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ABSTRACT 

 
COMPARISION OF GMM, MAXIMUM LIKELIHOOD AND BAYESIAN 

ESTIMATIONS IN ESTIMATING STRUCTURAL PARAMETERS OF DSGE 
MODELS 

 

Toprak, Hasan Halit 

Master of Economics 

Supervisor: Assoc. Prof. Bedri Kamil Onur Taş 

 

June 2014 
 
Dynamic stochastic general equilibrium (DSGE) models are macroeconomic models 
derived from microeconomic principles. These models and estimation methods of 
their parameters have been very popular among macroeconomists over the past 25 
years. Identification of structural parameters of DSGE models is subject of many 
studies. In this study we compare three estimation methods: Bayesian estimation, 
maximum likelihood estimation and generalized method of moments estimation, in 
the cases of (i) if the shocks have an autocorrelated pattern  (ii) if data is small. 
 
We generate artificial data at the length of 60 and 180 by using our model with true 
parameters and obtain the estimated parameters from these estimators. Then, for eve-
ry estimator, we compare the value of estimated parameters with true ones. The 
model we use is the three equation New Keynesian model including the Euler condi-
tion, Philips curve and monetary policy equations. 
 
As a result of comparison, for all cases, with and without autocorrelation and small 
and large sample sizes, Bayesian estimation performs best. However, it should be 
noted that if Dynare allowed us to expand the border of priors for Bayesian estima-
tor, the result might be different. 
 
 
 
 
 
 
 
 
 
 
 
Keywords: DSGE Models, Bayes. Generalized Method of Moments, Maximum 

Likelihood, Structural Parameters 
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ÖZET 

 
RASTSAL GENEL DENGE MODELLERİNİN YAPISAL PARAMETRELERİNİN 

TAHMİNİNDE GMM, EN ÇOK OLABİLİRLİK VE BAYES TAHMİN 
METODLARININ KARŞILAŞTIRILMASI 

 

Toprak, Hasan Halit 

İktisat Yüksek Lisans 

Tez Danışmanı: Doç.Dr. Bedri Kamil Onur Taş 

 

Haziran 2014 
 
Rastsal genel denge modelleri, mikroekonomik prensiplerden elden edilen makroe-
konomik modellerdir. Bu modeller ve parametre tahmin yöntemleri ekonomistler 
arasında 25 yıldır popülerliğini koruyor. Bu genel denge modellerinin yapısal para-
metrelerinin belirlenmesi konusu bir çok akademik çalışmanın ana teması olagelmiş-
tir. Bu çalışmada biz şu 3 tahmin yöntemini (i) şoklar otokorelasyona sahip olursa  
(ii) ve veri seti küçük ise durumları altında karşılaştırıyoruz: Bayesyan yöntemi, en 
çok olabilirlik ve GMM. 
  
Gerçek parametreleri kullanarak 60 ve 180 uzunluğunda veri üretip, bu verileri kul-
lanarak bahsi geçen üç tahmin yöntemi ile yapısal parametreleri tahmin ediyoruz. 
Daha sonra her bir tahmin yöntemi için bu tahmin edilen parametre ile gerçek para-
metreyi karşılaştırıyoruz. Kullandığımız model, Euler şartı, Philips eğrisi ve para 
politikası denkleminden oluşan bir Yeni Keynesyen model. 
  
Karşılaştırma sonucunda, bütün durumlarda, otokorelasyon olsun veya olmasın, veri 
büyüklüğü küçük olsun ya da olmasın, Bayes yöntemi en iyi yöntem olarak görüldü. 
Fakat şu unutulmamalıdır ki, eğer Dynare Bayes yönteminde kullandığımız öncülle-
rin sınırlarını genişletmemize izin verseydi, sonuç farklı olabilirdi. 
 
 
 
 
 
 
 
 
 
 
 
Anahtar Kelimeler: Rastsal Genel Denge Modelleri, Bayes. Genelleştirilmiş Moment 

Metodu,En Çok Olabilirlik, Yapısal Parametreler 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Dynamic stochastic general equilibrium (DSGE) models are macroeconomic 

models derived from microeconomic principles. They usually contain optimizing 

agents, rational expectations, and market clearing processes. The agents interact in an 

uncertain environment. Because these models are built on microeconomic rules and 

agents, they are very useful for understanding the economy as a whole and trough 

which cannels it works.   

 

DSGE models are used in various fields of economics, especially in growth, 

monetary policy, international trade and finance. They provide great opportunities 

and useful tools for understanding the source of fluctuations in the economy. They 

can also help analyzing the shortrun and longrun outcomes of alternative policies. 

Additionally, these models can be used to evaluate welfare effects of macro policies. 

For all these advantages, DSGE models have been very popular among macroecon-

omists over the past 25 years. Because of their usefulness for policy analysis and 

forecasting, today many central banks and relevant government departments have 

their own DSGE models. 
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The studies on econometric analysis of DSDE models have been shaped around 

evaluating the model and identifying structural parameters of the model. In this study 

we focus on identification part. Calibration, moment based estimations, impulse re-

sponse matching are limited information estimators. Likelihood based estimations 

(e.g. maximum likelihood, Bayesian) are full information estimation methods that are 

used to estimate structural parameters of DSGE models.  

