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Bu tezde, iki pargali komguluk matrisleri 7 X n (0, 1) —matrisler olan bazi belli tip iki
parcal1 graflar1 ele aldik. Sonra bu iki parcali graflarin miikkemmel eslemeleri sayilarinin
cok iyi bilinen say1 dizilerine (6rnegin; Fibonacci Lucas Jacobsthal) esit oldugunu gosterdik.
Daha sonra, ele aldigimiz bu graflar ve onlarin miikemmel eslemeleriyle ilgili bazi 6rnekler
verdik. Son olarak, bu iki parcali graflarin milkemmel eslemeleri sayilarin1 hesaplamak

icin Maple 2016 prosediirleri sunduk.
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cency matrices are the n X n (0, 1) —matrices. Then we show that the numbers of perfect
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to calculate the numbers of perfect matchings of the bipartite graphs.
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1. INTRODUCTION

Bipartite graph is a graph in which the vertices can be divided into two parts such that no
two vertices in the same part are joined by an edge. The investigation of the properties
of bipartite graphs was begun by Konig. His work was motivated by an attempt to give a
new approach to the investigation of matrices on determinants of matrices. As a practical
matter, bipartite graphs form a model of the interaction between two different types of
objects. For example; social network analysis, railway optimization problem, marriage
problem etc (Asratian et al., 1998).

A perfect matching (1-factors) of a graph is a matching ( i.e., an independent edge
set ) in which every vertex of the graph is incident to exactly one edge of the matching.
”The enumeration or actual construction of perfect matching of a bipartite graph has many
applications, for example, in maximal flow problems and in assignment and scheduling
problems arising in operational research” (Minc, 1978).

The number of perfect matchings of bipartite graphs also plays a significant role in organic
chemistry (Wheland, 1953).
Fibonacci, Lucas and Jacobsthal numbers which are respectively defined by the recur-

rence relation

= Fn—-1)+F(n-2), F(0) =0 and F (1)
L(n—1)+L(n—-2), L(0)=2 and L(1)
— J-1)+2/(1-2),  J(0) =0 andJ(1)

1
1,
1

—~ —~ VS
= = =
— — —
I

7

for n > 2, belong to a large family of positive integers. They have many interesting

properties and applications to almost every field of science and art. They continue to con-

tribute significant innovations for investigations, and reveal the niceness of mathematics

in many fields, particularly number theory (Koshy, 2001; Koshy, 2011; Horadam, 1988).
”The permanent of an 7 X 7 matrix A = (ai]-) is defined by

n
per (A) = Z Hﬂia(z’)
eSS, i=1
where the summation extends over all permutations ¢ of the symmetric group S;. The
permanent of a matrix is analogous to the determinant, where all of the signs used in the
Laplace expansion of minors are positive” (Minc, 1978). Permanents have many appli-
cations in physics, chemistry, electrical engineering, graph theory etc. Some of the most

important applications of permanents are via graph theory.

A more difficult problem with many applications is the enumeration of perfect match-



ings of a graph. Therefore, counting the number of perfect matchings in bipartite graphs

has been very popular problem.

1.1. Structure of the Thesis

The rest of the thesis is structured as follows.

In Chapter [2] we present a discussion of previously published work that I did in this
area in conjunction with other authors.

In Chapter 3| we give the fundamental definitions, structures and theorems which are
necessary to better understand the topics contained within this text.

In Chapter 4.1} we consider a bipartite graph. Then we show that the numbers of per-
fect matchings of this graph generate the Jacobsthal numbers by the contraction method.
Finally, a Maple procedure is presented in order to compute the numbers of perfect match-
ings of the graph.

In Chapter [4.2] we firstly introduce two lemmas related to bipartite graphs associated
with Fibonacci numbers. After that, we define a bipartite graph associated with n X
n (0;1)—circulant matrix whose the numbers of perfect matchings generate the Lucas
numbers. Finally, two Maple procedures are presented to compute the numbers of perfect

matchings in these graphs.



2. LITERATURE RESEARCH

The purpose of this chapter is to further motivate the rest of the thesis by presenting a

discussion of previously published work that I did in this area in conjunction with other

authors.
Lee et al. (1997) consider “a bipartite graph G ( ( fi ])> with bipartite adja-
cency matrix is the 7 X n tridiagonal matrix of the form
1 1 0O --- --- 0
1 1 1
o 1 . "o el
Fuay =1 . , (1
. ammec.  lame()
1
0 0
with the entries are
f Loif lj—il<1
J 0, otherwise,

”. Then they obtain “the number of perfect matchings of G (.7: (n,2)> is the (n + 1)st
Fibonacci number F (1 + 1)”. In other words,

perFi o =F(n+1). (2)

They also consider ”a bipartite graph G (.7: (k) ( fi ])) with bipartite adjacency matrix
is the n x n (0,1)—matrix of the form

1 1 -+ - 1 O -+ v ... 0
1 1 1 -+ - 1 0O --- --- 0
0 1 1 1 1 0 .- 0
Foui) = | ol 3)
1
0 0 1 1




with the entries are

1, if —1<|j—i<k-1,
fij =

0, otherwise,

”. Then they obtain “the number of perfect matchings of G (.7-" (n,k)) isgh(n+k—-1),
where gk (n) is the n" k-Fibonacci number” (Lee et al., 1997). This time, they consider
”an another bipartite graph G (Un = (ui/j)) with bipartite adjacency matrix is the n X n
(0,1) —matrix of the form

1 1
0 1
1 0 1 1
U, = ,
1
0 0 1

with the entries are
1, if i=j=1lori=j=n,

Ujj = 1, lf i<j07’j—i:—1,
0, otherwise,

”. Then they obtain “the number of perfect matchings of G (Uy) is the (n + 1)st Fi-
bonacci number F (n + 1)” (Lee et al., 1997).

Lee (2000) considers ”a bipartite graph G ('C(n,Z) = (li,]')> with bipartite adjacency

matrix is the n X n matrix of the form

1 0 1 0 --- 0
1 1 1 0
0 1 0
E 2) — 7
(n,2) 0
1
0 0O 1 1

with the entries are

1, if i=j=1lori=1land j=3,
li,j: 1, lf i>2and ’]—l‘ <1,
0, otherwise,



”. Then he shows that “the number of perfect matchings of G <£(n/2)> is (n—1)st

Lucas number L (n — 1) for n > 3 ”. He also considers “a bipartite graph G (E(n,k)>
with bipartite adjacency matrix ‘C(n,k) = .7:(,1,;{) + Ejjy1 — Z}‘:z Ey; forn > 3, where
F(n) is the matrix in (3) and E; ; denotes the n X n matrix with 1 at the (7, j)-entry and

zeros elsewhere”. Namely,

1 0 -
1 1 1 -+ «+ 1 0 +-- -0
0 1

0 .. A 0 1 1
Then he shows that ”the number of perfect matchings of G <£(n,k)> is Ik (n—1), where
[k (n) is the nt" k-Lucas number” (Lee, 2000). This time, ”he defines the matrix B, as

By = F(n2) + E13 — Ex3 + Exy — E3q

where F,, 5) is the matrix in (1) and E;; denotes the n X n matrix with 1 at the (7, j)-
entry and zeros elsewhere”. Let G (B,,) be the bipartite graph with bipartite adjacency
matrix By,. Then he shows that “the number of perfect matchings of G (B;,) is (n — 1)st
Lucas number L (n — 1)” (Lee, 2000).

