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ÖZET 

YÜKSEK LİSANS 

LİNEER OLMAYAN DİFERANSİYEL DENKLEMLERİN ÇEKİRDEK 
ÜRETEN METOD VE GRUP KORUMA METODU İLE ÇÖZÜMLERİ 
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Siirt Üniversitesi Fen Bilimleri Enstitüsü 
Matematik Anabilim Dalı 

Danışman : Doç. Dr. Ali AKGÜL 

2017, 37 Sayfa  

Bu tez 6 bölümden oluşmaktadır. Bu tezin ilk bölümü tarihsel gelişim ile alakalı bilgilerden 
oluşmaktadır. İkinci bölümü üretilen çekirdekler ve diferansiyel denklemlerin genel kavramlarını 
vermektedir. Çekirdek fonksiyonlar detaylı bir şekilde üçüncü bölümde ele alındı. Dördüncü bölümde 
çekirdek üreten uzaylar ve fonksiyonlar verildi. Yeni uygulamalar beşinci bölümde ele alındı. Son 
bölümde sonuç verildi. 

Anahtar Kelimeler: Çekirdek Üreten Metod, Diferansiyel Denklemler, Grup Koruyan Metod, 
Lineer Olmayan. 
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ABSTRACT 

MS. THESIS 

SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS BY 
REPRODUCING KERNEL METHOD AND GROUP PRESERVING SCHEME 

Salar Ameen RAHEEM 

The Graduate School of Natural and Applied Science of Siirt University 
The Degree of Master of Science 

 In Mathmetics 

Supervisior : Assoc. Prof. Ali AKGÜL 

2017, 37 Pages 

We divided this thesis into the six sections. The first section of the thesis presents the 
introduction deals with a historical review. The second section gives the general concepts of differential 
equations and reproducing kernels. Kernels are explained clearly in the third section. Section 4 gives the 
reproducing kernel spaces and functions. New applications are shown in Section 5. Conclusion is given in 
Section 6. 

Keywords: Group Preserving Scheme, Nonlinear Differential Equations, Reproducing Kernel 
Method, 
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1. INTRODUCTION

The studies of reproducing kernels began with Szegö (1921) and Bergman (1922).

After all, de�nitely, reproducing kernels seemed at the �rst in the twentieth century

in Zaremba (1907). Mean while, the common theory of these kernels was consti-

tuted in Aronszajn (1950). Furthemore, L. Schwartz (1964) Enhanced the general

theory remarkably in 1964. When we take into consideration linear mappings in the

framework of Hilbert space we will see the notion of reproducing kernels. It is a

main notion and valuable mathematics (Saitoh and Sawano, 2016).

De�nition 1.1.1
An ordinary di¤erential equation (ODE) is an equation that contains an unknown

function of a single variable and one or more of its derivatives (Modern, 2009).

Example 1.1.2
Here�s a typical simple ODE, with some of its constituents stated:

unknown function, z #
3
dz

dx
= z

independent variable, x ".
This equation de�nes an unknown function of x that is equal to three times its

own derivative.The Leibniz formula for a derivative,d()
d()
; is helpful because the inde-

pendent variable seems in the denominator, the dependent variable in the numerator.

The following equations

8><>:
dy
dx
+ 2xy = e�x

2

x
00
(t)� 5x0(t) + 6x(t) = 0

dm
dn
= 3n2+4n+2

2(m�1)

leave no suspicions with the relationship between independent and dependent

variables. However, in an equation such as (p
0
)2 + 2x3p

0 � 4x2p = 0; we must make
out that the unknown function p is really p(x), a function of the independent

variable x. In many implementations, the independent variable is time, given by x,

and we can de�ne the function�s derivative using Newton�s dot notation, as in the

equation
::
x+ 3t

:
x+ 2x = sin(wt): The following ordinary di¤erential equations

(A)
d2u

dt2
� 3du

dt
+ 7u = 0and(B)

d2y

dx2
� 3dy

dx
+ 7y = 0

1



are the same that is, they are de�ning the same mathematical or physical behavior

(Szegö, 1921).
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2.GENERAL CONCEPTS

2.1. The Order of an Ordinary Di¤erential Equation

De�nition 2.1.1
An ordinary di¤erential equation is of order n if the highest derivative of the

unknown function in the equation is the n th derivative.

dz

dy
+ 2yz = e�y

2

(4)

(p
0
)2 � 2x3p0 � 4x2p = 0

dg

dm
=
3m2 + 4m+ 2

2(g � 1)
are all �rst-order di¤erential equations.

w
00
(x)� 5w0

(x) + 6wx = 0 (5)

and

::
w(x)� 5 :w(x) + 2w = sin(d x) (6)

are second-order equations, and e�pw(5)+(sin p)w000 = 3ep is of order 5 (Szegö, 1921).

2.2. A Common Manner for an Ordinary Di¤erential Equation

If z is the unknown function with a single independent variable t, and z(k) de-

scribes the kth derivative of z, we state an n th-order di¤erential equation as:

M(t; z; z
0
; z

00
; z

000
; :::; z(n�1); z(n)) = 0 (7)

or often as

z(n) = N(t; z; z
0
; z

00
; z

000
; :::; z(n�1)): (8)

2.3. Common Manner for a Second-Order ODE

If z is an unknown function of p, then the second-order ordinary di¤erential

equation 2d
2z
dp2
+ ep dz

dp
= z + sin(p) can be expressed as 2d

2z
dp2
+ ep dz

dp
� z � sin(p) = 0

or as

2z
00
+ epz

0 � z � sin p| {z } = 0
F ( p; z; z0;z00 )

: (9)
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F de�nes a mathematical expression containing the independent variable p; the

unknown function z; and the �rst and second derivatives of z. We can utilize ordi-

nary algebra to solve the original di¤erential equation for its highest derivative and

obtaion the equation as

z
00
=
1

2
sin p+

1

2
z � 1

2
epz

0| {z }
G( p; z; z0 )

:

2.4. Main Notions Of Reproducing Kernels

We give main notions of reproducing kernels. These notions are main, extensive

and have involved backgrounds. Take into consideration �(s; p) at p 2 D with any

continuous function f on D we get

h(p) =

Z
D

h(s)�(s; p)ds: (10)

This main notion was obtained by a physician Paul Adrien Maurice Dirac and

by L. Schwartz. The performance will demonstrate that �(s; p) is not the normal

function, but a distribution. Mean while, assume that a solution G(s; p) for some

linear (di¤erential) operator L on some function space on D is presented by the

equation, symbolically, for any �xed p 2 D

LG(s; p) = �(s; p) (11)

whose similarity is applicable on D apart from for the point p 2 D when G turns

only on the range js� pj, then the function G js� pj will be called a basic solution
for the operator L and further when some boundary conditions are satis�ed, then

the function G(s � p) will be called a Green�s function for the operator L ful�lling

the enjoined boundary conditions.