 

In this study we compare three estimation methods: Bayesian estimation, maxi-

mum likelihood estimation and generalized method of moments estimation. Our aim 

is not to derive conclusions on identification. Our purpose is to summarize three es-

timators mentioned above briefly for a curios reader who wishes to find basic infor-

mation about them and to compare the estimation techniques in the following cases: 

(i) if the shocks have an autocorrelated pattern  (ii) if data is small.  

 

In the literature, there is wide variety of study about each estimator, but compari-

son is done by a few. None of these includes the three estimators that we compare at 

the same time. In his famous work, Ruge-Murcia (2007) compares Maximum Likeli-

hood, Generalized Method of Moments, Simulated Method of Moments and Indirect 

Inference. He examines them under the situation of misspecification, small sample 

case, and compares their computing time. He found that singularity and misspecifica-

tion affects Maximum Likelihood more severely than others. The result of Monte 

Carlo analysis shows moment-based techniques more robust to misspecification than 

likelihood-based techniques. In terms of computing time, GMM is most efficient. 

Giesen and Scheufele (2013) analyze the small sample properties of full information 

and limited information estimators in a potentially misspecified DSGE model. They 
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found that if the model is correctly specified, full information estimators performs 

superior. Canova and Sala (2009) shows that observational equivalence, weak and 

partial identification make objective functions to have flat surfaces which lead to 

biases. Identification problems can be detected by using Bayes estimation properly. 

They also demonstrate that small sample size has negative effect on identification of 

parameters. Dridi, Guay, and Renault (2007) proposes sequential partial indirect in-

ference (SPII) approach as an alternative to calibration-like estimators in the case of 

misspecification. Boivin and Giannoni (2006) states that exploiting more information 

in the model estimation makes more accurate estimation of the model’s concept and 

shocks and also it is important for the conclusions about key structural parameters.           

 

Since we are not interested in evaluating a model or comparing different models 

of DSGE but to find the most efficient estimator in various cases, we generate artifi-

cial data by using our model with true parameters, instead of using real data. By ap-

plying the estimation methods to the generated data, we obtain the estimated parame-

ters. Then, for every estimator, we compare the value of estimated parameters with 

true ones. 

The DSGE model we use in the paper is the three equation New Keynesian mod-

el. This model includes the Euler condition, Philips curve and monetary policy equa-

tions. We use both backward and forward looking terms in the first two equations 

(following Gali and Gertler 1999), and also autocorrelated error terms.  

 

In order to carry out the GMM estimation we use MATLAB. For Bayesian and 

Maximum likelihood estimations we use Juillard’s (1996) DYNARE package on 

MATLAB. 
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The paper is structured as follows. After this introduction, section 2 expresses 

the model, in section 3 three estimation methods are summarized, section 4 presents 

the estimation results, and section 5 concludes.    
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CHAPTER TWO 

 

 MODEL 

 

 

The model is a small scale hybrid New Keynesian model that includes Monetary 

Policy, Philipps Curve and Euler condition equations: 

 

�� =	������ + 
1 − ��
������� + ������� + ��� 

�� =	 �
1 + �� ���� +

�
1 + �������� +


∅ + ��

1 − ��

1 − �


1 + ��
� �� + ��� 

�� =
ℎ

1 + ℎ ���� +
1

1 + ℎ������ −
1
∅ ��� − ������� + ��� 

 

where  ��� =  ������ + ��� , ��� =  ������ + �!�  and ���, ���,	�!�  are i.i.d., h is 

habit persistence parameter in consumption, ∅ and �� are relative risk aversion coef-

ficients for consumption and labor respectively,	� is the degree of price indexation 

(fraction of backward looking firms), � is the degree of Calvo type price stickiness 

and λ’s are policy parameters. 

 

We simulate the data of output gap, inflation and nominal interest rate from this 

model at lengths 60 and 180. Consequently, our estimations have small sample im-

plications. In the simulations, we use parameter estimates of Rabanal and Rubio-
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Ramirez (2005) from the US data. The priors and their distributions required in 

Bayesian estimation are also taken from Rabanal and Rubio-Ramirez (2005). The 

parameters are: 

 

    h          ∅         �           �           �         ��	      ��        ��        �          �         �� 

   0.85     2.0      0.25      0.985     0.68     0.2      1.55      1.1      0.65      0.65      3.0 

 

In all the parameter estimations written below, we assume true model is known, 

but not these parameters, except for ��. As explained section 3.2, in order to find 

structural parameters by using GMM, one parameter must be given since we need to 

import these structural parameters from reduced forms.  
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CHAPTER THREE 

 

ESTIMATION METHODS 

 

 

3.1 Bayesian Estimation 

 
First estimation technique that we analyze is Bayesian estimation. Bayesian es-

timation is relatively new to the others but lately the most preferred one. Among the 

famous papers using the Bayesian estimation, Schorfheide (2000) proposes a Bayesi-

an econometric procedure for the evaluation and comparison of DSGE models.  

Rabanal and Rubio-Ramirez (2005) estimates and compares four versions of the New 

Keynesian monetary model with nominal rigidities by using Bayesian estimation. 

Adolfson, Laseen, Linde, and Svenson (2011) uses Bayesian estimation for construc-

tion optimal policy projections in Ramses, the Sveriges Riksbank’s DSGE model.  

 

There are several advantages of using Bayesian estimation of DSGE models. 