Shiu et al. (2003) firstly define the (k, a)-sequences sk (1) . Then they give the fol-
lowing result:

"For a fixed m > 1, suppose n,k > 2 and n > m. Let G <B(n,k)> a bipartite graph
with bipartite adjacency matrix has the form

a1 a» ... m 0 ... 0
1

B =1 0 Fn-12) ,
0

for some elements aq,4ay,...,4, in a ring R.Then the number of perfect matching of
G <B(n,k)> is nth (k, «)-number s]; (n) witha = (ay,ap,...,am)."



Kili¢ and Tagcr (2008a) consider ”a bipartite graph G (V;; = (v;j)) with bipartite

adjacency matrix has the form

1 1 1 1 1

1 1 1 0 0 0

0 1 1 1 0 0
vo= | s o o ]

: 0

0 0 1

with the entries are

— 1, if —1<j—i<lori=1,
v 0, otherwise,

”. Then they obtain “the number of perfect matchings of G (V;)is Y. o F (i) = F(n +2) —
1, where F (n) is the n'" Fibonacci number”. They also consider ”a bipartite graph
G (W,) with bipartite adjacency matrix W,, = V,, +Y,, where Y, denotes the n X n
matrix with —1 at the (1,2)-entry, 1 at the (2, 4)-entry and zeros elsewhere”. Clearly,

1 0 1 1 - --- 1
1 1 1 1 0 --- 0
0 1 1 1 0 --- 0
W, =
0
0 -+« -+ - 0 1

Then for n > 4, they obtain ”that the number of perfect matchings of G (W,,) is /"2 L (i) =
L (n) — 1, where L (n) is the n*" Lucas number (Kilig and Tasc1, 2008a)”.

Kili¢ and Tasc1 (2008b) consider “a bipartite graph G (M(n,k)> with bipartite
adjacency matrix M, ) = F(; k) + Uy k), Where F(; iy is the matrix given by
and U, = (uj) is the n x n (0,1)-matrix with u, ;1,1 = Uk, = 1 and



otherwise 0”. Clearly,

1 1 1 0 0 0
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
o 1 1 -~ 1 1 0 0
My = : o 1 1 -~ 1 1 0 o0 |- @&
0 1 1 1 1 0
0 0 1 1 1 1
[ T R 1 1

Then for n > 3, they obtain that “the number of perfect matchings of G (M(n,k)> is

the n'"* k-Lucas number, [¥ (n)”. They also consider “a bipartite graph G (T(n,k)> with
bipartite adjacency matrix T(,, ) = Fux) + Viux) for 2 < k < n, where F, 1 is
the matrix given by H and Vi, ) = (vy) is the n x n (0,1)-matrix with vy; = 1 if
k+1 < j < n and otherwise 0”. Clearly,

1 1 1 1 -+ -+ 1 1 1
1 1 0 0 0
1 1 1 0 0
0 1 1 1 1

Tin 0o 1 1 1 1 0
: 0 1 1 1

0 0 1
0 0 1 1 1
0 0 1 1

Then they obtain that “the number of perfect matchings of G ( T(n,k)> is the sums of k-
Fibonacci numbers, 2}7:1 gk (j) for n > 3” (Kilig and Tasc1, 2008b). This time, they
consider ”a bipartite graph G <E (n,k)> with bipartite adjacency matrix E, x) = M, x) +
Dy k) for 2 < k < n, where M, 1) is the matrix given by @) and D, ) = (di]-) is the
n x n (0,1)-matrix with d1; = 1if k +1 < j < n and otherwise 0”. Clearly,



1 1 1 1 1 1 1 1
1 1 1 1 0 0 O© 0 0

0o 1 1 1 1 0 0 0 0

o 1 1 -~ 1 1 0 0

Eup) = 0o 1 1 1 1 0 0
0 1 -~ 1 1 0

0 0o 1 1 1 1

0 0 1 1 1

Then they obtain that “the number of perfect matchings of G (E(n,k)> is the sums of
k-Lucas numbers, 2}1:_11 I¥(j) for n > 3” (Kilig and Tasc1, 2008b).

Kili¢ and Stakhov (2009) consider “a bipartite graph G (M(n,p

)> with bipartite adja-
cency matrix M(n,p) = (mij) with m;yq; = m;; = m;;, = 1 for a fixed integer p and

otherwise 0”. Clearly,

1 0 0 1 0 0
1 1 0 0 1 :
0 1 1 0
0 O 1 1 o --- 0 1
Mupy =1 .. . o | )
: . . . .0
0O -«+ -+« -~ 0 0 1 1

Then they obtain that “the number of perfect matchings of G (M(n,p)> is the (1 + 1)st
generalized Fibonacci p-number F,, (n + 1) for n > 3”. They also consider “a bipartite

graph G (T(n,p)) with bipartite adjacency matrix has the form

11 1 e 101

Topy = | O My-1,p) ,




where M(;,_ ) is the matrix of order (n — 1) given by .” Then they obtain that ”the

number of perfect matchings of G (T(n/p)> is the sums of the consecutive generalized
Fibonacci p-numbers, ) I ; F, (i) for n > 3”. (Kilig and Stakhov, 2009).

Akbulak and Oteles (2013) give the following results for the number of perfect match-
ings in bipartite graphs with upper Hessenberg adjacency matrix related to Fibonacci,
Lucas and Padovan numbers.

"Let G(U, = (ui]-)) be a bipartite graph with bipartite adjacency matrix is the n X n
(0,1)-upper Hessenberg matrix defined by

1 0 1 o --- 1 0 1

1 1 0 1 o --- 1 0 1

0 1 1 0 1 o - 1 0 1

" o -~ 0 1 1 0 1 0 -~ 1 0 1 ©
0 0 1 0 1 0 1
0 0 1 1
where
1, if j—i=—-1,
uj=4q 1, if i<jandj—i=0 (mod?2),

0, otherwise.

Then the number of perfect matchings of G(Uy,) is the nth Fibonacci number F (1) for
n > 3” (Akbulak and Oteles, 2013).

"Let G(Vy, = (vjj)) be a bipartite graph with bipartite adjacency matrix is the 1 X 1

(0,1)-upper Hessenberg matrix defined by

1 P |
1

1
0
1
Vi = 0

1
1
0
0

00
where Uy, is the matrix of order (1 — 2) in (6). Then the number of perfect matchings
of G(V,) is the (n — 1)st Lucas number L (n — 1) for n > 3” (Akbulak and Oteles,
2013).

"Let G(W,, = (wij)) be a bipartite graph with bipartite adjacency matrix is the n X n
(0,1)-upper Hessenberg matrix defined by



1 1 0 0 1
1 0 1 0 1 0
Wn: 7
0 0 1 0 1 0 0 1 0
0 0 1 0

where
1, if i=lorj—i=—-1,
wij=4 1, if i<jandj—i=1 (mod3),
0, otherwise.

Then the number of perfect matchings of G(W,,) is the nth Padovan number P (1) for
n > 3”. (Akbulak and Oteles, 2013)

Oteles (2017) gives the following results for the number of perfect matchings in bi-
partite graphs related to the well-known integer sequences (Fibonacci, Lucas i.e.).

"Let G (Hy = (h;j)) (n =2t, t € N) be a bipartite graph with bipartite adjacency

matrix is the n x n (0, 1)-tridiagonal matrix has the form

1 1 0 0
1 0 1
0 1 1 1 :
H, = 1 0 1 . i, (7
1 1 0
1
0 0 1

where

1Loif i =1,

hij=4 1, if i=j=2m—-1(meN),

0, otherwise.

Then the number of perfect matchings of G (Hy) is 17 (Oteles, 2017).
"Let G (Hy) (n =2t+1, t € N) be a bipartite graph with bipartite adjacency ma-

trix H, given by . Then the number of perfect matchings of G (H,) is ”TH” (Oteles,
2017).

