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1. INTRODUCTION

The studies of reproducing kernels began with Szegt (1921) and Bergman (1922).
After all, definitely, reproducing kernels seemed at the first in the twentieth century
in Zaremba (1907). Mean while, the common theory of these kernels was consti-
tuted in Aronszajn (1950). Furthemore, L. Schwartz (1964) Enhanced the general
theory remarkably in 1964. When we take into consideration linear mappings in the
framework of Hilbert space we will see the notion of reproducing kernels. It is a

main notion and valuable mathematics (Saitoh and Sawano, 2016).

Definition 1.1.1
An ordinary differential equation (ODE) is an equation that contains an unknown

function of a single variable and one or more of its derivatives (Modern, 2009).

Example 1.1.2
Here’s a typical simple ODE, with some of its constituents stated:

unknown function, z |
3% =z
dx
independent variable, x T.
This equation defines an unknown function of x that is equal to three times its
own derivative.The Leibniz formula for a derivative,j—g, is helpful because the inde-
pendent variable seems in the denominator, the dependent variable in the numerator.

The following equations

22

% + 2zxy = e~
z"(t) — 52" () + 6x(t) = 0
dm __ 3n244n+2

dn " 2(m—1)
leave no suspicions with the relationship between independent and dependent
variables. However, in an equation such as (p')? + 22%p" — 42?p = 0, we must make
out that the unknown function p is really p(z), a function of the independent
variable z. In many implementations, the independent variable is time, given by x,
and we can define the function’s derivative using Newton’s dot notation, as in the

equation ¥ + 3tz + 2x = sin(wt). The following ordinary differential equations

d*u du d?y dy
A)— —3— +Tu=0and(B)— —3—=+T7y =0
(A) G —3q TTu=0and(B)gs =35, T



are the same that is, they are defining the same mathematical or physical behavior
(Szego, 1921).



2.GENERAL CONCEPTS

2.1. The Order of an Ordinary Differential Equation

Definition 2.1.1
An ordinary differential equation is of order n if the highest derivative of the

unknown function in the equation is the n th derivative.

— 4+ 2 — —y? 4
e )
(p/)2 — 2% —42%p =0

dg 3m? + 4m + 2
dm — 2(g—1)

are all first-order differential equations.

"

w' () — 5w () + 6wz = 0 (5)

and
w(x) —bw(x) + 2w = sin(d x) (6)
are second-order equations, and e Pw® + (sin p)w”" = 3eP is of order 5 (Szego, 1921).

2.2. A Common Manner for an Ordinary Differential Equation

If z is the unknown function with a single independent variable ¢, and z*) de-

scribes the kth derivative of z, we state an n th-order differential equation as:

!

M(t, z, 2,22 ., 20D, M) =0 (7)

or often as

1"

(n - / " /!
N =Nt,z2,2,2 ,..

A (8)

2.3. Common Manner for a Second-Order ODE

If z is an unknown function of p, then the second-order ordinary differential

: d?z pdz __ : d?z pdz : _
equation 295 + e’ =z + sin(p) can be expressed as 257 +ePE—2— sin(p) =0

or as

22 +ePz —z—sinp = 0. (9)

-~

;N

F(p7Z7Z7Z )



F' defines a mathematical expression containing the independent variable p, the
unknown function z, and the first and second derivatives of z. We can utilize ordi-
nary algebra to solve the original differential equation for its highest derivative and

obtaion the equation as

SR RS VN

Z = —SIn —Z — —€e 2.

g PP T 5E T 50 E
G(p, 2 2")

2.4. Main Notions Of Reproducing Kernels

We give main notions of reproducing kernels. These notions are main, extensive
and have involved backgrounds. Take into consideration (s, p) at p € D with any

continuous function f on D we get

o) = [ s)o(s, s (10)

This main notion was obtained by a physician Paul Adrien Maurice Dirac and
by L. Schwartz. The performance will demonstrate that §(s,p) is not the normal
function, but a distribution. Mean while, assume that a solution G(s,p) for some
linear (differential) operator L on some function space on D is presented by the

equation, symbolically, for any fixed p € D

LG(s,p) = (s, p) (11)

whose similarity is applicable on D apart from for the point p € D when G turns
only on the range |s — p|, then the function G |s — p| will be called a basic solution
for the operator L and further when some boundary conditions are satisfied, then
the function G(s — p) will be called a Green’s function for the operator L fulfilling
the enjoined boundary conditions.

For the adjoint operator L*of L, we take into consideration the self-adjoint op-

erator L*L and its Green’s function G(p, q) fulfilling

L*LG(s,p) = 4(s,p) (12)

at the formal level, whose identity is applicable on D apart from for the point ¢ € D.
Then, from (10) we get:

h(p):/Dh(s)L*LG(s,p)ds.



Therefore, we get the presentment symbolically, utilizing the Green Stokes for-

mula,

h(p) = / Lh(s)LG(s,p)ds + some boundary integrals. (14)
D

If the boundary integrals are zero, then we obtain

h(p) = /D Lh(s)LG(s, p)ds.

