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Bu tezi dört bölüme ayırdık. Tezin birinci kısmında, konunun tarihsel bir gelişimi ile ilişkili giriş 
verildi. İkinci ve üçüncü kısımlarda, tanımlarımız ve sonuçlarımızla direkt ilişkili olan çeşitli yazarların 
yaptığı, farklı çalışmalarla ilgili bilgi verildi. Tez boyunca kullandığımız tanımlar ve notasyonlar gibi 
kavramların çoğu şuan standarttır. Dördüncü bölümde, Orlicz fonksiyonunun hakkında bilgi verildi. 
Peralta (2010) nın çalışması, Karakaş, ark. (2016) tarafından tanımlanan ∆ fark operatörü kullanılarak 
genelleştirildi. ݈(∆) fark dizi uzayı elde ederek bu dizi uzayının özelliklerinin bir kısmı araştırıldı. 
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fonksiyonlarının bir ailesi olan ݈(∆) ⊂ ݈(ℳ, ∆) kapsaması gösterildi. 
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We divided this thesis into the four chapters. The first chapter of the thesis gives the introduction 

deals with a historical review. The second and the third chapters give the background of different kinds of 
work done by various authors, which are related directly to our definitions and results. Most of concepts 
which we have used throughout the thesis such as notations and definitions are currently standard. We 
presented the history of the Orlicz function in the the fourth chapter. We used the Peralta' s (2010) studies 
and extented it by using difference operator ∆ given by Karakaş et al. (2016), we generated the 
difference sequence space ݈(∆) and investigated some of their properties. We showed that, if ݈(∆) is 
supplied with an aproper norm ‖∙‖,∆   then it will be a Banach space. We further more showed  that, the 

sequence spaces ቀ݈൫∆൯, ‖∙‖,∆ቁ and ൫݈, ‖∙‖൯ are linearly isometric. At the end of this chapter, it was 
shown that ݈(∆) ⊂ ݈(ℳ, ∆). 

 
Keywords: Difference sequence spaces, Isometric sequence spaces, Sequence spaces. 

 
 
 
 
 
 
 
 
 



1. INTRODUCTION

Let c; `1 and c0 be the Banach spaces of convergent, bounded and null sequences

x = (xk)
1
k=1 respectively with complex terms, normed by

kxk1=sup
k
jxkj ;

where k 2 N.
Kizmaz (1981) presented the di¤erence sequence spaces,

X (�) = fx = (xk) : �x 2 Xg

for X = c; `1 and c0 where

�x = (�xk) = (xk � xk+1) :

These are Banach spaces with the norm

kxk� = jx1j+ k�xk1 :

He also studied their topological properties. Recently Çolak and Et (1997)

extended the spaces X (�) to the spaces X (�m) for X = c; `1 and c0. Let X

be any sequence spaces and de�ned

X (�m) = fx = (xk) : �mx 2 Xg

where m 2 N and �mx = ((� ��m�1)xk) for all k 2 N and prove that c(�m);

l1(�
m) and c0(�m) are Banach spaces with the norm

�mxk =
mX
v=0

(�1)v
�
m

v

�
xk+v; kxk�m =

mX
i=1

jxij+ k�mxk1

Karakaş et al. (2015) de�ned the sequence spaces l1(�q); c(�q) and c0(�q); where

q 2 N and
�qx = (�qxk) = (qxk � xk+1):

The following sequence spaces have been given by Karakaş et al (2016),

X
�
�m
q

�
=
�
x = (xk) : �

m
q x 2 X

	
for X = c; `1 and c0, where q;m 2 N. They show that the spaces X

�
�m
q

�
are

Banach spaces by the norm

1



kxk�mq =
mX
i=1

jxij+
�m

q x

1 ;

where

�m
q =

�
�m
q xk

�
=
�
�m�1
q xk ��m�1

q xk+1
�

and

�m
q x =

�
�m
q xk

�
=

mX
v=0

(�1)v
�
m

v

�
qm�vxk+v:

Recently, Peralta (2010) studied `p(�m) and examined the topological properties

of this space.

In this paper, we chose p 2 [1;1). By !; we shall denote the space of all

sequences x = (xk), for xk 2 C and all k 2 N. Taken x 2 !, describe

kxkp =
 1X
k=1

jxkjp
!1=p

and let

`p = fx = (xk) : kxkp <1g:

The linear operator �m
q : ! ! ! is presented recursively as the composition

�m
q = �q ��m�1

q for m � 2 and q 2 N. It is obvious that for x 2 ! and m � 1 we
have the following Binomial representation

�m
q xk =

mX
v=0

(�1)v
�
m

v

�
qm�vxk+v

for all k 2 N:
Let m 2 N and de�ne the sequence spaces `p(�m

q ) by

`p(�
m
q ) = fx = (xk) : �m

q x 2 `pg

The sequence spaces are Banach spaces normed by

kxkp;�mq =
 

mX
i=1

jxijp +
�m

q x
p
p

!1=p
: (1.1)

2



2. BASIC CONCEPTS

2.1. Basic De�nitions and Theorems

De�nition 2.1.1
Let X be a nonempty set and K be the �eld of complex number. If operations

+ : X �X ! X

� : K �X ! X

Satisfy the following statements then X is called a vector (linear) space on K.

1) x+ y = y + x;

2) (x+ y) + z = x+ (y + z) ;

3) x+ � = x so that there is a zero vector given name � 2 X;
4) For each x 2 X; x+ (�x) = � so that there is an �x 2 X;
5) 1x = x

6) � (x+ y) = �x+ �y;

7) (�+ �)x = �x+ �x;

8) �(�x) = (��)x

for every �; � 2 K and x; y; z 2 X (Maddox, 1988).