"Let G (K, = (k;;)) be a bipartite graph with bipartite adjacency matrix is the n x 1

(0,1)-tridiagonal matrix has the form

10



1 1 0 0
1 0 1
o 1 1 1
Ky = .1 0 1 ,
1 1 1 0
: . . .1
0 -+ --+ -« 0 1 1

where k> = kg4 = 0O, all other terms on the main diagonal are 1, all terms on the sub-
diagonal and super-diagonal are 1 and otherwise k; ; = 0. Then for n > 3, the number of
perfect matchings of G (Kj,) is the (1 — 3)rd Lucas number L (n — 3)” (Oteles, 2017).

"Let G (B, = (bj)) be a bipartite graph with bipartite adjacency matrix is the # x 1

(0, 1)-anti-tridiagonal matrix has the form

0O --- -~ 0 1 1
1 gl
B, — 1 0 ’
0
1
1 0 0

where
b”:{ 1, if l|i+jmod (n+1)] <1,
& 0, otherwise.
Then for n > 2, the number of perfect matchings of G (By,) is the (n 4 1)st Fibonacci
number F (1 +1)” (Oteles, 2017).
"Let G (Dn = (di,j)) be a bipartite graph with bipartite adjacency matrix has the

form
o --- 0 1 0 1
0 1 1 1
oo 10
Dn: 7
1 1 1
1 1 0 0

11



where
1, if i=1and j=n-2,j=n,

dij=9q 1, if |i+jmod (n+1)[c;c, <1,
0, otherwise.
Then for n > 3, the number of perfect matchings of G (Dj,) is the (n — 1)st Lucas
number L (n — 1)” (Oteles, 2017).

"Let G (U, = (u;;)) be a bipartite graph with bipartite adjacency matrix

has the form

1 1 1 1 1
o --- --- 0 1 1 1
1 1 1 0
U, = 1 ,
0 :
1 1 0
0 O
where
1, if i=1andl1<j<n,
wij =1« 1, if |i+jmod (n+1)|c;c, <1,

0, otherwise.

Then for n > 2, the number of perfect matchings of G (Uy,) is F (n+2) — 1, where
F (n) is the n'* Fibonacci number” (Oteles, 2017).

"Let G (V; = (v;,j)) be a bipartite graph with bipartite adjacency matrix has the form

1 1 1 1 0 1
0o 1 1 1 1
0 1 1 1 0
v, — 1 1 0 0 ,
0 1
0
1 1 0 0 0
1 0 0 O
where
1, if i=1and1<j<n-2,j=n,
o 1, if i=2and j=n-23,
T 1 if fidjmod (n+1)]qie, <1,
0, otherwise. -

12



Then for n > 3, the number of perfect matchings of G (V},) is L (n) — 1, where L (n) is

the n'" Lucas number”(@teleg, 2017).

"Let G (P, = (pij)) be a bipartite graph with bipartite adjacency matrix is the 7 x 1

(0,1)-pentadiagonal matrix has the form

1 0 1 0 0
0O 1 0 1
1 0 1
Ph=10 1 1 0
0 1
: | 1 0
0 --- --- 0 1 0 1

Then the number of perfect matchings of G (P,) is obtained as

F(2L) F(23)  ifnisodd,
oy ()P (), if

per
(F (%—l—l))z, if n is even,

where F (n) is the nth Fibonacci number” (Oteles, 2017).

13






3. PRELIMINARIES

In this chapter, we give the fundamental definitions, structures and theorems which

are necessary to better understand the topics contained within this text.

3.1. Special Types of Matrices

3.1.1. Diagonal matrices

”A matrix D = [d;;] € My, (F) is diagonal if d;; = 0 whenever j # i” (Horn and
Johnson, 1990).

3.1.2. Triangular matrices

"A matrix T = [t;;] € Myu(F) is upper triangular if t;; = 0 whenever i > j. If
tij = 0 whenever i > j, then T is said to be strictly upper triangular. ~Analogously,
T is lower triangular (or strictly lower triangular) if its transpose is upper triangular (or
strictly upper triangular). A triangular matrix is either lower or upper triangular; a strictly
triangular matrix is either strictly upper triangular or strictly lower triangular” (Horn and
Johnson, 1990).

3.1.3. Permutation matrices

”A square matrix P is a permutation matrix if exactly one entry in each row and
column is equal to 1 and all other entries are 0. Multiplication by such matrices effects a
permutation of the rows or columns of the matrix multiplied.

For example,

010 1
1 00 2 =11
0 01 3

illustrates how a permutation matrix produces a permutation of the rows (entries) of a
vector: it sends the first entry to the second position, sends the second entry to the first

position, and leaves the third entry in the third position” (Horn and Johnson, 1990).

15



3.1.4. Circulant matrices

”A matrix A € M, (F) of the form

aq an . e ay
an a4y 4az -+ Ap-1

A= | ay1 ap ap --- a4y
a az -+ 4ap @

is a circulant matrix. Each row is the previous row cycled forward one step; the entries in

each row are a cyclic permutation of those in the first. The n X n permutation matrix

o1 0 --- 0
0
e — _ (0 I
1 01,1
1
1 0 .0

is the basic circulant permutation matrix. A matrix A € M, (F) can be written in the

form
n—1

A=Y a1Ch
k=0

(a polynomial in the matrix C,,) if and only if it is a circulant. We have C) = [ = C,
and the coefficients aq, ..., a, are the entries of the first row of A” (Horn and Johnson,
1990).

3.1.5. Toeplitz matrices

”A matrix A = a;; € M, 11(F) of the form

ay 1 ay -- -+ ap
a1 ao ap a2 - dp-1
a2 a1 ap a1 - Ap-2
A=
ai
A-p A-pt1 -+ -+ 41 4

is a Toeplitz matrix. ~ The entry a;; is equal to a;_; for some given sequence

16



a_yn,a_yi1,...,4-1,00,41,42,...,4,—1,4; € C. The entries of A are constant down

the diagonals parallel to the main diagonal. The Toeplitz matrices

01 0
0
B =
1
0 0
and
0 0
1 0
[ —
0 1 0

are called the backward shift and forward shift because of their effect on the elements
of the standard basis {eq,...,e,.1}. Moreover, F = BT and B = F'. A matrix A €

M, 11 can be written in the form

n n
A=Y aF*+ Y aB
k=1 k=0

if and only if it is a Toeplitz matrix. Toeplitz matrices arise naturally in problems involving

trigonometric moments” (Horn and Johnson, 1990).

3.1.6. Hankel matrices

”A matrix A € M,,11(F) of the form

ap a1 an cot an
ap dap - Ay+1
A= ar :
D ay A2n—1
an Odp41 - dn—1  d2n

is a Hankel matrix. Each entry a;; is equal to a;4;_» for some given sequence ao, a1, 4z,
...,02,_1,a2,. The entries of A are constant along the diagonals perpendicular to the
main diagonal. Hankel matrices arise naturally in problems involving power moments”
(Horn and Johnson, 1990).
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3.1.7. Hessenberg matrices

”A matrix A = [a;;] € M,(F) is said to be in upper Hessenberg form or to be an
upper Hessenberg matrix if a;; = O foralli > j+1:

ai *
az1 4a

A= asp
0 Apn—1 Gnn

An upper Hessenberg matrix A is said to be unreduced if all its sub-diagonal entries are
nonzero, that is, if a;, 1,1 = Oforalli = 1,...,n — 1; the rank of such a matrix is at least

n — 1 since its first # — 1 columns are independent” (Horn and Johnson, 1990).