If the function space is made up of all fulfilling

h(p) = /D Lh(s) ds < oo, (15)

then the space constitutes a Hilbert space, and if the function G(s, p) is the normal
function on D refering to this Hilbert space, then the function G(s, p) will show the
reproducing property for the Hilbert space. We obtain many cases fulfilling these

features.






3. KERNELS

3.1.The Bergman Kernel

It is difficult to obtain an explicit integral formula, with holomrphic reproduc-
ing kernel, for holomorphic functions on an arbitrary domain in C". Standart works
which carry out such constraction tend to center on domains getting a perfect agree-
ment of symmetry Hua (1963) Bungart Bungart (1964). and Gleson Gleason (1962)
have presented that any bounded domain in C" has a reproducing kernel for holo-

morphic function as:

hx) = / hw)K (2, p)dV (p),

and K is holomorphic in the x varible. Bungarts and Gleasons’ proofs are highly
nonconstractive. The venerable Bochner-Martinelli kernel is well constracted on
any bounded domain with reasonable boundary and the kernel is explicit just like
the Caushy kernel in one complex varible. Henkin Henkin (1969), Kerzman
Kerzman et al. (1971), E. Ramirez Ramirez (1970) and Grauret-Lieb Grauert and
Lieb. (1970) have given very explicit constractions of reproducing kernels on

strictly pseudoconvex domains.

Let 2 C C" be bounded domains. If the domain is smoothly bounded, then we

can consider it as specified by a defining function:

Q={zxeC":px) <0}

It is customary to get that Vp # 0 on 02. We can show the existence of a
definiting function by utilizing the implicite function theorem Kratz and Parks.
(2002) for the latter and Krantz and Parks. (1996) for a detailed opinion of defining
functions.

Give a domain () as defined in the last paragraph and a point P € 0f), w is a

complex tangent vector at p and w € 7,(992) if

-~ 9

=1 aZj

The point P is said to be strongly pseudoconvex if

n 2
3 _ 9P (pywr, >0

Py 0z; 07y,

for 0 # w € 7,(09). In fact a little simple analysis presents that we may give the

defining feature of powerful pseudoconvexity by:



#(P)wjm > C |wf?

=1 979 %k

and perform the estimate uniform when p aligns over a compact, hard pesudoconvex
bounday neighborhood of €2.

Let dV shows the Lebesgue volume measure on 2. Define the Bergman space

A%(Q) = {f holomorphic on Q : /|f(z)|2dV(z)5 = [[fll a2y < oo}
Q

We provide the Bergeman space with the inner product .

(u,v) = /u(x)z_)(as)dV(.r)

Q

3.2. Official Ideas of Aronszajn

One of the first canonical integral notations ever found was that of Begman
Bergman and Schiffe (1953) . and Krantz and Parks (1996). We give the Bergman
idea in the context of a more general structure by the reason of Nechman Aronszajn
Aronszajn (1950). This is the thought of a Hilbert space with reproducing kernel

and several other important reproducing kernels.

Definition 3.2.1
Let X be any set. Let H be a Hilbert space of complex- valued functions on X.
Then, H is a Hilbert space with reproducing kernel if, for each x € X, the linear

map of the form

L, : H-—C
[ = flx),
is continuous. We have
1f(@)| < C|flly- (16)

The classical Riesz representation theorem gives us that, for each x € X, there

is a unique element K, € H such that

f(@) = (f k:),Vf € H. (17)

7



we then define a function

K: XxX—C

by the formula

R(z,t) = R.(1).

The function R is the reproducing kernel for the H. We know that R is uniquely
defined by H. If {¢;(2)} is a complete orthonormal basis for the Bergman space,

then, we obtain

R(z,t) =) 0;(2)p,(t),

where the convergence is in the Hilbert space topology in each variable (Berlinet,
2004).

Theorem 3.2.2

Let K be a positive function on £ x E. We have only one Hilbert space H of
functions on E with K as reproducing kernel. The subspace Hy of H spanned by
the functions (K (., z).cp) is dense in H. H is the set of functions on E which are

pointwise limits of Cauchy sequences in Hy with the inner product

<f7 g)Ho = Zzazﬁ_]K(yHJ:Z) (18>

i=1 j=1

there f = Y1 o, K(.,2;) and g = > 7", B;K(.,9:) (Berlinet, 2004).
3.3.Basic Properties Of Reproducing Kernels

Theorem 3.3.1

Let K; and K5 be reproducing kernels of spaces H; and Hy of functions on E
with the norms |||, and |||y, - Then K = K; + K is the reproducing kernel of
the space H = H1 @ Hy = {f | f = fi + fa, f1 € H1, fo € Hy} with the norm |||,
defined by (Berlinet, 2004)

2 . 2 2

VPeH = min (Al + 1Al
=f1+rf2
f1€H, fo€Ha

3.4. Support Of A Reproducing Kernel

Definition 3.4.1
Let K be a non null complex function defined on £ x E. A subset A of F is

said to be association for K if and only if we have elements z1,...,x, in A such

8



that the functions K (., ), ..., K(.,z,) are linearly depedent in the vector space C¥
(Berlinet, 2001).

Theorem 3.4.2
The set A of non-overarching sets for K partially ordered by inclusion is induc-

tive. Thus, it agrees at least a maximal element (Berlinet, 2001).

