance of the image descriptor to all reference images to find the best match. 

Although, this system has achieved a good performance, since it is based on the image 

itself makes it vulnerable to any changes in the environment.  

In (Naseer et al., 2014), flow control is represented as a directed graph where a source 

and sink nodes are available and the best path between these two nodes should be 

found to achieve a sequence matching between two sets of images.   

Another method uses the ABLE (Arroyo et al., 2014) algorithm which is based on the 

binary descriptor, i.e., Local Difference Binary (LDB). It has been found that this 

method is good when illumination cases the variance between the two sets of images, 

as this method has a specific parameter that can eliminate the variation between the 

two sequences. In addition, it processes a sequence of images instead of processing 

one image, which makes it suitable for the long-term scenarios. Multiple versions of 

this algorithm were introduced to deal with multiple input scenarios including 

monocular (ABLE-M) Stereo (ABLE-S) and panoramic (ABLE-P). 

3.3 Approaches based Deep Features 

Different approaches were proposed to solve the VPR problem based on deep features. 

In general, each of these approaches has adopted one of the follows features extraction 

methods: 1) The pixels of the whole image are the input of the CNN and then features 

are extracted from some layer to represent the image (Chen et al., 2014). 2). Secondly, 

some landmarks could be defined by human and the features of these regions are 

extracted from the output of convolutional layers (Sünderhauf et al., 2015). 3) The 

third option is the same as the first one except that instead of getting the output of the 

CNN directly, landmarks are detected automatically and formulated to produce a 

representation for the whole image (Chen et al., 2017b; Khaliq et al., 2018, 2019). 

 

In the last decade, deep learning and especially pre-trained CNN is frequently used, 

which is a network architecture trained on a dataset collected for some computer vision 
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application, and then, the trained weights can be used to get the output or extract 

features from the deep layers using another dataset for achieving the same or different 

purpose of the original training dataset. In the following sub-section, some recent 

studies related to the use of pre-trained CNN are summarized. 

3.3.1 Using Pre-Trained Models 

It has been proved that tasks like image retrieval and image classification could be 

achieved using pre-trained CNN (Wang et al., 2017a, b). The deep features can be 

extracted from any layer of the used CNN. In (Sünderhauf et al., 2015b; Chen et al., 

2018; Yue-Hei Ng et al., 2015) and (Chandrasekhar et al., 2017) the performance of 

tasks like image retrieval, image classification and place recognition, based features 

extracted from different layers of a CNN, was investigated. The results of these studies 

showed that the last layer is considered as the best for image classification tasks, On 

the other hand, the middle layers are the best for the place recognition and image 

retrieval tasks. Another evidence was presented in (Sünderhauf et al., 2015), where the 

AlexNet CNN was used, and it has been found that middle layers can handle the 

changes in appearance much better than using the higher layers, while the higher layers 

are the best option to deal with the viewpoint changes.  

The work of (Fu et al., 2016; Du and Cai, 2016) has focused on the performance of the 

last layer of CNN which is the layer that gives the final decision. SVM and Softmax 

are the two frequently layers that can be used as the last layer, and the result of this 

study showed that SVM has slightly outperformed the Softmax. 

 

All the aforementioned works have used general pre-trained CNN architectures, i.e., 

these models were not trained specifically for the place recognition task. The work of 

(Zhou et al., 2017) can be considered as the first work that attempted to solve this 

problem by collecting a dataset called Places, which is consists of 10 million images 

of places in a different environmental situation from around the world. Then, some 

well-known architectures like AlexNet (Krizhevsky et al., 2012), GoogLeNet 

(Szegedy et al., 2015) and VGG16 (Simonyan et al., 2014) were trained on this dataset, 

and as expected, it has outperformed the previous pre-trained models on ImageNet 

(Krizhevsky et al., 2012) dataset.  

Another dataset called Specific PlacEs Dataset (SPED) was collected using nearly 

30000 outdoor cameras from all around the world. This dataset contains images from 
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days and nights through several months and several years attempting to include all 

possible changes under different conditions (Chen et al., 2017a). This work presented 

two pre-trained models, AmosNet and HybridNet, AmosNet was trained on the SPED, 

while the HybridNet was trained on the ImageNet, then fine-tuned on SPED. The 

results of this study showed that HybridNet has outperformed AmosNet.  

Even though deep features are able to outperform the handcrafted features in most 

cases, it has been found that it is not efficient in handling the viewpoint changes (Xin 

et al., 2019). To overcome this problem and as shown in (Xin et al., 2019; Chen et al., 

2017b; Khaliq et al., 2018, 2019), researchers have tried to add some additional steps 

before and after the deep features extraction to compensate this limitation. Encoding 

features to enhance the ability of deep features to be more robust against the 

appearance changes was one of these steps. On the other hand, some works such as 

(Chen et al., 2017b), work on determining the image’s landmarks to overcome the 

viewpoint challenge. The approach of (Chen et al., 2017b), tried to detect the most 

promising landmarks from the output of the convolutional layers of a pre-trained 

VGG16 deep neural network. Then, the features extracted from the VGG16 layers are 

fed into BOW (Sivic et al., 2003) to be encoded. Finally, as each image is represented 

by a vector, the distance between images was calculated by cosine similarity to find 

the mutual matching of regions in the images.   

A slightly different approach was followed in (Khaliq et al., 2018) where the encoding 

method was VLAD (Jégou et al., 2010) and detecting the landmarks was done through 

only one layer of a pre-trained AlexNet365 (Zhou et al., 2017) without need to get a 

mask from another layer like in (Sivic et al., 2003). This approach outperformed the 

one with BOW.  