3.1.8. Tridiagonal matrices

”A matrix A = [a;] € M,(F) that is both upper and lower Hessenberg is called

tridiagonal, that is, A is tridiagonal if a;; = 0 whenever |i — j| > 1

a1 bl 0
A= c1 dp
bnfl
0 Ch—1 On

”(Horn and Johnson, 1990).

3.2. Graph Theory

Definition 1 ”A graph G consists of a set of objects V.= {v1,v,,v3, ...} called vertices
(also called points or nodes) and other set E = {ey1, ep,e3, ...} whose elements are called

edges (also called lines or arcs)” (Vasudev, 2006).

Definition 2 "The set V(G) is called the vertex set of G and E(G) is the edge set. Usually
the graph is denoted as G = (V,E)” (Vasudev, 2006).

Let G be a graph and {u, v} an edge of G. Since {u, v} is 2-element set, we may
write {v, u} instead of {u,v}. It is often more convenient to represent this edge by uv
or vu. If e = uw is an edge of a graph G, then we say that u and v are adjacent in G and
that e joins u and v. (We may also say that each that of u and v is adjacent to or with the
other).
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Example 3 A graph G is defined by the sets
V(G) ={u,v,w,x,y,z}

and

E(G) = {uv, uw, wx, xy, xz}.

Now we have the graph in the Figure 3.1 by considering these sets.

Z y u

X A% A%
Figure 3.1. A graph with 6—vertices and 5—edges

Every graph has a diagram associated with it. The vertex u and an edge e are incident with
each other as are v and e. If two distinct edges say e and f are incident with a common

vertex, then they are adjacent edges.

Example 4 In Figure 3.2 the vertices a and b are adjacent but a and c are not. The edges

x and y are adjacent but x and z are not. Although the edges x and z intersect in the

diagram, their intersection is not a vertex of the graph.

C

b d
y

Figure 3.2. A graph with 5—vertices and 7 —edges
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Definition 5 A graph with p-vertices and g-edges is called a (p,q) graph. The (1,0)
graph is called trivial graph” (Vasudev, 2006 ).

Example 6 Let V = {1,2,3,4} and E = {{1,2},{1,3},{3,2},{4,4} }.Then G(V,E)
is a graph.

Example 7 Let V = {1,2,3,4} and E = {{1,5},{2,3}}.Then G(V,E) is not a graph,

asSisnotinV.

ag a, Qg as

Vs as Uy
Figure 3.3. A graph with 5—vertices and 8—edges is called a (5,8) graph

Definition 8 “A directed graph or digraph G consists of a set V of vertices and a set E
of edges such that e € E is associated with an ordered pair of vertices. In other words,
if each edge of the graph G has a direction then the graph is called directed graph”
(Vasudev, 20006).

In the diagram of directed graph, each edge e = (1, v) is represented by an arrow or
directed curve from initial point u of e to the terminal point v. Figure 3.4 is an example
of a directed graph.
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a = b

Figure 3.4. Directed graph

Suppose e = (u,v) is a directed edge in a digraph, then
(1) u is called the initial vertex of e and v is the terminal vertex of e
(i1) e is said to be incident from u and to be incident to v.
(i11) u is adjacent to v, and v is adjacent from u.

Definition 9 “An un-directed graph G consists of set V of vertices and a set E of edges
such that each edge e € E is associated with an unordered pair of vertices. In other
words, if each edge of the graph G has no direction then the graph is called un-directed
graph” (Vasudev, 2006).

We can refer to an edge joining the vertex pair i and j as either (i, j) or (j, ). Figure

3.5 is an example of an undirected graph.

b d

a C

Figure 3.5. Un-Directed graph
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Definition 10 “An edge of a graph that joins a node to itself is called loop or self loop”
(Vasudev, 2006 ).

i.e., aloop is an edge (v;, v;) where v; = v;.

Definition 11 ”A multi-graph is a graph which is permitted to have multiple edges (also
called parallel edges) that is, edges that have the same end nodes” (Vasudev, 2000).

Two edges (v;, v;) and (vf, vy) are parallel edges if v; = vy and v; = v;.

v
v:L@vz 1 Ejvz
Vs V3

Figure 3.6.
Directed multiple

Figure 3.7.
Un-Directed multiple

In Figure 3.6, there are two parallel edges associated with v, and v3. In Figure 3.7,

there are two parallel edges joining nodes v1 and v, and v; and v3 (Vasudev, 2000).

Definition 12 ”A graph in which loops and multiple edges are allowed, is called a pseudo

graph.”
A/ @2 ;u |
\' ' w \% W
' Figure 3.8. Figure 3.9.
Un-Directed Pseudo graph Directed Pseudo graph

(Vasudeyv, 2006).
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Definition 13 ”A graph which has neither loops nor multiple edges. i.e., where each edge
connects two distinct vertices and no two edges connect the same pair of vertices is called

a simple graph” (Vasudev, 2000).

Figure 3.4 and 3.5 represents simple un-directed and directed graph because the graphs

do not contain loops and the edges are all distinct.

Definition 14 ”A graph with finite number of vertices as well as a finite number of edges

is called a finite graph. Otherwise, it is an infinite graph” (Vasudev, 2000).

Definition 15 ”The number of edges incident on a vertex v; with self-loops counted twice
(is called the degree of a vertex v; and is denoted by deg g (v;) or degv; or d(v;)” (Vasudev,
20006).

The degrees of vertices in the graph G and H are shown in Figure 3.10 and 3.11.

vZ v4, v e}
o 3 v, Uy
-
Vs
Vg Vs
L1 51
Figure 3.10. Figure 3.11.

A graph with 6—vertices and 5—edges A graph with 5—vertices and 8 —edges

In G as shown in Figure 3.10, deg(v2) = 2 = degg(v4) = degg(v1),
degi(v3) = 3 and degi(v5) =1

In H as shown in Figure 3.11 degy(v2) = 5, degy(vs) = 3, degy(v3) =5,
degy(v1) = 4 and degp(vs) = 1 (Vasudeyv, 2006).

The degree of a vertex is some times also referred to as its valency (Vasudev, 2006).

3.3. Graphs and Matrices

3.3.1. Incidence matrix

“Let G be a graph with V(G) = {1,...,n} and E(G) = {e1,...,em} . Suppose

each edge of G is assigned an orientation, which is arbitrary but fixed. The (vertex-edge)
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incidence matrix of G, denoted by Q(G), is the n X m matrix defined as follows. The
rows and the columns of Q(G) are indexed by V(G) and E(G), respectively. The (i, j)-
entry of Q(G) is 0 if vertex i and edge e; are not incident, and otherwise it is 1 or —1
according as e; originates or terminates at i, respectively. We often denote Q(G) simply

by Q. Whenever we mention Q(G) it is assumed that the edges of G are oriented” (Bapat,
2010).

Example 16 Consider a graph as the following.

-11 -1 0 0 O
1 0 0 -1 0 O
Q= 0O -1 0 1 0
0O 0 1 0 -1
o 0 0 1 -1 1

3.3.2. Adjacency matrix

“Let G be a graph with V(G) = {1,...,n} and E(G) = {eq,...,en} . The adja-
cency matrix of G, denoted by A(G), is the n X n matrix defined as follows. The rows
and the columns of A(G) are indexed by V(G). If i # j then the (i, j)-entry of A(G)
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is 0 for vertices i and j non-adjacent, and the (i, j)-entry is 1 for i and j adjacent. The
(i,1)-entry of A(G)is0fori =1,...,n. We often denote A(G) simply by A” (Bapat,
2010).

Example 17 Consider a graph G as the following

Vq Vs Vs
-

%) U3

Then its adjacency matrix is given A (G) as

S

~—~

)

N—

Il
O = == O
S O Rk O =
T Y s N S G WY
_, O Rk O -
O = = O O

Clearly, A is a symmetric matrix with zeros on the diagonal. For i # j, the principal

sub-matrix of A formed by the rows and the columns 7, ] is the the zero matrix if i < j

01
and otherwise it equals .

