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Matematik Anabilim Dalı 

 
 Danışman : Dr. Öğr. Üyesi Nazire MİKAİL 

 
2018, 56 Sayfa 

 
 

Hayvancılıkta zamana bağlı olarak değişen büyüme, verim ve üretim verileri çoğunlukla 
doğrusal olmayan modellerle ifade edilmektedir. Bu nedenle,  doğrusal olmayan regresyon modelleri 
hayvancılıkta önemli yer tutmaktadır. 

Bu çalışmada doğrusal olmayan regresyon modelleri hakkında genel bilgi verilerek, 
hayvancılıkta uygulanma alanları ile ilgili örneklere değinilmiştir. Süt veriminin zamana göre değişimini 
gösteren laktasyon eğrileri, canlıların büyüme eğrileri, yumurta ağırlığı ve üretimi eğrilerini en iyi şekilde 
tanımlayan doğrusal olmayan modeller araştırılmıştır. Farklı modellerin uygulanması sonucunda doğru 
modelin seçimi için belirleme katsayısı, düzeltilmiş belirleme katsayısı, hata kareler ortalaması, Wellmot 
uzlaşma kriteri, mutlak yüzde hata, Akaike bilgi kriteri, Bayes bilgi kriteri gibi ölçütler tanıtılmıştır. 
Bunun yanı sıra modellerin, SAS, STATISTICA, SPSS, MINITAB istatistik paket programlarında 
çözümleri için adımlar gösterilmiştir.  

Sonuç olarak, en çok kullanılan modeller seçilerek, hayvancılıkta uygulanan doğrusal olmayan 
modeller tabanı oluşturulmuştur. 
 
Anahtar Kelimeler: Laktasyon eğrileri, büyüme eğrileri, matematiksel modelleme, regresyon 
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Time dependent data, such as growth, yield and production in animal husbandry, are often 
expressed in nonlinear models. For this reason, nonlinear regression models take an important role in 
animal science. 

In this study, general information about nonlinear regression models was given and examples 
related to application areas in animal husbandry were referred. Nonlinear models that best describe the 
lactation curves, which show the change of milk yield with time, the growth curves of the animals, the 
egg weight and the production curves, were investigated. For correct model selection, after application of 
different models, criteria such as determination coefficient, adjusted determination coefficient, mean 
square error, Wellmot agreement criterion, absolute percentage error, Akaike information criterion, 
Bayesian information criterion were introduced. In addition, the steps for solving the models in SAS, 
STATISTICA, SPSS, MINITAB statistical package programs have been shown. 

As a result, the most used models were selected and a base of nonlinear models applied in animal 
science was created. 

 
Keywords: Lactation curves, growth curves, mathematical modeling, regression 
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INTRODUCTION 

 In data analysis, the best model for describing the data, the best statistical index 

to judge the goodness of fit, choosing appropriate model among competing models is a 

general task. In this study it was attempt to provide animal science researches with a 

general framework on how to approach these tasks.  

 ‘Nonlinear regression models are important tools because many growth, yield 

and production processes are better represented by nonlinear than linear models. Fitting 

nonlinear models is not a single-step procedure but an involved process that requires 

careful examination of each individual step. Depending on the objective and the 

application domain, different priorities are set when fitting nonlinear models; these 

include obtaining acceptable parameter estimates and a good model fit while meeting 

standard assumptions of statistical models. It was propose steps in fitting nonlinear 

models: choose candidate models, set starting values, fit models, check convergence and 

parameter estimates, find the “best” model among competing models, check model 

assumptions (residual analysis), and calculate statistical descriptors and confidence 

intervals (Archontoulis and Miguez, 2015).’ 

Traditionally, mathematical models have been applied to describe growth-age 

relationship in animals. One important feature of these models is their ability to describe 

the weight gain and evaluate some interesting biological parameters, such as the mature 

weight, the rate of maturing and the rate of gain. These parameters are useful tools to 

provide estimates of the daily feed requirements or to evaluate the influence of the 

environmental conditions on the weight gain of the animal. Growth models are also 

used to predict the optimum slaughter age. Therefore, mathematical models applied for 

animal growth can be considered as being important control and optimization (Teleken 

et al, 2017). Studying beef cattle growth curves is essential because it supplies relevant 

information to establish strategic plans to obtain subsidies for the areas of nutrition and 

genetic breeding such as improved management, nutritional requirement determination, 

knowledge of the genetic variability of the characteristics linked to growth and 

assessment of the genetic potential of the animals for growth, contributing to the process 

of decision making to adopt a certain technology (Marinho et al., 2013). 

Animal growth does not follow a linear pattern, being explained mathematically 

by functions that have parameters with biological meaning (Selvaggi et al., 2017). 
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Research on the characteristics of livestock growth provides useful and practical 

information for breeding purposes. Two important parameters of growth are the genetic 

potential for growth and the time to reach maturity. When animal growth is described 

by a growth curve, these parameters can be presented as biologically interpretable 

constants in a mathematical equation. Classical growth models such as Gompertz, 

Logistic, von Bertalanffy and Richard’s equations are still widely and frequently used to 

describe various biological processes. 

Determination of various growth parameters (weight at different ages, daily 

weight gain, rate of maturity, time of inflection or the point on the growth curve when 

the rate of growth is maximal and weight at inflection) are quite important for selection 

of animals at early phases of growth by using predicted parameters. Manipulation of 

selection due to these parameters helps to determine suitable management and feeding 

regimens and to decide optimal age at which animals can be used for production 

purposes. Some authors reported that growth curve parameters can be used as direct 

breeding criteria in improving some of the growth associated traits in addition to 

describing growth in animals. Type of growth curves changes depend on fixed and 

random effects. Hence, growth curves should be presented based on the species, 

environmental conditions and the growth characteristics studied. Growth rate is not 

same in every life period in animals and, therefore, linear models are not suitable. For 

describing growth in animals during the main growth phase nonlinear models should be 

used which are more complex than linear models. Many growth phenomena in nature 

show an "S" shaped pattern (sigmoidal) with initially slow growth speeding up before 

slowing down to approach a limit (Ersoy et al., 2007). 

The main advantages of nonlinear models are parsimony, interpretability, and 

prediction (Bates and Watts, 2007). In general, nonlinear models are capable of 

accommodating a vast variety of mean functions, although each individual nonlinear 

model can be less flexible than linear models (i.e., polynomials) in terms of the variety 

of data they can describe; however, nonlinear models appropriate for a given application 

can be more parsimonious (i.e., there will be fewer parameters involved) and more 

easily interpretable. Interpretability comes from the fact that the parameters can be 

associated with a biologically meaningful process.  
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By using illustrative examples that include published mathematical models 

describing lactation in cattle, we show how structural identifiability analysis can 

contribute to advancing mathematical modeling in animal science towards the 

production of useful models and highly informative experiments. Rather than 

attempting to impose a systematic identifiability analysis to the modeling community 

during model developments, we wish to open a window towards the discovery of a 

powerful tool for model construction and experiment design.  

The computations required for nonlinear regression analyses are not flexible 

without the use of a computer, and almost every statistical packages have routines for 

nonlinear regression. It was explained the use of the computer for nonlinear regression 

analyses. 

The aim of this study is to provide an overview of nonlinear models and to 

develop a guideline to understand the family of functions used in animal husbandry 

applications, to discuss key methodological issues on parameter estimation, model 

performance, and comparison, and to demonstrate step-by-step analysis of 

experimental data using a nonlinear regression model.   
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LITERATURE REVIEW 

2.1. Growth models 

In the study of Santos et al.(1999) the monthly measured height at withers data 

from birth to 36 months of age of 26 Pantaneiro horses were used to fit Brody, Richards, 

Gompertz, Logistic, Weibull and Morgan-Mercer-Flodin nonlinear response functions. 

Based on measures of average curvature and combined mean square error, the Weibull 

model was chosen. The asymptote of this curve, representing the average height at 

maturity was higher for males than females. The maturity index, however, was more 

elevated for females than males. There was indication of a negative association between 

the maturity index and height at maturity only for females. These results indicate that 

females mature earlier.  

In the study of Hassen et al. (2004) were described body weight (BW) changes 

of purebred Angus bulls and heifer and was evaluated bias in the adjustment of weaning 

weight measures to a 205-d age. Linear and non-linear growth functions were used to 

evaluate changes in BW. Models used were a simple linear regression model fitting 

cubic polynomial of age at measurement (model I) and a Logistic model (model II). 

Predicted mature weight for bulls was 763 kg (1,678.6 lbs.) as compared to 541.9 kg 

(1192.2 lbs.) for heifers. Bulls attained a maximum average daily weight gain (ADG) of 

1.75 kg/d (3.85 lbs/d) at a mean age of 296 d. The maximum ADG attained by heifers 

was 1.24 lb/d (2.73 lb/d) at a mean age of 261 d.  