Another improved approach was introduced in (Khaliq et al., 2019) by the same 

authors where more features from different layers of the CNN are gathered to improve 

the performance. In this approach, the HybridNet is the architecture used because of 

its superiority over other architectures. In addition, the Cosine distance between all 

images was used to find the best match. This approach worked nearly in real-time, just 

like the one presented in (Xin et al., 2019). 

In this chapter we discussed many methods and many algorithms to deal with the VPR 

problem, some of them used the traditional ways for extracting features, but we can 

see clearly that the most recent works based deep features were get remarkable results 

that was not achieved before. 
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In this thesis, we have inspired by these works, where deep features are used. 

Furthermore, the sequence-based methods were proved as a better way for dealing with 

long-term scenarios and that what was made the DTW a proper algorithm to be used 

as the core of our localization algorithm. In the following chapter, more details about 

the proposed approach is given.  
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CHAPTER 4  

DTW BASED ENCODED DEEP FEATURES 

In this chapter, the proposed approach is presented. Briefly, the approach start by 

extracting features through the layers of the deep networks, then, these features are 

encoded with FV, followed by DTW algorithm, which is used to find the path that 

gives the best performance through all other possible paths, where the result is the 

matches between the test images and reference images. It worth mentioning that the 

improved version of the Fisher Vector (IFV) is used in our approach and it was 

abbreviated as Fisher Vector (FV) for the rest of this thesis unless another situation 

was declared.  

 

Figure 4.1 The main components of the proposed approach. a) The image sequences 

(visual map). b) Feature extraction step based deep learning, c) Encoding deep features 

using Fisher Vector, d) Images alignment and find the best matches using DTW.  

4.1 Image Sequence 

In this step there are two types of images sequences: Reference Images 𝑋 and Test 

Images 𝑌 as follows: 

𝑋 =  {𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛} (4.1) 

𝑌 =  {𝑦1, 𝑦2, 𝑦3 … , 𝑦𝑚} (4.2) 
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Where n is the number of reference images and m is the number of test images.  

The reference and test images should be collected from the same rout. Reference 

images are fed into the GMM to train a model that can be used later with the test 

images. This process is explained in detail in section 4.3 

4.2 Deep Features Extraction 

As explained in CHAPTER 3, there are three common methods that can be used to 

extract the image’s deep features, in this work, the first method was used, i.e., the 

pixels of each image is fed into the deep network, then, the features are extracted 

through the output of some layer(s) from the CNN architecture. In more detail, for an 

image I, the output dimensions of some convolutional layer will be 𝑊 × 𝐻 × 𝐾 where 

𝑊 is the width, 𝐻 is the height and  𝐾 is the depth of the Feature maps in the selected 

layer. For such a layer, there are 𝑊 × 𝐻 feature vectors, where each one consists of 

𝐾 components as depicted on Figure 4.2. Let 𝑁 denote 𝑊 × 𝐻, these features are 

stacked together in a matrix with size 𝑁 × 𝐾 to be fed into the next stage. 

 

Figure 4.2 An example of a layer in a CNN model. W is the width of the feature map, 

H is the height of the feature map and K is the number of feature maps in the layer, 

each group of elements with the same color represents a different feature vector. 

In this work, three main CNN architectures were used including VGG16, ResNet50 

and HybridNet networks (Zhang et al., 2015; He et al., 2016; Chen et al., 2017a).  

Each of these three networks has its own architecture, where the number of 

convolutional layers and the parameters related to each of these layers are what give a 

CNN its own specifications and differentiate it from other network models. 

VGG16 model  consists of 16 convolutional layers, the input should be 224*224*3 i.e., 

RGB image, this input is passed through the first two convolutional layers with a 64 

feature maps for each one and a kernel of size 3*3. The output is reduced with a 

pooling layer into 112*112*64, this output is fed into the next block which consists of 
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two layers with a size of 128 feature maps followed by pooling layer reduces the input 

into 56*56*128. The third block gives an output with size 28*28*256 where each of 

the three layers in this block consists of 256 feature maps. For the fourth and fifth 

blocks, there are three layers in each of them with 512 feature maps in each layer, the 

output of the fourth block is 14*14*512 and the output of the fifth block is 7*7*512. 

These convolutional layers are followed by three fully connected layers, the first two 

layers consist of 4096 neurons for each one, and the final layer (output layer) is the 

decision layer with the SoftMax function. 

The ResNet50 model consists of five blocks like VGG16, but with different parameters 

for each block, the input is a 224*224 RGB image, this image is sub-sampled into 

112*112*64 as an output of the first block with a kernel size 7*7, this output is fed 

into the next block which contains two stages, the first one uses the max pooling with 

a kernel size of 3*3, then, three convolutional layers with different parameters 

formulate the second stage where each of them is repeated three times, the first and 

second layers, each of which has 64 feature maps with a 1*1 kernel size for the first 

one and a 3*3 for the second. The third one has 256 feature maps and 1*1 kernel size. 

