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1. INTRODUCTION

Bipartite graph is a graph in which the vertices can be divided into two parts such that no
two vertices in the same part are joined by an edge. The investigation of the properties
of bipartite graphs was begun by König. His work was motivated by an attempt to give a
new approach to the investigation of matrices on determinants of matrices. As a practical
matter, bipartite graphs form a model of the interaction between two different types of
objects. For example; social network analysis, railway optimization problem, marriage
problem etc (Asratian et al., 1998).

A perfect matching (1-factors) of a graph is a matching ( i.e., an independent edge
set ) in which every vertex of the graph is incident to exactly one edge of the matching.
”The enumeration or actual construction of perfect matching of a bipartite graph has many
applications, for example, in maximal flow problems and in assignment and scheduling
problems arising in operational research” (Minc, 1978).
The number of perfect matchings of bipartite graphs also plays a significant role in organic
chemistry (Wheland, 1953).

Fibonacci, Lucas and Jacobsthal numbers which are respectively defined by the recur-
rence relation

F (n) = F (n− 1) + F (n− 2) , F (0) = 0 and F (1) = 1 ,

L (n) = L (n− 1) + L (n− 2) , L (0) = 2 and L (1) = 1 ,

J (n) = J (n− 1) + 2J (n− 2) , J (0) = 0 and J (1) = 1 ,

for n ≥ 2, belong to a large family of positive integers. They have many interesting
properties and applications to almost every field of science and art. They continue to con-
tribute significant innovations for investigations, and reveal the niceness of mathematics
in many fields, particularly number theory (Koshy, 2001; Koshy, 2011; Horadam, 1988).

”The permanent of an n× n matrix A =
(
aij
)

is defined by

per (A) = ∑
σεSn

n

∏
i=1

aiσ(i)

where the summation extends over all permutations σ of the symmetric group Sn. The
permanent of a matrix is analogous to the determinant, where all of the signs used in the
Laplace expansion of minors are positive” (Minc, 1978). Permanents have many appli-
cations in physics, chemistry, electrical engineering, graph theory etc. Some of the most
important applications of permanents are via graph theory.

A more difficult problem with many applications is the enumeration of perfect match-
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ings of a graph. Therefore, counting the number of perfect matchings in bipartite graphs
has been very popular problem.

1.1. Structure of the Thesis

The rest of the thesis is structured as follows.
In Chapter 2, we present a discussion of previously published work that I did in this

area in conjunction with other authors.
In Chapter 3, we give the fundamental definitions, structures and theorems which are

necessary to better understand the topics contained within this text.
In Chapter 4.1, we consider a bipartite graph. Then we show that the numbers of per-

fect matchings of this graph generate the Jacobsthal numbers by the contraction method.
Finally, a Maple procedure is presented in order to compute the numbers of perfect match-
ings of the graph.

In Chapter 4.2, we firstly introduce two lemmas related to bipartite graphs associated
with Fibonacci numbers. After that, we define a bipartite graph associated with n ×
n (0; 1)−circulant matrix whose the numbers of perfect matchings generate the Lucas
numbers. Finally, two Maple procedures are presented to compute the numbers of perfect
matchings in these graphs.

2



2. LITERATURE RESEARCH

The purpose of this chapter is to further motivate the rest of the thesis by presenting a
discussion of previously published work that I did in this area in conjunction with other
authors.

Lee et al. (1997) consider ”a bipartite graph G
(
F(n,2) =

(
fi,j
))

with bipartite adja-
cency matrix is the n× n tridiagonal matrix of the form

F(n,2) =



1 1 0 · · · · · · 0

1 1 1 . . . ...

0 1 . . . . . . . . . ...
... . . . . . . . . . 1 0
... . . . 1 1 1
0 · · · · · · 0 1 1


, (1)

with the entries are

fij =

{
1, i f |j− i| ≤ 1,

0, otherwise,

”. Then they obtain ”the number of perfect matchings of G
(
F(n,2)

)
is the (n + 1)st

Fibonacci number F (n + 1)”. In other words,

perF(n,2) = F (n + 1) . (2)

They also consider ”a bipartite graph G
(
F(n,k) =

(
fi,j
))

with bipartite adjacency matrix
is the n× n (0, 1)−matrix of the form

F(n,k) =



1 1 · · · · · · 1 0 · · · · · · · · · 0
1 1 1 · · · · · · 1 0 · · · · · · 0
0 1 1 1 · · · · · · 1 0 · · · 0

. . . . . . . . . . . . . . . . . . ...
... . . . . . . 0
... . . . 1

. . . . . . . . . ...
0 · · · · · · 0 1 1


, (3)
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with the entries are

fij =

{
1, i f −1 ≤ |j− i| ≤ k− 1,
0, otherwise,

”. Then they obtain ”the number of perfect matchings of G
(
F(n,k)

)
is gk (n + k− 1) ,

where gk (n) is the nth k-Fibonacci number” (Lee et al., 1997). This time, they consider
”an another bipartite graph G

(
Un =

(
ui,j
))

with bipartite adjacency matrix is the n× n
(0, 1)−matrix of the form

Un =



1 1 · · · · · · · · · 1
1 0 1 · · · · · · 1
0 1 0 1 · · · 1
... . . . . . . . . . . . . ...
... . . . 1 0 1
0 · · · · · · 0 1 1


,

with the entries are

uij =


1, i f i = j = 1 or i = j = n,
1, i f i < j or j− i = −1,
0, otherwise,

”. Then they obtain ”the number of perfect matchings of G (Un) is the (n + 1)st Fi-
bonacci number F (n + 1)” (Lee et al., 1997).

Lee (2000) considers ”a bipartite graph G
(
L(n,2) =

(
li,j
))

with bipartite adjacency
matrix is the n× n matrix of the form

L(n,2) =



1 0 1 0 · · · 0

1 1 1 0
...

0 1 . . . . . . . . . 0
... . . . . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · · · · 0 1 1


,

with the entries are

li,j =


1, i f i = j = 1 or i = 1 and j = 3,
1, i f i > 2 and |j− i| ≤ 1,
0, otherwise,
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”. Then he shows that ”the number of perfect matchings of G
(
L(n,2)

)
is (n− 1)st

Lucas number L (n− 1) for n ≥ 3 ”. He also considers ”a bipartite graph G
(
L(n,k)

)
with bipartite adjacency matrix L(n,k) = F(n,k) + E1,k+1 − ∑k

j=2 E1,j for n ≥ 3, where
F(n,k) is the matrix in (3) and Ei,j denotes the n× n matrix with 1 at the (i, j)-entry and
zeros elsewhere”. Namely,

L(n,k) =



1 0 · · · · · · 0 1 · · · · · · · · · 0
1 1 1 · · · · · · 1 0 · · · · · · 0
0 1 1 1 · · · · · · 1 0 · · · 0

. . . . . . . . . . . . . . . . . . ...
... . . . . . . 0
... . . . 1

. . . . . . . . . ...
0 · · · · · · 0 1 1


.

Then he shows that ”the number of perfect matchings of G
(
L(n,k)

)
is lk (n− 1) , where

lk (n) is the nth k-Lucas number” (Lee, 2000). This time, ”he defines the matrix Bn as

Bn = F(n,2) + E13 − E23 + E24 − E34

where F(n,2) is the matrix in (1) and Ei,j denotes the n × n matrix with 1 at the (i, j)-
entry and zeros elsewhere”. Let G (Bn) be the bipartite graph with bipartite adjacency
matrix Bn. Then he shows that ”the number of perfect matchings of G (Bn) is (n− 1)st
Lucas number L (n− 1)” (Lee, 2000).

Shiu et al. (2003) firstly define the (k, α)-sequences sk
α (n) . Then they give the fol-

lowing result:
”For a fixed m ≥ 1, suppose n, k ≥ 2 and n ≥ m. Let G

(
B(n,k)

)
a bipartite graph

with bipartite adjacency matrix has the form

B(n,k) =



a1 a2 . . . am 0 . . . 0
1
0 F(n−1,2)
...
0


,

for some elements a1, a2, . . . , am in a ring R.Then the number of perfect matching of
G
(
B(n,k)

)
is nth (k, α)-number sk

α (n) with α = (a1, a2, . . . , am) .”
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Kılıç and Taşcı (2008a) consider ”a bipartite graph G
(
Vn =

(
vij
))

with bipartite
adjacency matrix has the form

Vn =



1 1 1 1 · · · · · · 1
1 1 1 0 0 · · · 0
0 1 1 1 0 · · · 0
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · · · · · · · 0 1 1


,

with the entries are

vij =

{
1, i f − 1 ≤ j− i ≤ 1 or i = 1,
0, otherwise,

”. Then they obtain ”the number of perfect matchings of G (Vn) is ∑n
i=0 F (i) = F (n + 2)−

1, where F (n) is the nth Fibonacci number”. They also consider ”a bipartite graph
G (Wn) with bipartite adjacency matrix Wn = Vn + Yn, where Yn denotes the n × n
matrix with −1 at the (1, 2)-entry, 1 at the (2, 4)-entry and zeros elsewhere”. Clearly,

Wn =



1 0 1 1 · · · · · · 1
1 1 1 1 0 · · · 0
0 1 1 1 0 · · · 0
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · · · · · · · 0 1 1


.

