T.C. SİİRT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FIRÇALI DC MOTORLARDA HIZ VE KASKAT KONUM KONTROLÜ

YÜKSEK LİSANS Mehmet BOLAT (143103004)

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Tez Danışmanı: Prof. Dr. Saadettin AKSOY

Ekim-2016 SİİRT

TEZ KABUL VE ONAYI

Mehmet BOLAT tarafından hazırlanan "FIRÇALI MOTORLARDA HIZ VE KASKAT KONUM KONTROLÜ" adlı tez çalışması .../.../... tarihinde aşağıdaki jüri tarafından oybirliği/oyçokluğu ile Siirt Üniversitesi Fen Bilimleri Enstitüsü Elektrik Elektronik Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Jüri Üyeleri	İmza
Başkan Prof. Dr. Saadettin AKSOY	
Danışman Prof. Dr. Saadettin AKSOY	
Üye Prof. Dr. Saadettin AKSOY	
Üye Yrd. Doç. Dr. Hakan KIZMAZ	
Üye Yrd. Doç. Dr. Ömer Faruk ERTUĞRUL	

Yukarıdaki sonucu onaylarım.

Doç .Dr. Koray ÖZRENK Fen Bilimleri Enstitüsü Müdürü

Bu tez çalışması Bilimsel Araştırma Projesi tarafındannolu proje ile desteklenmiştir

ÖNSÖZ

Günümüzde, özellikle imalat sektöründe kullanılan proses kontrol sistemlerinde arzuladığımız amaç ölçütlerine dayalı hız ve konum kontrolü oldukça önemlidir. Üretim kalitesini ve kapasitesini arttırabilmek için yüksek performanslı hız ve konum kontrolü gereklidir.

Bu tez çalışmasında, yüksek performanslı açısal hız ve kaskat konum kontrolüne ilişkin benzetim çalışmaları yapılmış, PLC tabanlı fırçalı DC motor kontrol deney seti üzerinde gerçek zamanlı olarak uygulanmıştır.

Bu tezin hazırlanmasında yardımlarından dolayı sayın hocam Prof. Dr. Saadettin AKSOY'a sonsuz teşekkürleri bir borç bilirim.

Ayrıca manevi desteğini hiçbir zaman eksik etmeyen aileme teşekkürlerimi sunuyorum.

Mehmet BOLAT SİİRT-2016

İÇİNDEKİLER

ÖNSÖZ	iii
İÇİNDEKİLER	iv
TABLOLAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	vii
KISALTMALARVE SİMGELER LİSTESİ	ix
ÖZET	xi
ABSTRACT	xii
1. GİRİŞ	1
1.1. Kontrol Teorisi	1
2. PROSES KONTROL	3
 2.1. Proses Kontrol Tanımı. 2.2. Endüstride Kullanılan Kontrol Teknikleri 2.2.1. Temel kontrol teknikleri 2.3. İleri Düzey Kontrol Teknikleri 2.3.1. Model öngörülü kontrol 2.3.2. Çıkarımsal kontrol 2.3.3. Ardışıl kontrol 2.3.4. İleri düzenleyici kontrol 3. İLERİ DÜZENLEYİCİ KONTROL TEKNİKLERİ.	3 4 4 6 7 8 8 8 9 9
 3.1. İleri Beslemeli Kontrol 3.1.1. Kontrol yapısı 3.2. Kaskat Kontrol 3.3. Oran Kontrol 	
4. MATERYAL VE METOT	13
 4.1. Doğru Akım Motorları 4.1.1. Doğru akım motorlarının çalışma prensibi 4.2. Sürekli PID Kontrol 4.3. Sayısal PID Kontrolörler 	13 13 16 21
5. MODELLE-ME TASARIM VE BENZETİM	
5.1. Modelleme5.2. Hız Kontrol Sistemi İçin Kontrolör Tasarım	

5.2.1. Kontrol kutuplarının belirlenmesi	
5.2.2. Kontrolör parametrelerinin belirlenmesi	
5.2.3. Benzetim sonuçları	
5.3. Konum Kontrol Sistemi İçin Kontrolör Tasarım	
5.3.1. Konum kontrol kutuplarının belirlenmesi	
5.3.2. Kontrolör parametrelerinin belirlenmesi	
5.3.3. Benzetim sonuçları	
5.4. Kaskat Kontrol Sistemi İçin Sayısal Kontrolör Tasarımı	
5.4.1. Kaskat konum kontrol kutuplarının belirlenmesi	
5.4.2. Kontrolör parametrelerinin belirlenmesi	
5.4.3. Benzetim sonuçları	
6. DENEYSEL SONUÇLAR6.1. Deney Düzeneğinin Kurulması	
6.2. Deneysel Sonuçlar	
7. SONUÇ VE ÖNERİLER	60
8. KAYNAKLAR	61
EKLER	
EKLER ÖZGEÇMİŞ	

TABLOLAR LİSTESİ

Tablo 2.1	. Temel kontrol teknikleri ve açıklamaları	7

<u>Sayfa</u>

ŞEKİLLER LİSTESİ

<u>Sayfa</u>

Şekil 1.1.	Sisteme ilişkin genel blok gösterimi	1
Şekil 1.2.	Kontrol sistemi	2
Şekil 1.3.	Açık çevrim kontrol sistemi	2
Şekil 1.4.	Kapalı çevrim kontrol sistemi	2
Şekil 2.1.	Nükleer kontrol odası	3
Şekil 2.2.	Aç/Kapat (on/off) kontrol çalışma prensibi	4
Şekil 2.3.	Oransal kontrol güç-sıcaklık eğrisi	5
Şekil 2.4.	Oransal kontrol sıcaklık-zaman eğrisi	6
Şekil 2.5.	Model öngörülü kontrol çıkış grafiği analizi	7
Şekil 2.6.	Çıkarımsal kontrol yapısı	8
Şekil 2.7.	Ardışıl kontrol yapısı	9
Şekil 3.1.	lleri ve geri beslemeli kontrol	
Şekil 3.2.	Kaskat konrol yapısı	
Şekil 4.1.	Stator yapısı	13
Şekil 4.2.	Doğru akım motoru eşdeğer devresi	15
Şekil 4.3.	Geribeslemeli kontrol sistemi blok diyagrami	16
Şekil 4.4.	PID kontrolöre ilişkin sürekli zaman simülasyon diyagrami	
Şekil 4.5.	Kapalı çevrimli bir kontrol sisteminin birim basamak cevabi	18
Şekil 4.6.	Geribeslemeli kontrol sistemini kontrol kutuplari	20
Şekil 4.7.	PID kontrolorun kullanıldığı PLC'li bir geribeslemeli proses kontrol	21
Şekil 4.8.	Y amuk kurali yaklaşımı ile sayısal integrasyon	23
Şekii 4.9.	Sayısal türev işleminin grafiksel gösterimi	24
Şekii 4.10. Sələt 5-1	A silv asymine transfor for lightering	20
Şekii 5.1. Səlvil 5-2	Açık çevrim transfer fonksiyonu	28
Şekii 5.2. Salvil 5-2	Takogeneratörün eikis geriliminin zamana göre degişini	20
Şekil 5.5. Sabil 5 4	Savisal hiz kontrol sistemina iliskin hanzatim diyagrami	20
Şekii 5.4. Sabil 5 5	DID'li hız kontrol sistemine ilişkin Metleh/Simulink henzetimi	
Şekii 5.5. Salvil 5.6	A maclanan hız kontrol sistemine ilişkin Matiad/Siniunink benzetinin	
Şekil 5.0. Sabil 5.7	Anaçıanan mz kontrol sistemine ilişkin simulaşıyan diyaşramı	24
Şekii 5.7. Salzil 5 8	DID'li konum kontrol sistemine ilişkin Matlah/Simulink simülaşyon	
Şekii 5.0. Sabil 5 Q	Amaclanan konum kontrol sistemine iliskin basamak cevahi eğrisi	36
Şekil 5.7. Sekil 5.10	Parabolik girise ait giris batası	37
Şekil 5.10 Sekil 5.11	Kaskat kontrol sistemi blok divagramı	37
Şekil 5.11 Sekil 5.12	Hız kontrol sistemi (ic döngü) blok diyagramı	38
Şekil 5.12 Sekil 5.13	Kaskat konum kontrol sistemi blok diyagramı	39
Şekil 5.16 Sekil 5.14	Kaskat konum kontrol sistemi blok gösterimi	39
Şekil 5.15.	Kaskat kontrol sistemi blok divagramı	40
Şekil 5.16	Kaskat doğrusal konum kontrol sistemine ilişkin benzetim diyagramı	40
Şekil 5.17.	PID'li kaskat konum kontrol sistemine iliskin Matlab/Simulink	
γ •111 •11 / i	benzetimi	44
Sekil 5.18	. Amaclanan kaskat kontrol sistemine iliskin birim basamak cevabı	
,	eğrisi	44
Sekil 5.19.	. Amaçlanan ayarlanmış kaşkat konum kontrol sistemine ilişkin birim	
	basamak cevabı eğrisi	45

Şekil	5.20.	Amaçlanan ayarlanmış konum kontrol sistemine ilişkin birim basamak	
		cevabi eğrisi	45
Şekil	5.21.	Gürültü ilave edilmiş kaskat kontrol sistemine ilişkin benzetim	
		diyagramı	46
Şekil	5.22.	Gürültü ilave edilmiş konum kontrol sistemine ilişkin benzetim	
		diyagramı	46
Şekil	5.23.	Şekil 5.21'deki kaskat kontrol sistemine ilişkin birim basamak cevap	
		eğrisi	47
Şekil	5.24.	Şekil 5.22'deki kaskat kontrol sistemine ilişkin birim basamak cevap	
		eğrisi	47
Şekil	6.1.	Kullanılan deney düzeneğinin sistematik diyagramı	48
Şekil	6.2.	Deney düzeneğinin bağlantı şeması	48
Şekil	6.3.	Hız kontrolü PLC kontrolörde program merdiven diyagramı	50
Şekil	6.4.	S7-1200 PLC ile gerçek zamanda hız kontrolü	51
Şekil	6.5.	S7-1200 PLC ile gerçek zamanda PID hız kontrolü	52
Şekil	6.6.	Açısal konum kontrolü PLC kontrolörde program merdiven diyagramı	53
Şekil	6.7.	S7-1200 PLC ile gerçek zamanda açısal konum kontrolü	54
Şekil	6.8.	S7-1200 PLC ile gerçek zamanlı açısal PI konum kontrolü	54
Şekil	6.9.	S7-1200 PLC ile gerçek zamanlı PID açısal konum kontrolü	55
Şekil	6.10.	Doğrusal kaskat konum kontrolü PLC kontrolörde program merdiven	
		diyagramı	56
Şekil	6.11.	S7-1200 PLC ile gerçek zamanda P kaskat konum kontrolü	57
Şekil	6.12.	S7-1200 PLC ile gerçek zamanda PI kaskat konum kontrolü	58
Şekil	6.13.	S7-1200 PLC ile gerçek zamanda PID kaskat konum kontrolü	59
Şekil	6.14.	S7-1200 PLC ile gerçek zamanda PID kaskat konum kontrolü	59
Şekil	E1.1.	CPU 1212C bağlantı modülleri	62
Şekil	E1.2.	CPU 1212C bağlantı şeması	68
Şekil	E2.1.	Deney setinin genel görünümü	69
Şekil	E2.2.	Motor, sürücü, enkoder ve açısal ölçüm tamburunun fotoğrafları	70
Şekil	E2.3.	S7 1200 CPU1212 PLC'nin fotoğrafi	71
Şekil	E2.4.	Sonsuz dişli ve doğrusal konum cetvelinin fotoğrafi	71
Şekil	E2.5.	DC takogeneratörün fotoğrafi	72
Şekil	E2.6.	Takogeneratör çıkışı için sinyal düzenleyici devre fotoğrafı	72

KISALTMALARVE SİMGELER LİSTESİ

<u>Kısaltma</u>	<u>Açıklama</u>
PLC	: Programlanabilir Lojik Kontrolör
SCADA	: Uzaktan Kontrol ve Gözleme Sistemi
OB	: Oransal Band
SP	: Referans Değeri
APC	: İleri Düzey Kontrol
Р	: Oransal
PI	: Oransal İntegral
PID	: Oransal İntegral Türev
MPC	: Model Öngörülü Kontrol
ARC	: İleri Düzenleyici Kontrol
DA	: Doğru Akım
EMK	: Elektro Motor Kuvveti
PWM	: Sinyal Genişlik Modülasyonu
PC	: Kişisel Bilgisayar
CPU	: Merkezi Işlem Birimi
Simge	Aciklama
Shinge	<u>r teikiumu</u>
K _d	: Türevsel kontrol katsayısı
K _i	: Integral kontrol katsayısı
K _p	: Oransal kontrol katsayısı
μ _p	: Yüzdesel aşım
Р	: Tepe değeri
T ₀	: Salınım periyodu
τ	: Tork
u	: Sistem giriş işareti
v	:Hız
V	: Gerilim
ω	: Açısal hız
У	: Sistem çıkış işareti
y _m	: Model çıkış işareti
θ	: Mevcut açı
ζ	: Sönüm oranı
$\Phi_{ m f}$: Uyarma akısı
k_f	: Oransal uyarma katsayısı
I_f	: Uyarma akımı
i _a	: Endüvi akımı
ω _m	: Açısal hız
k_e	: Motor gerilim sabiti
L_a	: Endüvi sargısı
r _a	: Endüvi sargı direnci
	: Yuk momenti
e(t)	: Hata ışaretı
ts	: Yerleşme süresı

S _{1,2}	: Kontrol kutupları
T	: Örnekleme aralığı
K	: Kazanç
τ	: Zaman sabiti

ÖZET

YÜKSEK LİSANS

FIRÇALI DC MOTORLARDA HIZ VE KASKAT KONUM KONTROLÜ

Mehmet BOLAT

Siirt Üniversitesi Fen Bilimleri Enstitüsü Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman : Prof. Dr. Saadettin AKSOY

2016, 73 Sayfa

Endüstriyel otomasyon sistemlerinde; CNC'ler ve robot uygulamaları başta olmak üzere yüksek performanslı hız ve konum kontrolü, büyük önem arz etmektedir. Söz konusu yüksek performanslı hareket kontrolü; ileri beslemeli kontrol, kaskat kontrol, adaptif kontrol vb. gibi ileri düzey kontrol teknikleri ile mümkün olabilmektedir.