It is worth mentioning that the kernel size of each layer in this block is applicable for 

all following blocks because each of them consists of three different types of 

convolutional layers. The output of the second block is pooled into 56*56*256, this 

output is fed into the next block which gives an output with size of 28*28*512. In this 

block, each of the three types of the convolutional layers is repeated 4 times, the first 

and second ones have 128 feature maps for each and the third one has a 512 feature 

maps. The fourth block gives an output with 14*14*1024 size, where each 

convolutional layer is repeated 6 times, the first and second ones contain 256 feature 

maps and the last one has 1024 feature maps. The last convolutional block gives a 

7*7*2048 output with 512 feature maps for the first two convolutional layers and 2048 

for the third one with 3 repetitions for each. A decision layer with 1000 neurons and 

SoftMax function represents the output layer. 

The third CNN model is the HybridNet, where it consists of six blocks, each of them 

has only convolutional layer and pooling layer, the first one has 96 feature maps with 

a filter size 11*11, the pooling layer gives an output with a size of 55*55*96, this 

output is reduced in the next block into 27*27*256 where the 256 is the number of the 

feature maps and a filter with size 5*5 is applied. The third and fourth layers consist 

of 384 feature maps with a 3*3 filter and a 13*13*384 output size for each of them, 
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the fifth and sixth block have the same number of feature maps (265) with the same 

kernel size (3*3), but the output of the fifth block is 13*13*256 and for the sixth block 

is 6*6*256. Two fully connected layers with 4069 neurons for each exist at the end of 

the HybridNet architecture with a SoftMax function for the second one.   

4.3 FV encoding stage 

Fisher vector can be produced through two main steps: Building the Gaussian Mixture 

Model (GMM) and then, obtaining the Fisher Vector (FV). 

4.3.1 Training Phase: Building the Gaussian Mixture Model (GMM) 

A training dataset (Day left for the Garden point dataset and for berlin_A100 it was 

the reference sequence used by (Khaliq et al., 2018)) is used to get the main 

components of the GMM including weight (𝑤𝑐 ), mean (𝜇𝑐) and covariance (Σ𝑐) for 

each cluster (c). These components can be described as follows where 𝑀 is the number 

of clusters which is set to 128 clusters: 

𝜆 = {𝑤𝑐 , 𝜇𝑐, Σ𝑐}      𝑐 = 1,… ,𝑀 (4.3) 

4.3.2 Testing Phase: Obtaining the Fisher Vector (FV)  

This phase is to extract the FV for both, the training and testing datasets (Day Right, 

Night Right for Garden Point, and the same testing sequence used in (Khaliq et al., 

2018) for (berlin_A100)) based the trained GMM from the previous phase to be 

matched in the next step, as a result, the best path among them can be found. Two 

components for each element of the feature vector 𝑥𝑡 which produced by a layer of a 

CNN model are calculated for each cluster in the GMM as follows: 

𝑢𝑑𝑐 =
1

𝑇√𝜋𝑐

 ∑ Pr(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

 
𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐

 (4.4) 

𝑣𝑑𝑐 =
1

𝑇√2𝜋𝑐

 ∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

[( 
𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐

)
2

− 1] (4.5) 

Where 𝑑 =  {1, … , 𝐾} is a component of 𝑥 data vector with dimension 𝐾 represents 

the number of feature maps which varies according to the selected layer from the CNN 

model. 𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆) is the posteriori for each cluster in the 𝜆 model as follows:  

𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆) =
𝑤𝑐  𝑔(𝑥𝑡 |𝜇𝑐 , Σ𝑐)

∑ 𝑤𝑗 𝑔(𝑥𝑡 |𝜇𝑗, Σ𝑗)
𝑀
𝑗=1

 (4.6) 
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𝑔(𝑥𝑡 |𝜇𝑐, Σ𝑐) is the Gaussian density function. As a result, for each image (𝐼), the 

calculated components are concatenated to formulate the final fisher vector as 

illustrated in (4.7) 

𝜙(𝐼) =

[
 
 
 
 
 
 
 
 

.

.

.
𝑢𝑐

.

.
𝑣𝑐

.

. ]
 
 
 
 
 
 
 
 

 (4.7) 

The length of this vector is calculated with the equation: 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹𝑉 =  𝑀 ×  𝐾 ×  2 (4.8) 

Where 𝑀 is 128 as we said previously, and 𝐾 is the number of feature maps according 

to the selected layer. An improved version of FV is generated with a square root 

normalization followed by L2 normalization applied on 𝜙(𝐼). 

As a result, encoded deep features for both, training and testing datasets were produced 

and ready to be aligned using the DTW, i.e., the next step. The testing phase of the 

proposed approach is explained in Algorithm 4.1 where 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙 is a pre-trained 

CNN model where the features are extracted from. 𝜆 represents the parameters of the 

trained GMM model (weight, mean and covariance). 𝑢𝑑𝑐 and 𝑣𝑑𝑐 are the components 

of the Fisher Vector. 𝑛𝑜𝑟𝑚1 and 𝑛𝑜𝑟𝑚2 are the equations (2.31) and (2.32) 

respectively. 