Then for n ≥ 4, they obtain ”that the number of perfect matchings of G (Wn) is ∑n−2
i=0 L (i) =

L (n)− 1, where L (n) is the nth Lucas number (Kılıç and Taşcı, 2008a)”.

Kılıç and Taşcı (2008b) consider ”a bipartite graph G
(

M(n,k)

)
with bipartite

adjacency matrix M(n,k) = F(n,k) + U(n,k), where F(n,k) is the matrix given by (3)
and U(n,k) =

(
uij
)

is the n × n (0, 1)-matrix with un−k−1,n−1 = un−k,n = 1 and
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otherwise 0”. Clearly,

M(n,k) =



1 · · · 1 1 0 · · · 0 · · · 0 · · · 0
1 1 · · · 1 1 0 · · · 0 · · · 0 0
0 1 1 · · · 1 1 0 · · · 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . .
... 0 1 1 · · · 1 1 0 · · · 0
... 0 1 1 · · · 1 1 0 0
... 0 1 1 1 1 0
0 · · · · · · · · · · · · 0 1 1 1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · 0 1 1 1
0 · · · · · · · · · · · · · · · · · · · · · 0 1 1



. (4)

Then for n ≥ 3, they obtain that ”the number of perfect matchings of G
(

M(n,k)

)
is

the nth k-Lucas number, lk (n)”. They also consider ”a bipartite graph G
(

T(n,k)

)
with

bipartite adjacency matrix T(n,k) = F(n,k) + V(n,k) for 2 ≤ k < n, where F(n,k) is
the matrix given by (3) and V(n,k) =

(
vij
)

is the n × n (0, 1)-matrix with v1j = 1 if
k + 1 ≤ j ≤ n and otherwise 0”. Clearly,

T(n,k) =



1 · · · 1 1 1 1 · · · · · · 1 1 1
1 1 · · · · · · 1 1 0 0 · · · 0 0
0 1 1 · · · · · · 1 1 0 · · · · · · 0
... . . . . . . . . . . . . . . . . . . . . . . . . ...
... 0 1 1 · · · · · · 1 1 . . . ...
... 0 1 1 · · · · · · 1 1 0
... 0 1 1 · · · · · · 1 1
0 · · · · · · · · · · · · 0 1 1 · · · · · · 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · 0 1 1 1
0 · · · · · · · · · · · · · · · · · · · · · 0 1 1



.

Then they obtain that ”the number of perfect matchings of G
(

T(n,k)

)
is the sums of k-

Fibonacci numbers, ∑n
j=1 gk (j) for n ≥ 3” (Kılıç and Taşcı, 2008b). This time, they

consider ”a bipartite graph G
(

E(n,k)

)
with bipartite adjacency matrix E(n,k) = M(n,k) +

D(n,k) for 2 ≤ k < n, where M(n,k) is the matrix given by (4) and D(n,k) =
(
dij
)

is the
n× n (0, 1)-matrix with d1j = 1 if k + 1 ≤ j ≤ n and otherwise 0”. Clearly,
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E(n,k) =



1 · · · 1 1 1 1 1 · · · · · · 1 1
1 1 · · · 1 1 0 0 0 · · · 0 0
0 1 1 · · · 1 1 0 0 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
... 0 1 1 · · · 1 1 0 · · · 0
... 0 1 1 · · · 1 1 0 0
... 0 1 1 · · · 1 1 0
0 · · · · · · · · · · · · 0 1 1 · · · 1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · 0 1 1 1
0 · · · · · · · · · · · · · · · · · · · · · 0 1 1



.

Then they obtain that ”the number of perfect matchings of G
(

E(n,k)

)
is the sums of

k-Lucas numbers, ∑n−1
j=1 lk (j) for n ≥ 3” (Kılıç and Taşcı, 2008b).

Kılıç and Stakhov (2009) consider ”a bipartite graph G
(

M(n,p)

)
with bipartite adja-

cency matrix M(n,p) =
(
mij
)

with mi+1,i = mi,i = mi,i+p = 1 for a fixed integer p and
otherwise 0”. Clearly,

M(n,p) =



1 0 · · · 0 1 0 · · · 0

1 1 0 · · · 0 1 . . . ...
0 1 1 0 · · · 0 1 0
0 0 1 1 0 · · · 0 1
... . . . . . . . . . . . . . . . 0
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
0 · · · · · · · · · 0 0 1 1


. (5)

Then they obtain that ”the number of perfect matchings of G
(

M(n,p)

)
is the (n + 1)st

generalized Fibonacci p-number Fp (n + 1) for n ≥ 3”. They also consider ”a bipartite

graph G
(

T(n,p)

)
with bipartite adjacency matrix has the form

T(n,p) =



1 1 1 · · · · · · 1 1
1
0 M(n−1,p)
...
0


,
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where M(n−1,p) is the matrix of order (n− 1) given by (5).” Then they obtain that ”the

number of perfect matchings of G
(

T(n,p)

)
is the sums of the consecutive generalized

Fibonacci p-numbers, ∑n
i=1 Fp (i) for n ≥ 3”. (Kılıç and Stakhov, 2009).

Akbulak and Öteleş (2013) give the following results for the number of perfect match-
ings in bipartite graphs with upper Hessenberg adjacency matrix related to Fibonacci,
Lucas and Padovan numbers.

”Let G(Un =
(
uij
)
) be a bipartite graph with bipartite adjacency matrix is the n× n

(0, 1)-upper Hessenberg matrix defined by

Un =



1 0 1 0 · · · 1 0 1 · · · · · · · · · · · ·
1 1 0 1 0 · · · 1 0 1 · · · · · · · · ·
0 1 1 0 1 0 · · · 1 0 1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 1 1 0 1 0 · · · 1 0 1
0 · · · · · · 0 1 1 0 1 0 · · · 1 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · · · · · · 0 1 1


, (6)

where

uij =


1, i f j− i = −1,
1, i f i ≤ j and j− i ≡ 0 ( mod 2) ,
0, otherwise.

Then the number of perfect matchings of G(Un) is the nth Fibonacci number F (n) for
n ≥ 3” (Akbulak and Öteleş, 2013).

”Let G(Vn =
(
vij
)
) be a bipartite graph with bipartite adjacency matrix is the n× n

(0, 1)-upper Hessenberg matrix defined by

Vn =



1 1 1 · · · · · · · · · · · · 1
1 0 1 · · · 0 1 · · · · · ·
0 1
0 0 Un−2
...

...
0 0


,

where Un−2 is the matrix of order (n− 2) in (6). Then the number of perfect matchings
of G(Vn) is the (n− 1)st Lucas number L (n− 1) for n ≥ 3” (Akbulak and Öteleş,
2013).

”Let G(Wn =
(
wij
)
) be a bipartite graph with bipartite adjacency matrix is the n× n

(0, 1)-upper Hessenberg matrix defined by
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Wn =



1 1 1 1 1 1 1 · · · · · · · · · · · ·
1 0 1 0 · · · 0 1 0 · · · · · · · · ·
0 1 0 1 0 · · · 0 1 0 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 1 0 1 0 · · · 0 1 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · · · 0 1 0


,

where

wij =


1, i f i = 1 or j− i = −1,
1, i f i ≤ j and j− i ≡ 1 ( mod3) ,
0, otherwise.

Then the number of perfect matchings of G(Wn) is the nth Padovan number P (n) for
n ≥ 3”. (Akbulak and Öteleş, 2013)

Öteleş (2017) gives the following results for the number of perfect matchings in bi-
partite graphs related to the well-known integer sequences (Fibonacci, Lucas i.e.).

”Let G
(

Hn =
(
hi,j
))

(n = 2t, t ∈N) be a bipartite graph with bipartite adjacency
matrix is the n× n (0, 1)-tridiagonal matrix has the form

Hn =



1 1 0 · · · · · · · · · 0

1 0 1 . . . ...