Bu tez çalışmasında, öncelikle hız ölçümü için takogeneratör, açısal konum ölçümü için ise optik kodlayıcının kullanıldığı fırçalı DC motorlu bir hız ve konum kontrol deney seti gerçekleştirilmiştir. Gerçekleştirilen deney seti ile açısal hız ve konum kontrolünün yanı sıra, lineer konum kontrolü de yapılabilmektedir. Amaçlanan tez çalışmasının ilk aşamasında, deneysel olarak elde edilen DC motorun matematiksel modeli kullanılarak, PID tabanlı açısal hız ve konum kontrolör tasarımı çalışmaları Matlab simulink kullanılarak test edilmiştir. Tez çalışmasının ikinci aşamasında ise benzetim ortamında test edilen kontrol algoritmaları PLC tabanlı deney seti üzerinde gerçek zamanda test edilmiştir. Söz konusu algoritmalar ile elde edilen benzetim ve deneysel sonuçlar ele alınarak karşılaştırılmalı gerekli performans analizi yapılmıştır.

Anahtar Kelimeler: Fırçalı DC motor, Hız kontrolü, Konum kontrolü, Kaskat kontrol, PID kontrol, PLC

ABSTRACT

MS THESIS

SPEED AND CASCADE POSITION CONTROL OF BRUSHED DC MOTOR

Mehmet BOLAT

The Graduate School of Natural and Applied Science of Siirt University The Degree of Master of Science in Electrical-Electronics Engineering

Supervisor : Prof. Dr. Saadettin AKSOY

2016, 73 Pages

In Industrial automation systems, Especially, high efficiency speed and position control like as CNCs and robotic applications are very important. Aforementioned high efficiency motion control can be possible by advanced process control techniques like feedforward control, cascade control, adaptive control e.t.c.

In this thesis, firstly, tacogenerator was used for speed measurement and optical encoder was used for angular position measurement. In addition, brush dc motor speed and position control experiment set was carried out. As well as angular position and speed control and linear position control can be practiced by performed experiment set. In the first part of thesis, PID-based speed and position control and linear cascade position control applications were achieved by using mathematical model of DC motor which was obtained experimentally. Performed controller designs were simulated with Matlab. In the second part of thesis, control algorithms were performed with experiment set in real time and PLC-based, which were simulated on Matlab. Simulation and experimental results were obtained by aforementioned algorithms which were used for essential performance analysis.

Keywords: Brushed DC motor, cascade control, PID control, position control, PLC, speed control.

1. GİRİŞ

1.1. Kontrol Teorisi

Kontrol teorisinde en önemli bileşen olan sistemin tanımını şu şekilde verebiliriz: Sistem, bir bütünü oluşturan, birbiri ile bağlı olan ya da belli bir işlev için bir araya getirilmiş olan elemanlar topluluğudur. Matematiksel anlamda sistem ise giriş ve çıkışları tanımlanmış olan fiziksel bir prosesin matematiksel modelidir. Şekil 1.1'de sisteme ilişkin genel bir blok gösterimi verilmiştir.

Şekil 1.1. Sisteme ilişkin genel blok gösterimi

"Kontrol" sözcüğü genellikle ayar eden, düzenleyen, yöneten ya da kumanda eden anlamına gelir. O halde, "kontrol sisteminin" tanımını da şu şekilde verebiliriz: Kontrol sistemi, bir sistemi, düzenlemek, kumanda etmek ya da yönetmek üzere uygun biçimde bağlanmış fiziksel elemanlar (donanım) ve yazılımdan oluşmuştur.

Kontrol sistemlerinde, kontrol edilen sistemin bir veya birden fazla girişi ve bu girişle ilgili bir ya da çok sayıda çıkışı olabilir.

Kontrol sistemi, çıkışlarının arzulanan girişleri yakalayabilmesi için gerekli davranışı gösterecek biçimde düzenlenmiş elemanların oluşturduğu bir sistemdir. Şekil 1.2'den de görüldüğü gibi kontrol sistemleri; kontrolör ve sistem olmak üzere iki kısımdan oluşur. Pratikte kontrol sistemlerinde sisteme dış ortamdan arzu edilmeyen bir bozucu büyüklük etki eder. Örneğin; gemiyi kontrol edilecek olan bir sistem olarak düşünürsek, deniz dalgaları sistemi etkileyen bozucu büyüklüktür. Bir uçağı kontrol edilecek olan sistem olarak düşünürsek, rüzgar ve fırtına sistemi etkileyen bozucu büyüklük olarak dikkate alınmalıdır.

Şekil 1.2. Kontrol sistemi

Kontrol sistemleri genellikle açık çevrim ve kapalı çevrim olmak üzere 2 ana sınıfa ayrılabilir.

a) Açık çevrim: Çıkışın kontrol işlevinde etkisi bulunmayan sistemlerdir (Şekil 1.3).

Şekil 1.3. Açık çevrim kontrol sistemi

b) Kapalı çevrim: Çıkışın kontrol işlevini doğrudan etkilediği sistemlerdir (Şekil 1.4).

Şekil 1.4. Kapalı çevrim kontrol sistemi

2. PROSES KONTROL

2.1. Proses Kontrol Tanımı

Proses kontrol bir istatistik ve mühendislik disiplinidir. Belirli bir prosesin çıkışının istenilen aralıkta veya düzeyde kalmasını hedefleyen mekanizmalar bütünüdür.

Proses kontrol ağırlıklı olarak endüstri ve kimya sektöründe uygulanan bir pratiktir. Petrol rafinerileri, kağıt imalatı, kimyasallar, enerji santralleri ve diğer endüstriyel uygulamalarda sıkça kullanılır. Büyük proses projeleri merkezi bir kontrol panel odasında yürütülür ve az bir personelle bu odalarda dev sistemler sistematik bir şekilde kontrol edilirler (Şekil 2.1) (Shinskey ve ark., 1990).

Şekil 2.1. Nükleer kontrol odası

Proses kontrol sistemlerinde genellikle Programlanabilir Lojik Denetleyiciler (PLC) kullanılır (Bryan ve ark., 1997; Aksoy, 2002). PLC yapısında sayısal devreler ve analog/digital çıkışlar bulunan mikroişlemci tabanlı sayısal cihazlardır. Nitekim proses kontrol sistemlerinde birden çok PLC belirli bir hiyerarşi düzeninde (örneğin; ustaçırak, master-slave PLC) kullanılabilir. Sistemde bazı PLC'ler bir üst düzeydeki PLC'lerin kontrolünde işlevini sürdürür. Sistemin kontrolü ise ana kumanda odasından sağlanır. Ana kumanda odasında bulunan büyük ekranlı PC'ler ile sistemin işleyişi izlenir ve kontrol edilir. Bu tür proses kontrol sistemlerinde SCADA sistemi kullanılır.

2.2. Endüstride Kullanılan Kontrol Teknikleri

Proses kontrol endüstriyel uygulamalarda, kimya sektöründe ya da enerji alanında kullanılan teknikler bütünüdür (Carlos ve ark., 1997). Burada sadece endüstri alanında kullanılan tekniklerden bahsedilecektir.

Öncelikle bu yöntemleri iki başlık halinde sınıflandırabiliriz.

2.2.1. Temel kontrol teknikleri

2.2.1.1. Aç/Kapat (On/Off) kontrol

Giriş ile çıkış arasındaki hata değerine bağlı olarak kontrol işaretinin devrede açık (On) yada devrede olmadığı kapalı (Off) kontrol yöntemidir.

Şekil 2.2. Aç/Kapat (on/off) kontrol çalışma prensibi

2.2.1.2. Sürekli kontrol (P, PI, PD, PID)

Sürekli kontrolde P, PI, PD VE PID kontrolör tüpleri kullanılır (Constantine ve ark., 1992; Kurtalan, 2003). Bu kontrolör tiplerini kısaca açıklayalım.

a) Oransal (P) kontrol

Giriş ile çıkış işareti arasındaki hatanın büyüklüğü ile oransal olarak değişen işareti üreten yöntemdir.

Aç/Kapat (On/Off) kontrolün aksine sürekli bir çıkış değeri verdiği için daha az salınıma neden olur. Oransal kontrol uygulamasında dış etkenlerin ve yükün değişimine bağlı olarak istenen değer ve ölçülen değer arasında sürekli bir "fark" olabilir. Şekil 2.3'de bir sıcaklık sistemine ilişkin güç-sıcaklık eğrisi verilmiştir. Şekilden de görüldüğü gibi Oransal Band (OB) 60 °C'dir ve sıcaklık 370 °C ile 430 °C arasında, P kontrolör ile 400 °C referans değerinde (SP) tutulmaktadır.

Şekil 2.3. Oransal kontrol güç-sıcaklık eğrisi

Şekil 2.4'de ise bir sıcaklık sistemine ilişkin oransal kontrol sıcaklık eğrisinin değişimi verilmiştir. Şekilden de görüldüğü gibi oransal kazanç yüksek olduğunda sıcaklık değişiminde osilasyon gözlenmektedir.

Şekil 2.4. Oransal kontrol sıcaklık-zaman eğrisi

b) Oransal + Integral (PI) kontrol

Giriş ile çıkış işareti arasındaki hatanın büyüklüğü ve hatanın integrali ile orantılı olarak değişen kontrol işareti üreten yöntemdir. Oransal Kontrol uygulamasında oluşan sürekli hal hatası integral sabitinin etkisiyle belirli bir sürede sıfırlanır.

c) Oransal + Integral + Türev (PID) kontrol

Giriş ile çıkış arasındaki hatanın büyüklüğü, hatanın integrali türevi ile orantılı olarak değişen kontrol işareti yöntemidir. PI kontrol uygulamasından farkı oluşan hata sinyaline çok hızlı tepki vermesidir.

2.3. İleri Düzey Kontrol Teknikleri

Kontrol teorisinde ileri proses kontrol (Advanced Process Control - APC) endüstriyel kontrolde geniş bir kullanım alanına sahiptir (Shinskey ve ark., 1990). Temel kontrol yöntemleri prosesi hızlandırmak ve kolayca yönetebilmek için uygulanır. Oysa ileri kontrol yöntemleri bunların ötesinde ekonomik avantajlar ve performans iyileştirmesi için kullanılır.

Kontrol yöntemleri oldukça farklı şekillerde sınıflandırılabilir. Ancak endüstriyel kullanım ve uygulama açısından aşağıdaki gibi sınıflandırılabilir.

	Tablo	2.1.	Temel	kontrol	teknikleri	ve a	cıklamaları
--	-------	------	-------	---------	------------	------	-------------

Teknik	Açıklama
APC	İleri kontrol yöntemleri (Advanced process control)
ARC	İleri düzenleyici kontrol (Advanced regulatory control), ileri besleme adaptif kazanç,
	bulanık mantık, modüler kontrol, cihaz kontrolü, çevresel ve özel algoritmalar.
Base-Layer	DCS, SIS, saha cihazları, DCS alt sistemler, PLC
BPCS	Temel proses kontrol sistemi (Basic process control system)
DCS	Dağınık kontrol sistemi (Distributed control system)
MPO	Üretim planlama optimizasyonu (Manifacturing predictive optimization)
MPC	Model tahmini kontrolü (Multivariable mode predictive control)
SIS	Güvenli estrümantasyon sistemleri (Safety instrumented system)
SME	Uzmanlık konuları (Subject matter expert)

İleri düzey kontrol tekniklerini aşağıdaki gibi sınıflandırılabiliriz.

2.3.1. Model öngörülü kontrol

Şekil 2.5. Model öngörülü kontrol çıkış grafiği analizi

MPC kontrol, iteratif yöntemler içeren, sonlu dizili bir plantasyon modelidir (Carlos ve ark., 1997). Her t zamanında modelin durumu örneklenir ve minimum maliyetli kontrol stratejisiyle (nümerik minimizasyon algoritmaları ile) örneklenerek çıkışlar elde edilir. Gelecekteki tahmini kontrol çıkışı, geçmişteki tahmini kontrol çıkışı incelenerek elde edilir.

2.3.2. Çıkarımsal kontrol

Çıkarımsal kontrol: Bu proses modeli, zaten süreci devam eden ölçümlerin üzerine çıkarımsal metotlar ekleyerek proses çıkışını hesaplamayı sağlar. Karmaşık kimya analizleri ve maliyetli laboratuar faaliyetlerinde kullanılmaktadır. Bu çıkarım yöntemleri ile sürekli kimyasal analizler yapılır.

Çıkarımsal kontrolde bazı problemler karşımıza çıkmaktadır. Bunlar; ürüne bağlı olarak ölçümdeki yetersizlikler ve üründeki homojenize olmayan kimyasal maddelerin çıkardığı zorluklar olarak belirtilebilir.

Çıkarımsal kontrolün uygulanabildiği modeller arasında regresyon analizi gösterilebilir. Regresyon modelleme, iki ya da daha çok değişken arasındaki ilişkiyi ölçmek için kullanılan bir analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa çok değişkenli analiz yöntemi olarak isimlendirilir.

2.3.3. Ardışıl kontrol

Ardışıl kontrol, zaman ve olaylar bazında sürekli olarak gerçekleşen proseslerde kullanılır (Kurtalan, 2003). Aslında bu yöntemde piyasada en çok kullanılan, zaman ve lojik fonksiyon blokları denen özel algoritmalar kullanılır. Ya da ardışıl fonksiyon tabloları kullanılarak çözülür. Bu algoritma diğerlerinin aksine gelişmiş bir kontrol modeli gereksinimi duymaz ancak sıralı gerçekleşmesi gereken işlemlerde kullanılır. Gıda, paketleme, ilaç gibi seri üretim gerçekleştiren sektörlerde bu yöntem kullanılır.

Aşağıda Şekil 2.7'de akış diyagramı mantıksal bir tasarımı göstermektedir. Burada X ve T; giriş ve zamanlayıcılar olup S durum, Y değerleri çıkış röleleridir. Fonksiyonel olarak yazılan bu program ardışıl lojik kontrolün yapısı hakkında bilgi vermektedir. Ardışıl kontrol, diğer kontrol modellerinin aksine son kullanıcı odaklı oldukça pratik bir yöntemdir. Bu yöntem diğer klasik yöntemlerden bağımsızdır.

Şekil 2.7. Ardışıl kontrol yapısı

2.3.4. İleri düzenleyici kontrol

İleri Düzenleyici Kontrol (ARC); birçok ileri kontrol metodunu içeren yöntemler bütünüdür. Bunlar FF (İleri besleme), override, kaskat vs.. ARC aslında diğer yöntemlerle kategorize edilemeyecek farklı bir yöntemdir (Shinskey ve ark., 1990).

3. İLERİ DÜZENLEYİCİ KONTROL TEKNİKLERİ

3.1. İleri Beslemeli Kontrol

İleri Besleme (Feedforward) ifadesi ilk olarak 1956'da D. M. MacKay tarafından kullanılmıştır. MacKay biyolojik kontrol teorisi çalışmalarında insan ve hayvan beyninin çalışmalarını incelerken bu ifadeye sık sık başvurmuştur.

Georgia Tech, MIT, Stanford ve Carnegie Mellon öğrencileri "İleri Besleme (Feedforward) Kontrol" disiplinini geliştirdiler. Georgia Tech 1970'lerin ortalarında 'İleri besleme (feedforward) "kontrol" kavramını oluşturdu ve 1980'lerde makaleler yayınlanmaya başlandı.