De�nition 2.1.2
X 6= ;; d : XxX ! R be a function. If the following statements are satis�ed for

any x; y; z 2 X; then d is called a metric on X and (X; d) is called a metric space;

M1) d(x; y) � 0
M2) d(x; y) = 0() x = y

M3) d(x; y) = d(y; x)

M4) d(x; z) � d(x; y) + d(y; z) (Maddox, 1988).

De�nition 2.1.3
Let (X; d) be a metric space and x = (xn) be a sequence on X. x = (xn)

converges to a number x 2 R and denoted by xn ! x, if for every " > 0 there exists

a N(") 2 N, such that, for any n � N(")

d (xn; x) < ":

In other words, (xn) converges to x if 8" > 0; jxn � xj < " holds except �nitely
many terms of the sequence x (Maddox, 1988).

3



De�nition 2.1.4
A sequence x = (xn) is called a Cauchy sequence if 8" > 0; 9N(") 2 N such that

for all n;m 2 N; with n;m � N(");

jxn � xmj < ":

(Maddox, 1988).

Theorem 2.1.5
A sequence of real numbers is convergent if and only if it is a Cauchy sequence

(Maddox, 1988).

De�nition 2.1.6
Let (X; d) be a metric space. If each Cauchy sequences converges in a metric

space (X; d), this space is called complete metric space (Maddox, 1988).

De�nition 2.1.7
Let p � 1 �xed a real number. Each element in the space lp is a sequence

x = (xn) = (x1; x2; x3; ::) of numbers such that jx1jp + jx2jp + ::: converges; thus

lp =

(
(xn) :

1X
k=1

jxkjp <1
)

and the metric is de�ned by

d(x; y) =

 1X
k=1

jxk � ykjp
! 1

p

where y = (yk) and
1P
k=1

jykjp <1 (Maddox, 1988).

De�nition 2.1.8
Let be a vector space on K. If the following conditions are satis�ed then the

mapping k:k : X ! R+; x! kxk is called a norm,
N1) kxk � 0
N2) kxk = 0, x = �

N3) k�xk = j�j kxk ; (� 2 K; x 2 X)
N4) kx+ yk � kxk+ kyk for 8x; y 2 X

then the (X; k:k) is called as a norm space (Kreyszig, 1978).

De�nition 2.1.9
If a Cauchy sequence in a (X; k�k) normed space converges then it is called

Banach space (Kreyszig, 1978).

4



De�nition 2.1.10
Let us show set of all sequence with complex variables by !, for x = (xk) ;

y = (yk) ; (k = 1; 2; 3; :::) and a constant �, the set ! is a vector space under the

operation de�ned by

x+ y = (xk) + (yk)

�x = (�xk) :

Every sub-vector space of ! is termed a sequence space (Goes and Goes, 1970).

Let c, `1 and c0 be the linear spaces of convergent,bounded and null sequences

x = (xk) with complex terms, that is

c =
n
x = (xk) : lim

k
xk = L and for 9L

o

l1 =

�
x = (xk) : sup

k
jxkj <1

�
c0 =

n
x = (xk) : lim

k
xk = 0

o
:

All the above sequence spaces are Banach spaces normed by

kxk1 = sup
k
jxkj ;

for k 2 N.

De�nition 2.1.11
Let X be a Banach space.

If;

� k : X ! C; � k(x) = xk; (k = 1; 2; 3; :::)

transformation is continuous, then X is called BK�space (Goes and Goes, 1970).

De�nition 2.1.12
Let (X; k�k) and

�
Y; k�k1

�
be two normed spaces.

Then;

i) A mapping T : X ! Y is known to be isometric (or an isometry) if preserves

T norm, that is, for all x; y 2 X;;

kTx � Tyk1 = kx� yk

where Tx and Ty are the images of x and y, respectively.

ii) The space X is said to be isometric with the space Y if there exist a one-

to-one and onto isometry X onto Y . Then X and Y are called isometric spaces

5



(Kreyszig, 1978).

De�nition 2.1.13
Let X and Y be two vector spaces. If a function T : X ! Y possesses the

properties,

i) T (x1 + x2) = T (x1) + T (x2) for all x1; x2 2 X (additivity),

ii) T (�x1) = �T (x1) for all x1 2 X and � 2 C (homogeneity)
then T is called linear mapping (Şuhubi, 2001).

De�nition 2.1.14
Let X be any vector space and Y � X; for all y1; y2 2 Y and � 2 [0; 1]: If

M(y1; y2) = fy 2 Y : y = �y1 + (1� �)y2; 0 � � � 1g � Y

Y is called convex space (Kreyszig, 1978).

Theorem 2.1.15
In order for an X subspace of Banach space to be complete, it is necessary and

su¢ cient that condition Y is closed in X (Kreyszig, 1978).
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3. DIFFERENCE SEQUENCES

3.1. � Di¤erence Sequences and Some Properties of �

The notion of di¤erence sequence spaces was �rstly introduced by Kizmaz (1981)

as follows:

X (�) = fx = (xk) : (�xk) 2 Xg

for X = `1; c and c0. In 1981, He de�ned the following sequence spaces

l1(�) = fx = (xk) : �x 2 l1g
c(�) = fx = (xk) : �x 2 cg
c0(�) = fx = (xk) : �x 2 c0g:

where

�x = (�xk) = (xk � xk+1);

and showed that these spaces are Banach spaces with norm

jjxjj� = jx1j+ k�xk1 :

Here, he showed that (l1(�); jj � jj�) is a Banach space.
Let (xn) be a Cauchy sequence in l1(�), where xn = (xni ) = (x

n
1 ; x

n
2 ; :::) 2 l1(�),

for each n 2 N. Then

kxn � xmk
�
= jxn1 � xm1 j+ k�xn ��xmk1 ! 0 (n;m!1):

