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YÜKSEK LİSANS  

 

BULAŞICI HASTALIK MODELLERİNİN MATEMATİKSEL MODELLENMESİ  

 

Wali Hassan MOHAMMED 
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ÖZET 

Bu tezi sekiz bölüme ayırdık. Bu tezin ilk bölümü matematiksel modelleme ve modelleme süreci 

hakkında bir sunum verir. Ġkinci bölümü kimyasal kinetik ve kütleler etki yasasının genel 

denklemini sunar. Duyarlılık analizinin tekniği ve değişkenlerin ölçeği sırasıyla üçüncü ve 

dördüncü bölümde açıkça ifade edildi. Daha sonra beşinci bölümde bu çalışmada sayısal 

simülasyonlar için kullanılan yazılım araçlarını verdik. Bundan sonra altıncı bölümde SI, SIS ve 

SIR gibi bulaşıcı hastalık modellerini altıncı bölümde tanımladık. Yedinci bölümde yerel 

duyarlılık analizi ve nüfusların sayısı üzerine bazı sayısal simülasyonlarla birlikte Ebola virüsü 

hastalığı için matematiksel modellemeyi verdik. Son olarak sekizinci bölümde sonuçlar ve 

tavsiyeler verildi.  

Anahtar Kelimeler: Matematiksel modelleme, Kimyasal kinetik, bulaşıcı hastalık modelleri, 

sayısal simülasyonlar, duyarlılık analizi. 
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ABSTRACT 

 

MS. THESIS 

MATHEMATICAL MODELLING OF INFECTIOUS DISEASE MODELS 

Wali Hassan MOHAMMED 

The Graduate School of Natural and Applied Science of Siirt University 

The Degree of Master of Science 

In Mathematics 

Supervisor: Assoc. Prof.Dr. Ali AKGÜL 

             Second-Supervisor: Dr. Sarbaz Hamza ABDULLAH 

2017, 50 Pages 

       We divided this thesis into the eight sections.  

The first section of this thesis gives an introduction regarding to mathematical modeling and 

modeling process. 

The second section presents a general equation of chemical kinetics and mass action law. The 

technique of sensitivity analysis and scaling of variables are introduced clearly in the third 

and fourth section, respectively.  

Then, in section five we give the software tools that used for computational simulations in 

this study.  

After that, we define some infectious dieses models such as Susceptible-infected (SI), 

Susceptible-infected- Susceptible (SIS) and Susceptible-recovered (SIR) model in section six.  

 In section seven, we give the mathematical modeling for the Ebola virus disease (EVD) with 

some computational simulations based on the number of populations and local sensitivity 

analysis.  

Finally, conclusions and recommendations are given in section eight.  

 

Keywords: Mathematical Modeling, Chemical Kinetics, Infectious disease models, 

Computational Simulations, Sensitivity analysis.
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1. INTRODUCTION   

    A mathematical model is a mathematical object established on a real situation and produced in 

the hope that its mathematical behavior resembles the real behavior. Mathematical modeling is 

the scientific art of creating, analyzing, validating and construing mathematical models. 

Otherwise stated, mathematical modeling is a branch of applied mathematics that dealing with 

describing and/or predicting real-world system behavior. There are some examples of real-world 

systems an object moving in a gravitational field; stock market fluctuations; predator-prey 

interactions; cell signaling pathways (Lawson, et al., 2008). To define a mathematical model, we 

should define three different things: variables, parameters and functional forms.   

1.1. Modeling Process 

  There are a variety of steps that can be used to convert an idea into a theoretical model and then 

into a quantitative model (Lawson, et al., 2008). It is clear that a theoretical model presents our 

idea in a model diagram that involving arrows and boxes. Mathematical equations are also used 

to define the rate of each process. In Figure 1.1, it can be seen that a series of steps are required to 

define modeling process.   

 

 

Figure 1.1. Mathematical modeling steps. 
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1.2. Conceptual Model 

There is an epidemic model which is called SIR.  A theoretical model diagram is given as follows 

(Lawson, et al., 2008): 

                                            
            ( )
→             

        ( )
→                                                                              ( ) 

The model state variables can be given in below: 

(i) Susceptible (S): A group of people whose susceptible to the disease. 

(ii) Infectious (I): A group of people is called infectious that able to spread the parasite to others 

people. 

(iii) Recovered (R): A group of people is called recovered when they have immune or have died 

from the disease. We have two rate constants for this model, they are denoted by        ,  where 

  is recover rate constant and    is an infective rate constant. We can use the idea of mass action 

law to represent the model (1)  as a system of nonlinear differential equations: 

                                             

{
 
 

 
 
  

   
                ( )     

  

  
              ( )     

  

  
                    ( )    

                                                                        ( ) 

1.3. Mathematical Modeling Types 

1.3.1. Deterministic and Stochastic Models 

There are some differences between deterministic and stochastic models. Firstly, there is no 

parameters in deterministic models that characterized by probability distribution functions, 

whereas we have some parameters in stochastic models. Secondly, deterministic models may 

produce the same result for fixed starting values, while we have many different results for 

stochastic models (Lawson, et al., 2008). 

1.3.2. Continuous and Discrete Models 

They are two common types of mathematical modelling. They are sometimes called differential 

equations and difference equations. (Lawson, et al., 2008). 

