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The set of Natural numbers
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The set of complex numbers
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The spaces of all Y54 |x|P < oo is the convergent sequences
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OZET

YUKSEK LiSANS

GENELLESTIRILMIS A7* FARK OPERATORU VE TOPOLOJIK
OZELLIKLERIi

Mabhir Salih Abdulrahman ASSAFI

Siirt Universitesi Fen Bilimleri Enstitiisii
Matematik Anabilim Dah

Damisman  : Yrd. Dog¢. Dr. Abdulkadir KARAKAS

2017, 30 Sayfa

Bu tezi dort boliime ayirdik. Tezin birinci kisminda, konunun tarihsel bir gelisimi ile iliskili giris
verildi. Tkinci ve iigiincii kisimlarda, tanimlarimiz ve sonuglarmmizla direkt iliskili olan gesitli yazarlarm
yaptig1, farkli ¢alismalarla ilgili bilgi verildi. Tez boyunca kullandigimiz tanimlar ve notasyonlar gibi
kavramlarin ¢ogu suan standarttir. Dordiincii boliimde, Orlicz fonksiyonunun hakkinda bilgi verildi.
Peralta (2010) nin ¢aligmasi, Karakag, ark. (2016) tarafindan tammlanan Af* fark operatorii kullanilarak
genellestirildi. 1,(Ag") fark dizi uzayr elde ederek bu dizi uzayinmn &zelliklerinin bir kismi aragtirildi.

L, (AT, ”'”p,A‘r]n normu ile birlikte verilirse bir Banach uzay1 olacag gosterildi. Ustelik (lp (A;”), ”'”p’A‘r]n)

ve (lp, ||-||p) dizi uzaylarmmn lineer izometrik oldugu gosterildi. Bu boliimiin sonunda, Orlicz
fonksiyonlarmin bir ailesi olan 1, (A7") < (M, A7") kapsamasi gosterildi.

Anahtar Kelimeler: Dizi uzaylari, Fark dizi uzaylari, izometrik dizi uzaylari.
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ABSTRACT

MS. THESIS
GENERALIZED A7 DIFFERENCE OPERATOR AND TOPOLOGICAL
PROPERTIES
Mabhir Salih Abdulrahman ASSAFI
The Graduate School of Natural and Applied Science of Siirt University
The Degree of Master of Science

In Mathmetics

Supervisior : Asst. Prof. Abdulkadir KARAKAS

2017, 30 Pages

We divided this thesis into the four chapters. The first chapter of the thesis gives the introduction

deals with a historical review. The second and the third chapters give the background of different kinds of
work done by various authors, which are related directly to our definitions and results. Most of concepts
which we have used throughout the thesis such as notations and definitions are currently standard. We
presented the history of the Orlicz function in the the fourth chapter. We used the Peralta' s (2010) studies
and extented it by using difference operator Ag' given by Karakas et al. (2016), we generated the
difference sequence space [, (Ag") and investigated some of their properties. We showed that, if [, (A7') is
supplied with an aproper norm ||-||p,A‘r]n then it will be a Banach space. We further more showed that, the

sequence spaces (lp (A;”), ||-||p,A‘r]n) and (lp, ||-||p) are linearly isometric. At the end of this chapter, it was

shown that ,,(A7") < L, (M, A7).

Keywords: Difference sequence spaces, Isometric sequence spaces, Sequence spaces.
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1. INTRODUCTION

Let ¢, { and ¢y be the Banach spaces of convergent, bounded and null sequences

x = (zy)p, respectively with complex terms, normed by

]| o = sup |2,
k
where k£ € N.
Kizmaz (1981) presented the difference sequence spaces,
X (A)=Az=(zx) : Az € X}
for X = ¢, {4 and cq where
Az = (Axy) = (T — Tpya) -
These are Banach spaces with the norm
2]l = lza] + Az -

He also studied their topological properties. Recently Colak and Et (1997)
extended the spaces X (A) to the spaces X (A™) for X = ¢, {, and ¢y. Let X

be any sequence spaces and defined
X (A™) ={z = (2p) : A"z € X}

where m € N and A™x = (Ao A™ 1)) for all £ € N and prove that c(A™),

loo(A™) and co(A™) are Banach spaces with the norm

m

m o T - m
AMxy = E (—1) (,U)xk:-‘rvv %[ am = E :|x,| +[[A%z]|
i=1

v=0
Karakag et al. (2015) defined the sequence spaces [ (4A,), c¢(4,) and co(4,), where
q € N and
Agr = (Agrg) = (qop — Tppa).