First of all, Bayesian analysis allows one to use prior beliefs that are derived either 

from macroeconomic or microeconomic studies. For this reason, it can be seen as a 

version of calibration. This provides great opportunity to take previous literature into 

consideration. Second, since priors are used for calibration -instead of estimation- 

one can estimate a wide variety of models under identification problems with Bayes-
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ian estimation. Third, using priors helps us avoiding reaching strange points.  Likeli-

hoods of DSGE models contain lots of local maxima and minima and they are nearly 

flat surfaces. Thus, if we put some restrictions to the likelihood functions, as Bayesi-

an approach does by using priors, we may eliminate irrational outcomes.  Forth, it 

also helps eliminating identification problems. If posterior distribution is flat, then 

usually there is identification problem. In many times, using priority makes enough 

curvature in the posterior distribution, hence, remove the identification problem.  

 

Basic logic behind the Bayesian estimation is Bayes’ theorem: for events A and 

B, the conditional probability of event A given that B has occurred is  

P
A|B 
 = 	P
B|A
P
A
P
B
  

In our context, this equation becomes 

																																																			P
θ|Y)
 =
P
Y)|θ
P
θ


P
Y)
 																																																					
1
 

where Y) is the data, θ is parameter set, P
θ|Y)
	is the posterior distribution that we 

want to find, P
θ
 is our prior beliefs about parameters, P
Y)|θ
is our likelihood 

function that gives us the probability that model assigns to each observation given 

some parameter values and finally P
Y)
 is the marginal density of the data. Since 

this marginal density is constant for any parameter set, equation (1) can be written as 

 

																																																		P
θ|Y)
 ∝ 	P
Y)|θ
P
θ
																																																				
2
 
The P
Y)|θ
 term describes the probability of realization of the data given the set of 

parameters, which can be written in terms of the following likelihood function  

L
θ|Y)
 ≡ 	P
Y)|θ
, 
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Hence, equation (2) can be written as 

																																																				P
θ|Y)
 ∝ 	L
θ|Y)
P
θ
																																																
3
	 
In words, the posterior density is proportional to likelihood function that we need to 

estimate times the prior density that we need to calibrate. The posterior is a mixture 

of the prior information and the “current information” that is, the data.   

 

The next step is evaluating the likelihood function. When the model is linear in 

terms of the structural parameters θ, we can use maximum likelihood principles. 

However, in DSGE models this is not the case most of time.  Except in a few cases, 

there is no analytical or numerical procedure to write down the likelihood function. 

Moreover, these models frequently involve unobserved or poorly measured state var-

iables. Yet, since DSGE models are linear in terms of the variables, the likelihood 

may be evaluated with a linear prediction error algorithm like the Kalman filter, 

which also deals with unobserved state variables. However, in order to use Kalman 

filter we need to make another assumption: the shocks of the system are normally 

distributed. Kalman filter is a minimum mean squared error estimator. The prediction 

errors of this filter are normally distributed. So given this distribution, we can obtain 

probability distribution (probability of observing the data) given the set of parame-

ters: P
Y)|θ
.	 This is also the likelihood of the data given the parameters. Kalman 

filter is calculated for every  θ, each time based on known θ. (Detailed description 

of the Kalman filter is in the appendix A.) Now that the likelihood function is eval-

uated by using Kalman filter, we are about to find the distribution of (3). However, 

the L
θ|Y)
P
θ
 term in (3) is not directly a function of θ but the functions of θ in 

the state equation in the Kalman filter. Hence, instead of maximizing this equation 
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with respect to �, we use numerical methods such as Metropolis-Hastings algorithm. 

It works as follows. We draw some parameter set, say �1, from the priors and calcu-

late the term in (3). Then assuming that �1 is the mean of a normal distribution, pick 

another set of parameters, say �2, from this distribution and calculate the value of the 

(3), which is the posterior density. If �2 improves the term in (3), reset the new mean 

of a normal distribution to the �2, and pick new draws, and again calculate the densi-

ty. Otherwise use �1 as a mean and again continue to pick new draws. When you 

make enough sampling, build a histogram of the retained values. This “smoothed 

histogram” will eventually be the posterior distribution. This is the basic mechanism 

of Bayesian estimation. 

 

3.2 GMM Estimation 

 
Another estimation technique that we employ is Generalized Method of Mo-

ments (GMM). GMM is developed by Hansen (1982), and applied to DSGE models 

by Christiano and Eichenbaum (1992) for the first time. From that time, GMM has 

been widely used in macroeconomics and finance. 

 

GMM has some attractive properties. Complete knowledge of the distribution of 

the data is not necessarily required for GMM to be carried out. This is one of the 

important features that separate GMM from likelihood-based estimations. What one 

only needs to perform GMM is specified moments which are obtained from an un-

derlying model. In the cases in which there are more moment conditions than model 

parameters, GMM is very useful to test proposed model specification. Also, in con-

trast to likelihood-based estimations, normality assumption of the structural shocks is 
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not required in GMM estimation. However, in return, GMM lose efficiency com-

pared to the likelihood-based estimators. 

 

In contrast to ML and Bayesian estimations, GMM is does not use all the system 

of equations simultaneously. ML and Bayesian estimations directly estimate the 

structural parameters of the model. However, GMM uses one equation at a time, 

hence, estimates reduced form coefficients. In order to find structural parameters, 

GMM requires their mapping from the reduced form estimates.   