Definition 3.4.3
Let K be a non null complex function defined on E'x E. A subset S of F is called

a support of K if and only if S is a maximal element of the set Aj of non-overarching
sets for K (Berlinet, 2001).

Theorem 3.4.4.

Let H be RKHS with kernel K on ¥ x E. Let Hy be the subspace of Hy be
the subspace of H spanned by {K(.,z) : € E}. If a subset S of E is a support
of K then {K(.,z) : x € S} is basis of H. On the contrary if K(.,x),..., K(€ .,z,)
are linearly independent, we have a support S of K involving {z1, ..., z,} (Berlinet,
2001).

3.5. Kernel Of An Operator

Definition 3.5.1

Let E be pre-Hilbert space of functions defined on . Let u be an operator in
E. A function U : E x E — C; (z,y) — U(z,y) is said to be a kernel of U if and
only if

Yy e E,U(.,y) €¢

Vye B[ €eu(f)y) = (f,U(y))e

If u has two kernels U; and Us, we get

Vye ENNfee (f,Ui(.y) —Us(y))e = u(f)(y) —u(f)(y) =0.

Therefore, Vy € E, U1(.,y) = Us(y) and Uy = Us.

Thus, for any operator there is at most one kernel. It is also obvious from
Definition 3.4.3 that a Hilbert space of functions H has a reproducing kernel K if
and only if K is the kernel of the identity operator in H (Berlinet, 2001).

Theorem 3.5.2
In a Hilbert space H of functions with reproducing kernel K any continous

operator u has a kernel U presented by



Ulz,y) = " (K(.,y)(z), (20)

where u*denotes the adjoint operator of u (Berlinet, 2001).

Proof:
By Rieszs theorem, in the Hilbert space H any continous operator u has an

adjoint defined as:

V(f,g9) € Hx H;(u(f),9)m = (f,u"(9))n.

Thus we have

Vye ENfeH (fu(K(y))m = (u(f), K(,y))u = u(f)(y).

Theorem 3.5.3
Let V be a closed subspace of a Hilbert space H with reproducing kernel K.
Then V is a RKHS. Reproducing kernel K, of this space is presented as:

Ky(z,y) = [IL(K(.,y)|(x),

where II, defines the orthogonal projection on to the space V.

Lemma 3.5.4
In a Hilbert space H of functions with reproducing kernel K any continous linear

form v : H — C has a Riesz representer u presented as (Berlinet, 2001):

3.6. Condition For Hy C Hp.

Theorem 3.6.1

Let K be a continous nonegative kernel on 7" x T'. The following statements are
equivalent (Alin Berlinet, 2001) :

i) Hx C Hp

i1) We have a constant B such that B2R — K is a nonnegative kernel. Yivisaker
(1962) presented an alternative condition which is that if Zjvz(?) cinR(.,tjn) is a
Cauchy sequence in Hg, then Z;Z) K(.,tjn)K(.,t;,) must be a Cauchy sequence in
Hy.

i7i) We have an operator L : Hr — Hg such that |[L|| < Band LR(t,.) = K(t,.),
Vt € Ty where T} is a countable dense of T

10



Furthermore (i) indicates that there exists a contant B such that

Vg € Hi [l9llr < Bllgllk

and either of these condition indicates that there exists adjoint operator L : Hp —
Hy such that ||L|| < B and

vt € T,LR(t,.) = K(t,.).

3.7. Tensor Products Of RKHS

Product of function and kernel perform a valuable status in multidimensional
setting. Direct product RKHS are invetigated in (Arzen, 1963).

Let H; nd H, be two vector spaces of comlex functions defined on F; and Ej.

The tensor product H ® H is defined as the vector spaces produced by the functions

f1®f21E1XE2%(C

(21, 22) = fi(x) f2(22),

where f; diversifies in H; and fy diversifies in Hy. If (.,.); and (.,.); are inner

products repectively on H; and Hs, it can be presented that the mapping

H &H, — C
(L X fas fi X fo) ¥ < fo, [ >1< f1, fo >2

is an inner product on H; QNb Hy which is therefore a pre-Hilbert space. Its
completion is called the tensor product of the Hilbert space H; and H, and is
defined by H; ® Hs.

If H, isa RKHS with kernel Ky and Hs is a RK HS with kernel K5. Therefore,
the mapping

K1®K2 : (E1 XEQ) —C
(1, 22), (y1,92)) = K1(w1,91) Ko (22, 12)
is a positive type function on (E; x F5)?. More precisely we have the following

theorem (Neveu, 1968).

11



Theorem 3.7.1

Let H; and Hy be two RK HS with reproducing kernels K; and K5,. The tensor
product H; é H, of the vector spaces H; and Hy admits a functional completion
H; ® Hy which is a RKHS with reproducing kernel K = K; ® K.

It follows from this theorem that the product of a family of reproducing kernels

on the same set E? is a reroducing kernel on F?.
3.8. Schwartz Kernels

Definition 3.8.1
A subspace H of ¢ is called a Hilbertian subspace of ¢ if and only if H is a Hilbert

space and the natural emdedding

I H—c¢

h—h

is continous.