For the adjoint operator L�of L, we take into consideration the self-adjoint op-

erator L�L and its Green�s function G(p; q) ful�lling

L�LG(s; p) = �(s; p) (12)

at the formal level, whose identity is applicable on D apart from for the point q 2 D.
Then, from (10) we get:

h(p) =

Z
D

h(s)L�LG(s; p)ds:

4



Therefore, we get the presentment symbolically, utilizing the Green Stokes for-

mula,

h(p) =

Z
D

Lh(s)LG(s; p)ds+ some boundary integrals. (14)

If the boundary integrals are zero, then we obtain

h(p) =

Z
D

Lh(s)LG(s; p)ds:

If the function space is made up of all ful�lling

h(p) =

Z
D

jLh(s)j2 ds <1; (15)

then the space constitutes a Hilbert space, and if the function G(s; p) is the normal

function on D refering to this Hilbert space, then the function G(s; p) will show the

reproducing property for the Hilbert space. We obtain many cases ful�lling these

features.

5





3.KERNELS

3.1.The Bergman Kernel

It is di¢ cult to obtain an explicit integral formula, with holomrphic reproduc-

ing kernel, for holomorphic functions on an arbitrary domain in Cn: Standart works
which carry out such constraction tend to center on domains getting a perfect agree-

ment of symmetry Hua (1963) Bungart Bungart (1964). and Gleson Gleason (1962)

have presented that any bounded domain in Cn has a reproducing kernel for holo-
morphic function as:

h(x) =

Z



h(p)K(x; p)dV (p);

and K is holomorphic in the x varible. Bungarts and Gleasons�proofs are highly

nonconstractive. The venerable Bochner-Martinelli kernel is well constracted on

any bounded domain with reasonable boundary and the kernel is explicit just like

the Caushy kernel in one complex varible. Henkin Henkin (1969), Kerzman

Kerzman et al. (1971), E. Ramirez Ramirez (1970) and Grauret-Lieb Grauert and

Lieb. (1970) have given very explicit constractions of reproducing kernels on

strictly pseudoconvex domains.

Let 
 � Cn be bounded domains. If the domain is smoothly bounded, then we
can consider it as speci�ed by a de�ning function:


 = fx 2 Cn : �(x) < 0g:

It is customary to get that r� 6= 0 on @
: We can show the existence of a

de�niting function by utilizing the implicite function theorem Kratz and Parks.

(2002) for the latter and Krantz and Parks. (1996) for a detailed opinion of de�ning

functions.

Give a domain 
 as de�ned in the last paragraph and a point P 2 @
; w is a

complex tangent vector at p and w 2 � p(@
) if

nX
j=1

@�

@zj
(P )wj = 0:

The point P is said to be strongly pseudoconvex if

nX
j;k=1

@2�

@zj @
__
z k

(P )wj
__
w k � 0

for 0 6= w 2 � p(@
): In fact a little simple analysis presents that we may give the

de�ning feature of powerful pseudoconvexity by:

6



nX
j;k=1

@2�

@zj@
__
z k

(P )wj
__
w k � C jwj2

and perform the estimate uniform when p aligns over a compact, hard pesudoconvex

bounday neighborhood of 
:

Let dV shows the Lebesgue volume measure on 
. De�ne the Bergman space

A2(
) = ff holomorphic on 
 :
Z



jf(z)j2 dV (z) 12 � kfkA2(
) <1g:

We provide the Bergeman space with the inner product :

hu; vi =
Z



u(x)
_
v(x)dV (x):

3.2. O¢ cial Ideas of Aronszajn

One of the �rst canonical integral notations ever found was that of Begman

Bergman and Schi¤e (1953) : and Krantz and Parks (1996). We give the Bergman

idea in the context of a more general structure by the reason of Nechman Aronszajn

Aronszajn (1950). This is the thought of a Hilbert space with reproducing kernel

and several other important reproducing kernels.

De�nition 3.2.1
Let X be any set. Let H be a Hilbert space of complex- valued functions on X.

Then, H is a Hilbert space with reproducing kernel if, for each x 2 X, the linear

map of the form

Lx : H �! C

f 7! f(x);

is continuous. We have

jf(x)j � C kfkH : (16)

The classical Riesz representation theorem gives us that, for each x 2 X, there

is a unique element Kx 2 H such that

f(x) = hf; kxi;8f 2 H: (17)

7



we then de�ne a function

K : X �X �! C

by the formula

R(z; t) � Rz(t):

The function R is the reproducing kernel for the H. We know that R is uniquely

de�ned by H. If f'j(z)g is a complete orthonormal basis for the Bergman space,
then, we obtain

R(z; t) =
X

'j(z)'j(t);

where the convergence is in the Hilbert space topology in each variable (Berlinet,

2004).

Theorem 3.2.2
Let K be a positive function on E � E. We have only one Hilbert space H of

functions on E with K as reproducing kernel. The subspace H0 of H spanned by

the functions (K(:; x)x2E) is dense in H. H is the set of functions on E which are

pointwise limits of Cauchy sequences in H0 with the inner product

hf; giH0 =
nX
i=1

mX
j=1

�i�jK(yi; xi) (18)

there f =
Pn

i=1 �iK(:; xi) and g =
Pm

j=1 �jK(:; yi) (Berlinet, 2004).

3.3.Basic Properties Of Reproducing Kernels

Theorem 3.3.1
Let K1 and K2 be reproducing kernels of spaces H1 and H2 of functions on E

with the norms k:kH1 and k:kH2 : Then K = K1 + K2 is the reproducing kernel of

the space H = H1 �H2 = ff j f = f1 + f2; f1 2 H1; f2 2 H2g with the norm k:kH
de�ned by (Berlinet, 2004)

8f 2 H kfk2H = min
f=f1+f2

f12H1;f22H2

(kf1k2H1 + kf1k
2
H2
):

3.4. Support Of A Reproducing Kernel

De�nition 3.4.1
Let K be a non null complex function de�ned on E � E. A subset A of E is

said to be association for K if and only if we have elements x1; :::; xn in A such

8



that the functions K(:; x1); :::; K(:; xn) are linearly depedent in the vector space CE

(Berlinet, 2001):

Theorem 3.4.2
The set �k of non-overarching sets for K partially ordered by inclusion is induc-

tive. Thus, it agrees at least a maximal element (Berlinet, 2001):