 

Algorithm 4.1 𝐷𝑇𝑊𝐵𝑎𝑠𝑒𝑑𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋, 𝑌,𝑀,𝐾, 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙, 𝐷, 𝜆, 𝛼) 

1 𝑛 ←  |𝑋| //number of reference images 

2 𝑚 ←  |𝑌| //number of test images 

3 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉 ←  𝑀 ×  𝐾 ×  2  

4 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉[] ← 𝑛𝑒𝑤[𝑛 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉]  

5 𝑡𝑒𝑠𝑡_𝐹𝑉[] ← 𝑛𝑒𝑤[𝑚 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉]  

6 𝑈[] ← 𝑛𝑒𝑤[1 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉] // All 𝑢 values 

7 𝑉[] ← 𝑛𝑒𝑤[1 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉] // All 𝑣 values 

8 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1   

9 𝐟𝐨𝐫  𝑖 = 1 𝑡𝑜 𝑛  

10         𝐴𝑥𝑖  ← 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙(𝑥𝑖) //Features for image 𝑥𝑖  

11         𝐟𝐨𝐫 𝑐 = 1 𝑡𝑜 𝑀 //c: a GMM cluster 

//M: number of GMM clusters  
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12                 𝐟𝐨𝐫 𝑑 = 1 𝑡𝑜 𝐾 //d: number of components in 𝐴𝑥𝑖  

//K: dimension of 𝐴𝑥𝑖  

13                         𝑈(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑢𝑑𝑐(𝐴𝑥𝑖 , 𝜆) //𝜆: GMM model 

14                         𝑉(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑣𝑑𝑐(𝐴𝑥𝑖, 𝜆)  

15                         𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1  

16                 end for  

17        end for  

18        𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1  

19       𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, : ) ← [𝑈, 𝑉]  

20       𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, ∶) ← 𝑛𝑜𝑟𝑚1(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, : )) //The square root normalization  

21       𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, : ) ← 𝑛𝑜𝑟𝑚2(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, : )) // The L2 normalization 

22 end for  

23 𝐟𝐨𝐫  𝑗 = 1 𝑡𝑜 𝑚  

24         𝐴𝑦𝑗  ← 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙(𝑦𝑗)  

25         𝐟𝐨𝐫 𝑐 = 1 𝑡𝑜 𝑀  

26                 𝐟𝐨𝐫 𝑑 = 1 𝑡𝑜 𝐾  

27                         𝑈(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑢𝑑𝑐(𝐴𝑦𝑗, 𝜆)  

28                         𝑉(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑣𝑑𝑐(𝐴𝑦𝑗, 𝜆)  

29                         𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1  

30                 end for  

31        end for  

32        𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1  

33        𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, : ) ← [𝑈, 𝑉]  

34        𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, ∶) ← 𝑛𝑜𝑟𝑚1(𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, : ))  

35        𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, : ) ← 𝑛𝑜𝑟𝑚2(𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, : ))  

36 end for  

37 𝐶 ←  𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑡𝑟𝑖𝑥(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉, 𝑡𝑒𝑠𝑡_𝐹𝑉, 𝐷) //Generate the Accumulated 

Matrix in DTW 

38 𝑝𝑎𝑡ℎ ← 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝐶) //Find the best path in the 

Accumulated matrix 

 

4.4 Sequence alignment using DTW 

This component takes the preprocessed input stream of visual data (test images) and 

the visual map (reference images) to generate a belief about the current place. In other 

words, the distance matrix will be filled out, and, as mentioned before in DTW, matrix 

𝐶 represents the cumulative distance with a slight difference that the sum of the 
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distance between current matching two images and the maximum (not minimum) of 

the cumulative distances of the neighboring images is calculated, this difference where 

the maximum was taken instead of the minimum is because the distance measure used 

in our approach is the cosine similarity, which has a range between [-1, 1] where -1 

means no similarity at all and 1 means the best match, and this distance can be 

described as follows: 

𝐷(𝑖, 𝑗) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖, 𝑦𝑗) =  
|𝐴𝑥𝑖| .  |𝐴𝑦𝑗|

‖𝐴𝑥𝑖‖ ·  ‖𝐴𝑦𝑗‖
 (4.9) 

 

𝐶(𝑖, 𝑗) =  𝐷(𝑖, 𝑗) + max{

𝐷(𝑖 −  1, 𝑗),

𝐷(𝑖, 𝑗 −  1),

𝐷(𝑖 −  1, 𝑗 −  1),

 (4.10) 

 

The details about building the accumulated matrix is described in the Algorithm 4.2. 

 

Algorithm 4.2 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑡𝑟𝑖𝑥(𝑋, 𝑌, 𝐷) 

1 𝑛 ←  |𝑋|  

2 𝑚 ←  |𝑌|  

3 𝐶[] ← 𝑛𝑒𝑤[𝑛 × 𝑚]  

4 𝐶(0,0) ← 0 //Fil the first element with 0 

5 𝐟𝐨𝐫  𝑖 = 1 𝑡𝑜 𝑛  

6         𝐶(𝑖, 1) ← 𝐶(𝑖 − 1, 1) + 𝐷(𝑖, 1) //Fill the first column 

7 end for  

8 𝐟𝐨𝐫  𝑗 = 1 𝑡𝑜 𝑚  

9         𝐶(1, 𝑗) ← 𝐶(1, 𝑗 − 1) + 𝐷(1, 𝑗) //Fill the first row 

10 end for  

11 𝐟𝐨𝐫  𝑖 = 1 𝑡𝑜 𝑛  

12         𝐟𝐨𝐫  𝑗 = 1 𝑡𝑜 𝑚  

13                 𝐶(𝑖, 𝑗) ← 𝐷(𝑖, 𝑗) + max {𝐶(𝑖 − 1, 𝑗), 

                                                             𝐶(𝑖, 𝑗 − 1), 

                                                             𝐶(𝑖 − 1, 𝑗 − 1)} 

//Fill the rest of elements 

14         end for  

15 end for  

16 return 𝐶  

 

 



 

33 
 

And the best path (Algorithm 4.3) can be shown as the path that gives the maximum 

value of the following function:  

𝑄(𝑃) =  ∑𝐶(𝑖𝑙, 𝑗𝑙)

𝐿

𝑙=1

 (4.11) 

 

Finally, the system has a decision on whether it is a prior visited place or a new place. 

