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OZET

YUKSEK LiSANS

(KOMPLEKS BiYOKIMYASAL TEPKIMELER iCiN YAVAS VE HIZLI ALT
SISTEMLER)

Awder Sardar ABDALRAHMAN

Siirt Universitesi Fen Bilimleri Enstitiist
Matematik Anabilim Dah

Damisman: Dog. Dr. Ali AKGUL
2. Damisman: Dr. Sarbaz Hamza ABDULLAH
2018, 37 Sayfa

Bu ¢aligmada, bazi enzim inhibitorleri i¢in matematiksel modellemeyi tanimliyoruz
ve bazi model azaltim tekniklerine dayali degisken ve parametrenin sayisini en aza
indiriyoruz. Bu tezi alt1 boliime ayirdik. Bu tezin ilk bdliimiinde, matematiksel modelleme
ve modelleme siireci ile ilgili bir giris verilmektedir. Ikinci boliim, basit enzim
reaksiyonlariin bir 6rnegi ile biyokimyasal reaksiyonlar i¢in model azaltma icin iki
yontem sunmaktadir. Yontemler, yar1 kararli durum yaklasimi (QSSA) ve quasi
equilibrium approximation (QEA) 'dur. Daha sonra, bolim 3'te, rekabetci inhibisyon
modeli tanimlandik ve Onerilen yontemlerin, de§isken ve parametrenin sayisini en aza
indirgemek i¢in uyguladik. Bundan sonra, rekabetsiz inhibisyon ve karisik inhibisyon gibi
bazi daha karmasik modeller tanimladik, onerilen teknikler temelinde eleman sayisini
diisiirdiik ve bu modeller i¢in sirasiyla dordiincii ve besinci analitik ¢oziimler hesapladik.
Son olarak, sonug¢ ve Oneriler boliim altida verilmektedir.

Anahtar Kelimeler: Matematiksel Modelleme, Kimyasal Kinetik, Quasi Kararli Durum
Yaklasimi, Quasi Denge Yaklasimi, Yavas ve Hizl1 Alt Sistemler, Yavas Manifold
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ABSTRACT

MS. THESIS
SLOW AND FAST SUBSYSTEMS FOR COMPLEX BIOCHEMICAL REACTIONS
Awder Sardar ABDALRAHMAN

The Graduate School of Natural and Applied Science of Siirt University
The Degree of Master of Science
In Mathematics

Supervisor: Assoc. Prof.Dr. Ali AKGUL
Second-Supervisor: Dr. Sarbaz Hamza ABDULLAH
2018, 37 Pages

In this study, we define mathematical modelling for some enzyme inhibitors and we
minimize the number of variables and parameter based on some techniques of model
reductions. We divided this thesis into the six sections. The first section of this thesis
gives an introduction regarding to mathematical modeling and modeling process. The
second section presents two methods of model reduction for biochemical reactions with
an example of simple enzyme reactions. Methods are quasi-steady state approximations
and quasi-equilibrium approximations. Then, in section three we define competitive
inhibition model and we applied the proposed methods to minimize the number of
variables and paraments. After that, we have defined some more complex models such
as uncompetitive inhibition and mixed inhibition, we reduce the number of elements
based on the suggested techniques and we calculate some analytical solution for such
models in sections four and five, respectively. Finally, conclusions and
recommendations are given in section six.

Keywords: Mathematical Modeling, Chemical Kinetics, Quasi Steady State
Approximation, Quasi Equilibrium Approximation, Slow and Fast Subsystems, Slow
Manifold.



1. INTRODUCTION

A mathematical model is a mathematical object established on a real situation and
produced in the hope that its mathematical behavior resembles the real behavior.
Mathematical modeling is the scientific art of creating, analyzing, validating, and
construing mathematical models. Otherwise stated, mathematical modeling is a branch of
applied mathematics that dealing with describing and/or predicting real-world system
behavior. There are some examples of real-world systems: an object moving in a
gravitational field; stock market fluctuations; predator-prey interactions; cell signaling
pathways. To define a mathematical model, we should define three different things:
variables, parameters and functional forms. (Baker, 2011; Ingalls, 2012; Kot, 2001; Sontag,
2014)

1.1. The Modeling Process

There are a variety of steps that can be used to convert an idea into a theoretical
model and then into a quantitative model. It is clear that a theoretical model presents our
idea in a model diagram that involving arrows and boxes. Mathematical equations are also
used to define the rate of each process. In Figure 1.1, it can be seen that a series of steps are
required to define modelling process. An example of modelling process is the SIR

epidemic model (Lawson, et al., 2008).
A model diagram can be given:

T iSST R
ransmission(f) I ecovery(a) R (1)

where S is susceptible population, I infectious population and R is recovered population

Susceptible (S): Individuals susceptible to the disease. @ and 8 are model parameters.



Simplify

——

Interpret Abstract

Calculate

—¢

Figure 1.1. Mathematical modeling steps.

1.2. Elementary Reactions

The elementary reaction for chemical kinetics is given by the stoichiometric equation:
(Gorban, et al., 2011)

aplAl + apZAZ + -t apnAn - ,3p1A1 + IBpZAZ + -t BpnAn: (2)

where the stoichiometric coefficients a,,; > 0 and ,; = 0 are non-negative integers and

p is the reaction number.