De�nition 3.4.3
Let K be a non null complex function de�ned on E�E. A subset S of E is called

a support of K if and only if S is a maximal element of the set �k of non-overarching

sets for K (Berlinet, 2001):

Theorem 3.4.4.
Let H be RKHS with kernel K on E � E. Let H0 be the subspace of H0 be

the subspace of H spanned by fK(:; x) : x 2 Eg: If a subset S of E is a support

of K then fK(:; x) : x 2 Sg is basis of H: On the contrary if K(:; x); :::; K(2 :; xn)
are linearly independent, we have a support S of K involving fx1; :::; xng (Berlinet,
2001):

3.5. Kernel Of An Operator

De�nition 3.5.1
Let E be pre-Hilbert space of functions de�ned on E. Let u be an operator in

E. A function U : E � E �! C; (x; y) 7! U(x; y) is said to be a kernel of U if and

only if

8y 2 E;U(:; y) 2 "

8y 2 E; 8f 2 "; u(f)(y) = hf; U(:; y)i":

If u has two kernels U1 and U2, we get

8y 2 E; 8f 2 "; hf; U1(:; y)� U2(y)i" = u(f)(y)� u(f)(y) = 0:

Therefore, 8y 2 E; U1(:; y) = U2(y) and U1 = U2:

Thus, for any operator there is at most one kernel. It is also obvious from

De�nition 3:4:3 that a Hilbert space of functions H has a reproducing kernel K if

and only if K is the kernel of the identity operator in H (Berlinet, 2001):

Theorem 3.5.2
In a Hilbert space H of functions with reproducing kernel K any continous

operator u has a kernel U presented by

9



U(x; y) = [u�(K(:; y))](x); (20)

where u�denotes the adjoint operator of u (Berlinet, 2001):

Proof :
By Rieszs theorem, in the Hilbert space H any continous operator u has an

adjoint de�ned as:

8(f; g) 2 H �H; hu(f); giH = hf; u�(g)iH :

Thus we have

8y 2 E; 8f 2 H; hf; u�(K(:; y))iH = hu(f); K(:; y)iH = u(f)(y):

Theorem 3.5.3
Let V be a closed subspace of a Hilbert space H with reproducing kernel K.

Then V is a RKHS. Reproducing kernel Kv of this space is presented as:

Kv(x; y) = [�v(K(:; y)](x);

where �v de�nes the orthogonal projection on to the space V:

Lemma 3.5.4
In a Hilbert space H of functions with reproducing kernel K any continous linear

form u : H �! C has a Riesz representer �u presented as (Berlinet, 2001):

�
u(x) = u(k(:; x))

3.6. Condition For HK � HR:

Theorem 3.6.1
Let K be a continous nonegative kernel on T � T . The following statements are

equivalent (Alin Berlinet, 2001) :

i) HK � HR

ii)We have a constant B such that B2R�K is a nonnegative kernel. Yivisaker

(1962) presented an alternative condition which is that if
PN(n)

j=1 cjnR(:; tjn) is a

Cauchy sequence in HR; then
P(n)

jn K(:; tjn)K(:; tjn) must be a Cauchy sequence in

HK :

iii)We have an operator L : HR ! HK such that kLk � B and LR(t; :) = K(t; :);

8t 2 T0 where T0 is a countable dense of T:

10



Furthermore (i) indicates that there exists a contant B such that

8g 2 HK; kgkR � B kgkK ;

and either of these condition indicates that there exists adjoint operator L : HR �!
HK such that kLk � B and

8t 2 T; LR(t; :) = K(t; :):

3.7. Tensor Products Of RKHS

Product of function and kernel perform a valuable status in multidimensional

setting. Direct product RKHS are invetigated in (Arzen, 1963).

Let H1 nd H2 be two vector spaces of comlex functions de�ned on E1 and E2.

The tensor product H
~

H2 is de�ned as the vector spaces produced by the functions

f1 
 f2 : E1 � E2 �! C

(x1; x2) 7�! f1(x)f2(x2);

where f1 diversi�es in H1 and f2 diversi�es in H2: If h:; :i1 and h:; :i2 are inner
products repectively on H1 and H2; it can be presented that the mapping

H1

�

H2 �! C

(f1 � f2; f
0

1 � f
0

2) 7�! < f1; f >1< f
0

1; f
0

2 >2

is an inner product on H1

�

H2 which is therefore a pre-Hilbert space. Its

completion is called the tensor product of the Hilbert space H1 and H2 and is

de�ned by H1

�

H2:

If H1 is a RKHS with kernel K1 and H2 is a RKHS with kernel K2: Therefore,

the mapping

K1 
K2 : (E1 � E2) �! C

((x1; x2); (y1; y2)) 7�! K1(x1;y1)K2(x2; y2)

is a positive type function on (E1 � E2)
2: More precisely we have the following

theorem (Neveu, 1968).

11



Theorem 3.7.1
Let H1 and H2 be two RKHS with reproducing kernels K1 and K2: The tensor

product H1

�

 H2 of the vector spaces H1 and H2 admits a functional completion

H1 
H2 which is a RKHS with reproducing kernel K = K1 
K2:

It follows from this theorem that the product of a family of reproducing kernels

on the same set E2 is a reroducing kernel on E2:

3.8. Schwartz Kernels

De�nition 3.8.1
A subspace H of " is called a Hilbertian subspace of " if and only if H is a Hilbert

space and the natural emdedding

I : H �! "

h 7�! h

is continous.

This means that any sequence (fn) is H converging to some f in the sense of the

norm of H also converges to f in the sense of the topology de�ned on ". Namely,

the Hilbert sace topology on H is �ner than the topology induced on H by the one

on ". Let Hilb(") be the set of Hilbertion subsaces of ". Hilb(") has a signi�cant

structure.