10
3.3.3. Laplacian matrix

“Let G be a graph with V(G) = {1,...,n} and E(G) = {ey,...,em} . The Lapla-
cian matrix of G, denoted by L(G), is the n x n matrix defined as follows. The rows and
columns of L(G) are indexed by V(G). If i # j then the (i, j)-entry of L(G) is 0 if vertex
i and j are not adjacent, and it is —1 if i and j are adjacent. The (i,i)-entry of L(G) is d;,
the degree of the vertex i,i = 1,2,...,n ”(Bapat, 2010).

“Let D(G) be the diagonal matrix of vertex degrees. If A(G) is the adjacency matrix
of G, then note that L(G) = D(G) — A(G)” (Bapat, 2010). “Suppose each edge of G

is assigned an orientation, which is arbitrary but fixed. Let Q(G) be the incidence matrix
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of G. Then observe that L(G) = Q(G)Q(G)’. This can be seen as follows. The rows
of Q(G) are indexed by V(G). The (i,])-entry of Q(G)Q(G)’ is the inner product of
the rows i and j of Q(G). If i = j then the inner product is clearly d;, the degree of the
vertex i. If i # j, then the inner product is —1 if the vertices i and j are adjacent, and zero
otherwise” (Bapat, 2010).

Example 18 Consider a graph G as the following

%1 (2] Usg
-

- -

U5 V3 Ve

Then its Laplacian matrix is given by L(G) as

3 -1 0 -1 -1
-1 3 -1 0 -1
0O -1 2 0 -1
-1 0 0 2 -1
-1 -1 -1 -1 5 -1
o 0 0 0 -1 1

o O O O

3.4. Bipartite Graph and Perfect Matching

Definition 19 "“A bipartite graph G is a graph whose vertex set V can be partitioned into
two subsets Vi and V, such that every edge of G joins a vertex in V1 and a vertex in V.
In other words, there are no edges which connect two vertices in V1 or in V" (Diestel,
2005).

Example 20 Figure 3.12 can be given as an example for a bipartite graph.
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Figure 3.12. Bipartite Graph

Bipartite graphs have a huge of applications in modern science. For example;

e When modeling relations between two different classes of objects, bipartite graphs
very often arise naturally. For instance, “a graph of football players and clubs, with
an edge between a player and a club if the player has played for that club, is a
natural example of an affiliation network, a type of bipartite graph used in social

network analysis” (Wasserman and Faust, 1994).

e Another example where bipartite graphs appear naturally is in the railway optimiza-
tion problem, in which ”the input is a schedule of trains and their stops, and the goal
is to find a set of train stations as small as possible such that every train visits at least
one of the chosen stations. This problem can be modeled as a dominating set prob-
lem in a bipartite graph that has a vertex for each train and each station and an edge

for each pair of a station and a train that stops at that station” (Niedermeier, 2002).

e A third example is in the academic field of numismatics. ”Ancient coins are made
using two positive impressions of the design (the obverse and reverse). The charts
numismatists produce to represent the production of coins are bipartite graphs”
(Bracey, 2012).

Definition 21 Bipartite adjacency matrix ”Let G be a bipartite graph whose vertex set
V is partitioned into two subsets V1 and V, such that |V1| = |V,| = n. We construct
the bipartite adjacency matrix B(G) = (bij) of G as following: bj; = 1 if and only if
G contains an edge from v; € Vi to vj € V3, and otherwise b;j = 0” (Minc, 1978).
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Example 22 Let G be a bipartite graph as the following

| 2 3
X

Y
6 7

Then its bipartite adjacency matrix B(G) is

10
01
B(G) = Y
11

O O = =
S R O O

Definition 23 (Perfect matching) “A perfect matching (or 1-factor) of a graph is a match-
ing in which each vertex has exactly one edge incident on it. Namely, every vertex in the
graph has degree 1”7 (Minc, 1978).

Example 24 Let G be a bipartite graph as the following

U1 Uy
v, u,
Vs Us
Vy U,

Then its perfect matchings can be given as

V1@ ® u, U1 u,
v, - - U, v, U,
Vi@ ® u; Vs Us
Vi1 @ ®u, Va Uy
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Lemma 25 "“The number of perfect matchings of a bipartite graph is equal to the perma-
nent of its bipartite adjacency matrix” (Minc, 1978).

3.5. Permanents

Definition 26 ”“The permanent of an n X n matrix A = (ai]') is defined by

perA = Z Haw(i)

eSS, i=1

where the summation extends over all permutations o of the symmetric group S,,” (Minc,
1978).

”The permanent of a matrix is analogous to the determinant, where all of the signs

used in the Laplace expansion of minors are positive” (Minc, 1978).

Lemma 27 “Let A be an n X n matrix, then
per (PAQ) = perA (8)
for all permutation matrices P and Q of order n” (Brualdi and Cvetkovic, 2009).

Lemma 28 “Let B and C are square matrices. If
4 B 0 ’
X C

perA= perBperC )

then

" (Brualdi and Cvetkovic, 2009).

Lemma 29 "Let {T,, n = 1,2,...} be sequence of tridiagonal matrices of type n X n in
the following form
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tih tip O - .- 0

fh1 trp to3
0 t t
T, = 32 133
0
. tn—l,n
0 o o+ 0ty tun

Then the successive permanents of Ty, are given by the recursive formula:

perTy = ty,
perly = fy1ton + tioto,
perTy = tyuperTy, 1+ ty1ntnn1perly—

" (Kili¢ and Tagci, 2007)

Lemma 30 "Let H, = (hz‘,j) be the n x n Hessenberg matrices in the following form

hi1 hip 0 e .. 0
ha1 hap hos :
h h h
Hn i 3,1 3,2 3,3
. . 0
hn—l,n
hn,l oo hn,n—Z hn,n—l hn,n

where h;; = 0ifj > i+ 1andh;;1 # 0 for some i. Then forn > 2

n—1 n—1
perH, = hy,perH,_1 + Z (hn,r H h]',jﬂperHrl)
r=1 j=r

with perHy = 1 and perHy = hy 1" (Kaygisiz and Sahin, 2013).

Definition 31 "Let A = [a,-]-] be an m X n real matrix with row vectors &1, &y, ..., K.
We say A is contractible on column (resp. row) k if column (resp. row) k contains exactly
two nonzero entries. Suppose A is contractible on column k with a;. # 0 #* aj and
i # j. Then the (m — 1) x (n — 1) matrix A;jx obtained from A by replacing row i with
ajxe; + ao; and deleting row j and column k is called the contraction of A on column k

relative to rows i and j. If A is contractible on row k with ay; # 0 # ayj and i # j, then

T
the matrix Ay.;j = [A;?:k} is called the contraction of A on row k relative to columns

i and j. We say that A can be contracted to a matrix B if either B = A or there exist
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matrices Ag, A1, ..., Ay (t > 1) such that Ag = A, Ay = B, and A, is a contraction of
A,_q forr =1,...,t" (Brualdi and Gibson, 1977).

Lemma 32 “Let A be a nonnegative integral matrix of order n for n > 1 and let B be a

contraction of A. Then
perA = perB (10)

" (Brualdi and Gibson, 1977).