1.3. Stoichiometric Vector

For each reaction, the stoichiometric vector is defined from the stoichiometric coefficients

ap; = 0and B, = 0 with coordinates (Gorban, et al., 2008).



Yp = ﬁpi — Upj- (3)

1.4. Reaction Rate and Mass Action Law

Consider an irreversible reaction

kp
aplAl + apzAz + + apnAn b ﬁplAl + ﬁpZAZ + + ﬁpnAn.

And let C; = [4;], fori = 1,2,...,n are concentration species. Then we can use mass action

law to define the reaction rate v, which is explained in below:

n
vp = kp 1_[ Ciapi (4)
i=1

where k,, is the reaction rate constant (kinetic constant) (Khoshnaw, 2015).

1.5. Kinetic Equations

If the elementary reactions are given with their stoichiometric equations and reaction rate

constants then the kinetic equations (differential equations) for the concentration vector are

dc
E = Z Yo Up» (5)
p

where p is the number of reactions, y,, is stoichiometric vector and v, is reaction rate, C is

the concentration vector. (Khoshnaw, et al., 2017).
Example 1.5.1

We consider the simplest model of spread of an infectious disease. In this model, people are
categorized as either susceptible S or infective I. It can be seen that susceptible people are
healthy whereas infective people are sick. We assume that the model population is closed.

The chemical reaction of the model takes the following: (Murray, 2001).



S+152I, (6)
where «a is kinetic constant (parameter). Then the stoichiometric vector becomes
_(—1
V= ( 1 )
and we have one reaction rate v = aSI .

Then the kinetic equations based on the mass action law are given as follows:

das -

— = —Q. ,

at 7)
E = CZSI.

With initial model populations S(0) = Sy and 1(0) = I,. Adding differential equations (7),

as

we obtain -+ % = 0, then we have the following model relation

S+ 1 =N. (8)

The equation (8) is called conservation law for the model, where N is the total population
(constant). For solving the system analytically, we can start from
ds

& _ast
ac . ¢

Then, the equation becomes a separable differential equation.

s __ .
SIN—5) %t

This is separable differential equation. The equation can be solved analytically. Then, the
model analytical solutions are

N N
and I(t) =

u Nt 0
1+ S, e* 1+N—So

S(t) =

e—aNt

Interestingly, we can conclude that S(¢) = Oand I(t) —» N ast — oo.



2. METHODS OF MODEL REDUCTION

Identifying the most important model reduction technique for biochemical reactions
is often a difficult task. This is sometimes required some scientific classifications such as
citation indexes and impact factors. This was simply asked Google about some model
reduction words. This was asked on 17th February 2018. We obtained some important
results: (Fenichel, 1979; Segel, et al., 1989; Jones, 1995; Vora, et al., 2001; Khoshnaw,
2015)

— We asked about “quasi—steady state” we obtained 479, 000 and regarding “pseudo—steady
state” we had 114, 000 links; all together 593, 000.

— For well-known technique “quasi—equilibrium” we obtained 289, 000 links;

— but for “geometric singular perturbation” we have 34, 000 links, while for “singular

perturbation” we have 305, 000 links.

Model reduction is a transformation process on the original system to another
system in which the new model contains a smaller number of elements (variables and
parameters). We have a variety of techniques of model reduction for systems biology.
Methods of model reduction here are very important in systems biology for minimizing
chemical reaction parameters and species. In this study, some essential techniques of model
reductions are reviewed and applied for some enzymatic reactions. Techniques are simply

given in the following sections.

2.1. Quasi-Steady State Approximation (QSSA)

The concept of the quasi-steady state was suggested as a model reduction
technique. Bodeustein in 1913 proposed the classical method of quasi-steady state
approximation. Then, there are more explanations about the method that suggested by
Briggs and Haldane in 1925. It was about the simplest enzyme reaction E + S < ES —
E + P. Briggs and Haldane assumed that the total enzyme concentration is very small in
compared to the substrate concentration [S]. (Volk, et al., 1977; Schnell, et al., 2002;
Pedersen, et al., 2008; Li, et al., 2008; Li, 2013; Khoshnaw, 2015)



Then the method became as important technique of model reductions and model analysis
for biochemical reactions. In order to define the method, we simply divide a set of variables

C(t) for two sets. The first set is called slow species (basics) C5(t) . The second set is
called fast species (fast intermediate) C/(t). A new variable C7(t) = é CT(t) can be

intoduced where ¢ is a small parameter. Then, the differential equations of a biochemical
reaction model can be divided into two subsystems:

dcs

= Ws (€5(t),Cr(t),K), 9)
¢ 1
= s = 0
= W’ (€5(t), C(t), K). (10)

The first subsystem (9) is called the slow, while the second one (10) is called the fast
subsystem. We can analyze fast subsystem (10) and the standard singular perturbation
method can be also applied. We can also calculate a slow manifold of the system from the
algebraic equations W/ (C*(t), C/(t),K) = 0 when & — 0.

2.1.1. Simple Enzymatic Reactions

We consider an irreversible enzymatic reaction. The model was suggested by Briggs and

Haldane. The chemical reactions are given: (Briggs, et al., 1925; Khoshnaw, 2013)

kq k
E+S k:ES—iE+P, (11)
-1

where E is enzyme, S is substrate, ES is enzyme-substrate complex and P is product. We

have three model paramers k;,k_, and k,. The model varible concentrations are defined

by
E = [E], S=1[S], P =[P], C = [ES].