Şengül and Kiraz (2005) in their study tried to model the growth curves of male 

and female turkeys with respect to their live weight-age relationships and to determine a 

non-linear model explaining their growth curve better. For this purpose four different 

non-linear models were used to define growth curves of turkeys, namely Gompertz, 

Logistic, Morgan-Mercer-Flodin (MMF), and Richards. The coefficients of 

determination for these models were 0.9975, 0.9937, 0.9993 and 0.9966 for females and 

0.9974, 0.9933, 0.9993 and 0.9969 for males, respectively. Considering model selection 

criteria, Gompertz, Logistic and Richards models seen to be suitable models for 

explaining Large White turkey growth. 
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The main objective of the study of Ersoy et al. (2007) was to estimate growth 

parameters of California turkeys at early phases of growth by using linear and nonlinear 

growth models for regulation of growth intensity for attaining adequate growth and 

development in California turkeys. 

In the study of Vitezica et al. (2010), were compared models for growth (BW) 

before overfeeding period for male mule duck data from 7 families of a QTL 

experimental design. Four nonlinear models (Gompertz, Logistic, Richards, and 

Weibull) and a spline linear regression model were used. The Akaike information 

criterion was used to evaluate these alternative models. Among the nonlinear models, 

the mixed effects Weibull model had the best overall fit. Two parameters, the 

asymptotic weight and the inflexion point age, were considered random variables 

associated with individuals in the mixed models. In this study, asymptotic weight had a 

greater effect in Akaike’s information criterion reduction than inflexion point age. In 

this data set, the between-ducks variability was mostly explained by asymptotic BW. 

Comparing fixed with mixed effects models, the residual SD was reduced in about 55% 

in the latter, pointing out the improvement in the accuracy of estimated parameters. The 

mixed effects spline regression model was the second best model. Given the piecewise 

nature of growth, this model is able to capture different growth patterns, even with data 

collected beyond the asymptotic BW. 

Liu et al. (2011) in their study estimated and compared the growth curve 

parameters for live weight of standard black, brown, mahogany, Hedlund white and 

sapphire minks. The data were collected from five colour types in the period from seven 

days to 24 weeks of age. Three hundred mink (about 60 of each colour types) were 

used. Six different non-linear models, namely Logistic, Gompertz, Brody, Richards, 

Bridges, and Janoschek were used to define the growth curves of the mink. Models were 

compared using coefficients of determination (R2 values), the Akaike's information 

criterion (AIC) and the Bayesian information criterion (BIC). The R2 were high for all 

models, ranging from 0.923 to 0.985 for different breeds of mink. Comparing the 

models by AIC, BIC values and the residuals showed the following results. Three of the 

models fitted the growth curves very well. Colour type differences were observed in the 

growth parameters of mink. The brown, mahogany and sapphire was observed to be late 
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maturing and lighter at maturity, while the standard black and Hedlund white had a 

higher growth rate, reached maturity earlier and attained a heavier mature weight.  

Araujo et al. (2012) were published study with the objective of to adjust 

nonlinear models for the growth curves for a buffaloes herd raised in floodable lands in 

Rio Grande do Sul State, monthly records measured from birth to two years-old of 64 

males and 63 females born between 1982 and 1989 were used. The models used were: 

Von Bertalanffy, Brody, Gompertz and Logistic. The parameters were estimated by 

NLIN procedure and the criteria used to evaluate the adjustment given by the models 

were: asymptotic standard deviation; coefficient of determination; average absolute 

deviation of residues and asymptotic index. Von Bertalanffy and Brody models 

overestimated the male asymptotic weight (A) in 15.9 and 171.3 kg, respectively, and 

the Gompertz and Logistic models underestimated it in 4.5 and 13.4 kg, respectively. 

For females, the Logistic model underestimated the asymptotic weight (-2.09kg), and 

Gompertz, Von Bertalanffy and Brody overestimated this parameter in8.04, 17.7, and 

280.33kg, respectively. The biggest average deviation was estimated by Brody model 

for both sexes, characterizing the biggest index. Considering the criteria, it is 

recommended the Gompertz and Logistic models for adjust females and males Murrah 

buffaloes breed growth curves. 

In the study of Marinho et al.(2013) growth curves of Nellore cows were 

estimated by comparing six nonlinear models: Brody, Logistic, two alternatives by 

Gompertz, Richards and Von Bertalanffy. The models were fitted to weight – age data, 

from birth to750 days of age of 29221 cows, born between 1976 and 2006 in the 

Brazilian states of Acre, Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins. 

The models were fitted by the Gauss-Newton method. The goodness of fit of the models 

was evaluated by using mean square error, adjusted coefficient of determination, 

prediction error and mean absolute error. Biological interpretation of parameters was 

accomplished by plotting estimated weights versus the observed weight means, 

instantaneous growth rate, absolute maturity rate, relative instantaneous growth rate, 

inflection point and magnitude of the parameters A (asymptotic weight) and k (maturing 

rate). The Brody and Von Bertalanffy models fitted the weight-age data but the other 

models did not. The average weight (A) and growth rate (K) were: 384.6±1.63 kg and 
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0.0022±0.00002 (Brody) and 313.40±0.70 kg and 0.0045±0.00002 (Von Bertalanffy). 

The Brody model provides better goodness of fit than the Von Bertalanffy model. 

Galeano-Vasco et al.(2014), in their study, were compared Von Bertalanffy, 

Richards, Gompertz, Brody, and Logistics nonlinear regression models for their ability 

to estimate the growth curve in commercial laying hens. Data were obtained from 100 

Lohmann LSL layers. The animals were identified and then weighed weekly from day 

20 after hatch until they were 553 days of age. All the nonlinear models used were 

transformed into mixed models by the inclusion of random parameters. Accuracy of the 

models was determined by the Akaike and Bayesian information criteria (AIC and BIC, 

respectively), and the correlation values. According to AIC, BIC, and correlation values, 

the best fit for modeling the growth curve of the birds was obtained with Gompertz, 

followed by Richards, and then by Von Bertalanffy models. The Brody and Logistic 

models did not fit the data.  

In the study of Raji et al.(2014) seven growth models using body weight 

measurements from 300 progeny obtained from unselected random bred parents were 

compared. The study which lasted for 20 weeks was carried out at the University of 

Maiduguri Livestock Teaching and Research farm. R2 values for the Asymptote 

regression, Exponential, Gompertz, Logistic, Monomolecular, Richards and Weibull 

models were 0.994, 0.935, 0.997, 0.997, 0.998, 0.998, 0.998 and 0.999 respectively. The 

Weibull model had the highest coefficient of determination (R2) value (0.999) and 

Exponential (0.935) least. In contrast, the exponential model had the highest MSE 

(Mean Square Error), SD (Standard Deviation) and AIC (Akaike Information Criterion) 

values while Weibull model had the least. The Exponential had the poorest fit (higher 

MSE, SD and AIC values and lower R2) while the Weibull, Gompertz and Richards 

models best described the data in that order (lower MSE, SD and AIC values and higher 

R2). In order words, the nonlinear models described the data better than linear. 

Therefore, based on goodness of fit criteria; R2, MSE, SD and AIC values, the Weibull 

model best described live weight data of the Japanese quail in Nigeria. 

In the study of Salako (2014) nonlinear functions of body weight at different age 

intervals were used to estimate the mature weight (A), shape of response (B) and 

maturing rate (k) parameters of asymptotic growth models for Nigeria White Fulani and 

N'dama cattle. Records obtained from flocks kept at the University of Ibadan teaching 
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and research farm in Ibadan were used. Mitsherlich, Gompertz and Richard functions 

were fitted to the data in addition to the linear function. Age-weight records of White 

Fulani from birth to 4 years and from N’dama monitored to 30 months of age was used 

to estimate the average growth curve for each breed. Predicted A and k values for 

weight at fixed ages in the iterative processes indicated that Richard’s function was 

inadequate for both breeds. Mature weight was attained at approximately 4 years of age 

in N'dama from both Mitscherlich and Gompertz model but was yet to be reached at that 

age in the White Fulani. Mitscherlich function gave better estimates of weight at 

maturity, but the asymptotic residual variances were higher in N’dama because the birth 

weight was overestimated. Linear and nonlinear regression analyses of weight-age data 

and comparisons of degree of maturity at different premature ages showed that the 

differences in the growth patterns of the two breeds agreed with late rather than early 

predicted values of A and k. 