 

GMM is based on moment estimation. It uses model equations, separately, to 

specify some moment conditions. These moment conditions are functions of the 

model parameters and the data, such that their expectation is zero at the true values 

of the parameters. As a result, in order to estimate model parameters, GMM mini-

mizes the moment conditions by using the sample data. In the case in which there are 

more equations (moment conditions) than the unknowns, GMM uses all moment 

conditions by weighting them.  

 

The equation to be estimated 

�	 = 	3� + 4, 
let’s define 5�	
�
 as 

5
�
 = �
� 6′
� − 3�
, 

where y is a vector of n*1 dependent variable, X a matrix of is n*K independent var-

iable, (� − 3�) is the moment condition and Z’s are instruments that are orthogonal 

to this moment condition. Z’s can be 1 or any variable that is exogenous to (� − 3�), 

that is u. The number of Z’s, say L, gives us the number of moment conditions used 
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in GMM estimation. If the equation to be estimated is exactly identified, so that        

L = K, then we have as many equations—the L moment conditions—as we do un-

knowns—the K coefficients. In this case it is possible to find a �8  that solves   

5
�
 = 0. If the equation is overidentified, however, so that L > K, then we have 

more equations than we do unknowns, and in general it will not be possible to find a 

�8  that will set all L sample moment conditions to exactly zero. In this case, we take a 

weighting matrix W and use it to construct a quadratic form in the moment condi-

tions.  

 

This gives us the GMM objective function: 

:
�
 = min	{n 5
�
′?5
�
}, 

where W is the weighting matrix. A GMM estimator for β is the β^ that minimizes 

J(β). Deriving and solving the K first order conditions  

@A
B

@B = 0, 

 

�ields the GMM estimator 

�^ = 
3′6?6′3
��3′6?6′�. 
See Baum et al. (2002) for further details on GMM estimation. 

The intuition behind GMM is choosing an estimator for � which sets these L 

sample moments as close to zero as possible. For weighting matrix, we use Hansen’s 

(1982) optimal weighting matrix which uses inverse of the spectral density of the 

calculated moments so that more weight is given to moment conditions with less 

uncertainty. For an initial weighting matrix, we use 
6′6
��	. Since there is no auto-

correlation in the error term of this equation, we include White’s (1980) kernel based 
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estimator, which accounts for heteroskedasticity in the calculation of a spectral den-

sity matrix. 

 

3.3 Maximum Likelihood Estimation 

 
Maximum Likelihood (ML) estimation is another full information estimation 

method. Among the early studies that use ML estimation are Christiano (1988), 

Altug (1989), Bencivenga (1992), McGrattan (1994) which are also related to this 

work. Since then, ML keeps its popularity in estimating structural parameters of 

DSGE model. 

 

ML has some distinctive features. At first, ML uses all available information. 

ML requires the construction and evaluation of the likelihood function of the data 

given the parameters. For this purpose, it uses all the information that is available. 

Remember that GMM does not require all the information, and we mentioned this as 

an advantage of GMM. Here we say ML uses all information, this is also an ad-

vantage. Is this not a contrast? No, actually not. It depends on the data that you have. 

If you are confident that your model contains enough information, using ML is an 

advantage, and it is an efficient method of estimation for you. However, if the model 

that you use does not have enough information, then this time using GMM is more 

advantageous for you. Second, in estimating parameters, ML provides a consistent 

approach. This means that maximum likelihood estimates can be developed for a 

large variety of estimation problems. Third, ML allows comparing the alternative 

models easily which cannot be done by using GMM methods. 
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The basic mechanism of ML is as follows. The joint probability density function 

of completely specified and independent sample observations is  

D
��, . . . . , ��|�
 = ED
�F|�
 = G
�|�

�

FH�
 

Intuitively, this is the probability of observing a particular data given some parameter 

set. Once you calculate this probability for different �, the one that creates the higher 

value is more likely the one that generates the data. So given the data, you can create 

a distribution for θ’s (their likelihood) showing their probabilities of generating the 

data. That is why L(.) uses θ on the left hand side. The main goal of the likelihood 

function is to find the parameter that makes the observed data most probable. In other 

words, we are exploring the parameter set that maximizes the likelihood function.  

 

In ML estimation method, the trick is to derive the likelihood function accurate-

ly. It is difficult because of the characteristics of the DSGE models, as explained in 

section 3.1. In here, we can follow the same pattern as we do in Bayesian likelihood 

function. We will evaluate the likelihood function again by using Kalman filter. 

There are some studies that deal with the derivation of likelihood function without 

using Kalman filter. See Fernández-Villaverde and Rubio-Ramírez (2007) and An 

and Schorfheide (2007) 

 

After evaluating the likelihood function, the next step is finding the parameter set 

that maximizes it. Normally, in order to find the value of the parameters that maxim-

ize the objective function, we take the first derivative of the likelihood respect to �, 

and the value that  equates this derivation to zero is called the maximizing value, if 

the second derivative of the function again respect to � is negative. Taking the natu-
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ral logarithm of the objective function makes finding maximizing value easier. How-

ever, the likelihood function of the DSGE models is too complicated to perform the-

se simple processes. They usually contain variety of dimensions, therefore taking 

derivative and then equating it to zero cannot be possible most time. To overcome 

this problem, in this study, we use Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES) routine for optimization. Dynare provides us some other options which 

take less time, however, after some replications, they fail. Therefore, for the model 

we use, CMA-ES is the best option. The results of CMA-ES routines give us esti-

mated structural parameters of the model. 
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CHAPTER FOUR 