Girişindeki kumanda yada kontrol işareti, bozucu işaretine yada bozucu işaretinden üretilen bir işaretle bir referans işaret arasındaki farka yada bunların toplamına bağlı olan bir kontrol sistemidir.

İleri beslemeli kontrolün esas hedefi, hataları oluşmadan önce kestirmek ve doğrusu ile ifade etmektir. Sapmaları önceden düzeltebilme imkanı sağlayan bu endüstriyel yöntem ideal şartlarda mükemmel bir kontroldür. İleri beslemeli kontrolün problemi ise çok düşük hatalı ölçüm gerektirmesidir.

Söz konusu yöntem matematiksel modelin yeterliliği ve kalitesine göre oldukça etkili bir yöntemdir. Fiyat ve zaman açısından endüstride ciddi faydalar sağlamıştır. Enerji tasarrufu, kararlılık ve hafif malzeme kullanımı bu amaç doğrultusunda hedeflenen sonuçlardır. "İleri beslemeli kontrol" genelde daha iyi optimizasyon için geri beslemeli kontrol yapısı ile birlikte kullanılır.

3.1.1. Kontrol yapısı

Şekil 3.1'de bir sisteme ilişkin ileri ve geri beslemeli kontrol prosesi verilmiştir. İleri besleme kontrolörler, gürültüden kaynaklanan kararsızlık durumlarının önlenmesi amacıyla tasarlanan ve kontrol edilen işareti optimize etmek için kullanılan ileri seviye kontrolörlerdir. Geri besleme kontrolör yapısı ise gürültüye maruz kalan prosesten elde edilen çıkıştan geri besleme alarak kontrol işaretini optimize eder. Buradaki en önemli fark gürültünün yüksek olduğu ortamlarda sistemi optimize ederek kararlılığı sağlamak ve performans artışını gerçeklemektir.

Şekil 3.1. İleri ve geri beslemeli kontrol prosesi

Yukarıdaki geri beslemeli basit sistem, proses modeli gerektirmez. Ancak hataları gerçekleştikten sonra düzeltir.

3.2. Kaskat Kontrol

Şekil 3.2. Kaskat kontrol yapısı

Kaskat kontrolün öncelikli amacı gürültünün, prosesin diğer kısımlarına bozucu etkisinin ulaşmadan önlenmesini sağlamaktır. Yukarıdaki (Şekil 3.7) blok diyagramında iki kontrol döngüsü içeren yapı en basit haliyle bir kaskat yapıdır. Özellikle ardışıl proseslerin fazlaca olduğu kimyasal proseslerde bu gürültüler sistemi bozmakta ve tamamen deformasyona uğratmaktadır. Bu durumda bu yapı kullanılır. Kaskat yapısı ileri besleme kontrol tekniğinden yola çıkılarak gürültüyü engellemeyi öngören bir yöntemdir.

İleri beslemeli ile kontrol oldukça benzer yapıda görünseler de temel bir ayrımları vardır. Hem ileri beslemeli hem de geri beslemeli kontrol, kontrol edilecek ana değişken referans değişimine uğramadan önce sisteme etki eder. Kaskat kontrol ilk kontrol değişkeni etkilenmeden önce sistemi düzeltir. Ancak gürültü prosese girerse etkilendikten sonra sistemi düzeltir. İleri besleme kontrol ise, gürültü olsun veya olmasın sistemi bozucu etkilenmelere maruz bırakmadan sistemi ayarlar.

Kaskat kontrol ana kontrol değişkenlerinin yanı sıra birçok değişkenin sistemde olduğu durumlarda da etkili bir yöntemdir. Ayrıca iç kontrol döngüsünün parametre değişiminin dış döngüdekinden kayda değer bir şekilde daha hızlı olduğu durumlarda uygulanması etkili bir durumdur.

Kaskat kontrol teknikleri birçok sistemlere uygulanabilir. DC motorların kaskat kontrolüne ilişkin literatürde birçok çalışma mevcuttur (Anagha ve ark., 2014; Robet ve ark., 2014; Khin ve ark., 2012; Elhamid, 2012).

3.3. Oran Kontrol

Oran kontrolü proses endüstrisinde geniş uygulama alanına hitap eden aslında özel bir ileri besleme (feedforward) mekanizmasıdır. Burada amaç iki farklı (ya da daha fazla) proses değişkeninin oranlarını korumaktır. Bu iki değişken mesela debi olabilmekte ve değişkenler u (manipüle edilmiş kontrol değeri) ve d (bozucu, gürültü değişkeni) olabilir.

Oran kontrolü içeren tipik uygulamalar; karıştırma işlemleri, bileşenlerin yaklaşık miktarlarını ayarlama (kimyevi uygulamalar); bir reaktöre, reaktiflerin stokiyometrik oranını sağlama ve koruma; bir damıtma kolonu için belirli bir reflü (geri akış) oranı tutulması ve firinin yakıt-hava oranının (fuel-air) değerinin optimumda tutulması gibi uygulamalardır.

4. MATERYAL VE METOT

4.1. Doğru Akım Motorları

4.1.1. Doğru akım motorlarının çalışma prensibi

DC motorlarında Φ_f uyarma akısı iki şekilde olur. Bunlardan ilki Şekil 4.1(a)'da görüldüğü gibi sabit mıknatıslarla oluşturulur. Sabit mıknatıslı DC motorlarında Φ_f uyarma akısı da sabittir. Diğerinde ise Φ_f uyarma akısı Şekil 4.1 (b)'de görüldüğü üzere stator tarafındaki uyarma sargısı ile oluşturulur. Burada uyarma sargısındaki I_f uyarma akımı Φ 'yi kontrol eder. Akı yolundaki manyetik doyma ihmal edilirse:

$$\Phi_f = k_f \cdot I_f \tag{4.1}$$

olur. Burada k_f oransal uyarma katsayısıdır.

Şekil 4.1. Stator yapısı

DC motorlarında elektromanyetik moment uyarma akısı Φ_f ve i_a endüvi akımının karşılıklı etkileşimi ile üretilir:

$$T_{em} = k_t \cdot \Phi_f \cdot i_a \tag{4.2}$$

Burada k_t motorun moment katsayısıdır. Endüvi devresinde, endüvi iletkenlerinin Φ_f alan akısının varlığında, ω_m 'lik bir açısal hızla dönmesiyle ters bir e.m.k. oluşur:

$$e_a = k_e \cdot \Phi_f \cdot \omega_m \tag{4.3}$$

Burada ke motorun gerilim sabitidir. Elektriksel güç aşağıdaki gibi hesaplanır:

$$P_e = e_a \cdot i_a = k_e \cdot \Phi_f \cdot \omega_m \cdot i_a \tag{4.4}$$

Mekanik güç ise:

$$P_m = \omega_m \cdot T_{em} = k_t \cdot \Phi_f \cdot \omega_m \cdot i_a \tag{4.5}$$

olarak hesaplanır. Sürekli halde mekanik güç, elektriksel güce eşittir:

$$P_e = P_m \tag{4.6}$$

Buradan hareketle önceki denklemler birbirine eşitlenirse:

$$k_t = k_e \tag{4.7}$$

elde edilir.

Pratikte i_a , kontrol edilebilir bir v_t gerilim kaynağının endüvi uçlarına uygulanmasıyla elde edilir. Bu nedenle, endüvi devresindeki i_a akımı, v_t gerilimi, e_a ters e.m.k. gerilimi, r_a endüvi sargı direnci ve L_a endüvi sargı endüktansı ile belirlenir:

$$V_t = e_a + R_a \cdot i_a + L_a \cdot \frac{di_a}{dt}$$
(4.8)

Yukarıdaki eşitlik Şekil 4.2'deki eşdeğer devreden de görülmektedir. T_{em} 'nin yük momentiyle etkileşmesi motor hızının oluşumunu belirler:

$$T_{em} = J \cdot \frac{d\omega_m}{dt} + B \cdot \omega_m + T_{WL}(t)$$
(4.9)

Burada J ve B, motor-yük birleşiminin sırasıyla toplam eşdeğer eylemsizliği ve sönüm katsayısı, T_{WL} ise yük momentidir.

$$\frac{d\theta_m}{dt} = \omega_m \tag{4.10}$$

 θ_m motor konumudur.

Şekil 4.2. Doğru akım motoru eşdeğer devresi

DC motorları frenleme esnasında generatör olarak kullanılır. Motor ω_m hızı ile dönerken hızını azaltmak için $v_t e_a$ 'nın altına düşürüldüğünde, i_a akımı yön değiştirir. Böylece T_{em} elektromanyetik momenti de yön değiştirmiş olur. DC motorunun motor yük eylemsizliğine ilişkin kinetik enerjisi elektriksel enerjiye dönüşmeye başlayınca DC motoru artık generatör olarak çalışmaya başlar. Frenleme esnasında, dönme yönü değişmediği için, e_a 'nın işareti değişmez ve

$$\boldsymbol{e}_a = \boldsymbol{k}_{\rm e} \cdot \boldsymbol{\Phi}_f \cdot \boldsymbol{\omega}_m \tag{4.11}$$

endüklenen e.m.k.'nın büyüklüğünü belirler. Rotor yavaşladıkça, Φ_f 'in sabit olduğu varsayımı altında genlik olarak küçülmeye başlar. Sonunda, rotor durduğunda generatör modundaki çalışma sona erer ve eylemsizliğe ilişkin tüm enerji dışarı verilmiş olur. Uç gerilim yönü de değiştirilmiş ise motorun dönme yönü de değişecektir. Buradan yola çıkarak D.A. motorunun iki yönde de çalışabileceğini söyleyebiliriz.

4.2. Sürekli PID Kontrol

Aşağıdaki geri beslemeli bir kontrol sistemi ele alalım (Şekil 4.3).

Şekil 4.3. Geribeslemeli kontrol sistemi blok diyagramı

$$G_c(s) = K_p + \left(\frac{1}{T_i} \cdot \frac{1}{s}\right) + T_d s \quad \text{: PID kontrolör}$$
(4.12)

 $G_p(s)$: Kontrol edilen sistem

H(s) : Sensör sistemi transfer fonksiyonu olarak tanımlanabilir.

Oransal (Proportional), İntegral (Integral) ve Türevsel (Derivative) olmak üzere üç terim içeren PID kontrolörler, endüstride yaygın olarak kullanılan klasik kontrol algoritmalarıdır. Kontrolörün çıkışı, e(t) girişinin bir katsayı ile çarpımı, integrali ve türevinin toplamıdır. Şekil 4.4'de PID kontrolörün blok gösterimi verilmiştir.

Şekil 4.4. PID kontrolöre ilişkin sürekli zaman simülasyon diyagramı

Endüstride yaygın olarak kullanılan PID kontrolörün matematiksel ifadesi ;

$$u(t) = K_p \left[e(t) + \frac{1}{T_i} (\int e(t)dt) + T_d \frac{d}{dt} (e(t)) \right]$$
(4.13)

olarak verilebilir. Burada;

- e(t) : Hata işareti (r(t)-b(t))
- u(t) : Kontrolör çıkışı (Sürücü girişi)
- K_p : Oransal kazanç
- T_i : İntegral zamanı
- *T_d* : Türev zamanı

olarak tanımlanır. Eşitlikten de görüldüğü gibi ilk terim hata ile (P), ikinci terim hatanın integrali ile (I), üçüncü terim ise hatanın türevi ile (D) orantılıdır.

Üç terim içeren PID kontrolörün herhangi bir teriminin çıkışa etkisini sıfır yapabiliriz. Böylece P, PI, PD gibi kontrolör türlerini türetebiliriz. Örneğin $T_i = \infty$, $T_d = 0$ için P tipi, $T_d = 0$ için PI tipi kontrolörü oluşturabiliriz.

Kapalı çevrimli kontrol sistemlerinde proses çıkışının zamana göre değişimini geçici durum cevabı ve sürekli durum cevabı olmak üzere iki kısma ayırabiliriz. Birim basamak girişi uygulanmış olan bu tür bir kapalı çevrim kontrol sisteminin çıkışının zamana göre değişim eğrileri Şekil 4.5'de verilmiştir. PLC de yürütülecek olan sayısal PID kontrolör tasarımı için literatürde değişik yöntemler mevcuttur. Ancak bu yöntemler kontrol edilecek olan sistemin matematiksel modeline ihtiyaç duyarlar.

Genellikle endüstride kontrol edilecek olan proseslerin matematiksel modelleri bilinmez. Bu durumda deneysel verileri kullanan Ziegler-Nichols tasarım yöntemleri ile amaçlanan PID parametrelerini belirleyebiliriz (Schleicher ve ark., 2003).

Şekil 4.5'deki sönümlü çıkış eğrisi üzerinde tanımlanmış olan parametreler, sistemin performans ölçütleri olarak isimlendirilir ve çıkış eğrisinin formunu tanımlar. Sürekli hal hatası, sürekli durum cevabı süresince sistem çıkışı ile girişi arasındaki farktır. PID kontrolör parametreleri olarak isimlendirilen K_p , T_i ve T_d uygun değerlerde seçilerek, sistem çıkışı için tanımlanan bu performans ölçütleri değiştirilebilir. Dolayısıyla proses çıkış eğrisinin geçici durum davranışı ve sürekli durum hatası değiştirilmiş olur.

Şekil 4.5. Kapalı çevrimli bir kontrol sisteminin birim basamak cevabı

Kontrolör parametreleri genelde aşım ve sürekli durum hatası minimum yapılacak şekilde ayarlanır. Pratikte, kapalı çevrimli kontrol sistemleri sistem giriş ve çıkışlarından istenmeyen bozucu büyüklüklere maruz kalabilir. Örneğin bir seviye kontrol sisteminde, dışarıya akış hızındaki değişme sistemi etkileyebilir. Sıcaklık kontrol sisteminde ise çevre sıcaklığındaki değişme sistemi etkileyebilir. Sisteme geribesleme uygulanması, bu tür bozucu büyüklüklerin etkisini azaltıcı etkiye sahiptir. PID kontrol parametrelerini hesaplanması ve sistem için arzulanan performans ölçütlerinin bilinmesi gerekir.

Söz konusu amaç ölçütleri otomatik kontrol kitaplarında verilmiştir. Örneğin; Şekil 4.3'deki sisteme ilişkin Şekil 4.5'deki birim basamak cevabı için sürekli durum hatası e_{ss} , M_p = maksimum aşım ve t_s = yerleşme süresi parametrelerinin tasarımcı tarafından bilindiğini varsayalım. Şimdi üç performans ölçütünü sağlayacak olan K_P , K_I ve K_D kontrolör parametrelerini hesaplamaya çalışalım.

K_P'nin hesabı:

U(t) birim basamak fonksiyonu olmak üzere $U_p(t) = Ru(t)$

Basamak girişi için sürekli hal hatası $e_{ss} = \frac{R}{1+K_n}$,

 $K_p = \lim_{s \to 0} G_c \cdot (s) \cdot G_p(s) \cdot H(s)$: Konum hatası olarak yazılabilir.