Using mass action law for Eg. (11), we can define a system of ordinary differential

equations:



dE
—_— = _klES + k_1C + sz,

dt
ds kES+k_,C
. = T -14,
dcC
_t = klES - (k_1 + kz)C,
dP ko
dt ~ "2
With the initial concentrations
E(0) = ey, S(0) = sy, and €(0) = P(0) = 0. (13)

We have two independent conservation laws for system (12), they are given below:

E+C=ey, S+P+C=s, (14)

We subsitute Eq. (14) into Eq. (12), then the system of equations becomes

ds
E = —k15(60 - C) + k_lc,
dcC

dt

(15)
= k,S(eg — C) — (k_; + k)C.

Briggs and Haldane assumed that the total of enzymes is much smaller than the total of
substrates (i.e. e, < s,). To monimze the number of parameters , a simple scaling is used
. We intoduce the following new variables:

() C(t)

S
T = kyept, u(t) =——-,and v(r) = :
So €o

Then, the system of ODEs (15) becomes

d_u =—u(l—v)+av, u(0)=1,
dt (16)
egzu(l—v)—ﬁv, v(0) =0,

where



e k_ k_i+k
0 ! and ﬁ’:#.

So Soks’ Sokq

The system (15) is called slow and fast subsystems.

It is clear that « < B because k_;,k, > 0, and ¢ = f when k, = 0. The system (16)
clearly has the form of the systems (9) and (10). We can apply geometric singular
perturbation technique; the differential equations can be minimized when ¢ = 0. Then, the
system becomes

d
2 U -v) +av, (17)
dr

0 =u(l-wv)—pBw. (18)

The equation (18) can be simply solved for v,

(19)

Thus, the analytical solutions are necessarily close to the slow manifold M,. The slow

manifold M, can be given:

M, = {(u, v):u €[0,1],v= (20)

o
B +u)
Finally, the reduced differential equation is obtained and it is close to the manifold M,

du _ (a=pu

dr B+u (21)

It can be concluded that the equation (21) becomes Michaelis-Menten equation. The slow
manifold here is normally hyperbolic and stable. The function F (u, v) be the left side of
equation (18), this means

0F (u,v)

Fu,v) =u(l—-v) —Bv - E =—(+u)<O0.




2.2. Quasi-Equilibrium Approximation (QEA)

It is not quite clear who proposed the quasi-equilibrium approximation. The idea of QEA
has been proposed as a model reduction method for minimizing the number of variables
and parameters. The idea of QEA is that the fast reactions become equilibrium very
quickly. In other words, the set of fast reactions will reach equilibrium very quickly
compared to set of slow reactions. We consider a system of differential equations of
chemical reaction as follows: (Volk, et al., 1977; Schnell, et al., 2002; Khoshnaw, 2015)

dc 1
== Z R%(c, k, t)y? ¢ Z R (e, k, Y7, (22)

s,slow f.fast
where ¢ is a small parameter (0 < & « 1), reaction rates are RS and R/. The
stoichiometric vectors are y* and y/. Then, the fast subsystem takes the following form

Z—i = %ffza:st RI (¢, k, t)y’. (23)
The QEA is used to separate variables into slow and fast. In order to do that it is required to
study the linear conservation laws for the original model (22) and subsystem (23). In
general, we have some conservation laws for system (22), and they are denoted by linear
functions h*(C), h%(C), ..., h( C). Interestingly, there are two main cases regarding to linear
conservation space. Firstly, if all conservation laws of (23) are also given by the system
(22). Then, we do not have any fast-slow separation for variables. Therefore, the system
(23) gives the dynamics of fast variables. Secondly, if the fast subsystem (23) has some
more linearly independent conservation laws such as h“"(C), h**}(C), ..., h**?(C). Then,
such equations are not obtained by the system (22). More interestingly, we can calculate the

quasi—equilibrium manifold using the following equations

Z R/ (c,k,)y" =0, (24)
f.fast
R(C)=b;,1<i<k+p. (25)



2.2.1 Revisable Enzymatic Reactions

We consider the simple revisable enzymatic reactions as follows: (Khoshnaw, 2013)

kq ks
E4+S ~ ES” E+P, (26)

ki k_,
where E, S, ES and P are variables of the model. They are called enzyme, substrate,
enzyme—substrate complex, and product. We have four model parameters and they are
ki, k_1,k, and k_,. We assume the model concentrations variables as E =[E],S =
[S], P = [P],C = [ES]. The model differential equations are:

ds
E = _klES + k_lc,

E
= _klES + (k_1 + kz)C -2 k_zPE,

dt (27)
dc
E i klES - (k_1 + kz)C + k_zPE,
dpP
E = sz - k_zPE.

with the initial conditions
E(0) = ey, 5(0) = spand C(0) = P(0)= 0. (28)

For applying QEA of the chemical reactions (26), it can be supposed that the first reaction

ky

E+S __ES
k_y

goes equilibrium very quickly. This means that

Kkt k™ k _ k_
k, =— and k_, = — where k* = 2% and k- = =12
€ € So So

In other words, k; and k_, become are large parameters in comparison with k, and k_,.