As an example, Figure 1.3 shows the output images using different kinds of features 

corresponding to the same input image. 

 

Algorithm 4.3 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝐶) 

1 𝑝𝑎𝑡ℎ[] ← 𝑛𝑒𝑤 𝑎𝑟𝑟𝑎𝑦 

2 𝑖 = 𝑟𝑜𝑤𝑠(𝐶) 

3 𝑗 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑠(𝐶) 

4 𝐰𝐡𝐢𝐥𝐞  (𝑖 > 1) &  (𝑗 >  1) 

5       𝐢𝐟 𝑖 == 1 𝐭𝐡𝐞𝐧 

6            𝑗 = 𝑗 − 1 

7       𝐞𝐬𝐥𝐞 𝐢𝐟 𝑗 == 1 𝐭𝐡𝐞𝐧 

8            𝑖 = 𝑖 − 1 

9        𝐞𝐥𝐬𝐞 

10             𝐢𝐟 𝐶(𝑖 − 1, 𝑗) == max{𝐶(𝑖 − 1, 𝑗), 𝐶(𝑖, 𝑗 − 1), 𝐶(𝑖 − 1, 𝑗 − 1)} 𝐭𝐡𝐞𝐧  

11                  𝑖 = 𝑖 − 1 

12             𝐞𝐥𝐬𝐞 𝐢𝐟 𝐶(𝑖, 𝑗 − 1) == max{𝐶(𝑖 − 1, 𝑗), 𝐶(𝑖, 𝑗 − 1), 𝐶(𝑖 − 1, 𝑗 − 1)} 𝐭𝐡𝐞𝐧  

13                  𝑗 = 𝑗 − 1 

14             𝐞𝐥𝐬𝐞 

15                   𝑖 = 𝑖 − 1;   𝑗 = 𝑗 − 1 

16             𝐞𝐧𝐝 𝐢𝐟 

17        𝑝𝑎𝑡ℎ. 𝑎𝑑𝑑((𝑖, 𝑗)) 

18        end if 

19 end while 

20 return 𝑝𝑎𝑡ℎ 
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CHAPTER 5  

EXPERIMENTAL EVALUATION AND ANALYSIS 

The main aims of the experiments presented in this chapter are: 1) investigate the 

proposed DTW place recognition method. 2) Evaluate the performance of using 

multiple handcrafted features like SIFT, HOG, and LDB, vs. using the deep features 

extracted from multiple CNN networks like VGG16, ResNet50, and HybridNet. 3) 

Compare between different encoding algorithms based deep features. 4) Investigate 

the performance of the DTW vs. SVM after encoding the deep features by FV. 4) 

Evaluate the proposed approach against the SVM classifier.  

In more detail, we firstly studied the efficiency of the DTW algorithm with handcrafted 

features, particularly SIFT, HOG, and LDB. Then, we investigated the performance of 

features extracted from different layers of VGG16 (Zhang et al., 2015), ResNet50 (He 

et al., 2016) and HybridNet (Chen et al., 2017a) networks. As a result of this 

experiment, we detected the best layer that obtains the best performance when 

integrated with DTW for place recognition. After that, we compared the performance 

of the DTW when used with 1) handcrafted features and 2) deep features extracted 

from the best layer found in the previous experiment. In the fourth experiment, the 

encoded deep features were evaluated based multiple encoding algorithms to find the 

best one that can be used in the next experiment where the performance of the encoded 

deep features against the deep features without encoding for both classifiers, DTW and 

SVM were investigated. In the last experiment, the performance of the proposed DTW 

algorithm was compared with the SVM classifier as one of the most famous classifiers 

to be used with CNN architectures. 

5.1.1 Datasets and Evaluation 

In this study both well-known datasets “Garden Point” and “berlin_A100” 

(Sünderhauf et al., 2015) were used, and the details are summarized below. 

1) The “Garden Point”: which is a dataset that captures the changes in the 
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pose and lightening conditions in the “QUT” campus. It consists of three  

sub-datasets: Day left, Day right and Night right. The first two sequences were 

collected during the day, but with different viewpoints. In addition,  

the third one has a very close viewpoint to the second one, but it differs in the 

illumination, and the images of this series where taken at night. Each of these 

series has 200 images labeled by referring to the corresponding images. 

2) The “berlin_A00”: which is a dataset collected from a platform called 

Mapillary where images of the same route were collected by different users 

with a variation in viewpoint and appearance. In this work, we have used the 

sub-dataset of “berlin_A00” that was constructed by (Khaliq et al., 2018) 

where the reference set is consisted of 85 images and the test set consisted of 

81 images. In addition, the ground truth of this sub-dataset was made by 

matching the images which have the same position in terms of GPS. 

 

Error! Reference source not found.. Shows some image samples from the G

arden point and the berlin_A100 dataset.  
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Related to the performance evaluation, the precision-recall curve (PRC), Area under 

curve (AUC), and the average precision (AP) measures were used.  

1) The precision-recall curves can be obtained after finding the best match frame 

for each test frame among all the frames in the training sequence. The precision 

(P) is calculated as 𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 while the recall (R) is calculated as 

𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 .  

Note that a match is considered as a positive if 𝐷(𝑖, 𝑗)  <  𝑡, where t is a 

predefined threshold, otherwise it is considered as a negative match. 

It is worth mentioning here that the threshold (t) is the number of frames 

between the matched image from reference images and the ground truth. 