1) For any � � 0 and any H in Hilb("); �H is f0g if � = 0; otherwise �H is the

space H endowed with the inner product

hh; ki�H =
1

�
hh; kiH :

2) H1+H2 is the sum of the vector space H1 and H2 given with the norm de�ned

by

khk2H1+H2 = inf
h1+h2=h

h12H1;h22H2

(kh1k2H1 + kh1k
2
H2):

H1+H2 2 Hilb ("). The internal addition in Hilb (") is associative and commu-
tative, f0g is a natural element and we obtain

(�+ �)H = �H + �H

�(H1 +H2) = �H1 + �H2:

12



4. REPRODUCING KERNEL SPACES AND FUNCTIONS

Operator generalizations of the Schur class contains functions S(z) de�ned on a

subregion 
(S) of the unit disk involving the origin whose values are operators in

$(=;a) for some Hilbert, Pontryagin, or Krein space = and a. We associate with
such functions S(z) the three kernels

Ks(w; z) =
1� S(z)S(w)�

1� z
�
w

:

K�
S
(w; z) =

1�
�
S(z)

�
S(w)�

1� z
�
w

Ds(w; z) =

0@ Ks(w; z)
S(z)�S(�w)

z��w�
S(z)�

�
S(

�
w)

z��w
K�
S
(w; z)

1A ; (21)

where
�
S(z) = S(

�
z)� and 1 denotes either the scalar unit or an identity operator,

depending on context. When these kernels are nonnegative, they are reroducing

kernels for Hilbert space <(S);<(
�
S); �D(S) of vector-valued functions. (Alpay, 1997):

4.1. De�nition of Reproducing Kernel Space

H = ff(x) is a real value funtion or complex function, x 2 �; � is an abstract setg
is Hilbert space, with inner product

hf(x); g(x)iH = (f(x); g(x) 2 H): (22)

if there exists a function Ry(x) for each �xed y 2 X then, Ry(x) 2 H , and any

f(x) 2 H, which satis�es
hf(x); Ry(x)iH = f(y) (23)

then Ry(x) is called the reproducing kernel of H and Hilbert space H is called the

reproducing Kernel Space (Cui et al., 2009).

4.2. Absolutely continous function and some properties

De�nition 4.2.1
Given a function f(x) on interval [a; b] ; let f(ak; bk)gnk=1 is a set of mutually

disjoint open intervals (ak; bk) 2 [a; b] ; if for 8", 9� which has no relation with n,
such that

nX
i=1

jf(bi)� f(ai)j < " for
nX
i=1

j(bi)� (ai)j < �; (24)

13



then, f(x) is said to absolutely continous on interval [a; b].

4.3. Wm
2 [a; b] is a Hilbert Space

Wm
2 [a; b] is de�ned as:

Wm
2 [a; b] =

�
f(x) j f (m�1)(x) is absolutely continous; f (m)(x) 2 L2 [a; b] ; x 2 [a; b]

	
(25)

For any functions f(x); g(x) 2 Wm
2 [a; b] the inner product and the norm in the

function space Wm
2 [a; b] are de�ned as:

hf; giWm
2

=
m�1X
i=0

f (i)(a)g(i)(a) +

Z b

a

f (m)(x)g(m)(x)dx; (26)

kfkWm
2

=
q
hf; fiWm

2
:

4.4. Reproducing kernel function for di¤erential equations :

De�nition 4.4.1
Let E 6= �: A function K : E � E ! C is called reproducing kernel function of

the Hilbert space H if only if

a) K(:; t) 2 H for all t 2 E
b) h';K(:; t)i = '(t) for all t 2 E and all ' 2 H:

De�nition 4.4.2 (REPRODUCING KERNEL HILBERT SPACE )
A Hilbert space H which is de�ned on a nonempty set E is called reproducing

Kernel Hilbert Space if there exists a reproducing kernel function

K : E � E ! C:

De�nition 4.4.3

We de�ne the space G12 [a; b] by of absolutely continous functions. The inner

product and the norm in G12 [a; b] are de�ned by

hu; viG12 = u(a)v(a) +

Z b

a

u
0
(x)v

0
(x)dx; u; v 2 G12 [a; b] ; (27)

kukG12 =
q
hu; uiG12 :

14



Theorem 4.4.4
The space G12 [a; b] is a reproducing kernel space and its reproducing kernel func-

tion ~Oy is obtained as:

~Oy(x) =

8>><>>:
2P
i=1

ci(y)x
i�1; a � x � y � b

2P
i=1

di(y)x
i�1; a � y < x � b

(28)

Proof:
By De�nition 4.4.3, we have

D
u; ~Oy

E
G12

= u(a) ~Oy(a) +

Z b

a

u
0
(x) ~O

0

y(x)dx; (29)

integrating this equation by parts one time, we get

D
u; ~Oy

E
G12

= u(a) ~Oy(a) + u(b) ~O
0

y(b)� u(a) ~O
0

y(a)�
Z b

a

u(x) ~O
00

y (x)dx: (30)

We have D
u(x); ~Oy(x)

E
G12

= u(y); (31)

by reproducing property. If

~Oy(a)� ~O
0

y(a) = 0; (32)

~O
0

y(b) = 0;

then (30) gives

� ~O
00

y (x) = �(x� y): (33)

when x 6= y, we have
~O
00

y (x) = 0: (34)

Therefore, we get

~Oy(x) =

8><>:
c1(y) + c2(y)x; a � x � y � b;

d1(y) + d2(y)x; a � y < x � b:

(35)

Since

� ~O
00

y (x) = �(x� y); (36)
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we obtained

~Oy+(y) = ~Oy�(y) (37)

~O
0

y+(y)� ~O
0

y�(y) = �1:

The unknown coe¢ cients ci(y) and di(y)(i = 1; 2) can be obtained by (32) � (37)
Thus, ~Oy is acquired as:

~Oy(x) =

8><>:
1 + x� a; a � x � y � b;

1 + y � a; a � y < x � b:

9>=>; (38)

De�nition 4.4.5
We de�ne the space H2

2 [a; b] by

H2
2 [a; b] =

n
u 2 AC [a; b] : u0 2 AC [a; b] ; u

00
2 L2 [a; b]

o
: (39)

The inner product and the norm in H2
2 [a; b] are de�ned by

hu; viH2
2
= u(a)v(a) + u

0
(a)v

0
(a) +

Z b

a

u
00
(x)v

00
(x)dx; u; v 2 [a; b] ; (40)

kukH2
2
=

q
hu; uiH2

2
; u 2 H2

2 [a; b] :

Theorem 4.4.6
The Space H2

2 [a; b] is reproducing Kernel space, and its reproducing kernel func-

tion �Ty is given by

�Ty(x) =

8>>>><>>>>:

4P
i=1

ci(y)x
i�1; a � x � y < b;

4P
i=1

di(y)x
i�1; a � y < x � b:

(41)

Proof:
By De�nition 4.4.5., we have:



u; �Ty

�
H2
2
= u(a) �Ty(a) + u

0
(a) �T

0

y(a) +

Z b

a

u
00
(x) �T

00

y (x)dx: (42)

Integrating (42) by parts two times, we get
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u; �Ty

�
H2
2
= u(a) �Ty(a) + u

0
(a) �T

0

y(a) + u
0
(b) �T

00

y (b)� u
0
(a) �T

00

y (a) (43)

�u(b) �T 000y (b) + u(a) �T 000y (a) +

Z b

a

u(x) �T (4)y (x)dx:

Note that property of the reproducing kernel is



u(x); �Ty(x)

�
H2
2
= u(y): (44)