Then, the system (27) are classified into fast and slow reaction rates

10



ds

1
= ng(SIEJ C; t);

dt
dE 1
— =—g/(5,C,E,t) + g°(E,C,P,1),
dt € 29
dic 1 (29)
Fri —ggf(S, C,E,t) + g°(E,C,P,t),

b _ S(E,C,P,t)
dt_g y &y 1]

where g/ (S,E,C,t) = —kTES + k~C and g°(E,C,P,t) = k,C — k_,PE.
When ¢ - 0, we can use the quasi—equilibrium approximation. Thus, such fast reaction
has two slow variables and they are called the stoichiometric conservation laws. They are

denoted by b,(S,C) = S + C and b,(E,C) = E + C. We can use the equation

g7 (S,E, C,t) = 0 to calculate slow manifold. The slow manifold becomes

k-C
M, = {(s, E,C)ER:S =7 } (30)

We assume that the slow variables b; and b, are fixed, then we have the following

equations:

k*ES—k=C =0,
S+C=bh, (31)
Then, from equation (31) we have the following quadratic equation

k*C?— (k*by + k*b, + k™)C + k*byb, = 0. (32)

It can be solved analytically for C

— —. 2

1 k
C(blle) ZE <b1+ bz +k_+>i\/(b1+ b2 +k_+> _4b1 bz .

A sign “=” should be selected in order to have positive concentrations. If b; —

0and b, —» 0thenC — 0. Moreover, the variables S and E are also given

11



1
S(bp bz) = b1 -5

E(by,b;) = b, — 5

2

k
<b1+ bz + k_+>

k
<b1+ bz + k_+)

k
_\/(b1+b2+_

k
—\[(bl'l'bz +_

12



3. COMPETITIVE INHIBITION

Enzyme inhibitors are occurred as molecules. They are involved with catalysis and
enzymatic reactions. It is clear that studying of enzyme inhibitors provided a good
information about enzyme mechanisms and helped us to define some metabolic pathways.
Reversible and irreversible inhibitors are two main important types of enzyme inhibitors.
Reversible inhibitors are also classified into three types: competitive inhibitors,
uncompetitive inhibitors and mixed inhibitors (Mohan, et al., 2015).

A competitive inhibitor is the first common type of reversible inhibition, see Fig.
3.1. A competitive inhibitor and substrate are competed for the active site of an enzyme.
The active side is occupied by inhibitor (I). It prevents binding of the substrate to the
enzyme (Klonowski, 1983).

E+8 =—— ES >E+P -
o ™,
+ . II_. Y )
1 (8) | {E
- L r
{z -"‘\ ﬁ \"\-h _,.-fz
{ P
! ';l".
% > o
S % / x\
El -
(1 { A
! 4
_-"/

Figure 3.1. Competitive Inhibition.

The Kinetic reactions of competitive inhibition are given:

13



k;
ke (33)
E+1 ZEI
ks

where | is inhibitor, ES and EI are complex intermediate species. The model has five
parameters and they are k, , k, , k3, k, and k<. Model variables are E = [E], S =[S], P =

[P], C; = [ES], C, = [EI]. The model equations can be expressed as follows:

ds
—_— = _klsE + kZCIJ

dt
dE
E = —klsE + kZCI + k3C1 - k4EI + k5C2:
- k. EI + k<C.
7= TRy 5G2,
dt (34)
dc,
E = klsE — k2C1 - k3C1;
dp
FrA
dc,
— = laEl = ksC

We have the following initial conditions

E(0) = ey,5(0) = 50,1(0) = iy and C;(0) = C,(0) =P(0) =0. (35)

The model has the following conservation equations:

C2+I:i0, Cl+S+P:SOand E+Cl+C2:eo. (36)

By substituting the conservation laws into system (34), the kinetic equations take the form:

ds
dat —k1S(eo—io +1—Cy) + kyCy,
(37)
dl
dt —kal(eq—io +1—C1) + ks(ip — 1),

14



dc
d_tl = kls(eo_io + I— Cl) - (kZ + k3)C1'

By introducing the following new variables:

I(t S(t C,(t
T=keot, ur) = Q, v(1) = Q, and  w(r) = 10)]
Lo So €o
Therefore, the system (37) takes the form:
dv
= v (=W + @ w=1) +aw, (38)
du
o= —u(az;(1 —w) —a,(u—1)) + as(1 —uw), (39)
dw
€= v((1—w)+a;(u—1)) —agw, (40)
with initial conditions u(0) = 1, and v,(0) = v,(0) = v3(0) = 0,
where
_ eo _ io _ kz _ _k4 _ i0k4
6_50' al_eo, a2_50k1, %= ki’ a4_eok1’
ks d _kyt ks
as = eoks an ag = sok

It is clear that the above thee equations (38), (39) and (40) have the form of equations (9)

and (10). We can sue QSSA when & — 0, then equations (38)- (40) take the form

% =—v((1-w)+a,(u—1))+a,w, (41)

Ccii_l; = —u(az:(1-w) —a,(u—1)) +as(1 —uw), (42)

0=v((1-—w)+a,(u—1)) —agw, (43)