0 1 1 1 . . . ...
... . . . 1 0 1 . . . ...
... . . . 1 . . . 1 0
... . . . . . . 1
0 · · · · · · · · · 0 1


, (7)

where

hi,j =


1, i f |j− i| = 1,
1, i f i = j = 2m− 1 (m ∈N) ,
0, otherwise.

Then the number of perfect matchings of G (Hn) is 1” (Öteleş, 2017).
”Let G (Hn) (n = 2t + 1, t ∈N) be a bipartite graph with bipartite adjacency ma-

trix Hn given by (7). Then the number of perfect matchings of G (Hn) is n+1
2 ” (Öteleş,

2017).

”Let G
(
Kn =

(
ki,j
))

be a bipartite graph with bipartite adjacency matrix is the n× n
(0, 1)-tridiagonal matrix has the form
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Kn =



1 1 0 · · · · · · · · · 0

1 0 1 . . . ...

0 1 1 1 . . . ...
... . . . 1 0 1 . . . ...
... . . . 1 1 1 0
... . . . . . . . . . 1
0 · · · · · · · · · 0 1 1


,

where k2,2 = k4,4 = 0, all other terms on the main diagonal are 1, all terms on the sub-
diagonal and super-diagonal are 1 and otherwise ki,j = 0. Then for n ≥ 3, the number of
perfect matchings of G (Kn) is the (n− 3)rd Lucas number L (n− 3)” (Öteleş, 2017).

”Let G
(

Bn =
(
bi,j
))

be a bipartite graph with bipartite adjacency matrix is the n× n
(0, 1)-anti-tridiagonal matrix has the form

Bn =



0 · · · · · · 0 1 1
... . . . 1 1 1
... . . . . . . . . . 1 0

0 . . . . . . . . . . . . ...

1 1 . . . . . . ...
1 1 0 · · · · · · 0


,

where

bi,j =

{
1, i f |i + j mod (n + 1)| ≤ 1,
0, otherwise.

Then for n ≥ 2, the number of perfect matchings of G (Bn) is the (n + 1)st Fibonacci
number F (n + 1)” (Öteleş, 2017).

”Let G
(

Dn =
(
di,j
))

be a bipartite graph with bipartite adjacency matrix has the
form

Dn =



0 · · · 0 1 0 1
... 0 1 1 1
... . . . . . . . . . 1 0

0 . . . . . . . . . . . . ...

1 1 1 . . . ...
1 1 0 · · · · · · 0


,
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where

di,j =


1, i f i = 1 and j = n− 2, j = n,
1, i f |i + j mod (n + 1)|2≤i≤n ≤ 1,
0, otherwise.

Then for n ≥ 3, the number of perfect matchings of G (Dn) is the (n− 1)st Lucas
number L (n− 1)” (Öteleş, 2017).

”Let G
(
Un =

(
ui,j
))

be a bipartite graph with bipartite adjacency matrix
has the form

Un =



1 1 · · · · · · 1 1 1
0 · · · · · · 0 1 1 1
... . . . 1 1 1 0
... . . . . . . . . . 1 . . .

0 1 . . . . . . . . . ...
1 1 1 . . . 0
1 1 0 · · · · · · 0 0


,

where

ui,j =


1, i f i = 1 and 1 ≤ j ≤ n,
1, i f |i + j mod (n + 1)|2≤i≤n ≤ 1,

0, otherwise.

Then for n ≥ 2, the number of perfect matchings of G (Un) is F (n + 2) − 1, where
F (n) is the nth Fibonacci number” (Öteleş, 2017).

”Let G
(
Vn =

(
vi,j
))

be a bipartite graph with bipartite adjacency matrix has the form

Vn =



1 1 · · · · · · 1 1 0 1
0 · · · · · · 0 1 1 1 1
... . . . 0 1 1 1 0
... . . . . . . . . . 1 1 0 0

0 . . . . . . . . . 1 . . . . . . ...

0 1 1 . . . . . . . . . ...
1 1 1 0 0 · · · · · · 0
1 1 0 0 · · · · · · 0 0


,

where

vi,j =


1, i f i = 1 and 1 ≤ j ≤ n− 2, j = n,
1, i f i = 2 and j = n− 3,
1, i f |i + j mod (n + 1)|2≤i≤n ≤ 1,
0, otherwise.
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Then for n ≥ 3, the number of perfect matchings of G (Vn) is L (n)− 1, where L (n) is
the nth Lucas number”(Öteleş, 2017).

”Let G
(

Pn =
(

pij
))

be a bipartite graph with bipartite adjacency matrix is the n× n
(0, 1)-pentadiagonal matrix has the form

Pn =



1 0 1 0 · · · · · · 0

0 1 0 1 . . . ...

1 0 1 . . . . . . . . . ...

0 1 . . . . . . . . . 1 0
... . . . . . . . . . . . . 0 1
... . . . 1 0 1 0
0 · · · · · · 0 1 0 1


.

Then the number of perfect matchings of G (Pn) is obtained as

per (Pn) =

 F
(

n+1
2

)
F
(n+3

2

)
, i f n is odd,(

F
(n

2 + 1
))2 , i f n is even,

where F (n) is the nth Fibonacci number” (Öteleş, 2017).
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3. PRELIMINARIES

In this chapter, we give the fundamental definitions, structures and theorems which
are necessary to better understand the topics contained within this text.

3.1. Special Types of Matrices

3.1.1. Diagonal matrices

”A matrix D = [dij] ∈ Mn,m(F) is diagonal if dij = 0 whenever j 6= i” (Horn and
Johnson, 1990).

3.1.2. Triangular matrices

”A matrix T = [tij] ∈ Mn,m(F) is upper triangular if tij = 0 whenever i > j. If
tij = 0 whenever i ≥ j, then T is said to be strictly upper triangular. Analogously,
T is lower triangular (or strictly lower triangular) if its transpose is upper triangular (or
strictly upper triangular). A triangular matrix is either lower or upper triangular; a strictly
triangular matrix is either strictly upper triangular or strictly lower triangular” (Horn and
Johnson, 1990).

3.1.3. Permutation matrices

”A square matrix P is a permutation matrix if exactly one entry in each row and
column is equal to 1 and all other entries are 0. Multiplication by such matrices effects a
permutation of the rows or columns of the matrix multiplied.

For example,  0 1 0
1 0 0
0 0 1


 1

2
3

 =

 2
1
3


illustrates how a permutation matrix produces a permutation of the rows (entries) of a
vector: it sends the first entry to the second position, sends the second entry to the first
position, and leaves the third entry in the third position” (Horn and Johnson, 1990).
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3.1.4. Circulant matrices

”A matrix A ∈ Mn(F) of the form

A =



a1 a2 · · · an

an a1 a2 · · · an−1

an−1 an a1 · · · an−2
...

... . . . . . . ...
a2 a3 · · · an a1


is a circulant matrix. Each row is the previous row cycled forward one step; the entries in
each row are a cyclic permutation of those in the first. The n× n permutation matrix

C =



0 1 0 · · · 0
... 0 1

...
. . . . . . 0

0 1
1 0 · · · 0


=

(
0 In−1

1 01,n−1

)

is the basic circulant permutation matrix. A matrix A ∈ Mn(F) can be written in the
form

A =
n−1

∑
k=0

ak+1Ck
n

(a polynomial in the matrix Cn) if and only if it is a circulant. We have C0
n = I = Cn

n ,
and the coefficients a1, . . . , an are the entries of the first row of A” (Horn and Johnson,
1990).

3.1.5. Toeplitz matrices

”A matrix A = aij ∈ Mn+1(F) of the form

A =



a0 a1 a2 · · · · · · an

a−1 a0 a1 a2 · · · an−1

a−2 a−1 a0 a1 · · · an−2
...

... . . . . . . . . . ...
...

... . . . . . . a1

a−n a−n+1 · · · · · · a−1 a0


is a Toeplitz matrix. The entry aij is equal to aj−i for some given sequence
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a−n, a−n+1, . . . , a−1, a0, a1, a2, . . . , an−1, an ∈ C. The entries of A are constant down
the diagonals parallel to the main diagonal. The Toeplitz matrices

B =


0 1 0

0 . . .
. . . 1

0 0


and

F =


0 0
1 0

. . . . . .

0 1 0


are called the backward shift and forward shift because of their effect on the elements
of the standard basis {e1, . . . , en+1}. Moreover, F = BT and B = FT. A matrix A ∈
Mn+1 can be written in the form

A =
n

∑
k=1

a−kFk +
n

∑
k=0

akBk

if and only if it is a Toeplitz matrix. Toeplitz matrices arise naturally in problems involving
trigonometric moments” (Horn and Johnson, 1990).