 

COMPRASION RESULTS 

 

Eight unknown parameters are estimated by using three estimators. We assume 

that IJ is known. For each estimation method, we generate the data of sample size 

60 and 180. Each observation corresponds one quarter. Therefore, we create the data 

for 15 and 45 years which can be considered as small sample size and large sample 

size, respectively. In generating the data, we use the true values of the parameters 

which are given in the model section. Every time that we generate the data, we simu-

late 1000 extra observations and then discard them. We do not generate the data one 

by one but we did in a continuous manner. This is because in the first case, every 

data set would be same with the previous one. After simulation, the data sets were 

checked and it was seen that they were different from each other.  All experiments 

are based on 250 replications. After that, the mean and standard deviation of the rep-

lications are saved for comparison.  

There are four different cases for each estimator. First we conduct estimations 

with shocks that are autocorrelated. After that we discard autocorrelation and run the 

estimations. For autocorrelation we use KL= KM=0,65. We examine the cases in 

which KL= KM=0,90 in the Appendix B. Also, for every situation there are two dif-



24 
 

ferent data sets: sample size of 60 and 180. Therefore we will examine four cases for 

each estimator.  

The results are documented in the tables for all of four cases. In the tables, 

“mean” is the average value of all 250 replications, “sd” is standard deviation of the-

se replications. 

In terms of computing time, in this study, GMM is most efficient as in Ruge-

Murcia (2007). ML is the second and Bayes is the worst efficient estimator. This is 

because ML and Bayes have to solve the whole model. Also, after evaluating the 

likelihood function, there is no numerical method for finding posterior distribution 

and the value that maximizes the likelihood. The Dynare uses some algorithms. This 

also requires longer time.          

4.1 Shocks are Autocorrelated 

In this case, all the estimation processes (data generation, model declaration and 

estimation) are done by using the model with autocorrelated shocks.  

i. Small Sample 

All tree estimators’ results of the model with autocorrelated shocks and the sam-

ple size is 60 are below.  

 



 

Table 1 Shocks 

  
β 

 
true 0,985

   

GMM 

mean 0,9983

bias -0,0133

sd 0,0058

ML 

mean 0,6327

bias 0,3523

sd 0,1748

Bayes 

mean 0,9726

bias 0,0124

sd 0,0187

 

As we can see from the table,

GMM and Bayes, but mean of ML estimates

GMM and Bayes are very similar to each other

whereas ML estimated 0,4 point above from the true value. 

mean of estimated ζ

NO, NP and Ω, ML and Bayes are very close to actual value,

Bayes are almost equal to actual values, nevertheless, GMM seems 

ased. For h, again Bayes is the best 

to note that for NO and

25 

Shocks Are Aotucorrelated (0.65) And Sample I

Ø ζ 
 

 

 

 

 

 

0,985 2 0,68 0,2 1,55 1,1

     
0,9983 1,6169 0,9626 0,7737 3,303 1,4637

0,0133 0,3831 -0,2826 -0,5737 -1,753 -0,3637

0,0058 0,3132 0,047 0,1883 5,1257 7,3481

0,6327 2,4736 0,5934 0,214 1,2327 1,1291

0,3523 -0,4736 0,0866 -0,014 0,3173 -0,0291

0,1748 0,1855 0,1518 0,0902 0,1886 0,2284

0,9726 1,6147 0,4338 0,2294 1,5678 1,1008

0,0124 0,3853 0,2462 -0,0294 -0,0178 -0,0008

0,0187 0,1251 0,0678 0,0432 0,0335 0,0015

As we can see from the table, the mean of β is nearly equal to its true value in 

Bayes, but mean of ML estimates is biased. For Ø, again the mean of 

GMM and Bayes are very similar to each other and they estimated 0,4 point below, 

whereas ML estimated 0,4 point above from the true value. Similarly, none of the 

ζ is near to its true value, but ML is most close one. For 

ML and Bayes are very close to actual value, indeed

Bayes are almost equal to actual values, nevertheless, GMM seems 

, again Bayes is the best but this time ML is the worst one.

and NP standard deviation of GMM is very high.

Sample Is Small 

Ω h 

1,1 0,25 0,85 

  
1,4637 0,091 0,7561 

0,3637 0,159 0,0939 

7,3481 0,1228 1,1633 

1,1291 0,2497 0,3004 

0,0291 0,0003 0,5496 

0,2284 0,1648 0,2175 

1,1008 0,2587 0,8128 

0,0008 -0,0087 0,0372 

0,0015 0,0291 0,037 

is nearly equal to its true value in 

, again the mean of 

they estimated 0,4 point below, 

Similarly, none of the 

value, but ML is most close one. For NQ,    

indeed, the means of 

Bayes are almost equal to actual values, nevertheless, GMM seems much more bi-

is the worst one. It is important 

standard deviation of GMM is very high. 



 

ii. Large Sample

This time the model has again autocorrelated

180 observations. The table is below

Table 2 Shocks 

  
β

 
true 0,985

   

GMM 

mean 0,9993

bias -0,0143

sd 0,0026

ML 

mean 0,6608

bias 0,3242

sd 0,1878

Bayes 

mean 0,9949

bias -0,0099

sd 0,0449

 

The results of GMM, Bayes and ML for

the sample size of 60.