Equation (43) can be solved for w in terms of v and v

15



v+ a(u—-1)

44
v+ a, (44)

Thus, the approximate solution for equations (38), (39) and (40) and the manifold M, are
relatively close. The slow manifold M, is given
vl +a(u—-1)

M, = {(u, v):uandv € [0,1],w = Tt } (45)

By substituting equation (44) into equations (41) and (42), the following differential

equation close to the manifold M, are obtained.

dv _ v+ a)(1+a(u—1)— 1 —ay(u— 1)+ ag)]

dt v+ ag (46)
du —uas[(v+ag) —v(l+a;(u—1))]
E B v+ ag
(47)
4 (u—1)(v + ag) (ua, — as)
V4 ag

Using the technique of QEA for chemical reactions (33), we assume that the first reaction

kq

E+S Z ES,
k;,

becomes quasi—equilibrium. It means that the parameters can be given

K+ -

k,e
klz? andkzz?wherelﬁ: =20

and k~ =

So So

kieg

In other words, k, and k, are large constants in comparison with k, and ks. Thus, the

equations (34) take the form of equation (22)

ds -1
= gf
dt € g (SI E; Cl);

(48)
dE -1
=9 S EC) +g%(C) + g%=(E 1,Cy),

16



dl
- = gSZ(E;I; CZ))

dt
% = %gf(S, E,C)) — g*(Cy),
SRR
% = —g%(E,1,Cy),

Whel’e gf(S, E, Cl) = k+SE - k_Cl ,gsl( Cl) r k3C1 and gSZ(E’ I, Cz) = _k4EI + k5C2.

When ¢ - 0, we can apply the quasi—equilibrium approximation. Therefore, the model has

two slow variables. They are given b,(S,C;) =S+ C; and b,(E,C,) = E + C; . Slow

manifold can be expressed from fast reaction rate equation g/ (S,E, C;) = 0. The model

manifold is given below:

k=C,
= 3' =
M, {(5, E,C)) € RS = }

We assume that the slow variables b, and b, are fixed,
k*SE —k=C, =0,
S+C, = b,
E +C, = b,.

Then, the following quadratic equation for C; is obtained:
k*C,?> — (k*by + kb, + k™)C, + k*byb, = 0.

We can solve equation (51) for C,and we have

(49)

(50)

(51)

N| =

C1 (b1' bz) =

.2

k
<b1+ bz + k_+> i \/(bl‘l' b2 + k_+> - 4’b1 bz

17



¢ 9

We select a sign in order to have positive concentrations. If b; — Oand b; —

0 then C; — 0. Moreover, the solution for other variables take the form

2

1 k k-
S(bl, bz) = b1 - E <b1+ bz + k_+> - (b1+ b2 + k_+) - 4‘b1 bz

~

2

1 k k-
E(bl,bz) =b2_§ <b1+ b2 +k_+>_ (b1+ b2 +k_+) _4‘b1 b2

18



4. UNCOMPETITIVE INHIBITION

Uncompetitive inhibitors are also another common type of reversible inhibition. An
uncompetitive inhibitor binds at a site different from the substrate active site and binds only
to the ES complex. This type of reaction requires that one or more substrates bind to E
before the inhibitor can bind; see Fig. 4.1. (Mohan, et al., 2015).

E+ 8 EE —* E+P

y (s Pz
{ ( 3 :: I{-,*
..‘\' o IL“'\"--._ o 4
ESI
O,
Co
\ v

Figure 4.1. Uncompetitive Inhibition

The Kinetic reactions of uncompetitive inhibition are given:

kq ks
S+E ZES SE+P,

(52)

where | is inhibition; ES and ESI are intermediate components. Model parameters
are ky ,k, , k3, ks and ks. The model variables are E =[E], P =[P], S=[S],I =1I],
C, = [ES], C, = [ESI]. The model differential equations are given based on mass action

law

19



dE
—_ = _klES + szl + k3C1,

dt
ds
E = _klES + kZCIJ
dc,
E = klES - k2C1 - k3C1 - k4C11 + k5C2,
(53)
dp
E - k3C1J
dl
E = _k4C11 + k5C2,
dc,
W = k4Cll - k5C2,
with the initial conditions
E(0) = ey, 5(0) = 5o and 1(0) = io, C,(0) = (;(0) = P(0) = 0. (54)

The following three independent stoichiometric conservation laws have obtained from the
system (53):

I+C2:i0, Cz‘l‘Cl‘l‘E:eo, C1+P+S+C2:SO. (55)

By substituting the conservation laws into system (53), the kinetic equations take the form

ds
E = _kls(eo_io + I - Cl) + szl,

dc
d_t1 = k15(eo_io +1- Cl) - (k2 + kB)Cl’ (56)

dl _
E = _k4C11 + ks(lo - I).