Therefore, we obtain jxnk � xmk j ! 0, for n;m!1 and each k 2 N.
Hence, (xnk) = (x

1
k; x

2
k; :::) is a Cauchy sequence in C (complex numbers) whence

by the completeness of C, it converges to xk say, i.e., there exists

lim
n
xnk = xk; for each k 2 N:

Further, for each " > 0, there exists N = N("), such that for all n;m � N and, for

all k 2 N,

jxn1 � xm1 j < ";��xnk+1 � xmk+1 � (xnk � xmk )�� < "

7



and

lim
m
jxn1 � xm1 j = jxn1 � x1j � ";

lim
m

��xnk+1 � xmk+1 � (xnk � xmk )�� = ��xnk+1 � xk+1 � (xnk � xk)�� � ";
for all n � N . Since " is not dependent on k,

sup
k
jxnk+1 � xk+1 � (xnk � xk)j � ":

Consequently we have jjxn � xjj� � 2", for n � N . Hence we obtain xn ! x

(n!1) in l1(�), where x = (xk).
Now we must show that x 2 l1(�). We have

jxk � xk+1j =
��xk � xNk + xNk � xNk+1 + xNk+1 � xk+1�� � ��xNk � xNk+1��+xN � x� = O(1):

This implies x = (xk); where x 2 l1(�) (Kizmaz, 1981).

3.2. �m Di¤erence Sequences and Some Properties of �m

In 1993, Et de�ned the sequence spaces l1(�2); c(�2) and c0(�2) as:

l1(�
2) = fx = (xk) : �2x 2 l1g;

c(�2) = fx = (xk) : �2x 2 cg;
c0(�

2) = fx = (xk) : �2x 2 c0g

where

�2x = (�2xk) = (�xk ��xk+1);

and showed that these are Banach spaces with norm

kxk� = jx1j+ jx2j+
�2x


1 :

After then Et and Çolak (1995) de�ned the sequence spaces

8



l1(�
m) = fx = (xk) : �mx 2 l1g;

c(�m) = fx = (xk) : �mx 2 cg;
c0(�

m) = fx = (xk) : �mx 2 c0g

for m 2 N; �0x = (xk); �x = (xk � xk+1);

�mx = (�mxk) = (�
m�1xk ��m�1xk+1)

and hence

�mxk =
mX
v=0

(�1)v
�
m

v

�
xk+v:

It is obvious that l1(�m); c0(�
m) and c(�m) are linear spaces. It is dearly

observed that these sequence spaces are normed spaces with norm

kxk�m =
mX
i=1

jxij+ k�mxk1 : (3.1)

We write limn for limn!1and
P

k for
P1

k=1 :

Theorem 3.2.1
The sequence spaces l1(�m); c0(�

m) and c(�m) are Banach spaces with norm

(3.1) (Et and Çolak, 1997).

Proof :
Let (xs) be a Cauchy sequence in l1(�m), where xs = (xs{ ) = (xs1; x

s
2; :::) 2

l1(�
m) for each s 2 N:

Then

xs � xl
�m
=

mX
i=1

��xsi � xli��+ sup
k

���m(xsk � xlk)
��! 0

as s; t!1:
Hence we obtain

��xsk � xlk��! 0

as s; t ! 1, for each k 2 N: Thus (xsk) = (x1k; x
2
k; :::) is a Cauchy sequence in C,

since C is complete, it is convergent.

lim
s
xsk = xk

9



for each k 2 N. Since (xs) is a Cauchy sequence for each " > 0; there existsN = N(")

such that
xs � xl

�m
< " for all s; t � N .

Hence;

mX
i=1

��xsi � xli�� � " and
�����
mX
v=0

(�1)v
�
m

v

�
(xsk+v � xlk+v)

����� � "
for all k 2 N; and all s; t � N .
We have

lim
l

mX
i=1

��xsi � xli�� = mX
i=1

jxsi � xij � "

and

lim
l

���m(xsk � xlk)
�� = j�m(xsk � xk)j � "

for all s � N . This implies that kxs � xk�m < 2" for all s � N , that is, xs ! x as

s!1 where x = (xk):

Since

j�mxkj =
�����
mX
v=0

(�1)v
�
m

v

�
xk+v

�����
=

�����
mX
v=0

(�1)v
�
m

v

�
(xk+v � xNk+v + xNk+v)

�����
�
�����
mX
v=0

(�1)v
�
m

v

�
(xNk+v � xk+v)

�����+
�����
mX
v=0

(�1)v
�
m

v

�
(xNk+v)

�����
�
xN � x

�m
+
���mxNk

�� = O(1)
we obtain x 2 l1(�m): Therefore l1(�m) is a Banach space.

It can be shown that c0(�m) and c(�m) are closed subspaces of l1(�m): There-

fore, these sequence spaces are Banach spaces with norm (3.1). Some of inclusion

relations between these sequence spaces are given below:

Lemma 3.2.2
i) c(�m) � c(�m+1);

ii) c0(�
m) � c0(�m+1);

iii) l1(�
m) � l1(�m+1)

and the inclusions are strictly (Et and Çolak, 1995).

10



Proof:
ii) Let x 2 c0(�m): Since

���m+1xk
�� = j�mxk ��mxk+1j
� j�mxkj+ j�mxk+1j ! 0; (k !1)

we obtain x 2 �m+1(c0). Thus c0(�m) � c0(�
m+1): This inclusion is strict since

the sequence x = (km): For example, it belongs to co(�m+1); but it is not belong to

c0(�
m):

The proofs of (i) and (iii) are similar to the proof of (ii).

Lemma 3.2.3
i) c(�m) � l1(�m)

ii) c0(�
m) � c(�m)

and the inclusions are strictly.

The proof is identical with the proof of Lemma 3.2.2.