We have

�Ty(a) + �T
000

y (a) = 0; (45)

�T
0

y(a)� �T
00

y (a) = 0;

�T
00

y (a) = 0;

�T
000

y (b) = 0:

Then (43) gives
�T
4

y (x) = �(x� y) (46)

when x 6= y; we get
�T
4

y (x) = 0: (47)

Thus, we obtain

~Oy(x) =

8><>:
c1(y) + c2(y)x+ c3(y)x

2 + c4(y)x
3; a � x � y � b;

d1(y) + d2(y)x+ d3(y)x
2 + d4(y)x

3; a � y < x � b:

9>=>; (48)

since
�T
4

y (x) = �(x� y); (49)

we get

�T
(k)

y+ (y) = �T
(k)

y� (y); k = 0; 1; 2 (50)

�T
000

y+(y)� �T
000

y�(y) = 1:

The unknown coe¢ cients ci(y) and di(y)(i = 1; 2; 3; 4) can be obtained by (39)-
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(44). Therefore, �Ty is achieved as:

�Ty(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1 + a2 + xy � xa� ay + (x�a)(y�a)2
2

+ (y�x)3
6

� (y�a)3
6

; a � x � y � b

1 + a2 + xy � ya� ax+ (y�a)(x�a)2
2

+ (x�y)3
6

� (x�a)3
6

; a � y < x � b

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(51)

De�nition.4.4.7
We de�ne the space W 3

2 [a; b] by

W 3
2 [a; b] =

n
u 2 AC [a; b] : u0 ; u00 2 AC [a; b] ; u(3) 2 L2 [a; b]

o
: (52)

The inner product and the norm in W 3
2 [a; b] are de�ned by :

hu; viW 3
2
=

2X
i=0

u(i)(a)v(i)(a) +

Z b

a

u(3)(x)v(3)(x)dx; u; v 2 W 3
2 [a; b] (53)

kukW 3
2
=
p
hu; ui ;u 2 W 3

2 [a; b] :

Theorem 4.4.8. The space W 3
2 [a; b] is a reproducing kernel space. Reproducing

kernel function Ry of this space is obtained as:

Ry(x) =

8>>>><>>>>:

6P
i=1

ci(y)x
i�1; a � x � y � b;

6P
i=1

di(y)x
i�1; a � y < x � b:

9>>>>=>>>>; (54)

Proof:
By De�nition 4.4.7, we get



u;Ry

�
W 3
2
=

2X
i=1

u(i)(a)R
(i)

y (a) +

Z b

a

u(3)(x)R
(3)

y (x)dx: (55)

Integration (55) by parts, we obtain
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u;Ry

�
W 3
2
= u(a)Ry(a) + u

0
(a)R

0

y(a) + u
00
(a)R

00

y(a) + u
00
(b)R

(3)

y (b) (56)

�u00(a)R
(3)

y (a)� u
0
(a)R

(4)

y (a) + u
0
(a)R

(4)

y (a) + u(b)R
(5)

y (b)

�u(a)R
(5)

y (a)�
Z b

a

u(x)R
(6)

y (x)dx:

We have



u(x); Ry(x)

�
W 3
2
= u(y) (57)

by reproducing property. If

Ry(a)�R
(5)

y (a) = 0; (58)

R
0

y(a)�R
(4)

y (a) = 0;

R
00

y (a)�R
(3)

y (a) = 0;

R
(3)

y (b) = 0;

R
(4)

y (b) = 0;

R
(5)

y (b) = 0;

then,(50) gives

�R(6)y (x) = �(x� y): (59)

When x 6= y we know

R
(6)

y (x) = 0: (60)

Consequently,we attain

Ry(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

c1(y) + c2(y)x+ c3(y)x
2 + c4(y)x

3+

c5(y)x
4 + c6(y)x

5; a � x � y � b;

d1(y) + d2(y)x+ d3(y)x
2 + d4(y)x

3+

d5(y)x
4 + d6(y)x

5; a � y < x � b:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(61)

Since

R
(6)

y (x) = ��(x� y); (62)

19



we have

R
(k)

y+ (y) = R
(k)

y� (y); k = 0; 1; 2; 3; 4; (63)

R
(5)

y+(y)�R
(5)

y�(y) = �1:

The unknown coe¢ cients ci(y) and di(y); (i = 1; 2; 3; 4; 5; 6) can be obtained by

(58)� (63).Thus Ry is gained as

Ry(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1 + xy � ax� ay + a2 + (x�y)5
120

� (a�y)5
120

� x (a�y)
4

24

+a (a�y)
4

24
+ (x�a)2(y�a)2

4
� (x�a)2(a�y)3

12
; a � x � y � b;

1 + xy � ay � ax+ a2 + (y�x)5
120

� (a�x)5
120

� y (a�x)
4

24

+a (a�x)
4

24
+ (y�a)2(x�a)2

4
� (y�a)2(x�a)3

12
; a � y < x � b:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(64)

4.5.Closed Subspace of the Reproducing Kernel space Wm
2 [a; b]

We may constract the closed subspace oWm
2 [a; b] of the reproducing kernel space

Wm
2 [a; b] by imposing several homogenous boundary conditions on

oWm
2 [a; b]:

De�nition 4.5.1
Let function space

oWm
2 [a; b] = ff(x)=f(x) 2 Wm

2 [a; b] by (19); f
0
(a) = 0; f(b) = 0g: (65)

We can prove it is a Hilbert Reproducing Kernel Space.

Let us try to �nd the reproducing kernel function Qy(x) of oWm
2 [a; b]: Qy(x)

should satisfy

hf(x); Qy(x)ioWm
2

=

m�1X
i=0

f (i)(a)
@iQy(a)

@xi
(66)

�
m�1X
i=0

f (i)(a)(�1)m�i�1@
2m�i�1Qy(a)

@x2m�i�1

+
m�1X
i=0

(�1)m�i�1f (i)(b)@
2m�i�1Qy(b)

@x2m�i�1

+(�1)m
Z b

a

f(x)
@2mQy(x)

@x2m
dx:
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Therefore Qy(x) is the solution of:8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(�1)m@2mQy(x)

@x2m
= �(x� y);

@iQy(a)

@xi
� (�1)m�i�1 @

2m�i�1Qy(a)
@x2m�i�1 = 0; i = 0; 2; 3; :::;m� 1;

@2m�i�1Qy(b)
@x2m�i�1 = 0; i = 1; 2; :::;m� 1;

Qy(b) = 0;

@iQy(a)

@x
= 0:

(67)

While x 6= y is the easy to know that Qy(x) is the solution od the following linear

homogenous di¤erential equation with 2m orders,

(�1)m@
2mQy(x)