3.1.6. Hankel matrices

”A matrix A ∈ Mn+1(F) of the form

A =



a0 a1 a2 · · · an

a1 a2 · · · . . . an+1

a2 . . . ...
... an a2n−1

an an+1 · · · a2n−1 a2n


is a Hankel matrix. Each entry aij is equal to ai+j−2 for some given sequence a0, a1, a2,
. . . , a2n−1, a2n. The entries of A are constant along the diagonals perpendicular to the
main diagonal. Hankel matrices arise naturally in problems involving power moments”
(Horn and Johnson, 1990).
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3.1.7. Hessenberg matrices

”A matrix A = [aij] ∈ Mn(F) is said to be in upper Hessenberg form or to be an
upper Hessenberg matrix if aij = 0 for all i > j + 1 :

A =



a11 F

a21 a22

a32
. . .
. . . . . .

0 an,n−1 ann


.

An upper Hessenberg matrix A is said to be unreduced if all its sub-diagonal entries are
nonzero, that is, if ai+1, i = 0 for all i = 1, . . . , n− 1; the rank of such a matrix is at least
n− 1 since its first n− 1 columns are independent” (Horn and Johnson, 1990).

3.1.8. Tridiagonal matrices

”A matrix A = [aij] ∈ Mn(F) that is both upper and lower Hessenberg is called
tridiagonal, that is, A is tridiagonal if aij = 0 whenever |i− j| > 1:

A =


a1 b1 0

c1 a2
. . .

. . . . . . bn−1

0 cn−1 an


”(Horn and Johnson, 1990).

3.2. Graph Theory

Definition 1 ”A graph G consists of a set of objects V = {v1, v2, v3, . . .} called vertices

(also called points or nodes) and other set E = {e1, e2, e3, . . .} whose elements are called

edges (also called lines or arcs)” (Vasudev, 2006).

Definition 2 ”The set V(G) is called the vertex set of G and E(G) is the edge set. Usually

the graph is denoted as G = (V, E)” (Vasudev, 2006).

Let G be a graph and {u, v} an edge of G. Since {u, v} is 2-element set, we may
write {v, u} instead of {u, v}. It is often more convenient to represent this edge by uv
or vu. If e = uv is an edge of a graph G, then we say that u and v are adjacent in G and
that e joins u and v. (We may also say that each that of u and v is adjacent to or with the
other).
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Example 3 A graph G is defined by the sets

V(G) = {u, v, w, x, y, z}

and

E(G) = {uv, uw, wx, xy, xz}.

Now we have the graph in the Figure 3.1 by considering these sets.

Figure 3.1. A graph with 6−vertices and 5−edges

Every graph has a diagram associated with it. The vertex u and an edge e are incident with
each other as are v and e. If two distinct edges say e and f are incident with a common
vertex, then they are adjacent edges.

Example 4 In Figure 3.2 the vertices a and b are adjacent but a and c are not. The edges

x and y are adjacent but x and z are not. Although the edges x and z intersect in the

diagram, their intersection is not a vertex of the graph.

Figure 3.2. A graph with 5−vertices and 7−edges
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Definition 5 ”A graph with p-vertices and q-edges is called a (p, q) graph. The (1, 0)
graph is called trivial graph” (Vasudev, 2006).

Example 6 Let V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {3, 2}, {4, 4}}.Then G(V, E)
is a graph.

Example 7 Let V = {1, 2, 3, 4} and E = {{1, 5}, {2, 3}}.Then G(V, E) is not a graph,

as 5 is not in V.

Figure 3.3. A graph with 5−vertices and 8−edges is called a (5, 8) graph

Definition 8 ”A directed graph or digraph G consists of a set V of vertices and a set E
of edges such that e ∈ E is associated with an ordered pair of vertices. In other words,

if each edge of the graph G has a direction then the graph is called directed graph”
(Vasudev, 2006).

In the diagram of directed graph, each edge e = (u, v) is represented by an arrow or
directed curve from initial point u of e to the terminal point v. Figure 3.4 is an example
of a directed graph.
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Figure 3.4. Directed graph

Suppose e = (u, v) is a directed edge in a digraph, then

(i) u is called the initial vertex of e and v is the terminal vertex of e

(ii) e is said to be incident from u and to be incident to v.

(iii) u is adjacent to v, and v is adjacent from u.

Definition 9 ”An un-directed graph G consists of set V of vertices and a set E of edges

such that each edge e ∈ E is associated with an unordered pair of vertices. In other

words, if each edge of the graph G has no direction then the graph is called un-directed

graph” (Vasudev, 2006).

We can refer to an edge joining the vertex pair i and j as either (i, j) or (j, i). Figure
3.5 is an example of an undirected graph.

Figure 3.5. Un-Directed graph
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Definition 10 ”An edge of a graph that joins a node to itself is called loop or self loop”
(Vasudev, 2006).

i.e., a loop is an edge (vi, vj) where vi = vj.

Definition 11 ”A multi-graph is a graph which is permitted to have multiple edges (also

called parallel edges) that is, edges that have the same end nodes” (Vasudev, 2006).

Two edges (vi, vj) and (v f , vr) are parallel edges if vi = v f and vj = vr.

Figure 3.6.
Directed multiple

Figure 3.7.
Un-Directed multiple

In Figure 3.6, there are two parallel edges associated with v2 and v3. In Figure 3.7,
there are two parallel edges joining nodes v1 and v2 and v2 and v3 (Vasudev, 2006).

Definition 12 ”A graph in which loops and multiple edges are allowed, is called a pseudo

graph.”

Figure 3.8.
Un-Directed Pseudo graph

Figure 3.9.
Directed Pseudo graph

(Vasudev, 2006).
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Definition 13 ”A graph which has neither loops nor multiple edges. i.e., where each edge

connects two distinct vertices and no two edges connect the same pair of vertices is called

a simple graph” (Vasudev, 2006).

Figure 3.4 and 3.5 represents simple un-directed and directed graph because the graphs
do not contain loops and the edges are all distinct.

Definition 14 ”A graph with finite number of vertices as well as a finite number of edges

is called a finite graph. Otherwise, it is an infinite graph” (Vasudev, 2006).

Definition 15 ”The number of edges incident on a vertex vi with self-loops counted twice

(is called the degree of a vertex vi and is denoted by degG(vi) or degvi or d(vi)” (Vasudev,

2006).

The degrees of vertices in the graph G and H are shown in Figure 3.10 and 3.11.

Figure 3.10.
A graph with 6−vertices and 5−edges

Figure 3.11.
A graph with 5−vertices and 8−edges

In G as shown in Figure 3.10, degG(v2) = 2 = degG(v4) = degG(v1),
degG(v3) = 3 and degG(v5) = 1

In H as shown in Figure 3.11 degH(v2) = 5, degH(v4) = 3, degH(v3) = 5,
degH(v1) = 4 and degH(v5) = 1 (Vasudev, 2006).

The degree of a vertex is some times also referred to as its valency (Vasudev, 2006).

3.3. Graphs and Matrices

3.3.1. Incidence matrix

”Let G be a graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em} . Suppose
each edge of G is assigned an orientation, which is arbitrary but fixed. The (vertex-edge)
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incidence matrix of G, denoted by Q(G), is the n × m matrix defined as follows. The
rows and the columns of Q(G) are indexed by V(G) and E(G), respectively. The (i, j)-
entry of Q(G) is 0 if vertex i and edge ej are not incident, and otherwise it is 1 or −1
according as ej originates or terminates at i, respectively. We often denote Q(G) simply
by Q. Whenever we mention Q(G) it is assumed that the edges of G are oriented” (Bapat,
2010).

Example 16 Consider a graph as the following.

Then Its incidence matrix is given by Q as

Q =


−1 1 −1 0 0 0
1 0 0 −1 0 0
0 −1 0 0 1 0
0 0 1 0 0 −1
0 0 0 1 −1 1

 .

3.3.2. Adjacency matrix

”Let G be a graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em} . The adja-
cency matrix of G, denoted by A(G), is the n× n matrix defined as follows. The rows
and the columns of A(G) are indexed by V(G). If i 6= j then the (i, j)-entry of A(G)

24



is 0 for vertices i and j non-adjacent, and the (i, j)-entry is 1 for i and j adjacent. The
(i, i)-entry of A(G) is 0 for i = 1, . . . , n. We often denote A(G) simply by A” (Bapat,
2010).