The following sequence spaces have been given by Karakas et al (2016),

X (AM) ={z=(z) : Alz € X}

for X = ¢, { and cy, where ¢,m € N. They show that the spaces X (AZ”) are

Banach spaces by the norm



m

|2l ap = D Lol + | A,

1=1

where

and

m

Az = (ATzy) = 3 (~1)" (?) " T

v=0

Recently, Peralta (2010) studied ¢,(A™) and examined the topological properties
of this space.
In this paper, we chose p € [1,00). By w, we shall denote the space of all

sequences r = (zy,), for z; € C and all k € N. Taken = € w, describe
0o 1/p
], = (Z |xk|p>
k=1

by = {x = (zx) « [Jz]|, < oo}

and let

The linear operator A" : w — w is presented recursively as the composition
Agn =A,o0 Azlnfl for m > 2 and ¢ € N. It is obvious that for x € w and m > 1 we

have the following Binomial representation

m m B
A =31 (7)o,

v=0
for all £ € N.
Let m € N and define the sequence spaces £,(A}") by

Cp(AY) ={z = (x1) : Ay'w € Ly}

The sequence spaces are Banach spaces normed by

m 1/p
H:c”p,%n = <Z |z P + HA;%;H]’;) . (1.1)
i=1



2. BASIC CONCEPTS
2.1. Basic Definitions and Theorems

Definition 2.1.1
Let X be a nonempty set and K be the field of complex number. If operations

+: X xX—-X

K xX =X

Satisfy the following statements then X is called a vector (linear) space on K.

e4+y=y+uz,
) (x+y)+z=a+y+2),
3) x + 0 = x so that there is a zero vector given name 6 € X,
4) For each x € X, z + (—x) = 0 so that there is an —z € X
5)
6) A(z+y) = Az + Ay,
) (A +p)x =z + px,

8) Muz) = (Ap)x
for every A\, € K and z,y,z € X (Maddox, 1988).

lr =2

Definition 2.1.2
X #0,d: XxX — R be a function. If the following statements are satisfied for

any z,y,z € X, then d is called a metric on X and (X, d) is called a metric space;
M1) d(z,y) = 0

M2) d(z,y) =0<= 2z =y
M3) d(z,y) = d(y, z)
M4) d(x, z) < d(z,y) + d(y, z) (Maddox, 1988).

Definition 2.1.3

Let (X,d) be a metric space and x = (z,) be a sequence on X. = = (z,)
converges to a number x € R and denoted by x,, — z, if for every £ > 0 there exists
a N(e) € N, such that, for any n > N(¢)

d(zp,x) <e.

In other words, (z,) converges to x if Ve > 0, |z,, — 2| < € holds except finitely

many terms of the sequence x (Maddox, 1988).



Definition 2.1.4
A sequence x = (x,,) is called a Cauchy sequence if Ve > 0, IN(¢) € N such that
for all n,m € N, with n,m > N(¢),

|z, — T| < €.

(Maddox, 1988).

Theorem 2.1.5
A sequence of real numbers is convergent if and only if it is a Cauchy sequence
(Maddox, 1988).

Definition 2.1.6
Let (X,d) be a metric space. If each Cauchy sequences converges in a metric

space (X, d), this space is called complete metric space (Maddox, 1988).

Definition 2.1.7
Let p > 1 fixed a real number. Each element in the space [, is a sequence

r = (z,) = (1, %o, x3,..) of numbers such that |z1|" + |z2|" + ... converges; thus

l, = {(ajn) : Z\xk\p < oo}

k=1

and the metric is defined by

d(a,y) = (Z 2 — w) p

where y = (yx) and Y |yx[” < co (Maddox, 1988).
k=1

Definition 2.1.8

Let be a vector space on K. If the following conditions are satisfied then the
mapping ||.|| : X — R, x — ||z| is called a norm,

N1) fl2f] > 0

N2) ||lz]| =0 a2=146

N3) flaz| = lal =], (o € K,z € X)

N4) o+ yll < llz] + lyll for v,y € X
then the (X |.]]) is called as a norm space (Kreyszig, 1978).

Definition 2.1.9
If a Cauchy sequence in a (X, ||-||) normed space converges then it is called

Banach space (Kreyszig, 1978).



Definition 2.1.10
Let us show set of all sequence with complex variables by w, for z = (),
y = (y), (k=1,2,3,...) and a constant «, the set w is a vector space under the

operation defined by
r+y = (zr) + (yr)

ar = (axy) .

Every sub-vector space of w is termed a sequence space (Goes and Goes, 1970).
Let ¢, f and ¢y be the linear spaces of convergent,bounded and null sequences

xr = (x}) with complex terms, that is

c= {x = (zg) : lilgnxk = L and for EIL}

loo = {x = (xg) : sup|zx| < oo}
k

co = {m = (xy) : liinxk = O}.

All the above sequence spaces are Banach spaces normed by
ol = sup .

for k € N.

Definition 2.1.11
Let X be a Banach space.
If;
T X = Comp(x) =, (K=1,2,3,...)

transformation is continuous, then X is called BK—space (Goes and Goes, 1970).

Definition 2.1.12
Let (X, |-]) and (Y, ||||1) be two normed spaces.
Then,;
i) A mapping T': X — Y is known to be isometric (or an isometry) if preserves

T norm, that is, for all z,y € X ;

1
I =Ty |" = llz =y

where T}, and T}, are the images of x and y, respectively.
i1) The space X is said to be isometric with the space Y if there exist a one-

to-one and onto isometry X onto Y. Then X and Y are called isometric spaces



(Kreyszig, 1978).