Additionally, since l1(�m); c0(�
m) and c(�m) are Banach spaces with contin-

uous coordinates, that is, kxs � xk�m ! 0 implies jxsk � xkj ! 0 for each k 2 N as
s!1 they are also BK�spaces (Et and Çolak, 1995).

3.3. �q Di¤erence Sequences and Some Properties of �q

All throughout this paper we let 1 � q < 1; q 2 N: After Karakaş et al (2015)
de�ned the sequence spaces l1(�q); c(�q) and c0(�q) by

l1(�q) = fx = (xk) : �qx 2 l1g ;
c(�q) = fx = (xk) : �qx 2 cg ;
c0(�q) = fx = (xk) : �qx 2 c0g

where q 2 N and
�qx = (�qxk) = (qxk � xk+1):

Subsequently di¤erence sequence spaces have been investigated by Altin (2009),

Et (1993, 2003, 2004, 2013), (Bektas et al, 2004). Recently, Başar and Altay (2003)

and Altay and Başar (2007) introduced the di¤erence space bvp consisting of all

sequence whose backwared di¤erences are in the space lp of absolutely p�summable
sequences in the cases 1 � p � 1 and 0 < p < 1, respecitively.
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Theorem 3.3.1
The sequence spaces l1(�q); c(�q) and c0(�q) are Banach spaces with norm

kxk�q = jx1j+ k�qxk1 : (3.2)

(Karakaş et al., 2016).

Proof:
Let (xn) be a Cauchy sequence in l1(�q), where xn = (xni ) = (xn1 ; x

n
2 ; :::) 2

l1(�q) for each n 2 N.
Then

kxn � xmk�q = jx
n
1 � xm1 j+ k�qx

n ��qx
mk1 ! 0 (3.3)

as n;m!1. Hence, we obtain

jxnk � xmk j ! 0

for n;m!1 and each k 2 N.
Therefore, (xnk) = (x

1
k; x

2
k; :::) is a Cauchy sequence in C whence by the complete-

ness of C, it is convergent, say xk 2 C, that is

lim
n
xnk = xk

for each k 2 N. Since (xn) is a cauchy sequence, for each " > 0, there exists

N = N(") such that kxn � xmk�q < " for all n;m � N .
Hence

jxn1 � xm1 j < ";��xnk+1 � xmk+1 � (qxnk � qxmk )�� < ";
and

lim
m
jxn1 � xm1 j = jxn1 � x1j � ";

lim
m

��xnk+1 � xmk+1 � (qxnk � qxmk )�� = ��xnk+1 � xk+1 � (qxnk � qxk)�� � "
for all n � N .
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Then,

sup
k
jxnk+1 � xk+1 � (qxnk � qxk)j < ":

This implies that kxn � xk�q � 2" for n � N; that is, x
n ! x as n!1 where

x = (xk):

Since

jqxk � xk+1j =
��qxk � qxNk + qxNk � xNk+1 + xNk+1 � xk+1��

�
��qxk � xNk+1��+ xN � x�q = O(1);

We obtain x 2 l1(�q): Thus, l1(�q) is a Banach space.

In the same way, it can be shown that c(�q) and c0(�q) are the Banach spaces

with norm (3.2).

Moreover, since `1(�q); c(�q) and c0(�q) are Banach spaces with continuous

coordinates, that is, kxn � xk�q ! 0 implies jqxnk � xj ! 0 for each k 2 N; as
n!1; they are also BK-spaces.
Let us de�ne that operator

D : `1(�q)! `1

as Dx = (0; x2; x3; x4; :::); where x = (x1; x2; x3; x4; :::): It is easy to show that D is

a bounded linear operator on `1(�q):

Furthermore the set

D [`1(�q)] = D`1(�q) = fx = (xk) : x 2 `1(�q); x1 = 0g

is a subspace of `1(�q); and

kxk�q = k�qxk1

in D`1(�q):

Now let us de�ne

�q : D`1(�q)! `1;�qx = y = (qxk � xk+1):

It can be shown that �q is a linear homeomorphism. Hence, D`1(�q) and `1
are equivalent as topological spaces. �q and (�q)

�1 are norm preseriving and

k�qk =
(�q)

�1 = 1:
Following Karakaş et al. (2015) give some properties of �q(x):
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Theorem 3.3.2
Let X be a vector space and A subset of X. If A is a convex set, then �q(A) is

a convex in �q(X) (Karakaş et al., 2015).

Proof :
Let x; y 2 �q(A): Then �qx; �qy 2 A. Since �q is linear, we have

��qx+ (1� �)�qy = �q(�x+ (1� �)y); (0 � � � 1):

Since A is convex, so ��qx + (1 � �)�qy 2 A and �x + (1 � �)y 2 �q(A); where

0 � � � 1:

Theorem 3.3.3
The following statements hold:

i) `1 � `1(�q) and the inclusion is strict.

ii) c(�q) � `1(�q) and the inclusion is strict .

iii) c(�) � c(�q) and the inclusion is strict .

iv) The sequence space `1(�) is di¤erent from the sequence space `1(�q) and

`1(�) \ `1(�q) 6= � (Karakaş et al., 2015).

Proof :
i) Let x 2 `1: The incluction follows from the inequality

jqxk � xk+1j < q jxkj+ jxk+1j < K

for some K > 0:

To show that the inclusion is strict, let us take

xk = q
k �

k�1X
i=1

qi

such that �qx = (q; q; q; :::) then, we obtain (�qxk) 2 `1 but (xk) =2 `1:
ii) Let x 2 c(�q):Then, we have �qx 2 c � `1 that is, x 2 `1(�q):

Hence, c(�q) � `1(�q): To display that the inclusion is strict, de�ne x = (xk)

such that

xk = (0; q; 0; q; 0; :::):

Then x 2 `1(�q)nc(�q):

iii) If we choose x = (xk) such that

xk = (q; 2q; 3q; 4q; :::):

Then we obtain x 2 c(�) but x =2 c(�q):
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iv) If we choose xk = (1; 2; 3; :::); then x 2 `1(�); but x =2 `1(�q): Let us take

x = (xk) such that

xk = q
k �

k�1X
i=1

qi;

then we obtain x =2 `1(�) but x 2 `1(�q): Hence, the spaces `1(�) and `1(�q)

are overlap.