In the study of Şahin et al.(2014) was detected the best model to explain the 

variation of live weight of Anatolian buffaloes using the nonlinear models. For this 

purpose, in the production period of 2011-2012, live weight records of 640 heads 

Anatolian buffalo calves including 309 male and 331 female reared in different farm 

conditions of Tokat were used. To achieve the objective of the study, the non-linear 

models of Logistic, Richards, Gompertz and Brody function were used. To decide 

which one is the best model, the coefficient of determination (R2) and the mean square 

error (MSE) statistics were used. The coefficient of determination (R2) for Logistic, 

Brody, Gompertz and Richards models were found as 0.96, 0.92, 0.96 and 0.98 for 

female calves and 0.94, 0.93, 0.95 and 0.97 for male calves, respectively. And mean 

squared errors (MSE) were found as 682.32, 703.51, 548.66 and 498.63 for females and 

637.48, 688.32, 598.12 and 528.74 for male Anatolian buffaloes, respectively. As a 

result, the best fitted model based on MSE and R2 criterias was Richards model. Also, 

the growth and development traits such as sexual maturity age, breeding age, 

appropriate slaughter age in male and female Anatolian buffalo calves can be estimated 

using the Richards model. 

Bahashwan et al.(2015) in their study estimated Dhofari cattle growth curve and 

fitted using non-linear function models of Gompertz, Von Bertalanffy and Logistic. 

Data of 2540 weight performances of 617 Dhofari cattle from birth to 228 months of 
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age were used in this study. Analysis revealed an initial average live birth weight of 

17.8±0.99kg and of 360±23.6kg at an average age of 228 months. The estimated values 

of a (mature body weight) parameter ranged from 316 to 321 kg at ages ranged from 36 

to 48 months. Parameters of b and k were estimated to be 2.11±0.021 and, 0.106±0.002, 

0.522±0.004 and, 0.087±0.001, and 20.5±0.001 and, 0.127±0.002, for Gompertz, Von 

Bertalanffy, and Logistic models respectively. Inflection weights and time were found 

to range from 95 to 158 kg, and 5 to 9 months of age respectively. Degree of maturity 

(Ut) at birth was 5.59, 8.99, 12.8%, and at puberty was 36.8, 26.6, and 44.0% for 

Gompertz, Von Bertalanffy, and Logistic, respectively. Models used to fit the growth 

curve had high determination coefficients above 92% with the highest was for Von 

Bertalanffy (93.6%) for goodness of fit. 

Hossein-Zadeh and Golshani (2016) in their study tried to describe the growth 

pattern in Guilan sheep using non-linear models. Six non-linear mathematical 

equations (Brody, Negative exponential, Logistic, Gompertz, Von Bertalanffy and 

Richards) were used to describe the growth curves in Guilan sheep. The dataset 

included 42,257 weight records of lambs from birth to 240 days of age during years 

1994 to 2014. Each model was separately fitted to body weight records of all lambs, 

males and females, using the NLIN and MODEL procedures of SAS. The models 

were tested for goodness of fit using adjusted coefficient of determination, root means 

square error (RMSE), Durbin-Watson statistic, Akaike’s information criterion (AIC) 

and Bayesian information criterion (BIC). Richards model provided the best fit to the 

growth curve in females and all lambs, with the lowest RMSE, AIC, and BIC values 

compared to the other models. The Brody model provided the best fit of growth in 

male lambs due to the lower values of AIC and BIC compared to the other models. 

The Negative Exponential model provided the worst fit of growth for males, females 

and all lambs.  

Kaplan and Gürcan (2016) in their study was conducted to determine the 

goodness of fit of Gompertz, Logistic, Von Bertalanffy, Richards, Levakovich and 

Janoschek growth models in Japanese quail. Therefore, weekly live-weight data 

obtained from 372 females and 339 males were fitted. Females’ live weights were found 

to be higher than that of males, and the first divergence in the growth of female and 

male birds occurred in 21–28 days, and it survived until the experiment (p<0.001). The 
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coefficient of determination (R2), adjusted coefficient of determination (adj. R2), mean 

square error (MSE), Akaike’s information criteria (AIC) and Bayesian information 

criterion (BIC) were used to determine the best growth model. R2 and 

adjusted R2 values of the growth models were similar and close to 1, indicating that all 

models perform well in describing age-related changes in live weight in quail. Based on 

the MSE, AIC and BIC values, Richards model was determined to be the best fitting 

model to the growth data of both sexes. Consequently, it has been demonstrated that 

Richards function which has a flexible structure in terms of inflection point is the most 

appropriate growth function for both female and male birds. 

In the study of Cak et al.(2017) was investigated the growth characteristics of 

Colored Mohair goat using four nonlinear growth models. Thirty (n=22 males and n=8 

females) Colored Mohair kids were used. The kids were weighed at 2-week intervals 

from birth to 150 days. The Monomolecular, Gompertz, Richards and Three Parameter 

Logistic models were used. The best model was determined by considering the root 

mean square error (RMSE), R2 (%) and asymptotic correlation coefficient criteria. It was 

concluded that the Gompertz and Richards models were favourable for singletons and 

that the Richards model was favorable for determining twin Colored Mohair goat 

growth characteristics. Birth type should be considered in subsequent genetic 

evaluations. Furthermore, producing heavier carcasses (13-17 kg) in < 150 days may 

increase productivity and efficiency of the goat farming system. 

Hossein-Zadeh (2017) in his study tried to describe the growth curves in Iranian 

Moghani sheep, five non-linear mixed mathematical equations (Brody, Negative 

exponential, Logistic, Gompertz and Von Bertalanffy) were compared. After selecting 

the best-fitted model based on purely statistical criteria, variance components and 

genetic parameters for growth curve characteristics were estimated. The data set and 

pedigree information used in the current study were obtained from the breeding station 

of Moghani sheep and included 7905 weight records of 1581 lambs from birth to 400 

days of age between the years 1994 and 2012 inclusive. Each model was fitted to body 

weight records for all lambs, males, females, single and twin lambs using the 

NLMIXED procedure in SAS and the parameters were estimated. Animal was 

considered as subject in the models. The non-linear mixed models were examined for 

goodness of fit using Akaike's information criterion (AIC) and residual variance. In 
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general, evaluation of different growth equations used in the current study indicated the 

potential of the non-linear functions to fit body weight records of Moghani sheep. Also, 

the results of the current study showed that improvement of growth curve parameters of 

Moghani sheep could be possible in selection programmes. Therefore, development of 

an optimal selection strategy to achieve a desired shape of growth curve through 

changing genetically the parameters of model would be very important. 

Hojjati and Hossein-Zadeh (2017) in their study were used five non-linear 

mathematical equations (Brody, Negative exponential, Logistic, Gompertz and Von 

Bertalanffy) in order to describe the growth curves in Iranian Mehraban sheep. The data 

set used in this study was obtained from the Agricultural Organization of Hamedan 

province and comprised 35,414 weight records of lambs which were collected from 

birth to 365 days of age during 1991–2011. Each model was fitted separately to body 

weight records of all lambs, male and female lambs and single and twin lambs using the 

NLIN and MODEL procedures in SAS. The models were tested for goodness of fit 

using adjusted coefficient of determination (adj. R2), root mean square error (RMSE), 

Durbin–Watson statistic (DW), Akaike’s information criterion (AIC) and Bayesian 

information criterion (BIC). The Brody model provided the best fit of growth curve in 

all lambs, male and female lambs and single and twin lambs due to the lower values of 

AIC and BIC than other models. The Logistic model provided the worst fit of growth 

curve for all lambs, male and female lambs and single and twin lambs. Evaluation of 

different growth equations used in this study indicated the potential of the non-linear 

functions for fitting body weight records of Mehraban sheep. 

Masoudi and Azarfar (2017) in their study compared four nonlinear models to 

describe growth parameters of broiler chicken fed on different levels of corn bran. Two 

experiments were designed for this purpose. In the first experiment, 80 chickens (308 

Ross strain) that had been fed on the same diet and weighed separately were used to 

determine the best model. Indicators of R2, ACI and the number of circulation of the 

model were used to confirm the best model. In the second experiment, 300 one-day-old 

Ross 308 broiler chickens were used in a completely randomized design with four 

treatments and five replicates. The treatments included control and diets contained 2.5, 

5 and 7.5% corn bran. Results showed that the Gompertz function had the highest 

R2 and the lowest AIC and number of iterations. So, the Gompertz model best described 
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the broiler growth curves. R2, AIC values and number of iterations of the Gompertz 

model were 0.9970, 648 and 5, respectively. Overall, the results showed that the 

Gompertz model described the biological curves of broiler fed on corn bran better than 

other models. Also, growth parameters were affected by corn bran. 