Definition 2.1.13

Let X and Y be two vector spaces. If a function 7' : X — Y possesses the
properties,

i) T'(x1 4+ x2) = T(x1) + T(x9) for all 1,29 € X (additivity),

i1) T(axq) = oT(xq) for all 21 € X and a € C (homogeneity)

then T is called linear mapping (Suhubi, 2001).

Definition 2.1.14
Let X be any vector space and Y C X, for all 1,90 € Y and X € [0,1]. If
My, y2) ={yeY :iy=Ay1 + (1 =Ny, 0 <A <1} CY
Y is called convex space (Kreyszig, 1978).
Theorem 2.1.15

In order for an X subspace of Banach space to be complete, it is necessary and
sufficient that condition Y is closed in X (Kreyszig, 1978).



3. DIFFERENCE SEQUENCES
3.1. A Difference Sequences and Some Properties of A

The notion of difference sequence spaces was firstly introduced by Kizmaz (1981)

as follows:
X (A) ={z = (xp) : (Axy) € X}

for X =/, c and ¢y. In 1981, He defined the following sequence spaces

{z = (z1) : Az € I}
c(A) ={x=(zp): Az € ¢}
{z = (z1) : Az € ¢o}.

where
Az = (Azy) = (v — Ta1),

and showed that these spaces are Banach spaces with norm

lz]la = faa] + [Az] -

Here, he showed that (I.(A), || - ||a) is a Banach space.
Let (™) be a Cauchy sequence in I, (A), where 2" = (z') = (27,25, ...) € lo(A),
for each n € N. Then

" — ™| = |7 — 2" + [|Az"™ — Ax™[| , — 0 (n,m — 00).

Therefore, we obtain |z} — z}'| — 0, for n,m — oo and each k € N.
Hence, (2}) = (z}, 2%, ...) is a Cauchy sequence in C (complex numbers) whence

by the completeness of C, it converges to x; say, i.e., there exists
lim x} = xy, for each k£ € N.

Further, for each € > 0, there exists N = N(¢), such that for all n,m > N and, for
all k e N,

|IL'711 - x71ﬂ| <g,

Ty — Ty — () — mkm)‘ <ée



and

lim |2} — | = [af — 2| <<,

n_

hnlzn |332+1 —aphy — (7 — 37?)} = |$Z+1 — Ty — (g xk)‘ <,
for all n > N. Since ¢ is not dependent on £k,
o ek — it — (o — )] < =
Consequently we have ||z — z||a < 2¢, for n > N. Hence we obtain 2" — z
(n — 00) in I (A), where x = (xy).
Now we must show that = € [,(A). We have
|Tp — Tpp1| = |zn — 2y + 2} — Tpy + Thyy — Tes| < |2y — a2 - xHA =0(1).

This implies x = (x), where = € [(A) (Kizmaz, 1981).
3.2. A™ Difference Sequences and Some Properties of A™

In 1993, Et defined the sequence spaces [, (A?), ¢(A?) and co(A?) as:

{2 = (z3) : A% € 1},
c(A?) = {x = (x3) : A’r € ¢},
{

= (21) : A% € ¢}

where

A’z = (A%z)) = (Axgp — Azpyy),

and showed that these are Banach spaces with norm

|2l x = |z1] + [a2| + ||A%2] _ -

After then Et and Colak (1995) defined the sequence spaces



for m € N, A% = (z3), Az = (2, — 2p41),
A"z = (A™x) = (A™ oy — A ey )

and hence .
Aml'k :Z(—l)v mn Lhtoy-
v=0 v
It is obvious that l.,(A™), co(A™) and c¢(A™) are linear spaces. It is dearly

observed that these sequence spaces are normed spaces with norm

m

am = D Lol + ATz, . (3.1)

=1

We write lim,, for lim,_,.and Y, for > 7, .

||

Theorem 3.2.1
The sequence spaces lo(A™), co(A™) and ¢(A™) are Banach spaces with norm
(3.1) (Et and Colak, 1997).

Proof:

Let (2°) be a Cauchy sequence in [ (A™), where 2° = (27) = (z§,25,...) €
lo(A™) for each s € N.

Then

m

o = L = Dt ] + s Ao ] 0
=1

as s,t — 00.

Hence we obtain

|xz - xﬁc‘ — 0
as s,t — oo, for each k € N. Thus (z{) = (x},73,...) is a Cauchy sequence in C,

since C is complete, it is convergent.

limz}, = xy,
S



for each k € N. Since (2°) is a Cauchy sequence for each € > 0, there exists N = N (¢)
such that Hxs - < ¢ forall s,t > N.

Hence;

e

m
E ‘xf —xi| < e and
i=1

for all k € N, and all s,¢ > N.
We have

m m
limg |f — af| = E |z} — 2| <e
I

=1 i=1

and

lim | A™ (zj, — 2)| = |A™ (2} — )| < e

for all s > N. This implies that ||z° — x| ym < 2¢ for all s > N, that is, 2°* — z as
s — oo where x = ().