3.4. �m
q Di¤erence Sequences and Some Properties of �

m
q

Later Karakaş et al. (2016), de�ned equence spaces `1
�
�m
q

�
; c
�
�m
q

�
and

c0
�
�m
q

�
by

`1
�
�m
q

�
=
�
x = (xk) : �

m
q x 2 `1

	
;

c
�
�m
q

�
=
�
x = (xk) : �

m
q x 2 c

	
;

c0
�
�m
q

�
=
�
x = (xk) : �

m
q x 2 c0

	
;

where

�m
q x =

�
�m
q xk

�
=

mX
v=0

(�1)v
�
m

v

�
qm�vxk+v = �(�

m�1
q xk ��m�1

q xk+1):

Theorem 3.4.1
The sequence spaces c

�
�m
q

�
; `1

�
�m
q

�
and c0

�
�m
q

�
are Banach spaces with norm

kxk�mq =
mX
i=1

jx
i
j+
�m

q x

1 (3.4)

(Karakaş et al., 2016).

Proof:
Let (xn) be a Cauchy sequence in `1

�
�m
q

�
; where xn = (xni ) = (x

n
1 ; x

n
2 ; x

n
3 ; :::) 2

`1
�
�m
q

�
for each n 2 N: Then

xn � xt
�mq
=

mX
i=1

��xn
i
� xt

i

��+ sup
k

���m
q (x

n
k � xtk)

��! 0

as n; t!1.
Hence, we obtain ��xn

k
� xtk

��! 0

15



as n; t!1 and each k 2 N.
Therefore, (xnk) = (x

1
k; x

2
k; x

3
k; :::) is a Cauchy sequence in C. Since C is complete,

it is convergent, say xk 2 C; that is,

lim
n
xn
k
= x

k
; (k = 1; 2; 3:::)

for each k 2 N. Since (xn) is a Cauchy sequence, for each " > 0, there exits

N = N (") such that kxn � xtk�mq < " for all n; t � N .
Hence

mX
i=1

��xn
i
� xt

i

�� � "; �����
mX
v=0

(�1)v
�
m

v

�
qm�v(xnk+v � xtk+v)

����� � "
for all k 2 N, and n; t � N: So we have

lim
t

mX
i=1

��xn
i
� xt

i

�� = mX
i=1

��xn
i
� x

i

�� � ";
and

lim
t

���m
q (x

n
k � xtk)

�� = ���m
q (x

n
k � xk)

�� � ";
for all n � N .

sup
k

���m
q (x

n
k � xk)

�� < ":
This implies that kxn � xk�mq � 2" for n � N; that is, x

n ! x as n!1 where

x = (xk) : Since

���m
q xk

�� = �����
mX
v=0

(�1)v
�
m

v

�
qm�vxk+v

�����
=

�����
mX
v=0

(�1)v
�
m

v

�
qm�v(xk+v � xNk+v + xNk+v)

�����
�
�����
mX
v=0

(�1)v
�
m

v

�
qm�v(xNk+v � xk+v)

�����+
�����
mX
v=0

(�1)v
�
m

v

�
qm�v(xNk+v)

�����
�
xN � x

�mq
+
���m

q x
N
k

�� = O (1)
we obtain x 2 `1

�
�m
q

�
. Thus, `1

�
�m
q

�
is a Banach space.

In the same way, it can be shown that c
�
�m
q

�
and c0

�
�m
q

�
are Banach spaces

with the norm (3.4).

Futhermore, since `1
�
�m
q

�
; c
�
�m
q

�
and c0

�
�m
q

�
are Banach spaces with con-

tinuous coordinates, that is, kxn � xk�mq ! 0 implies jqxnk � xj ! 0 for each k 2 N,
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as n!1, they are also BK -spaces. Let us de�ne the operator

D : `1
�
�m
q

�
! `1

�
�m
q

�
as Dx = (0; 0; :::0; xm+1; xm+2; :::) ; where x = (x1; x2; x3; x4; :::). Its easy to show

that D is a bounded linear operator on `1
�
�m
q

�
. Furthermore the set

D[`1
�
�m
q

�
] = D`1

�
�m
q

�
=
�
x = (xk) : x 2 `1

�
�m
q

�
; x1 = x1 = x2 = ::: = xm = 0

	
is a subspace of `1

�
�m
q

�
; and

kxk�mq =
�m

q x

1

in D`1
�
�m
q

�
:

Now let us de�ne

�m
q : D`1

�
�m
q

�
! `1; �

m
q x = y =

mX
v=0

(�1)v
�
m

v

�
qm�vxk+v (3.5)

(�m
q )

�1 : `1 ! D`1
�
�m
q

�
; ((�m

q )
�1xk) = (yk) =

k�mX
v=1

(�1)v
�
k � v � 1
m� 1

�
qk�m�vxv

It can be shown that �m
q is a linear homeomorphism. Hence D`1

�
�m
q

�
and `1 are

equivalent as topological spaces. �m
q and

�
�m
q

��1
are norm preserving and

�m
q

 = sup
x 6=0

�m
q x

1

kxk�mq
= sup

x 6=0

�m
q x

1�m

q x

1
= 1

��m
q

��1 = sup
x 6=0

kyk
�mq

kxk1
= sup

x 6=0

sup
k

�m
q (�

m
q )

�1xk

1

sup
k
jxkj

= 1

hence �m
q

 = ��m
q

��1 = 1:
Following Karakaş et al. (2016) give some properties of some topological

properties of �m
q (X) and inclusion relations.
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Theorem 3.4.2
Let X be a vector space and A subset of X. If A is a convex set, then �m

q (A) is

a convex set in �m
q (X) (Karakaş et al., 2016).