2) AUC which is the area under PRC: AUC can be calculated using the 

trapezoidal rule 

𝐴𝑈𝐶 = ∑
𝑝𝑖

𝑚𝑖𝑛 + 𝑝𝑖+1
𝑚𝑎𝑥

2
(𝑟𝑖+1 − 𝑟𝑖)

𝑛−1

𝑖=1

 (5.1) 

Where p is the precision value and r is the recall value, where for each recall 

value there could be many precision value, so, 𝑝𝑖
𝑚𝑖𝑛 is the minimum precision 

corresponding to 𝑟𝑖 and 𝑝𝑖
𝑚𝑎𝑥 is the maximum precision corresponding to 𝑟𝑖 

and n is the considered number of recalls. 

3) AP which is the weighted mean of precision was used for each threshold in the 

PRC, and it can be calculated as 

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

 (5.2) 

Where 𝑅𝑛 and 𝑃𝑛 are the recall and precision respectively obtained for the 

threshold n in the PRC. 

5.1.2 Dynamic Time Warping with Handcrafted features  

Firstly, the performance of the proposed visual place recognition method has been 

tested after integrating some well-known handcrafted descriptors, in particular, HOG, 

SIFT, and LDB.  The experiment has been initially conducted by matching the selected 

two sequences (Day left and Day right) from Garden Point. In the first part of this 

experiment, the cosine similarity matrix was directly initiated, then the matched image 

with the minimum distance is selected (without DTW). In the second part of this 
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experiment, the matching selection was achieved using the DTW algorithm. The PR 

curve resulted from both parts is depicted in Figure 5.1. As a result, using DTW has 

outperformed and improved the performance of all used handcrafted descriptors. It is 

worth mentioning that a threshold of 1 frame has been used where the result is 

considered as a true positive either if the test image has met with the exact 

correspondence reference or it is one frame far. 

 

Figure 5.1 Comparing the traditional implementation of the HoG, SIFT and LDB 

against fed the same features into DTW, using Garden Point (Day left vs Day right) 

dataset with a threshold equal to 1 frame. 

5.1.3 Investigating the performance of VGG16, ResNet50 and HybridNet Layers 

In this section, we explore the VGG16, ResNet50 and HybridNet network 

architectures looking for the layer that achieves the best performance according to the 

PRC. This experiment has been formulated to find out the layer among the mentioned 

architectures that achieves the best performance when integrated with DTW. In more 

detail, the output of each layer was injected into DTW to get the best path between the 

test and reference images. The last layers from block 3, 4 and 5 were selected to 

represent the VGG16 and ResNet50. For HybridNet the Convolutional layers from 1 

to 6 were selected. In addition, the “Garden Point” dataset has been used in this 

experiment, where the “day left” and “day right” are the reference and test series 

respectively, and the threshold was set to 1 frame. The resulted PRC are shown in 

Figure 5.2, Figure 5.3, and Figure 5.4 for VGG16, ResNet50, and HybridNet 

respectively. According to this experiment, it could be said that the layer from the last 

block 5 has outperformed other layers for both VGG16 and ResNet50. Related to the 
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HybridNet, like other architectures, we can see that “Conv 6”, i.e., the last 

convolutional layer has achieved the best performance among other layers.  

 

 

 
 

Figure 5.2 PRC for three different convolutional layers of VGG16. 
 

 

 

 

 

 

 

 
Figure 5.3 PRC for three different convolutional layers of ResNet50. 
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Figure 5.4 PRC for four different convolutional layers of HybridNet.  

 

5.1.4 The Performance of Deep Features  

In this experiment, the deep features extracted from the ResNet50’s best layer, i.e., the 

layer that has obtained the highest performance in the previous section, have been 

evaluated against the used handcrafted features, i.e., HOG, SIFT, and LDB. As shown 

in Figure 5.6, the deep features have outperformed all other features and was able to 

obtain high precision over all recall values. 

 

 

Figure 5.5 PRC for the HoG, SIFT and LDB handcrafted features vs. the layer 

(res5c_branch2c) from ResNet50, all integrated with DTW. Garden Point (Day left vs 

Day right) dataset used with a threshold 1 frame. 
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5.1.5 Performance of different Encoding Schemes 

In this experiment, a comparison between BOW, VLAD, Normal FV and Improved 

FV was made to pick up the most suitable one to be integrated with DTW. Garden 

Point (Day left vs Day right) dataset was used and deep features were extracted through 

the third convolutional layer of the block four “block4_conv3” in VGG16 network. 

This experiment shows that the Improved FV has outperformed other encoding 

techniques and it is the best to be used in the next experiments as depicted on figure 

Figure 5.6. In the following experiments, the improved Fisher Vector is abbreviated as 

Fisher Vector (FV). 

 

Figure 5.6  PRC for BOW, VLAD, Normal  FV and Improved FV integrated with 

DTW. “block4_conv3” layer from VGG16 network used. All encoding algorithms has 

a visual codebook with a 128 cluster. Garden Point (Day left vs Day right) dataset used 

with a threshold 1 frame. 

5.1.6 Performance of DTW based Fisher Vector 

In this section, the Garden Point and berlin_A100 datasets were used to evaluate the 

DTW based deep features encoded with the fisher vector against the non-encoded 

features. In addition, the same scenario was repeated using the SVM classifier based 

deep features. In addition, the Pre-trained VGG16 and ResNet50 networks were used. 

