

A
M

M
A

R
 T

E
L

L
O

J
a
n

u
a
ry

 2
0
2
0

M
.S

c. in
 E

L
E

C
T

R
O

N
IC

S
 A

N
D

 C
O

M
P

U
T

E
R

 E
N

G
IN

E
E

R
IN

G

HASAN KALYONCU UNIVERSITY

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

VISUAL PLACE RECOGNITION WITH DTW BASED

ENCODED DEEP FEATURES

M. Sc. THESIS

IN

ELECTRONICS AND COMPUTER ENGINEERING

BY

AMMAR TELLO

January 2020

VISUAL PLACE RECOGNITION WITH DTW BASED

ENCODED DEEP FEATURES

M.Sc. Thesis

In

Electronics and Computer Engineering

Hasan Kalyoncu University

Supervisor(s)

Dr. Saed ALQARALEH

By

Ammar TELLO

January 2020

© 2020 [Ammar TELLO]

v

ABSTRACT

VISUAL PLACE RECOGNITION WITH DTW BASED

ENCODED DEEP FEATURES

TELLO, Ammar

M.Sc. in Electronics and Computer Eng.

Supervisor: Asst.Prof.Dr. Saed ALQARALEH

January 2020, 55 pages

Visual Place Recognition (VPR) techniques have opened the possibilities for

autonomous robots and driverless cars to localize itself in a cheap and accurate way

using only visual input. Previously, sensors-based system, which uses GPS and

distance sensors were frequently used. However, its disadvantages such as the cost and

the vulnerability to the signal inference, in addition to the quality improvement in the

visual sensor (Camera) lead to replacing such systems with visual-based systems. This

system-based is capable of getting input rich with information that is important for a

wide range of applications including VPR. As a result, many visualization techniques

were examined and multiple categories of image descriptors were injected into some

localization algorithms, for the purpose of making a system that is able to be aware of

the surrounding environment just like humans.

In this thesis, a new VPR approach is introduced. This approach uses the Dynamic

Time Warping (DTW) and features extracted from a Convolutional Neural Network

(CNN) architecture that will be encoded by the Fisher Vector (FV). In more detail, the

features are extracted from a pre-trained CNN, then, fed into FV to be encoded and

finally pushed to the DTW algorithm that will be used to find the best matches between

the reference images and the new coming images (test images). In addition, the

performance of different CNN architectures was investigated to find the best

architecture fit with DTW, and the performance of all layers from all architectures was

compared as well. Furthermore, the advantage of replacing the handcrafted features

with deep features was also studied.

As the main aim of this work is to develop a robust approach that can face real-life

challenges, the deep features are encoded with FV, which we believe can lead to

vi

getting more robust features. Our approach was evaluated against other classical

approaches, SVM in particular, which was outperformed by our approach especially

when it is required to process dataset(s) that has some challenges such as the viewpoint

and/or appearance.

Key Words: Dynamic time warping, Deep features, Fisher Vector, CNN, Image

sequence matching, Visual place recognition.

vii

ÖZET

VISUAL PLACE RECOGNITION WITH DTW BASED

ENCODED DEEP FEATURES

TELLO, Ammar

Yüksek Lisans Tezi, Elektronik-Bilgisayar Müh.

Tez Yöneticisi: Dr. Öğr. Üyesi. Saed ALQARALEH

Ocak 2020, 55 sayfa

Optik Yer Tanımlama (VPR) teknikleri otonom robotların ve sürücüsüz araçların, bir

tek görsel girdiler kullanarak ucuz ve doğru bir şekilde yer belirleme imkanı

sağlamaktadır. Önceden, Global Konumlandırma Sistemini kullanan algılayıcı tabanlı

sistem GPS ve bunun yanı sıra mesafe algılayıcısı sık kullanılmıştır. Ancak, sinyal

sonuç çıkarımında maliyet ve korunmasızlık gibi dezavantajlar ve bunula birlikte

görsel algılayıcı (Kamera) kalite geliştirmesi gibi sistemlerin, görsel tabanlı

sistemlerle değiştirilmesine yol açmaktadır.

Bu sistem tabanlı cihazı bilgi ile zengin bir girdi elde edebilir ve VPR dahil, çok çeşitli

uygulamalar için dikkate değer bir öneme sahiptir. Sonuç olarak, birçok görüntüleme

tekniği incelenmiş ve farklı görüntü tanımlayıcıları yerelleştirme algoritmalarına

yerleştirilmiş ve çevredeki ortamın farkında olacak bir sistem tıpkı insan gibi yapmayı

amaçlanmaktadır.

Bu tezde, yeni bir VPR yaklaşımı gösterilmiş ve Dinamik Zaman Çarpıtma (DTW)

tekniği kullanılarak Fisher Vector (FV) vasıtasyla kodlanacak olan Evrişimli Sinir Ağı

(CNN) yapısından çıkarılan özellikleri kullanılmıştır. Daha ayrıntılı anlatmak

gerekirse, özellikler; önceden eğitilmiş bir CNN'den ihraç edilir, daha sonra

kodlanması için FV'ye beslenir, sonunda DTW algoritmasına itilir ve referans

görüntüler ve yeni gelen görüntüler arasında (test görüntüleri) en iyi eşleşmeleri

bulmak için bu şekilde kullanılır. Ayrıca, DTW'ye en fit olanı bulmak için farklı CNN

yapılarının performansı araştırıldı ve tüm yapı katmanlarının performansı

karşılaştırıldı. Bundan başka, el yapımı özelliklerin, derin özelliklerle değiştirme

avantajı da incelenmiştir.

Bu çalışmanın ana hedefi, Hayatın farklı gerçek zorluklarıyla yüzleşebilecek sağlam

bir yaklaşım geliştirmek ve FV ile kodlanmış derin özellikleri daha sağlam özellikler

viii

elde edilmesine yol açabileceğine inanıyoruz. Basettiğimiz bu girişm diğer klasik

yaklaşımlara karşı ters olduğu değerlendirilmişti, Özellikle SVM olanı bizim

yaklaşımımızdan ve bilhassa veri kümeleri işlenmesi gerektiğinde daha iyi performans

gösterip yalnız açı ve / veya görünüm gibi bazı zorlukları bulunmaktadır.

Anahtar Kelimeler: Dinamik Zaman Çarpıtma, Derin Özellikler, Fisher Vector,

CNN, Görüntü Dizisi Eşlemesi, Görsel Yer Tanımlama.

ix

DEDICATION

This thesis is dedicated to…

My Mother…

Because of you, I am what I am today. Thank you.

My Father…

I cannot thank you enough for what you have done for me. You were always there

when I needed you the most.

Layana and Mayyar…

Appreciation is a word that describes how I feel for you being a part of my life

Grandmother, Manal, Maisaa and Yaser…

Only God knows how much I love you.

Batoul…

My beloved, thank you for being there for me.

x

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisor Asst.Prof.Dr. Saed

ALQARALEH for his guidance, advice, criticism, encouragements and insight

throughout the research.

I would also like to express my sincere gratitude to Asst.Prof.Dr. A.H ABDUL

HAFEZ for the continuous support of my M.Sc study and related research, for his

patience, motivation, and immense knowledge. His guidance helped me in all the time

of research. Without his guidance and constant feedback, this M.Sc would not have

been achievable.

Besides my advisor, I would like to thank the rest of my thesis committee:

Assoc.Prof.Dr. Tolgay KARA and Asst.Prof.Dr. Bülent HAZNEDAR for letting my

defense be an enjoyable moment, and for your brilliant comments and suggestions,

thanks to you.

xi

TABLE OF CONTENTS

ABSTRACT ... v
ÖZET.. vii
DEDICATION .. ix
ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi
LIST OF TABLES .. xiii
LIST OF FIGURES .. xiv
LIST OF SYMBOLS/ABREVIATIONS ... xv
CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Problem Statement ... 2

1.2 Motivation and Objectives ... 3
1.3 Contributions .. 4
1.4 Organization of the Thesis and Publications .. 5

CHAPTER 2 .. 6
BACKGROUND ... 6

2.1 Visual Place Recognition Components .. 6

2.2 Features Extraction ... 6
2.2.1 Handcrafted Features ... 6
2.2.2 Deep Features .. 10

2.3 Encoding Features .. 13

2.3.1 Bag of Words (BOW) .. 13
2.3.2 Vector of Locally Aggregated Descriptors (VLAD) 13
2.3.3 Fisher Vector (FV) ... 14

2.3.4 Improved Fisher Vector (IFV) ... 16
2.4 Localization .. 17

2.4.1 DTW .. 17
CHAPTER 3 .. 20
LITERATURE REVIEW... 20

3.1 Autonomous Robots Based on Computer Vision ... 20
3.2 Approaches based on the Handcrafted Features ... 21

3.2.1 Local Descriptors ... 21

3.2.2 Global Descriptors ... 22

3.3 Approaches based Deep Features ... 22

3.3.1 Using Pre-Trained Models ... 23
CHAPTER 4 .. 26

DTW BASED ENCODED DEEP FEATURES .. 26
4.1 Image Sequence .. 26
4.2 Deep Features Extraction ... 27

4.3 FV encoding stage .. 29
4.3.1 Training Phase: Building the Gaussian Mixture Model (GMM) 29

4.3.2 Testing Phase: Obtaining the Fisher Vector (FV) 29
4.4 Sequence alignment using DTW .. 31

CHAPTER 5 .. 34
EXPERIMENTAL EVALUATION AND ANALYSIS .. 34

5.1.1 Datasets and Evaluation ... 34

5.1.2 Dynamic Time Warping with Handcrafted features 36

xii

5.1.3 Investigating the performance of VGG16, ResNet50 and HybridNet Layers

 .. 37

5.1.4 The Performance of Deep Features ... 39
5.1.5 Performance of different Encoding Schemes .. 40
5.1.6 Performance of DTW based Fisher Vector.. 40
5.1.7 DTW against other Approaches ... 49

CHAPTER 6 .. 50

CONCLUSION .. 50
CHAPTER 7 .. 52
REFERENCES ... 52

xiii

LIST OF TABLES

Table 2.1. VGG16 architecture layers including the output size of each layer 11

Table 2.2. ResNet50 architecture layers including the output size of each layer 11

Table 2.3. HybridNet architecture layers including the output size of each layer 12

Table 5.1. AUC and AP for layers in VGG16 with and without FV 42

Table 5.2. AUC and AP for convolutional layers in ResNet50 with and without FV42

Table 5.3. AUC and AP for convolutional layers in ResNet50 with and without FV43

Table 5.4. AUC and AP for convolutional layers in ResNet50 with and without FV44

Table 5.5. AUC and AP for convolutional layers in VGG16 with and without FV . 45

Table 5.6. AUC and AP for convolutional layers in ResNet50 with and without FV46

Table 5.7. AUC and AP for convolutional layers in ResNet50 with and without FV47

Table 5.8. AUC and AP for convolutional layers in ResNet50 with and without FV48

Table 5.9. AUC results for convolutional layers in ResNet50 with and without FV 49

xiv

LIST OF FIGURES

Figure 1.1. Examples of the challenges faced by the VPR systems 2

Figure 1.2. Visual Place Recognition Schematic Diagram ... 3

Figure 1.3. Examples of the output of DTW using different features 5

Figure 2.1. Sobel Filter, a) For X direction, b) for Y direction 8

Figure 2.2. A representation of VGG16 layers. .. 12

Figure 2.3. The distance matrix between the features vectors 18

Figure 2.4. The best path between the reference images and test images 19

Figure 3.1. Examples of autonomous robots. a) UAV, b) UGV, c) UUV. 20

Figure 4.1. The main components of the proposed approach 26

Figure 4.2. An example of a layer in a CNN model.. 27

Figure 5.1. Examples of images from both the Garden Point and berlin_A100 Error!

Bookmark not defined.