Yukarıdaki eşitliklerde e_{ss} ve R bilinmektedir. K_P konum hatası ise K_P 'nın fonksiyonu olarak elde edilir. Dolayısıyla tek bilinmeyen K_I , e_{ss} sürekli hal hatasına bağlı olarak belirlenir.

 $U_r(t) = Rtu(t)$ rampa girişi için

Sistemin sürekli hal hatası $e_{ss} = \frac{R}{K_v}$,

 $K_v = \lim_{s \to 0} s \cdot G_c(s) \cdot G_p(s) \cdot H(s)$: Hız hatası olarak yazılabilir.

Bu eşitliklerde e_{ss} ve R bilinmektedir. K_v hız hatası K_I 'nın fonksiyonu olarak elde edilir. Dolayısıyla tek bilinmeyen K_I , e_{ss} sürekli hal hatasına bağlı olarak belirlenmiş olur.

K_Pve K_D parametrelerin hesabı:

Keyfi olarak seçilen bu iki parametreyi hesaplayabilmek için öncelikle; M_p = maksimum aşım t_s = yerleşme süresi parametrelerini sağlayacak olan S_1 ve $S_2 = \overline{S_1}$ kontrol kutuplarını hesaplayalım. $S_{1,2} = -\alpha \pm jw$: Kontrol kutupları $t_s \cong \frac{4}{\alpha} \Rightarrow \alpha = 4 \cdot t_s$ (%2 kriterine göre) $t_s \cong \frac{3}{\alpha} \Rightarrow \alpha = 3 \cdot t_s$ (%5 kriterine göre) $\zeta = \frac{lnM_p}{\sqrt{\pi^2 + (lnM_p)^2}}$; Sönüm oran $\beta = \cos^{-1}\zeta$, $\omega_n = \sqrt{1 - \zeta^2}$: Sönümsüz doğal frekans

Geri beslemeli sisteme ilişkin kontrol kutupları şekil 4.6'da verilmiştir.

Şekil 4.6 Geribeslemeli kontrol sistemini kontrol kutupları

Kontrol kutupları; aşağıdaki geribeslemeli kontrol siteminin karakteristik denklemini sağlamak zorundadır.

$$\Delta(S_1) = 1 + G_c(S_1) \cdot G_p(S_1) \cdot H(S_1) = 0$$
(4.14)

Yukarıdaki (4.14) eşitlik PID kontrolör parametreleri olan $K_{P_i} K_I ve K_D$ 'ye bağlıdır. K_I bilindiğine göre, sadece K_P ve K_D bilinmeyendir. Karmaşık bir ifade olan $\Delta(S_1)$ karakteristik eşitliğine ilişkin Faz ve Genlik koşulundan iki eşitlik yazabiliriz. Bir başka ifade ile söz konusu eşitliğin gerçel ve sanal bileşenleri için iki eşitlik elde edilir. Bu iki eşitlikten belirlenmesi istenen K_P ve K_D parametreleri hesaplanmış olur.

4.3. Sayısal PID Kontrolörler

(4.12) eşitliği ile verilen PID kontrol algoritması sürekli zamanda geçerlidir. Bu algoritma PLC'de programlanıp yürütüleceğinden sayısallaştırılması gerekir. Yani sayısal PID kontrolör kullanmak zorundayız. Şekil 4.7'de sayısal PID kontrolörün kullanıldığı PLC'li bir geribeslemeli proses kontrol sistemine ilişkin blok diyagramı verilmiştir.

Şekil 4.7. PID kontrolörün kullanıldığı PLC'li bir geribeslemeli proses kontrol sistemine ilişkin blok diyagramı

Sayısal hesaplama için (4.13) eşitliğinin fark denklemleri kullanılabilir. Fark denklemlerini elde edebilmek amacıyla PID eşitliği için *T* örnekleme aralıklarında elde edilen e(kT), k=0,1,2,... hata fonksiyonuna ilişkin sayısal türev ve integral değerlerini hesaplamak yeterlidir. Sayısal hesap için (4.13) eşitliği ile verilen sürekli formdaki PID eşitliğini

$$u(t) = [u_{p}(t) + u_{I}(t) + u_{D}(t)]$$
(4.15)

biçiminde tekrar yazalım. (4.13) eşitliğindeki parantez içindeki her bir bileşeni sayısal olarak ayrı ayrı hesaplayalım.

a) Oransal kontrol

(4.13) ile verilen PID kontrol eşitliğinde $T_i=\infty$ ve $T_d=0$ seçilmesi durumunda oransal kontrol kuralı elde edilir. Dolayısıyla oransal kontrol hata ile orantılı kontrol işareti üreten bir kontrol şeklidir. Hata işareti *Kp* katsayısı ile çarpılarak kontrol işareti elde edilir. Oransal kontrol kuralı

$$u_p(t) = K_p e(t) \tag{4.16}$$

biçiminde olup, bu terime ilişkin fark denklemi, t yerine kT koyularak

$$u_p(kT) = K_p \mathcal{C}(kT)$$

biçiminde yazılabilir. Gösterim basitliği amacıyla k.'ıncı örnek için kT yerine k kullanırsak, oransal kontrolörler için

$$u_p(k) = K_p e(k) \tag{4.17}$$

fark denklemi elde edilir. Oransal kontrolöre ilişkin ayrık transfer fonksiyonu ise

$$D_{p}(z) = \frac{U_{p}(z)}{E_{p}(z)} = K_{p}$$
(4.18)

olarak elde edilir.

b) İntegral kontrol

$$u_I(t) = \frac{K_p}{T_i} \int_0^t e(\tau) d\tau$$
(4.19)

Uygulamada yaygın olarak kullanılan yamuk kuralı integrasyon (Trapezoidal integration) yöntemi için Şekil 4.8'i göz önüne alarak integral kontrol için fark denklemini kolayca yazılabilir. Bu yaklaşımda iki örnekleme arasında oluşan hata değerinin ortalaması kullanılır. Bu yöntem bilineer dönüşüm olan Tutsin kuralı olarak ta bilinir.

Şekil 4.8. Yamuk kuralı yaklaşımı ile sayısal integrasyon

Şekil 4.8'da e(t) hata fonksiyonunun altında oluşturulan T genişliğindeki yamukların toplamı yaklaşık olarak e(t)'nin integralini verecektir. Böylece sayısal integrasyon için gösterim basitliği amacıyla kT yerine k yazarak aşağıdaki fark denklemini yazabiliriz.

$$u_{I}(k) = u_{I}(k-1) + \frac{K_{p}T}{2T_{i}}(e(k) + e(k-1))$$
(4.20)

(4.20) fark denkleminden yamuk kuralı ile elde edilen integral kontrole ilişkin ayrık transfer fonksiyonu aşağıdaki işlem adımları ile elde edilir.

$$U_{I}(z) = z^{-1}U_{I}(z) + \frac{K_{p}T}{2T_{i}}(E(z) + z^{-1}E(z))$$
$$(1 - z^{-1})U_{I}(z) = \frac{K_{p}T}{2T_{i}}(1 + z^{-1})E(z)$$

$$D_{I}(z) = \frac{U_{I}(z)}{E(z)} = \frac{K_{p}T}{2T_{i}} \frac{(1+z^{-1})}{(1-z^{-1})} = \frac{K_{p}T}{2T_{i}} \frac{(z+1)}{(z-1)}$$
(4.21)

c) Türevsel kontrol

Türevsel kontrol bileşeni için

$$u_D(t) = K_p T_d[\frac{d}{dt}e(t)]$$
(4.22)

ifadesinin fark denklemi için Şekil 4.9'daki sayısal türevin grafiksel gösterimi kullanılabilir. Şekil 4.9'da örnekleme aralığı *T*'nin yeterince küçük olduğunu varsayarak e(t)'nin bu aralıktaki yaklaşık türevi A ve B noktasını birleştiren doğrunun eğimine eşittir.

Şekil 4.9. Sayısal türev işleminin grafiksel gösterimi

Böylece türevsel kontrol için kT yerine k yazarak

$$u_D(k) = K_p T_d \,\frac{e(k) - e(k-1)}{T}$$
(4.23)

fark denklemi elde edilir. Bu fark denkleminden türevsel kontrol bileşenine ilişkin ayrık transfer işlevi
$$U_{D}(z) = K_{p}T_{d} \frac{E(z) - z^{-1}E(z)}{T}$$

$$U_{D}(z) = K_{p}T_{d} \frac{(1 - z^{-1})E(z)}{T}$$

$$D_{D}(z) = \frac{U_{D}(z)}{E(z)} = K_{p}T_{d} \frac{(1 - z^{-1})}{T} = \frac{K_{p}T_{d}}{T} \frac{(z - 1)}{z}$$
(4.24)

biçiminde elde edilir.

Sonuçta PID kontrolör için ayrık transfer fonksiyonu (4.18), (4.22) ve (4.24) bağıntıları kullanılarak

$$D(z) = D_{p}(z) + D_{I}(z) + D_{D}(z)$$

$$D(z) = K_{p} + \frac{K_{p}T}{2T_{i}} \frac{(z+1)}{(z-1)} + \frac{K_{p}T_{d}}{T} \frac{(z-1)}{z}$$

$$D(z) = K_{p}(1 + \frac{T}{2T_{i}} \frac{(z+1)}{(z-1)} + \frac{T_{d}}{T} \frac{(z-1)}{z})$$
(4.25)

olarak elde edilir. Denklem (4.25)'deki ayrık transfer işlevine ilişkin ayrık kontrolör parametreleri

$$T$$
: Örnekleme aralığı K_dP : K_p : Oransal kontrol katsayısı K_{dI} : $(K_pT)/2T_i$: İntegral kontrol katsayısı K_{dD} : $(K_p T_d)/T$: Türevsel kontrol katsayısı

biçiminde yazılabilir (Aksoy, 2002). (4.26) eşitliğinden görüldüğü gibi ayrık zaman kontrolör parametreleri sürekli zaman kontrolör parametreleri ve örnekleme periyoduna bağlıdır. O halde sürekli zaman kontrolör parametreleri $K_P = K_P$, $K_I = K_P/2T_i$, ve $K_D = K_P/T_d$ (4.26) eşitliğinde yerleştirilirse,

$$K_{dP} = K_P$$

$$K_{dI} = K_I \cdot T/2$$

$$K_{dD} = K_D/T$$

$$(4.27)$$

elde edilir. Son eşitlik ile verilen ayrık PID kontrolör parametreleri (4.25) ayrık transfer fonksiyonunda yerleştirilirse,

$$D(z) = K_{dP} + K_{dI} \frac{(z+1)}{(z-1)} + K_{dD} \frac{(z-1)}{z}$$
(4.28)

elde edilir.

(4.27) eşitliğinden, sayısal PID kontrolör tasarımına gerek olmadığı anlaşılmaktadır. Sürekli sistemde elde ettiğimiz PID kontrolör parametrelerini ve örnekleme periyodunu kullanarak, ayrık sisteme ilişkin PID parametreleri elde edilmiş olur. Ayrık zamanda PID kontrolör parametrelerini farklı metotlarla hesaplayabiliriz.

Elde edilen ayrık PID kontrolöre ilişkin z bölgesi blok gösterimi Şekil 4.10'de verilmiştir.

Şekil 4.10 Sayısal PID kontrolöre ilişkin z bölgesi blok gösterimi

(4.25) ayrık transfer fonksiyonu ile verilen sayısal kontrolörün PLC'de yürütülebilmesi için (4.17), (4.20) ve (4.23) ifadelerinden elde edilen

$$u(k) = K_p e(k) + u_I(k) + K_p T_d \frac{e(k) - e(k-1)}{T} ; \ u_I(0) = 0$$
(4.29)

$$u_{I}(k) = u_{I}(k-1) + \frac{K_{p}T}{2T_{i}}(e(k) + e(k-1)) \ k=1,2,3,\dots$$
(4.30)

fark denklemlerinin programlanması gerekir. Nitekim yukarıdaki fark denklemleri, (4.27) ile verilen ayrık kontrolör parametreleri cinsinden düzenlenirse

$$u(k) = K_{dP}e(k) + u_{I}(k) + K_{dD}[e(k) - e(k-1)]; u_{I}(0) = 0$$

$$u_{I}(k) = u_{I}(k-1) + K_{dI}[e(k) + e(k-1)] k = 1, 2, 3, ...$$
(4.31)

elde edilir. Son eşitlik ile verilen fark denklemi PLC'de mevcut matematiksel işlem komutlarıyla kolayca programlanabilir. Programlanan bu sayısal algoritma her bir T örnekleme aralığı için koşturularak bir sonraki adımda sisteme uygulanacak u(k) değeri hesaplanmış olur. Burada K_{dP} , K_{dI} ve K_{dD} sırasıyla oransal, integral ve türevsel kontrol katsayıları olup, istenen proses kontrol performansına göre tasarlanması gerekir.

5. MODELLE-ME TASARIM VE BENZETİM

5.1. Modelleme

Amaçlanan hız ve konum kontrolü için kullanılacak olan DC motorlu hız ve konum kontrol sisteminin transfer işlevini deneysel olarak elde edebilmek için gerekli deney düzeneğine ilişkin blok diyagram aşağıda verilmiştir.

Şekil 5.1. Açık çevrim transfer fonksiyonu

Şekil 5.1'deki açık çevrim transfer işlevinde DC motorun girişine $V_g = 23 V$ uygulayarak DC motorun açısal hızını gerilim değerine dönüştüren takogeneratör çıkış geriliminin geçici durumu osiloskop ekranında kaydedilmiştir (Şekil.5.2).

Şekil 5.2. Takogeneratörün çıkış geriliminin zamana göre değişimi

Şekil 5.2'deki osiloskop ekran görüntüsü matlab ortamında tekrar düzenlenerek Şekil 5.3'deki eğri elde edilmiştir.

Şekil 5.3. Takogeneratörün çıkış geriliminin matlab ortamında çizilmesi

Deney düzeneğinde kullandığımız DC motor sistemi ve takogeneratöre ilişkin toplam transfer fonksiyonu;

$$G(s) = \frac{\Omega(s)}{V(s)} = \frac{K}{\tau s + 1}$$
(5.1)

şeklinde birinci dereceden varsayılabilir.

Otomatik kontrol sistemleri derslerinden bilindiği gibi birinci dereceden bir sistemin *K* kazancını ve τ zaman sabitini sistemin birim basamak cevabına ilişkin çıkış eğrisinden kolayca elde edebiliriz [1, 2]. Bu bilgiler doğrultusunda, Şekil 5.3'deki matlab eğrisinden

$$K = 75/23 = 3.26 : \text{Sistem kazancı}$$

$$\tau = 0,2 \text{ sn: Zaman sabiti}$$

$$(5.2)$$

hesaplandı. Bu parametreleri kullanarak deney düzeneğine ilişkin --yaklaşık transfer işlevi;

$$G_T(s) = \frac{3.26}{0.2s+1} \tag{5.3}$$

olarak elde edildi.