Proof:
Let x; y 2 �m

q (A). Then �
m
q x; �

m
q y 2 A. Since �m

q is linear, then

��m
q x+ (1� �)�m

q y = �
m
q (�x+ (1� �) y) ; (0 � � � 1) :

Since A is convex , so ��m
q x + (1� �)�m

q y 2 A and so �x + (1� �) y 2 �m
q (A) ;

where 0 � � � 1.

Theorem 3.4.3
The following statements hold:

i) `1 � `1
�
�m
q

�
and the inclusion is strict.

ii) c
�
�m
q

�
� `1

�
�m
q

�
and the inclusion is strict.

iii) c (�) � c
�
�m
q

�
and the inclusion is strict.

iv) The sequence space `1 (�) is di¤erent from the sequence space `1
�
�m
q

�
and

`1 (�) \ `1
�
�m
q

�
6= ; (Karakaş et al., 2016).

Proof:
i) Let x 2 `1: The inclusion follows from the inequality

���m
q x
�� = �����

mX
v=0

(�1)v
�
m

v

�
qm�vxk+v

�����
�
�
m

0

�
qm jxkj+

�
m

1

�
qm�1 jxk+1j+

�
m

2

�
qm�2 jxk+2j+ :::

�
m

m� 1

�
q jxk+vj < K

for some K > 0. Hence
�
�m
q xk

�
2 `1 ) x 2 `1(�m

q ):

To show that the inclusion is strict, let us take

xk = q
k �

k�1X
i=1

qi

such that

�m
q =

�
q(q � 1)m�1; q(q � 1)m�1; q(q � 1)m�1; :::

�
then, we obtain

�
�m
q xk

�
2 `1 but (xk) =2 `1.

ii) Let x 2 c
�
�m
q

�
. Then, we have �m

q x 2 c � `1; that is, x 2 `1
�
�m
q

�
. Hence,

c
�
�m
q

�
� `1

�
�m
q

�
. To prove that the inclusion is strict, de�ne x = (xk) such that

xk = (0; q; 0; q; 0; :::)
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Then x 2 `1
�
�m
q

�
nc
�
�m
q

�
:

iii) If we choose x = (xk) such that

xk = (q; 2q; 3q; 4q; :::) :

Then, we obtain x 2 c (�) but x =2 c
�
�m
q

�
:

iv) If we choose xk = (1; 2; 3; :::) ; then x 2 `1 (�) ; but x =2 `1
�
�m
q

�
: Let us

take x = (xk)

such that

xk = q
k �

k�1X
i=1

qi

then we obtain x =2 `1 (�) but x 2 `1
�
�m
q

�
: Hence, the spaces `1 (�) and `1

�
�m
q

�
are overlap.
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4. ISOMETRY of `p(�
m
q ) SEQUENCE SPACE GENERATED BY

�m
q DIFFERENCE OPERATOR

In this section we give the original part of this thesis.

Peralta (2010), studied `p(�m) and examined some topological properties of this

space.

Let p 2 [1;1). We de�ne the space of all sequences x = (xk), where xk 2 C for
all k 2 N by !. Taken x 2 !, describe

kxkp =
 1X
k=1

jxkjp
!1=p

and let

`p = fx = (xk) : kxkp <1g:

We obtain the linear di¤erence operator� : ! ! ! which maps a sequence x 2 !
into �x = (�xk) 2 ! having components

�xk = xk � xk+1:

The linear operator �m
q : ! ! ! is presented recursively as the composition

�m
q = �q ��m�1

q for m � 2 and q 2 N. It is obvious that for m � 1 and x 2 ! we
present the following Binomial representation

�m
q xk =

mX
v=0

(�1)v
�
m

v

�
qm�vxk+v,

for each k 2 N.
Taken m 2 N, we f¬nd the sequence space as:

`p(�
m
q ) = fx = (xk) : �m

q x 2 `pg

and for x 2 `p(�m
q ) we get

kxkp;�mq =
 

mX
i=1

jxijp +
�m

q x
p
p

!1=p
(4.1)

It can be dearly observed that the pair (`p(�m
q ); k:kp;�mq ) is a normed space.

We have the following inclusions `p(�m
q ) � `1(�

m
q ) and `p(�

m
q ) � c0(�

m
q ) �

c(�m
q ):

The researchers may consult with Altay and Polat (2006) and Qamaruddin and

Sai� (2005).
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In this section, we will prove `p(�m
q ) with norm k:kp;�mq is a Banach space and

linearly isometric to the ordinary sequence space `p. Moreover, a su¢ cient condition

for the inclusion `p(�m
q ) � `p(M;�m

q ), where M is a family of Orlicz functions

satisfying the �2-condition, will be given.

Theorem 4.1.1
The sequence space `p(�m

q ) is a Banach space with the norm k:kp;�mq .