Since

ATy = é(—n”(’:)xm
_ Uf;(—n” (™) one ol 4
< o0 ()t =+ o0 () )

< [} ~ ]y + A7 = OQ)
we obtain = € I, (A™). Therefore [, (A™) is a Banach space.

It can be shown that c¢y(A™) and ¢(A™) are closed subspaces of l.(A™). There-
fore, these sequence spaces are Banach spaces with norm (3.1). Some of inclusion

relations between these sequence spaces are given below:

Lemma 3.2.2
i) c(A™) C c(A™F),
ii) co(A™) C co(A™ ),
101) loo(A™) C Lo (A™1)
and the inclusions are strictly (Et and Colak, 1995).

10



Proof:
ii) Let © € ¢o(A™). Since

|Am+1$k‘ = |Am$k — Am$k+1’

< Ay + |A" | — 0, (k — o)

we obtain z € A"™(¢y). Thus co(A™) C ¢o(A™!). This inclusion is strict since
the sequence x = (k™). For example, it belongs to ¢,(A™"1) but it is not belong to
C()(Am).

The proofs of (i) and (éi7) are similar to the proof of (7).

Lemma 3.2.3

i) c(A™) C l(A™)

i) co(A™) C c(A™)
and the inclusions are strictly.

The proof is identical with the proof of Lemma 3.2.2.

Additionally, since l,o(A™), co(A™) and ¢(A™) are Banach spaces with contin-
uous coordinates, that is, ||z® — x|\, — 0 implies |2} — 2| — 0 for each k € N as
s — oo they are also BK—spaces (Et and Colak, 1995).

3.3. A, Difference Sequences and Some Properties of A,

All throughout this paper we let 1 < g < 0o, ¢ € N. After Karakag et al (2015)
defined the sequence spaces loo(4,), ¢(A,) and ¢o(A,) by

{z = (2) : Ayr € 1o},
o(A) = {z = (@) : Agz € o
{

r = (x) : Ayx € o}

where ¢ € N and
Ayx = (Agry) = (qrg — Tpi)-

Subsequently difference sequence spaces have been investigated by Altin (2009),
Et (1993, 2003, 2004, 2013), (Bektas et al, 2004). Recently, Bagar and Altay (2003)
and Altay and Basar (2007) introduced the difference space bvp consisting of all
sequence whose backwared differences are in the space [, of absolutely p—summable

sequences in the cases 1 < p < oo and 0 < p < 1, respecitively.

11



Theorem 3.3.1

The sequence spaces loo(4,), ¢(A,) and co(4,) are Banach spaces with norm
[2lla, = 22l + [ Agz] o - (3-2)
(Karakag et al., 2016).

Proof:
Let (2") be a Cauchy sequence in [ (4,), where 2" = (z}) = (af,25,...) €
loo(A,) for each n € N.
Then
a7 — 2™y, = o7 — ]+ | Aga” — Agaz™|, = 0 (33)

as n,m — 0o0. Hence, we obtain
n m
|z, — 23| — 0

for n,m — oo and each k € N.
Therefore, (z}) = (z3,23, ...) is a Cauchy sequence in C whence by the complete-

ness of C, it is convergent, say z, € C, that is
limz) = x4
n

for each £ € N. Since (2™) is a cauchy sequence, for each ¢ > 0, there exists
N = N(e) such that [|z" —2™[|, <eforall n,m = N.

Hence
|.T;L - $T| <eg,
Th — Ty — (g2 — qa?)| <,
and
lim|af — af'| = |2} — 1] < e,
hén Thr — TR — (qg — qx’,f)‘ = }$Z+1 — Tep1 — (q) — qp| <€
forall n > N.

12



Then,

Sl;le"ZH — Tpgr — (go) — qup)| < e

This implies that [|2" — x|, < 2¢ for n > N, that is, 2" — z as n — oo where
r = (xg).

Since

gy, — Tpa] = gz — gy + qzy — a3 + Ty — Teg|

< |qu - $;cv+1| + H"EN - mHAq =0(1),

We obtain x € [ (4,). Thus, I(4,) is a Banach space.

In the same way, it can be shown that ¢(4,) and ¢y(4,) are the Banach spaces
with norm (3.2).

Moreover, since (o(4,), c(4,) and co(4,) are Banach spaces with continuous
coordinates, that is, |[z" —z[|,, — 0 implies |gz}; — 2| — 0 for each k € N, as
n — 0o, they are also BK-spaces.

Let us define that operator
D :l(A) — U

as Dx = (0,29, x3, 2y, ...), where x = (21, X, T3, T4, ...). It is easy to show that D is
a bounded linear operator on (o (A,).

Furthermore the set
Dl(Ay)] = Dloo(A,) = {x = (21) : ® € (D), x1 = 0}
is a subspace of (o (4,), and
l2lla, = 1Ag2]l &

in Dloo(A,).