This means that any sequence (f,,) is H converging to some f in the sense of the
norm of H also converges to f in the sense of the topology defined on €. Namely,
the Hilbert sace topology on H is finer than the topology induced on H by the one
on €. Let Hilb(e) be the set of Hilbertion subsaces of . Hilb(¢) has a significant
structure.

1) For any A > 0 and any H in Hilb(e), AH is {0} if A = 0, otherwise AH is the

space H endowed with the inner product

1
A
2) Hy+ Hs is the sum of the vector space H; and Hj given with the norm defined

by

(h, kYAn (h, k).

2 . 2 2
Wi, =t Al + ),
hi€Hq,ho€Hy

H, + H, € Hilb (¢). The internal addition in Hilb (¢) is associative and commu-

tative, {0} is a natural element and we obtain

A+wH = NH+uH
AHy+ Hy) = MHi + \Hs.

12



4. REPRODUCING KERNEL SPACES AND FUNCTIONS

Operator generalizations of the Schur class contains functions S(z) defined on a
subregion €2(S) of the unit disk involving the origin whose values are operators in
£(3,0) for some Hilbert, Pontryagin, or Krein space & and ©. We associate with

such functions S(z) the three kernels

Dy(w, z) = “4 ; (21)

where S(z) = S(2)* and 1 denotes either the scalar unit or an identity operator,

depending on context. When these kernels are nonnegative, they are reroducing

~

kernels for Hilbert space R(S), R(S), D(S) of vector-valued functions. (Alpay, 1997).
4.1. Definition of Reproducing Kernel Space

H = {f(x) is a real value funtion or complex function, = € x, x is an abstract set}

is Hilbert space, with inner product

(f(x), 9(x)) = (f(2), 9(x) € H). (22)

if there exists a function R,(x) for each fixed y € X then, R,(z) € H , and any
f(z) € H, which satisfies

(f(@), By(2)) yy = f(y) (23)
then R,(z) is called the reproducing kernel of H and Hilbert space H is called the
reproducing Kernel Space (Cui et al., 2009).

4.2. Absolutely continous function and some properties

Definition 4.2.1

Given a function f(z) on interval [a,b], let {(ax,bx)},_, is a set of mutually
disjoint open intervals (ay, by) € [a,b], if for Ve, 30 which has no relation with n,
such that

Z]f a1]<€for2\ — (a;)] < 0, (24)

13



then, f(z) is said to absolutely continous on interval [a, b].
4.3. WJ"[a,b] is a Hilbert Space

W3 [a, b] is defined as:

W3 la,b] = { f(z) | £ Y(z) is absolutely continous; f'™(z) € L?[a,b], z € [a,b]}
(25)
For any functions f(x), g(z) € W3* [a, b] the inner product and the norm in the

function space W3 [a, b] are defined as:

m—1 b
Py = 2 @@+ [ £ )y (a)da, (26)
i=0 a
”f”wQm = f:f>W2m'

4.4. Reproducing kernel function for differential equations :

Definition 4.4.1

Let F # ¢. A function K : E x E — C is called reproducing kernel function of
the Hilbert space H if only if

a) K(,t) e Hforallt e E

b) (p, K(.,t)) =p(t) for all t € E and all ¢ € H.

Definition 4.4.2 (REPRODUCING KERNEL HILBERT SPACE )
A Hilbert space H which is defined on a nonempty set F is called reproducing

Kernel Hilbert Space if there exists a reproducing kernel function
K. Ex FE— C.

Definition 4.4.3

We define the space G3 [a,b] by of absolutely continous functions. The inner

product and the norm in G} [a,b] are defined by

b ! !’
(u,v)gy = u(a)v(a) —I—/ u (2)v (z)dx, u,v € Gy la,b], (27)

lully =/ {uww)gy-
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Theorem 4.4.4

The space G} [a, b] is a reproducing kernel space and its reproducing kernel func-

tion Oy is obtained as:

Proof:
By Definition 4.4.3, we have

<u, Oy>G% = u(a)O,(a) + /ab u/(x)Oy(x)dx,

integrating this equation by parts one time, we get

We have

by reproducing property. If

then (30) gives
when x # y, we have

Therefore, we get

Cl(y) + CQ(?J)LU,(I S X S Yy S b7

di(y) + da(y)x,a <y <z <b.

Since

(28)

(30)

(31)

(36)

15



we obtained

Oyi(y) = Oy-()
Oy (y) =0,_(y) = -1

(37)

The unknown coefficients ¢;(y) and d;(y)(i = 1,2) can be obtained by (32) — (37)

Thus, Oy is acquired as:

l+x—a,a<z<y<b,

l+y—a,a<y<axz<h.

Definition 4.4.5
We define the space H3 [a, b] by

H2[a,b] = {ueAC[a,b] i € AC[a,b],u € L2 [a,b]}.

The inner product and the norm in H? [a, b] are defined by

(39)

/ / b " "
(u,v) gz = u(a)v(a) +u (a)v (a) —|—/ u (z)v (x)dx,u,v € [a,b],  (40)

||u”H22 = <U,, U>H22,U € [—[22 [a7b] :

Theorem 4.4.6

The Space HZ [a, b] is reproducing Kernel space, and its reproducing kernel func-

tion Ty is given by

c(y)rta<az<y<b,
=1

Proof:
By Definition 4.4.5., we have:

(u, Ty>H§ =u(a)T,(a) + u/(a)T;(a) + / u (:L‘)T; (x)dx.