3.6. Number Sequences

Definition 33 "The well-known Fibonacci sequence {F (n)} is defined by the recurrence

relation

Fn)y=F(n—1)+F(n-2), (11)

with F (0) = 0and F (1) = 1 forn > 2” (Koshy, 2001).
The number F (n) is called nth Fibonacci numbers. The Fibonacci numbers are
0,1,1,2,3,5,8,13,21,34,55,89,144, ...
forn =0,1,2,.... The Fibonacci sequence is named as A000045 (The OEIS, 2013).
Definition 34 " The k-generalized Fibonacci sequence {g* (n)} is defined as
g =...=g"k-2)=0gKk-1) =gk =1
and forn >k > 2,
Fmy=dm-1+gm-2)+..+gmn—-k
7 (Lee et al., 1997).

»{¢F (n)} is also called k- Fibonacci sequence. We call g* (1) the n'* k-Fibonacci

31



number. By the definition of the k-Fibonacci sequence, we know that

g k+1) = g (k)+g" (k-1
= 1+1=2,

g k+2) = g(k+1)+g (k) +¢" (k-1)
= 2+1+1=2%

g (k+3) = gk+2)+g k+1)+¢" () +g (k1)
= 224+2+4+1+1=2,

F2k—2) = ¢Fk-3)+...+F k) + ¢ (k—1)
= 234 424141=22

k-1 = gFek—2)+... .+ )+ (k—-1)
= 2240k 3 4 424141 =21

Thus, we have that ¢ (j) = 2/% for j = k,k+1,...,2k — 1. For example, if k = 2,
then {g? (n)} is the Fibonacci sequence. If k = 5, then the 5-Fibonacci sequence is
0,0,0,1,1,2,4,8,16,31, 61,120, 236,464,912,1793, 3535, 6930, . . .

” (Lee et al., 1997).
“Let E be the 1 X (k — 1)- matrix all of whose entries are ones and let in be the identity

matrix of order n. For any k > 2, the fundamental recurrence relation, n > k,

gk(n):gk(n—1)+gk(n—2)+...+gk(n—k)

can be defined by the vector recurrence relation

g (n+1) gk (n)

k k

8 (n.+2) _o | ¢ (n:+ 1) 12
gF(n+k) gF(n+k-1)

where

(0 L
Qk—<1 £ >
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By applying (12)), we have

gF(n+1) gk
kn k
forn | gt
gF(n+k) g~ (k)

” (Lee et al, 1997).
One can find the relationships between the k-Fibonacci numbers and their associated
matrices (Lee and Lee, 1995; Lee et al, 1997; Miles, 1960).

Definition 35 "The well-known Lucas sequence {L (n)} is defined by the recurrence
relation, forn > 2
Ln)=L(n—1)+L(n-2),

with L (0) =2 and L (1) = 1” (Koshy, 2001).
The number L (1) is called n*" Lucas numbers. The Lucas numbers are
2,1,3,4,7,11,18,29,47,76,123,199, 322, ...

forn =0,1,2,.... The Lucas sequence is named as A000032 (The OEIS, 2013).

The Lucas numbers are related to the Fibonacci numbers by the identities
Lny=Fn—-1)+F(n+1)=F(n)+2F(n—1).
The k-generalized Lucas sequence {I¥ (1) }is defined by

Fn)=¢"n-1)+¢n+k-1).

"{1¥(n)} is also called k-Lucas sequence. We call I¥ (1) the n'" k-Lucas number.
Then we have I¥ (j) = 2171, =1,2,...,k—1,and I¥ (k) = 1+ 2F" 1. If k = 2, then
12 (n) = L (n) . For example, if k = 5, then the 5-Lucas sequence is

1,2,4,8,17,32,63,124, 244,480,943, 1854, 3645, 7166, . . .

” (Lee, 2000).

Lemma 36 “"Forn > k,
Fmy=Fm-1)+n-2)+..+1n—k

" (Lee, 2000).
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Proof. See (Lee, 2000). m

Remark 37 The following well-known identity gives the relationship between Lucas num-

bers and Fibonacci numbers. Forn > 1,
L(n)=F(n—-1)+F(n+1)=F(n)+2F(n—1). (13)

Definition 38 “The well-known Pell sequence {P (n)} is defined by the recurrence rela-
tion, forn > 2
P(n)=2P(n—1)+P(n—2)

with P (0) = 0 and P (1) = 1” (Horadam, 1988).
The number P (n) is called nth Pell number. The Pell numbers are
0,1,2,5,12,29,70,169,408, 985, 2378, ... .
forn =0,1,2,.... The Pell sequence is named as A000129 (The OEIS, 2013).
Definition 39 "The generalized k-Pell sequence {Pk (n)} is defined as
PF(1-k)=1,Pr2—k) =...=P"(-1)=P*(0) =0
and forn >k > 2
Pf(n)=2P*(n—1)+P*(n—2)+ ..+ P*(n —k)
" (Kilic, 2008).

"First few terms of the generalized k-Pell numbers are as the following:

Pk(1) = 2P () +PF (-1 + ..+ P (1—k) =1,

PF(2) = 2PF(1) +PF(0)+..+ P 2—k) =2(1) =

PF@3) = 2P*2)+P*(1)+ ..+ P*(3—k)=2(2) +

Pk4) = 2P*@)+P*2)+..+ P 4—k) =2(5)+2+1=13,

P*(5) = 2PF(4)+P*(3)+ ..+ P"(5—k)=2(13) +5+24+1=34,....

It is clearly seen that {P¥ (n)} is the usual Pell sequence {P (n)} for k = 2” (Kilic,
2008).
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Definition 40 "The well-known Jacobsthal sequence { ] (n)} is defined by the recurrence
relation, forn > 2

J(n)=J(n—=1)+2](n—2) (14)
with [ (0) = 0and ] (1) = 1” (Horadam, 1988).

The number ] (1) is called ' Jacobsthal number. The Jacobsthal numbers are
0,1,1,3,5,11,21,43,85,171, 341, 683, 1365, ... .
forn =0,1,2,.... The Jacobsthal sequence is named as A001045 (The OEIS, 2013).

Definition 41 "The Padovan sequence {'P (n)} is defined by the recurrence relation, for
n>?2
Pn)=Pn—-2)+P(n-3)

with P (0) = P (1) = P (2) = 1” (Shannon et al, 2006).
The number P (1) is called n" Padovan number. The Padovan numbers are
1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49, ... .
forn =0,1,2,.... The Padovan sequence is named as A000931 (The OEIS, 2013).

Definition 42 "The Perrin sequence {R (n)} is defined by the recurrence relation, for
n>?2
R(n)=R(n—-2)+R(n—-23)

with R (0) =3, R (1) = 0 R (2) = 2" (Adams and Shanks, 1982).
The number R (n) is called nth Perrin number. The Perrin numbers are
3,0,23,2,5,5,7,10,12,17,22,29,39, ....
forn =0,1,2,.... The Perrin sequence is named as A001608 (The OEIS, 2013).
Definition 43 "The (k, a)-sequence {sk (n)} is defined as
sKm) = mffin+k=2)+aff n+k=3)+...+anff(n+k—m—1)

m
= Yaff(n—-1+k—1i),
i=1
forafixedk >2,n>1and x = (ay,az,...,a,) € R™, where R is a ring” (Shiu et al,
2003).
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The number s’,,‘c (n) is called nth (k, «)-number. Note that, ifa = (1,1,...,1) € 7k then
sk (n) is the (n — 14 k)™ k-Fibonacci number ¢* (n —1+4k); if &« = (1,0,...,0,1)

o

€ ZM1, then sk (n) is the (n — 1)st k-Lucas number [¥ (n — 1).

Definition 44 "The Mersenne sequence {M (n)} is defined by the recurrence relation,
forn > 2
M(n)=2Mn—-1)+1 (15)

with initial conditions M (0) = 0 and M (1) = 1” (Catarino et al, 2016).