Now let us define
Ay DUo(Ay) = loo, Ayr =y = (qug, — Tpei1)-

It can be shown that A, is a linear homeomorphism. Hence, Dl (A,) and {

are equivalent as topological spaces. A, and (A,)~! are norm preseriving and
18l = [[(A) 7| = 1.

Following Karakas et al. (2015) give some properties of A,(x).

13



Theorem 3.3.2
Let X be a vector space and A subset of X. If A is a convex set, then A,(A) is
a convex in A, (X) (Karakas et al., 2015).

Proof:
Let z,y € Ay(A). Then Az, Ayy € A. Since A, is linear, we have

Mgz + (1 =NAy =2 z+ (1= N)y), (0 <A <1).

Since A is convex, so AA,x + (1 = AN)Ayy € A and Az + (1 — Ny € A, (A), where
0< A<

Theorem 3.3.3
The following statements hold:
i) loo C loo(A,) and the inclusion is strict.
i) ¢(A,) C le(A,) and the inclusion is strict .
i11) ¢(A) C ¢(A,) and the inclusion is strict .
iv) The sequence space ((A) is different from the sequence space ¢ (4,) and

loo(A) N loo(A,) # 6 (Karakas et al., 2015).

Proof:

i) Let « € (. The incluction follows from the inequality
g1 — Tpa| < qlag| + g < K
for some K > 0.
To show that the inclusion is strict, let us take
k—1
m=q"=> ¢
i=1

such that A,z = (¢, ¢, 4, ...) then, we obtain (A,zy) € (o but (x1) ¢ lo.

i1) Let © € ¢(A,).Then, we have Az € ¢ C ly that is, z € £ (A,).

Hence, ¢(4,) C ls(4,). To display that the inclusion is strict, define z = (z)
such that

zr = (0,4,0,q,0,...).

Then = € £ (Ay)\c(A,).

i11) If we choose z = () such that

T = <Q7 2q7 3q7 4Qa )
Then we obtain € ¢(A) but = ¢ c¢(A,).

14



iv) If we choose z = (1,2,3,...), then x € ((A), but x ¢ {(4,). Let us take
x = (z) such that

k—1
r=q"-> ¢
=1

then we obtain = ¢ (- (A) but = € {5 (4,). Hence, the spaces ((A) and l(A,)

are overlap.
3.4. A" Difference Sequences and Some Properties of A"

Later Karakag et al. (2016), defined equence spaces (« (Ag”), C(Agl) and
Co (Agz) by

x:(xk):A;”wEEOO},

{
c (A7) ={x = (m): A’z € c},
{

x = (xp) : Ag”xéc()},

where

Theorem 3.4.1

The sequence spaces ¢ (Ag"”) s oo (Ag”) and ¢ (A;”) are Banach spaces with norm

m

Izl =D

i=1

+[lagz], (34)

xi
(Karakas et al., 2016).

Proof:
Let (z") be a Cauchy sequence in £y, (A}') , where 2" = (z

f (Ag"‘) for each n € N. Then

?) - (x’f,x?,x?, ) €

m

n t .
H:E _xllAg%_E:

=1

a" — '] + sup | AT (2} — i) — 0
k

i

as n,t — oo.
Hence, we obtain

n t
[} — 2k =0

15



as n,t — oo and each k € N.
Therefore, (z¥) = (x4, 2%, 73, ...) is a Cauchy sequence in C. Since C is complete,

it is convergent, say x, € C, that is,

lima? =z, (k=1,2,3..)

n

for each £ € N. Since (2") is a Cauchy sequence, for each ¢ > 0, there exits
N = N (¢) such that ||z" — 2|\, < ¢ for all n,t > N.

Hence

2 ()t =]

v=0

m

E |x’7 — xt,‘ <e,
1 1

i=1

for all kK € N, and n,t > N. So we have

m m
limg ‘x?‘—xﬂ: E 2" —z,| <e,
t [ (3 (3 v

=1 i—1

and

li;n |AT (2} — ap)| = |AR (@) — a)| < e,

for all n > N.

sup | AV (2} — )| < e.
k

This implies that ||z™ — x|

am < 2e for n > N, that is, 2™ —  as n — oo where
q

x = (xy) . Since

= o0 ()t
= o () o )
< oo () s [ ()

< HxN —x”Agn + ‘A;nx]kv‘ =0 (1)

we obtain x € /., (A;”). Thus, /4 (A;”) is a Banach space.

In the same way, it can be shown that ¢ (A;”) and ¢ (A;”) are Banach spaces
with the norm (3.4).