Figure 5.2. Comparing the traditional implementation. .. 37

Figure 5.3. PRC for three different convolutional layers of VGG16. 38

Figure 5.4. PRC for three different convolutional layers of ResNet50. 38

Figure 5.5. PRC for four different convolutional layers of HybridNet. 39

Figure 5.6. PRC for the HoG, SIFT and LDB handcrafted features 39

Figure 5.7. PRC for the convolutional layers of VGG16 without FV 41

Figure 5.8. PRC for convolutional layers in ResNet50 with and without FV........... 42

Figure 5.9. PRC for convolutional layers in ResNet50 with and without FV........... 43

Figure 5.10. PRC for convolutional layers in ResNet50 with and without FV......... 44

Figure 5.11. PRC for convolutional layers in VGG16 with and without FV. 45

Figure 5.12. PRC for convolutional layers in ResNet50 with and without FV......... 46

Figure 5.13. PRC for convolutional layers in ResNet50 with and without FV......... 47

Figure 5.14. PRC for convolutional layers in ResNet50 with and without FV......... 48

xv

LIST OF SYMBOLS/ABREVIATIONS

ABLE-M Able for Binary-appearance Loop-closure Evaluation - Monocular

ABLE-P Able for Binary-appearance Loop-closure Evaluation - Panoramic

ABLE-S Able for Binary-appearance Loop-closure Evaluation - Stereo

AP Average Precision

AUC Area Under Curve

BOW Bag Of Words

BOVW Bag Of Visual Words

𝐶 Cumulative distance in DTW

CNN Convolutional Neural Network

conv Convolution

DOG Difference Of Gaussians

DP Dynamic Programming

DTW Dynamic Time Warping

EM Expectation Maximization

FV Fisher Vector

GMM Gaussian Mixture Model

HoG Histogram of Gradients

IFV Improved Fisher Vector

LDB Local Difference Binary

ORB Oriented FAST and Rotated BREIF

PRC Precision-Recall Curve

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SURF Speeded-Up Robust Features

SVM Support Vector Machine

UAV Unmanned Aerial Vehicles

UGV Unmanned Ground Vehicles

UUV Unmanned Underwater Vehicles

VLAD Vector of Locally Aggregated Descriptors

VPR Visual Place Recognition

1

CHAPTER 1

INTRODUCTION

Visual Place Recognition (VPR) refers to how the robot can localize itself using only

a visual input of a revisited place. In the last decade, the (VPR) or what called Visual

Localization, received significant attention from the research community due to the

importance of this task in the robotic field especially for autonomous robots and self-

driving cars. It is considered as a challenging problem as appearance can change for

the same place over seasons and from day to night and even changes to the place itself,

also the variation in viewpoint when the same place revisited again is also a big

challenge. Some examples of these challenges are depicted in Figure 1.1. Even though

that there are other methods exist for localization task, like Global Positioning System

(GPS) based methods, VPR is still preferable due to the significant information that

can be retrieved from images and also because of the lack of GPS info in terms of

occlusion and absence of the signal.

2

Figure 1.1 Examples of the challenges faced by the VPR systems. a) The appearance

of the same place on day and night, b) Appearance of the same place in summer and

winter, c) Appearance of the same place from different viewpoints.

1.1 Problem Statement

Dozens of works in the literature tried to solve the VPR problem as shown in (Lowry

et al., 2015). In general, the following components, which are explained in detail in

the following chapter, are essential in such systems: 1) Visual Map, 2) Feature

Extraction and 3) Localization. Other components like visual perception, motion

estimation, and decision which is the output of this system as depicted in Figure 1.2

can be available too. Quite good efforts were made on the different VPR components

using general-purpose datasets like ImageNet (Krizhevsky et al., 2012) and special-

purpose datasets like Places (Zhou et al., 2017) and SPED (Chen et al., 2017a) which

are specified for the VPR tasks. In addition, in these studies many feature extraction

approaches including handcrafted and deep features were investigated, these features

are integrated with various localization algorithms to achieve the localization task in

the best accurate way.

As a result, VPR algorithms like SeqSLAM and FAB-MAP were introduced, which

was a big step towards the perfect VPR system. SeqSLAM was great in terms of the

way used to deal with the VPR problem which was simplified into two main problems:

the first one is to find the best match locally by defining the most similar neighborhood

reference images from the visual map, and the second one is to find the best match

through the selected reference images. Also, FAB-MAP was the first approach that

attempted to solve the VPR problem as a sequence matching instead of image to image

matching method.

3

Despite all these efforts, there still some drawbacks in the existing approaches need to

be solved. For example, SeqSLAM has achieved a great performance unless it was

vulnerable to the drastic changes in the environment because it was taking the whole

image as an input for the localization step. FAB-MAP also has a drawback in the long-

term navigation due to the changes in the appearance which make it not suitable for

such cases.

So, there still a need to find some approach that is able to perform the localization task

in a way that is comparable to what humans are capable of.

Introducing a new approach by improving two main components, i.e., feature

extraction and localization modules, that can give promising results in achieving the

VPR task, is our aim. For the localization algorithm, a Dynamic Programming (DP) is

used represented by Dynamic Time Warping (DTW) which is a sequence alignment

algorithm that was used for the first time in visual recognition by (Hafez et al., 2019)

to find the best matches among the distance matrix between a reference and test

datasets. Then, we integrated the DTW with the well-known deep features, after that,

these features were encoded by the Fisher Vector (FV) algorithm.

Figure 1.2 Visual Place Recognition Schematic Diagram.

1.2 Motivation and Objectives

The main motivation of this work is to make a breakthrough in the way of treating the

VPR problem by introducing a new approach based on DTW that has achieved

promising results in (Hafez et al., 2019), which we have further improved by

integrating the encoded deep features. In other words, this combination made to get

4

the benefits from both, the DTW and the encoded Deep Features to come with a VPR

approach capable of manipulating with different VPR challenges. The main goals that

this thesis was attempted to achieve are described as follows:

• Introducing a new VPR approach that can deal with different VPR challenges.

• Investigate the best Convolutional Neural Network (CNN) architecture that

gives the best performance when integrated with DTW and finds the best layer

in this architecture.

• Find the benefit of using Deep Features instead of handcrafted features.

• Investigate the effect of encoding the deep features with FV in terms of

performance.

• Finally, evaluate the performance of the proposed approach against the Support

Vector Machine (SVM) classifier which is a classifier used widely as the last

layer in CNN architectures.

1.3 Contributions

The main contribution of this work is two folds:

i) Introducing a new VPR algorithm that utilizes DTW and deep features encoded

using fisher vector. In more detail, the proposed algorithm formulates the DTW as

a visual place recognition system. The feature maps are extracted from a selected

convolution layer after applying the test and the reference image sequences as an

input to the network and these features are encoded using FV based. Then, the DTW

algorithm aligns the two sequences resulted from encoding features by matching

each test image to the closest image in the reference sequence of images.

ii) The different layers from the VGG16, ResNet50 and HybridNet networks are

explored to identify the layers that are best performing with the DTW algorithm for

visual place recognition.

Figure 1.3 shows the output images produced by the DTW algorithm corresponding to

an example input image while using different kinds of features.

5

Figure 1.3 Examples of the output of DTW using different features where the

difference between the test image and the ground truth image are shown in red.

1.4 Organization of the Thesis and Publications

The rest of this work is organized as follows: The background chapter (CHAPTER 2)

explains the main techniques used in this thesis. LITERATURE REVIEW (CHAPTER

3) contains a review of the milestone works in the VPR field. DTW BASED

ENCODED DEEP FEATURES (CHAPTER 4) contains details about the proposed

approach, EXPERIMENTAL EVALUATION AND ANALYSIS (CHAPTER 5)

presents the results of the experiments done through this thesis to achieve the goals

described in the section (1.2) of this chapter. CONCLUSION (CHAPTER 6) is to give

a brief about the outcomes of this work and some headlines for possible directions for

future work.

It is worth mentioning that a conference paper (Hafez et al., 2019) titled as “Visual

Place Recognition by DTW-based sequence alignment” was published on “SIU 2019”

SIVAS, Turkey. Also, another paper was submitted to the IEEE conference “ICRA

2020” and it is under evaluation until the time of writing this thesis. One more paper

is expected to be published into the “SIU 2020” conference as a result of this work.

6

CHAPTER 2

BACKGROUND

2.1 Visual Place Recognition Components

As mentioned in Chapter 1, the VPR systems share the following main components:

1) Visual Map: which is represented by the images of the visited place or generally the

environment, and these images are considered as references, while the new coming

images are called test images. 2) Feature Extraction: In this step, each image is

represented by a descriptor that is formulated through some feature extraction

algorithm(s), which works on finding the most important representatives inside the

image. 3) Localization: This component is responsible for finding the best matches

between reference and test images, so, the robot can localize itself according to the

place that the matched reference image referred to. In the next two sections, more

details about Feature Extraction and Localization are given.

2.2 Features Extraction

In general, there are two types of features that can be extracted from images,

handcrafted features and deep features.

2.2.1 Handcrafted Features

These features represent images using the information present in the image itself.

SIFT, HoG, and LDB (Lowe, 1999; Dalal and Triggs, 2005; Yang and Cheng, 2013),

are examples of efficient and frequently used handcrafted descriptors.

2.2.1.1 Scale-Invariant Feature Transforms (SIFT)

SIFT algorithm is a way of detecting and describing the local features in images with

scale-invariant, i.e., the same features at different scales are detected as similar

features. This is done through different steps started with detecting the features (Key

7

points) using the second derivative of Gaussian or what called Laplacian of Gaussian

(LoG) where different standard deviation (𝜎) values are used to detect the features on

different scales. The calculation of LoG is simplified using Difference of Gaussian

(DoG) as follows:

𝜕𝐺

𝜕𝜎
= 𝜎Δ2𝐺 (2.1)

𝜎Δ2𝐺 =
𝜕𝐺

𝜕𝜎
=

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)

𝑘𝜎 − 𝜎
 (2.2)

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎) ≈ (𝑘 − 1)𝜎2Δ2𝐺 (2.3)

Where 𝐺 is the Gaussian density function. So, to calculate the LoG, the Gaussian with

different 𝜎 values are applied on the image, then, each two consequence results are

subtracted to get the DoG, this procedure should be repeated for different scales, where

the image is down-sampled in a pyramid way, and for each scale of image, different 𝜎

values are applied. In other words, DoG is calculated at different scales of images and

different 𝜎 values. Then, the key points are extracted, where each pixel is compared

with its 26 neighbors, 8 in the current and 18 in the two adjacent scales. If this pixel is

larger or smaller than all its neighbors, then it can be selected as a key point. However,

some of the selected key points are outliers and must be eliminated. This is done

through two methods, the first one is based on Taylor series for DoG:

𝐷𝑜𝐺(𝑋) = 𝐷𝑜𝐺 +
𝜕𝐷𝑜𝐺𝑇

𝜕𝑋
𝑋 +

1

2
𝑋𝑇 𝜕2𝐷𝑜𝐺

𝜕𝑋2
𝑋, Where 𝑋 = (𝑥, 𝑦, 𝜎)𝑇 (2.4)

So, for each (𝑋), if the |𝐷𝑜𝐺(𝑋)| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then, this value can be considered as

an accepted key point, otherwise, it is considered as an outlier. The second method is

based on Hessian matrix:

𝐻 = [
𝐷𝑜𝐺𝑥𝑥 𝐷𝑜𝐺𝑥𝑦

𝐷𝑜𝐺𝑥𝑦 𝐷𝑜𝐺𝑦𝑦
] (2.5)

Where the elements are the derivatives of 𝐷𝑜𝐺 according to the shown subscript. The

trace and determinant of this matrix are given as follows:

𝑇𝑟(𝐻) = 𝐷𝑜𝐺𝑥𝑥 + 𝐷𝑜𝐺𝑦𝑦 = 𝜆1+𝜆2 (2.6)

8

𝐷𝑒𝑡(𝐻) = 𝐷𝑜𝐺𝑥𝑥𝐷𝑜𝐺𝑦𝑦 − (𝐷𝑜𝐺𝑥𝑦)2 = 𝜆1𝜆2 (2.7)

Where 𝜆1 and 𝜆2 are the eigenvalues of the H. The outliers are rejected when r>10,

where: 𝑟 =
𝜆1

𝜆2

Then, after eliminating the outliers, a descriptor for each key point should be computed

using the orientation and magnitude of a 16x16 patch around each keypoint. A

weighted histogram can be formulated by dividing the patch into 4x4 regions, and for

each region, a histogram weighted by magnitude and consists of 8 bins is calculated.