Segura-Correa et al. (2017) in their study selected the best non-linear model that 

fits the growth curve of turkeys managed under the tropical conditions of Southern 

Mexico. Data from 481 Hybrid converter turkeys (236 females and 245 males) reared 

under commercial conditions typical of that region were used. Turkeys were given ad 

libitum access to feed and water. Body weight was weekly recorded from 1 day to 23 

weeks of age. Five non-linear mathematical models (Brody, Gompertz, Logistic, Von 

Bertalanffy and Richards) were chosen to describe the age-weight relationship. The 

Brody and Richards’ models fail to converge. The best fitting model was chosen based 

on the average prediction error (APE); the multiple determination coefficient R2 and the 

Akaike information criterion (AIC). In both sexes, Von Bertalanffy and Gompertz were 

the best models. The highest estimates of parameter A (mature weight) for both females 

and males were obtained with the von Bertalanffy model followed by the Gompertz and 

Logistic. The estimates of A were higher for males than for females. The highest 

estimates of parameter k (rate of maturity) for both females and males were, in 

decreasing order for the Logistic, Gompertz, and von Bertalanffy models. k values for 

female turkeys was higher than for males. The best models to describe turkey growth 

were the Von Bertalanffy and Gompertz models.  

Selvaggi et al.(2017) in their study was aimed to estimate the parameters of 

Logistic, Gompertz, Richards and Von Bertalanffy growth curve models in a sample of 

Podolica young bulls to determine the goodness of fit. Animals were weighed every 3 

months from birth to 810 days of age. The results indicate that all the growth models 

used were easily fitted to the observed data with Gompertz and Logistic functions 

presenting less computational difficulty in terms of number of iteration to achieve 

convergence. Moreover, Logistic and Richards equations provided the best overall fit 

being useful to describe the growth of Podolica bulls. Considering that the literature 

lacks information on growth curves in Podolica breed, the study of a mathematical 

model for growth describing the developmental pattern of a specific population within a 

peculiar environment is a useful tool to improve Podolica breed production. 
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In the study of Teleken et al.(2017) was compared the goodness of fit of five 

non-linear growth models, i.e. Brody, Gompertz, Logistic, Richards and von Bertalanffy 

in different animals. It also aimed to evaluate the influence of the shape parameter on 

the growth curve. To accomplish this task, published growth data of 14 different groups 

of animals were used and four goodness of fit statistics were adopted: coefficient of 

determination (R2), root mean square error (RMSE), Akaike information criterion (AIC) 

and Bayesian information criterion (BIC). In general, the Richards growth equation 

provided better fits to experimental data than the other models. However, for some 

animals, different models exhibited better performance. It was obtained a possible 

interpretation for the shape parameter, in such a way that can provide useful insights to 

predict animal growth behavior. 

2.2. Milk production 

Orman and Yıldırım (1998) in their study were estimated the parameters of the 

regression models for the lactation curve. A total of 45 standard milk yield records 

obtained from the first, the second and the third lactations of Jersey breed in Karaköy 

State Farm were used. Milk production records were corrected for the ages of cows and 

the numbers of lactation. The parameters were estimated in two stages. In the first stage, 

the data were applied to the five nonlinear models, developed by different authors. The 

best fitting model is chosen according to the advantages and disadvantages of these 

models. In the second stage, five different estimation methods were compared. Among 

the five methods studied, the MRT (Marquardt) method was seen to be more practical 

and required less computing time than the others. The best fit model was used with 

MRT method for the estimation of the parameters. The parameters, which related to the 

milk yield records, were estimated and the lactation curves were obtained for each of 

the three lactation groups. The curves of the three lactation groups were discussed in 

regard to the animal breeding and statistics. 

Rekaya et al. (2001) in their study were used Wood’s function, to describe the 

shape of the lactation curve in the first three lactations of Holstein cows. Wood’s 

function was reparameterized to include the logarithm of persistency as a parameter. 

The data consisted of 65 677 test-day records of 2875 cows. All cows were required to 

have first lactation test-day milk yield records. A three-stage Bayesian hierarchical 
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nonlinear model was implemented. The first stage described within-cow variation and 

the second stage accounted for between-animal variation. The third stage consisted of 

the priors used. Negative genetic correlations between the first (measure of yield) and 

second (related to the increasing yield phase of lactation) parameters of Wood’s 

function were found for all three lactations: −0.59, −0.55 and −0.39 for first, second and 

third lactations, respectively. The genetic correlation between the first parameter of 

Wood’s function and log-persistency was negative in each of the three lactations (−0.20, 

−0.31 and −0.31). The genetic correlation between the second parameter and log-

persistency was low (0.06, 0.09, 0.03 for each of the lactation). Heritabilities of all 

parameters tended to decrease with parity, mainly due to an increase in residual 

variance. Heritabilities of persistency were 0.17, 0.16 and 0.14 for first, second and 

third lactations, respectively. The genetic correlation between persistency in the three 

lactations was 0.26 (first and second), 0.32 (second and third) and 0.23 (first and third). 

Residual correlations followed a similar pattern but tended to be larger in absolute value 

than genetic correlations. 

Cunha et al.(2010) in their study selected models of lactation curves with a better 

adjustment to the observed data in models of milk production simulation systems. A 

data base on 6,459 recordings of daily milk production was used. These data were 

obtained from monthly and fortnightly controls of milk between 2004 and 2007, from 

472 lactations of animals from ten different milking cow herd farms. Based on rolling 

averages of milk production (MP-L/day) per cow, the ten herd farms were divided into 

low (L < 15), medium (15 <M < 20) and high (H > 20). Data were also divided 

according to the lactation numbers in first, second, third or greater. Eight lactation curve 

models commonly used in literature were compared. The models were individually 

adjusted for each lactation. The goodness of fit used for comparison of those models 

was the coefficient of determination, mean square error, mean square prediction error 

and the Bayesian information criterion. The values for the goodness of fit obtained in 

each model were compared by using 95% probability confidence interval. Wilmink 

model showed a better adjustment for cows of the first lactation numbers, whereas the 

Wood model showed a better adjustment for cows of the third or greater lactations 

numbers for the low milk production groups. Wood model showed a better adjustment 

for all the lactation numbers for the medium milk production group. Dijkstra model 
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showed a better adjustment for all lactation numbers for the high milk production group. 

Despite of being more recent, the model by Pollott, mechanist based and with a higher 

number of parameters, showed a good convergence for the used data. 

Küçük and Eyduran(2010) in their study tried to determine the most appropriate 

nonlinear model for describing complete lactation of Akkaraman and German 

Blackheaded Mutton x Akkaraman B1 Crossbreed Sheep. The data were consisted of 

milk production records collected from 25 Akkaraman (Genotype I) and 23 German 

Blackheaded Mutton x Akkaraman B1 Crossbreed Sheep (Genotype II) with 2 year of 

age. Daily milk yields of all ewes were recorded fortnightly from 15th days to 150th days 

of lactation. Quadratic, Cubic model, and Wood models were fitted to daily milk yield – 

time data in order to explain daily milk yield-time relationship of these ewes. These 

models were fitted to averages of daily milk yield of all ewes at each period for two 

genotypes. It was concluded that the best nonlinear model for describing complete 

lactation of Akkaraman breed and German Blackheaded Mutton x Akkaraman 

B1 Crossbreed Sheep was found to be Cubic model. 

Korkmaz et al.(2011) in their study tried to determine a suitable nonlinear model 

explaining the lactation season curve of Simmental cows. Monthly milk yield records 

representing the test days milk yield of 777 Simmental cows were used to estimate 

lactation curve parameters by using Wood, Gaines, Parabolic, Hayashi, Dhanno and 

(second degree) polynomial models and to compare the shape of lactation season curves 

resulted from fitting all of these models. These models were given in explanation of the 

parameters and according to the lactation season, the parameters a, b and c for these 

models at all the periods was estimated. Secondly, the formula of some criteria, such as 

time to peak, peak production, turning point time and turning point production, are 

presented in mathematical procedure and then t the criteria values are calculated for all 

of the examined models. Furthermore, partial derivatives of the models according to the 

parameters were given in mathematical procedure. For the season, winter, spring, 

summer, fall and without season the lactation curve graphs for all the nonlinear models 

were drawn, respectively. Moreover, the best nonlinear model was used to determine 

the adjusted coefficient determination (R2adj), mean square prediction error (MSPE) 

and Bayesian Information Criteria (BIC). The runs test was used for determining 

whether data different systematically according theoretical curves. Generally, 



 

16 
 

polynomial model gave the best nonlinear model to the data compared to the other 

models. 