Integrating (42) by parts two times, we get

(41)

(42)

16



<u, Ty>H§ = u(a)Ty(a) + ul(a)Ty/(a) +u (b)Ty (b) —u (a)T, (a) (43)

(ul), Ty () e = uly) (44)
We have
Ty(a) +T, (a) = 0, (45)
Ty(a) =T, (a) = 0,
[, (a) =0,
vz;u(b) = 0.
Then (43) gives
T (2) = 6(x ) (46)
when = # y, we get
() =0 (47)

Thus, we obtain

a(y) + e2(y)z + c3(y)a? + ea(y)a®, a <x <y <b,
Oy(z) = (48)
di(y) + da(y)z + ds(y)a® + da(y)z®, a <y <z <b.

since
) (x) = 6(z —y), (49)
we get
= (k) = (k)
T, (y) = T,2(y), k=0,1,2 (50)

The unknown coefficients ¢;(y) and d;(y)(i = 1,2,3,4) can be obtained by (39)-

17



(44). Therefore, T}, is achieved as:

(1+a2+ Yy — xa — ay + —(xfa)éyfay )

_’_(y—ﬁx)s_@’aéxgygb

(51)

2

1+a2+xy—ya—ax+m

L) (e

\ 5 a<y <x<b

Definition.4.4.7
We define the space W3 [a, b] by

W3 [a,b] = {u € AC[a,b]: o u" € AC[a,b],u® € L2 [a,b]} . (52)

The inner product and the norm in W3 [a, b] are defined by :
(u, ’U>W23 = Zu(’)(a)v(l)(a) —l—/ u® ()0 (z)dz, u,v € W} [a,b] (53)

||u||W23 =V <U,U> NUAS W23 [a7b] :

Theorem 4.4.8. The space W3 [a, b] is a reproducing kernel space. Reproducing
kernel function }_%y of this space is obtained as:

6 -
ci(y)aha<a<y<b,
=1

7

Byf) = (54)

6
Sdi(y)ra<y<az<b
i—1
Proof:
By Definition 4.4.7, we get
- (i ’ ®)
(u, Ry>W23 = Zu(z)(a)Ry (a) +/ u(3)(x)Ry (x)dx. (55)
i—1 a

Integration (55) by parts, we obtain

18



‘We have

— u(a)By(a) +u' ()R, (a) +u' ()R, (a) + u' (O

" —3) / —4)

—u (a)R, (a) —u(a)R,

_u(a)}__{;j)(a)—/ u(x)}_%;)(x)dx.

(u(@), By(@)) s = u(y)

2

by reproducing property. If

then,(50) gives

When x # y we k

Rya)—R(a) = 0.
R (a) =B (a) = 0,
R (0) - R = o,
B0 = o,
R = o,
R)() = 0,
~R)(x) = d(z —y)
now
B(@)=0

Consequently,we attain

Since

( 3\

di(y) + do(y)z + ds(y)2? + da(y) x>+

ds(y)z* + ds(y)2®,a <y <z <b.

R (z) = —6(z —y),

Y

V()

—(5)

(a) + 4 ()R, (a)+u(b)R, (b)

(56)

(57)

(59)

(60)

(61)

(62)
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we have

R = RY(y), k=01,2.34, (63)
=\ H6)
Ry—i—(y)_Ry—(y) = —L

The unknown coefficients ¢;(y) and d;(y), (i = 1,2,3,4,5,6) can be obtained by
(58) — (63).Thus R, is gained as

[ 1+a2y—az—ay+a? +(120) - (“1_2%)5 —x(“;j’)4 )
+a(a;i/)4 + (a;—a)24(y—a)2 _ (x—a)iéa—y)?”a <r<y< b,
R, () = (64)
a—x 5 a—=x 4
1+xy—ay—aa:+a+(mo) _(120) —y( 24)

(-2 | W-0’@=0)’ _ (y-a)’@-a)®
| ot + —=—a<y<a<b

4.5.Closed Subspace of the Reproducing Kernel space W."[a, b|

We may constract the closed subspace °WJ"[a, b] of the reproducing kernel space

Waila, b] by imposing several homogenous boundary conditions on °W3"|[a, b].

Definition 4.5.1

Let function space

Wy'la,b] = {f(2)/ f(x) € W5"[a, 8] by (19), ' (a) =0, f(b) = 0}.  (65)

We can prove it is a Hilbert Reproducing Kernel Space.
Let us try to find the reproducing kernel function @Q,(x) of °W3*[a,b]. Q,(z)
should satisfy

(f (@), Qy(2))oyyp = F(a) =5 (66)

3 Oy )

ax2mfz71

m—1 H2m—i-1
eyt T

o [ s

20



Therefore (), () is the solution of:

’ (-1 5 = 3w — ),

Ox2m

PGue) () E — 0,5=0,2,3,.,m — 1,

=) 0= 1,2, m—1, (67)

Qy(b) = 07

\ 6i%i(a) = 0.