A 128-length descriptor is formulated for each key point, and the whole image can be

described by all descriptors related to the detected keypoints.

2.2.1.2 Histogram of Gradients (HoG)

HoG is a global descriptor that divides the image into several blocks where each block

is represented by several cells and each cell consists of several pixels. For each cell, a

histogram of gradient is computed, where the gradient orientation is quantized into a

specific number of bins and weighted by the gradient magnitude just like in SIFT. The

gradient of an image along X and Y axis can be calculated using Sobel filter which

can be described as follows:

Figure 2.1 Sobel Filter, a) For X direction, b) For Y direction

The magnitude and orientation can be calculated using equations (2.8) and (2.9)

respectively.

𝑔 = √𝑔𝑥
2 + 𝑔𝑦

2 (2.8)

𝜃 = arctan (
𝑔𝑦

𝑔𝑥
) (2.9)

The descriptors for all cells are concatenated to formulate a descriptor for the image.

The blocks can share some cells according to the stride parameter which specify the

number of pixels that each block is shifted from its neighbor.

9

2.2.1.3 Local Difference Binary (LDB)

LDB is a local binary descriptor, where the key points are detected, then described by

LDB. The detecting process could be done based any keypoint detector like FAST and

ORB algorithms. For each keypoint, a patch that surrounds this keypoint is defined,

and each patch is divided into n*n grids. For each pair of grids, the following function

is performed:

𝜏(𝐹𝑢𝑛𝑐(𝑖), 𝐹𝑢𝑛𝑐(𝑗)) ≔ {
1 𝑖𝑓(𝐹𝑢𝑛𝑐(𝑖) − 𝐹𝑢𝑛𝑐(𝑗)) > 0 𝑎𝑛𝑑 𝑖 ≠ 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.10)

Where 𝑖 and 𝑗 are different grids, and 𝐹𝑢𝑛𝑐(.) is a function applied on the grid. This

function is one of three different functions as follows:

𝐹𝑢𝑛𝑐𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) ≔
1

𝑚
∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑘)

𝑘=1~𝑚
 (2.11)

𝐹𝑢𝑛𝑐𝑑𝑥(𝑖) ≔ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑥(𝑖) (2.12)

𝐹𝑢𝑛𝑐𝑑𝑦(𝑖) ≔ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑦(𝑖) (2.13)

Where 𝐹𝑢𝑛𝑐𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(.) is the average intensity in the grid, m is the number of pixels

in that grid. 𝐹𝑢𝑛𝑐𝑑𝑥(.) is the gradient along x direction, and 𝐹𝑢𝑛𝑐𝑑𝑦(𝑖) is the gradient

along y direction. So, for each two grids, three binary bits are calculated. The size of

each grid is very important in terms of robustness and distinctiveness where smaller

size means more distinctiveness and larger size gives more robustness, so, to achieve

both, multiple grid sizes are applied. The full LDB descriptor is formulated through

concatenating all calculated binary strings from all grids. It is important to note that

bit selection procedure is applied to achieve higher efficiency in terms of the time of

matching descriptors and the needed storage to maintain the final descriptors. This

process is done through one of two approaches: 1) Random selection: where n bits are

selected from the full LDB descriptor randomly, 2) Entropy-based selection: where

LDB descriptors for a training dataset is generated to make a matrix of size (N x

number of records) where N is the length of the LDB descriptor for one image. For

each matrix column, the entropy is calculated as follows:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑖 = −𝑃𝑖(1) log(𝑃𝑖(1)) − 𝑃𝑖(0) log(𝑃𝑖(0)) (1 ≤ 𝑖 ≤ 𝑁) (2.14)

𝑃𝑖(1) is the probability of having 1 in column i and 𝑃𝑖(0) the probability of having 0

in the same column. The final LDB descriptor is generated from n columns with the

highest entropies.

10

2.2.2 Deep Features

Using this method, the image is represented using the output of a specific Layer from

a CNN model. In this thesis, we considered the layers of the VGG16, ResNet50 and

HybridNet networks (Zhang et al., 2015; He et al., 2016; Chen et al., 2017a). The

details of the Deep feature are presented in the next section.

2.2.2.1 Features from Pre-trained CNN Networks

In general, CNN composed of a number of layers such as convolution layer, which

mainly aims to detect local conjunctions of features from the previous layer and

mapping their appearance to a feature map, pooling layer that responsible for reducing

the size of the activation maps, and ReLU layer, which can be considered as special

implementation aims to combine non-linearity and rectification layers. Nowadays,

multiple CNN models are available and can be integrated and considered as good

choices for improving any image retrieval systems. The following are some successful

deep Conv Net examples. AlexNet (Krizhevsky et al., 2012) was one of the first deep

networks that defeat classification traditional methodologies. In general, it consists of

5 convolutional layers followed by 3 fully connected (FC) layers. VGGNet (Zhang et

al., 2015) consists of 16 convolutional layers and can be considered as one of the most

preferred choices for extracting features from images. In addition, the weight

configuration of the VGGNet is publicly available and has been used in many other

applications. GoogleNet (Szegedy et al., 2015) consists of 22 layers, however, it has

significantly reduced the number of used parameters by using several very small

convolutions, which leads to reducing the number of parameters to 4 million. Overall,

it has achieved performance close to the human-level. More recently, ResNet (He et

al., 2016) was proposed with a novel architecture based on skip connections and

features. Heavy batch normalization was introduced. Hence, the system can be trained

using 152 layers while still having lower complexity than other models. Another model

that was developed for VPR applications is known as HybridNet (Chen et al., 2017a).

It consists of 6 convolutional layers followed by two FC layers. This CNN architecture

initialized with weights taken from CaffeNet (Krizhevsky et al., 2012) as both models

have the same dimensions for the first five layers, then, the HybridNet was fine-tuned

on the SPED dataset which was also proposed in the same work. Details about VGG16,

ResNet50, and HybridNet are shown in Table 2.1, Table 2.2 and Table 2.3

respectively. Also, Figure 2.2 shows the visualization of VGG16.

11

Table 2.1 VGG16 architecture layers including the output size of each layer, the kernel

size and the number of feature maps in each layer.

Layer name Output size Kernel size, Number of Feature maps

conv1_x 112×112 [
3 × 3, 64
3 × 3, 64

]

conv2_x 56×56 [
3 × 3, 128
3 × 3, 128

]

conv3_x 28×28 [
3 × 3, 256
3 × 3, 256
3 × 3, 256

]

conv4_x 14×14 [
3 × 3, 512
3 × 3, 512
3 × 3, 512

]

conv5_x 7×7 [
3 × 3, 512
3 × 3, 512
3 × 3, 512

]

FC 6 1×1 4096

FC 7 1×1 4096

Softmax 1×1 1000

Table 2.2 ResNet50 architecture layers including the output size of each layer, the

kernel size and the number of feature maps in each layer.

Layer name Output size Kernel size, Number of Feature maps

conv1 112×112 7×7, 64, stride 2

conv2_x 56×56

3×3 max pool, stride 2

[
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3

conv3_x 28×28 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4

conv4_x 14×14 [
1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 6

conv5_x 7×7 [
1 × 1, 512
3 × 3, 512
1 × 1, 2048

] × 3

Softmax 1×1 1000

12

Table 2.3 HybridNet architecture layers including the output size of each layer, the

kernel size and the number of feature maps in each layer.

Layer name Output size Kernel size, Number of Feature maps

conv1 55×55 11 × 11, 96

conv2 27×27 5 × 5, 256

conv3 13×13 3 × 3, 384

conv4 13×13 3 × 3, 384

conv5 13×13 3 × 3, 256

conv6 6×6 3 × 3, 256

FC 1×1 4096

Softmax 1×1 4096

Figure 2.2 A representation of VGG16 layers.

13

2.3 Encoding Features

BOW, VLAD and FV are examples of encoding methods that enhance the features

extracted through feature extraction algorithms. BOW, VLAD and FV are explained

below.

2.3.1 Bag of Words (BOW)

BOW or BOVW (Bag of Visual Words) is the first encoding method that was used at

the beginning for text retrieval, but then, it became used for image retrieval also. In

this work we are interested in the encoding use of this algorithm.

The first step is to detect and describe the features in the images using algorithms like

SIFT, SURF, etc. The second step is to build what called Visual Codebook, this can

be done by clustering the features extracted from the training dataset based some

clustering algorithm like K-Means and its improvements. The centers of the generated

clusters are representing the visual words, and now the visual codebook which consists

of these visual words became ready to use in the testing phase. Finally, when a new

image come, the distance between the extracted features from this image and the visual

words should be calculated, each feature vector is assigned to the nearest center, and a

histogram can be formulated which represents the number of occurrences of each

visual word in the testing image, and according to it, the image can be classified into

the category that the most occur visual word is refer to. Also, the generated histogram

can be used as a descriptor that represents the image.

2.3.2 Vector of Locally Aggregated Descriptors (VLAD)

VLAD is another encoding method, the first and second steps are the same as BOW

where the features should be extracted and clustered to make a visual codebook. To

make a VLAD vector for image (𝐼) the residuals should be computed as follows:

𝑣𝑐 = ∑𝑞𝑖𝑐 (𝑥𝑖 − 𝜇𝑐)

𝐾

𝑖=1

 (2.15)

Where c is the number of cluster, q is the strength of the association with cluster, which

has two constraints: 𝑞𝑖𝑐 > 0 and ∑ 𝑞𝑖𝑐 = 1𝑀
𝑐=1 where 𝑀 is the number of clusters.

All residuals will be concatenated to formulate the VLAD vector of image (𝐼):

14

𝜙(𝐼) =

[

.

.

.
𝑣𝑐

.

.

.

.

.]

 (2.16)

2.3.3 Fisher Vector (FV)

Fisher vector can be described as a way of producing a global descriptor for an image-

based on the local descriptors of its local regions, and it is the best among other

encoding techniques. Its main steps are explained below.

Step1: Gaussian Mixture Model (GMM)

In general, the Gaussian Mixture Model (GMM) can be used as the step before using

the selected encoding schemes, i.e., it is a soft clustering process for the extracted

features. In more detail, as mentioned before, the features should be extracted from the

image and described using one of the feature extraction methods, then, these features

will be soft-assigned to clusters made by GMM. GMM can be described as a set of

multivariate Gaussian distributions, represented as a sum of weighted Gaussian

distribution functions based equation (2.17):

𝑝(𝑥|𝜆) = ∑𝑤𝑐 𝑔(𝑥 |𝜇𝑐, Σ𝑐)

𝑀

𝑐=1

 (2.17)

Where 𝑤𝑐 is the weight of the 𝑐 component, 𝑔(𝑥 |𝜇𝑐, Σ𝑐) is the Gaussian density

function, 𝑥 is the data vector, 𝜇𝑐 is the mean of the 𝑐 Gaussian component and Σ𝑐 is

the covariance matrix of the same component. And the Gaussian density function is

given by equation (2.18):

𝑔(𝑥 |𝜇𝑐, Σ𝑐) =
1

(2𝜋)𝐷/2 |Σ𝑐|1/2
exp {−

1

2
(𝑥 − 𝜇𝑐)

′ ∑ (𝑥 − 𝜇𝑐)
−1

𝑖
} (2.18)

The mixture weights should meet the constraint

∑𝑤𝑐 = 1

𝑀

𝑐=1

 (2.19)

15

As a result, The GMM can be summarized as follows:

𝜆 = {𝑤𝑐 , 𝜇𝑐, Σ𝑐} 𝑐 = 1,… ,𝑀 (2.20)

Where 𝑀 is the number of GMM components. Estimating the values of the GMM

parameters (𝑤𝑐 , 𝜇𝑐 , Σ𝑐) is done through an iterative algorithm called Expectation

Maximization, which has a concept of maximizing the likelihood of the GMM model,

knowing that for each iteration, the GMM model is replaced with a new one that met

the following constraint:

𝑝(𝑋|�̅�) ≥ 𝑝(𝑋|𝜆) (2.21)

Where �̅� is the new model and 𝑝(𝑋|𝜆) is the likelihood of the 𝜆 model given in

equation (2.22):

𝑝(𝑋|𝜆) = ∏𝑝(𝑥𝑡|𝜆)

𝑇

𝑡=1

 (2.22)

Here, T is the number of training vectors 𝑋 = {𝑥1, … , 𝑥𝑇}.