1.3.3. Qualitative and Quantitative Models 

Some models are called qualitative model when we have detailing about the model or we have 

numerical predictions, whereas others are called quantitative models when we have general 

descriptions  (Lawson, et al., 2008). 
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1.4. Basic ideas and definitions 

      The main focal point here will be on the dynamics of populations. We introduce some basic 

definitions that can help us to understand further about ecological population. 

Definition 1.4.1 

     A population is the collection of individuals for particular species. They have same sharing, 

they are sometimes living in the same area. (Murray, 2001). 

Definition 1.4.2 

    The number of individuals is called population size  in a given population, say  ( )  (Murray, 

2001). 

Definition 1.4.3 

     Population density is the number of individuals per unit area, say  (   ). The main aim of 

mathematical modeling is to show the properties of the functions  ( ) and/or  (   )  (Murray, 

2001). 

Definition 1.4.4 

    An area is called habitat that is surrounded by a special animal or plant species. It is sometimes 

an environment that organisms live there. There are two extreme circumstances. The first one is 

continuous habitat, and the other one is fragmented (disjointed) habitat. (Murray, 2001). 
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2. CHEMICAL KINETICS AND MASS ACTION LAW 

2.1. Basic Ideas and Definitions 

Definition 2.1.1 

    Law of Mass Action was discovered in chemistry in 19th century. It was progressed into a 

universal toolbox for modeling of processes. Biological processes can be presented in terms of  

mathematical modeling using the chemical kinetic methods . (Khoshnaw, 2015). 

Definition 2.1.2  

    The population is classified into n components (or classes, or states, or types) of systems 

            . In chemistry,    for             are substances. (Khoshnaw, 2015). 

Definition 2.1.3 

      In ecological modeling, components may be different species, populations, and 

subpopulations. (Khoshnaw, 2015). 

Definition 2.1.4 

          is the amount of substance    in the system,      .    is the vector with coordinates,    

for i=1,2,…, n. (Khoshnaw, 2015). 

 Definition2.1.5 

     In chemistry, another set of variables is occasionally used: concentrations    
  

 
  where   is 

the volume of the system. We sometimes use the concentrations as        (Khoshnaw, 2015). 

2.2. Elementary Reactions 

    The elementary reaction is given by the stoichiometric equation: 

                                                                                         ( ) 

where the stoichiometric coefficients       and       are non-negative integers and   is the 

number of reactions. (Khoshnaw, 2015). 

2.3. Stoichiometric Vector 

    For each reaction, the stoichiometric vector     is explained from the stoichiometric 

coefficients (Khoshnaw, 2015). 

                                                                                                                         ( )  

With coordinates 
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                                                                                                                                                    ( ) 

2.4. Reaction Rate and Mass Action Law 

    Consider an irreversible reaction: 

                   
  
→                                               ( )  

and let    ,  -  for             are concentration species. Then, we can use mass action law  

to define the reaction rate    which is explained in below: 

                                                                    ∏ 
 

   

 

   

                                                                          ( ) 

where    is the reaction rate constant (kinetic reaction constant). (Khoshnaw, 2015). 

2.5. Kinetic Equation 

     If the elementary reactions are given with their stoichiometric equations and reaction rate 

constants then the kinetic equations (differential equations) for the concentration vector are 

                                      
  

  
 ∑    

 

                                                                      ( ) 

where   is the number of reactions,    is stoichiometric vector and    is reaction rate,   is the 

concentration vector. (Khoshnaw, 2015). 

Example 2.5.1 

Consider a set of chemical reaction as below:  

 
      

 
     

 
    

 Let     , -    , -  

We have three stoichiometric vectors 

   .
 
 
/     .

  
 
/          .

 
  
/  

We have also three reaction rates 

                      

 Then the kinetic equations are obtained as: 
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 ∑    

 

   

                 

                                                    
  

  
 .
  
  /  .

 
 
/   .

  
 
/      .

 
  
/     

Thus, the system of differential equations takes the form  
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3. SENSITIVITY ANALYSIS 

3.1. Historical Background 

       The idea of sensitivity analysis is one of the important methods that has been used for 

analyzing mathematical models in chemical kinetics and systems biology. (Rabitz, 1981) was the 

first person who introduced the notation of this method for such models. After that he also 

proposed the global and local techniques of sensitivity analysis. There are also many authors who 

developed the technique of sensitivity analysis in applied mathematics for example, finding 

parametric dependencies of ODE systems (Kramer et al., 1984), calculating the concentration, 

rate, and feature sensitivity analysis of chemical reactions (Turanyi, 1990), identifying of non-

important species using rate sensitivity  and of non-important reactions using principle 

component analysis  (PCA) of the rate sensitivity matrix (Tomlin et al., 1992).  

The method of sensitivity analysis can be used in some applications for models in systems 

biology. For example, using the method for parameter controlling of the NF-kB pathway 

signaling (Ihekwaba et al., 2004). In MAPK and PI3K signal pathways, the idea of time-

dependent sensitivity analysis has been used in (Hu et al., 2006). The reader can easily find 

further studies about the applications of sensitivity analysis in  (WH et al.,( 2008),  Perumal et al., 

(2011), Charzy´nska et al., (2012), Sumner et al., (2012), Azam et al., (2013),  Rabitz et al., 

(1983) and  Zi, (2011)). 