Since this recurrence is inhomogeneous, substituting n by n + 1, we obtain the new

form
Mmn+1)=2M(n)+1. (16)
Subtracting (15) to (16), we have that M (n +1) — M (n) = 2M (n) +1—-2M (n — 1) —
1 and then
Mn+1)=3M((n)—-2M(n—1),
other form for the recurrence relation of Mersenne sequence, with initial conditions M (0) =
Oand M (1) = 1.

The number M (n) is called n*" Mersenne number. The Mersenne numbers are
0,1,3,7,15,31,63,127,255,511,1023,2047... .

forn =0,1,2,.... The Mersenne sequence is named as A000225 (The OEIS, 2013).
The first few values of these famous integer sequences can be seen at the following
table:

Table 3.1. Some famous integer sequences and their several values

n 0123 4 5 6 7 8 9 10 11 12
Fn) |01 1 2 3 5 8 13 21 34 55 89 144
Ln) |2 1 3 4 7 11 18 29 47 76 123 199 322
P(n) |{0 1 2 5 12 29 70 169 408 985 2378 5741 13860
J(n) {0 1 1 3 5 11 21 43 85 171 341 683 1365
Pn)||1 112 2 3 4 5 7 9 12 16 21
R(n) |3 023 2 5 5 7 10 12 17 22 29
M(n)||0 1 3 7 15 31 63 127 255 511 1023 2047 4095
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4. SOME SPECIAL INTEGER SEQUENCES RELATED
TO BIPARTITE GRAPHS

4.1. Jacobsthal Numbers and Associated Bipartite Graphs

In this section, we consider a bipartite graph. Then we show that the numbers of per-
fect matchings of this graph generate the Jacobsthal numbers by the contraction method.
Finally, we give a Maple procedure in order to calculate the numbers of perfect matchings

of above-mentioned bipartite graph.

Theorem 45 Let G(A,) be the bipartite graph with bipartite adjacency matrix Ay, has

the form

1 0 1 0 1 0

1 1 1 1

0 1 1 1

¥ 0 Ay -. A - :

An=| . r & P . | (17)

1 1 1

: 0 1

0

Then, the number of perfect matchings of G(Ay) is nth Jacobsthal number equal to | (n).

Proof. If n = 3; then we have

perAsz = per

[ R G

01
11 |=3=703).
11

Let A],‘, be the kth contraction of A,, 1 < k < n — 2. Since the definition of the matrix

A, the matrix A, can be contracted on column 1 so that

1

(n—1)x(n-1)
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Since the matrix A} can be contracted on column 1 and [ (3) =3 and [ (2) =1

3
1

— =N

3
1
1 1
1
1
1
2/ (2) 3 2
1 11
1
1

2

(n—2)x(n-2)
2
1 1
1
1 1
1 1
L 1 (n—2)x(n-2)

Furthermore, the matrix A2 can be contracted on column 1 and | (4) = 5 so that

5
1

— = O

5 6
11
11 1
1
1
1
2](3) 5
1 1 1
1 11
=

6
1
1
1 (n—3)x(n-3)
5 6
1 1
1
(n—3)x(n—3)
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Continuing this process, we have

J(k+1) 2] (k) - J(k+1) 2] (k)

1 1 1 1 e o1
111
1
Al =
1 1 1
1 1 1
11

(n—k)x (n—k)
for 3 < k < n — 4. Hence,
J(n—2) 2] (n—3) J(n—2)

A3 — 1 1 1

1 1 3x3

which, by contraction of AZ_?’ on column 1, gives

AH:(J(n—l) 21(n—2)>
2x2

" i 1

By applying equation, we obtain perA, = perA’~? = ] (n—1) + 2] (n —2) and
by equation (14), we have ] (n) = J(n—1)+ 2] (n—2). So that perA, = ] (n),
which is desired. m

Example 46 Let G (A4) be a bipartite graph whose bipartite adjacency matrix is Ay
given by for n = 4. Then the bipartite graph G (Ay4) can be seen as:

U Uy
v, U,
U3 Us
Vs Uy

and its perfect matchings can be given as:
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® u,
® u,
V1 . . u3
%) ' . : . |
V3 .
Uy
Vs @ . u3
U,
-
: ®u,
U,
- .
V1 ® u3 ul
V4 .
%) ' : uz
V3 v1 u3
U,
Uy . : :
Uy
VU3
[ 4] . u3
v4 '
1%) :
U3
Vs
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4.1.1. Maple procedure

The following Maple procedure calculates the numbers of perfect matchings of bipar-
tite graph G(Ay) given in Theorem45]

> restart:

with(LinearAlgebra):

permanent:=proc (1)

locali,j, 7, f, A;

f = (i,j) — >piecewise(i = 1 and jmod2 = 1,1,i>1and j —i> —2,1,0);
A:=Matrix(n,n, f) :

for » from 0 ton — 2 do

print(r,A):

for j from 2 ton — r do

All,j] == A[2,1] = A[L,j] + A[1,1] x A[2,]] :

od:

A:=DeleteRow(DeleteColumn(Matrix(n — r,n —r, A),1),2):
od:

print(r,eval(A)):

end proc:with(LinearAlgebra):

permanent(n);
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4.2. Bipartite Graphs Associated with Circulant Matrices

In this section, we firstly introduce two lemmas related to bipartite graphs associated
with Fibonacci numbers. After that, we define a bipartite graph associated with n X
n (0,1)-circulant matrix whose the numbers of perfect matchings generate the Lucas
numbers. Finally, we give some Maple procedures in order to calculate the numbers of

perfect matchings of above-mentioned bipartite graph.

Lemma 47 Let G(Uy,) be the bipartite graph with bipartite adjacency matrix U, has the

Sform
1 0 0 0 0 1
1 1 0 .0
1 1 1 .0
Un=(0 1 1 0 (18)
0
: . . AN _ ()
0O --- --- 0 1 1 1

nxn
Then, the number of perfect matchings of G(Uy) is F (n) + 1, where F (n) is nth Fi-

bonacci number.

Proof. Let U’,i be the kth contraction of U,;, 1 < k < n — 3. Since the definition of the

matrix U, ; the matrix U, can be contracted according to last column so that

1 0 0 0 1 1
1 1 0 0
1 1 1 " .0
uy=1{0 1 1 0
0
1 0
0 0 1 1 1 (n—1)x (n—1)
Since the matrix U} can be contracted according to last column and F (3) = 2 and

F2)=1
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1 0 0 0 1 2
1 1 0 0
11 1 0
=10 1 1 0
0
.
0 0 1 L) a2
1 0 0 0 F(2) F(3)
1 1 0 0
11 1 0
=1o 1 1 0
0
A
0 0 1 1

(n—2)x(n-2)

Furthermore, the matrix U,zl can be contracted according to last column so that

1 0 0 0 F(3) F(4)
1 1 0 0
1 1 1 - 0
=0 1 1 0
0
o1 0
0 0 1 1 1 (n-3)% (n-3)
Continuing this process, we have
1 0 0 0 F(k) F(k+1)
1 1 0 0
1 1 1 0
us={o0 1 1 0
0
IO | 0
0 0 1 1 1 (n—K)x (1)
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for1 < k < n — 3. Hence,

urs3=11 1 0
3x3

which, by contraction of UZ_3 according to last column, gives

1 1
_ (F(n—2)+1 F(n—1)>
2x2

o (F(n—2)+1 F(n—2)+F(n—3))
2x2

1 1

By applying equation @), we obtain perl, = perU’ 2 =F(n—1)+F(n—2) +1
and by equation (L1), we have F (n) = F (n — 1) + F (n — 2) . So that perU, = F (n) +
1, which is desired. m

Example 48 Let G (Uy) be a bipartite graph whose bipartite adjacency matrix is Uy
given by @) for n = 4. Then the bipartite graph G (Uy) can be seen as:

U1 Uy
v, U,
Vs U
Uy Uy

and its perfect matchings can be given as:

1@ Su, " Uy
2 @ ® U, ) Uy
V@ ®u., 3 Us
Uy =~ - Uy Uy Uy
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® u,
(%
3 u3

Lemma 49 Let G(V,,) be the bipartite graph with bipartite adjacency matrix V;, has the

form

0

0 1

0
(19)

1 0

1 1

g If

nxn

Then, the number of perfect matchings of G(Vy,) is F (n) + 1, where F (n) is nth Fi-

bonacci number.