While = # y is the easy to know that (), () is the solution od the following linear
homogenous differential equation with 2m orders,
aZm

ame

with the boundary conditions:

((CQufe) _ (_qym-i180 e g5 —0,2,3, ...

oxt Ox2m—i—1

2m—i—1
%TWZO i=1,2,...m—1,

(69)
Qy(b) =0,
I'Qy(a) _
L S = 0.

We know that equation (68) has characteristic equation A*” = 0, and the eigen-
value A = 0 is a root whose multiplicity is 2m. Therefore, general solution of Eq.(67)

is obtained as:

1Qy(x) =S ci(y)aiha <y,
Qy(x) = (70)
rQy(r) = 21231 di(y)z' x> y.

The coefficients ¢;(y) and d;(y), i = 1,2, ...,2m can be aobtained now. Since

(D 5y,

we have

0'Qy(y) _ 9rQyly)

o i =0,1,..2m ~ 2, (71)
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(_l)m(a2m—1LQy(y+) B 82m_1rQy(y_)
Ox2m—1 Ox2m—1

)= 1. (72)

The above equations in (71) and (72) gave 2m conditions for solving the coef-
ficients ¢;(y) and d;(y)(i = 1,2,...,2m) in Eq. (70) Note that (69) provided 2m
boundary conditions, so we get 4m equations, (69),(71) and (72), it is easy to know
these 4m equations are linear equations with the varibles ¢;(y) and d;(y), could
be obtained by many techniques. As long as the coefficients ¢;(y) and d;(y) are
obtained, the exact expression of the reproducing kernel function @,(z) could be
calculated from Eq. (70) (Mirzazadeh et al., 2014).

Theorem 4.5.2
The space

Wila. = {16/ 50) € wila.n, [ pto)syi =0,

is a reproducing kernel space, where p(x) > 0 is a weighting function.
It is a key to construct the reproducing kernel space with different boundary

conditions for solving different practical problems.
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5.NEW APPLICATIONS

Reproducing kernel method and SL(2, R)—shooting method are investigated
to get the approximate and exact solutions of nonlinear differential equation, i.e.
Thomas-Fermi (Zhu and Zhu, 2012)

(73)

5.1.Group preserving scheme

We suppose that u(z) > —oo. We get a constant x rendering in order to
constitute an SL(2,R)-shooting method:

O(x) = u(x) +x > 0,z € [xg,xf] = [0, 00)

We take a truncation value 7, instead of co in our calculations. Then Fq.(67)

takes the form:

=1+ ;2 =0,
261 o

@ZE(Q—XV%BCS_’ (75)
0=X:7 =T

Let 01(z) = 0(z) and 5(x) = 0 (z). Then, the equivalent first order system of
Eq.(69) takes the form:

; 01(ne) =01 =x,01(0) =05 =1+x,  (76)

L0 v ) ()
(6, — 5)2
vVl

It is exotic that in spite of the sight of nonlinear term A(x,6,,605) in Eq. (77),
we find the Lie symmetry of SL(2, R) by:

where

A(x,01,02) :=
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d
To = A, (0) = Iy, (78)

where det (¢) = 1, trace (A) = 0 and

0 1
A= .
A O
We establish an recurrent method. Namely GPS to solve Eq. (64) as:

Ont1=5(n)On, (79)

where ¢(n) € SL(2, R) and O, := |O],,_,, . By investigating Eq. (64) and using Eq.
(66) and with an initial condition ©(0) = ©() we get the value O (). Let Az =
be the utilised stepsize in GPS by:

(an = D)F 0. On +B8, [Onll 1F nll

Ont1= = On + 2
1F

where

o, = cosh (—AICQF"H> , 3, = sinh (—Ax HF"”) ,

n n

which is an stable integrator of

Therefore, we have

Of = sn(Az)..51(Ax)Oy, (80)

computes the value of # at © = 1. Closure property of the Lie groups finalizes that if
si(Ax) € SL(2,R),I =1,...,N then ¢(Az) := ¢y(Az)...c1(Az) € SL(2, R). Thus,

a one-step Lie group transformation from ©g to © can be established as:

Of =6C0o,,S € SL(Q,R)

We have

(o) =exp ([ Alnyn). (2)

by the exponential in manifolds. We obtain
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= rxg+ (1 —r)xy=(1—7)n,
7"(9(1)—1—(1—7“)9{:7"—{—)(,
= 703+ (1—r)0},

Py
|

by a generalized mid-point rule, at appropriate mid-points. Where r € [0, 1] is an

unknow constant which we should define it.