@x2m
= 0; (68)

with the boundary conditions:8>>>>>>>>>>><>>>>>>>>>>>:

@iQy(a)

@xi
� (�1)m�i�1 @

2m�i�1Qy(a)
@x2m�i�1 = 0; i = 0; 2; 3; :::;m� 1;

@2m�i�1Qy(b)
@x2m�i�1 = 0 i = 1; 2; :::;m� 1;

Qy(b) = 0;

@iQy(a)

@x
= 0:

(69)

We know that equation (68) has characteristic equation �2m = 0, and the eigen-

value � = 0 is a root whose multiplicity is 2m. Therefore, general solution of Eq.(67)

is obtained as:

Qy(x) =

8><>:
�Qy(x) =

P2m
i=1 ci(y)x

i�1; x < y;

rQy(x) =
P2m

i=1 di(y)x
i�1; x > y:

(70)

The coe¢ cients ci(y) and di(y); i = 1; 2; :::; 2m can be aobtained now. Since

(�1)m@
2mQy(x)

@x2m
= �(x� y);

we have
@iQy(y)

@xi
=
@irQy(y)

@xi
; i = 0; 1; :::; 2m� 2; (71)
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(�1)m(@
2m�1�Qy(y

+)

@x2m�1
� @2m�1rQy(y

�)

@x2m�1
) = 1: (72)

The above equations in (71) and (72) gave 2m conditions for solving the coef-

�cients ci(y) and di(y)(i = 1; 2; :::; 2m) in Eq. (70) Note that (69) provided 2m

boundary conditions, so we get 4m equations, (69),(71) and (72), it is easy to know

these 4m equations are linear equations with the varibles ci(y) and di(y), could

be obtained by many techniques. As long as the coe¢ cients ci(y) and di(y) are

obtained, the exact expression of the reproducing kernel function Qy(x) could be

calculated from Eq. (70) (Mirzazadeh et al., 2014).

Theorem 4.5.2
The space

oWm
2 [a; b] =

�
f(x)=f(x) 2o Wm

2 [a; b];

Z b

a

�(x)f(x)dx = 0

�
;

is a reproducing kernel space, where �(x) > 0 is a weighting function.

It is a key to construct the reproducing kernel space with di¤erent boundary

conditions for solving di¤erent practical problems.
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5.NEW APPLICATIONS

Reproducing kernel method and SL(2; R)�shooting method are investigated
to get the approximate and exact solutions of nonlinear di¤erential equation, i.e.

Thomas-Fermi (Zhu and Zhu, 2012)8><>:
u
00
(x) = 1p

x
u
3
2 ;

u(0) = 1; u(1) = 0:
(73)

5.1.Group preserving scheme

We suppose that u(x) > �1. We get a constant � rendering in order to

constitute an SL(2,R)-shooting method:

�(x) = u(x) + � > 0; x 2 [x0; xf ] = [0;1)

We take a truncation value �1 instead of 1 in our calculations. Then Eq:(67)

takes the form:

d2�

dx2
=

1p
x
(� � �)

3
2 ;BC

0
s!

8><>:
� = 1 + �; x = 0;

� = �; x = �1:

(75)

Let �1(x) = �(x) and �2(x) = �
0
(x): Then, the equivalent �rst order system of

Eq:(69) takes the form:8><>:
d�1(x)
dx

= �2(x);

d�2(x)
dx

= 1p
x
(�1 � �)

3
2 ;

; �1(�1) = �f1 = �; �1(0) = �01 = 1 + �; (76)

or equivalently:

d

dx

�
�1(x)

�2(x)

�
=

0 1

�(x; �1; �2) 0

!�
�1(x)

�2(x)

�
(77)

where

�(x; �1; �2) :=
(�1 � {)

3
2

p
x�1

;

It is exotic that in spite of the sight of nonlinear term �(x; �1; �2) in Eq. (77),

we �nd the Lie symmetry of SL(2; R) by:
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d

dx
& = A&; &(0) = I2�2; (78)

where det (&) = 1, trace (A) = 0 and

A =
0 1

� 0

!
:

We establish an recurrent method. Namely GPS to solve Eq. (64) as:

�n+1=&(n)�n; (79)

where &(n) 2 SL(2; R) and �n := j�j{={n : By investigating Eq: (64) and using Eq.
(66) and with an initial condition �(0) = �(0) we get the value �({): Let �x = 1

N

be the utilised stepsize in GPS by:

�n+1= = �n +
(�n � 1)zn:�n +�n k�nk kznk

kznk2

where

�n = cosh

�
�x kznk
�n

�
; �n = sinh

�
�x kznk
�n

�
;

which is an stable integrator of (
�0
= z(x;�);
�(0) = �0:

Therefore, we have

�f = &N(4x):::&1(4x)�0; (80)

computes the value of � at x = 1: Closure property of the Lie groups �nalizes that if

&I(4x) 2 SL(2; R); I = 1; :::; N then &(4x) := &N(4x):::&1(4x) 2 SL(2; R): Thus,
a one-step Lie group transformation from �0 to �f can be established as:

�f = &�0 ; & 2 SL(2; R):

We have

&(x) = exp

�Z x

0

A(�)d�

�
; (82)

by the exponential in manifolds. We obtain
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x = rx0 + (1� r)xf = (1� r)�1;
�
�1 = r�01 + (1� r)�f1 = r + �;
�
�2 = r�02 + (1� r)�f2 ;

by a generalized mid-point rule, at appropriate mid-points. Where r 2 [0; 1] is an
unknow constant which we should de�ne it.

&(r) = exp
�
A(

�
x;

�
�1;

�
�2)
�
; (83)

which conforms with a constant matrix A:

A(
�
x;

�
�1;

�
�2) =:

 
0 1

� 0

!
=

 
0 1

A(
�
x;

�
�1;

�
�2) 0

!
; (84)

where

� = A(
�
x;

�
�1;

�
�2) =

(
�
�1 � �)

3
2p�

x
�
�1

In the current work , �01 = 1 + �; �f1 = � are known and �02; �
f
2 are unknown

boundaries of the model. Determination of �02 as a missing initial values, converts

the Eq.(67) into an initial value problem. Closed form of & in Eq.(83), obtained from

A 2 sl(2; R) is the form :

&(r) =

0@ cos(
p
��) � sin(

p
��)

p
��

�
p
�� sin

p
�� cos(

p
��)

1A ; if � < 0; (85)

&(r) =

0@ cosh(
p
�)

sinh(
p
�)

p
�p

� sinh(
p
�) cosh(

p
�)

1A ; if � > 0; (86)