In the study of Mao et al.(2012) revealed the variations of daily milk yield, milk 

fat percentage, milk protein percentage and somatic cell score (SCS), and to establish 

the prediction models for these parameters in the lactation period for Chinese Holstein 

in Southern China. A 33194-test-day dairy herd complete data from 5 Chinese Holstein 

dairy farms were collected in the southern China from first lactation to third lactation 

between 2008 to 2010 years and fitted to nonlinear curve of test-day milk yield, milk fat 

percentage, milk protein percentage and SCS with the Wood’s incomplete gamma 

function model. The curve of test-day milk yield for Chinese Holstein was the standard 

lactation curve, and the curves of milk fat percentage, milk protein percentage and SCS 

were the reversed standard lactation curve. The best fitness of the Wood’s model 

occurred for milk protein percentage and daily milk yield with the lowest residual mean 

square, then following for milk fat percentage. The poor model fitness (R2≤0.7) was 

observed for SCS which residual mean square was highest. Daily milk yield peak day 

was accompanied with occurrences of minimal milk protein and SCS in the estimated 

lactation model. The minimal milk fat percentage came at the latest time of 18th week to 

21th week in lactation curve. The peak milk yield was 30.4 kg·d-1 for first-parity cows, 

but the persistence for maintaining high milk yield and low SCS were greater than those 

of second- and third- parity cows in the latter lactation period, and the maximal milk 

yields for second- and third-parity dairy cows were 35.9 and 36.2 kg·d-1, respectively. 

The persistence for keeping high milk fat percentage and milk protein percentage was 

greater for second-parity cows than those of first- and third-parity cows in the latter 

lactation period. The Wood’s incomplete gamma function model was appropriate to 

predict the variation for test-day milk yield, milk fat percentage, milk protein 

percentage, and was not appropriate for SCS for Chinese Holstein dairy cows in 

Southern China. 

In the study of Hossein-Zadeh(2016) in order to describe the lactation curves of 

milk yield (MY) and composition in buffaloes, seven non-linear mathematical equations 

(Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook) were used. Data were 

116,117 test-day records for MY, fat (FP) and protein (PP) percentages of milk from the 

first three lactations of buffaloes which were collected from 893 herds in the period 
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from 1992 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to 

monthly production records of dairy buffaloes using the NLIN and MODEL procedures 

in SAS and the parameters were estimated. The models were tested for goodness of fit 

using adjusted coefficient of determination (R2adj), root means square error (RMSE), 

Durbin-Watson statistic and Akaike's information criterion (AIC). The Dijkstra model 

provided the best fit of MY and PP of milk for the first three parities of buffaloes due to 

the lower values of RMSE and AIC than other models. For the first-parity buffaloes, 

Sikka and Brody models provided the best fit of FP, but for the second- and third-parity 

buffaloes, Sikka model and Brody equation provided the best fit of lactation curve for 

FP, respectively. The results of this study showed that the Wood and Dhanoa equations 

were able to estimate the time to the peak MY more accurately than the other equations. 

In addition, Nelder and Dijkstra equations were able to estimate the peak time at second 

and third parities more accurately than other equations, respectively. Brody function 

provided more accurate predictions of peak MY over the first three parities of buffaloes. 

There was generally a positive relationship between 305-day MY and persistency 

measures and also between peak yield and 305-day MY, calculated by different models, 

within each lactation in the current study. Overall, evaluation of the different equations 

used in the current study indicated the potential of the non-linear models for fitting 

monthly productive records of buffaloes. 

Bangar and Verma (2017) in their study tried to determine the suitable non-

linear model which most accurately fitted to lactation curves of five lactations in 134 

Gir crossbred cows reared in Research-Cum-Development Project (RCDP) on Cattle 

farm, MPKV (Maharashtra). Four models viz. gamma-type function, quadratic model, 

mixed log function and Wilmink model were fitted to each lactation separately and then 

compared on the basis of goodness of fit measures viz. adjusted R2, root mean square 

error (RMSE), Akaike’s Informaion Criteria (AIC) and Bayesian Information Criteria 

(BIC). As there was significant difference in milk yield in different lactations, non-

linear modelling showed varied fitting of lactation curve in first lactation and other 

lactations. Among the four models studied, mixed log function provided best fit of the 

lactation curve of primiparous cows, due to lower values of RMSE, AIC and BIC. 

However, in multiparous cows, gamma-type function described most appropriately the 

lactation curve as compared to other model. Quadratic model gave least fit to lactation 
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curve in almost all lactations. Peak yield was highest in fourth lactation and least in first 

lactation. The persistency was higher in first lactation of Gir crossbred. It was suggested 

that lactation curve models may be helpful to setting the management strategies at farm 

level, however, modelling must be optimized regularly before implementing them to 

enhance productivity in Gir crossbred cows. 

Piccardi et al.(2017) in their work fitted and compared three non-linear models 

(Wood, Milkbot and Diphasic) to model lactation curves from two approaches: with and 

without cow random effect. Knowing the behaviour of lactation curves is critical for 

decision-making in a dairy farm. Knowledge of the model of milk production progress 

along each lactation is necessary not only at the mean population level (dairy farm), but 

also at individual level (cow-lactation). The fits were made in a group of high 

production and reproduction dairy farms; in first and third lactations in cool seasons. A 

total of 2167 complete lactations were involved, of which 984 were first-lactations and 

the remaining ones, third lactations (19 382 milk yield tests). PROC NLMIXED in SAS 

was used to make the fits and estimate the model parameters. The Diphasic model 

resulted to be computationally complex and barely practical. Regarding the classical 

Wood and MilkBot models, although the information criteria suggest the selection of 

MilkBot, the differences in the estimation of production indicators did not show a 

significant improvement. The Wood model was found to be a good option for fitting the 

expected value of lactation curves. Furthermore, the three models fitted better when the 

subject (cow) random effect was considered, which is related to magnitude of 

production. The random effect improved the predictive potential of the models, but it 

did not have a significant effect on the production indicators derived from the lactation 

curves, such as milk yield and days in milk to peak. 

2.3. Egg production 

Four mathematical models (Compartmental, Modified compartmental, Wood, 

and Adams-Bell were fitted to different patterns of egg production data in laying hens to 

compare the fits of these models in the study of Miyoshi et al.(1996). 

The egg production data were obtained from the two lines which were founded 

on a basis of divergent selection for egg quality traits. Egg production data of individual 

hens were classified in six patterns.  The average hen-day rates of lay were calculated 
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for every 10days from the first egg for each pattern. The comparison of fits was based 

on the R2adjusted for degrees of freedom and Akaike’s Information Criterion (AIC). 

The fits of models were similar for the egg production data showing a general pattern of 

curve. However, the model parameters could not be estimated by these three models for 

the data whose patterns showed abrupt decreases after the peak of egg production.  The 

data in which the period from the first egg to the peak of egg production was short and 

linearly decreased  after  reaching  the  peak  showed  poor  fits  of the  models. The 

parameters of all patterns could be estimated by the Wood model, but the fits were 

lower than those of the others. 

Savegnago et al.(2012) in their study fitted the weekly egg production rate of 

selected and non-selected lines of a White Leghorn hen population, using nonlinear and 

segmented polynomial models, and to study how the selection process changed the egg-

laying patterns between these 2 lines. Weekly egg production rates over 54 wk of egg 

production (from 17 to 70 wk of age) were measured from 1,693 and 282 laying hens 

from one selected and one non-selected (control) genetic line, respectively. Six 

nonlinear and one segmented polynomial models were gathered from the literature to 

investigate whether they could be used to fit curves for the weekly egg production rate. 

The goodness of fit of the models was measured using Akaike's information criterion, 

mean square error, coefficient of determination, graphical analysis of the fitted curves, 

and the deviations of the fitted curves. The Logistic, Yang, Segmented Polynomial, and 

Grossman models presented the best goodness of fit. In this population, there were 

significant differences between the parameter estimates of the curves fitted for the 

selected and non-selected lines, thus indicating that the effect of selection changed the 

shape of the egg production curves. The selection for egg production was efficient in 

modifying the birds' egg production curve in this population, thus resulting in genetic 

gain from the 5th to the 54th week of egg laying and improved the peak egg production 

and the persistence of egg laying. 

In the study of France et al.(2013) models based on linear systems of differential 

equations were contrasted with those based on nonlinear systems. Regression equations 

arising from analytical solutions to linear compartmental schemes are considered as 

candidate functions for describing egg production curves, together with aspects of 

parameter estimation. Extant candidate functions are reviewed, a role for growth 
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functions such as the Gompertz equation suggested, and a function based on a simple 

new model outlined. Structurally, the new model comprises a single pool with an inflow 

and an outflow. Compartmental simulation models based on nonlinear systems of 

differentia equations, and thus requiring numerical solution, are next discussed, and 

aspects of parameter estimation considered. This type of model is illustrated in relation 

to development and evaluation of a dynamic model of calcium and phosphorus flows in 

layers. The model consists of 8 state variables representing calcium and phosphorus 

pools in the crop, stomachs, plasma, and bone. The flow equations are described by 

Michaelis-Menten or mass action forms. Experiments that measure Ca and P uptake in 

layers fed different calcium concentrations during shell-forming days are used to 

evaluate the model. In addition to providing a useful management tool, such a 

simulation model also provides a means to evaluate feeding strategies aimed at reducing 

excretion of potential pollutants in poultry manure to the environment. 