 Many software tools can be used for calculating local sensitivity for systems biology. For 

example, SimBiology Toolbox for Matlab (Korsunsky, et al., 2014). SensSB (Rodriguez-

Fernandez et al., 2010), BioSens, COPASI (Hoops et al., 2006), Systems Biology Toolbox 2 

(Schmidt et al., 2006), Tinker Cell (Chandran et al., 2009), SBML-SAT (Zi et al., 2008.) and 

Virtual (Slepchenko et al., 2003). While, there are some other software tools that can be applied 

to calculate global sensitivity in systems biology, for example SBML-SAT, SensSB and Systems 

Biology Toolbox 2.   

In this study, we use local sensitivity analysis method as a technique to determine which variable 

is sensitive to a specific parameter in biochemical reactions.   

3.2. Mathematical formulation    

we consider a system of ODEs   

                                         
   
  
   ( ( )  )                                                                         (  ) 

A vector of parameters   hare is a model input, whereas a vector of concentrations   is a model 

output. It is clear that the changes in state variables    *            +  with respect to 

parameters    *              +  are local sensitivity (Rabitz et al., (1983), Turanyi, (1990), WH 

et al., (2008) and Zi, (2011)). In a mathematical way, the first order derivatives are  the time-

dependent sensitivities of    with respect to each parameter value. This is given as bellows:  

                   
   
   

    
     

  (      )    (  )

   
                                                                     (  ) 



 

10 

 

For calculating the derivative Eq.(11), we have two methods.  The first one  is the finite 

difference approximation 

                       
   
   

 
  (      )    (  )

   
                                                                             (  ) 

The second method to calculate Eq. (11) is the direct sensitivity analysis. This technique is 

sometimes called "forward sensitivity analysis". By using this method, we can solve ordinary 

differential equations for the sensitivity coefficients. 

                             
    

  
 
 

  
(
    
   

)  
 

   
(
    
  
*  

 

   
(  ( ( )  ))                                (  ) 

We can also simplify Eq. (13) further by using  the chain rule of differentiation, 

                                  
    

  
 
   
   

 ∑
   
    

 

   

 
   

   
 
   
   

 ∑
   
    

 

   

                                (  ) 

Then, Jacobian matrix form for Eq. (14) is given in below 

                                                     ̇                                                                                (  ) 

Where the matrices                are explained by 

  

(

 
 
 
 
 

   

   
   
   
 
   
   )

 
 
 
 
 

     

(

 
 
 
 
 

   
   
   
   
 

   
   )

 
 
 
 
 

   

(

 
 
 
 
 

   
   

   
   

 
   
   

   
   

   
   

 
   
   

                 
   
   

   
   

 
   
   )

 
 
 
 
 

   

We can use the input parameter    and the initial condition of the output variables    for 

determining the initial conditions of Eq. (15). (Khoshnaw, et al., 2017). 

Example 3.3.1 

 To calculate local sensitivity for a biochemical reaction model, we give a linear chain of 

chemical reactions as follows, 

                                          
  
   

  
   

  
                                                                           (  ) 

where        and    are chemical components and        and    are chemical constants. 

Generally speaking, we have three sorts of reactions: 
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Production from source:  
  
 

→     degradation:   
  
 

→    conversion:   
   
→     

A system of ODEs here are given as:  

                    

{
  
 

  
 
   
  
            (          )         ( )    

        
   
  
             (          )        ( )    

   
  
         (          )                     ( )    

                                             (  ) 

 

where    ,  -    ,  -       ,  -. We can solve Eq. (17) analytically. This is given 

                     

              (

  ( )
  ( )
  ( )

)  

(

 
 
 
 

 
  
  
  

     
    

  (     ))

 
 
 
 

      

(

 
 

 
    

  (     )

  (      )

  (     ) )

 
 
      (

  
  
  
+                           (  ) 

where 

    
  
  
        

  
  
          

  (    (     )    
    

 )

    (     )
   

On the basis of the equation of  local sensitivity, Eq.(15), 

    (
 
 
 
+      (

   
  
 
)      ( 

 
  
  

+   

and 

  

(

 
 
 
 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   )

 
 
 
 

 (

     
      
    

+   

As a result, we have the local sensitivity of       and    with respect to       and    as follows: 
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              (

 ̇  
 ̇  
 ̇  

)  (
 
 
 
+  (

     
      
    

+(

   
   
   

+  (

   ( )

   ( )
   ( )

)  (
 
 
 
+                                  (  ) 

                  (

 ̇  
 ̇  
 ̇  

)  (
   
  
 
)  (

     
      
    

+(
   
   
   

+  (

   ( )
   ( )
   ( )

)  (
 
 
 
+                         (  ) 

                (

 ̇  
 ̇  
 ̇  

)  (
 
   
  

+  (

     
      
    

+(

   
   
   

+  (

   ( )
   ( )
   ( )

)  (
 
 
 
+                           (  ) 

 

We can solve the systems (19)-(21) analytically for identifying local sensitivity. In this study, we 

use SimBiology Toolbox for Matlab to calculate the local sensitivity analysis for high 

dimensional models. The reader can see different techniques of sensitivity analysis with details. 

(Rabitz et al., (1983), Zi, (2011) and Khoshnaw, (2015)).   
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4. SCALING OF VARIABLES 

 Scaling of variables is an important technique in systems biology for minimizing number of 

parametrs. Applying this technique is sometimes difficult because there would be more than one 

way for scaling of variables.  