For each EM iteration, the weights, means and covariance matrices are updated

according to equations (2.23), (2.24) and (2.25) respectively

�̅�𝑐 =
1

𝑇
∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

 (2.23)

�̅�𝑐 =
∑ 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆)𝑇

𝑡=1 𝑥𝑡

∑ 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆)𝑇
𝑡=1

 (2.24)

𝜎𝑐
2 =

∑ 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆)𝑇
𝑡=1 𝑥𝑡

2

∑ 𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)𝑇
𝑡=1

− �̅�𝑐
2 (2.25)

Where 𝑃𝑟(𝑐| 𝑥𝑡, 𝜆) is the Posteriori of the 𝑐 component explained in equation (2.26),

𝑥𝑡 is the data vector and 𝜆 is the current GMM model. The outcome of the EM

algorithm is a GMM model that best fit with the given training data.

𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆) =
𝑤𝑐 𝑔(𝑥𝑡 |𝜇𝑐, Σ𝑐)

∑ 𝑤𝑘 𝑔(𝑥𝑡 |𝜇𝑘, Σ𝑘)
𝑀
𝑘=1

 (2.26)

16

Step 2: Obtaining the Fisher Vector

The fisher vector is built on fisher kernel which is responsible of finding the similarity

between two data input using a generative model, in this case it is a GMM model. As

a result, each component of each data vector has two elements computed as follows:

𝑢𝑑𝑐 =
1

𝑇√𝜋𝑐

 ∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐
 (2.27)

𝑣𝑑𝑐 =
1

𝑇√2𝜋𝑐

 ∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

[(
𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐
)
2

− 1] (2.28)

Where 𝑑 = {1, … , 𝐾} is a component from the data vector 𝑥 with dimension 𝐾.

The final fisher vector of image (𝐼) is represented as follows:

𝜙(𝐼) =

[

.

.

.
𝑢𝑐

.

.
𝑣𝑐

.

.]

 (2.29)

The dimension of this fisher vector can be given in equation (2.30):

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹𝑉 = 𝑀 × 𝐾 × 2 (2.30)

In this work, we are interested in the improved version of the Fisher Vector (Improved

Fisher Vector (IFV)) (Perronnin et al., 2012), since it has been proved that it can get

better performance compared to the classical FV.

2.3.4 Improved Fisher Vector (IFV)

Two more steps were added to the FV algorithm that leads to improve the performance.

The first step is to normalize the FV for each dimension using the following function

𝑓(𝜙) = 𝑠𝑖𝑔𝑛(𝜙)|𝜙|𝛼 (2.31)

Where 𝛼 is a parameter in the range [0, 1].

The second step is to normalize the resulted FV from the previous step with L2

normalization (2.32).

17

‖𝜙‖2 =
𝜙

√𝜙1
2 + 𝜙1

2 + ⋯ + 𝜙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹𝑉
2

(2.32)

2.4 Localization

The localization is a component that is responsible for deciding whether the current

place is a new place or it’s a revisited place giving the corresponding image from the

reference images (visual map). Many algorithms such as the DTW and SVM can be

used for this purpose.

2.4.1 DTW

In general, the DTW can be used to align two sequences of images, in our case, it is

the test and the priori annotated reference sequences, which is represented by the

features vectors 𝐴𝑥𝑖 and 𝐴𝑦𝑗, where 𝑥𝑖 is an image in the test sequence and 𝑦𝑗 is an

image in the reference sequence. Then, the distance between each two features vectors

extracted from reference and test sequences is explained in equation (2.33)

𝐷(𝑖, 𝑗) = 1 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖 , 𝑦𝑗) =
|𝐴𝑥𝑖| . |𝐴𝑦𝑗|

‖𝐴𝑥𝑖‖ · ‖𝐴𝑦𝑗‖
 (2.33)

Briefly, the distance value between the image 𝑥𝑖 from the test sequence and the image

𝑦𝑗 from reference sequence is stored in 𝐷(𝑖, 𝑗). It is worth mentioning that the proposed

algorithm can work with any distance matrix such as cosine and Euclidean and

independent of the selected cost function, the DTW will always follow the same set of

steps. This distance matrix is depicted in Figure 2.3. However, in our work, the Cosine

similarity was used, which make it necessary to make some changes to the way that

DTW is follow to find the best path, details about these changes can be found on

chapter 4 (DTW BASED ENCODED DEEP FEATURES).

After that, the Equation (2.34) is used to fill the cost matrix by accumulating the

elements of the distance matrix (𝐷). In other words, in the developed algorithm, the

(2.34) relation is used to fill the cost matrix, which represents the sum of the distance

between current matching two images and the minimum of the cumulative distances

of the neighboring images.

18

𝐶(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑖 − 1, 𝑗),

𝐷(𝑖, 𝑗 − 1),

𝐷(𝑖 − 1, 𝑗 − 1),

 (2.34)

Whenever the matrix 𝐶 is filled out, DTW works on defining an optimal path of

matches 𝑃, which is the result of backward tracing in the matrix 𝐶 choosing the

previous elements with the lowest cumulative distance. Hence, the path through the

elements of matrix 𝐶 that has the minimum sum of cost values 𝐶(𝑖, 𝑗) is the optimal

path and can be interpreted as minimizing the following function.

𝑄(𝑃) = ∑𝐶(𝑖𝑙, 𝑗𝑙)

𝐿

𝑙=1

 (2.35)

An example of this path is shown in Figure 2.4. For more details about DTW

algorithm, the reader is referred to (Sakoe and Chiba, 1978; Kate et al., 2016; Petitjean

et al., 2016).

Figure 2.3 The distance matrix between the features vectors of the reference images

and test images.

19

Figure 2.4 The best path between the reference images and test images using DTW.

20

CHAPTER 3

LITERATURE REVIEW

Visual Place Recognition (VPR) has been well studied in the literature because of the

importance of this field in terms of achieving the localization task for autonomous

robots and vehicles based visual input (Cummins and Newman, 2008). The recent

researches about autonomous robots based on computer vision techniques and

different categories of VPR approaches (Lowry et al., 2015) are summarized in the

following sections.

3.1 Autonomous Robots Based on Computer Vision

Localization and Navigation are the key skills that autonomous robots should have to

be able to recognize its current location and how to reach the desired destination(s).

Different kinds of unmanned robots are existed, including Unmanned Ground Vehicles

(UGVs) (Bojarski et al., 2016), Unmanned Aerial Vehicles (UAVs) (Milford et al.,

2011) and Unmanned Underwater Vehicles (UVVs) (Hong et al., 2016). Examples of

those kinds are shown in Figure 3.1.

Figure 3.1 Examples of autonomous robots. a) UAV, b) UGV, c) UUV.

In this work, we focused on the VPR approaches in terms of UGVs like driverless

cars. The most recent works in this field are focusing on using what called

Visual Simultaneous Localization and Mapping (SLAM). In such methods, the sensors

21

responsible for the localization task like GPS are replaced or merged with a visual

sensor that can make the localization and mapping tasks at the same time. One of the

most recent works in this field called ORB-SLAM (Mur-Artal et al., 2015). This

algorithm is initiated by describing the new coming frame based the Oriented FAST

and Rotated BREIF (ORB) binary descriptor. In addition, this system contains a Place

Recognition module based on the BOW to perform the re-localization procedure when

the tracking module is lost.

3.2 Approaches based on the Handcrafted Features

This category can use local descriptors and/or global descriptors. For local descriptors,

key points in the image should be detected, then, the region around each key point is

described. For global descriptors, there is no need to detect the key points. Instead, a

descriptor for the whole image is generated.

3.2.1 Local Descriptors

Local descriptors like scale-invariant feature transform (SIFT) (Lowe, 1999) and

speeded-up robust features (SURF) (Bay et al., 2006) were used in the VPR

approaches. In addition, the Fast Appearance-Based Mapping (FAB-MAP) algorithm

(Cummins and Newman, 2008) is a sequence matching approach that is based on this

category. In more detail, this approach performs the sequence matching between two

sets of images using SURF features as descriptors encoded using Bag of visual words

(BOW) algorithm. This is done by clustering the descriptors of the local regions

generated by (SURF) into a predefined number of clusters, which is considered as a

visual codebook obtained from the training dataset. Related to the testing dataset, it

will be described through (SURF), where each local descriptor is assigned into the

nearest cluster using KD-Tree algorithm. Moreover, the resulted visual words are used

to build the mutual information graph, where the node refers to a visual word, and the

weight on the edge connecting two nodes represents the mutual information. The

spanning tree of this graph is what called Chow Liu tree which is a representation of

the visual word distribution that works as a generative model, so, the coming images

can be considered as a pre-visited location or a new location by knowing how likely it

belongs to the available locations distributions.

22

3.2.2 Global Descriptors

The second category, which uses descriptors such as Histogram of Gradients (HoG)

(Dalal and Triggs, 2005) represents the whole scene with a global descriptor.

SeqSLAM (Milford and Wyeth, 2012) is another sequence matching approach that

manipulates images by getting a global descriptor for the image, and then it calculates

the distance of the image descriptor to all reference images to find the best match.

Although, this system has achieved a good performance, since it is based on the image

itself makes it vulnerable to any changes in the environment.

In (Naseer et al., 2014), flow control is represented as a directed graph where a source

and sink nodes are available and the best path between these two nodes should be

found to achieve a sequence matching between two sets of images.

Another method uses the ABLE (Arroyo et al., 2014) algorithm which is based on the

binary descriptor, i.e., Local Difference Binary (LDB). It has been found that this

method is good when illumination cases the variance between the two sets of images,

as this method has a specific parameter that can eliminate the variation between the

two sequences. In addition, it processes a sequence of images instead of processing

one image, which makes it suitable for the long-term scenarios. Multiple versions of

this algorithm were introduced to deal with multiple input scenarios including

monocular (ABLE-M) Stereo (ABLE-S) and panoramic (ABLE-P).

3.3 Approaches based Deep Features

Different approaches were proposed to solve the VPR problem based on deep features.

In general, each of these approaches has adopted one of the follows features extraction

methods: 1) The pixels of the whole image are the input of the CNN and then features

are extracted from some layer to represent the image (Chen et al., 2014). 2). Secondly,

some landmarks could be defined by human and the features of these regions are

extracted from the output of convolutional layers (Sünderhauf et al., 2015). 3) The

third option is the same as the first one except that instead of getting the output of the

CNN directly, landmarks are detected automatically and formulated to produce a

representation for the whole image (Chen et al., 2017b; Khaliq et al., 2018, 2019).