The following new variables are introduced:

20



I(t S(t Cyi(t
T=kiegt, u(r)= Q, v(7) = 5@ ), and w(7) = 1 ( ),
Lo So €o
Then, system (56) can be expressed as fast and slow subsystems:
dv
== —v((1—w) — a;(1 —7)) + a,w, (57)
dw
€= v((1—w) —a;(1—w) —azw, (58)
du
2 = ~@awu+as(l-w), (59)
where
€= So’ al'_'eo' %2  soky ] % = Soky 8 ki’ as'_'eokl
With initial conditions u(0) = v(0) = 1,w(0) = 0.
When € —» 0, equations (57)-(59) can be written as follows
dv
= —v(1-—w) —a;(1—7v)) + ayw, (60)
0=v((1-w)—a;(1-w)—azw, (61)
du
g7 = Tdawut as(1—u). (62)
We can solve equation (61) for w in terms of v and u analytically. It can be given:
1- -1
w=rd-a@-1 (63)

v+a;

Furthermore, the approximate solutions and slow manifold are relatively close to each

other. The manifold M, is given below:
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vl—a(u—-1
M, = {(u, v,w):uandv € [0,1],w = ( 1( )}. (64)
v+as
Therefore, we have nonlinear differential equations and they are close to M,
du —aauv+ (1 —uw)(aauv + as(v + as))
o , (65)
dr v+ as
dv  (w+a))v(l —a;(1—uw)+v(e(1-v) — DV + as) (66)

dr v+ as

For QEA of the chemical reactions (52), we suppose that the second reaction
ks
ES+1 Z ESI,
ks

goes equilibrium very quickly:

k* k- k,e kse
k4=? andk5=? where kt = — g ¢

So So

This means k, and k< are large constants in compassion with k, and k,. Thus, equations

(53) has the form of equation (22)

dE
E = gsl(S:E: Cl) + gsz( Cl) ]

ds
- = gS:l(SlE; Cl) )]

dt
dc 1
d—tlz _gsl(S;E: Cl) _gSZ(Cl) +ggf(C1;I; CZ)J (67)
dp
- — S2
dt g (Cl);
dl

1
— =_qgf
dt € g (Cll I; CZ);

22



dc, -1

A f
dt e g (C1;L Cz)-

where g7 (C,,1,C,) = —k*CyI + k=Cyp, g%i(S,E,Cy) = —k,ES + k,C, and, g%2(C,) =
ksCy .

When € - 0, we can apply the quasi—equilibrium approximation. As a result, the model
has two slow variables b;(C;,I1) = C; — 1 and b,(I,C,) =1 + C,. The slow manifold is

calculated from nonlinear equation g/ (Cy,1, C,) = 0. This is given by

k-C,
MO = {(Cl, I, Cz) € RZ:I == k+_C1} (68)

After fixing the slow variables b; and b,, we have the following equations
—k*CI+k™Cy =0,
C,—1=by, (69)
[4C, =b,.

The following quadratic equation for C, is obtained:
—k*C,% + (k*by + 2k*b, + k™)C, — k* (b, + by)b, = 0. (70)

The equation (70) can be solved analytically for C,. We obtain

2

k k-

Cz (bp bz) =

N| =

¢ »

We select a sign in order have positive concentrations of I, ¢; and C,. If by —

0 and b; — 0then C, - 0. Moreover, the variables I and C; can be also given:

2

1 k k-
I(bl, bz) = bz - E - (b1+2 bz + k_+> - \/(b1+2 b2 + k_+> - 4’(b1 + bz)bz )

23



1
Cy(by,by) = by + b, — 5 |- <b1+2 b, +

k+

- 2

) 4y + )b,

k k
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5. MIXED INHIBITION

The third type of reversible inhibition is mixed inhibitors. This kind of inhibitors is
different compared with the other types of inhibitors because it binds at a site distinct from
the substrate active site, but it binds to either E or ES; see Fig. 5.1. (Mohan, et al., 2015).

E+58 ——— ES *E+P
- +
I I .
e { - '.‘ -
| ' = | =
A S
b ____,"I e S eey
ElI+ 8 ESI
l‘:!: : w W{ l:.:\:[;l:l
o _a'f 1"‘:. T,
diy Y & ?tx
| { | Qh
\ : ,J:MI ) hil ,Ef

Figure 5.1. Mixed Inhibition.

The Kinetic reactions of mixed inhibition are given:
ky

k
E+S ZESSE+P,
k,

(71)
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where S, E, P and | are substrate, enzyme, product and inhibition, respectively; ES, EIl and
ESI are complex intermediate species. Whereas, k; fori = 1,2,3,...,9 are parametrs. The
model variables are expressed by E = [E], S=[S], P =[P], | =[l], C; = [ES], C, = [EI] and
C; = [ESI]. The corresponding system of ODFs of the reactions (71) can be written as
follows:

dE
E = —klES + k2C1 + k3C1 - k4EI + kSCZS’
ds
E = —klES + kZC:[ + k4EI - kSCZS - kBCZS + k9C3'
dc,
— = kaES = kyCy = ksCy = kel + ko G,
d
d_i) = k3Cy, (72)
dl
% = —k4_EI + kSCZS - k6C11 + k7C3’

dc,
E = k4_EI - k5CZS - kSCZS + kng,

dC,
F = k6C11 - k7C3 + kSCZS - kgCS,

where the initial conditions are

E(0) = e, 5(0) = s0,1(0) = iy and €;(0) = C,(0) = C3(0)

(73)
= P(0) = 0.
The model includes two independent conservation equations:
E+Cl_I:eO_i0,I+C2+C3:i0. (74)