4.1. Simple Enzymatic Reaction 

Briggs and Haldane introduced the simple model of enzymatic reactions (Sontag, 2014), and 

(Khoshnaw, 2013). The model reactions are given as: 

                                           
  
 

    ⃖     
    

  
                                                                      (  )  

where   is enzyme,   is substrate,    is enzyme-substrate complex and   is product. Model 

paramers are         and     We denote the model concentrations  by 

  , -   , -   , -   ,  -       

Using mass action law for Eq. (22), we can define a system of ordinary differential equations: 

                             

{
 
 
 

 
 
 
  

  
                

  

  
                      

 
  

  
      (      )     

  

  
                                     

                                                                      (  )   

    With the initial concentrations 

                      ( )         ( )         ( )   ( )                                                       (  )             

 

There are two independent chemical conservation laws for system (23),  

                                                                                                                 (  ) 

Subsituting Eq. (25) into Eq. (23) the system (23) becomes   

                                      {

  

  
    (    )                      

   
  

  
   (    )  (      )  

                                                  (  ) 
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Briggs and Haldane  noticed that the total concentration of the enzymes is much smaller that the 

total concentration of substrstes (           ), (Gorban et al., 2011).  A simple scaling is used 

in this model (Kumar, 2011) and (Murray, 2002).  We intoduce the following new variables: 

                         ( )  
 ( )

  
       ( )  

 ( )

  
                                                          (  )    

   Then, the system of ODEs (26) can be given in  different form: 

                              
  

  
   (   )             ( )                                                        (  ) 

 

                                
  

  
  (   )               ( )                                                       (  ) 

    

where    

  
  
  
      

   
    

            
      
    

     

The Eq. (28) is called slow subsystem, while the Eq. (29) is called fast subsystem (Khoshnaw, 

2013). 
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5. SOFTWARE TOOLS  

      Software tools are an important challenge in systems biology to describe the dynamics of 

biochemical reaction networks. We have a variety of software tools that can be used for 

visualizing, modeling process and simulating. We use two software development tools in this 

study to find some numerical approximate solutions and identify critical model parameters.  

5.1. Systems Biology Toolbox (SBToolbox) 

     This software tool is used for calculating numerical simulations and identifying steady state 

solutions for biochemical reaction networks (Schmidt et al., 2006).  

 

5.2. SimBiology Toolbox 

     The computational toolbox has a great role in modeling process, especially for high 

dimensional models. This can be used for identifying critical model parameters and calculating 

local sensitivity (Schmidt et al., 2006). 
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6. SOME INFECTIOUS DISEASE MODELS  

6.1. Susceptible-Infected Model (SI Model) 

     One of the simplest model of infectious disease is called SI model. In this model people are  is 

categorized as either susceptible   or infective  , where  susceptible people are healthy and 

infective people are unhealthy. (Abramson, (2011), Hethcote, (2000) and Ingalls, (2012)). The 

chemical reaction of the model assumes reaction: 

                                                                
 
                                                                                   (  ) 

where S is the susceptible people and I is the infective people. Both are variables of the model.   

is the reaction rate constant (infective rate constant). 

6.1.1.  Mathematical Formulation 

       We use mass action law to define the mathematical equations for this model. Then, the 

kinetic equations take the following form: 

                                               { 

  

  
      

  

   
        

                                                                                                (  )         

With initial model populations  ( )     and  ( )       Adding differential equations in (31), 

we obtain 

  

  
 
  

   
    

Consequently, we have the following relation 

                                                                                                                                        (  ) 

where   is a total constant population. 

The equation (32) is known as conservation law for SI model. By substituting Eq. (32) into Eq. 

(31), the differential equations can be given below as a single equation: 

                                           

                                 
  

  
    (   )                                                                         (  ) 

The differential Eq. (33) can be solved analytically. The model has been solved as follows: 

 ( )  
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and then the solution of I(t) can be found from the conservation law 

  ( )  
 

  
    
  

     
   

Interestingly, we can conclude that  ( )    and  ( )    as        

6.1.2. Results and discussions 

      We use Matlab codes for numerical simulations in order to have some approximate solutions 

for the original model (30) for different parameters. Interestingly, the population of susceptible 

people  becomes zero and the population of infective people becomes the entire population when 

there is not vaccination of the model.  
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                              a)                                                                 b)         

 

 

                              c)                                                                   d)         

 

Figure 6.1. Dynamics and numerical simulations of the SI model with initial conditions 

 ( )     and  ( )       
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                                        a)                                                                      b)         

 

 

 

 

                        c)                                                                   d)      

 

Figure 6.2. The local sensitivity of all variables with respect to parameter   using 

the SimBiology Toolbox for Matlab of the SI model with initial conditions 

 ( )     and  ( )        
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6.2. Susceptible-Infected-Susceptible  Model (SIS Model) 

         The SI model  can be further developed to the SIS model, where an infective can recover 

and become susceptible again. The chemical reactions of the model can be given; 

                                                  {    
 
    

 
 
          

                                                                                           (  ) 

 where   is susceptible people and   is infective people. Both are variables of the model.   and 

  are the reaction constants (model parameters). (Khoshnaw (2015), Abramson (2011), Ingalls 

(2012), Baker (2011) and Briggs et al., (1925)).   