In the last decade, deep learning and especially pre-trained CNN is frequently used,

which is a network architecture trained on a dataset collected for some computer vision

23

application, and then, the trained weights can be used to get the output or extract

features from the deep layers using another dataset for achieving the same or different

purpose of the original training dataset. In the following sub-section, some recent

studies related to the use of pre-trained CNN are summarized.

3.3.1 Using Pre-Trained Models

It has been proved that tasks like image retrieval and image classification could be

achieved using pre-trained CNN (Wang et al., 2017a, b). The deep features can be

extracted from any layer of the used CNN. In (Sünderhauf et al., 2015b; Chen et al.,

2018; Yue-Hei Ng et al., 2015) and (Chandrasekhar et al., 2017) the performance of

tasks like image retrieval, image classification and place recognition, based features

extracted from different layers of a CNN, was investigated. The results of these studies

showed that the last layer is considered as the best for image classification tasks, On

the other hand, the middle layers are the best for the place recognition and image

retrieval tasks. Another evidence was presented in (Sünderhauf et al., 2015), where the

AlexNet CNN was used, and it has been found that middle layers can handle the

changes in appearance much better than using the higher layers, while the higher layers

are the best option to deal with the viewpoint changes.

The work of (Fu et al., 2016; Du and Cai, 2016) has focused on the performance of the

last layer of CNN which is the layer that gives the final decision. SVM and Softmax

are the two frequently layers that can be used as the last layer, and the result of this

study showed that SVM has slightly outperformed the Softmax.

All the aforementioned works have used general pre-trained CNN architectures, i.e.,

these models were not trained specifically for the place recognition task. The work of

(Zhou et al., 2017) can be considered as the first work that attempted to solve this

problem by collecting a dataset called Places, which is consists of 10 million images

of places in a different environmental situation from around the world. Then, some

well-known architectures like AlexNet (Krizhevsky et al., 2012), GoogLeNet

(Szegedy et al., 2015) and VGG16 (Simonyan et al., 2014) were trained on this dataset,

and as expected, it has outperformed the previous pre-trained models on ImageNet

(Krizhevsky et al., 2012) dataset.

Another dataset called Specific PlacEs Dataset (SPED) was collected using nearly

30000 outdoor cameras from all around the world. This dataset contains images from

24

days and nights through several months and several years attempting to include all

possible changes under different conditions (Chen et al., 2017a). This work presented

two pre-trained models, AmosNet and HybridNet, AmosNet was trained on the SPED,

while the HybridNet was trained on the ImageNet, then fine-tuned on SPED. The

results of this study showed that HybridNet has outperformed AmosNet.

Even though deep features are able to outperform the handcrafted features in most

cases, it has been found that it is not efficient in handling the viewpoint changes (Xin

et al., 2019). To overcome this problem and as shown in (Xin et al., 2019; Chen et al.,

2017b; Khaliq et al., 2018, 2019), researchers have tried to add some additional steps

before and after the deep features extraction to compensate this limitation. Encoding

features to enhance the ability of deep features to be more robust against the

appearance changes was one of these steps. On the other hand, some works such as

(Chen et al., 2017b), work on determining the image’s landmarks to overcome the

viewpoint challenge. The approach of (Chen et al., 2017b), tried to detect the most

promising landmarks from the output of the convolutional layers of a pre-trained

VGG16 deep neural network. Then, the features extracted from the VGG16 layers are

fed into BOW (Sivic et al., 2003) to be encoded. Finally, as each image is represented

by a vector, the distance between images was calculated by cosine similarity to find

the mutual matching of regions in the images.

A slightly different approach was followed in (Khaliq et al., 2018) where the encoding

method was VLAD (Jégou et al., 2010) and detecting the landmarks was done through

only one layer of a pre-trained AlexNet365 (Zhou et al., 2017) without need to get a

mask from another layer like in (Sivic et al., 2003). This approach outperformed the

one with BOW.

Another improved approach was introduced in (Khaliq et al., 2019) by the same

authors where more features from different layers of the CNN are gathered to improve

the performance. In this approach, the HybridNet is the architecture used because of

its superiority over other architectures. In addition, the Cosine distance between all

images was used to find the best match. This approach worked nearly in real-time, just

like the one presented in (Xin et al., 2019).

In this chapter we discussed many methods and many algorithms to deal with the VPR

problem, some of them used the traditional ways for extracting features, but we can

see clearly that the most recent works based deep features were get remarkable results

that was not achieved before.

25

In this thesis, we have inspired by these works, where deep features are used.

Furthermore, the sequence-based methods were proved as a better way for dealing with

long-term scenarios and that what was made the DTW a proper algorithm to be used

as the core of our localization algorithm. In the following chapter, more details about

the proposed approach is given.

26

CHAPTER 4

DTW BASED ENCODED DEEP FEATURES

In this chapter, the proposed approach is presented. Briefly, the approach start by

extracting features through the layers of the deep networks, then, these features are

encoded with FV, followed by DTW algorithm, which is used to find the path that

gives the best performance through all other possible paths, where the result is the

matches between the test images and reference images. It worth mentioning that the

improved version of the Fisher Vector (IFV) is used in our approach and it was

abbreviated as Fisher Vector (FV) for the rest of this thesis unless another situation

was declared.

Figure 4.1 The main components of the proposed approach. a) The image sequences

(visual map). b) Feature extraction step based deep learning, c) Encoding deep features

using Fisher Vector, d) Images alignment and find the best matches using DTW.

4.1 Image Sequence

In this step there are two types of images sequences: Reference Images 𝑋 and Test

Images 𝑌 as follows:

𝑋 = {𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛} (4.1)

𝑌 = {𝑦1, 𝑦2, 𝑦3 … , 𝑦𝑚} (4.2)

27

Where n is the number of reference images and m is the number of test images.

The reference and test images should be collected from the same rout. Reference

images are fed into the GMM to train a model that can be used later with the test

images. This process is explained in detail in section 4.3

4.2 Deep Features Extraction

As explained in CHAPTER 3, there are three common methods that can be used to

extract the image’s deep features, in this work, the first method was used, i.e., the

pixels of each image is fed into the deep network, then, the features are extracted

through the output of some layer(s) from the CNN architecture. In more detail, for an

image I, the output dimensions of some convolutional layer will be 𝑊 × 𝐻 × 𝐾 where

𝑊 is the width, 𝐻 is the height and 𝐾 is the depth of the Feature maps in the selected

layer. For such a layer, there are 𝑊 × 𝐻 feature vectors, where each one consists of

𝐾 components as depicted on Figure 4.2. Let 𝑁 denote 𝑊 × 𝐻, these features are

stacked together in a matrix with size 𝑁 × 𝐾 to be fed into the next stage.

Figure 4.2 An example of a layer in a CNN model. W is the width of the feature map,

H is the height of the feature map and K is the number of feature maps in the layer,

each group of elements with the same color represents a different feature vector.

In this work, three main CNN architectures were used including VGG16, ResNet50

and HybridNet networks (Zhang et al., 2015; He et al., 2016; Chen et al., 2017a).

Each of these three networks has its own architecture, where the number of

convolutional layers and the parameters related to each of these layers are what give a

CNN its own specifications and differentiate it from other network models.

VGG16 model consists of 16 convolutional layers, the input should be 224*224*3 i.e.,

RGB image, this input is passed through the first two convolutional layers with a 64

feature maps for each one and a kernel of size 3*3. The output is reduced with a

pooling layer into 112*112*64, this output is fed into the next block which consists of

28

two layers with a size of 128 feature maps followed by pooling layer reduces the input

into 56*56*128. The third block gives an output with size 28*28*256 where each of

the three layers in this block consists of 256 feature maps. For the fourth and fifth

blocks, there are three layers in each of them with 512 feature maps in each layer, the

output of the fourth block is 14*14*512 and the output of the fifth block is 7*7*512.

These convolutional layers are followed by three fully connected layers, the first two

layers consist of 4096 neurons for each one, and the final layer (output layer) is the

decision layer with the SoftMax function.

The ResNet50 model consists of five blocks like VGG16, but with different parameters

for each block, the input is a 224*224 RGB image, this image is sub-sampled into

112*112*64 as an output of the first block with a kernel size 7*7, this output is fed

into the next block which contains two stages, the first one uses the max pooling with

a kernel size of 3*3, then, three convolutional layers with different parameters

formulate the second stage where each of them is repeated three times, the first and

second layers, each of which has 64 feature maps with a 1*1 kernel size for the first

one and a 3*3 for the second. The third one has 256 feature maps and 1*1 kernel size.

It is worth mentioning that the kernel size of each layer in this block is applicable for

all following blocks because each of them consists of three different types of

convolutional layers. The output of the second block is pooled into 56*56*256, this

output is fed into the next block which gives an output with size of 28*28*512. In this

block, each of the three types of the convolutional layers is repeated 4 times, the first

and second ones have 128 feature maps for each and the third one has a 512 feature

maps. The fourth block gives an output with 14*14*1024 size, where each

convolutional layer is repeated 6 times, the first and second ones contain 256 feature

maps and the last one has 1024 feature maps. The last convolutional block gives a

7*7*2048 output with 512 feature maps for the first two convolutional layers and 2048

for the third one with 3 repetitions for each. A decision layer with 1000 neurons and

SoftMax function represents the output layer.

The third CNN model is the HybridNet, where it consists of six blocks, each of them

has only convolutional layer and pooling layer, the first one has 96 feature maps with

a filter size 11*11, the pooling layer gives an output with a size of 55*55*96, this

output is reduced in the next block into 27*27*256 where the 256 is the number of the

feature maps and a filter with size 5*5 is applied. The third and fourth layers consist

of 384 feature maps with a 3*3 filter and a 13*13*384 output size for each of them,

29

the fifth and sixth block have the same number of feature maps (265) with the same

kernel size (3*3), but the output of the fifth block is 13*13*256 and for the sixth block

is 6*6*256. Two fully connected layers with 4069 neurons for each exist at the end of

the HybridNet architecture with a SoftMax function for the second one.

4.3 FV encoding stage

Fisher vector can be produced through two main steps: Building the Gaussian Mixture

Model (GMM) and then, obtaining the Fisher Vector (FV).

4.3.1 Training Phase: Building the Gaussian Mixture Model (GMM)

A training dataset (Day left for the Garden point dataset and for berlin_A100 it was

the reference sequence used by (Khaliq et al., 2018)) is used to get the main

components of the GMM including weight (𝑤𝑐), mean (𝜇𝑐) and covariance (Σ𝑐) for

each cluster (c). These components can be described as follows where 𝑀 is the number

of clusters which is set to 128 clusters:

𝜆 = {𝑤𝑐 , 𝜇𝑐, Σ𝑐} 𝑐 = 1,… ,𝑀 (4.3)

4.3.2 Testing Phase: Obtaining the Fisher Vector (FV)

This phase is to extract the FV for both, the training and testing datasets (Day Right,

Night Right for Garden Point, and the same testing sequence used in (Khaliq et al.,

2018) for (berlin_A100)) based the trained GMM from the previous phase to be

matched in the next step, as a result, the best path among them can be found. Two

components for each element of the feature vector 𝑥𝑡 which produced by a layer of a

CNN model are calculated for each cluster in the GMM as follows:

𝑢𝑑𝑐 =
1

𝑇√𝜋𝑐

 ∑ Pr(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐

 (4.4)

𝑣𝑑𝑐 =
1

𝑇√2𝜋𝑐

 ∑𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆)

𝑇

𝑡=1

[(
𝑥𝑑𝑡 − 𝜇𝑑𝑐

𝜎𝑑𝑐

)
2

− 1] (4.5)

Where 𝑑 = {1, … , 𝐾} is a component of 𝑥 data vector with dimension 𝐾 represents

the number of feature maps which varies according to the selected layer from the CNN

model. 𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆) is the posteriori for each cluster in the 𝜆 model as follows:

𝑃𝑟(𝑐| 𝑥𝑡 , 𝜆) =
𝑤𝑐 𝑔(𝑥𝑡 |𝜇𝑐 , Σ𝑐)

∑ 𝑤𝑗 𝑔(𝑥𝑡 |𝜇𝑗, Σ𝑗)
𝑀
𝑗=1

 (4.6)

30

𝑔(𝑥𝑡 |𝜇𝑐, Σ𝑐) is the Gaussian density function. As a result, for each image (𝐼), the

calculated components are concatenated to formulate the final fisher vector as

illustrated in (4.7)

𝜙(𝐼) =

[

.