For NQ, NO and h Bayes is the best but this time GMM is the second good and ML is 

the worst. Again, GMM lines are more flat.

sample size, results of 180 sample size have lower standard deviation.
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Large Sample 

This time the model has again autocorrelated shocks but the data is consisted of 

180 observations. The table is below.  

Shocks Are Aotucorrelated (0.65) And Sample I

β Ø ζ 
 

 

 

 

 

 

0,985 2 0,68 0,2 1,55 1,1

      
0,9993 1,2106 0,9726 0,8777 1,8389 1,76

0,0143 0,7894 -0,2926 -0,6777 -0,2889 -0,66

0,0026 0,1371 0,0267 0,1 5,4723 6,4263

0,6608 2,482 0,5992 0,0968 1,2767 1,299

0,3242 -0,482 0,0808 0,1032 0,2733 -0,199

0,1878 0,1791 0,1175 0,0816 0,1984 0,2162

0,9949 1,3276 0,5356 0,142 1,7244 1,1001

0,0099 0,6724 0,1444 0,058 -0,1744 -1E-04

0,0449 0,3905 0,0767 0,0272 0,16 0,003

The results of GMM, Bayes and ML for β, ζ, NP and Ω are similar to those are found 

the sample size of 60. Estimated Ø is biased in all three of them, but

Bayes is the best but this time GMM is the second good and ML is 

Again, GMM lines are more flat. It can be noticed that

sample size, results of 180 sample size have lower standard deviation.

shocks but the data is consisted of 

Sample Is Large 

Ω h 

1,1 0,25 0,85 

   
1,76 0,1021 0,4794 

0,66 0,1479 0,3706 

6,4263 0,1242 0,2682 

1,299 0,2828 0,3673 

0,199 -0,0328 0,4827 

0,2162 0,1609 0,2322 

1,1001 0,2515 0,8103 

04 -0,0015 0,0397 

0,003 0,0231 0,0593 

are similar to those are found 

all three of them, but the least in ML.  

Bayes is the best but this time GMM is the second good and ML is 

It can be noticed that compared to 60 

sample size, results of 180 sample size have lower standard deviation.  



 

4.2 Shocks are not Autocorrelated

In this case, all the estimation processes (data generation, model declaration and 

estimation) are done by using the model having shocks that are not autocorrelated. 

i. Small Sample

The results are documented the table below

Table 3 Shocks Are Not Aotucorre

  
Β

 
true 0,985

   

GMM 

mean 0,9982

bias -0,0132

sd 0,0072

 

ML 

mean 0,8244

bias 0,1606

sd 0,0692

Bayes 

mean 1,003

bias -0,018

sd 0,0463

β is estimated nearly equal to its true value 

for β is biased nearly 0,16

The closest mean to true value of 
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4.2 Shocks are not Autocorrelated 

In this case, all the estimation processes (data generation, model declaration and 

estimation) are done by using the model having shocks that are not autocorrelated. 

Small Sample 

The results are documented the table below. 

Shocks Are Not Aotucorrelated And Sample Is Small

Β Ø ζ 
 

 

 

 

 

 

0,985 2 0,68 0,2 1,55 1,1 

     
0,9982 1,7323 0,9487 0,5252 1,5933 1,3536

0,0132 0,2677 -0,2687 -0,3252 -0,0433 -0,2536

0,0072 0,232 0,0583 0,2397 2,16 3,4119

0,8244 2,4618 0,6369 0,2096 1,6069 1,1556

0,1606 -0,4618 0,0431 -0,0096 -0,0569 -0,0556

0,0692 0,095 0,0285 0,0225 0,0792 0,0801

1,003 1,8982 0,5182 0,4119 1,5547 1,1156

0,018 0,1018 0,1618 -0,2119 -0,0047 -0,0156

0,0463 0,1532 0,0912 0,171 0,0106 0,0552

nearly equal to its true value by GMM and Bayes, 

nearly 0,16. For Ø, the most biased one is ML and

st mean to true value of ζ belongs to ML, while GMM and Bayes are

In this case, all the estimation processes (data generation, model declaration and 

estimation) are done by using the model having shocks that are not autocorrelated.  

lated And Sample Is Small 

Ω h 

 0,25 0,85 

  
1,3536 0,0796 0,4998 

0,2536 0,1704 0,3502 

3,4119 0,129 0,5406 

1,1556 0,1154 0,4323 

0,0556 0,1346 0,4177 

0,0801 0,0465 0,1266 

1,1156 -0,0678 0,8491 

0,0156 0,3178 0,0009 

0,0552 0,3153 0,0016 

GMM and Bayes, the result of ML 

and the least is Bayes. 

while GMM and Bayes are more 



 

biased. ML also estimates

and h, Bayes estimates 

much more biased, and the means of ML estimations are less biased, compared to 

GMM. For Ω, this time ML

ii. Large Sample

The results are documented the table below

Table 4 Shocks Are Not Aotucorrelated And Sample Is Large

  
β

 
true 0,985

   

GMM 

mean 0,9993

bias -0,0143

sd 0,0024

ML 

mean 0,7561

bias 0,2289

sd 0,1161

Bayes 

mean 0,9721

bias 0,0129

sd 0,0259

Increasing sample size

comparison among the three estimators for parameters 

this time NQ is estimated best by Bayes and  

28 

estimates NQ with very little bias and GMM is the worst.

estimates almost equal to actual values, nevertheless, GMM seems 

, and the means of ML estimations are less biased, compared to 

this time ML is the best but Bayes is the worst one. 