Proof. Let V,f be the kth contraction of V,;,, 1 < k < n — 3. Since the definition of the

matrix V};; the matrix V}, can be contracted on column 1 so that

1 0
01 1 1
v, =
: 0
0

0

0

1
0

(n—1)x(n-1)

Since the matrix V;! can be contracted on column 1 and F (3) =2and F (2) =1
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2
11 1 0 0
01 1 1 0
Vi o=
1 10
0o 1 1 1
0 0 1 (n—2)x (n—2)
F(3) F(2) © 0 0 1
11 0 0
o 1 1 1 0
1 10
0 1 1 1
i Y o (n—2)x (n—2)

Furthermore, the matrix V2 can be contracted on column 1 so that

F(4) F3 0 --- 0 0 1
1 1 1 o --- --- 0
0 1 1 1 0
Vi =
1 1 0
0 1 1 1
0 0 1 (n—3)x (n—3)
Continuing this process, we have
F(k+1) F(k)y 0 --- 0 0 1
1 1 1 0 --- --- 0
0 1 1 1 0
Vi =
1 1 0
0 1 1 1
0 o 11 (n—k)x (n—k)
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for1 < k < n — 3. Hence,
1
Vi3 = 1 1 1
1
which, by contraction of VT’{‘_B on last column, gives

1 1
_ (F(n—l) F(n—2)+1>
2x2

- (F(n—2)+F(n—3) F(n—2)+1>
2x2

1 1

By applying equation , we obtain perV,, = perV# 2 =F(n—1)+F(n—-2)+1
and by equation (L1)), we have F (n) = F (n — 1) + F (n — 2) . So that perV,, = F (n) +
1, which is desired. m

Example 50 Let G (V) be a bipartite graph whose bipartite adjacency matrix is Vy
given by (@) for n = 4. Then the bipartite graph G (Vy) can be seen as:

(51 Uy
v, w,
Vs Us
Vs Uy

and its perfect matchings can be given as:

"1 e Sy 1O ®
2@ ou, 2@ ® u,
Vs @ ®u, U3 Us
174. ® u, Uy Uy
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v4. .u4 Uy Uy

Theorem 51 Ler G(W,,) be the bipartite graph whose bipartite adjacency matrix is the

(0,1)-circulant matrix Wy, as the following

11 0 -+ --- 0 1
1 1 1 0 0
0 1 1
Wy = (20)
0
0 0 1
1 0

nxn

Then, the number of perfect matchings of G(Wy) is L (n) + 2, where L (n) is n" Lucas

number.

Proof. If n = 4; then we have

1101
1110
erW, = per
PEFa = PT 1 1 11
1 011
110 1 01 1 01
= per| 1 11 |+per| 1 11 |+per|f 1 1 0
011 011 111

= 343+3=9=L(4)+2

By applying the Laplace expansion for permanent according to first column of Wy, we
get
perW, = perF, o) + perl,_1 + perV;_,

where F(;, 5), Uy and V,, are respectively the matrices given by , and . Taking
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into account (2)), Lemma (#7) and Lemma (49), we get the last equation as

perWy

Fn)+Fn—-1)+14+F(n—-1)+1

F(n+1)+F(n—1)+2.

The result follows by using (13). m

Example 52 Let G (Wy) be a bipartite graph whose bipartite adjacency matrix is Wy
given by (@) for n = 4. Then the bipartite graph G (Wy) can be seen as:

=

and its perfect matchings can be given as:

V1 @ ® u,
Uy (=) ® U,
Vi@ ® u,
'@ ®u,
%1 Uy
7] :><: U,
V: @ ® u,
Vs @ ®u,
U1 Uy
vy U,
V3 Uus
Uy U,

1@ 2 uy
2@ ® u,
Vs us
v :><: “
21 U
(2] :>< Uy
Vs us
o :><: .
b ! .\ /. Uy
V2@ >< ®u,
Vs @ ® u3
V4 / \. Uy

1@ ®u,
vy u,
1@ ®u,
U1 U
vy U,
V3 us
Uy Uy
U1 U
2 U,
V3 us
Uy Us
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4.2.1. Maple procedure

Procedure A.

The following Maple procedure calculates the numbers of perfect matchings of bipar-
tite graph G (U,,) given in Lemma[47]

> restart:

with(LinearAlgebra):

permanent:=proc (1)

local i, j,v, f,U;

f:=(i,j) — >piecewise(j —i =0,1,j —i = —1,1,
j—i=-21,j—i=n—-1,1,0);

U:=Matrix(n,n, f) :

forr fromOton — 2 do

print(r, U) :

for j from 1 to n — r do

Ul jl:=Un—-rn—r]«U[Lj+U1ln—rlxUn-—rj:
od:

U:=DeleteRow(DeleteColumn(Matrix(n — r,n —r,U),n —r),n —r) :
od:

print(r,eval(U)):

end proc:with(LinearAlgebra):

permanent(7);
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Procedure B.

The following Maple procedure calculates the numbers of perfect matchings of

bipartite graph G (V;,) given in Lemma 49|

>restart:

with(LinearAlgebra):

permanent:=proc (1)

local i, j,v, f,V;

f = (i,j) — >piecewise(j —i =0,1,i>landj—i=1,1,
j—i=-1,1,j—i=n—-1,1,0);

V:=Matrix(n,n, f) :

forr fromOton — 2 do

print(r, V) :

for j from 2 ton — r do

VI[Lj:=VI[2,1] = V[1,j]+ V[1,1] x V[2,]] :

od:

V:=DeleteRow(DeleteColumn(Matrix(n —r,n —r,V),1),2) :
od:

print(r,eval(V)):

end proc:with(LinearAlgebra):

permanent(7);
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5. CONCLUSION

Permanents have many applications in physics, chemistry, electrical engineering, graph
theory etc. Some of the most important applications of permanents are via graph theory.
A more difficult problem with many applications is the enumeration of perfect match-
ings of a graph. Besides, ’the enumeration or actual construction of perfect matching of
a bipartite graph has many applications, for example, in maximal flow problems and in
assignment and scheduling problems arising in operational research” (Minc, 1978). The
numbers of perfect matchings of bipartite graphs also play a significant role in organic
chemistry (Wheland, 1953). Fibonacci, Lucas and Jacobsthal numbers belong to a large
family of positive integers. They have many interesting properties and applications to al-
most every field of science and art. They continue to provide invaluable opportunities for
exploration, and contribute handsomely to the beauty of mathematics, especially number
theory (Koshy, 2001; Koshy, 2011). Therefore, Many authors have investigated the rela-
tionship between the well-known integer sequences and the number of perfect matchings
in bipartite graphs. In relation to that they found many considerable results. We speak of
them in Chapter 2. Consequently, we have shown that the numbers of perfect matchings
in some bipartite graphs are equal to Fibonacci, Lucas and Jacobsthal numbers. This re-
sults are also very significant because linear algebra, graph theory and number theory are

used together.
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