.

.
𝑢𝑐

.

.
𝑣𝑐

.

.]

 (4.7)

The length of this vector is calculated with the equation:

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹𝑉 = 𝑀 × 𝐾 × 2 (4.8)

Where 𝑀 is 128 as we said previously, and 𝐾 is the number of feature maps according

to the selected layer. An improved version of FV is generated with a square root

normalization followed by L2 normalization applied on 𝜙(𝐼).

As a result, encoded deep features for both, training and testing datasets were produced

and ready to be aligned using the DTW, i.e., the next step. The testing phase of the

proposed approach is explained in Algorithm 4.1 where 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙 is a pre-trained

CNN model where the features are extracted from. 𝜆 represents the parameters of the

trained GMM model (weight, mean and covariance). 𝑢𝑑𝑐 and 𝑣𝑑𝑐 are the components

of the Fisher Vector. 𝑛𝑜𝑟𝑚1 and 𝑛𝑜𝑟𝑚2 are the equations (2.31) and (2.32)

respectively.

Algorithm 4.1 𝐷𝑇𝑊𝐵𝑎𝑠𝑒𝑑𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋, 𝑌,𝑀,𝐾, 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙, 𝐷, 𝜆, 𝛼)

1 𝑛 ← |𝑋| //number of reference images

2 𝑚 ← |𝑌| //number of test images

3 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉 ← 𝑀 × 𝐾 × 2

4 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉[] ← 𝑛𝑒𝑤[𝑛 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉]

5 𝑡𝑒𝑠𝑡_𝐹𝑉[] ← 𝑛𝑒𝑤[𝑚 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉]

6 𝑈[] ← 𝑛𝑒𝑤[1 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉] // All 𝑢 values

7 𝑉[] ← 𝑛𝑒𝑤[1 × 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑜𝑓_𝐹𝑉] // All 𝑣 values

8 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1

9 𝐟𝐨𝐫 𝑖 = 1 𝑡𝑜 𝑛

10 𝐴𝑥𝑖 ← 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙(𝑥𝑖) //Features for image 𝑥𝑖

11 𝐟𝐨𝐫 𝑐 = 1 𝑡𝑜 𝑀 //c: a GMM cluster

//M: number of GMM clusters

31

12 𝐟𝐨𝐫 𝑑 = 1 𝑡𝑜 𝐾 //d: number of components in 𝐴𝑥𝑖

//K: dimension of 𝐴𝑥𝑖

13 𝑈(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑢𝑑𝑐(𝐴𝑥𝑖 , 𝜆) //𝜆: GMM model

14 𝑉(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑣𝑑𝑐(𝐴𝑥𝑖, 𝜆)

15 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

16 end for

17 end for

18 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1

19 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, :) ← [𝑈, 𝑉]

20 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, ∶) ← 𝑛𝑜𝑟𝑚1(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, :)) //The square root normalization

21 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, :) ← 𝑛𝑜𝑟𝑚2(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉(𝑖, :)) // The L2 normalization

22 end for

23 𝐟𝐨𝐫 𝑗 = 1 𝑡𝑜 𝑚

24 𝐴𝑦𝑗 ← 𝐶𝑁𝑁_𝑀𝑜𝑑𝑒𝑙(𝑦𝑗)

25 𝐟𝐨𝐫 𝑐 = 1 𝑡𝑜 𝑀

26 𝐟𝐨𝐫 𝑑 = 1 𝑡𝑜 𝐾

27 𝑈(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑢𝑑𝑐(𝐴𝑦𝑗, 𝜆)

28 𝑉(1, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ← 𝑣𝑑𝑐(𝐴𝑦𝑗, 𝜆)

29 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

30 end for

31 end for

32 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 1

33 𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, :) ← [𝑈, 𝑉]

34 𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, ∶) ← 𝑛𝑜𝑟𝑚1(𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, :))

35 𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, :) ← 𝑛𝑜𝑟𝑚2(𝑡𝑒𝑠𝑡_𝐹𝑉(𝑗, :))

36 end for

37 𝐶 ← 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑡𝑟𝑖𝑥(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝐹𝑉, 𝑡𝑒𝑠𝑡_𝐹𝑉, 𝐷) //Generate the Accumulated

Matrix in DTW

38 𝑝𝑎𝑡ℎ ← 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝐶) //Find the best path in the

Accumulated matrix

4.4 Sequence alignment using DTW

This component takes the preprocessed input stream of visual data (test images) and

the visual map (reference images) to generate a belief about the current place. In other

words, the distance matrix will be filled out, and, as mentioned before in DTW, matrix

𝐶 represents the cumulative distance with a slight difference that the sum of the

32

distance between current matching two images and the maximum (not minimum) of

the cumulative distances of the neighboring images is calculated, this difference where

the maximum was taken instead of the minimum is because the distance measure used

in our approach is the cosine similarity, which has a range between [-1, 1] where -1

means no similarity at all and 1 means the best match, and this distance can be

described as follows:

𝐷(𝑖, 𝑗) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖, 𝑦𝑗) =
|𝐴𝑥𝑖| . |𝐴𝑦𝑗|

‖𝐴𝑥𝑖‖ · ‖𝐴𝑦𝑗‖
 (4.9)

𝐶(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) + max{

𝐷(𝑖 − 1, 𝑗),

𝐷(𝑖, 𝑗 − 1),

𝐷(𝑖 − 1, 𝑗 − 1),

 (4.10)

The details about building the accumulated matrix is described in the Algorithm 4.2.

Algorithm 4.2 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑡𝑟𝑖𝑥(𝑋, 𝑌, 𝐷)

1 𝑛 ← |𝑋|

2 𝑚 ← |𝑌|

3 𝐶[] ← 𝑛𝑒𝑤[𝑛 × 𝑚]

4 𝐶(0,0) ← 0 //Fil the first element with 0

5 𝐟𝐨𝐫 𝑖 = 1 𝑡𝑜 𝑛

6 𝐶(𝑖, 1) ← 𝐶(𝑖 − 1, 1) + 𝐷(𝑖, 1) //Fill the first column

7 end for

8 𝐟𝐨𝐫 𝑗 = 1 𝑡𝑜 𝑚

9 𝐶(1, 𝑗) ← 𝐶(1, 𝑗 − 1) + 𝐷(1, 𝑗) //Fill the first row

10 end for

11 𝐟𝐨𝐫 𝑖 = 1 𝑡𝑜 𝑛

12 𝐟𝐨𝐫 𝑗 = 1 𝑡𝑜 𝑚

13 𝐶(𝑖, 𝑗) ← 𝐷(𝑖, 𝑗) + max {𝐶(𝑖 − 1, 𝑗),

 𝐶(𝑖, 𝑗 − 1),

 𝐶(𝑖 − 1, 𝑗 − 1)}

//Fill the rest of elements

14 end for

15 end for

16 return 𝐶

33

And the best path (Algorithm 4.3) can be shown as the path that gives the maximum

value of the following function:

𝑄(𝑃) = ∑𝐶(𝑖𝑙, 𝑗𝑙)

𝐿

𝑙=1

 (4.11)

Finally, the system has a decision on whether it is a prior visited place or a new place.

As an example, Figure 1.3 shows the output images using different kinds of features

corresponding to the same input image.

Algorithm 4.3 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝐶)

1 𝑝𝑎𝑡ℎ[] ← 𝑛𝑒𝑤 𝑎𝑟𝑟𝑎𝑦

2 𝑖 = 𝑟𝑜𝑤𝑠(𝐶)

3 𝑗 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑠(𝐶)

4 𝐰𝐡𝐢𝐥𝐞 (𝑖 > 1) & (𝑗 > 1)

5 𝐢𝐟 𝑖 == 1 𝐭𝐡𝐞𝐧

6 𝑗 = 𝑗 − 1

7 𝐞𝐬𝐥𝐞 𝐢𝐟 𝑗 == 1 𝐭𝐡𝐞𝐧

8 𝑖 = 𝑖 − 1

9 𝐞𝐥𝐬𝐞

10 𝐢𝐟 𝐶(𝑖 − 1, 𝑗) == max{𝐶(𝑖 − 1, 𝑗), 𝐶(𝑖, 𝑗 − 1), 𝐶(𝑖 − 1, 𝑗 − 1)} 𝐭𝐡𝐞𝐧

11 𝑖 = 𝑖 − 1

12 𝐞𝐥𝐬𝐞 𝐢𝐟 𝐶(𝑖, 𝑗 − 1) == max{𝐶(𝑖 − 1, 𝑗), 𝐶(𝑖, 𝑗 − 1), 𝐶(𝑖 − 1, 𝑗 − 1)} 𝐭𝐡𝐞𝐧

13 𝑗 = 𝑗 − 1

14 𝐞𝐥𝐬𝐞

15 𝑖 = 𝑖 − 1; 𝑗 = 𝑗 − 1

16 𝐞𝐧𝐝 𝐢𝐟

17 𝑝𝑎𝑡ℎ. 𝑎𝑑𝑑((𝑖, 𝑗))

18 end if

19 end while

20 return 𝑝𝑎𝑡ℎ

34

CHAPTER 5

EXPERIMENTAL EVALUATION AND ANALYSIS

The main aims of the experiments presented in this chapter are: 1) investigate the

proposed DTW place recognition method. 2) Evaluate the performance of using

multiple handcrafted features like SIFT, HOG, and LDB, vs. using the deep features

extracted from multiple CNN networks like VGG16, ResNet50, and HybridNet. 3)

Compare between different encoding algorithms based deep features. 4) Investigate

the performance of the DTW vs. SVM after encoding the deep features by FV. 4)

Evaluate the proposed approach against the SVM classifier.

In more detail, we firstly studied the efficiency of the DTW algorithm with handcrafted

features, particularly SIFT, HOG, and LDB. Then, we investigated the performance of

features extracted from different layers of VGG16 (Zhang et al., 2015), ResNet50 (He

et al., 2016) and HybridNet (Chen et al., 2017a) networks. As a result of this

experiment, we detected the best layer that obtains the best performance when

integrated with DTW for place recognition. After that, we compared the performance

of the DTW when used with 1) handcrafted features and 2) deep features extracted

from the best layer found in the previous experiment. In the fourth experiment, the

encoded deep features were evaluated based multiple encoding algorithms to find the

best one that can be used in the next experiment where the performance of the encoded

deep features against the deep features without encoding for both classifiers, DTW and

SVM were investigated. In the last experiment, the performance of the proposed DTW

algorithm was compared with the SVM classifier as one of the most famous classifiers

to be used with CNN architectures.

5.1.1 Datasets and Evaluation

In this study both well-known datasets “Garden Point” and “berlin_A100”

(Sünderhauf et al., 2015) were used, and the details are summarized below.

1) The “Garden Point”: which is a dataset that captures the changes in the

35

pose and lightening conditions in the “QUT” campus. It consists of three

sub-datasets: Day left, Day right and Night right. The first two sequences were

collected during the day, but with different viewpoints. In addition,

the third one has a very close viewpoint to the second one, but it differs in the

illumination, and the images of this series where taken at night. Each of these

series has 200 images labeled by referring to the corresponding images.

2) The “berlin_A00”: which is a dataset collected from a platform called

Mapillary where images of the same route were collected by different users

with a variation in viewpoint and appearance. In this work, we have used the

sub-dataset of “berlin_A00” that was constructed by (Khaliq et al., 2018)

where the reference set is consisted of 85 images and the test set consisted of

81 images. In addition, the ground truth of this sub-dataset was made by

matching the images which have the same position in terms of GPS.