Futhermore, since /. (A;”) , C (Ag”) and cq (A;”) are Banach spaces with con-

tinuous coordinates, that is, ||™ — z||,, — 0 implies |gz} — 2| — 0 for each k € N,
q

16



as n — 0o, they are also BK-spaces. Let us define the operator

Dl (A™) = b (A™)

q q

as Dz = (0,0,...0, Zpi1, Timsa, -..) , Where © = (21, T2, 23, 24, ...). Its easy to show

that D is a bounded linear operator on £ (AZ]”). Furthermore the set

Dl (Am)] = Dl (A;”) = {33 = (zg): @ € ly (Am) L, T =T = X9 = .. = Xy = 0}

q q

is a subspace of (Ag"”) , and

]l s = (A7 2]l
in Dl (Ag‘) .
Now let us define
v=0
k

(AP g — Dl (A7), (A ) = () = 3 (—1)" (k Y- 1)qk—m—v%

—1
v=1 b

It can be shown that A;” is a linear homeomorphism. Hence D/, (AZ‘) and ¢, are

equivalent as topological spaces. A" and (A;”)_l are norm preserving and

x#0 “'IHA;” z;éoHA[]”xHoo
- Ioll,,  supllAT (A7) ol
a7 - a0 7l a0 suple] =1

hence

lag = [[@am ™| =1

Following Karakag et al. (2016) give some properties of some topological

properties of Al* (X) and inclusion relations.
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Theorem 3.4.2
Let X be a vector space and A subset of X. If A is a convex set, then A" (A) is
a convex set in A7 (X) (Karakas et al., 2016).

Proof:
Let v,y € AT* (A). Then Az, A’y € A. Since A7 is linear, then

ATz 4 (1= A\) Ay = AT Az + (1= A)y),(0< A< 1),

Since A is convex , so AAT'z + (1 — A\) A"y € A and so Ar + (1 — \)y € A (A),
where 0 < \ < 1.

Theorem 3.4.3

The following statements hold:

i) (oo C lo (A;") and the inclusion is strict.

ii) ¢ (A7) C lo (AI") and the inclusion is strict.

iii) ¢(A) C ¢ (A7) and the inclusion is strict.

iv) The sequence space (o, (A) is different from the sequence space ¢, (A;”) and
loo (A) Nlo (A7) # 0 (Karakas et al., 2016).

Proof:

i) Let x € {5. The inclusion follows from the inequality
& v m m—v
}j«&)( )q v
v=0 v

< (" lanl+ () el + (D) a2 kg [ g lme] < K
>~ O k 1 k+1 2 k+2 m — 1 k+v

for some K > 0. Hence (Ag‘mk) € loo = 7 € Lo(AT).

|A7] =

To show that the inclusion is strict, let us take

k-1
me=q"=> ¢
i=1
such that

AT = (qlg—1)" " q(g—1)" " q(g— 1), )

then, we obtain (Ag”xk) € Uy but (z1) ¢ lo.
ii) Let x € ¢ (A;”). Then, we have A"z € ¢ C lo, that is, ¥ € l (Ag”). Hence,
¢ (A") C Lo (A7"). To prove that the inclusion is strict, define 2 = (2) such that

T = (07 q, 07 q, 07 )

18



Then z € lo (A7) \c (A7) .

iii) If we choose x = (z},) such that

Tk = <Q7 2q7 BQ7 4Q7 ) :

Then, we obtain z € ¢ (A) but = ¢ ¢ (A7) .

iv) If we choose x = (1,2,3,...), then z € l (A), but = ¢ /o (A;") . Let us
take © = (xy)

such that

then we obtain = ¢ (., (A) but z € /o (A;”) . Hence, the spaces (o, (A) and /o, (A;n)

are overlap.
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4. ISOMETRY of /,(A7') SEQUENCE SPACE GENERATED BY
A7" DIFFERENCE OPERATOR

In this section we give the original part of this thesis.

Peralta (2010), studied ¢,(A™) and examined some topological properties of this
space.

Let p € [1,00). We define the space of all sequences = = (x), where z;, € C for
all k € N by w. Taken = € w, describe

o0 1/p
Iz, = (Z ka|p>
k=1

by = {x = (zx) : [J]|, < oo}

and let

We obtain the linear difference operator A : w — w which maps a sequence = € w

into Az = (Azy) € w having components

A.I'k =Xk — Tky1-

The linear operator A7" : w — w is presented recursively as the composition
AZL =A,o0 Ag”_l for m > 2 and ¢ € N. It is obvious that for m > 1 and x € w we

present the following Binomial representation

m m »
apan =Y ()t

for each k£ € N.

Taken m € N, we find the sequence space as:
Cp(AY) = {x = (1) : AJ'w € Ly}

and for z € £,(A}") we get

m 1/p
Il oy = <Z|x,»|p+ HA;“xui) (4.)
i=1

It can be dearly observed that the pair (¢,(A7), ||l AZ") is a normed space.

We have the following inclusions £,(A7") C (o (A7) and £,(AT') C co(AT') C
c(A7).

The researchers may consult with Altay and Polat (2006) and Qamaruddin and
Saifi (2005).
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In this section, we will prove £,(A}") with norm ||.[|, » is a Banach space and

g
linearly isometric to the ordinary sequence space £,,. Moreover, a sufficient condition
for the inclusion £,(A7') C £,(M, A7), where M is a family of Orlicz functions

satisfying the As-condition, will be given.