6.2.1 Mathematical Formulation 

       We can find the stoichiometric vectors and reaction rates for the reactions (34). Applying the 

idea of mass action law to define the mathematical equations for this model, then the kinetic 

equations take the following form; 

                                                 { 

  

  
         

  

  
        

                                                                                     (  ) 

We have initial conditions of the model  ( )           ( )        

Adding differential equations (35), we obtain 

  

  
 
  

  
    

 Then, the above equation takes the following form, 

                                                                                                                                                      (  )                  

where   is a total constant population. 

The Eq. (36) is known as conservation law for the model. This is very useful in minimizing the 

model dimension (minimizing the number of variables) in systems biology. By substituting Eq. 

(36) into Eq. (35), the differential equations can be expressed as a single equation as follows: 

                                                  
  

  
   (   )                                                                                   (  )  

          

After rearranging the Eq. (37), the equation becomes 

                                   
  

  
  (    ) (  

 

 .  
 
  
/
,                                                         (  ) 
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  where    
  

 
   The Eq. (38) is a logistic equation with grow rate  (    ) and carrying 

capacity  .  
 

  
/   The above Eq. (38) can be solved analytically. The solution takes the form                 

                        ( )  
   .  

 
  /

 .  
 
  /  

  (    )    (     (    ) )
                                               (  )     

More interestingly, if the growth rate is negative that is       then the disease will disappear 

and it will become endemic if the growth rate is positive that is        for an endemic disease 

with       the number of infected people approaches the carrying capacity  

   (  
 

  
*           

6.2.2. Results and Discussions 

      We simulate the reduced model (38) in numerical simulations in order to have some 

approximate solutions for different values of parameters. Interestingly, the population of infective 

becomes zero when the growth rate is negative,  (    )     that is       While, the 

population of infective becomes the whole population when the growth rate is positive         

(    )    , that is        
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                   a)                                                   b)                    

 

 

 

                   c)                                                  d)                  

  

Figure 6.3.  Dynamics and numerical simulations of the SIS model with initial condition 

 ( )    . 
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              a)            .                                              b)            . 

 

 

 

                c)                                                       d)                  

 

 

Figure 6.4. The local sensitivity of all variables with respect to a set of parameters using the 

SimBiology Toolbox for Matlab of the SIS model with initial condition  ( )       ( )  
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6.3. Susceptible-Infected-Recovered (SIR model) 

   The SIS model can be further extended. In 1927, Kermack and McKendrick proposed 

SIR model. This model is surely the one of basic mathematical models for the disperse of 

an infectious disease. According to this model people are characterized into three classes: 

susceptible S, infective I and removed R. Removed individuals are no longer susceptible 

nor infective (Abramson (2011), Hethcote (2000), Kot (2001) and Murray (2001)). 

The model may be diagrammed as: 

 

                        {   
 
    

 
 
            

                                                                                  (  ) 

where    is an infective rate constant and   is a recovered rate constant. 

 

6.3.1.  Mathematical Formulation 

       Using mass action law, we have the following differential equations 

                           

{
 
 

 
 
  

  
           

  

  
        

  

  
              

                                                                           (  ) 

 

We have the following initial conditions 

 

 ( )      ( )      ( )     

The system (41) has surely a conservation law 

                                                                                                                           (  )   

where N is a constant model population. The dimensionless form for SIR equations is 

then given as: 

                                 

{
 
 

 
 
   

  
             

   

  
          

   

  
                  

                                                                            (  ) 

 

where 

   
 

 
    

 

 
      

 

 
         

  

 
  

  

Thus, the conservation law (42) then becomes  

                                                                                                                                (  )  
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In addition, the system (43) is then reduced to  

                                             {

   

  
        

   

  
          

                                                                         (  ) 

 

with initial conditions 

  ( )    
          ( )    

     

From (45), we can find the following single differential equation as: 

   

   
 (   

 

   
*  

The above equation is a separable differential equation that can be solved analytically.  

Then, the soultion becomes  

  ( )         
   (      

 )

 
  

We use Matlab codes for numerical simulations in order to have some approximate 

solutions for the reduced model (45) for different parameters. The approximate solutions 

of the reduced model (45) for different values of parameters can be expressed in Figure 

6.5. We simulate the reduced model for different values of the remaining parameter. 

Generally, we can conclude that for different values of the remaining parameters there is a 

different dynamic. 
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                             a)                                                            b)         

 

 

 

 

 

 
                            c)                                                         d)         

 

Figure 6.5.  Dynamics of the reduced model and numerical simulations of the SIR 

model with initial conditions    ( )     and   ( )    .  
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              a)                                                             b)              

 

     

 

 

 

 

 

                     (c)                                                  d)                  

 

 

Figure 6.6.  The local sensitivity of all variables with respect to a set of parameters 

using the SimBiology Toolbox for Matlab of the SIR model with initial conditions 

  ( )     and  ( )    .  
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7. MATHEMATICAL MODEL FOR THE EBOLA VIRUS DISEASE (EVD) 

7.1. Introduction  

    The SIR model was suggested by Kermack and McKendrick in 1927. This is certainly the most famous 

mathematical model of an infectious disease. According to this model, people are divided into three 

classes: the first class is susceptible  , the second one is infective I and the last one is recovered   .  