5.2. Hız Kontrol Sistemi İçin Kontrolör Tasarım

 $G_T(s)$ transfer işlevi ile verilen matematiksel modelimize ilişkin sayısal hız kontrolü Şekil 5.4'de verilmiştir. Sistemdeki ayrık D(z) kontrolör parametreleri arzulanan amaç ölçütleri kullanılarak hesaplanması gerekir. Söz konusu tasarım doğrudan ayrık düzlemde yapılabildiği gibi, S bölgesinde hesaplanıp, sürekli PID parametreleri kullanılarak da kolayca ayrık kontrolör parametrelerini belirleyebiliriz.

Şekil 5.4. Sayısal hız kontrol sistemine ilişkin benzetim diyagramı

Bu tez çalışmasında, kontrolör tasarımı s domeninde yapılacak, ayrık kontrolör parametreleri s domeni parametreleri ve örnekleme periyoduna bağlı olarak doğrudan elde edilecektir. Şekil 5.4 ile verilen bir DC motor hız kontrol sistemine ilişkin amaçlanan performans kriterlerini;

 $t_s = 1 \text{ sn} (\%2 \text{ kriterine göre})$:Yerleşme süresi

 $M_p = \%5$: Maksimum aşım

 $e_{ss} = 0.2$ (birim rampa giriş fonksiyonu için) : Sürekli durum hatası

olarak seçelim.

Yukarıdaki kriterlere göre kontrolör tasarımı 2 aşamada yürütülebilir.

5.2.1. Kontrol kutuplarının belirlenmesi

$$\xi = -\frac{\ln 0.05}{\sqrt{\pi^2 + (\ln 0.05)^2}} = 0.69$$
: Sönüm oranı

 $x = -\sigma_x = -\xi \omega_n = -\frac{4}{t_s} = \frac{4}{1} = -4$ (%2 kriteri için)

$$\omega_n = \frac{\sigma_x}{\xi} = \frac{4}{0.69} = 5.79$$
 : Sönümsüz doğal frekans

$$y = \omega_d = \omega_n \sqrt{(1 - \xi^2)} = 5.79 \sqrt{(1 - 0.69^2)} = 4.2 \text{ rad.}$$

Kontrol kutupları:

$$S_1 = x + y = -4 + j4$$
$$S_2 = \overline{S}_1 = x - y = -4 - j4$$

5.2.2. Kontrolör parametrelerinin belirlenmesi

a) Sürekli zamanda (s domeni) tasarım:

i) K_I parametresinin hesabı

$$e(\infty) = \frac{1}{K_{V}} = 0.2$$
(5.4)

$$K_{v} = 5$$

$$= \lim_{s \to 0} s \, G_C(s) G_T(s) = \lim_{s \to \infty} \left(K_P + \frac{K_I}{s} + K_D s \right) \cdot 16.3/(s+5)$$
(5.5)

$$=16.3\frac{K_{I}}{5}$$
$$K_{I}=1.533$$

ii) K_D ve K_P parametrelerinin hesabı

 $\Delta(s) = 1 + G_c(s) \cdot G_p(s) \cdot H(s) = 0$

$$H(s) = 1, \quad G_c(s) = (K_p + \frac{K_I}{s} + K_D s), \quad G_p(s) = \frac{16.3}{s+5}$$
$$K_p + \frac{K_I}{s} + K_D s = \frac{-s+5}{16.3}$$
(5.6)

s=-4+4j yerleştirirsek;

$$K_{p} - (0.125 + j0.125)K_{I} + (-4 + j4)K_{D} = -0.0613 - j0.2454$$

$$(K_{p} - 0.125K_{I} - 4K_{D}) + j(-0.125K_{I} + 4K_{D}) = -0.0613 - j0.2454$$

$$K_{p} - 0.125K_{I} - 4K_{D} = -0.0613$$

$$(-0.125) \cdot (1.533) + 4K_{D} = -0.2454$$

$$K_{D} = -0.0134 \text{ ve } K_{p} = 0.0767$$

$$(5.8)$$

b) Sayısal kontrolör parametrelerinin hesabı:

$$K_{dP} = K_P = 0.0767 \tag{5.9}$$

$$K_{dI} = K_I \cdot \frac{T}{2} = 1.533 \cdot \frac{(0.01)}{2} = 0.00766 \tag{5.10}$$

$$K_{dD} = \frac{K_D}{T} = -\frac{0.0134}{0.01} = -1.34 \tag{5.11}$$

5.2.3. Benzetim sonuçları

Bir önceki adımda elde edilen ayrık PID kontrolör parametrelerini kullanarak amaçlanan hız kontrol DC motor açısal hız kontrol sistemine Matlab/Simulink benzetimi Şekil 5.5'de, birim basamak cevabı ise Şekil 5.6'da verilmiştir. Şekildeki birim basamak cevabından sistemin varsayılan amaç ölçütlerini sağladığı görülmektedir.

Şekil 5.5. PID'li hız kontrol sistemine ilişkin Matlab/Simulink benzetimi

Şekil 5.6. Amaçlanan hız kontrol sistemine ilişkin birim basamak cevabı eğrisi

5.3. Konum Kontrol Sistemi İçin Kontrolör Tasarım

 $G_T(s)$ transfer işlevi ile verilen matematiksel modelimize ilişkin sayısal açısal konum kontrolü Şekil 5.7'de verilmiştir. Sistemdeki ayrık D(z) kontrolör parametreleri aşağıda verilmiş olan amaç ölçütlerini sağlayacak şekilde hesaplamaya çalışalım:

 $t_s = 1 \text{ sn} (\%2 \text{ kriterine göre})$: Yerleşme süresi

 $M_n = \%5$: Maksimum aşım

 $e_{ss} = 0.2$ (birim parabolik giriş fonksiyonu için) : Sürekli durum hatası

Şekil 5.7. Sayısal konum kontrol sistemine ilişkin benzetim diyagramı

5.3.1. Konum kontrol kutuplarının belirlenmesi

Hız kontrol sistemi için hesapladığımız

$$S_1 = x + y = -4 + j4$$

 $S_2 = \overline{S}_1 = x - y = -4 - j4$

konum kontrol kutupları olarak kullanabilir.

5.3.2. Kontrolör parametrelerinin belirlenmesi

a) Sürekli zamanda (s domeni) tasarım:

i) K_I parametresinin hesabı

$$G(s) = \frac{3.26}{(0.2s+1)} \cdot \frac{1}{s}$$
(5.12)

$$e_{ss} = \frac{1}{K_a} = 0.2 \tag{5.13}$$

$$K_a = 5$$

$$\lim_{s \to 0} s^2 G_C(s) G_T(s) = \lim_{s \to 0} s^2 \left(K_P + \frac{K_I}{s} + K_D s \right) x (16.3) / (s+5) s$$
(5.14)

$$K_a = 16.3 \frac{K_I}{5}$$
$$K_I = 1.533$$

ii) K_D ve K_P parametrelerinin hesabı

$$\Delta(s) = 1 + G_c(s) \cdot G_p(s) \cdot H(s) = 0$$

$$H(s) = 1, \quad G_c(s) = (K_p + \frac{K_I}{s} + K_D s), \quad G_p(s) = \frac{16.3}{s+5} \cdot \frac{1}{s}$$

$$K_p + \frac{K_I}{2} + K_D s = \frac{-(s+5) \cdot s}{16.3}$$
(5.15)

s=-4+4j yerleştirirsek

$$K_{p} + \frac{K_{I}}{s} + K_{D}s = -(s+5) \cdot \frac{s}{16.3}$$

$$K_{p} - (0.125 + j0.125)K_{I} + (-4 + j4) = 1.227 + j0.7362$$
(5.16)

$$(K_{P} - 0.125K_{I} - 4K_{D}) + j(0.125K_{I} + K_{D}) = 1.227 + j0.7362$$

$$K_P - 0.125K_I - 4K_D = 1.227 \tag{5.17}$$

$$(0.125) \cdot (1.533) + 4K_p = 0.7362 \tag{5.18}$$

$$K_D = 0.231$$

 $K_{P} = 2.342$

b) Sayısal kontrolör parametrelerinin hesabı:

$$K_{dP} = K_P = 2.342 \tag{5.19}$$

$$K_{dI} = K_I \cdot \frac{T}{2} = 1.533 \cdot \frac{(0.01)}{2} = 0.00766 \tag{5.20}$$

$$K_{dD} = \frac{K_D}{T} = \frac{0.231}{0.01} = 23.1 \tag{5.21}$$

5.3.3. Benzetim sonuçları

Bir önceki adımda elde edilen ayrık PID kontrolör parametrelerini kullanarak amaçlanan açısal konum kontrol sistemine ait Matlab/Simulink benzetimi Şekil 5.8'de, birim basamak cevabı ise Şekil 5.9'da parabolik giriş hatası ise Şekil 5.10'da verilmiştir.

Şekildeki birim basamak cevabından sistemin varsayılan amaç ölçütlerini sağladığı görülmektedir.

Şekil 5.8. PID'li konum kontrol sistemine ilişkin Matlab/Simulink simülasyonu

Şekil 5.9. Amaçlanan konum kontrol sistemine ilişkin basamak cevabı eğrisi

Şekil 5.10. Parabolik girişe ait giriş hatası

5.4. Kaskat Kontrol Sistemi İçin Sayısal Kontrolör Tasarımı

Şekil 5.11'da amaçladığımız doğrusal kaskat konum kontrol sistemine ilişkin blok diyagramı verilmiştir. Görüldüğü gibi kontrol sistemi iki döngüden oluşmaktadır. İç döngü hız kontrolü, dış döngü ise konum kontrolü ile ilgilidir. İç döngü daha kısa sürede cevap vereceği için, sistemin arzulanan referans konuma cevabı oldukça hızlı olacaktır.

Şekil 5.11. Kaskat kontrol sistemi blok diyagramı

Sistemde K_w iç döngüdeki hız kontrol sisteminin oransal kontrol kazancı, PID kontrolör ise dış döngüdeki doğrusal konum kontrol sisteminin kontrolcüsüdür. Kaskat kontrol sistemine ilişkin PID ve oransal kontrolör olmak üzere iki kontrolör tasarımı yapmamız gerekecektir. Önce iç döngüdeki oransal kontrol kazancı K_w 'yi hesaplamaya çalışalım. Bu amaçla ilk aşamada Şekil 5.12 ile verilen iç döngüye ilişkin $G_1(s)$ transfer işlevini hesaplayalım.

Şekil 5.12. Hız kontrol sistemi (iç döngü) blok diyagramı

$$G_{T}(s) = \frac{3.26}{0.2s+1}$$

$$(5.22)$$

$$G_{I}(s) = \frac{\Omega(s)}{\Omega_{r}(s)} = K_{w} \cdot \frac{s}{1+K_{w} \cdot G_{T}(s)}$$

$$(5.23)$$

$$\frac{(K_{w} \cdot 3.26)}{(0.2s+1)} / \left[1 + \left(\frac{(K_{w} \cdot 3.26)}{0.2s+1}\right) \right]$$

$$G_{I}(s) = 3.26K_{w} / (0.2s + (1+3.26K_{w}))$$

$$G_{I}(s) = 16.3K_{w} / (s + (5+16.3K_{w})))$$

İkinci aşamada Şekil 5.12 ile verilmiş olan kaskat kontrol sistemine ilişkin transfer fonksiyonunu hesaplayalım.

Şekil 5.13. Kaskat konum kontrol sistemi blok diyagramı

$$G_p(s) = 16.3K_w/s(s+5+16.3K_w)$$
(5.24)

$$G_{A}(s) = \theta(s)/\theta_{r}(s) = G(s)/(1+G(s))$$

$$= \left[\frac{(K_{P} + \frac{K_{I}}{s} + K_{D}s)16.3K_{w}}{s(s+5+16.3K_{w})} \right] / \left[1 + \frac{(K_{P} + \frac{K_{I}}{s} + K_{D}s)16.3K_{w}}{s(s+5+16.3K_{w})} \right]$$

$$= \frac{(K_{P} + \frac{K_{I}}{s} + K_{D}s)16.3K_{w} / s(s+5+16.3K_{w})}{[s(s+5+16.3K_{w}) + (K_{P} + \frac{K_{I}}{s} + K_{D}s)16.3K_{w}] / s(s+5+16.3K_{w})}$$

$$= \frac{(K_{P} + \frac{K_{I}}{s} + K_{D}s)16.3K_{w}}{s(s+5+16.3K_{w}) + (K_{P} + \frac{K_{I}}{s} + K_{D}s)16.3K_{w}}$$
(5.25)

Şekil 5.14'de amaçlanan kaskat konum kontrol sistemine ilişkin birim geribeslemeli genel blok gösterimi verilmiştir.

Şekil 5.14. Kaskat konum kontrol sistemi blok gösterimi

Şekil 5.13 ile verilen kaskat kontrol sistemi Şekil 5.15'de tekrar verilmiştir.

Şekil 5.15. Kaskat kontrol sistemi blok diyagramı

 $G_1(s)$ transfer işlevi ile verilen matematiksel modelimize ilişkin kaskat doğrusal konum kontrolüne ilişkin benzetim diyagramı Şekil 5.16'de verilmiştir.

Şekil 5.16. Kaskat doğrusal konum kontrol sistemine ilişkin benzetim diyagramı

Sistemdeki ayrık D(z) kontrolör parametreleri aşağıda verilmiş olan amaç ölçütlerini sağlayacak şekilde hesaplamaya çalışalım:

 $t_s = 1 \text{ sn } (\%2 \text{ kriterine göre})$: Yerleşme süresi

 $M_{p} = \%5$:Maksimum aşım

 $e_{ss} = 0.2$ (birim parabolik giriş fonksiyonu için): Sürekli durum hatası

5.4.1. Kaskat konum kontrol kutuplarının belirlenmesi

Konum kontrol kutupları için daha önceki konum kontrol sistemi için hesapladığımız

 $S_1=x+y=-4+j4$ $S_2=\overline{S}_1=x-y=-4-j4$ kontrol kutuplarını kullanabiliriz.