Furthermore, the number of GMM was set to 128 for all experiments done in this 

section. 
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Overall, the following can be observed: 

1) Using the Garden Point (Day left vs Day right), as shown in (Figure 5.7, Figure 

5.8, Figure 5.9, Figure 5.11, Figure 5.12, Table 5.1, Table 5.5, Table 5.6), 

Using the FV leads to improve the performance of a) all the used convolutional 

layers and b) the used architecture. But for the last two fully connected layers 

in VGG16, applying the encoding step leads to a huge decrease in the 

performance which make this kind of layers not suitable to be encoded with 

fisher vector. 

2) Using the Garden Point (Day left vs Night right), as shown in (Figure 5.9, 

Figure 5.13, Table 5.3, Table 5.7), whenever the DTW was used as the 

classifier, the features extracted from VGG16 and encoded with FV 

outperforms the same deep features without FV. However, when the SVM is 

used as the classifier, the layer from the block 3 encoded through FV was 

outperformed by the same block without the FV. 

3) Using the berlin_A100 as shown in (Figure 5.10, Figure 5.14, Table 5.4, Table 

5.8) when the DTW was used as a classifier, the features with FV outperformed 

the features without, but for the SVM, only features from the block 3 with FV 

outperformed the same layer without FV. 

 

 

Figure 5.7 PRC for the convolutional layers of VGG16 without FV against the same 

layers encoded with FV and all are integrated with DTW. Garden Point (Day left vs 

Day right) dataset used with a threshold 1 frame. 
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Table 5.1 AUC and AP for layers in VGG16 without FV against the same layers 

encoded with FV and all are integrated with DTW. Garden Point (Day left vs Day 

right) dataset used with a threshold 1 frame. 

 AUC AP 

VGG16 

Layers 

Without 

FV 
With FV 

Without 

FV 
With FV 

block3_Conv3 0.664 0.883 0.663 0.883 

block4_Conv3 0.604 0.899 0.603 0.898 

block5_Conv3 0.699 0.632 0.698 0.630 

fc1 0.751 0.373 0.751 0.036 

fc2 0.723 0.431 0.723 0.255 

 

 

 

 

 

Figure 5.8 PRC for convolutional layers in ResNet50 without FV against the same 

layers encoded with FV and all are integrated with DTW. Garden Point (Day left vs 

Day right) dataset used with a threshold 1 frame. 

 

 

 

Table 5.2 AUC and AP for convolutional layers in ResNet50 without FV against the 

same layers encoded with FV and all are integrated with DTW. Garden Point (Day left 

vs Day right) dataset used with a threshold 1 frame. 
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 AUC AP 

ResNet50 

Layers 

Without 

FV 
With FV 

Without 

FV 
With FV 

res3d_branch2c 0.654 0.902 0.652 0.901 

res3f_branch2c 0.667 0.884 0.666 0.883 

res5c_branch2c 0.750 0.830 0.749 0.829 

 

 

Figure 5.9 PRC for convolutional layers in ResNet50 without FV against the same 

layers encoded with FV and all are integrated with DTW. Garden Point (Day left vs 

Night right) dataset used with a threshold 1 frame. 

 

Table 5.3 AUC and AP for convolutional layers in ResNet50 without FV against the 

same layers encoded with FV and all are integrated with DTW. Garden Point (Day left 

vs Night right) dataset used with a threshold 1 frame. 

 AUC AP 

ResNet50 

Layers 

Without 

FV 
With FV 

Without 

FV 
With FV 

res3d_branch2c 0.421 0.619 0.418 0.617 

res3f_branch2c 0.538 0.722 0.535 0.721 

res5c_branch2c 0.443 0.583 0.439 0.581 
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Figure 5.10 PRC for convolutional layers in ResNet50 without FV against the same 

layers encoded with FV and all are integrated with DTW. berlin_A100 dataset used 

with a threshold 1 frame. 

 

 

Table 5.4 AUC and AP for convolutional layers in ResNet50 without FV against the 

same layers encoded with FV and all are integrated with DTW. berlin_A100 dataset 

used with a threshold 1 frame. 

 AUC AP 

ResNet50 

Layers 
Without FV With FV Without FV With FV 

res3d_branch2c 0.247 0.397 0.240 0.372 

res3f_branch2c 0.315 0.699 0.299 0.697 

res5c_branch2c 0.333 0.627 0.319 0.624 
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Figure 5.11 PRC for convolutional layers in VGG16 without FV against the same 

layers encoded with FV and all are integrated with SVM. Garden Point (Day left vs 

Day right) dataset used with a threshold 1 frame. 

 

 

Table 5.5 AUC and AP for convolutional layers in VGG16 without FV against the 

same layers encoded with FV and all are integrated with SVM. Garden Point (Day left 

vs Day right) dataset used with a threshold 1 frame. 

 AUC AP 

VGG16 Layers Without FV With FV Without FV With FV 

block3_Conv3 0.601 0.916 0.597 0.916 

block4_Conv3 0.693 0.930 0.690 0.929 

block5_Conv3 0.683 0.760 0.680 0.759 
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Figure 5.12 PRC for convolutional layers in ResNet50 without FV against the same 

layers encoded with FV and all are integrated with SVM. Garden Point (Day left vs 

Day right) dataset used with a threshold 1 frame. 

 

 

Table 5.6 AUC and AP for convolutional layers in ResNet50 without FV against the 

same layers encoded with FV and all are integrated with SVM. Garden Point (Day left 

vs Day right) dataset used with a threshold 1 frame. 