Example 17 Consider a graph G as the following

Then its adjacency matrix is given A (G) as

A (G) =


0 1 1 1 0
1 0 1 0 0
1 1 0 1 1
1 0 1 0 1
0 0 1 1 0

 .

Clearly, A is a symmetric matrix with zeros on the diagonal. For i 6= j, the principal
sub-matrix of A formed by the rows and the columns i, j is the the zero matrix if i � j

and otherwise it equals

(
0 1
1 0

)
.

3.3.3. Laplacian matrix

”Let G be a graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em} . The Lapla-
cian matrix of G, denoted by L(G), is the n× n matrix defined as follows. The rows and
columns of L(G) are indexed by V(G). If i 6= j then the (i, j)-entry of L(G) is 0 if vertex
i and j are not adjacent, and it is −1 if i and j are adjacent. The (i, i)-entry of L(G) is di,
the degree of the vertex i, i = 1, 2, . . . , n ”(Bapat, 2010).

”Let D(G) be the diagonal matrix of vertex degrees. If A(G) is the adjacency matrix
of G, then note that L(G) = D(G)− A(G)” (Bapat, 2010). ”Suppose each edge of G
is assigned an orientation, which is arbitrary but fixed. Let Q(G) be the incidence matrix
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of G. Then observe that L(G) = Q(G)Q(G)′. This can be seen as follows. The rows
of Q(G) are indexed by V(G). The (i, j)-entry of Q(G)Q(G)′ is the inner product of
the rows i and j of Q(G). If i = j then the inner product is clearly di, the degree of the
vertex i. If i 6= j, then the inner product is −1 if the vertices i and j are adjacent, and zero
otherwise” (Bapat, 2010).

Example 18 Consider a graph G as the following

Then its Laplacian matrix is given by L(G) as

L(G) =



3 −1 0 −1 −1 0
−1 3 −1 0 −1 0
0 −1 2 0 −1 0
−1 0 0 2 −1 0
−1 −1 −1 −1 5 −1
0 0 0 0 −1 1


.

3.4. Bipartite Graph and Perfect Matching

Definition 19 ”A bipartite graph G is a graph whose vertex set V can be partitioned into

two subsets V1 and V2 such that every edge of G joins a vertex in V1 and a vertex in V2.
In other words, there are no edges which connect two vertices in V1 or in V2” (Diestel,

2005).

Example 20 Figure 3.12 can be given as an example for a bipartite graph.
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Figure 3.12. Bipartite Graph

Bipartite graphs have a huge of applications in modern science. For example;

• When modeling relations between two different classes of objects, bipartite graphs
very often arise naturally. For instance, ”a graph of football players and clubs, with
an edge between a player and a club if the player has played for that club, is a
natural example of an affiliation network, a type of bipartite graph used in social
network analysis” (Wasserman and Faust, 1994).

• Another example where bipartite graphs appear naturally is in the railway optimiza-
tion problem, in which ”the input is a schedule of trains and their stops, and the goal
is to find a set of train stations as small as possible such that every train visits at least
one of the chosen stations. This problem can be modeled as a dominating set prob-
lem in a bipartite graph that has a vertex for each train and each station and an edge
for each pair of a station and a train that stops at that station” (Niedermeier, 2002).

• A third example is in the academic field of numismatics. ”Ancient coins are made
using two positive impressions of the design (the obverse and reverse). The charts
numismatists produce to represent the production of coins are bipartite graphs”
(Bracey, 2012).

Definition 21 Bipartite adjacency matrix ”Let G be a bipartite graph whose vertex set

V is partitioned into two subsets V1 and V2 such that |V1| = |V2| = n. We construct

the bipartite adjacency matrix B(G) =
(
bij
)

of G as following: bij = 1 if and only if

G contains an edge from vi ∈ V1 to vj ∈ V2, and otherwise bij = 0” (Minc, 1978).
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Example 22 Let G be a bipartite graph as the following

Then its bipartite adjacency matrix B(G) is

B(G) =


1 1 0 0
1 0 1 0
0 1 1 1
0 1 1 0

 .

Definition 23 (Perfect matching) ”A perfect matching (or 1-factor) of a graph is a match-

ing in which each vertex has exactly one edge incident on it. Namely, every vertex in the

graph has degree 1” (Minc, 1978).

Example 24 Let G be a bipartite graph as the following

Then its perfect matchings can be given as
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Lemma 25 ”The number of perfect matchings of a bipartite graph is equal to the perma-

nent of its bipartite adjacency matrix” (Minc, 1978).

3.5. Permanents

Definition 26 ”The permanent of an n× n matrix A =
(
aij
)

is defined by

perA = ∑
σεSn

n

∏
i=1

aiσ(i)

where the summation extends over all permutations σ of the symmetric group Sn” (Minc,

1978).

”The permanent of a matrix is analogous to the determinant, where all of the signs
used in the Laplace expansion of minors are positive” (Minc, 1978).

Lemma 27 ”Let A be an n× n matrix, then

per (PAQ) = perA (8)

for all permutation matrices P and Q of order n” (Brualdi and Cvetkovic, 2009).

Lemma 28 ”Let B and C are square matrices. If

A =

(
B 0
X C

)
,

then

perA= perBperC (9)

” (Brualdi and Cvetkovic, 2009).

Lemma 29 ”Let {Tn, n = 1, 2, . . .} be sequence of tridiagonal matrices of type n× n in

the following form

29



Tn =



t1,1 t1,2 0 · · · · · · 0

t2,1 t2,2 t2,3
. . . ...

0 t3,2 t3,3
. . . . . . ...

... . . . . . . . . . . . . 0

... . . . . . . . . . tn−1,n

0 · · · · · · 0 tn,n−1 tn,n


.

Then the successive permanents of Tn are given by the recursive formula:

perT1 = t11,

perT2 = t11t22 + t12t21,

perTn = tn,nperTn−1 + tn−1,ntn,n−1perTn−2

” (Kılıç and Taşcı, 2007)

Lemma 30 ”Let Hn =
(
hi,j
)

be the n× n Hessenberg matrices in the following form

Hn =



h1,1 h1,2 0 · · · · · · 0

h2,1 h2,2 h2,3
. . . ...

h3,1 h3,2 h3,3
. . . . . . ...

... . . . . . . . . . . . . 0

... . . . . . . . . . hn−1,n

hn,1 · · · · · · hn,n−2 hn,n−1 hn,n


where hi,j = 0 if j > i + 1 and hi,i+1 6= 0 for some i. Then for n ≥ 2

perHn = hn,nperHn−1 +
n−1

∑
r=1

(
hn,r

n−1

∏
j=r

hj,j+1perHr−1

)

with perH0 = 1 and perH1 = h1,1” (Kaygısız and Şahin, 2013).

Definition 31 ”Let A =
[
aij
]

be an m× n real matrix with row vectors α1, α2, ..., αm.
We say A is contractible on column (resp. row) k if column (resp. row) k contains exactly

two nonzero entries. Suppose A is contractible on column k with aik 6= 0 6= ajk and

i 6= j. Then the (m− 1)× (n− 1) matrix Aij:k obtained from A by replacing row i with

ajkαi + aikαj and deleting row j and column k is called the contraction of A on column k
relative to rows i and j. If A is contractible on row k with aki 6= 0 6= akj and i 6= j, then

the matrix Ak:ij =
[

AT
ij:k

]T
is called the contraction of A on row k relative to columns

i and j. We say that A can be contracted to a matrix B if either B = A or there exist
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matrices A0, A1, ..., At (t ≥ 1) such that A0 = A, At = B, and Ar is a contraction of

Ar−1 for r = 1, ..., t” (Brualdi and Gibson, 1977).

Lemma 32 ”Let A be a nonnegative integral matrix of order n for n > 1 and let B be a

contraction of A. Then

perA = perB (10)

” (Brualdi and Gibson, 1977).

3.6. Number Sequences

Definition 33 ”The well-known Fibonacci sequence {F (n)} is defined by the recurrence

relation

F (n) = F (n− 1) + F (n− 2) , (11)

with F (0) = 0 and F (1) = 1 for n ≥ 2” (Koshy, 2001).

The number F (n) is called nth Fibonacci numbers. The Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

for n = 0, 1, 2, .... The Fibonacci sequence is named as A000045 (The OEIS, 2013).

Definition 34 ”The k-generalized Fibonacci sequence {gk (n)} is defined as

gk (1) = . . . = gk (k− 2) = 0, gk (k− 1) = gk (k) = 1

and for n > k ≥ 2,

gk (n) = gk (n− 1) + gk (n− 2) + ... + gk (n− k)

” (Lee et al., 1997).