5.4.2. Kontrolör parametrelerinin belirlenmesi

a) Sürekli zamanda (s domeni) tasarım:

i) K_I parametresinin hesabı

$$G_p(s) = G_1(s) \cdot \frac{1}{s}$$
 (5.26)

$$e_{ss} = \frac{1}{K_a} = 0.2 \tag{5.27}$$

 $K_a = 5$

$$\lim_{s \to 0} s^2 G_C(s) G_P(s) = \lim_{s \to 0} s^2 \left(K_P + \frac{K_I}{s} + K_D s \right) \cdot 16.3 K_w / (s + 5 + 16.3 K_w) s$$
(5.28)

$$K_{a} = \frac{16.3K_{I}K_{w}}{5 + 16.3K_{w}}$$

$$K_I = \frac{25 + 81.5K_w}{16.3K_w} = \frac{1.533 + 5K_w}{K_w}$$

ii) K_D ve K_P parametrelerinin hesabı

$$\Delta(s) = 1 + G_{c}(s) \cdot G_{1}(s) \cdot \frac{1}{s} \cdot H(s)$$

$$G_c(s) = (K_p + \frac{K_I}{s} + K_D s), \quad G_1(s) = 16.3K_w/(s + (5 + 16.3K_w)), \quad H(s) = 1$$

$$(K_p + \frac{K_I}{s} + K_D s) = \frac{-(s + 5 + 16.3K_w)}{16.3K_w} \cdot s$$

 $S=S_I=-4+j4$ kontrol kutuplarını yerleştirirsek

$$K_{p} - (0.125 + j0.125) K_{1} + (-4 + j4) K_{D} = (-4 + j4 + 516.3K_{w}) \cdot (\frac{-4 + j4}{16.3K_{w}})$$

$$a = 16.3K_{w}$$
(5.29)

Son eşitliğin sağ tarafını düzenlersek

$$= -\frac{4}{a} [(1+a) + j4] \cdot (-1+j)$$

$$= -\frac{4}{a} [-(1+a) - j4 + (1+a-4)]$$

$$= -\frac{4}{a} (-1-a-j4 + j + ja-4)$$

$$= -\frac{4}{a} [(-5-a) + j(a-3)]$$

$$= \frac{4}{a} (-5-a) + j(3-a) \cdot \frac{4}{a}$$

elde edilir. Son düzenleme (5.22)'de yerleştirilirse

$$(K_{P} - 0.125K_{I} - 4K_{D}) + j(-0.125K_{I} + 4K_{D}) = \frac{4}{a} \cdot (5 + a) + j(3 - a) \cdot \frac{4}{a}$$

$$K_{P} - 0.125K_{I} - 4K_{D} = \frac{4}{a} \cdot (5 + a)$$

$$(-0.125) \cdot (1.533 + 4K_{D}) = (3 - a) \cdot \frac{4}{a}$$

$$(5.31)$$

$$K_{D} = ((3-a) \cdot \frac{4}{a} + 0.125K_{I}) / 4$$

- $K_{w} = 10$ için $a = 16.3K_{w} = (16.3) \cdot (10) = 163$,
 $K_{I} = \frac{1.533 + 5 \cdot 10}{10} = 5.15$
 $K_{D} = \left[\frac{4}{163}(3 - 163 + (0.125) \cdot (5.15))\right] / 4 = [-3.92 + 0.643] / 4 = -0.819$
 $K_{P} = \frac{4}{163}(5 + 163) + (0.125) \cdot (5.15) + 4(-0.819) = 4.122 + 0.625 - 3.27 = 1.49$
- $K_{w} = 1$ için $a = (16.3) \cdot 1 = 16.3$,

$$K_{I} = \frac{1.533 + 5}{1} = 6.533$$

$$K_{D} = \left[\frac{4}{163}(3 - 163) + (0.125) \cdot (6.533)\right] / 4 = -0.611$$

$$K_{P} = \frac{4}{163}(5 + 16.3) + (0.125) \cdot (6.533) + 4(-0.611) = 3.6$$

$$K_{P} = \frac{4}{163}(5 + 16.3) + (0.125) \cdot (6.533) + 4(-0.611) = 3.6$$

Amaçlanan kaskat konum kontrolüne ilişkin PID kontrolör parametreleri hız kontrolüne ilişkin K_w oransal kontrol kazancına göre hesaplanmış oldu. Şimdi değişik K_w kazançları için kaskat kontrol performansını test edebiliriz.

5.4.3. Benzetim sonuçları

Bir önceki adımda elde edilen ayrık PID kontrolör parametrelerini kullanarak amaçlanan açısal konum kontrol sistemine ait Matlab/Simulink benzetimi Şekil 5.17da, birim basamak cevabı ise Şekil 5.18'de verilmiştir. Şekildeki birim basamak cevabından sistemin varsayılan amaç ölçütlerini tam olarak sağlamadığı görülmektedir.

Gerek maksimum aşım, gerekse yerleşme süresi, tasarımda amaçlanan değerlerden farklıdır. Çünkü, tasarlanan kaskat kontrol sisteminin toplam transfer fonksiyonunu hesaplarsak, payda polinomunun (karakteristik denkleminin) 3. dereceden olduğu görülecektir. Dolayısıyla amaçlanan kaskat kontrol sisteminin 3. kutbu vardır. Bu kutuplardan 2 tanesi seçilip, 3. kutup söz konusu olumsuzluğa neden olmaktadır. Yani sistemin birim basamak cevabının arzulanan maksimum aşım ve yerleşme süresinin tam olarak sağlamamaktadır. Ancak hesaplanan PID parametrelerini ayarlamak suretiyle hedeflenen maksimum aşım, yerleşme süresi ve sürekli durum hatası arzulanan değerlerde ayarlanabilir. Nitekim Şekil 5.19'da gerekli ayarlamalar sonucu, $K_P = 8$, $K_D = -0.6$, $K_I = 5.15$ ve $K_w = 10$ değerleri için arzulanan amaç ölçütlerine oldukça yakın değerler elde edildiği açıkça görülmektedir.

Şekil 5.17. PID'li kaskat konum kontrol sistemine ilişkin Matlab/Simulink benzetimi

Şekil 5.18. Amaçlanan kaskat konum kontrol sistemine ilişkin birim basamak giriş cevabı

Şekil 5.19. Amaçlanan ayarlanmış kaskat konum kontrol sistemine ilişkin birim basamak giriş cevabı

Şekil 5.17'daki kaskat konum sistemindeki iç döngü ortadan kaldırıldığında, elde edilen konum kontrol sistemine ilişkin birim basamak cevabı Şekil 5.20'da verilmiştir. Söz konusu konum kontrol sistemi için kaskat kontroldeki ayarlanmış olan PID parametreleri kullanılmıştır.

Şekil 5.20. Amaçlanan ayarlanmış konum kontrol sistemine ilişkin birim basamak giriş cevabı

Şekil 5.19 ile Şekil 5.20 karşılaştırıldığında; kaskat kontrol sisteminin yerleşme süresini daha kısa sürede yakaladığı ve diğer amaç ölçütlerini sağladığı görülmektedir. İç döngüsüz konum kontrol sistemi, oldukça yüksek genlikli osilasyon yapmasının yanı sıra yerleşme süresine de yaklaşık olarak 4 sn'de ulaşabilmektedir.

Şekil 5.21 ve Şekil 5.22'de kaskat ve normal konum kontrol sistemlerinin gürültü ilave edilmiş benzetim diyagramları, Şekil 5.23 ve Şekil 5.24'de ise her iki sistemin birim basamak gürültü uygulanması durumundaki birim basamak girişine ilişkin çıkış eğrileri verilmiştir.

Şekil 5.21. Gürültü ilave edilmiş kaskat konum kontrol sistemine ilişkin benzetim diyagramı $(K_P = 8, K_D = -0.6, K_I = 5.15 \text{ ve } K_w = 10)$

Şekil 5.22. Gürültü ilave edilmiş konum kontrol sistemine ilişkin benzetim diyagramı $(K_P = 8, K_D = -0.6, K_I = 5.15)$

Şekil 5.23. Şekil 5.21'deki kaskat kontrol sistemine ilişkin birim basamak cevap eğrisi

Şekil 5.24. Şekil 5.22'deki kontrol sistemine ilişkin birim basamak cevap eğrisi

Şekil 5.23 ve Şekil 5.24 cevap eğrilerinden, kaskat kontrol sisteminin bozucu büyüklüklerden konum kontrol sistemine göre daha az etkilendiği açıkça görülmektedir.

6. DENEYSEL SONUÇLAR

6.1. Deney Düzeneğinin Kurulması

Deneylerin yapıldığı sistemin sistematik diyagramı Şekil 6.1'de, bağlantı şeması Şekil 6.2'de deney düzeneğine ilişkin fotoğraflar ise EK-2'de verilmiştir.

Şekil 6.1. Kullanılan deney düzeneğinin sistematik diyagramı

Şekil 6.2. Deney düzeneğinin bağlantı şeması

Şekillerden de görüldüğü gibi sistemimiz; PC, PLC, Sürücü, Arayüz devresi, Takogeneratör, DC motor, Encoder (Açı kodlayıcı) birimlerinden oluşmaktadır.

Deney düzeneğinde kullanılan S7-1200 1212C tipi PLC 2 adet 0-10 V analog girişe ve Encoderin A ve B fazlarının yüksek sayıcı olarak bağlanabileceği sayısal girişlere sahiptir. Ayrıca kontrolör 2 adet PWM çıkış kanalına sahiptir. 0 numaralı analog giriş kanalı 0-10 V referans girişi olarak 1 numaralı analog giriş kanalı ise takogeneratör çıkışından alınan hız sinyalini okumak için kullanılmıştır. S7-1200 1212C tipi PLC'ye ilişkin bağlantı düzeni ve teknik özellikleri EK-1'de verilmiştir. Takogeneratörden DC motor hızı ile orantılı olarak okunan 0 ile 75 V arasındaki yavaş değişen DC sinyal, sinyal koşullandırıcı arayüz devresi ile 0-10 V aralığına ölçeklenmiştir. Ölçeklenen bu 0-10 V arası hız ile orantılı sinyal 1'inci analog giriş kanalından sayısallaştırılarak PLC tarafından okunmaktadır. Tasarlanarak gerçekleştirilen söz konusu devrenin fotoğrafi EK-1'de, Şekil E.6'da verilmiştir. Tasarlanan devre ile aynı zamanda DC motorun dönüş yönü de belirlenebilmektedir.

DC motorun hızının ölçümü için Takogeneratör ile açısal konumunun ölçümü için ise artımlı açısal kodlayıcı (ENCODER) kullanılmıştır. Açı kodlayıcının A ve B fazları birlikte kullanılarak çift yönlü konum ölçümü yapılmıştır. Ayrıca hız ölçümü, optik kodlayıcıdan elde edilen açısal konum bilgisi kullanılarak da yapılabilmektedir. Çünkü S7-1200 PLC sistemi yüksek hızlı sayıcı girişlerine bağlanmış olan optik kodlayıcı ile, motorun dönme frekansını ve periyodunu hesaplayabilmektedir.

DC motorun beslemesi S7-1200'ün 0 numaralı PWM çıkışı ile sürülen DC motor sürücü devresi ile sürülmektedir. Hazırlanan deneysel sistemde, derece tanburunu kullanarak açısal konum kontrolü, sonsuz dişli sistemini kullanarak doğrusal konum kontrolü yapılabilmektedir. Söz konusu doğrusal konum kontrolü, 0-300 mm'lik bir doğrusal cetvel kullanılarak 0 ile 300 mm arasında yapılabilmektedir. Bir önceki ayrıtta gerçekleştirilen ve matlab ortamında test edilen algoritmalar, S7-1200 PLC'ye yüklenerek, deneysel olarak da test edilmiştir.

Deneysel çalışmalarda hız ve açısal konum kontrolünde geribesleme sinyali için açı kodlayıcı kullanılmıştır. Kaskat konum kontrolünde iç döngü geribesleme sinyali için takogeneratör, dış döngü geribesleme sinyali için ise açı kodlayıcı kullanılmıştır.

6.2. Deneysel Sonuçlar

a) Hız Kontrolü

Hız kontrolü için merdiven diyagramı dilinde PLC kontrolörüne yazılan program Şekil 6.3'de verilmiştir.

Network 1:

ANOLOG REFERANS GİRİŞ (AIO)

EN EN ENC 0		NORM_X Int to Real	SCAI Roal te	E_X p Real
"ALO" VALUE	0 — MIN %MV64	SMDD OUITTag 2"	0.0 - MIN 96MD0	
	"AL_0" — VALUE 27648 — MAX		"Tag_2" — VALUE 500.0 — MAX	

Network 2:

YÜKSEK HIZLI SAYICI İLE GERÇEK HIZIN OKUNMASI

Network 3:

PID HIZ KONTROLÜ

"F	%DB2 PD_Compact_2"			
	PID_Compact			
EN	ENO-		-	
"SETPOINT Setpoint	Output	%MD16 - 'PD OUT'		
%MD12	Output_PER			
"ACTUAL SPEED" - Input	Cutput_PWM-	-1		
0 Input_PER	State			
	Error	-I		
	 ErrorBits 			

Network 4:

PWM ÇIKIŞINA İLİŞKİN SİNYAL İŞLENMESİ

Real	Real to Real	Real to Unt
EN DNO	000	- EN DNO

Network 5:

PWM_1 ÇIKIŞ BLOĞU

	%DB3 "CTRL_PWM_DB"	
	CTRL_PWM	
	EN	ENO
266	PWM	usy —
%IO.0	ST	TUS
"Tag 8"	ENABLE	

Şekil 6.3. Hız kontrolü PLC kontrolörde program merdiven diyagramı

Yukarıdaki hız kontrol programı değişik PID kontrolör parametreleri için gerçek zamanda koşturularak Şekil 6.3 ve Şekil 6.4'deki giriş/çıkış eğrileri elde edilmiştir. Şekil

6.3'de seçilen PID parametreleri için motor hızı referans değeri yaklaşık olarak 25 saniyede yakalanmaktadır. Oransal kazancı 2 katına çıkardığımızda ($K_p = 0.1$) ise motor hızı referans değeri 15 saniyede yakaladığı görülmektedir.

b) PID referans ve gerçek hız değişim eğrileri
 Şekil 6.4. S7-1200 PLC ile gerçek zamanda hız kontrolü

a) PID parametreleri

b) PID referans ve gerçek hız değişim eğrileri
 Şekil 6.5. S7-1200 PLC ile gerçek zamanda PID hız kontrolü

b) Açısal konum kontrolü

Açısal konum kontrolü için merdivan diyagramı dilinde PLC kontrolörüne yazılan program Şekil 6.6'da verilmiştir.