Theorem 4.1.1

The sequence space £,(A7") is a Banach space with the norm ||. ||, xm-
g

Proof:
(n)

Let (™) = ((2;")) is a Cauchy sequence in £,(A™). Thus, for € > 0 we can

find a positive integer N such that

| = 2], o <€

whenever n,r > N, that is,

=

m p p
(Z + HAgla:(”) — Ag”ﬂ””i) <&,

i=1
for n,r > N.

Since

o7 = 0] < o - ], o,

fori=1,2,3,...,m and

|a7a® = A7, < o =«

A"

Therefore, (xgn)) and (A7z() are Cauchy sequences in C and ¢, respectively.
The completeness of the spaces C and ¢, show the existence of elements y; € C,
i=1,2,...,m, and z = (%) € £, such that

lim |2 — 3| =0 (4.2)
fori=1,2,...,m and
lim HAZ’x(”) — sz =0. (4.3)
Since
Apal” =zl < [|APa® 4,
we get

Az =z =0

as n — oo for all k£ € N by equation (4.3).
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We obtain a recursive formula for lim z\™) ., >1,as n — oo.

n—oo m+1)
We have )
m, .1 m_\n v m m—uv _(n
(el = agal? = Y ral
v=0
and so

m—1
. n m v m m—uv
Wmt1 2= 7}1_{20357(7111 =(-1) [21 - UEO(_U (v)q yv+l] .
Assume that w11, ..., Wnir_1, 1 < k < m, have been established. Where

Wi 7= TLILI&Q:%L,Z’ =1,2, .. k—1.

Using these, we acquire, for 1 < £ <m

Wik = lim :Uislk =(-1)™ v=0

n— oo k=1 k-t m k
a —1)m=rre - m-v
Sevrre ()

On the other side, for £ > m we get

m—1
m,_.\n m _.(n v m m—uv _(n
(1702 = Apaf? = o1y () gl

So that

m—1
. o (M e
Wy = lim 2l = (—1)" [Zk -> (-1 <U>qm "W g

n—00
v=0

Let w = (Y1, Ym> Wint1, Wmyo, --.).  We assert that w € (,(A7), that is,
Al'w € €. First, show that

m—1
m v m m—v m
@ = S0 () s+ (1) e
v=0
m—1 m m—1 m
=) (=1)" Q" Yo + |21 — (—1)”< >qm‘”yv+1]
v v
v=0 v=0
= z21.

Also, for k =2,...,m. We get
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v=0 v
= Zk.
Thus we have presented that Aj'w = z € {,. It remains to prove that

™ —w|| .. — 0as n — oo. This follows directly from Equations (4.2) and
p,AY
(4.3) and

m
n—00 pP,AY n—00

lim Hx(”) w” = lim (Z ‘x,(gn) —yk}p—i— HAZ”x(") — A;”sz)
:Z lim ‘xk —yk‘ + hm HAm (n) —zHi
= 0.

This completes the proof of the theorem.

Theorem 4.1.2

The sequence spaces (£,(A7), |-l am) and (¢, |.]|,,) are linearly isometric.
=a

Proof:
Take in to consideration the map T : (,(AT") — £, given by Ty = x, where
y = (yx) € L,(AT) and x = (23,) with

Uk, if1< k< m;
T =
AT Yk—m. if £ > m.

The linearity of the difference operator A implies the linearity of T'. If y € £,(A7")
and Ty = x, then
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o0

ITylly = el = ol + > (A7 yem|”
k=1

k=m+1
m oo
= Z lykl” + Z | ATy
=1 =1
= |’yH£,Agﬂ < 00.

This shows that T is well-defined and it is also norm preserving. We presented
that T is one-to-one and onto. Assume that Ty = 0.
Then, we obtain
Al'yy =0 for all k > 1, (4.4)

Y=Y2=..=Yn=0. (4.5)

We show that the difference equation (4.4) with initial conditions (4.5) implies that
yr = 0 for all k£ > 1, that is, y = (0,0, ...). Therefore, T' is one-to-one.

Suppose that © = (x)) € ¢,. Describe the sequence y = (yi) as follows. Let
Yr = xp for x4 = A;”a:k, k =1,2,....,m. The succeeding terms of the sequence y

is then showed recursively by

Ymr1 = (=1)" |Zmp1 = mi:l(—l)v (TZ) qmv%ﬂl

v=0

m—k m
s — S (<1)° ()qu

Ym+k = (_1)m h1 v=0 m ,1 <k<m
_ -1 m—k+v k—v e
S () e

and

v=0

m—1
m —v
Ym+k = (_1)m [xm_t,_k — Z(—1>U (U)qm yw,—k] ,/{Z >m.

Utilizing a similar argument as in the proof of the previous theorem, we can

prove that

m
Aq Yk = Thk4m

for k € N. Therefore it follows that Ty = .

Thus, we obtain
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a7yl = > 187wl
k=1

(o]
= Z ‘xk+m|p
k=1

< Jlzff < oo.