Narinc et al.(2013) in their study, tried to detect some traits with respect to egg 

production, to determine the cumulative hen-housed egg numbers, and to compare 

goodness of fit of different nonlinear models for the percentage of hen-day egg 

production. The mean age at first egg was 38.9 d and the age at 50% egg production 

was 45.3 d. The quail reached peak production at 15 wk of age (wk 9 of egg production 

period) when the percentage of hen-day egg production was found to be 94%. The 

cumulative hen-housed egg number for 52 wk as of the age of sexual maturity was 

253.08. The Monomolecular function, a Nonsigmoid model, was used in the nonlinear 

regression analysis of the cumulative egg numbers. Parameters a, b, and c of the 

monomolecular model were estimated to be 461.70, 473.31, and 0.065, respectively. 

Gamma, McNally, Adams-Bell, and Modified compartmental models, widely used in 

hens previously, were used in the nonlinear regression analysis of the percentages of 

hen-day egg production. The goodness of fit for these models was compared using the 

values of R², Akaike's information criterion, and Bayesian information criterion. It was 

determined that all the models are adequate but that the Adams-Bell model displayed a 

slightly better fit for the percentage of hen-day egg production in Japanese quail than 

others.  

Narinc et al.(2014) in their review covers the egg production models used in 

poultry. Similarities and discrepancies among the models are illustrated using a real data 
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obtained from a layer breeder flock. Some of the functions were developed for this 

purpose, such as nonlinear regression equations (Gamma, McNally, McMillan, Adams-

Bell, Compartmental, Modified Compartmental, Logistic-curvilinear, Gloor, Lokhorst, 

Narushin-Takma) and some multiphasic (Segmented Polynomial, Persistency, 

Individual). Almost all of these functions have been developed to allow modeling on the 

basis of flock averages. Most models having empirical structure and a small number of 

parameters are considered biologically meaningful. New models are currently required 

to be useful for both individual egg yields and to contain biologically relevant 

parameters. 

Broiler breeders hens (meat-type hens) have lower reproductive potential than 

laying-type hens. Statistical models for predicting potential laying pattern are important 

for economically optimal breeding strategy of egg production in a poultry flock. 

Otwinowska-Mindur et al. (2016) in their study tried to find the most suitable function 

for describing the egg-laying rate and egg weight during the broiler breeders’ 

production period and to characterize laying pattern in groups of hens with different egg 

production. The following four mathematical models were used: Gamma, Narushin-

Takma, Logistic-curvilinear, and Compartmental. The daily recorded egg production 

data from 100 broiler breeder hens were used. Hen-weekly egg production was 

described using laying rate during successive weeks after reaching sexual maturity (26 

weeks of age) and daily recorded egg weight. On the basis of the total number of eggs 

laid, groups of hens with low (21%), intermediate (52%), and high (27%) egg 

production were created. The differences between the goodness-of-fit criteria values 

(AIC, R2, MSE) were small, with all the examined models having the same quality of 

curve fitting for egg-laying rate and egg weight. The logistic-curvilinear model was able 

to fit well both egg-laying rate and egg weight of the whole broiler breeder hens’ flock, 

and also when hens were divided into three egg production groups. This model could be 

considered in a long-term prediction of the reproductive potential in the commercial 

management. Moreover, the presented model could be useful in the research on 

different reproduction parameters of individual hens. 

Nogueira et al.(2016) in their study estimated the weight increase in the laying 

hens' egg based on diet protein intake, using two models and compare both. It was 

used the Gompertz function and Sigmoidal function y=p+q/(1+e^((r+(s*x)))) where 
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y=egg weight; p=bottom asymptote; p+q=upper asymptote; r=constant; s=constant; 

x=poultry body weight, to estimate body weight and egg weight respectively. Two 

models were adjusted to describe the increase in egg weight on the basis of diet 

protein intake. The first, used the saturation kinetics equation and the second, used a 

quadratic polynomial equation, IEW=a-(b(*(c-CP))^2), where IEW=increase in egg 

weight; a=constant; b=intercept on ordinate axis; c=diet protein intake value which is 

maximum increase and CP=crude protein(%). These models were adjusted and 

evaluated using database from studies conducted in the Poultry Science Laboratory. 

The statistical criteria used MSE (Mean square error), ED (Error due to deviation from 

regression slope) and R2 (Coefficient of determination) to evaluate the fit of curves 

using NLINMIXED and REG procedures of SAS. The evaluation of models that they 

estimate the egg weight increase in function of the diet protein intake had for 

saturation kinetics model, 2.94, 0.30 and 0.91 for MSE, ED and R2whereas for the 

quadratic polynomial model, the values were 16.85, 1.01 and -0.07. According to 

statistic made, the model based on the saturation kinetics(non-linear) equation had 

lower values of MSE and ED then higher R2that explain a better fit than the other 

model(linear). These results shown that is possible to estimate the increase in egg 

weight using the proposed non-linear model, however other parameters will be adding 

to improve the accuracy of estimation. 
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3. MATERIAL AND METHODS 

3.1. Material 

Material of the study was the research articles on nonlinear regression models 

applied in animal husbandry. 38 articles concerning lactation curves, growth curves and 

egg weight and production were investigated, nonlinear models used in these articles 

collected and the base of nonlinear models used in animal science was created. 

3.2. Method 

Regression studies the relationship between a variable of interest Y and one or 

more explanatory or predictor variables x(j) . The general model is  

Yi = h(x (1)
i , x (2)

i , . . . , x (m)
i ; θ1, θ2, . . . , θp) + Ei .  

Here, h is an appropriate function that depends on the explanatory variables and 

parameters, that we want to summarize with vectors  

x = [x(1)
i , x (2)

i , . . . , x (m)
i] 

T and θ = [θ1, θ2, . . . , θp] 
T .  

The unstructured deviations from the function h are described via the random 

errors Ei. The normal distribution is assumed for the distribution of this random error, so 

Ei∼ N (0, σ2), independent.  

In (multiple) linear regression, functions h are considered that are linear in the 

parameters θj , 

Yi = h(x (1)
i , x (2)

i , . . . , x (m)
i ; θ1, θ2, . . . , θp) = θ1x

(1)
i + θ2x

(2)
i + . . . + θpx

(p)
i,  

Where, the x (j) can be arbitrary functions of the original explanatory variables x(j) . 

(Here the parameters are usually denoted as βj instead of θj.)  

In nonlinear regression, functions h are considered that cannot be written as 

linear in the parameters. Often such a function is derived from theory. In principle, there 

are unlimited possibilities for describing the deterministic part of the model. As we will 

see, this flexibility often means a greater effort to make statistical statements. 

3.2.1. Some commonly used families of nonlinear regression functions 

While simple and multiple linear regression functions are adequate for modeling 

a wide variety of relationships between response variables and predictor variables, many 

situations require nonlinear functions. Certain types of nonlinear regression functions 

have served, and will continue to serve, as useful models for describing various physical 
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and biological systems. A few of these situations for the case of a single predictor 

variable was listed below. 

1. The following functions have been considered in modeling the relationship 

between crop yield Y and the spacing between rows of plants, concentration Y 

of a drug in the bloodstream and time X after the drug is injected when this 

concentration is measured, the rate Y of a chemical reaction and the amount X 

of catalyst used, and many other relationships. 

µ࢟ሺ࢞ሻ = ૚ሺ𝜷૚+𝜷૛xሻ𝜷૜                   (1) 

µ୷ሺxሻ = ଵሺβభ+βమ୶+βయ୶మ              (2) 

µ୷ሺxሻ = ଵβభ+βమ୶βయ                     (3) 

Typical members of the families of curves (1)-(3) are displayed in Fig. (3.1) -(3.3), 

respectively. 

 
Figure 3.1.Three members of the family of curves (1). 
Where, (a) βଵ= 0.6, βଶ=1, βଷ=-1; (b) βଵ=0.1 , βଶ=1, βଷ=0.3;(c)βଵ=0.2, βଶ=1, βଷ=2. 

 

 
Figure 3.2. Three members of the family of curves (2). 
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Where, (a) βଵ= 1, βଶ=3, βଷ=-0.2; (b) βଵ=8.94 , βଶ=-22.4, βଷ=16; (c) βଵ=8, βଶ=-
8, βଷ=1. 
 