An Ebola outbreak recently has influence on some countries in West Africa. The first case was reported in 

Guinea by the world health organization on March 23, 2014. And the diseases disperse in the neighboring 

countries of Liberia and Sierra Leone, Later the outbreak become more widespread travel-associated  case 

emerged in Nigeria, Mali, Senegal, even united states. In general, nine countries have declared cases 

Ebola more than 27000 people have had suspected, probable, or, confirmed Ebola, and more than 11000 

have died. Considerable attention has been concentrated upon preventing the outbreak from extra-spread 

out and the size and scope of this epidemic illustrate the need for stronger, sustainable illness detection 

and prohibition capacity word wide, (Shen, et al., 2015). 

Ebola, or, Ebola hemorrhagic fever (EHF), is resulted by infection with one of the Ebola virus spices, 

Ebola can lead to disease not only humans, but non-human pirates such as (Monkeys, Gorilla, and 

Chimpanzees). Ebola virus symptoms, usually get at two to twenty days after contracting the virus with a 

fever, sore throat, muscle hurts and headaches as usual nausea vomiting, and diarrhea with reduced 

functioning of kidneys and liver, even to get to have breeding problems. This virus is basically localized to 

the rain forests of central and western Africa, and also. Philippines whereas the exact mechanism of 

natural virus transmittal to both humans and non-human pirates is ambiguous, but thought that Bats may 

constitute the natural reservoir and basic source of infection. 

A mathematical model can be used to provide an account of the development of the Ebola outbreak to 

date. It provides short term projections for its future development and controlling the outbreak. For 

example, “increased contact tracing”,  improved reach to “PPE” for health care personnel and the use of a 

pharmaceutical intervention to treat survival in hospitalized patients. 

In short, the population here is classified into eight compartments. The first group is susceptible people S, 

then this group could become exposed people E after contact with and infected individual. Then, they 

become infectious I class after the diseases incubation period. 

At that stage, individuals may be hospitalized H. Both untreated patients in I and hospitalized patients in H 

may experience one of two results: patients may die, with a chance of infecting others during the resulting 

funeral F before being removed from the model R, or they may recover, at which point they are similarly. 

(Shen, et al., 2015). 

 

7.2. Mathematical Modeling   

The population of this model  is classified into eight classes:   is susceptible people who can be 

infected by Ebola virus ,   is vaccinated individuals,    is latent undetectable individuals,    is 

latent detectable individuals,   is infectious individuals with symptoms,   is isolated individuals, 

  is individuals who are dead but have not been buried, and   is recovered individuals. We 

assume that   denoted by the total population size,  

                                                                                                                  (  )  

The model diagram can be shown as: 
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   Figure 7.1. A schematic rate of flow diagram of Ebola infection with isolation, media 

impact, post-death transmission and vaccination. (Shen, et al., 2015). 

The chemical reactions of the model are given as: 

                                            

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

 
  
                             

 
(          )   
→                

  
(          )  
→                
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(   )  
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→                            

  
    
→                           

  
(   )   
→                        

  
   
→                           

                                                                             (  )  

We have the following stoichiometric vectors of the model 
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The reaction rates are 
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By applying mass action Law, we have a set of differential equations. 
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Then the system becomes 
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 Table 7.1. Model parameters and values for simulation and data fitting values for a model 

of an Ebola disease in Guinea, Sierra Leone and Liberia. (Shen, et al., 2015).

Parameter Description 
Default or estimated mean value with 95% confidence interval 

Guinea Sierra Leone Liberia 

N 

 

Size of the total Population. 

  

11,745,189 6,092,075 4,294,077 

 

  
 

 

Mean time from latent  undetectable class to 

latent detectable class. 

 

4 days 

 

4 days 

 

4 days 

 

 

  
 

 

Mean time from latent  detectable class to 

infectious  symptomatic class. 

 

3 days 

 

3 days 

 

3 days 

 

 

 
 

 

Mean time from  infectious symptomatic class 

to isolated class. 

 

3 days 

 

3 days 

 

3 days 

 

 

 
 

 

Mean time that  infectious individuals are 

removed  by recovery or induced death. 

 

 

6 days 

 

 

 

 

 

6 days 

 

 

 

 

 

6 days 

 

 

 

 
 

  
 

 

 

Mean time that isolated  individuals are 

removed by recovery or disease  induced death. 

 

6.7981 days 

[6.5617,7.0522] 

 

 

6.9979 days 

[6.6578,7.3746] 

 

 

7.2 days 

[7.0522,7.3529] 

 

 

 

  
 

 

 

Mean time from death  to traditional burial. 

 

2 days 

 

 

2 days 

 

 

2 days 

 

 

  
 

Pre-media human to human transmission rate. 

 

             

,             - 
 

             
,             ] 

 

             
,             - 

 

   
 

 

Post-media human to human   transmission rate. 

 

            

,             - 

 

 

 

             
,             - 

 

 

 

             
,             - 

 

 

 

   
 

 

Pre-media transmission  rate during funeral. 

 

 

             

,             - 
 

 

             
,             - 

 

 

            
,             - 

 

 

   

 

The rate at which latent detectable 

Individuals progress to the isolation class. 

 

             
,             - 

 

            
,             - 

 

             
,             - 

 

 

ξ 

 

 

The vaccination rate. 

 

       
 

       
 

         

 

[0.7389,1.8611]×10
-3 

  

 

The efficacy of   Vaccination. 