<(r) = exp (A7, 01,62)) (83)

which conforms with a constant matrix A:

JURENINN 0 1 0 1
A(T, 601, 05) = = o~ , (84)
A0 A(x701792) 0
where
N 3
A= A, 6,0y = =X
:I:91

In the current work , 69 = 1+ ¥, 9{ = x are known and 63, 95 are unknown
boundaries of the model. Determination of 65 as a missing initial values, converts
the Eq.(67) into an initial value problem. Closed form of ¢ in Eq.(83), obtained from
A € sl(2, R) is the form :

¢(r) = cos(y/=A) _Sirj?\/x_w ,if A <0, (85)
—V/=Asinv/=X\ cos(y/—N\)

¢(r) = cosh(y/A) Smh\(fl/r) ,if A >0, (86)
VAsinh(y/A) cosh(y/\)

<<’“):<(1) 1>,m=o, (87)

from Eqs.(81) and (85)-(87) we obtain:

@) B —\C/O—S_()\\s/ii)\) Cﬁ (Zg) if A <0, (88)
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o/ 11 0°
<9}): . 1)(95>,im:o (90)
2 2

thus from 6 = 1+ y, 9{ — x an for an endowed 7,we find the unknown values §5and

0] as following :

05 = vV/=X((1 + x) cot(v/=X) — x csc(v/=N),

(91)
05 = V=X((1 4 x) cos(2v/=N) ese(vV—X) — x cot(v/—)),
when )\ < 0, and
09 = VA(x csc h(vVA) — (1 + x) coth(v/X),
(92)
03 = VA(x coth(vA) = (1 + x) esc h(y/ X)),
when A > 0 and finally for A = 0 we obtain
09 =0 = —1. (93)

In this situation, we present a simple method to find the unknown initial and
boundary values of 69 and 6} by:

i) Define r € [0,1] and initial guesses 03 and 6 given as #5(0) and 6 (0), respec-
tively

i1) Compute the mean values

82(0) = r65(0) + (1 — 7)65(0)

iii) For n = 1,2, .., do the the computations:

51(”) = r+X
r69(n — 1) + (1 — r)Hg(n - 1),
(62(n) — X)?

ey
[N}
—~
N
~—
I
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( 03(n) = /=A(n)(1 + x) cot(y/=A(n)
—x escy/—A(n)),
= if A(n) <0,
03(n) = v/=A(n)((1 + x) cos(2/=A(n)) csc(y/=A(n)))
\ —x cot(y/—=A(n)))
[ 05(n) = \/A() (x csc h(/A(n)
—(1+ x) coth(y/A(n),
= ;if A(n) >0
04(n) = /A(n) coth(1/A(n))
| —(1+x))esch(y/A(n))),
09(n) = 6}(n) =—1, if \(n) =0
If the stopping criterion :
\/(98<n) —03(n — 1))+ (03(n) — 05 (n —1))2 < e (94)

holds, then stop; otherwise return to (iii).

For a trial r, we calculate 03 through the mentioned iterations and then approx-
imately integrate (64) by the GPS from 0 to 1, and match the ending value of 9{
with the exact one 0(7,) = x. In the other word, we require the root of 9{ —x=0
or equivalently minimizing the problem min, o ‘9{ — X’ . The choice of r € [0, 1]
in our technique plays a critical role in finding the approximate value of 0 (0). In
Fig.1, we showed the mis-matching error. Best choice of » = 0.2613 is ocular from
this figure. In Fig 2 acquired results from the SL(2, R)-shooting method at the
range of [0,20] are given. In our computations the values 7., and yare specified by
20 and 3, respectively( Akgiil et al., 2017).

5.2. Reproducing kernel spaces

Definition 5.2.1
Wy [0,1] is given as (Akgii let al., 2017):
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W;[O,l]:{ueAC’[O,l]:u/€L2€[0,1]},

where AC' shows the space of absolutely continuous functions.

(b = [ an)an)+ ' (n)g (). .9 € W 0.1 (95)

and

lullyy = \/{u gy € Wy [0,1], (96)

are the inner product and the norm in Wj [0, 1] respectively. Reproducing kernel

functions T, () of Wy [0, 1] is given by [2]

T2() = Gamnpy 08+ = 1) +cosh(fy +<| = 1. (o7)

Definition 5.2.2
The space F3 [0,00) is given by (Akgii let al., 2017):

F30,00) — { we AC[0,00) : u,u” € AC[0,00),u® € L2[0,00) }

u(0) =0 = u(c0)

2 ()
) ergng = S u00000)+ [ OO ndn, w1 [0.50)
i=0 0

and

HUHOFS[O,oo) = \/ <u7u>0F23[0,oo)7 u €° F23 [0700)7

are the inner product and the norm in °F3 [0, 0o) respectively.

Theorem 5.2.3
Reproducing kernel function g of °F3 [0,00) is given as (Akgii let al., 2017):

5

Yo, 0<n<¢<1,
1=0

qs (77) = (98)

Sodi(e)n',0<¢<n< 1
1=0
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Proof:

Let u €° F3[0,00) and 0 < ¢ < 1, Define ¢. by (98), we have

g (1)

and

we get

<Ua Q<>0F23 =

4 .
Y+ Deiy(o)n', 0<n <<,
1=0

4 .
Y (i+1)diq(o)n', 0<¢<n<1
i=0

3 .
D +1) (i +2)cigalc)n’, 0<n<¢ <1,
1=0

3 .
2 (i+1) (I +2)disa(c)n', 0Sc<n <1,
=0

2 .
YE+1) (i +2) (i +3)cips(o)n’,0<n <¢ <1
1=0

2 .
D14+ 1) (1 +2) (i +3)dira(e)n’, 0 < <n <1,
1=0

if””“”) (04 3) (i + Deal)r’, 0<n < <1

1

20(@ +1)(i+2)(i+3) (i +4)dia(c)n’, 0<s<n <1,

120 C5(1),0 < <7 <1,

¢ (n) =
120 d5(n),0 < ¢ <n <1,
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Thus, we obtain the reproducing kernel function as:

ns + 36207 + 156207 — et + 15, 0 < < ¢ <1,

g (n) = (99)
ns + 2¢2n? + L3n? — Lot + 5,0 << < 1.
this completes the proof .