”{gk (n)} is also called k- Fibonacci sequence. We call gk (n) the nth k-Fibonacci

31



number. By the definition of the k-Fibonacci sequence, we know that

gk (k + 1) = gk (k) + gk (k− 1)

= 1 + 1 = 2,

gk (k + 2) = gk (k + 1) + gk (k) + gk (k− 1)

= 2 + 1 + 1 = 22,

gk (k + 3) = gk (k + 2) + gk (k + 1) + gk (k) + gk (k− 1)

= 22 + 2 + 1 + 1 = 23,
...

gk (2k− 2) = gk (2k− 3) + . . . + gk (k) + gk (k− 1)

= 2k−3 + . . . + 2 + 1 + 1 = 2k−2,

gk (2k− 1) = gk (2k− 2) + . . . + gk (k) + gk (k− 1)

= 2k−2 + 2k−3 + . . . + 2 + 1 + 1 = 2k−1.

Thus, we have that gk (j) = 2j−k for j = k, k + 1, . . . , 2k − 1. For example, if k = 2,
then {g2 (n)} is the Fibonacci sequence. If k = 5, then the 5-Fibonacci sequence is

0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3535, 6930, . . .

” (Lee et al., 1997).
”Let E be the 1× (k− 1)- matrix all of whose entries are ones and let in be the identity

matrix of order n. For any k ≥ 2, the fundamental recurrence relation, n > k,

gk (n) = gk (n− 1) + gk (n− 2) + ... + gk (n− k)

can be defined by the vector recurrence relation
gk (n + 1)
gk (n + 2)

...
gk (n + k)

 = Qk


gk (n)

gk (n + 1)
...

gk (n + k− 1)

 (12)

where

Qk =

(
0 Ik−1

1 E

)
.
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By applying (12), we have
gk (n + 1)
gk (n + 2)

...
gk (n + k)

 = Qn
k


gk (1)
gk (2)

...
gk (k)


” (Lee et al, 1997).

One can find the relationships between the k-Fibonacci numbers and their associated
matrices (Lee and Lee, 1995; Lee et al, 1997; Miles, 1960).

Definition 35 ”The well-known Lucas sequence {L (n)} is defined by the recurrence

relation, for n ≥ 2
L (n) = L (n− 1) + L (n− 2) ,

with L (0) = 2 and L (1) = 1” (Koshy, 2001).

The number L (n) is called nth Lucas numbers. The Lucas numbers are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ...

for n = 0, 1, 2, .... The Lucas sequence is named as A000032 (The OEIS, 2013).
The Lucas numbers are related to the Fibonacci numbers by the identities

L (n) = F (n− 1) + F (n + 1) = F (n) + 2F (n− 1) .

The k-generalized Lucas sequence {lk (n)}is defined by

lk (n) = gk (n− 1) + gk (n + k− 1) .

”{lk (n)} is also called k-Lucas sequence. We call lk (n) the nth k-Lucas number.
Then we have lk (j) = 2j−1, j = 1, 2, . . . , k− 1, and lk (k) = 1 + 2k−1. If k = 2, then
l2 (n) = L (n) . For example, if k = 5, then the 5-Lucas sequence is

1, 2, 4, 8, 17, 32, 63, 124, 244, 480, 943, 1854, 3645, 7166, . . .

” (Lee, 2000).

Lemma 36 ”For n > k,

lk (n) = lk (n− 1) + lk (n− 2) + ... + lk (n− k)

” (Lee, 2000).
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Proof. See (Lee, 2000).

Remark 37 The following well-known identity gives the relationship between Lucas num-

bers and Fibonacci numbers. For n ≥ 1,

L (n) = F (n− 1) + F (n + 1) = F (n) + 2F (n− 1) . (13)

Definition 38 ”The well-known Pell sequence {P (n)} is defined by the recurrence rela-

tion, for n ≥ 2
P (n) = 2P (n− 1) + P (n− 2)

with P (0) = 0 and P (1) = 1” (Horadam, 1988).

The number P (n) is called nth Pell number. The Pell numbers are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, ... .

for n = 0, 1, 2, .... The Pell sequence is named as A000129 (The OEIS, 2013).

Definition 39 ”The generalized k-Pell sequence
{

Pk (n)
}

is defined as

Pk (1− k) = 1, Pk (2− k) = . . . = Pk (−1) = Pk (0) = 0

and for n > k ≥ 2

Pk (n) = 2Pk (n− 1) + Pk (n− 2) + ... + Pk (n− k)

” (Kılıc, 2008).

”First few terms of the generalized k-Pell numbers are as the following:

Pk (1) = 2Pk (0) + Pk (−1) + ... + Pk (1− k) = 1,

Pk (2) = 2Pk (1) + Pk (0) + ... + Pk (2− k) = 2 (1) = 2,

Pk (3) = 2Pk (2) + Pk (1) + ... + Pk (3− k) = 2 (2) + 1 = 5,

Pk (4) = 2Pk (3) + Pk (2) + ... + Pk (4− k) = 2 (5) + 2 + 1 = 13,

Pk (5) = 2Pk (4) + Pk (3) + ... + Pk (5− k) = 2 (13) + 5 + 2 + 1 = 34, ... .

It is clearly seen that
{

Pk (n)
}

is the usual Pell sequence {P (n)} for k = 2” (Kılıc,
2008).
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Definition 40 ”The well-known Jacobsthal sequence {J (n)} is defined by the recurrence

relation, for n ≥ 2
J (n) = J (n− 1) + 2J (n− 2) (14)

with J (0) = 0 and J (1) = 1” (Horadam, 1988).

The number J (n) is called nth Jacobsthal number. The Jacobsthal numbers are

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, ... .

for n = 0, 1, 2, .... The Jacobsthal sequence is named as A001045 (The OEIS, 2013).

Definition 41 ”The Padovan sequence {P (n)} is defined by the recurrence relation, for

n > 2
P (n) = P (n− 2) + P (n− 3)

with P (0) = P (1) = P (2) = 1” (Shannon et al, 2006).

The number P (n) is called nth Padovan number. The Padovan numbers are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, ... .

for n = 0, 1, 2, .... The Padovan sequence is named as A000931 (The OEIS, 2013).

Definition 42 ”The Perrin sequence {R (n)} is defined by the recurrence relation, for

n > 2
R (n) = R (n− 2) + R (n− 3)

with R (0) = 3, R (1) = 0 R (2) = 2” (Adams and Shanks, 1982).

The number R (n) is called nth Perrin number. The Perrin numbers are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, ... .

for n = 0, 1, 2, .... The Perrin sequence is named as A001608 (The OEIS, 2013).

Definition 43 ”The (k, α)-sequence
{

sk
α (n)

}
is defined as

sk
α (n) = a1 f k (n + k− 2) + a2 f k (n + k− 3) + . . . + am f k (n + k−m− 1)

=
m

∑
i=1

ai f k (n− 1 + k− i) ,

for a fixed k ≥ 2, n ≥ 1 and α = (a1, a2, . . . , am) ∈ Rm, where R is a ring” (Shiu et al,

2003).

35



The number sk
α (n) is called nth (k, α)-number. Note that, if α = (1, 1, . . . , 1) ∈ Zk, then

sk
α (n) is the (n− 1 + k)th k-Fibonacci number gk (n− 1 + k) ; if α = (1, 0, . . . , 0, 1)
∈ Zk+1, then sk

α (n) is the (n− 1)st k-Lucas number lk (n− 1) .

Definition 44 ”The Mersenne sequence {M (n)} is defined by the recurrence relation,

for n > 2
M (n) = 2M (n− 1) + 1 (15)

with initial conditions M (0) = 0 and M (1) = 1” (Catarino et al, 2016).

Since this recurrence is inhomogeneous, substituting n by n + 1, we obtain the new
form

M (n + 1) = 2M (n) + 1. (16)

Subtracting (15) to (16), we have that M (n + 1)−M (n) = 2M (n)+ 1− 2M (n− 1)−
1 and then

M (n + 1) = 3M (n)− 2M (n− 1) ,

other form for the recurrence relation of Mersenne sequence, with initial conditions M (0) =
0 and M (1) = 1.