Large Sample 

documented the table below. 

Shocks Are Not Aotucorrelated And Sample Is Large

β Ø ζ 
 

 

 

 

 

 

0,985 2 0,68 0,2 1,55 1,1 

      
0,9993 1,4214 0,9695 0,6818 1,6222 1,353

0,0143 0,5786 -0,2895 -0,4818 -0,0722 -0,253

0,0024 0,1672 0,033 0,2027 2,6398 3,1718

0,7561 2,3632 0,4858 0,0997 1,2009 1,3332

0,2289 -0,3632 0,1942 0,1003 0,3491 -0,2332

0,1161 0,2206 0,0657 0,0735 0,3153 0,2176

0,9721 1,9353 0,437 0,1525 1,6249 1,1189

0,0129 0,0647 0,243 0,0475 -0,0749 -0,0189

0,0259 0,0302 0,0659 0,0168 0,0255 0,0143

Increasing sample size in non-autocorrelated model doesn’t change relative 

comparison among the three estimators for parameters β, Ø, ζ,	N

is estimated best by Bayes and  NO is estimated best by GMM

and GMM is the worst. For NO, NP 

almost equal to actual values, nevertheless, GMM seems 

, and the means of ML estimations are less biased, compared to 

  

Shocks Are Not Aotucorrelated And Sample Is Large 

Ω h 

 0,25 0,85 

  
1,353 0,1119 0,2228 

0,253 0,1381 0,6272 

3,1718 0,1417 0,1961 

1,3332 0,2016 0,268 

0,2332 0,0484 0,582 

0,2176 0,1103 0,1866 

1,1189 0,1026 0,8265 

0,0189 0,1474 0,0235 

0,0143 0,029 0,0178 

autocorrelated model doesn’t change relative 

NP , Ω, h. However, 

estimated best by GMM 
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CHAPTER FIVE 

 

CONCLUSION 

 

This study compares Bayesian, General Methods of Moments and Maximum 

Likelihood techniques that are used to estimate structural parameters of Dynamic 

Stochastic General Equilibrium, in different cases.  The model we use includes the 

Euler condition, Philips curve and monetary policy equations. The data is generated 

artificially at the length of 60 and 180.   

 

In our model and data, GMM estimates more accurately in small samples rather 

than large samples. The existence of autocorrelation does not change this. It is also 

obvious that GMM performs better if autocorrelation does not exist, both in small 

sample and large sample. The length of data does not significantly affect Bayesian 

estimation, regardless of existence of autocorrelation in error terms. Autocorrelation 

has negative effects on Bayes in small sample; however, in large sample four param-

eters are estimated better and four are estimated worse.  ML performs better in small 

samples both with autocorrelation and without autocorrelation. Autocorrelation af-

fects negatively ML in small sample rather than large sample size case. 
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In conclusion, when we include autocorrelated error terms to the model, the best 

estimator is Bayesian. Similarly, when we conduct the estimations with short data, 

again Bayesian is the least biased. However, it should be noted, if Dynare had al-

lowed us to expand the border of priors for Bayesian estimator, the result might be 

different. 
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APPENDIX 

 

A-Kalman Filter 

Kalman filter is an algorithm that uses a series of measurements observed over time, 

containing noise (random variations) and other inaccuracies, and produces estimates 

of unknown variables that tend to be more precise than those based on a single meas-

urement alone. So it is a statistically optimal estimate of the underlying system state. 

The Kalman filter model assumes that: 

The true state at time k is evolved from the state at (k−1) according to  

ST = UTST�� + VT4T�� + WT 

where    WT~Y(0, ZT
 
At time k an observation (or measurement) zk of the true state xk is made according 

to [T = \TST + �T and �T is the observation noise which is assumed to be 

�T~	Y
0, ]T
. 
Notice that the filter assumes that parameters such as F, B and H, i.e. the model, are 

known. Practical implementation of the Kalman Filter is often difficult due to the 

inability in getting a good estimate of the noise covariance matrices Qk and Rk. 

There are some methods to do that. It depends on the code you use. The Kalman fil-
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ter can be written as a single equation; however it is most often conceptualized as 

two distinct phases: "Predict" and "Update". The predict phase uses the state estimate 

from the previous time step to produce an estimate of the state at the current time 

step. This predicted state estimate is also known as the a priori state estimate. Then 

use this state estimate to predict current observation, that is [T. If current observation 

is different than your estimate, use this difference (known as Kalman Gain) to refine 

your current state estimate. As a result, current state estimate is a combination of 

your prior estimate and the gain you obtain from the current observation. So it is a 

kind of error correction algorithm. 

 

Predict 

Predicted (a priori) state estimate                        Ŝ_T|T�� 	= UTŜ_T��|T�� + VT4T��  

Predicted (a priori) estimate covariance (of X)         ` _T|T�� 	= UT` _T��|T�� + UTa + ZT 

Update 

Innovation or measurement residual                             �bT = [T − \TŜ_T|T�� 

Innovation (or residual) covariance                               cT = \T` _T|T��\Ta + ]T 

Optimal Kalman gain                                                     dT = ` _T|T��\Ta + cT�� 

Updated (a posteriori) state estimate                            Ŝ_T|T=Ŝ_T|T��+dT�bT 

Updated (a posteriori) estimate covariance                ` _T|T = 
e − 	dT 	\T
` _T|T�� 

 

For instance if R is big (the variance of the observation data), Kalman Gain is small. 