Error! Reference source not found.. Shows some image samples from the G

arden point and the berlin_A100 dataset.

36

Related to the performance evaluation, the precision-recall curve (PRC), Area under

curve (AUC), and the average precision (AP) measures were used.

1) The precision-recall curves can be obtained after finding the best match frame

for each test frame among all the frames in the training sequence. The precision

(P) is calculated as 𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 while the recall (R) is calculated as

𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 .

Note that a match is considered as a positive if 𝐷(𝑖, 𝑗) < 𝑡, where t is a

predefined threshold, otherwise it is considered as a negative match.

It is worth mentioning here that the threshold (t) is the number of frames

between the matched image from reference images and the ground truth.

2) AUC which is the area under PRC: AUC can be calculated using the

trapezoidal rule

𝐴𝑈𝐶 = ∑
𝑝𝑖

𝑚𝑖𝑛 + 𝑝𝑖+1
𝑚𝑎𝑥

2
(𝑟𝑖+1 − 𝑟𝑖)

𝑛−1

𝑖=1

 (5.1)

Where p is the precision value and r is the recall value, where for each recall

value there could be many precision value, so, 𝑝𝑖
𝑚𝑖𝑛 is the minimum precision

corresponding to 𝑟𝑖 and 𝑝𝑖
𝑚𝑎𝑥 is the maximum precision corresponding to 𝑟𝑖

and n is the considered number of recalls.

3) AP which is the weighted mean of precision was used for each threshold in the

PRC, and it can be calculated as

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

 (5.2)

Where 𝑅𝑛 and 𝑃𝑛 are the recall and precision respectively obtained for the

threshold n in the PRC.

5.1.2 Dynamic Time Warping with Handcrafted features

Firstly, the performance of the proposed visual place recognition method has been

tested after integrating some well-known handcrafted descriptors, in particular, HOG,

SIFT, and LDB. The experiment has been initially conducted by matching the selected

two sequences (Day left and Day right) from Garden Point. In the first part of this

experiment, the cosine similarity matrix was directly initiated, then the matched image

with the minimum distance is selected (without DTW). In the second part of this

37

experiment, the matching selection was achieved using the DTW algorithm. The PR

curve resulted from both parts is depicted in Figure 5.1. As a result, using DTW has

outperformed and improved the performance of all used handcrafted descriptors. It is

worth mentioning that a threshold of 1 frame has been used where the result is

considered as a true positive either if the test image has met with the exact

correspondence reference or it is one frame far.

Figure 5.1 Comparing the traditional implementation of the HoG, SIFT and LDB

against fed the same features into DTW, using Garden Point (Day left vs Day right)

dataset with a threshold equal to 1 frame.

5.1.3 Investigating the performance of VGG16, ResNet50 and HybridNet Layers

In this section, we explore the VGG16, ResNet50 and HybridNet network

architectures looking for the layer that achieves the best performance according to the

PRC. This experiment has been formulated to find out the layer among the mentioned

architectures that achieves the best performance when integrated with DTW. In more

detail, the output of each layer was injected into DTW to get the best path between the

test and reference images. The last layers from block 3, 4 and 5 were selected to

represent the VGG16 and ResNet50. For HybridNet the Convolutional layers from 1

to 6 were selected. In addition, the “Garden Point” dataset has been used in this

experiment, where the “day left” and “day right” are the reference and test series

respectively, and the threshold was set to 1 frame. The resulted PRC are shown in

Figure 5.2, Figure 5.3, and Figure 5.4 for VGG16, ResNet50, and HybridNet

respectively. According to this experiment, it could be said that the layer from the last

block 5 has outperformed other layers for both VGG16 and ResNet50. Related to the

38

HybridNet, like other architectures, we can see that “Conv 6”, i.e., the last

convolutional layer has achieved the best performance among other layers.

Figure 5.2 PRC for three different convolutional layers of VGG16.

Figure 5.3 PRC for three different convolutional layers of ResNet50.

39

Figure 5.4 PRC for four different convolutional layers of HybridNet.

5.1.4 The Performance of Deep Features

In this experiment, the deep features extracted from the ResNet50’s best layer, i.e., the

layer that has obtained the highest performance in the previous section, have been

evaluated against the used handcrafted features, i.e., HOG, SIFT, and LDB. As shown

in Figure 5.6, the deep features have outperformed all other features and was able to

obtain high precision over all recall values.

Figure 5.5 PRC for the HoG, SIFT and LDB handcrafted features vs. the layer

(res5c_branch2c) from ResNet50, all integrated with DTW. Garden Point (Day left vs

Day right) dataset used with a threshold 1 frame.

40

5.1.5 Performance of different Encoding Schemes

In this experiment, a comparison between BOW, VLAD, Normal FV and Improved

FV was made to pick up the most suitable one to be integrated with DTW. Garden

Point (Day left vs Day right) dataset was used and deep features were extracted through

the third convolutional layer of the block four “block4_conv3” in VGG16 network.

This experiment shows that the Improved FV has outperformed other encoding

techniques and it is the best to be used in the next experiments as depicted on figure

Figure 5.6. In the following experiments, the improved Fisher Vector is abbreviated as

Fisher Vector (FV).

Figure 5.6 PRC for BOW, VLAD, Normal FV and Improved FV integrated with

DTW. “block4_conv3” layer from VGG16 network used. All encoding algorithms has

a visual codebook with a 128 cluster. Garden Point (Day left vs Day right) dataset used

with a threshold 1 frame.

5.1.6 Performance of DTW based Fisher Vector

In this section, the Garden Point and berlin_A100 datasets were used to evaluate the

DTW based deep features encoded with the fisher vector against the non-encoded

features. In addition, the same scenario was repeated using the SVM classifier based

deep features. In addition, the Pre-trained VGG16 and ResNet50 networks were used.

Furthermore, the number of GMM was set to 128 for all experiments done in this

section.

41

Overall, the following can be observed:

1) Using the Garden Point (Day left vs Day right), as shown in (Figure 5.7, Figure

5.8, Figure 5.9, Figure 5.11, Figure 5.12, Table 5.1, Table 5.5, Table 5.6),

Using the FV leads to improve the performance of a) all the used convolutional

layers and b) the used architecture. But for the last two fully connected layers

in VGG16, applying the encoding step leads to a huge decrease in the

performance which make this kind of layers not suitable to be encoded with

fisher vector.

2) Using the Garden Point (Day left vs Night right), as shown in (Figure 5.9,

Figure 5.13, Table 5.3, Table 5.7), whenever the DTW was used as the

classifier, the features extracted from VGG16 and encoded with FV

outperforms the same deep features without FV. However, when the SVM is

used as the classifier, the layer from the block 3 encoded through FV was

outperformed by the same block without the FV.

3) Using the berlin_A100 as shown in (Figure 5.10, Figure 5.14, Table 5.4, Table

5.8) when the DTW was used as a classifier, the features with FV outperformed

the features without, but for the SVM, only features from the block 3 with FV

outperformed the same layer without FV.

Figure 5.7 PRC for the convolutional layers of VGG16 without FV against the same

layers encoded with FV and all are integrated with DTW. Garden Point (Day left vs

Day right) dataset used with a threshold 1 frame.

42

Table 5.1 AUC and AP for layers in VGG16 without FV against the same layers

encoded with FV and all are integrated with DTW. Garden Point (Day left vs Day

right) dataset used with a threshold 1 frame.

 AUC AP

VGG16

Layers

Without

FV
With FV

Without

FV
With FV

block3_Conv3 0.664 0.883 0.663 0.883

block4_Conv3 0.604 0.899 0.603 0.898

block5_Conv3 0.699 0.632 0.698 0.630

fc1 0.751 0.373 0.751 0.036

fc2 0.723 0.431 0.723 0.255

Figure 5.8 PRC for convolutional layers in ResNet50 without FV against the same

layers encoded with FV and all are integrated with DTW. Garden Point (Day left vs

Day right) dataset used with a threshold 1 frame.

Table 5.2 AUC and AP for convolutional layers in ResNet50 without FV against the

same layers encoded with FV and all are integrated with DTW. Garden Point (Day left

vs Day right) dataset used with a threshold 1 frame.

43

 AUC AP

ResNet50

Layers

Without

FV
With FV

Without

FV
With FV

res3d_branch2c 0.654 0.902 0.652 0.901

res3f_branch2c 0.667 0.884 0.666 0.883

res5c_branch2c 0.750 0.830 0.749 0.829

Figure 5.9 PRC for convolutional layers in ResNet50 without FV against the same

layers encoded with FV and all are integrated with DTW. Garden Point (Day left vs

Night right) dataset used with a threshold 1 frame.

Table 5.3 AUC and AP for convolutional layers in ResNet50 without FV against the

same layers encoded with FV and all are integrated with DTW. Garden Point (Day left

vs Night right) dataset used with a threshold 1 frame.

 AUC AP

ResNet50

Layers

Without

FV
With FV

Without

FV
With FV

res3d_branch2c 0.421 0.619 0.418 0.617

res3f_branch2c 0.538 0.722 0.535 0.721

res5c_branch2c 0.443 0.583 0.439 0.581

44

Figure 5.10 PRC for convolutional layers in ResNet50 without FV against the same

layers encoded with FV and all are integrated with DTW. berlin_A100 dataset used

with a threshold 1 frame.

Table 5.4 AUC and AP for convolutional layers in ResNet50 without FV against the

same layers encoded with FV and all are integrated with DTW. berlin_A100 dataset

used with a threshold 1 frame.

 AUC AP

ResNet50

Layers
Without FV With FV Without FV With FV

res3d_branch2c 0.247 0.397 0.240 0.372

res3f_branch2c 0.315 0.699 0.299 0.697

res5c_branch2c 0.333 0.627 0.319 0.624

45

Figure 5.11 PRC for convolutional layers in VGG16 without FV against the same

layers encoded with FV and all are integrated with SVM. Garden Point (Day left vs

Day right) dataset used with a threshold 1 frame.

Table 5.5 AUC and AP for convolutional layers in VGG16 without FV against the

same layers encoded with FV and all are integrated with SVM. Garden Point (Day left

vs Day right) dataset used with a threshold 1 frame.

 AUC AP

VGG16 Layers Without FV With FV Without FV With FV

block3_Conv3 0.601 0.916 0.597 0.916

block4_Conv3 0.693 0.930 0.690 0.929

block5_Conv3 0.683 0.760 0.680 0.759

46

Figure 5.12 PRC for convolutional layers in ResNet50 without FV against the same

layers encoded with FV and all are integrated with SVM. Garden Point (Day left vs

Day right) dataset used with a threshold 1 frame.

Table 5.6 AUC and AP for convolutional layers in ResNet50 without FV against the

same layers encoded with FV and all are integrated with SVM. Garden Point (Day left

vs Day right) dataset used with a threshold 1 frame.

 AUC AP

ResNet50 Layers Without FV With FV Without FV With FV

res3d_branch2c 0.765 0.941 0.764 0.941

res3f_branch2c 0.693 0.872 0.691 0.872

res5c_branch2c 0.747 0.844 0.745 0.843

47

Figure 5.13 PRC for convolutional layers in ResNet50 without FV against the same

layers encoded with FV and all are integrated with SVM. Garden Point (Day left vs

Night right) dataset used with a threshold 1 frame.

Table 5.7 AUC and AP for convolutional layers in ResNet50 without FV against the

same layers encoded with FV and all are integrated with SVM. Garden Point (Day left

vs Night right) dataset used with a threshold 1 frame.