Network 1:

ANOLOG REFERANS GIRIŞI (AIC	ANOLOG	REFERANS	Giriși	(AI0
-----------------------------	--------	----------	--------	------

	eal
EN ENO O MIN SAMDO 0.0 MIN SAMDO 0	OUT SETPOINT

Network 2:

MOTORUN AÇISAL KONUMUNUN OKUNMASI

Network 3:

PID KONUM KONTROLÜ

Network 4:

PWM KONUM KONTROL ÇIKIŞI

ABS	NORN	LX	SCALE	_X
Real	Real to	Real	Real to	UInt
SMD16 TPDOUT IN OUT Tag_5	0.0	ENO 95MD24 OUT — "Tag_7"	0 — MIN %MD24 "Tag_7" — VALUE 1000 — MAX	OUT - PWM OUTPUT

Network 5:

DC MOTOR YÖN TAYİNİ

Network 6:

PWM ÇIKIŞ BLOĞU

"CTRL	%DB3 _PWM_DB"	
CTF	RL_PWM	
EN	ENO	
266 PWM	BUSY	
%10.0	STATUS	
"Tag_8" — ENABLE		

Network 7:

*MD60 *Q0.0 Tag.13" "DiRECTION" Real ()

Şekil 6.6. Açısal konum kontrolü PLC kontrolörde program merdiven diyagramı

Yukarıdaki açısal konum kontrolü programı değişik PI ve PID kontrolör parametreleri için gerçek zamanda koşturularak Şekil 6.5 ve Şekil 6.6'deki giriş/çıkış eğrileri elde edilmiştir. PI kontrol için elde edilmiş olan Şekil 6.5 ve Şekil 6.6'yı karşılaştırdığında oransal kazanç 10 kat artırıldığında gerçek açısal konum, referans açısal konumu daha kısa sürede yakaladığı görülmektedir. Şekil 6.7 ile verilen PID açısal konum eğrilerinden ise gerçek açısal konumu referans konumu oldukça kısa süre gecikmeli ve düşük hata ile izlediği görülmektedir.

ID Parameters		
Enable manual entry		
Proportional gain:	10.0	• ±
Integral action time:	10.0	s 🚺 🛓
Derivative action time:	0.0	s 🚺 🛓
Derivative delay coefficient:	0.0	0 ±
Proportional action weighting:	1.0	0 ±
Derivative action weighting:	0.0	• ±
Sampling time of PID algorithm:	0.1	s 🚺 🛓
Tuning rule		
Controller structure:	PI	- • ±

a) PI parametreleri

b) PI referans ve gerçek hız değişimi

Şekil 6.7. S7-1200 PLC ile gerçek zamanda açısal konum kontrolü

D Parameters		
● ± ☑ Enable manual entry		
Proportional gain:	100.0	() ±
Integral action time:	10.0	() ±
Derivative action time:	0.0	() ±
Derivative delay coefficient:	0.0	0 ±
Proportional action weighting:	1.0	0 ±
Derivative action weighting:	0.0	• ±
Sampling time of PID algorithm:	0.1	() ±
Tuning rule		
Controller structure:	PI 🔹	• • ±

a) PI parametreleri

b) Referans ve gerçek hız değişim eğrileri

Şekil 6.8. S7-1200 PLC ile gerçek zamanlı açısal PI konum kontrolü

	Proportional gain:	0.1		🕩 ±
	Integral action time:	0.23	s	• ±
	Derivative action time:	4.199945E-2	s	() ±
	Derivative delay coefficient:	0.1		1 ±
	Proportional action weighting:	0.8		1 ±
	Derivative action weighting:	0.0		• ±
	Sampling time of PID algorithm:	0.1	s	🕩 ±
Tuning rule				
	Controller structure:	PID		• ±

a) PID parametreleri

b) Referans ve gerçek hız değişim eğrileri

Şekil 6.9. S7-1200 PLC ile gerçek zamanlı PID açısal konum kontrolü

c) Doğrusal kaskat konum kontrolü

Lineer konum kontrolü için merdivan diyagramı dilinde PLC kontrolörüne yazılan program Şekil 6.10'da verilmiştir.

Network 1:	

ANOLOG REFERANS GİRİŞİ	(AIO)						
		NORM_X Int to Rea	al				SCALE_X Real to Real
-		EN	ENO			EN	
	c	MIN		%MD0	0.0	MIN	
	%IW64		OUT-	- 'Tag_2'	%MD0		
	"AL_0"	VALUE			"Teg_2"	VALUE	
	27648-	MAX			250.0	MAX	

Network 2:

TAKOGENERATÖR ÇIKIŞINDAN DC MOTOR HIZ ÖLÇÜMÜ (AI1)

Int to Real Real to Real
EN EN EN EN EN EN SUNICE

%MD4 'REFERANS

Network 3:

YÜKSEK HIZLI SAYICI İLE GERÇEK DC MOTOR KONUM ÖLÇÜMÜ (Derece ve mm)

Network 4:

Network 5:

DIŞ DÖNGÜ (KONUM) PID KONTROL

Network 6:

Scill bet	MAX. Real	
марта жала на Скор – на скор – челана скор – челана марта чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – челана чала на скор – чела на скор	SANDYA TRUERACE AND THE INTERNATIONAL CONTRACTOR 100 - N2 - A CONTRACTOR CUTTO- CNTY	

Network 7:

PWM KIKIŞ SİNYALİNİN OLUŞTURULMASI

Network 8:

Network 9:

Network 10:

DÖNÜŞ YÖNÜNÜN BELİRLENMESİ

|--|--|

Şekil 6.10. Doğrusal kaskat konum kontrolü PLC kontrolörde program merdiven diyagramı

Yukarıdaki doğrusal kaskat konum kontrolü programı değişik P, PI ve PID kontrolör parametreleri için gerçek zamanda koşturularak Şekil 6.8, Şekil 6.9, Şekil 6.10 ve Şekil 6.11 ile verilen giriş/çıkış eğrileri elde edilmiştir. Şekil 6.8 ve Şekil 6.9 ile verilen P ve PI kontrole ilişkin kaskat konum eğrisinden, PI kontrolde gerçek konum değerinin referans konum değerini daha kısa sürede yakaladığı görülmektedir. Şekil 6.10 ve Şekil 6.11 ile verilmiş olan kaskat konum eğrilerinden ise oransal kazancı 100 kat artırıldığında gerçek konum eğrisinin referans konum eğrisinin referans konum eğrisinin referans konum eğrisinin zeferans konum eğrilerinden ise oransal kazancı 100 kat artırıldığında gerçek konum eğrisinin referans konum eğrisinin daha kısa sürede yakaladığı görülmektedir.

a) P parametreleri

b) Referans ve gerçek konum değişim eğrileri

Şekil 6.11. S7-1200 PLC ile gerçek zamanda P kaskat konum kontrolü

D Parameters		
🔵 🛨 🗹 Enable manual entry		
Proportional gain:	1.0	0 ±
Integral action time:	10.0	s 🚺 🛨
Derivative action time:	0.0	s 🚺 🛨
Derivative delay coefficient:	0.0	() ±
Proportional action weighting:	1.0	() ±
Derivative action weighting:	0.0	• ±
Sampling time of PID algorithm:	0.1	s 🚺 🛓
Tuning rule		
Controller structure:	PI	- • ±

a) PI parametreleri

b) Referans ve gerçek kaskat konum değişim eğrileriŞekil 6.12. S7-1200 PLC ile gerçek zamanda PI kaskat konum kontrolü

ID Parameters		
• Fnable manual entry		
Proportional gain:	1.0	() ±
Integral action time:	1.0	s 🚺 🛓
Derivative action time:	0.139	s 🌗 🛓
Derivative delay coefficient:	0.1	() ±
Proportional action weighting:	0.8	0 ±
Derivative action weighting:	1.0	• ±
Sampling time of PID algorithm:	0.01	s 🚺 🛨
Tuning rule		
Controller structure	PI	• • ±

a) PID parametreleri

b) Referans ve gerçek kaskat konum değişim eğrileri

Şekil 6.13. S7-1200 PLC ile gerçek zamanda PID kaskat konum kontrolü

🛃 Enable manual entry			
Proportional gain:	100.0	🔷 ±	
Integral action time:	1.0	s 🌗 生	
Derivative action time:	0.139	s 🌗 🛨	
Derivative delay coefficient:	0.1	() ±	
Proportional action weighting:	0.8	() ±	
Derivative action weighting:	1.0	🕒 ±	
Sampling time of PID algorithm:	0.01	s 🌗 生	
uning rule			
Controller structure:	PI	- ±	

a) PID parametreleri

b) Referans ve gerçek kaskat konum değişim eğrileriŞekil 6.14. S7-1200 PLC ile gerçek zamanda PID kaskat konum kontrolü

7. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, endüstride yaygın olarak kullanılan açısal hız ve konum kontrolü, doğrusal konum kontrolü ve doğrusal kaskat konum kontrolü ile ilgili PID tabanlı sayısal kontrolör tasarımı çalışmaları gerçekleştirilmiş olup, kontrolör performansları Matlab/simulink yazılım ortamında test edilmiştir. Tasarlanan sayısal PID kontrol algoritmaları aynı zamanda PLC tabanlı deney düzeneğinde gerçek zamanda test edilmiştir. Gerek benzetim sonuçlarından, gerekse deney sonuçlarından amaçlanan hız ve konum kontrol algoritmalarının iyi sonuçlar verdiği görülmüştür. Özellikle kaskat konum kontrolün normal konum kontrolüne göre daha iyi performansa sahip olduğu gözlenmiştir.

Bu tez çalışmasında endüstride yaygın olarak kullanılan ileri düzey kontrol tekniklerinden sadece kaskat kontrol incelenmiştir. Oysaki ileri beslemeli kontrol, Oran kontrol gibi kontrol tekniklerinin incelenmesi ve kontrol performanslarının test edilmesi gelecek çalışma konuları olarak önerilebilir.
8. KAYNAKLAR

- Anagha, K. Ranjth, C. P. D. Rahul, A. S. Anusha, 2014, Cascade Speed Control of DC Motor; International Journal of Electrical, Electronics and Data Communication, *Volume-2, Issue-6*, Atlanta USA.
- Carlos A. Smith, Armando B., 1997. Principles and Practice of Automatic Process Control, Second Edition, Corripio, John Wiley & Sons, Inc.
- Constantine H. Houpis, Gray B. Lamont, 1992. Digital Control systems, Second edition, Mc Graw Hill, Newyork.
- Doç. Dr. Salman Kurtulan, 2003. PLC ile Endüstriyel Otomasyon, *Güncelleştirilmiş 3.* basım, Birsen yayınevi, İstanbul.
- Elhamid A. S. A., 2012. Cascade Control System of Direct Current Motor, *National Research Center, Engineering Division*, Egypt.
- F.G. Shinskey ,Mc Graw Hill, 1990. Process Control systems. NewYork.
- Khin H. Ng., Che Fai Y., Eileen L. M. S., Liang X. W., 2012. Alpha Beta Gamma Filter for Cascaded PID Motor Position Control, *International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012)*, Malaysia.
- L.A. Bryan, E.A. Bryan An., 1997, Progamable Controlllers; Theory and Implementation, *industrial text company Publition, 2. edition*, Atlanta USA.
- Manfred Schleicher, Frank blasinger, January 2003. Control Engineering, *Jumo Gmbh& co. KG 3. edition*, Germany.
- M. K. Sarıoğlu, 2006, Otomatik Kontrol, Birsen Yayınevi, İstanbul.
- M. K. Sarıoğlu, Y. Aydın, 2000, Dijital Kontrol Sistemleri, Birsen Yayınevi, İstanbul.
- P. Ph. Robet, M. Gautier, 2014. Cascaded loops control of DC motor driven joint including an acceleration loop, *Proceedings of the 19th World Congress*, İstanbul.
- Saadettin Aksoy, 2002. Programlanabilir Denetleyiciler ve Mühendislik Uygulamaları, *Değişim Yayınları*, İstanbul.

EKLER

EK-1 S7-1200 PLC tanıtımı

S7-1200 kontrolör, otomasyon ihtiyaçlarınızın desteklenmesinde çok sayıdaki farklı cihazlarınızı kontrol etmek için esneklik ve güç sağlar. Kompakt tasarım, esnek konfigürasyon ve güçlü komut dizisinin bir araya getirilmesi çok çeşitli uygulamaların kontrolü için S7-1200'ü mükemmel bir çözüm haline getirir.

Güçlü bir kontrolör oluşturmak için CPU; bir mikroişlemci, bir bütünleşik güç kaynağı, giriş ve çıkış devreleri, yerleşik PROFINET, yüksek hızlı hareket kontol I/O ve kart üzerinde analog girişleri kompakt bir kutuda toplar.

Programınızı yükledikten sonra, uygulamanızdaki cihazları izlemek ve kontrol etmek için CPU gerekli mantığa sahiptir. CPU, girişleri ve çıkışlardaki değişiklikleri sizin kullanıcı programınızın mantığına göre izler. Kullanıcı programı; Boolean mantığı, sayma, zamanlama, karmaşık matematik işlemleri ve diğer akıllı cihazlar ile haberleşmeyi içerir.

CPU, bir PROFINET ağı üzerinde haberleşme için bir PROFINET portu sağlar. PROFIBUS, GPRS, RS485 veya RS232 ağları üzerinde haberleşme yapabilmek için ilave modüller mevcuttur.

1-Güç konektörü

2-Bellek kartı yuvası, üst kapak altında

3-Sökülebilir kullanıcı bağlantı konektörü, kapakların arkasında

4-Kart üstündeki I/O için durum/statü LED'leri

5-PROFINET konektörü, CPU'nun altında

Şekil E1.1. CPU 1212C bağlantı modülleri

Çeşitli güvenlik özellikleri hem CPU'ya hem de kontrol programına erişimi korumaya yardımcı olurlar:

• Her CPU parola koruması sağlar, böylece sizin CPU fonksiyonlarına erişimi konfigüre etmenize yol açar.

• Kodu, belirli bir blok içinde saklamak için 'koruma yapmayı' kullanabilirsiniz.

• Programınızı belirli bir bellek kartında veya CPU'da tutmak için kopyalama koruma kullanabilirsiniz.