The number M (n) is called nth Mersenne number. The Mersenne numbers are

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047... .

for n = 0, 1, 2, .... The Mersenne sequence is named as A000225 (The OEIS, 2013).
The first few values of these famous integer sequences can be seen at the following

table:

Table 3.1. Some famous integer sequences and their several values

n 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
F (n) 0 1 1 2 3 5 8 13 21 34 55 89 144 · · ·
L (n) 2 1 3 4 7 11 18 29 47 76 123 199 322 · · ·
P (n) 0 1 2 5 12 29 70 169 408 985 2378 5741 13860 · · ·
J (n) 0 1 1 3 5 11 21 43 85 171 341 683 1365 · · ·
P (n) 1 1 1 2 2 3 4 5 7 9 12 16 21 · · ·
R (n) 3 0 2 3 2 5 5 7 10 12 17 22 29 · · ·
M (n) 0 1 3 7 15 31 63 127 255 511 1023 2047 4095 · · ·
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4. SOME SPECIAL INTEGER SEQUENCES RELATED
TO BIPARTITE GRAPHS

4.1. Jacobsthal Numbers and Associated Bipartite Graphs

In this section, we consider a bipartite graph. Then we show that the numbers of per-
fect matchings of this graph generate the Jacobsthal numbers by the contraction method.
Finally, we give a Maple procedure in order to calculate the numbers of perfect matchings
of above-mentioned bipartite graph.

Theorem 45 Let G(An) be the bipartite graph with bipartite adjacency matrix An has

the form

An =



1 0 1 0 · · · 1 0 · · ·
1 1 1 1 · · · · · · 1 1
0 1 1 1 1 · · · · · · 1
... 0 1 . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . 1 1 1
... 0 1 1 1
0 · · · · · · · · · · · · 0 1 1


. (17)

Then, the number of perfect matchings of G(An) is nth Jacobsthal number equal to J (n).

Proof. If n = 3; then we have

perA3 = per

 1 0 1
1 1 1
0 1 1

 = 3 = J (3) .

Let Ak
n be the kth contraction of An, 1 ≤ k ≤ n− 2. Since the definition of the matrix

An; the matrix An can be contracted on column 1 so that

A1
n =



1 2 1 2 · · · · · · 1 2
1 1 1 1 · · · · · · 1 1

1 1 1 1 · · · · · · 1

1 . . . . . . . . . ...
. . . . . . . . . . . . ...

. . . 1 1 1
1 1 1

1 1


(n−1)×(n−1)
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Since the matrix A1
n can be contracted on column 1 and J (3) = 3 and J (2) = 1

A2
n =



3 2 3 2 · · · · · · 3 2
1 1 1 1 · · · · · · 1 1

1 1 1 1 · · · · · · 1

1 . . . . . . . . . ...
. . . . . . . . . . . . ...

. . . 1 1 1
1 1 1

1 1


(n−2)×(n−2)

=



J (3) 2J (2) 3 2 · · · · · · 3 2
1 1 1 1 · · · · · · 1 1

1 1 1 1 · · · · · · 1

1 . . . . . . . . . ...
. . . . . . . . . . . . ...

. . . 1 1 1
1 1 1

1 1


(n−2)×(n−2)

Furthermore, the matrix A2
n can be contracted on column 1 and J (4) = 5 so that

A3
n =



5 6 5 6 · · · · · · 5 6
1 1 1 1 · · · · · · 1 1

1 1 1 1 · · · · · · 1

1 . . . . . . . . . ...
. . . . . . . . . . . . ...

. . . 1 1 1
1 1 1

1 1


(n−3)×(n−3)

=



J (4) 2J (3) 5 6 · · · · · · 5 6
1 1 1 1 · · · · · · 1 1

1 1 1 1 · · · · · · 1

1 . . . . . . . . . ...
. . . . . . . . . . . . ...

. . . 1 1 1
1 1 1

1 1


(n−3)×(n−3)
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Continuing this process, we have

Ak
n =



J (k + 1) 2J (k) · · · J (k + 1) 2J (k) · · · · · · · · ·
1 1 1 1 · · · · · · 1 1

1 1 1 1 · · · · · · 1

1 . . . . . . . . . ...
. . . . . . . . . . . . ...

. . . 1 1 1
1 1 1

1 1


(n−k)×(n−k)

for 3 ≤ k ≤ n− 4. Hence,

An−3
n =

 J (n− 2) 2J (n− 3) J (n− 2)
1 1 1

1 1


3×3

which, by contraction of An−3
n on column 1, gives

An−2
n =

(
J (n− 1) 2J (n− 2)

1 1

)
2×2

By applying equation(10), we obtain perAn = perAn−2
n = J (n− 1) + 2J (n− 2) and

by equation (14), we have J (n) = J (n− 1) + 2J (n− 2) . So that perAn = J (n),
which is desired.

Example 46 Let G (A4) be a bipartite graph whose bipartite adjacency matrix is A4

given by (17) for n = 4. Then the bipartite graph G (A4) can be seen as:

and its perfect matchings can be given as:
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4.1.1. Maple procedure

The following Maple procedure calculates the numbers of perfect matchings of bipar-
tite graph G(An) given in Theorem 45.

> restart:
with(LinearAlgebra):
permanent:=proc(n)
local i, j, r, f , A;
f := (i, j)−>piecewise(i = 1 and jmod2 = 1, 1, i>1 and j− i>− 2, 1, 0);
A:=Matrix(n, n, f ) :
for r from 0 to n− 2 do
print(r,A):
for j from 2 to n− r do
A[1, j] := A[2, 1] ∗ A[1, j] + A[1, 1] ∗ A[2, j] :
od:
A:=DeleteRow(DeleteColumn(Matrix(n− r, n− r, A), 1), 2):
od:
print(r,eval(A)):
end proc:with(LinearAlgebra):
permanent(n);
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4.2. Bipartite Graphs Associated with Circulant Matrices

In this section, we firstly introduce two lemmas related to bipartite graphs associated
with Fibonacci numbers. After that, we define a bipartite graph associated with n ×
n (0, 1)-circulant matrix whose the numbers of perfect matchings generate the Lucas
numbers. Finally, we give some Maple procedures in order to calculate the numbers of
perfect matchings of above-mentioned bipartite graph.

Lemma 47 Let G(Un) be the bipartite graph with bipartite adjacency matrix Un has the

form

Un =



1 0 · · · 0 0 0 1

1 1 0 . . . . . . 0

1 1 1 . . . . . . 0

0 1 1 . . . . . . 0
... . . . . . . . . . . . . 0

...
... . . . . . . . . . . . . 1 0
0 · · · · · · 0 1 1 1


n×n

. (18)

Then, the number of perfect matchings of G(Un) is F (n) + 1, where F (n) is nth Fi-

bonacci number.

Proof. Let Uk
n be the kth contraction of Un, 1 ≤ k ≤ n− 3. Since the definition of the

matrix Un; the matrix Un can be contracted according to last column so that

U1
n =



1 0 · · · 0 0 1 1

1 1 0 . . . . . . 0

1 1 1 . . . . . . 0

0 1 1 . . . . . . 0
... . . . . . . . . . . . . 0

...
... . . . . . . . . . . . . 1 0
0 · · · · · · 0 1 1 1


(n−1)×(n−1)

.

Since the matrix U1
n can be contracted according to last column and F (3) = 2 and

F (2) = 1

42



U2
n =



1 0 · · · 0 0 1 2

1 1 0 . . . . . . 0

1 1 1 . . . . . . 0

0 1 1 . . . . . . 0
... . . . . . . . . . . . . 0

...
... . . . . . . . . . . . . 1 0
0 · · · · · · 0 1 1 1


(n−2)×(n−2)

=



1 0 · · · 0 0 F (2) F (3)

1 1 0 . . . . . . 0

1 1 1 . . . . . . 0

0 1 1 . . . . . . 0
... . . . . . . . . . . . . 0

...
... . . . . . . . . . . . . 1 0
0 · · · · · · 0 1 1 1


(n−2)×(n−2)

.

Furthermore, the matrix U2
n can be contracted according to last column so that

U3
n =



1 0 · · · 0 0 F (3) F (4)

1 1 0 . . . . . . 0

1 1 1 . . . . . . 0

0 1 1 . . . . . . 0
... . . . . . . . . . . . . 0

...
... . . . . . . . . . . . . 1 0
0 · · · · · · 0 1 1 1


(n−3)×(n−3)

.

Continuing this process, we have

Uk
n =



1 0 · · · 0 0 F (k) F (k + 1)

1 1 0 . . . . . . 0

1 1 1 . . . . . . 0

0 1 1 . . . . . . 0
... . . . . . . . . . . . . 0

...
... . . . . . . . . . . . . 1 0
0 · · · · · · 0 1 1 1


(n−k)×(n−k)
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for 1 ≤ k ≤ n− 3. Hence,

Un−3
n =

 1 F (n− 3) F (n− 2)
1 1 0
1 1 1


3×3

which, by contraction of Un−3
n according to last column, gives

Un−2
n =

(
F (n− 2) + 1 F (n− 2) + F (n− 3)

1 1

)
2×2

=

(
F (n− 2) + 1 F (n− 1)

1 1

)
2×2

.