 AUC AP

ResNet50 Layers Without FV With FV Without FV With FV

res3d_branch2c 0.724 0.331 0.721 0.322

res3f_branch2c 0.556 0.530 0.552 0.526

res5c_branch2c 0.380 0.431 0.374 0.424

48

Figure 5.14 PRC for convolutional layers in ResNet50 without FV against the same

layers encoded with FV and all are integrated with SVM. berlin_A100 dataset used

with a threshold 1 frame.

Table 5.8 AUC and AP for convolutional layers in ResNet50 without FV against the

same layers encoded with FV and all are integrated with SVM. berlin_A100 dataset

used with a threshold 1 frame.

 AUC AP

ResNet50 Layers Without FV With FV Without FV With FV

res3d_branch2c 0.090 0.332 0.078 0.282

res3f_branch2c 0.464 0.389 0.455 0.380

res5c_branch2c 0.361 0.317 0.333 0.306

49

5.1.7 DTW against other Approaches

In this experiment, the performance of the DTW for place recognition is compared

with the SVM based algorithm. The results are shown in Table 5.9, and it can be

summarized as follows.

a) Using the Garden Point (Day left vs Day right), where the challenge is only the

viewpoint, the SVM was able to outperform the DTW using two of the three

used layers, i.e., “res3d_branch2c” and “res5c_branch2c”.

b) Using the Garden Point (Day left vs Night right) and berlin_A100 datasets,

which have viewpoint, appearance and illumination challenges, the DTW can

significantly outperform the SVM.

Table 5.9 AUC results for convolutional layers in ResNet50 with FV based DTW

against SVM using the Garden Point (Day left vs Day right), Garden Point (Day left

vs Night right) and berlin_A100.

 AUC

CNN Conv layer DTW SVM

Garden Point

Day left

Day right

res3d_branch2c 0.901 0.941

res3f_branch2c 0.883 0.872

res5c_branch2c 0.829 0.843

Garden Point

Day left

Night right

res3d_branch2c 0.619 0.331

res3f_branch2c 0.722 0.530

res5c_branch2c 0.583 0.431

berlin_A100

res3d_branch2c 0.397 0.332

res3f_branch2c 0.699 0.389

res5c_branch2c 0.627 0.317

50

CHAPTER 6

CONCLUSION

The new visual place recognition method presented in this work, integrated the

dynamic time warping (DTW) algorithm, to match the current frame from a test

sequence to a priori annotated reference sequence frame. This algorithm has been

adapted with the features extracted from a deep convolutional neural network (CNN),

encoded by the Improved Fisher Vector (IFV). The matching is achieved by the

construction of a cost function that measures the distances between the frames in both

sequences. Then, an optimal path is found using DTW.

In our experiments, the handcrafted features with DTW outperformed the same

handcrafted features without DTW. For the deep features, multiple layers of the

VGG16, ResNet50 and HybridNet models were investigated to find the layer that

performs better with the DTW algorithm. We found that almost all studied layers gave

comparable results, however, the last conventional layer has advantages over other

layers when processing some images that have variation between the two sequences in

the viewpoint such as Garden Point (Day left vs Day right).

When comparing the deep features against the handcrafted features, even though deep

features require more power and memory consumption, it was able to give higher

precision for all recall values. In addition, a higher precision was obtained by encoding

the deep features with the (IFV) especially for the middle layers of the CNN models

where more general features are existing in these layers.

The performance of the DTW and SVM when the FV encoding scheme is used also

investigated. The experimental results show superior performance for our approach

especially with the challenging datasets in terms of viewpoint and appearance,

however, for the viewpoint problem, using the Garden Point (Day left vs Day Right),

SVM was able to get a little bit better performance. On the other hand, SVM was not

robust enough to face the challenges existed in other datasets like Garden Point (Day

51

left vs Night Right) and berlin_A100, and for such dataset, there is a clear advantage

of our approach as shown in the related experiments.

Further improvements and as future work, some additional steps such as improving

the feature extraction procedure, where instead of taking the output of the feature maps

directly, a Region of Interest (ROI) can be detected and the feature vectors can be

extracted accordingly. This step should make the features more robust against the

viewpoint changes. Also, improving the proposed approach to work in real-time is a

very important step, this can be done through two steps: creating a general GMM

model that can be used for extracting the FV, which can handle any test dataset or live

images without a need for re-training. Hence, this can be done by training the GMM

on a wide range of datasets collected under different conditions. The second step is to

create a new version of the DTW that has the ability to align the incoming images with

the reference images.

52

CHAPTER 7

REFERENCES

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC

superpixels compared to state-of-the-art superpixel methods. IEEE transactions on

pattern analysis and machine intelligence, 34(11), 2274-2282.

Arroyo, R., Alcantarilla, P. F., Bergasa, L. M., Yebes, J. J., & Gámez, S. (2014, June).

Bidirectional loop closure detection on panoramas for visual navigation. In 2014 IEEE

Intelligent Vehicles Symposium Proceedings (pp. 1378-1383). IEEE.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006, May). Surf: Speeded up robust features.

In European conference on computer vision (pp. 404-417). Springer, Berlin,

Heidelberg.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., ... &

Zhang, X. (2016). End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316.

Chandrasekhar, V., Lin, J., Liao, Q., Morere, O., Veillard, A., Duan, L., & Poggio, T.

(2017, April). Compression of deep neural networks for image instance retrieval.

In 2017 Data Compression Conference (DCC) (pp. 300-309). IEEE.

Chen, Z., Jacobson, A., Sünderhauf, N., Upcroft, B., Liu, L., Shen, C., ... & Milford,

M. (2017, May). Deep learning features at scale for visual place recognition. In 2017

IEEE International Conference on Robotics and Automation (ICRA) (pp. 3223-3230).

IEEE.

Chen, Z., Lam, O., Jacobson, A., & Milford, M. (2014). Convolutional neural network-

based place recognition. arXiv preprint arXiv:1411.1509.

Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning context flexible attention

model for long-term visual place recognition. IEEE Robotics and Automation

Letters, 3(4), 4015-4022.

Chen, Z., Maffra, F., Sa, I., & Chli, M. (2017, September). Only look once, mining

distinctive landmarks from convnet for visual place recognition. In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (pp. 9-16). IEEE.

53

Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic localization and

mapping in the space of appearance. The International Journal of Robotics

Research, 27(6), 647-665

Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human

detection.

Du, K., & Cai, K. Y. (2016). Comparison research on iot oriented image classification

algorithms. In ITM Web of Conferences (Vol. 7, p. 02006). EDP Science

Fu, R., Li, B., Gao, Y., & Wang, P. (2016, October). Content-based image retrieval

based on CNN and SVM. In 2016 2nd IEEE International Conference on Computer

and Communications (ICCC) (pp. 638-642). IEEE.

Glover, A. J., Maddern, W. P., Milford, M. J., & Wyeth, G. F. (2010, May). FAB-

MAP+ RatSLAM: Appearance-based SLAM for multiple times of day. In 2010 IEEE

international conference on robotics and automation (pp. 3507-3512). IEEE.

Hafez, A. A., Tello, A., & Alqaraleh, S. (2019, April). Visual Place Recognition by

DTW-based sequence alignment. In 2019 27th Signal Processing and

Communications Applications Conference (SIU) (pp. 1-4). IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 770-778).

Hong, S., Kim, J., Pyo, J., & Yu, S. C. (2016). A robust loop-closure method for visual

SLAM in unstructured seafloor environments. Autonomous Robots, 40(6), 1095-1109.

Jégou, H., Douze, M., Schmid, C., & Pérez, P. (2010, June). Aggregating local

descriptors into a compact image representation. In CVPR 2010-23rd IEEE

Conference on Computer Vision & Pattern Recognition (pp. 3304-3311). IEEE

Computer Society.

Kate, R. J. (2016). Using dynamic time warping distances as features for improved

time series classification. Data Mining and Knowledge Discovery, 30(2), 283-312.

Khaliq, A., Ehsan, S., Milford, M., & McDonald-Maier, K. (2018). A holistic visual

place recognition approach using lightweight CNNs for severe viewpoint and

appearance changes. arXiv preprint arXiv:1811.03032.

Khaliq, A., Ehsan, S., Milford, M., & McDonald-Maier, K. (2019). CAMAL: Context-

Aware Multi-scale Attention framework for Lightweight Visual Place

Recognition. arXiv preprint arXiv:1909.08153.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems (pp. 1097-1105).

54

Lowe, D. G. (1999, September). Object recognition from local scale-invariant features.

In iccv (Vol. 99, No. 2, pp. 1150-1157).

Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford,

M. J. (2015). Visual place recognition: A survey. IEEE Transactions on

Robotics, 32(1), 1-19.

Milford, M. J., & Wyeth, G. F. (2012, May). SeqSLAM: Visual route-based navigation

for sunny summer days and stormy winter nights. In 2012 IEEE International

Conference on Robotics and Automation (pp. 1643-1649). IEEE.

Milford, M. J., Schill, F., Corke, P., Mahony, R., & Wyeth, G. (2011, May). Aerial

SLAM with a single camera using visual expectation. In 2011 IEEE International

Conference on Robotics and Automation (pp. 2506-2512). IEEE.

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a versatile and

accurate monocular SLAM system. IEEE transactions on robotics, 31(5), 1147-1163.

Naseer, T., Spinello, L., Burgard, W., & Stachniss, C. (2014, June). Robust visual

robot localization across seasons using network flows. In Twenty-Eighth AAAI

Conference on Artificial Intelligence.

Perronnin, F., Sánchez, J., & Mensink, T. (2010, September). Improving the fisher

kernel for large-scale image classification. In European conference on computer vision

(pp. 143-156). Springer, Berlin, Heidelberg.

Petitjean, F., Forestier, G., Webb, G. I., Nicholson, A. E., Chen, Y., & Keogh, E.

(2016). Faster and more accurate classification of time series by exploiting a novel

dynamic time warping averaging algorithm. Knowledge and Information

Systems, 47(1), 1-26.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for

spoken word recognition. IEEE transactions on acoustics, speech, and signal

processing, 26(1), 43-49.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556.

Sivic, J., & Zisserman, A. (2003, October). Video Google: A text retrieval approach

to object matching in videos. In null (p. 1470). IEEE.

Sünderhauf, N., Shirazi, S., Dayoub, F., Upcroft, B., & Milford, M. (2015, September).

On the performance of convnet features for place recognition. In 2015 IEEE/RSJ

international conference on intelligent robots and systems (IROS) (pp. 4297-4304).

IEEE.

Sünderhauf, N., Shirazi, S., Jacobson, A., Dayoub, F., Pepperell, E., Upcroft, B., &

Milford, M. (2015). Place recognition with convnet landmarks: Viewpoint-robust,

condition-robust, training-free. Proceedings of Robotics: Science and Systems XII.

55

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich,

A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 1-9).

Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., ... & Tang, X. (2017).

Residual attention network for image classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (pp. 3156-3164).

Wang, P., Liu, L., Shen, C., Huang, Z., van den Hengel, A., & Tao Shen, H. (2017).

Multi-attention network for one shot learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (pp. 2721-2729).

Xin, Z., Cui, X., Zhang, J., Yang, Y., & Wang, Y. (2019). Real-time visual place

recognition based on analyzing distribution of multi-scale cnn landmarks. Journal of

Intelligent & Robotic Systems, 94(3-4), 777-792.

Yang, X., & Cheng, K. T. T. (2013). Local difference binary for ultrafast and

distinctive feature description. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(1), 188-194.

Yue-Hei Ng, J., Yang, F., & Davis, L. S. (2015). Exploiting local features from deep

networks for image retrieval. In Proceedings of the IEEE conference on computer

vision and pattern recognition workshops (pp. 53-61).

Zhang, X., Zou, J., He, K., & Sun, J. (2015). Accelerating very deep convolutional

networks for classification and detection. IEEE transactions on pattern analysis and

machine intelligence, 38(10), 1943-1955.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10

million image database for scene recognition. IEEE transactions on pattern analysis

and machine intelligence, 40(6), 1452-1464.