So that y € £,(A7"). Since. T' is onto, £,(A}’) and £, are linearly isometric.

Definition 4.1.3

An Orlicz function is a continuous, non decreasing and convex function
M : [0,00) — [0,00) such that M(u) = 0 if and only if v = 0, M(z) > 0, and
M(x) — oo as x — oo. M is said to fulfil Ay — condition if there exists a positive
constant K such that M (2u) < KM (u) for all u > 0. Let M = (M) be a sequence
of Orlicz functions meeting the Ay — condition (Kamthan and Gupta, 1981).

The study Orlicz sequence spaces was initiated with a certain specific goal in
Banach spaces theory. Actually, Lindberg (1970) and Lindberg (1973) concerned on
Orlicz spaces in connection with finding Banach spaces with symmetric Schauder
bases that have complementary subspaces isomorphic to ¢y or £, (1 < p < 00).
There after, these Orlicz sequence spaces were further investigated in details by
Lindenstrauss and Tzafriri that lead to solve main structural problems in Banach
spaces (Lindenstrauss and Tzafriri, 1971), (Lindenstrauss and Tzafriri, 1972), (Lin-
denstrauss and Tzafriri, 1973), (Lindenstrauss and Tzafriri, 1973), (Lindenstrauss
and Tzafriri, 1977). In the meantime, Woo (1973), generalized the concept of Orlicz
sequence spaces to modular sequence spaces and this led him to sharpen some of the
results of Lindberg and of Lindenstrauss and Tzafriri; he carried thise study further
in (Woo, 1975). The Orlicz sequence spaces are the special cases of Orlicz spaces
introduced in Orlicz (1932) and extensively studied in Krasnoselskii and Rutitsky
(1961). Orlicz spaces find several beneficial implementations in the theory of nonlin-
ear integral equations. Where as the Orlicz sequence spaces are the generalizations
of /,-spaces, the LP-spaces find themselves enveloped in Orlicz spaces.

An Orlicz function M can always be represented see (Krasnoselskii and Rutitsky,
1961) also see (Kamthan, 1963) for a more general representation in thise direction)

in the following integral from:

where p, know as the kernel of M, is right-differentable for ¢ > 0, p(0) = 0, p(t) > 0
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for t > 0, p is nondecreasing, and p(t) — oo as t — oo.
Note: An Orlicz function is sometimes referred to as an 0-function as well.

Consider the kernel p(t) associated with an Orlicz function M (t), and let

q(s) = sup {t: p(t) < s}

Then ¢ possesses the same properties as the function P. Suppose now

Then N is an Orlicz function. The functions M and N are called mutually
complementary 0-functions (or mutually complementary Orlicz function ).

The following result on complementary O-functions is quoted from Krasnoselskii
and Rutitsky (1961).

Proposition 4.1.4

Let M and N be mutually complementary functions. Then we have (young’ s
inequality)

i) For x,y > 0, zy < M(z) + N(y).

We also have

i1) For x > 0, xp(x) = M (z) + N(p(z)).

Peralta (2010) describe the sequence spaces as:

l,(M) = {x = (xg) : ZMk(lmk]/p)P’ < 0o, for some p > 0}

k=1

and

C(M AT = {o = (z) : Az € (,(M)} .

Theorem 4.1.5
Let M = (Mjy,) be a sequence of Orlicz functions fulfil the Ay — condition. If

S IM(E/p) < o0 (46)

k=1

for all ¢, p > 0 then £,(A") C £,(M, AT").
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Proof:
Suppose condition (4.6) holds and let = = (z}) € £,(A7"). Then,

we get

D ATz < oo. (4.7)
k=1

The convergence of
oo
E |AY [P < 0o
k=1

implies that
lim |Af'w| = 0.
k—oo
Thus, we can find n € N such that |[A7"z,| < 1 for all k > N.

Let
K = max(|A2”:L’1} ooog |A;T$N_1| 5 1)

Then }Agnxk’ < K for all k£ € N. For p > 0, utilizing the monotonicity of M, we
get My (|ATxg|/p) < My(K/p) for all k € N.
This inequality shows that

Z|Mk A"z | /)| Z | My.(K/p)|”

This estimate proves that A’z € £,(M), that is, » € £,(M,AT'). By equation
(4.6). Therefore, the inclusion £,(A7") C £,(M, A7) holds.
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5. CONCULUSION

Peralta (2010) studied ¢,(A™) and examined the topological properties of this
space. Later Karakas et al. (2016) defined difference operator Aj. We used
Peralta’ s (2010) studies and extented it by used the generalized difference oper-

ator Ay'. We generated the difference sequence space £,(A7") and ||z and

A
investigated some of their properties. We showed that, if £,(A7") is equi;péd with
an appropriate norm ||. | AR is a Banach space. We further more showed that, the
sequence spaces (£,(A7), |-, AZ”) and (£, [|.||,) are linearly isometric. It is shown
that £,(A7') C £,(M, AT'). Where M, a family of Orlicz functions, is meeting the

As-condition.
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