5.3. Solutions in°F} [0, co)

The solution of (66) is considered in the reproducing kernel space °Fj [0, 00) in

this section. On defining the linear operator

L:° F}0,00) — Wy [0,1]

as

(n) (100)

Lu = M(n,u),n € [0,1],
(101)

Theorem.5.3
L is a bounded linear operator (Akgiil et al., 2017).

Proof:
We have to show ||Lu]|12/v21 < PHu||§F23, where P > 0. By (82) and (83), we

obtain

1
ILulfy; = (L Ly = [ Lu(o? + Lol oy
0

we obtain

SO
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Zu()] < g |1 Zaallos = P lullorg

where P; > 0. Therefore, we obtain

| 1@, < Py

Since

!

(Lu) (n) = (u(). (Lg,) (), .

then

(an)/

(2 )] < ullg |[(Eao) |, = P Nl
2

where P, > 0. Thus, we get

(') < P ully

and

jﬁthuY(nﬂ2dn5;;gHuH3§’

that is

IZullyy < [ (0@ + (L) (0F) dn < (P + P) [l = Pl

where
P=P+P;>0.

5.4. The fundamental results

Let ;(n) = T,.(n) and 1;(n) = L*¢;(x), L* is adjoint operator of L. The ortho-

o0

normal system{{ﬁ\i(n)} of °F3[0,00) can be achieved from Gramschmidt orthog-
i=1

onalization operation of {1,(n)}:

=1

Gin) =3 Babe(n), (B > 0,6 = 1,2,..). (102)
k=1
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Theorem 5.4.1
Let {n;};°; be dense in [0,1] and ¥;(n) = Lcqy(<) |¢=y, - Then the sequence
{1;(n)};2, is a complete system in oF3[0, 00) (Akgiil et al., 2017).

Theorem 5.4.2
If u(n) is the exact solution of (94), then we have

) =357 B M (i wi )i (), (103)

i=1 i=1
where {(n;)}:>, is dense in [0, 1].

Proof:
We obtain

=1

= 37 By ), G4 (0)) ey i),

i=1 k=1

= 33 B ), L))o vul)

i=1 k=1

= SO B L), ou () ()

i=1 k=1

= Z Z BiwLu(ny), 1;2(77)

i=1 k=1

= Z ZBikM(nk’ u), 121-(77),

i=1 k=1

The approximate solution u,, can be obtained as:

e 303 B M (e ui ().

i=1 k=1

Examples 5.5.

We applied the reproducing kernel method and the SL(2, R)—shooting method
to investigate the Thomas- Fermi equation. Numerical results have been presented

to prove the effectiveness and power of the techniques in this section.
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Example 5.5.1

Let us consider:
'(2) = ()7
v
$(0) = 1,¢(c0) = 0.

We use u(n) = ¢(n) — exp(—n) to homogenize the boundary conditions. After

homogenizing the boundary conditions, we have
u" = J=(u+ exp(—n)2) — exp(—n),
u(0) = 0,u(c0) = 0.

Numerical results of the techniques are shown in the Table 1. Results prove that

the methods conclude close and confidential values.

x RKM SL(2, R) — shooting

0.0

1.0000000000

1.0000000000

0.25 0.7835167343 0.755903586
0.5 0.6267255540 0.605270335
0.75 0.5160495243 0.497822365
1.0 0.4346425510 0.420342365
1.25 0.372227888 0.362819542
1.5 0.3228774463 0.318730126
1.75 0.2830438479 0.284015236
2.0 0.2503563837 0.256010865
2.25 0.2232076622 0.232973956
2.5 0.2004338018 0.213706631
2.75 0.1811881098 0.197357785
3.0 0.1648317030 0.183313366
4.0 0.1199717397 0.142654023
5.0 0.09571524580 0.116720254
6.0 0.08130766388 0.098751985
7.0 0.07212283057 0.085572364
8.0 0.06645889993 0.075495213
9.0 0.06368974880 0.067537955
10.0  0.06358507593 0.061099850
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Fig. 2 Approximate solution by SL(2, R}-shooting method in the specfied interval

Table 1 Approximate Solutions by reproducing kernel method and SL(2,R)-method

in Example 5.1.1.
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6. CONCLUSION

The base goal of this work is to establish some numerical solutions of the nonlin-
ear differential equations by the reproducing kernel method and SL(2, R)-shooting
method. The acquired results are uniform convergent and the operator that was
utilized in the reproduicing kernel method is a bounded linear operator. We proved
that reproducing kernel method and group preserrving scheme are in good agreement

and they are very accurate methods.
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