That is your update of priori estimate of the state variable by using the observation is 

small. The Kalman filter is a recursive estimator. This means that only the estimated 
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state from the previous time step and the current measurement are needed to compute 

the estimate for the current state. 

 

 

B- Autocorrelation In Error Terms Is 0.9  

In this case, we examine the situation in which error terms have 0.9 autocorrela-

tions. The results are represented below in table 1 and table 2. Comparing to 0.65 

autocorrelation, some parameters are estimated better and some are worse. However, 

it is very obvious that for almost every parameter, now the result is worse than the 

case in which there is no autocorrelation. Almost all of the estimated parameters are 

more biased. This is true for all estimators and for both small and large samples. In 

small samples, estimated parameters are much more biased.  Like 0.65 autocorrela-

tion case, in here GMM is affected more severely by 0.9 autocorrelation than likeli-

hood based approaches.   

For sample size of 60, β is estimated nearly equal to its true value by GMM and 

Bayes, the mean of β in ML is biased nearly 0.36 which is very high. For Ø, GMM is 

the most biased one, and Bayes is the least. ML has the closest mean to true value of 

ζ, while GMM and Bayes are more biased. Bayes estimates. For  NQ, NO, NP, Ω and 

h, with the least bias and GMM is the worst.  



 

In the case of large sample, relative comparison of every parameter is the same 

with those of sample size of 60. However, it is obvious that, almost all 

are less biased. 

 

Table 5 Shocks Are Aotucorrelated (0.95) And Sample Is Small

 
β

true 0,985

GMM 

mean 1,0143

bias -0,0293

sd 0,0035

ML 

mean 0,6209

bias 0,3641

sd 0,1369

Bayes 

mean 0,9616

bias 0,0234

sd 0,2715
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In the case of large sample, relative comparison of every parameter is the same 

sample size of 60. However, it is obvious that, almost all 

Shocks Are Aotucorrelated (0.95) And Sample Is Small

β Ø ζ 
 

 

 

 

 

 

0,985 2 0,68 0,2 1,55 1,1 

1,0143 1,2588 1,0013 0,6801 3,4752 2,3567

0,0293 0,7412 -0,3213 -0,4801 -1,9252 -1,2567

0,0035 0,256 0,0472 0,1724 2,1234 1,524

0,6209 2,5952 0,5788 0,4144 1,3129 1,2149

0,3641 -0,5952 0,1012 -0,2144 0,2371 -0,1149

0,1369 0,1705 0,0908 0,06 0,1953 0,1285

0,9616 1,7277 0,3893 0,3156 1,6492 1,1014

0,0234 0,2723 0,2907 -0,1156 -0,0992 -0,0014

0,2715 0,3125 0,2318 0,0154 0,5016 0,284

 

 

 

 

 

 

 

In the case of large sample, relative comparison of every parameter is the same 

sample size of 60. However, it is obvious that, almost all parameters 

Shocks Are Aotucorrelated (0.95) And Sample Is Small 

Ω h 

 0,25 0,85 

2,3567 -0,8534 0,5477 

1,2567 1,1034 0,3023 

1,524 0,423 0,235 

1,2149 0,1246 0,5786 

0,1149 0,1254 0,2714 

0,1285 0,1206 0,1907 

1,1014 0,2694 0,7419 

0,0014 -0,0194 0,1081 

0,284 0,1424 0,2225 



 

Table 6 Shocks Are Aotucorrelated (0.95) And Sample Is Large

 
β

true 0,985

GMM 

mean 1,0051

bias -0,0201

sd 0,0021

ML 

mean 0,6043

bias 0,3807

sd 0,2251

Bayes 

mean 0,9661

bias 0,0189

sd 0,092
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Table 6 Shocks Are Aotucorrelated (0.95) And Sample Is Large

 

β Ø ζ 
 

 

 

 

 

 

0,985 2 0,68 0,2 1,55 1,1 

1,0051 1,5468 1,0258 0,4013 2,9046 1,3974

0,0201 0,4532 -0,3458 -0,2013 -1,3546 -0,2974

0,0021 0,513 0,144 0,0981 1,981 2,1343

0,6043 2,5316 0,5888 0,4012 1,4487 1,2365

0,3807 -0,5316 0,0912 -0,2012 0,1013 -0,1365

0,2251 0,0934 0,1209 0,0725 0,2315 0,1824

0,9661 1,8177 0,3413 0,0971 1,6364 1,1145

0,0189 0,1823 0,3387 0,1029 -0,0864 -0,0145

0,092 0,1425 0,0124 0,0214 0,2385 0,0291

Table 6 Shocks Are Aotucorrelated (0.95) And Sample Is Large 

Ω H 

 0,25 0,85 

1,3974 -0,1734 0,5785 

0,2974 0,4234 0,2715 

2,1343 0,2564 0,1823 

1,2365 0,1655 0,6455 

0,1365 0,0845 0,2045 

0,1824 0,1296 0,2353 

1,1145 0,2539 0,6624 

0,0145 -0,0039 0,1876 

0,0291 0,034 0,4125 