Substituting linear conservation equations into the original equations, some equations can
be reduced:
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ds
—_— = —k15(6’0 - C1 - Cz - C3) + k2C1

dt
+ kuleg — C; — C; — C3)(ig - C; — C3)—ksC,S
- kSCZS + k9C3,
dcy
dt = kiS(eg — C; — C; — C3) — kyCy — k3G
—keC1(ig-C, — C3) + kG,
(75)
dp
E = k3C1,
dcC, ,
dr = ky(eg — €1 — C; — C3)(ip — €2 — C3) — ksCpS — kgCoS
dCs ,
W = k6C1(lO — CZ - C3) - k7C3 + kBCZS = k9C3.
We introduce the following new variables:
S(t P(t Ci(t C,(t Cs(t
T = kieot, u(r) = Q,v(f) = wal(f) = 1.( ),Wz(r) = 2.( ),and ws(7) = 3.( )
So So lo Lo Lo
The following differential equation of dimensionless from can be obtained:
du 1
E = _alu (a_l - Wl - WZ - W3> + CZlCZZWl
1 76
+a3a1<a_—W1—W2—W3>(1—W2—Ws) (76)
1
- a1a7u - alasuWZ + a1a9W3,
dw; ( 1 )
E—=uU\—m—w; —w, —w — A, Wy — a,w
dT a, 1 2 3 2W1 4W1 (77)
—aswi (1 —w, —ws) + agws
dv
dr A1 A4 Wy, (78)
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dw, (1 a )
E—F = EAA g\ — — W1 — W — W3 — Wy, —W3) — a;uw,
dt a (79)
- aguWZ + a9W3,
dws
EW = a5W1(1 — Wy — W3) — AgW3 + aguw, — agWs, (80)
where

€o io kz i0k4 k3 i0k6
€E=—, a1 = —, ay = —, X3 = —, Xy = ——, Xy = ——,
So 17 e, 27 soky 37 soky * 7 soky 57 soky

B . T

" soky’ T kg ° ky > soky Yk

With initial conditions u(0) = 1, v(0) = w;(0) = w,(0) = w5(0) = 0.

The equations (76)-(80) are slow and fast subsystems. When & — 0, equations (77) - (80)

become
du 1
- - u (a_1 —W; — Wy — W3> +a,a,w;
1 81
+a3a1<a_—W1—W2—W3>(1—W2—Ws) (81)
1
- a1a7u - alasuWZ + a1a9W3,
1
O=u (a—l — Wy — Wy — W3> — AWy — AWy (©2)
—asw, (1 —wy, —ws) + agws,
dv
dr A1 A4 Wy, (83)
0 = —a;uw, — aguw, + agws, (84)
0 =asw;(1 —w, —w3) — agw; + aguw, — agws. (85)

We can solve equations (82), (84) and (85) for w;, w, and ws in terms of v and u. They are

given:
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Bahs(Wu

W = ) 86
' as — ashy (W) — asPihs(Wu )
Wy = h3 (u), (87)
ws = Brhs(Wu (88)
Where
a; + ag
Br = ag P =a, +a,+as, Bz =as+ay, Ba = B1B3 — s,

hy(w) = asPyu + asfiu? + asu + (u — ag)asfru + (u — ag)asfy*u? + asfyfau?

2
h,(uw) = % + BB L (4 ) Bau + uas + (u — ag)asPyu , and
1

aq

o)+ () = 4, () S
2hy ()

hs (w) =

The slow manifold M, can be given:

v(l—a;(u-— 1)}

M, = {(u, v,w):uandv € [0,1],w =
v+ as

(89)

Therefore, the nonlinear kinetic equations are the manifold M, are relatively close to each

other:

Z—I‘; = —quu (al — hy(uw) — hy(u) — ,Bth(u)u> + ayazhy(u)

1
+agan (5 ha () = hs) = frhs @) (1 (90)

— h3(u) — B1hs(Wu) — aya;u — ayaguhsz(u)

+ ay a9 hs(Wu,

dv
E = a1a4h4(u). (91)
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Where h,(u) = Bahy (uyu

as—ashz(u)—asPhz(w)u’

For applying QEA, we propose two different cases based on quasi-equilibrium reactions:

Case One: If possible suppose that the reversible reaction

kg
EI+S ZESI
9
goes quasi—equilibrium
k+ - kge kye
ks =— and kg = — where k™ = — and k= = —~.
€ € So So

In other words, kg and kg are large kinetic constants compared to k4, k,, k4, ks, ke, and
k. Then, the system (72) takes the form:

dE

E = g51(E'Sl Cl) + gsz( Cl) + 953(E:I; CZJ S),

ds 1
- = g51(Ei SI Cl) - 953(E: Il CZ, S) + ng(CZ,S, CS)J

dt
dC
d_tl = —gsl(E, S, Cl) - gSZ( Cl) + ,954(C1; I; CS);
dp s
d _ ., 92
a .
2 = 92 ELC, ) + g% (G, 1,Gy),
dC 1
d—tz = _gS3(E' I, Cz, S) + ggf(CZ,S, C3)J
dc 1
d_t3 = _gS4(C1' I, Cg) —ggf(CZ,S, C3):
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where g7 (C,, S, C3) =—k*C,S + k=Cs, g5(E,S,C;) = —k ES + k,Cy, g52( Cy) = k3Cy
,gSS(E, I, Cz, S) = _k4EI + k5CZS and gS4(C1, I, C3) = _k6C11 + k7C3 .