Proof:
Let (x(n)) = ((x

(n)
k )) is a Cauchy sequence in `p(�

m
q ). Thus, for " > 0 we can

�nd a positive integer N such that

x(n) � x(r)
p;�mq

< "

whenever n; r � N , that is,

 
mX
i=1

���x(n)i � x(r)i
���p + �m

q x
(n) ��m

q x
(r)
p
p

! 1
p

< ";

for n; r � N:
Since ���x(n)i � x(r)i

��� � x(n) � x(r)
p;�mq

for i = 1; 2; 3; :::;m and

�m
q x

(n) ��m
q x

(r)

p
�
x(n) � x(r)

p;�mq

:

Therefore, (x(n)i ) and (�
m
q x

(n)) are Cauchy sequences in C and `p, respectively.
The completeness of the spaces C and `p show the existence of elements yi 2 C;
i = 1; 2; :::;m; and z = (zk) 2 `p such that

lim
n!1

jx(n)i � yij = 0 (4.2)

for i = 1; 2; :::;m and

lim
n!1

�m
q x

(n) � z

p
= 0: (4.3)

Since

j�m
q x

(n)
k � zkj �

�m
q x

(n) � z

p

we get

j�m
q x

(n)
k � zkj ! 0

as n!1 for all k 2 N by equation (4.3).
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We obtain a recursive formula for lim
n!1

x
(n)
m+i; i � 1, as n!1.

We have

(�1)mx(n)m+1 = �m
q x

(n)
1 �

m�1X
v=0

(�1)v
�
m

v

�
qm�vx

(n)
v+1

and so

wm+1 := lim
n!1

x
(n)
m+1 = (�1)m

"
z1 �

m�1X
v=0

(�1)v
�
m

v

�
qm�vyv+1

#
:

Assume that wm+1; :::; wm+k�1; 1 < k � m, have been established. Where

wm+i := lim
n!1

x
(n)
m+i; i = 1; 2; :::; k � 1:

Using these, we acquire, for 1 < k � m

wm+k := lim
n!1

x
(n)
m+k = (�1)m

2664 zk �
m�kP
v=0

(�1)v
�
m

v

�
qm�vyv+k

�
k�1P
v=1

(�1)m�k+v
�

m

m� k + v

�
qk�vwm+v

3775 :
On the other side, for k > m we get

(�1)mx(n)m+k = �m
q x

(n)
k �

m�1X
v=0

(�1)v
�
m

v

�
qm�vx

(n)
v+k:

So that

wm+k = lim
n!1

x
(n)
m+k = (�1)m

"
zk �

m�1X
v=0

(�1)v
�
m

v

�
qm�vwk+v

#
:

Let w = (y1; :::; ym; wm+1; wm+2; :::). We assert that w 2 `p(�
m
q ), that is,

�m
q w 2 `p. First, show that

(�m
q w)1 =

m�1X
v=0

(�1)v
�
m

v

�
qm�vyv+1 + (�1)mwm+1

=
m�1X
v=0

(�1)v
�
m

v

�
qm�vyv+1 +

"
z1 �

m�1X
v=0

(�1)v
�
m

v

�
qm�vyv+1

#
= z1:

Also, for k = 2; :::;m. We get
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(�m
q w)k =

m�kX
v=0

(�1)v
�
m

v

�
qm�vyv+k +

m�1X
v=m�k+1

(�1)v
�
m

v

�
qm�vwv+k + (�1)mwm+k

= zk:

Similarly, for k > m we acquire

(�m
q w)k =

m�1X
v=0

(�1)v
�
m

v

�
qm�vwv+k + (�1)mwm+k

= zk:

Thus we have presented that �m
q w = z 2 `p. It remains to prove thatx(n) � w

p;�mq
! 0 as n ! 1: This follows directly from Equations (4.2) and

(4.3) and

lim
n!1

x(n) � wp
p;�mq

= lim
n!1

 
mX
k=1

���x(n)k � yk
���p + �m

q x
(n) ��m

q w
p
p

!

=
mX
k=1

lim
n!1

���x(n)k � yk
���p + lim

n!1

�m
q x

(n) � z
p
p

= 0:

This completes the proof of the theorem.

Theorem 4.1.2
The sequence spaces (`p(�m

q ); k:kp;�mq ) and (`p; k:kp) are linearly isometric.

Proof:
Take in to consideration the map T : `p(�

m
q ) ! `p given by Ty = x, where

y = (yk) 2 `p(�m
q ) and x = (xk) with

xk =

(
yk; if 1 � k � m;

�m
q yk�m:; if k > m:

The linearity of the di¤erence operator� implies the linearity of T . If y 2 `p(�m
q )

and Ty = x, then
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kTykpp = kxk
p
p =

mX
k=1

jykjp +
1X

k=m+1

���m
q yk�m

��p
=

mX
k=1

jykjp +
1X
k=1

���m
q yk
��p

= kykpp;�mq <1:

This shows that T is well-de�ned and it is also norm preserving. We presented

that T is one-to-one and onto. Assume that Ty = 0.

Then, we obtain

�m
q yk = 0 for all k � 1; (4.4)

y1 = y2 = ::: = ym = 0: (4.5)

We show that the di¤erence equation (4.4) with initial conditions (4.5) implies that

yk = 0 for all k � 1, that is, y = (0; 0; :::). Therefore, T is one-to-one.
Suppose that x = (xk) 2 `p. Describe the sequence y = (yk) as follows. Let

yk = xk for xm+k = �m
q xk; k = 1; 2; :::;m. The succeeding terms of the sequence y

is then showed recursively by

ym+1 = (�1)m
"
xm+1 �

m�1X
v=0

(�1)v
�
m

v

�
qm�vxv+1

#

ym+k = (�1)m

2664 xm+k �
m�kP
v=0

(�1)v
�
m

v

�
qm�vxv+k

�
k�1P
v=1

(�1)m�k+v
�

m

m� k + v

�
qk�vym+v

3775 ; 1 < k � m
and

ym+k = (�1)m
"
xm+k �

m�1X
v=0

(�1)v
�
m

v

�
qm�vyv+k

#
; k > m:

Utilizing a similar argument as in the proof of the previous theorem, we can

prove that

�m
q yk = xk+m

for k 2 N. Therefore it follows that Ty = x.
Thus, we obtain
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�m
q y
p
p
=

1X
k=1

���m
q yk
��p

=

1X
k=1

jxk+mjp

� kxkpp <1:

So that y 2 `p(�m
q ). Since. T is onto, `p(�

m
q ) and `p are linearly isometric.