 
       

 

       

 

       
,             - 

 

  The case fatality rate. 
       

,             - 
       

,             - 
       

,             - 
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7.3.  Computational Simulations  

       We use the SBToolbox for Matlab to simulate the population of the model states of Ebola 

virus disease (EVD). A set of parameters and fitted values are used in Guinea, Sierra Leone and 

Liberia, 2015. There are some interesting results based on computational simulations for these 

three countries. If we make a fitted assessment for Guinea, we see the susceptible population 

reduces gradually and becomes zero after 5 days; see Figure 7.2.a. While, the vaccinated 

population for its initial days increase quickly, reaches maximum level after 5 days, later its 

value falls and become stable, see Figure; 7.2.b. Also, if we notice the individual population 

value, in commencement, rises surprisingly and reaches to maximum level between the days of 

20-25 days. Reversely, it decreases to zero in the days of 100 days; see Figure 7.2.c. In Sierra 

Leone, the significant transforms can be seen. The susceptible falls sharply and become zero in 

the 5 days, see Figure 7.3.a, whereas, the vaccinated population increases quickly from initial 

days and continues to maximum level form 15-20 days, then it gradually decreases see Figure 

7.3.b, while, the infectious population, rises to peak value later it reduces. On the other hand, it 

starts to rise again but not as much as the initial days. Contrary to it decreases quickly between 

the days 60-70 and become zero in the days of 200 days; see figure 7.3.e. In Liberia, the latent 

undetectable population falls at the begin while it increases from the days 5-10, whereas it 

decreases again, in the days between 60-70, and becomes zero in the days of 200 see Figure 

7.4.d, reversely. The recovered population rises quickly and stayed steadily, between days 90-

110; see Figure 7.4.h. 

 After we use the SimBiology Toolbox for Matlab, to simulate population of the model states of 

these three mentioned countries. The sensitivity value for state variables*                

 +, showswith respect to the parameters of *                                    +, most 

variables have sensitivity for the parameters, but the variable   has more sensitivity for the 

parameter   , and variable    for parameter   ; see Figure 7.5.a. In spite of that, most state 

variables have a little sensitivity for the parameters, but it’s clear that the state variables  

          have much sensitivity for parameter  , and variable    for parameter   , see Figure 

7.5.b. In Sierra Leone, most state variables have sensitivity for the parameters obviously, the 

state variable   has much sensitivity for parameter   , the state variable    for parameter   ; see 

Figure 7.6.a, and the state variables         for parameter  ; see Figure 7.6.b. There more, In 

Liberia, some of the state variables have sensitivity for the parameters. The state variable of   

has more sensitivity for the parameter   ; see figure 7. 7.a, vice versa, the state variables have a 

little or, non-sensitivity for the parameters, except the state variables of         for parameter  , 

see Figure 7.7.b. 
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                                        (a)            (b) 

 

                                        (c)            (d) 

 

                                        (e)            (f) 

 

                                        (g)            (h) 

Figure 7.2. The dynamics of state variables of the Ebola Virus disease model using 

the SBToolbox for Matlab for parameters and fitted values for Guinea, 2015. 
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                                        (a)            (b) 

 

                                        (c)            (d) 

 

                                        (e)            (f) 

 

                                        (g)            (h) 

Figure 7.3. The dynamics of state variables of the Ebola Virus disease model using 

the SBToolbox for Matlab for parameters and fitted values for Sierra Leone, 2015. 
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                                        (a)            (b) 

 

                                        (c)            (d) 

 

                                        (e)            (f) 

 

                                        (g)            (h) 

Figure 7.4. The dynamics of state variables of the Ebola Virus disease model using 

the SBToolbox for Matlab for parameters and fitted values for Liberia, 2015. 
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(a)                                                                         

                       

 

(b)                                                                                    

                       

Figure 7.5. The local sensitivity of all variables with respect to a set of parameters 

using the SimBiology Toolbox for Matlab for fitted parameters values for Guinea, 

2015.With initial conditions:  ( )                 ( )           ( )         

  ( )          ( )         ( )     ( )     ( )     
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(a)                                                                         

                       

 

(b)                                                                                    

                      

Figure 7.6. The local sensitivity of all variables with respect to a set of parameters 

using the SimBiology Toolbox for Matlab for fitted parameters values for Sierra Leone, 

2015. With initial conditions:  ( )           ( )           ( )         

  ( )         ( )        ( )     ( )     ( )      
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(a)                                                                       

                       

 

(b)                                                                                    

                      

Figure 7.7. The local sensitivity of all variables with respect to a set of parameters 

using the SimBiology Toolbox for Matlab for fitted parameters values for Liberia, 

2015.With initial conditions:  ( )           ( )           ( )         

  ( )         ( )        ( )     ( )     ( )      
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8. CONCLUSION AND RECOMMENDATIONS 

Mathematical modeling and computational simulations of epidemic models are important tools 

in systems biology. Studying the behavior of diseases model frequently needs some methods of 

model analysis. In this thesis, we studied some epidemic disease models such as SI model, SIS 

model, SIR model and Ebola virus disease model. We proposed two computational tools of 

model analysis. The suggested computational tools of model analysis here significantly play in 

calculating some numerical approximate solutions and also identifying critical model elements. 

The suggested mathematical model of Ebola virus diseases helps us for further studying and 

understanding the disease in many ways. First of all, the mathematical representation of the 

model becomes a great step forward to integrate experimental knowledge into a coherent picture. 