&(r) =

 
1 1

0 1

!
; if � = 0; (87)

from Eqs.(81) and (85)-(87) we obtain:

�
�f1
�f2

�
=

0@ cos(
p
��) � sin(

p
��)

(
p
��)

�
p
�� sin(��) cos(

p
��)

1A��01
�02

�
; if � < 0; (88)

�
�f1
�f2

�
=

0@ cosh(
p
�)

sinh(
p
�)

cosh(
p
�)p

� sinh(�) (
p
�)

1A��01
�02

�
; if � > 0 (89)
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�
�f1
�f2

�
=

1 1

0 1

!�
�01
�02

�
; if � = 0 (90)

thus from �01 = 1+�; �
f
1 = � an for an endowed r,we �nd the unknown values �02and

�f2 as following :8><>:
�02 =

p
��((1 + �) cot(

p
��)� � csc(

p
��);

�f2 =
p
��((1 + �) cos(2

p
��) csc(

p
��)� � cot(

p
��));

(91)

when � < 0, and 8><>:
�02 =

p
�(� csch(

p
�)� (1 + �) coth(

p
�);

�f2 =
p
�(� coth(

p
�)� (1 + �) csch(

p
�));

(92)

when � > 0 and �nally for � = 0 we obtain

�02 = �f2 = �1: (93)

In this situation, we present a simple method to �nd the unknown initial and

boundary values of �02 and �
f
2 by:

i) De�ne r 2 [0; 1] and initial guesses �02 and �
f
2 given as �

0
2(0) and �

f
2(0); respec-

tively

ii) Compute the mean values8><>:
x = (1� r)�1;

�1(0)r + �;

�2(0) = r�02(0) + (1� r)�f2(0)

iii) For n = 1; 2; ::, do the the computations:

s
�1(n) = r + �;
s
�2(n) = r�02(n� 1) + (1� r)�f2(n� 1);

�(n) =
(
s
�1(n)�X)

3
2q

s
X
s
�1(n)

;
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=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�02(n) =
p
��(n)(1 + �) cot(

p
��(n)

�� csc
p
��(n));

�f2(n) =
p
��(n)((1 + �) cos(2

p
��(n)) csc(

p
��(n)))

�� cot(
p
��(n)))

if �(n) < 0;

=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�02(n) =
p
�(n)(� csch(

p
�(n)

�(1 + �) coth(
p
�(n);

�f2(n) =
p
�(n) coth(

p
�(n))

�(1 + �)) csch(
p
�(n)));

; if �(n) > 0

�02(n) = �f2(n) = �1; if �(n) = 0

If the stopping criterion :q
(�02(n)� �02(n� 1))2 + (�

f
2(n)� �f2(n� 1))2 � � (94)

holds, then stop; otherwise return to (iii).

For a trial r, we calculate �02 through the mentioned iterations and then approx-

imately integrate (64) by the GPS from 0 to �1 and match the ending value of �f1
with the exact one �(�1) = �. In the other word, we require the root of �f1 � � = 0
or equivalently minimizing the problem minr2[0;1]

����f1 � �
��� : The choice of r 2 [0; 1]

in our technique plays a critical role in �nding the approximate value of �
0
(0). In

Fig.1, we showed the mis-matching error. Best choice of r = 0:2613 is ocular from

this �gure. In Fig 2 acquired results from the SL(2; R)-shooting method at the

range of [0; 20] are given. In our computations the values �1 and �are speci�ed by

20 and 3, respectively( Akgül et al., 2017).

5.2. Reproducing kernel spaces

De�nition 5.2.1
W 1
2 [0; 1] is given as (Akgü let al., 2017):
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W 1
2 [0; 1] =

n
u 2 AC [0; 1] : u0 2 L2 2 [0; 1]

o
;

where AC shows the space of absolutely continuous functions.

hu; giW 1
2
=

Z 1

0

(u(�)g(�) + u
0
(�)g

0
(�))d�; u; g 2 W 1

2 [0; 1] (95)

and

kukW 1
2
=
q
hu; uiW 1

2
;u 2 W 1

2 [0; 1] ; (96)

are the inner product and the norm in W 1
2 [0; 1] respectively. Reproducing kernel

functions |�(&) of W 1
2 [0; 1] is given by [2]

|�(&) =
1

2 sinh(1)
[cosh(� + & � 1) + cosh(j� + &j � 1] : (97)

De�nition 5.2.2
The space F 32 [0;1) is given by (Akgü let al., 2017):

F 32 [0;1) =

(
u 2 AC [0;1) : u0 ; u00 2 AC[0;1); u(3) 2 L2 [0;1) ;

u(0) = 0 = u(1)

)
:

hu; vioF 32 [0;1) =
2X
i=0

u(i)(0)v(i)(0) +

Z 1

0

u(3)(�)v(3)(�)d�; u; v 2� F 32 [0;1)

and

kukoF 32 [0;1) =
q
hu; uioF 32 [0;1); u 2

o F 32 [0;1) ;

are the inner product and the norm in oF 32 [0;1) respectively.

Theorem 5.2.3
Reproducing kernel function q& of oF 32 [0;1) is given as (Akgü let al., 2017):

q& (�) =

8>>>><>>>>:

5P
i=0

ci(&)�
i; 0 � � � & � 1;

5P
i=0

di(&)�
i; 0 � & < � � 1:

(98)
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Proof:
Let u 2o F 32 [0;1) and 0 � & � 1; De�ne q& by (98), we have

q
0

& (�) =

8>>>><>>>>:

4P
i=0

(i+ 1)ci+1(&)�
i; 0 � � � & � 1;

4P
i=0

(i+ 1)di+1(&)�
i; 0 � & < � � 1

q
00

& (�) =

8>>>><>>>>:

3P
i=0

(i+ 1) (i+ 2) ci+2(&)�
i; 0 � � � & � 1;

3P
i=0

(i+ 1) (i+ 2) di+2(&)�
i; 0 � & < � � 1;

q(3)& (�) =

8>>>><>>>>:

2P
i=0

(i+ 1) (i+ 2) (i+ 3) ci+3(&)�
i; 0 � � � & � 1

2P
i=0

(i+ 1) (i+ 2) (i+ 3) di+3(&)�
i; 0 � & < � � 1;

q(4) (�) =

8>>>><>>>>:

1P
i=0

(i+ 1) (i+ 2) (i+ 3) (i+ 4)ci+4(&)�
i; 0 � � � & � 1

1P
i=0

(i+ 1) (i+ 2) (i+ 3) (i+ 4)di+4(&)�
i; 0 � & < � � 1;

and

q(5)& (�) =

8><>:
120 C5(�); 0 � & < � � 1;

120 d5(�);0 � & < � � 1;

we get

hu; q&ioF 32 =

2X
i=0

u(i)(0)R(i)& (0) +

Z 1

0

u(3)(�)R(3)& (�)d�

= u0(0)R0&(0) + u
00
(0)R

00

& (0) + u
00
(1)R(3)& (1)� u

00
(0)R(3)& (0)

�u0(1)R(4)& (1) + u
0
(0)R(4)& (0) +

Z 1

0

u
0
(�)q(5)& (�)d�

= u(&)
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Thus, we obtain the reproducing kernel function as:

q& (�) =

8><>:
�& + 1

4
&2�2 + 1

12
&2�3 � 1

24
&�4 + 1

120
�5; 0 � � � & � 1;

�& + 1
4
&2�2 + 1

12
&3�2 � 1

24
&4� + 1

120
&5; 0 � & < � � 1:

(99)

this completes the proof .