De�nition 4.1.3
An Orlicz function is a continuous, non decreasing and convex function

M : [0;1) ! [0;1) such that M(u) = 0 if and only if u = 0, M(x) > 0; and

M(x) ! 1 as x ! 1. M is said to ful�l �2 � condition if there exists a positive
constant K such that M(2u) � KM(u) for all u � 0. LetM = (Mk) be a sequence

of Orlicz functions meeting the �2 � condition (Kamthan and Gupta, 1981).
The study Orlicz sequence spaces was initiated with a certain speci�c goal in

Banach spaces theory. Actually, Lindberg (1970) and Lindberg (1973) concerned on

Orlicz spaces in connection with �nding Banach spaces with symmetric Schauder

bases that have complementary subspaces isomorphic to c0 or `p (1 � p < 1):
There after, these Orlicz sequence spaces were further investigated in details by

Lindenstrauss and Tzafriri that lead to solve main structural problems in Banach

spaces (L¬ndenstrauss and Tzafriri, 1971), (L¬ndenstrauss and Tzafriri, 1972), (L¬n-

denstrauss and Tzafriri, 1973), (L¬ndenstrauss and Tzafriri, 1973), (L¬ndenstrauss

and Tzafriri, 1977). In the meantime, Woo (1973), generalized the concept of Orlicz

sequence spaces to modular sequence spaces and this led him to sharpen some of the

results of Lindberg and of Lindenstrauss and Tzafriri; he carried thise study further

in (Woo, 1975). The Orlicz sequence spaces are the special cases of Orlicz spaces

introduced in Orlicz (1932) and extensively studied in Krasnoselskii and Rutitsky

(1961). Orlicz spaces �nd several bene�cial implementations in the theory of nonlin-

ear integral equations. Where as the Orlicz sequence spaces are the generalizations

of `p-spaces, the Lp-spaces �nd themselves enveloped in Orlicz spaces.

An Orlicz functionM can always be represented see (Krasnoselskii and Rutitsky,

1961) also see (Kamthan, 1963) for a more general representation in thise direction)

in the following integral from:

M(x) =

xZ
0

p(t)dt

where p, know as the kernel of M , is right-di¤erentable for t � 0, p(0) = 0; p(t) > 0
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for t > 0; p is nondecreasing, and p(t)!1 as t!1:
Note: An Orlicz function is sometimes referred to as an 0-function as well.
Consider the kernel p(t) associated with an Orlicz function M(t); and let

q(s) = sup ft : p(t) � sg

Then q possesses the same properties as the function P . Suppose now

N(x) =

xZ
0

q(s)ds

Then N is an Orlicz function. The functions M and N are called mutually

complementary 0-functions (or mutually complementary Orlicz function ).

The following result on complementary 0-functions is quoted from Krasnoselskii

and Rutitsky (1961).

Proposition 4.1.4
Let M and N be mutually complementary functions. Then we have (young�s

inequality)

i) For x; y � 0; xy �M(x) +N(y):
We also have

ii) For x � 0; xp(x) =M(x) +N(p(x)).

Peralta (2010) describe the sequence spaces as:

`p(M) =

(
x = (xk) :

1X
k=1

Mk(jxkj=�)jp <1; for some � > 0
)

and

`p(M;�
m
q ) =

�
x = (xk) : �

m
q x 2 `p(M)

	
:

Theorem 4.1.5
LetM = (Mk) be a sequence of Orlicz functions ful�l the �2 � condition. If

1X
k=1

jMk(t=�)jp <1 (4.6)

for all t; � > 0 then `p(�m
q ) � `p(M;�m

q ).
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Proof:
Suppose condition (4.6) holds and let x = (xk) 2 `p(�m

q ). Then,

we get

1X
k=1

j�m
q xkjp <1: (4.7)

The convergence of
1X
k=1

j�m
q xkjp <1

implies that

lim
k!1

j�m
q xkj = 0:

Thus, we can �nd n 2 N such that j�m
q xkj � 1 for all k � N .

Let

K = max(
���m

q x1
�� ; :::; ���m

q xN�1
�� ; 1):

Then
���m

q xk
�� � K for all k 2 N: For � > 0, utilizing the monotonicity of Mk, we

get Mk(j�m
q xkj=�) �Mk(K=�) for all k 2 N.

This inequality shows that

1X
k=1

��Mk(
���m

q xk
�� =�)��p � 1X

k=1

jMk(K=�)jp :

This estimate proves that �m
q x 2 `p(M), that is, x 2 `p(M;�m

q ). By equation

(4.6). Therefore, the inclusion `p(�m
q ) � `p(M;�m

q ) holds.

27



5. CONCULUSION

Peralta (2010) studied `p(�m) and examined the topological properties of this

space. Later Karakaş et al. (2016) de�ned di¤erence operator �m
q . We used

Peralta�s (2010) studies and extented it by used the generalized di¤erence oper-

ator �m
q . We generated the di¤erence sequence space `p(�

m
q ) and kxkp;�mq ; and

investigated some of their properties. We showed that, if `p(�m
q ) is equipped with

an appropriate norm k:kp;�mq is a Banach space. We further more showed that, the
sequence spaces (`p(�m

q ); k:kp;�mq ) and (`p; k:kp) are linearly isometric. It is shown
that `p(�m

q ) � `p(M;�m
q ): WhereM, a family of Orlicz functions, is meeting the

�2-condition.
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