Secondly, calculating model population of state variables provides suggestions for its future 

development. Finally, identifying critical model parameters in this study is another way to study 

the model practically and give some suggestions for future improvements of the disease. 

Furthermore, the results in this project will help international efforts to control the Ebola in 

countries in West Africa. More interestingly, the proposed computational tools here of model 

analysis will be applied to a wide range of complex infectious disease models in systems of 

biology. 
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9. APPENDIX A 

Dynamic System Simulations Using Systems Biology Toolbox (SBToolbox) for Matlab 

A.1. SBToolbox file for Matlab containing the Ebola virus disease Model for Guinea 

 

********** MODEL NAME 

The Ebola virus disease Model for Guinea 

********** MODEL NOTES 

beta=b1 

beta epsilon=b2 

betaD=b3 

xi=x 

eta=e 

alpha=a 

gamma=g1 

gammar=g2 

gammaD=g3 

delta=d 

population=N 

********** MODEL STATES 

d/dt(S)=-(b1*I+b2*J+b3*D)*S/N-x*S 

d/dt(V)=x*S-(b1*I+b2*J+b3*D)*e*V/N 

d/dt(E1)=(b1*I+b2*J+b3*D)*(S+e*V)/N-K1*E1 

d/dt(E2)=K1*E1-(K2+ft)*E2 

d/dt(I)=K2*E2-(a+g1)*I 

d/dt(J)=ft*E2+a*I-g2*J 
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d/dt(D)=d*g1*I+d*g2*J-g3*D 

d/dt(R)=(1-d)*g1*I+(1-d)*g2*J 

S(0)=10000000 

V(0)=946000 

E1(0)=457262 

E2(0)=283743 

I(0)=58184 

J(0)=0 

D(0)=0 

R(0)=0 

********** MODEL PARAMETERS 

b1=0.2231 

b2=0.1374 

b3=0.1373 

K1=0.25 

K2=0.3333 

a=0.3333 

g1=0.1666 

g2=0.1470 

g3=0.5 

d=0.6728 

ft=0.7136 

x=1.0002 

e=0.4572 

N=11745189 
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A.2. SBToolbox file for Matlab containing the Ebola virus disease Model for Sierra Leone 

 

********** MODEL NAME 

The Ebola virus disease Model for Sierra Leone 

********** MODEL NOTES 

beta=b1 

beta epsilon=b2 

betaD=b3 

xi=x 

eta=e 

alpha=a 

gamma=g1 

gammar=g2 

gammaD=g3 

delta=d 

population=N 

********** MODEL STATES 

d/dt(S)=-(b1*I+b2*J+b3*D)*S/N-x*S 

d/dt(V)=x*S-(b1*I+b2*J+b3*D)*e*V/N 

d/dt(E1)=(b1*I+b2*J+b3*D)*(S+e*V)/N-K1*E1 

d/dt(E2)=K1*E1-(K2+ft)*E2 

d/dt(I)=K2*E2-(a+g1)*I 

d/dt(J)=ft*E2+a*I-g2*J 

d/dt(D)=d*g1*I+d*g2*J-g3*D 

d/dt(R)=(1-d)*g1*I+(1-d)*g2*J 
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S(0)=5404728 

V(0)=458218 

E1(0)=125464 

E2(0)=94213 

I(0)=9452 

J(0)=0 

D(0)=0 

R(0)=0 

********** MODEL PARAMETERS 

b1=0.5237 

b2=0.3323 

b3=0.1243 

K1=0.25 

K2=0.3333 

a=0.3333 

g1=0.1666 

g2=0.1429 

g3=0.5 

d=0.3143 

ft=0.8291 

x=0.8671 

e=0.5649 

N=6092075 
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A.3. SBToolbox file for Matlab containing the Ebola virus disease Model for Liberia 

********** MODEL NAME 

The Ebola virus disease Model for Liberia 

********** MODEL NOTES 

beta=b1 

beta epsilon=b2 

betaD=b3 

xi=x 

eta=e 

alpha=a 

gamma=g1 

gammar=g2 

gammaD=g3 

delta=d 

population=N 

********** MODEL STATES 

d/dt(S)=-(b1*I+b2*J+b3*D)*S/N-x*S 

d/dt(V)=x*S-(b1*I+b2*J+b3*D)*e*V/N 

d/dt(E1)=(b1*I+b2*J+b3*D)*(S+e*V)/N-K1*E1 

d/dt(E2)=K1*E1-(K2+ft)*E2 

d/dt(I)=K2*E2-(a+g1)*I 

d/dt(J)=ft*E2+a*I-g2*J 

d/dt(D)=d*g1*I+d*g2*J-g3*D 

d/dt(R)=(1-d)*g1*I+(1-d)*g2*J 

S(0)=3139652 
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V(0)=947386 

E1(0)=143163 

E2(0)=55378 

I(0)=8498 

J(0)=0 

D(0)=0 

R(0)=0 

********** MODEL PARAMETERS 

b1=0.3126 

b2=0.17351 

b3=0.2239 

K1=0.25 

K2=0.3333 

a=0.3333 

g1=0.1666 

g2=0.1388 

g3=0.5 

d=0.4765 

ft=0.4898 

x=0.0013 

e=0.5487 

N=4294077 
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