5.3. Solutions inoF 32 [0;1)

The solution of (66) is considered in the reproducing kernel space oF 32 [0;1) in
this section. On de�ning the linear operator

L :o F 32 [0;1)! W 1
2 [0; 1]

as

Lu(�) = h(�)u
( 32 )(�) (100)

model problem (66) takes the form :8><>:
Lu =M(�; u); � 2 [0; 1] ;

u(0) = 0 = u(1):
(101)

Theorem.5.3
L is a bounded linear operator (Akgül et al., 2017).

Proof:
We have to show kLuk2W 1

2
� P kuk2�F 32 ; where P > 0. By (82) and (83), we

obtain

kLuk2W 1
2
= hLu;LuiW 1

2
=

Z 1

0

Lu(�)2 + Lu
0
(�)2d�:

we obtain

u(�) = hu(:); q�(:)ioF 32 ;

by reproducing property, and

Lu(�) = hu(:); Lq�(:)ioF 32 ;

so
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jLu(�)j � kukoF 32 kLq�koF 32 = P1 kukoF 32
where P1 > 0. Therefore, we obtainZ 1

0

[(Lu)(�)]2 d� � P 21 kuk
2
oF 32

:

Since

(Lu)
0
(�) =

D
u(:); (Lq�)

0
(:)
E
oF 32

;

then ���(Lu)0(�)��� � kukoF 32 


(Lq�)0


oF 32 = P2 kukoF 32 ;

where P2 > 0: Thus, we get h
(Lu)

0
(�)
i2
� P 22 kuk

2
oF 32

and Z 1

0

h
(Lu)

0
(�)
i2
d� � P 22 kuk

2
oF 32

;

that is

kLuk2W 1
2
�
Z 1

0

�
[(Lu)(�)]2 + [(Lu)

0
(�)]2

�
d� � (P 21 + P 22 ) kuk

2
oF 32

= P kuk2oF 32 ;

where

P = P 21 + P 22 > 0:

5.4. The fundamental results

Let 'i(�) = T�i(�) and  i(�) = L�'i(x); L
� is adjoint operator of L: The ortho-

normal system
� a
 i(�)

�1
i=1

of oF 32 [0;1) can be achieved from Gramschmidt orthog-

onalization operation of f i(�)g
1
i=1 ;

a
 i(�) =

iX
k=1

�ik k(�); (�ii > 0; i = 1; 2; ::): (102)
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Theorem 5.4.1
Let f�ig

1
i=1 be dense in [0; 1] and  i(�) = L&q�(&) j&=�i : Then the sequence

f i(�)g
1
i=1 is a complete system in �F 32 [0;1) (Akgül et al., 2017).

Theorem 5.4.2
If u(�) is the exact solution of (94), then we have

u(�) =
1X
i=1

iX
i=1

�ikM(�k;uk)
a
 i(�); (103)

where f(�i)g
1
i=1 is dense in [0; 1].

Proof:
We obtain

u(�) =
1X
i=1

�
u(�);

a
 i(�)

�
oF 32

a
 i(�)

=
1X
i=1

iX
k=1

�ik hu(�);  k(�)ioF 32
a
 i(�);

=
1X
i=1

iX
k=1

�ik hu(�); L�'k(�)ioF 32
a
 i(�)

=
1X
i=1

iX
k=1

�ik hLu(�); 'k(�)iW 1
2

a
 i(�)

=
1X
i=1

iX
k=1

�ikLu(�k);
a
 i(�)

=

1X
i=1

iX
k=1

�ikM(�k; uk);
a
 i(�);

The approximate solution un can be obtained as:

un=

nX
i=1

iX
k=1

�ikM(�k; uk)
a
 i(�):

Examples 5.5.

We applied the reproducing kernel method and the SL(2; R)�shooting method
to investigate the Thomas- Fermi equation. Numerical results have been presented

to prove the e¤ectiveness and power of the techniques in this section.
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Example 5.5.1
Let us consider: 8><>:

&
00
(x) = 1p

�
(&)

3
2

&(0) = 1; &(1) = 0:

We use u(�) = &(�) � exp(��) to homogenize the boundary conditions. After
homogenizing the boundary conditions, we have(

u
00
= 1p

�
(u+ exp(��)( 32 ) � exp(��);
u(0) = 0; u(1) = 0:

Numerical results of the techniques are shown in the Table 1. Results prove that

the methods conclude close and con�dential values.

x RKM SL(2; R)� shooting

0:0

0:25

0:5

0:75

1:0

1:25

1:5

1:75

2:0

2:25

2:5

2:75

3:0

4:0

5:0

6:0

7:0

8:0

9:0

10:0

1:0000000000

0:7835167343

0:6267255540

0:5160495243

0:4346425510

0:372227888

0:3228774463

0:2830438479

0:2503563837

0:2232076622

0:2004338018

0:1811881098

0:1648317030

0:1199717397

0:09571524580

0:08130766388

0:07212283057

0:06645889993

0:06368974880

0:06358507593

1:0000000000

0:755903586

0:605270335

0:497822365

0:420342365

0:362819542

0:318730126

0:284015236

0:256010865

0:232973956

0:213706631

0:197357785

0:183313366

0:142654023

0:116720254

0:098751985

0:085572364

0:075495213

0:067537955

0:061099850
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Table 1 Approximate Solutions by reproducing kernel method and SL(2,R)-method

in Example 5.1.1.
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6. CONCLUSION

The base goal of this work is to establish some numerical solutions of the nonlin-

ear di¤erential equations by the reproducing kernel method and SL(2; R)-shooting

method. The acquired results are uniform convergent and the operator that was

utilized in the reproduicing kernel method is a bounded linear operator. We proved

that reproducing kernel method and group preserrving scheme are in good agreement

and they are very accurate methods.
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