When € = 0, we can apply the quasi—equilibrium approximation. Thus, the fast reactions
have two slow variables b, (S, C3;) = S + C; and b,(S,C,) =S — C,. We can analytically

calculate the slow manifold from nonlinear equation g’ (C5, S, C3) = 0. This is given by

kCs
MO = {(Cz,s, C3) € R3:S = k+C2}. (93)

After fixing the slow variables b; and b,, and we have the following system of equations:
_k+C25 + k_C3 = 0,

S+ C; =by, (94)

Then, the following quadratic equation for C, is obtained:
—k*C,% — (k*by + k~)Cy + k= (by—b,) = 0. (95)

Then, the roots of equation (95) are

1 k™ k=\* 4k-(b,—b,)
Colbr, by) = 5 —(b2+k—+>i\/(b2+k—+) +k—1+2

(13

Where the notation is used for providing positive concentrations of S, C, and
C; Ifb; » 0and b, » 0thenC, — 0. Finally, we can also calculate the solution for S

and Cs :

1 k™ k=\* 4k-(b,—b
St = by ) —(b2+_)ij(b2+_) () |
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1 k- k=\*  4k=(b;— b,)
S D =

9

are also quasi—equilibrium:

k% k%2 k% k% kieo
k, = , k, = , kg =— and kg = where k% = ,
€ € € € So
koe =200 e K0 g s 0%
So So So

This means k,, k,, kg, and k4 are large reaction constants parameters compared to

k4, ks, ke, and k. Then, the system (72) classifies into fast and slow reaction rates:
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dE 1
2 = c9MES C) + g7 () + g (B 1,6, 9),

dt
s 1 1
o =29 ES,C) +g2(E [, 9) + - g72(C,, 5, Ca),
€ €
dc, -1
= L gh (e 5,0 - g (C) + 9% (61,1,C)
dp s
_ = 1 96
== 9°(C), (96)
dl
2 = 971G, 9) + g=(Cu1,C3),
dcC 1
d_tz = _gSZ(E,I’ CZI S) + ngz(CZJSI C3)l
dC 1
— = =9%(C,,1,C3) == g%(C2,5,Cy).

Where gfl(E’ S, Cl) = _kalES + kazcl, gfz(Cz,S, C3) = _ka3CZS + ka4’C3, gsl( Cl) =
ksCy , g%2(E, 1,Cy,S) = —k,El + ksCyS and g%(Cy,1,Cs) = —keCyl + ko Cs .

When € — 0, we can apply the quasi—equilibrium approximation. Thus, the fast reactions
have three slow variables b,(E,Cy) =E+C;, by(S,C,C3)=S+C,+C; and
b;(S,Cy,C;) =S+ C, —C,. The slow manifolds are found from nonlinear algebraic

equations g/1(E, S, C;) = 0 and g’2(C5, S, C3)=0. They are given:

ke C,
M, = {(E,S, C,)) ER3%:S = YT b }
(97)
i 5 k% Cyq
MO == { (CZ,S,Cg) ER>:S :kTCZ}.

By fixing the slow variables b,, b, and b3, we have the following system of equations:
—k™ES + k%C, =0,

(98)
_kaSCZS + ka4C3 = 0,
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E+C1=b1,
S+C1+C3=b2,
S+C1_C2=b3.

There are two non-linear system of equations for C; and C; by using E = b; — C;,S =
bz_Cl_CgandCZ =b2_C3_b3:

_kalclz + (kalbl + kalbz + kaZ)Cl - ka1C1C3 + ka1b1C3
- kalblbz = 0,

(99)

_ka?’ng + (Zka?’bz - kd3b3 + ka4)C3 + (ka3b2 - ka3b3)C1

(100)
— k%C,C3 — k®2b,* + k%b,b; = 0.

The non-linear equations (99) and (100) cannot be solved analytically. Thus, some
numerical techniques can be applied in order to have some approximate solutions for such

systems.
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6. CONCLUSIONS AND RECOMMENDATIONS

Techniques of model reductions for biochemical reactions are essential tools for
models in biology. Studying the dynamics behavior of nonlinear biochemical models needs
some methods of model reductions. In this thesis, some models of enzymatic reactions are
studied such as simple enzymatic reactions, competitive inhibition, uncompetitive
inhibition and mixed inhibition. We studied two methods of model reductions. The first
method is quasi steady state approximation and the other method is quasi equilibrium

approximation.

The suggested model reduction approaches here significantly show an important
role in many ways. Firstly, the proposed techniques are very useful tools for reducing the
number of elements for such models. Because they allow us to divide the original system
into slow and fast subsystems and they can be used to calculate slow manifolds. Another
way is that classifying the reaction rates into slow and fast reactions based on quasi
equilibrium approximation is also another important technique in model reduction because
it allows us to study species concentrations participated in fast reactions. More
interestingly, scaling variables is also used in this study that provides us to calculate some

approximate solutions for non-linear enzymatic reaction models.
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In conclusion, the results in this study will help one to study more about complex
enzymatic reactions including enzyme inhibitors. More interestingly, the proposed
techniques of model reductions here will be applied to a wide range of complex enzyme
inhibitor models in systems biology.
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