 AUC AP 

ResNet50 Layers Without FV With FV Without FV With FV 

res3d_branch2c 0.765 0.941 0.764 0.941 

res3f_branch2c 0.693 0.872 0.691 0.872 

res5c_branch2c 0.747 0.844 0.745 0.843 
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Figure 5.13 PRC for convolutional layers in ResNet50 without FV against the same 

layers encoded with FV and all are integrated with SVM. Garden Point (Day left vs 

Night right) dataset used with a threshold 1 frame. 

 

 

Table 5.7 AUC and AP for convolutional layers in ResNet50 without FV against the 

same layers encoded with FV and all are integrated with SVM. Garden Point (Day left 

vs Night right) dataset used with a threshold 1 frame. 

 AUC AP 

ResNet50 Layers Without FV With FV Without FV With FV 

res3d_branch2c 0.724 0.331 0.721 0.322 

res3f_branch2c 0.556 0.530 0.552 0.526 

res5c_branch2c 0.380 0.431 0.374 0.424 
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Figure 5.14 PRC for convolutional layers in ResNet50 without FV against the same 

layers encoded with FV and all are integrated with SVM. berlin_A100 dataset used 

with a threshold 1 frame. 

 

 

Table 5.8 AUC and AP for convolutional layers in ResNet50 without FV against the 

same layers encoded with FV and all are integrated with SVM. berlin_A100 dataset 

used with a threshold 1 frame. 

 AUC AP 

ResNet50 Layers Without FV With FV Without FV With FV 

res3d_branch2c 0.090 0.332 0.078 0.282 

res3f_branch2c 0.464 0.389 0.455 0.380 

res5c_branch2c 0.361 0.317 0.333 0.306 
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5.1.7 DTW against other Approaches 

In this experiment, the performance of the DTW for place recognition is compared 

with the SVM based algorithm. The results are shown in Table 5.9, and it can be 

summarized as follows.  

a) Using the Garden Point (Day left vs Day right), where the challenge is only the 

viewpoint, the SVM was able to outperform the DTW using two of the three 

used layers, i.e., “res3d_branch2c” and “res5c_branch2c”.  

b) Using the Garden Point (Day left vs Night right) and berlin_A100 datasets, 

which have viewpoint, appearance and illumination challenges, the DTW can 

significantly outperform the SVM. 

  

Table 5.9 AUC results for convolutional layers in ResNet50 with FV based DTW 

against SVM using the Garden Point (Day left vs Day right), Garden Point (Day left 

vs Night right) and berlin_A100.   

 AUC 

CNN Conv layer DTW SVM 

Garden Point 

Day left 

Day right 

res3d_branch2c 0.901 0.941 

res3f_branch2c 0.883 0.872 

res5c_branch2c 0.829 0.843 

Garden Point 

Day left 

Night right 

res3d_branch2c 0.619 0.331 

res3f_branch2c 0.722 0.530 

res5c_branch2c 0.583 0.431 

berlin_A100 

res3d_branch2c 0.397 0.332 

res3f_branch2c 0.699 0.389 

res5c_branch2c 0.627 0.317 
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CHAPTER 6  

CONCLUSION 

The new visual place recognition method presented in this work, integrated the 

dynamic time warping (DTW) algorithm, to match the current frame from a test 

sequence to a priori annotated reference sequence frame. This algorithm has been 

adapted with the features extracted from a deep convolutional neural network (CNN), 

encoded by the Improved Fisher Vector (IFV). The matching is achieved by the 

construction of a cost function that measures the distances between the frames in both 

sequences. Then, an optimal path is found using DTW.  

In our experiments, the handcrafted features with DTW outperformed the same 

handcrafted features without DTW. For the deep features, multiple layers of the 

VGG16, ResNet50 and HybridNet models were investigated to find the layer that 

performs better with the DTW algorithm. We found that almost all studied layers gave 

comparable results, however, the last conventional layer has advantages over other 

layers when processing some images that have variation between the two sequences in 

the viewpoint such as Garden Point (Day left vs Day right).  

When comparing the deep features against the handcrafted features, even though deep 

features require more power and memory consumption, it was able to give higher 

precision for all recall values. In addition, a higher precision was obtained by encoding 

the deep features with the (IFV) especially for the middle layers of the CNN models 

where more general features are existing in these layers.  

The performance of the DTW and SVM when the FV encoding scheme is used also 

investigated. The experimental results show superior performance for our approach 

especially with the challenging datasets in terms of viewpoint and appearance, 

however, for the viewpoint problem, using the Garden Point (Day left vs Day Right), 

SVM was able to get a little bit better performance. On the other hand, SVM was not 

robust enough to face the challenges existed in other datasets like Garden Point (Day 
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left vs Night Right) and berlin_A100, and for such dataset, there is a clear advantage 

of our approach as shown in the related experiments. 

Further improvements and as future work, some additional steps such as improving 

the feature extraction procedure, where instead of taking the output of the feature maps 

directly, a Region of Interest (ROI) can be detected and the feature vectors can be 

extracted accordingly. This step should make the features more robust against the 

viewpoint changes. Also, improving the proposed approach to work in real-time is a 

very important step, this can be done through two steps: creating a general GMM 

model that can be used for extracting the FV, which can handle any test dataset or live 

images without a need for re-training. Hence, this can be done by training the GMM 

on a wide range of datasets collected under different conditions. The second step is to 

create a new version of the DTW that has the ability to align the incoming images with 

the reference images.
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