 

 
Figure 3.3. Three members of the family of curves (3). 
Where, (a) βଵ= 1, βଶ=6, βଷ=3; (b) βଵ=1.2 , βଶ=9, βଷ=0.9; (c) βଵ=10, βଶ=-
8.8, βଷ=0.5. 

 
2. S-shaped curves, often referred to as sigmoidal curves, arise in various 

applications, including bioassay, signal detection theory, engineering, and 

economics. Various types of growth data often conform to sigmoidal curves. 

Some of the nonlinear regression function that have been used in such situations 

include: 

𝜇௬ሺݔሻ = 𝛽ଵ݁−௘−ሺഁమ+ഁయ𝑥ሻ
                            (4) 

𝜇௬ሺݔሻ =  𝛽భଵ+௘−ሺഁమ+ഁయ𝑥ሻ                                (5) 

𝜇௒ሺݔሻ = 𝛽భ[ଵ+ ௘−ሺഁమ+ഁయ𝑥ሻ]ഁర                           (6) 

 

The model in (4) is often called the Gompertz model, the model in (5) is usually 

referred to as a logistic regression model, and the model in (6) is called Richard’s 

model. Typical curves belonging to the families (4)-(6) are shown in Fig.(3.4) -(3.6), 

respectively. 
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Figure 3.4. Three members of the family of curves (4). 
Where, (a) βଵ= 1, βଶ=-1.5, βଷ=3; (b) βଵ=1 , βଶ=-3.5, βଷ=7; (c) βଵ=1, βଶ=-
5, βଷ=9. 

 

 
Figure 3.5. Three members of the family of curves (5). 
Where, (a) βଵ= 1, βଶ=-3.22, βଷ=8; (b) βଵ=0.95 , βଶ=-4.61, βଷ=10; (c) βଵ=1, βଶ=-2.3, βଷ=4. 

 

 

 
 

Figure 3.6. Three members of the family of curves (6). 
Where, (a) βଵ= 1, βଶ=-3.22, βଷ=8, βସ=3.33; (b) βଵ=0.95 , βଶ=-4.61, βଷ=10, βସ=0.33; (c) βଵ=1, βଶ=-2.3, βଷ=4, βସ=1.25. 

 

3. When the response variable Y steadily increases (decreases) with the 
independent variable X but the magnitude of the rate of increase (decrease) 
becomes smaller and smaller, with the response variable ultimately approaching 
a constant value called the asymptote, the family of curves defined by 𝜇௬ሺݔሻ = 𝛽ଵ + 𝛽ଶ݁−𝛽య௫  (7) 
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has been found to provide useful nonlinear regression models. Three members of 

the family in (7) are displayed in Fig.3.7. Typical applications where such 

models are useful include the study of yield as a function of rate of application 

of fertilizer, mortality rate as a function of time, amount of chemical converted 

in a reaction as a function of time, etc . 

 

 
Figure 3.7. Three members of the family of curves (7). 
Where, (a) βଵ= 1, βଶ=-0.9, βଷ=4; (b) βଵ=1 , βଶ=-0.8, βଷ=2; (c) βଵ=1, βଶ=-
1, βଷ=0.9. 

 

Numerous other useful families of nonlinear regression functions exist. Here it 

was presented some of the simplest and the most commonly used functions. Although 

all the application just discussed involves only a single predictor variable, the models 

can be extended to the case of multiple predictor variables in a variety of ways. 

3.2.2. Statistical assumptions and inferences for nonlinear regression 

The most commonly used set of assumptions for nonlinear regression is the same 

as assumptions for linear regression. The complete set of assumptions is given below: 

3.2.2.1.Assumptions for Nonlinear Regression 

             The (k + 1) variable population [(Y, ܺଵ, … ,ܺ௞)] is the study population under 

investigation.  

Assumption 1: The mean of the subpopulation of Y values determined by X1=x1, .., 

Xk= xk is denoted by 𝜇௬(x1, … , xk), and is a nonlinear function of unknown parameters. 

At times we find it useful to write 𝜇௬ሺݔଵ, … , ;௞ݔ  𝛽ଵ, … , 𝛽௣ሻ for the regression function 

to emphasize the fact that it depends on the parameters 𝛽ଵ, … , 𝛽௣. 
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Assumption 2: The standard deviations of the Y values are the same for each 

subpopulation determined by specified values of the predictor variables X1, … , Xk. 

This common standard deviation of all the subpopulations is denoted by 𝜎௒|௑భ,…,௑𝑘.  

Assumption 3:  Each subpopulation of Y values, determined by specified values of the 

predictor variables X1,…,Xk is Gaussian. 

Assumption 4: The sample (of size n)is selected either by simple random sampling or 

by sampling with preselected values of X1,…,Xk. 

Assumption 5:  All sample values yi, xi,1 ,…,xi,k for i=1,…,n are observed without 

error. 

3.2.2.2.Parameter Estimation  

A popular method for estimating the unknown parameters in a nonlinear 

regression function is the method of least squares. According to this method, the 

estimates of 𝛽ଵ, … , 𝛽௣ are obtained by minimizing the quantity ∑ ݁௜ଶ𝑛௜=ଵ , the sum of 

squares of errors of prediction, where ݁௜ is given by    ݁௜ = ௜ݕ − 𝜇௬ሺݔ௜,ଵ, … ,  ௜,௞ሻݔ

As usual, the least squares estimates of 𝛽ଵ, … , 𝛽௣ are denoted by 𝛽̂ଵ, … , 𝛽̂௣. The 

estimated value of the subpopulation mean 𝜇௬ሺݔଵ, … , ,ଵݔ௞ሻ is denoted by 𝜇̂௬ሺݔ … ,  ௞ሻ. Itݔ

is referred to as the fitted value corresponding to ݔଵ, … ,  ௞, and is obtained byݔ

substituting the least squares estimates of the parameters into the regression function. 

This is algebraically expressed by the equation  𝜇̂௬ሺݔଵ, … , ,ଵݔ௞) = 𝜇௬ሺݔ . . , ;௞ݔ 𝛽̂ଵ … , 𝛽̂௣ሻ                           (8) 

The quantity ݁̂𝚤 defined by  ݁̂௜ = ௜ݕ − 𝜇̂௬ሺݔ௜,ଵ, … ,  ௜,௞ሻ                                                 (9)ݔ

is called the residual corresponding to sample item i. 

 The minimum value for the sum of squares of errors of prediction corresponding 

to the least squares estimates 𝛽̂ଵ … , 𝛽̂௣ is denoted by SSE, an abbreviation for the more 

complete notation SSE(ܺଵ, … , ܺ௞ሻ.Thus  

SSE=∑ ݁̂௜ଶ𝑛௜=ଵ = ∑ ௜ݕ] − 𝜇̂௬(ݔ௜,ଵ, … , ௜,௞)]ଶ𝑛௜=ଵݔ                    (10) 

and as in linear regression, it will referred to SSE as the sum of squared errors. The 

quantity MSE, which is an abbreviation for the more complete notation MSE(X1,…,Xk), 

is given by  
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𝑀ܵ𝐸 = 𝑆𝑆𝐸ሺ𝑛−௣ሻ                                                                      (11) 

and is called the mean squared error, and it is an unbiased estimate of 𝜎ଶ.The 

corresponding estimate of σ is given by  𝜎̂ = √𝑆𝑆𝐸𝑛−௣ = √𝑀ܵ𝐸                                                            (12) 

In the case of multiple linear regression, the least squares estimates of the 

parameters𝛽ଵ, … , 𝛽௣ can be computed quite easily. However, the estimation of 

parameters in nonlinear regression models usually requires the use of iterative methods 

on digital computers, and explicit formulas for the estimates are generally not available. 

Most commonly available statistical software packages provide routines for calculating 𝛽̂ଵ … , 𝛽̂௣. To use any of these nonlinear regression programs, it must be supplied, in 

addition to the data, a set of starting values or initial guesses for βଵ, … βp. It is often 

helpful if the starting values are close to the actual least squares estimatesβ̂୧. However, 

you may not have such initial guesses. Sometimes you can obtain good initial estimates 

of β̂୧, or at least the signs of β̂୧, based on theoretical considerations or by plotting the 

sample data. 