By applying equation (10), we obtain perUn = perUn−2
n = F (n− 1) + F (n− 2) + 1

and by equation (11), we have F (n) = F (n− 1)+ F (n− 2) . So that perUn = F (n)+
1, which is desired.

Example 48 Let G (U4) be a bipartite graph whose bipartite adjacency matrix is U4

given by (18) for n = 4. Then the bipartite graph G (U4) can be seen as:

and its perfect matchings can be given as:
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Lemma 49 Let G(Vn) be the bipartite graph with bipartite adjacency matrix Vn has the

form

Vn =



1 0 0 · · · 0 0 1
1 1 1 0 · · · · · · 0

0 1 1 1 0
...

... . . . . . . . . . . . . . . . ...

... . . . . . . 1 1 0

... 0 1 1 1
0 · · · · · · · · · 0 1 1


n×n

. (19)

Then, the number of perfect matchings of G(Vn) is F (n) + 1, where F (n) is nth Fi-

bonacci number.

Proof. Let Vk
n be the kth contraction of Vn, 1 ≤ k ≤ n− 3. Since the definition of the

matrix Vn; the matrix Vn can be contracted on column 1 so that

V1
n =



1 1 0 · · · 0 0 1
1 1 1 0 · · · · · · 0

0 1 1 1 0
...

... . . . . . . . . . . . . . . . ...

... . . . . . . 1 1 0

... 0 1 1 1
0 · · · · · · · · · 0 1 1


(n−1)×(n−1)

.

Since the matrix V1
n can be contracted on column 1 and F (3) = 2 and F (2) = 1
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V2
n =



2 1 0 · · · 0 0 1
1 1 1 0 · · · · · · 0

0 1 1 1 0
...

... . . . . . . . . . . . . . . . ...

... . . . . . . 1 1 0

... 0 1 1 1
0 · · · · · · · · · 0 1 1


(n−2)×(n−2)

=



F (3) F (2) 0 · · · 0 0 1
1 1 1 0 · · · · · · 0

0 1 1 1 0
...

... . . . . . . . . . . . . . . . ...

... . . . . . . 1 1 0

... 0 1 1 1
0 · · · · · · · · · 0 1 1


(n−2)×(n−2)

.

Furthermore, the matrix V2
n can be contracted on column 1 so that

V3
n =



F (4) F (3) 0 · · · 0 0 1
1 1 1 0 · · · · · · 0

0 1 1 1 0
...

... . . . . . . . . . . . . . . . ...

... . . . . . . 1 1 0

... 0 1 1 1
0 · · · · · · · · · 0 1 1


(n−3)×(n−3)

.

Continuing this process, we have

Vk
n =



F (k + 1) F (k) 0 · · · 0 0 1
1 1 1 0 · · · · · · 0

0 1 1 1 0
...

... . . . . . . . . . . . . . . . ...

... . . . . . . 1 1 0

... 0 1 1 1
0 · · · · · · · · · 0 1 1


(n−k)×(n−k)
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for 1 ≤ k ≤ n− 3. Hence,

Vn−3
n =

 F (n− 2) F (n− 3) 1
1 1 1
0 1 1


3×3

which, by contraction of Vn−3
n on last column, gives

Vn−2
n =

(
F (n− 2) + F (n− 3) F (n− 2) + 1

1 1

)
2×2

=

(
F (n− 1) F (n− 2) + 1

1 1

)
2×2

.

By applying equation (10), we obtain perVn = perVn−2
n = F (n− 1) + F (n− 2) + 1

and by equation (11), we have F (n) = F (n− 1) + F (n− 2) . So that perVn = F (n) +
1, which is desired.

Example 50 Let G (V4) be a bipartite graph whose bipartite adjacency matrix is V4

given by (19) for n = 4. Then the bipartite graph G (V4) can be seen as:

and its perfect matchings can be given as:
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Theorem 51 Let G(Wn) be the bipartite graph whose bipartite adjacency matrix is the

(0, 1)-circulant matrix Wn as the following

Wn =



1 1 0 · · · · · · 0 1
1 1 1 0 0

0 1 1 . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . 1 1 0
0 0 1 1 1
1 0 · · · · · · 0 1 1


n×n

. (20)

Then, the number of perfect matchings of G(Wn) is L (n) + 2, where L (n) is nth Lucas

number.

Proof. If n = 4; then we have

perW4 = per


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


= per

 1 1 0
1 1 1
0 1 1

+ per

 1 0 1
1 1 1
0 1 1

+ per

 1 0 1
1 1 0
1 1 1


= 3 + 3 + 3 = 9 = L (4) + 2.

By applying the Laplace expansion for permanent according to first column of W4, we
get

perWn = perF(n,2) + perUn−1 + perVn−1,

where F(n,2), Un and Vn are respectively the matrices given by (1), (18) and (19). Taking
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into account (2), Lemma (47) and Lemma (49), we get the last equation as

perWn = F (n) + F (n− 1) + 1 + F (n− 1) + 1

F (n + 1) + F (n− 1) + 2.

The result follows by using (13).

Example 52 Let G (W4) be a bipartite graph whose bipartite adjacency matrix is W4

given by (20) for n = 4. Then the bipartite graph G (W4) can be seen as:

and its perfect matchings can be given as:
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4.2.1. Maple procedure

Procedure A.

The following Maple procedure calculates the numbers of perfect matchings of bipar-
tite graph G (Un) given in Lemma 47.

> restart:
with(LinearAlgebra):
permanent:=proc(n)
local i, j, r, f , U;
f := (i, j)−>piecewise(j− i = 0, 1, j− i = −1, 1,

j− i = −2, 1, j− i = n− 1, 1, 0);
U:=Matrix(n, n, f ) :
for r from 0 to n− 2 do
print(r, U) :
for j from 1 to n− r do
U[1, j] := U[n− r, n− r] ∗U[1, j] + U[1, n− r] ∗U[n− r, j] :
od:
U:=DeleteRow(DeleteColumn(Matrix(n− r, n− r, U), n− r), n− r) :
od:
print(r,eval(U)):
end proc:with(LinearAlgebra):
permanent(n);
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Procedure B.

The following Maple procedure calculates the numbers of perfect matchings of
bipartite graph G (Vn) given in Lemma 49.

>restart:
with(LinearAlgebra):
permanent:=proc(n)
local i, j, r, f , V;
f := (i, j)−>piecewise(j− i = 0, 1, i>1 and j− i = 1, 1,

j− i = −1, 1, j− i = n− 1, 1, 0);
V:=Matrix(n, n, f ) :
for r from 0 to n− 2 do
print(r, V) :
for j from 2 to n− r do
V[1, j] := V[2, 1] ∗V[1, j] + V[1, 1] ∗V[2, j] :
od:
V:=DeleteRow(DeleteColumn(Matrix(n− r, n− r, V), 1), 2) :
od:
print(r,eval(V)):
end proc:with(LinearAlgebra):
permanent(n);
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5. CONCLUSION

Permanents have many applications in physics, chemistry, electrical engineering, graph
theory etc. Some of the most important applications of permanents are via graph theory.
A more difficult problem with many applications is the enumeration of perfect match-
ings of a graph. Besides, ”the enumeration or actual construction of perfect matching of
a bipartite graph has many applications, for example, in maximal flow problems and in
assignment and scheduling problems arising in operational research” (Minc, 1978). The
numbers of perfect matchings of bipartite graphs also play a significant role in organic
chemistry (Wheland, 1953). Fibonacci, Lucas and Jacobsthal numbers belong to a large
family of positive integers. They have many interesting properties and applications to al-
most every field of science and art. They continue to provide invaluable opportunities for
exploration, and contribute handsomely to the beauty of mathematics, especially number
theory (Koshy, 2001; Koshy, 2011). Therefore, Many authors have investigated the rela-
tionship between the well-known integer sequences and the number of perfect matchings
in bipartite graphs. In relation to that they found many considerable results. We speak of
them in Chapter 2. Consequently, we have shown that the numbers of perfect matchings
in some bipartite graphs are equal to Fibonacci, Lucas and Jacobsthal numbers. This re-
sults are also very significant because linear algebra, graph theory and number theory are
used together.
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