Çizelge E.1 Genel

Teknik veri	CPU 1212C	CPU 1212C	CPU 1212C
	AC/DC/Röle	DC/DC/Röle	DC/DC/DC
Sipariş numarası	6ES7212-1BE40-0XB0	6ES7212-1HE40-0XB0	6ES7212-
			1AE40-0XB0
Boyutlar W x H x D (mm)	90 x 100 x 75	90 x 100 x 75	90 x 100 x 75
Nakliye ağırlığı	425 gram	385 gram	370 gram
Güç kaybı	11 W	9 W	9 W
Akım kullanılabilir (SM	1000 mA max.	1000 mA max.	1000 mA max.
ve CM bus)	(5 VDC)	(5 VDC)	(5 VDC)
Akım kullanılabilir(24	300 mA max.	300 mA max.	300 mA max.
VDC)	(Sensör gücü)	(Sensör gücü)	(Sensör gücü)
Dijital girişin çektiği	4 mA/giriş	4 mA/giriş	4 mA/giriş
akım(24 VDC)	kullanıldı	kullanıldı	kullanıldı

Çizelge E.2 CPU özellikleri

Teknik veri		Açıklama
Kullanıcı belleği	Çalışma	50 Kbayt
	Yükleme	1 Mbyte dahili, SD kartı
		boyutuna kadar genişletilebilir
Kalıcı		10 Kbayt
Yerleşik dijital I/O		8 giriş/6 çıkış
Yerleşik analog I/O		2 giriş
Proses görüntü boyutu		1024 girişlerin baytları
		(I)/1024 çıkışların baytları (Q)
Bit belleği(M)		4096 bayt
Geçici (lokal) bellek		* 16 Kbayt, başlangıç ve program
		döngüsü için (ilgili FB'ler ve FC'ler dahil)
		* 6 Kbayt, diğer interrupt önceliği
		seviyelerinin her birisi için (FB'ler ve
		FC'ler dahil)
Sinyal modülleri genişlemesi		2 SM'ler max.
SB, CB, BB genişlemesi		1 max.
Haberleşme modülü genişlemesi		3 CM'ler max.
Yüksek-hızlı sayıcılar		6'ya kadar, yerleşik veya SB
		girişlerinde kullanılmak üzere
		konfigüre edilmiş. Bakınız Çizelge, CPU
		1212C: HSC varsayılan adres
		atamaları (Sayfa 411).
		* 100/180 kHz (Ia.0 - Ia.5)
		* 30 /120 kHz (la.6 - la.7)
Darba alaglari?		A'a kadar varlagik vova SD
Dalue çıkışıalız		4 c Kaual, yelleşik veya SD
		çıkışıarında kunanınnak uzere konfigüre edilmiş
		* $100 \text{ kHz} (\Omega_2 \Omega_2 \Omega_3)$
		* $30 \text{ kHz} (\Omega_0 4 - \Omega_0 5)$
		30 M12 (Qa.4 - Qa.3)

Teknik veri	Açıklama
Darbe yakalama girişleri	8
Süre gecikme interrupt'ları	4 toplam 1 ms çözünürlük ile
Döngüsel interrupt'lar	4 toplam 1 ms çözünürlük ile
Kenar interrupt'ları	8 yükselme ve 8 düşme (12 ve12 opsiyonel
	sinyal kartı ile)
Bellek kartı	SIMATIC Bellek kartı (opsiyonel)
Gerçek zaman saat doğruluğu	+/- 60 saniye/ay
Gerçek zaman saat tutma süresi	20 gün tipik/12 gün min. 40 °C'da (bakımsız
	Süper Kapasitör)

1-HSC dördün çalışma moduna konfigüre edildiğinde daha düşük hız uygulanabilir.2-Röle çıkışları olan CPU modellerinde, darbe çıkışlarını kullanmak için bir dijital sinyal kartı (SB) takmanız gerekir.

Öğe		Açıklama
Bloklar	Tip	OB, FB, FC,
		DB
	Boyut	50 Kbayt
Miktar		1024 bloğa kadar toplam (OB'ler + FB'ler
		+ FC'ler + DB'ler)
	FB'ler, FC'ler ve DB'ler	FB ve FC: 1 - 65535 (FB 1 - FB 65535 gibi)
	için adres aralığı	DB: 1 - 59999
	Gomme derinligi	6, her hangi bir interrupt olayı OB'den
	İzleme	2 kod bloklarının durumu avnı anda
		izlenebilir
OB'lar P	rogram Döngüsü	
	Başlangıç	Çoklu
	Süre-geciktirme interrupt'	4 (1 olay başına)
	Döngüsel interrupt'lar	4 (1 olay başına)
	Donanım interrupt'ları	50 (1 olay başına)
	Süre hatası interrupt'ları	1
	Diyagnostik hata interrupt	'ları l
	Çek veya tak modulleri	1
	Şası veya ıstasyon arızası	l Califi
	Gunun saati	Çokiu
Öğe		Aciklama
Durum	1	Çikiama
Güncellome	1	
	1	
Profil]	
Zamanlayıcılar	Tip II	EC
Mıktar	Ŀ	Bellek boyutu ile sinirlidir
Depolama	I	DB yapısı, zamanlayıcı başına 16 bayt
Sayıcılar	Tip II	EC
Miktar	E	Bellek boyutu ile sınırlıdır
Depolama	Ι	DB yapısı, sayma tipine göre boyut
1	*	SInt, USInt: 3 bayt
	*	Int, UInt: 6 bayt
	*	DInt, UDInt: 12 bayt

Çizelge E.3 CPU 1212C tarafından desteklenen zamanlayıcılar, sayıcılar ve kod blokları

Çizelge E.4 Haberleşme

Teknik veri	Açıklama
Portların numarası	1
Tip	Ethernet
HMI cihazı	3
Programlama cihazı (PG)	1
Bağlantılar	
	* 8, Açık kullanıcı haberleşmesi (aktif
	veya pasif) için: TSEND_C, TRCV_C,
	TCON, TDISCON, TSEND ve TRCV
	* 3, sunucu GET/PUT (CPU ile CPU)
	S7 haberleşme için
	* 8, müşteri GET/PUT (CPU ile CPU)
	S7 haberleşme için
Veri hızları	10/100 Mb/s
İzolasyon (PLC lojiğe göre harici sinyal)	Transformatör yalıtımlı, 1500 VAC,
	sadece kısa süreli olay güvenliği için
Kablo tipi	CAT5e zırhlı

Çizelge E.5 Güç kaynağı

Çizelge A- 33 Güç	CPU 1212C	CPU 1212C	CPU 1212C DC/DC/DC
kaynağı Teknik veri	AC/DC/Röle	DC/DC/Röle	
Gerilim aralığı	VAC	20.4 VI	DC - 28.8 VDC
Hat frekansı	47 - 63 Hz		
Giriş akımı	20 VAC'de 40mA	400 mA 24 VDC'de	400 mA 24
(max. yük)	240 VAC'de		VDC'de
Tüm genişleme	240 mA 120	1200 mA 24 VDC'de	1200 mA 24 VDC'de
donatıları ile CPU	VAC'de 120 mA		
	240 VAC'de		
Baskın akım (max.)	20 A 264 VAC'de	12 A 28.8 VDC'de	12 A 28.8 VDC'de
İzolasyon (giriş	1500 VAC	İzole edilmemiş	İzole edilmemiş
gücü ile lojik			
arasında)			
Toprak kaçağı, AC	0.5 mA max.		
hat ile fonksiyonel			
toprak arasında			

Çizelge E.6 Dijital girişler

Teknik veri	CPU 1211C AC/DC/Röle, CPU 1211C
	DC/DC/Röle ve CPU 1211C DC/DC/DC
Giriş sayısı	8
Tip	Sink/Source (IEC Tip 1 sink)
Anma gerilimi	24 VDC 4 mA'de, nominal
Sürekli izin verilebilir gerilim	30 VDC, max.
Aşırı gerilim	35 VDC için 0.5 saniye
Lojik 1 sinyal (min.)	15 VDC 2.5 mA'de
Lojik 0 sinyal (max.)	5 VDC 1 mA'de
İzolasyon (alan tarafı ile lojik)	500 VAC için 1 dakika
İzolasyon grupları	1
Filtre süreleri	us ayarlar: 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 10.0, -
	ms ayarlar: 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4

HSC saat giriş hızları (max.) (Lojik 1 Seviye	100/80 kHz (Ia.0 - Ia.5)
= 15 - 26 VDC)	
Ayni anlı girişlerin sayısı	6, 60 °C'da yatay, 50 °C dikey
Kablo uzunluğu (metre)	500 m zırhlı, 300 m zırhsız, 50 m zırhlı HSC
	girişler için

Çizelge E.7 Dijital çıkışlar

_

Teknik veri	CPU 1211C AC/DC/Röle ve CPU 1211C DC/DC/Röle	CPU 1211C DC/DC/DC
Giris sayısı	4	4
Tip	Röle, kuru kontak	Yarı iletken-
		MOSFET (Source)
Gerilim aralığı	5 - 30 VDC veya 5 - 250 VAC	20.4 - 28.8 VDC
Lojik 1 max. akımdaki sinyal		20 VDC min.
Lojik 0 sinyal, 10 KΩ yük ile		0.1 VDC max.
Akım (max.)	2.0 A	0.5 A
Lamba yük	30 W DC / 200 W AC	5 W
ON durum direnci	0.2Ω max. yeni olduğunda	0.6Ω max.
Nokta başına kaçak akım	- / / / /	10 μA max.
Ani aşırı akım	7 A kontakların kapanmasıyla	8 A için 100 ms
		max.
Aşırı yük koruması	Hayır	Hayır
Izolasyon (alan tarafi ile lojik)	1500 VAC için 1 dakika (bobin ve	500 VAC için 1
	kontak)	dakika
÷ 1 1 1	Hiçbiri (bobin ile lojik)	
Izolasyon direnci	$100 \text{ M}\Omega \text{ min. yeni oldugunda}$	-
Açık kontaklar arasında izolasyon	/50 VAC için i dakika	
İzolasyon grupları İndültif konotlomo gorilimi	1	I $I \perp alteri 49 VDC 1$
moukin kenetieme germini		L+ eksi 48 vDC, 1 W isi olorok kovin
Maksimum röle anahtarlama	1 Ци	w isi olalak kayip
frekansı	1 112	
Anahtarlama gecikmesi	10 ms max	10 us max off - on
Anantariania geerkinesi	TO IIIS IIIAX.	oecisi
		30 us max on - off
		gecisi
Darbe katarıcıkıs hızı	Önerilmez1	100 kHz (Oa 0 -
		$(Q_{m,0})^{2}$
		Hz min.
Mekanik ömür (yüksüz)	10,000,000 acık/kapalı döngüler	
Anma yükünde ömür boyu temaslar	100,000 açık/kapalı döngüler	
RUN'dan STOP'a davranış	Son değer veya değişiklik değeri	Son değer veya
	(varsayılan değer 0)	değişiklik değeri
	· · · · ·	(varsayılan değer 0)
Aynı andaki çıkış sayısı		4, 60 °C yatayda, 50
-	°C dikey	-
Kablo uzunluğu (metre)	500 m zırhlı, 150 m zırhsız	500 m zırhlı, 150 m
		zırhsız

1-Röle çıkışları olan CPU modellerinde, darbe çıkışlarını kullanmak için bir dijital sinyal kartı (SB) takmanız gerekir.

2-Darbe alıcı ve kablonuza bağlı olarak ilave bir yük direnci (anma akımının en az %10'nunda) darbe sinyal kalitesini ve gürültü bağışıklığını iyileştirebilir.

Çizelge E.8 Analog girişler

Teknik veri	Açıklama
Giriş sayısı	2
Tip	Gerilim (tek-sonlu)
Tam-ölçek aralığı	0 - 10 V
Tam-ölçek aralığı (veri word)	0 - 27648
Aşma aralığı	10.001 - 11.759 V
Aşma aralığı (veri word)	27649 - 32511
Taşma aralığı	11.760 - 11.852 V
Taşma aralığı (veri word)	32512 - 32767
Çözünürlük	10 bit
Maksimum dayanma gerilimi	35 VDC
Düzleme	Hiçbiri, Zayıf, Orta veya Güçlü
	CPU'nun analog girişleri için basamak
	tepkisi (ms) çizelgeye bakınız.
Gürültü bastırma	10, 50 veya 60 Hz
Empedans	≥100 KΩ
İzolasyon (alan tarafı ile lojik)	Hiçbiri
Doğruluk (25 °C / 0 - 55 °C)	Tam-ölçeğe göre % 3.0 / %3.5
Kablo uzunluğu (metre)	100 m, zırhlı bükülüçift

Çizelge E.9 Basamak tepkisi (ms), 0 V -10 V, 95% 'deki ölçüm

Düzleme seçimi (örnek ortalama)		Bastırma 50 Hz	frekansı (İntegrasyon süresi) 10 Hz
60]	Hz		
Hiçbiri (1 döngü): Ortalama alma	50 ms	50 ms	100 ms
yok			
Zayıf (4 döngü): 4 örnek	60ms	70 ms	200 ms
Orta (16 döngü): 16 örnek	200 ms	240 ms	1150 ms
Güçlü (32 döngü): 32 örnek	400 ms	480 ms	2300 ms
Örnekleme süresi	4.17 ms	5 ms	25 ms

Çizelge E.10 CPU'nun yerleşik analog portları için örnekleme süresi

Bastırma frekansı (İntegrasyon süresi	Örnekleme süresi
seçimi)	
60 Hz (16.6 ms)	4.17 ms
50 Hz (20 ms)	5 ms
10 Hz (100 ms)	25 ms

1- 24 VDC Sensör güç çıkışı İlave gürültü bağışıklığı için, bir sensör kaynağı kullanılmasa bile "M" ile şasi topraklamasını bağlayınız.

Not 1: X11 konektörler altın olmalıdır. Bakınız sipariş numarası için Ek C, Yedek Parçalar

Not 2: L1 veya N (L2) terminali 240 VAC'ye kadar bir gerilim bağlanabilir. kavnağına Ν terminali olarak dikkate L2 alınabilir ve topraklanması gerekmez. LI ve N (L2) terminalleri için polarizasyon gerekmez.

Şekil E.1.2. CPU 1212C bağlantı şeması

Çizelge E.11 CPU 1212C AC/DC/Röle (6ES7 212-1BE40-0XB0) için konnektör pin yerleşimleri,

Pin	X10	X11 (altın)	X12
1	L1 / 120-240 VAC	2 M	1L
2	N / 120-240 VAC	AI 0	DQ a.0
3	Fonksiyonel toprak	AI 1	DQ a.1
4	L+ / 24 VDC Sensör çıkışı		DQ a.2
5	M / 24 VDC Sensör çıkışı		DQ a.3
6	1M		2L
7	DI a.0		DQ a.4
8	DI a.1		DQ a.5
9	DI a.2		
10	DI a.3		
11	DI a.4		
12	DI a.5		
13	DI a.6		
14	DI a.7		

EK-2: Deney Seti Fotoğrafları

Şekil E2.1. Deney setinin genel görünümü

a) Sürücü, motor ve enkoder

b) Ölçüm tamburu

Şekil E2.2. Motor, sürücü, enkoder ve açısal ölçüm tamburunun fotoğrafları

Şekil E2.3. S7 1200 CPU1212 PLC'nin fotoğrafi

Şekil E2.4. Sonsuz dişli ve doğrusal konum cetvelinin fotoğrafi

Şekil E2.5. DC takogeneratörün fotoğrafi

Şekil E2.6. Takogeneratör çıkışı için sinyal düzenleyici devre fotoğrafi

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı	Mehmet BOLAT
Doğum Yeri ve Tarihi	Çankaya 27/08/1989
Telefon	+905547400035
E-posta	mehmet_bolat66@siirt.edu.tr

EĞİTİM

Derece	Adı, İlçe, İl	Bitirm	ıe Yılı
Lise	🗄 Süleyman Demirel	Anadolu Lisesi 2007	
Üniversite	Sakarya Üniversite	esi 2011	
Yüksek Lisans			
Doktora			

İŞ DENEYİMLERİ

Yıl	Kurum	Görevi
2013-2016	Kara Kuvvetleri Komutanlığı	Elekt. Müh.

YABANCI DİLLER

İngilizce, Flamanca

YAYINLAR