3.2.2.3. Confidence Intervals and Tests of Hypotheses  

Exact confidence interval procedures or exact hypothesis tests are generally not 

available for parameters in nonlinear regression models. However, approximate 

inference procedures are available. In practice, the computations required for carrying 

out approximate hypothesis tests or obtaining approximate confidence intervals are best 

performed using a suitable computer program. Any computer program for calculating 

the estimates of parameters in a nonlinear regression function usually outputs an 

approximate standard error (ASE), sometimes also referred to as an asymptotic standard 

error, for each parameter estimate. The approximation is usually quite good if the 

number of observations in the sample is large. Confidence intervals for 𝛽ଵ,…,𝛽௣ may be 

computed, and tests may be carried out, with approximate standard errors in place of 

exact standard errors. Confidence intervals and tests for 𝜎 = 𝜎௒|௑భ,…,௑𝑘 can be computed, 

without any modification. The degrees of freedom to use for table-values are, as usual, 

equal to  

n-p = n-(number of 𝛽 parameters in the model) 
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The details are as follows. Suppose 𝛽ଵ, … , 𝛽௣ are unknown parameters in a nonlinear 

regression function. An approximate 100(1-α) % confidence interval for 𝛽௝ is given by 

the confidence statement 

C[β̂୨-𝑡ଵ−మഀ;𝑛−௣ܵܣ𝐸ሺβ̂୨ሻ ≤𝛽௝≤β̂୨ + 𝑡ଵ−మഀ;𝑛−௣ ASE(β̂୨ሻ] ≈ 1 – α                  (13) 

Where ASE(β̂୨ሻ is the approximate standard error for β̂୨. An approximate level α test of 

the hypothesis 

NH:𝛽௝=q            versus        AH:𝛽௝ ≠ q                (14) 

(where q is a specified number) is conducted as follows : 

Compute 𝑡஼ = β̂ౠ−௤஺𝑆𝐸ሺβ̂ౠ ሻ.  Reject NH if │𝑡஼│ ޓ𝑡ଵ−మഀ;𝑛−௣   (15) 

In general, due to the approximate nature of the inference procedures for 

nonlinear regression problems, the actual confidence coefficients associated with the 

confidence interval and P-values for tests discussed above may be quite different from 

the stated values. If critical decisions have to be made, the investigator should consult a 

professional statistician (Graybill and Iyer, 1994).  

3.2.3. Linearizable models 

In some situation it may be possible to transform a nonlinear regression function 𝜇௬(x) using appropriate transformations of the response variable, the predictor variables, 

the parameters, or any combination of these, such that the transformed function is linear 

in the unknown parameters. If the transformed variables satisfy assumptions for 

multiple linear regression, then the transformed problem can be solved as linear 

regression. Using the results for the transformed problem, it can be often obtained 

results for the original problem, as an example, consider the model  𝜇௬ሺݔሻ = 𝛽ଵ∗݁−𝛽మ∗௫                                           (16) 

where, 𝛽ଵ∗ is positive. This model is a special case of the model given in (7) with the  𝛽ଵ 

term set to zero. By taking the logarithm to the base e of both sides, we get the 

transformed function ln[𝜇௒ሺݔሻ] =ln(𝛽ଵ∗)-𝛽ଶ∗ݔ.  

Now let lnሺ𝛽ଵ∗ሻ = 𝛽଴and−𝛽ଶ∗ = 𝛽ଵ.  

We thus have ln[𝜇௒ሺݔሻ] = 𝛽଴ + 𝛽ଵݔ 
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which, is linear in the unknown parameters. This suggests that if we set Z=ln(Y),                                      

the regression function of Z on X will be approximately linear and will be given by 𝜇௭ሺݔሻ ≈ 𝛽଴ + 𝛽ଵ(17)                                             ݔ 

This regression function of Z on X make approximate inference about the 

parameters 𝛽଴ =ln(𝛽ଵ∗) and 𝛽ଵ = −𝛽ଶ∗. This in turn will lead to inferences about 𝛽ଵ∗ and 𝛽ଶ∗, the parametersof interest in the original problem. 

More specifically, if the data are (ݕଵ,                     we let zi=ln(yi),(𝑛ݔ,𝑛ݕ) ,… ,(ଵݔ

and get at the transformed data (z1,x1), … , (zn,xn).If the transformed data satisfy 

assumptions for straight line regression (at least approximately),then can be drawn 

inferences about 𝜇௓ሺݔሻ in (17). Thus the estimates of 𝛽଴and 𝛽ଵ in (17) will calculated by 

the formulas given below: 𝛽̂ଵ = ∑ሺ௭𝑖−௭̅ሻሺ௫𝑖−௫̅ሻ∑ሺ௫𝑖−௫̅ሻమ                          (18) 

and 𝛽̂଴ = ̅ݖ − 𝛽̂ଵ̅(19)                                ݔ 

 

where,̅ݖ = ଵ𝑛 ∑ ௜𝑛௜=ଵݖ . So we get 𝛽̂ଶ∗=−𝛽̂ଵ   (20) 

and 𝛽̂ଵ∗ = expሺ̅ݖ − 𝛽̂ଵ̅ݔሻ   (21) 

Some examples of linearizable models and their linear representations are given 

in Table 3.1. In some cases an investigator is not confident that assumptions hold(even 

approximately) for the transformed variables.In these cases, the parameter estimates 

obtained by performing a linear regression analysis on the transformed data may be 

useful as starting values for nonlinear regression programs. This is a commonly used 

strategy. 

 
Table 3.1. Examples of linearizable models and their linear representations 

 
Original regression function Linearizing transformation Suggested transformation 

of Y 

𝜇௒∗ ሺݔሻ = 𝛽ଵ∗݁𝛽మ∗௫ 
ln[𝜇௒∗ ሺݔሻ =ln(𝛽ଵ∗)+𝛽ଶ∗x=𝛽଴+𝛽ଵݔ     
where 𝛽଴=lnሺ𝛽ଵ∗ሻand𝛽ଵ = 𝛽ଶ∗ 

Z=ln(Y), for Y 0 ޓ 
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𝜇௒∗ ሺݔሻ = ሺ𝛽ଵ∗ሻ௫ 
ln[𝜇௬∗ ሺݔሻ] = lnሺ𝛽ଵ∗ሻݔ =𝛽ଵݔwhere𝛽ଵ=ln(𝛽ଵ∗) 

Z = ln(Y), for Y0 ޓ 

𝜇௒∗ ሺݔሻ = ͳ𝛽ଵ∗ − 𝛽ଶ∗ݔ 
ଵ𝜇𝑌∗ ሺ௫ሻ=𝛽ଵ∗-𝛽ଶ∗ݔ=𝛽଴ + 𝛽ଵݔwhere𝛽଴ =𝛽ଵ∗ ܽ𝑛݀  𝛽ଵ = −𝛽ଶ∗ 

Z =
ଵ௒ , for Y  ≠ 0 

𝜇௒∗ ሺݔሻ = ͳͳ + ݁−ሺ𝛽భ∗+𝛽మ∗௫ሻ ln( 𝜇𝑌∗ ሺ௫ሻଵ−𝜇𝑌∗ ሺ௫ሻ) = 𝛽ଵ∗ + 𝛽ଶ∗ݔ=𝛽଴ + 𝛽ଵݔ 

where 𝛽଴=𝛽ଵ∗ and 𝛽ଵ = 𝛽ଶ∗ 
Z=lnቀ ௒ଵ−௒ቁ, for 0ޒY1ޒ 

 

3.2.4. Model selection criteria 

For selection of appropriate model following criteria can be used: (Burnham and 
Anderson, 2002). 

a) Coefficient of determination 
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b) Adjusted coefficient of determination, 
 

 2 2 1
1 1

adj

n
R R

n p


  


        (23) 

 
 

c) Mean square error (MSE) 
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d) Wellmot agreement criteria 
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e) Absolute percentage error 
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f) Akaike information criteria (AIC) 
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g) Bayesian information criteria (BIC) 
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In the equations (22)-(28);  

n – is the number of observation, 

p – is the number of parameters in the model, 

yi –is a yield in the time i, 

y – is an arithmetical mean of yield, 

iy%– is the predicted yield. 

 
For the selection of the best model; Coefficient of determination, Adjusted 

coefficient of determination and Wellmot agreement criteria must be highest, but other 
criteria must be the least. 
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4. RESULTS AND DISCUSSIONS 

4.1. Growth models base 

In animals, the plot of live weight against age or time results in a characteristic 

sigmoidal growth curve, consisting of three differentiated parts: an initial self-

accelerating phase, an intermediate linear phase and a final self-decelerating phase 

which fades out as the animal reaches maturity (Fig. 4.1). Growth rate (weight gain per 

unit of time, usually in g or kg day–1) varies with age, increasing during the self-

accelerating phase until reaching a maximum in the intermediate phase, when it is 

relatively constant. In the last phase, the growth rate decreases progressively to zero, 

reaching a final plateau when the animal achieves mature or asymptotic body weight, 

maintaining a relatively stable weight with changes attributed to the availability of feed, 

the demands of the reproductive cycle and the season of the year (Lopes, 2008).  

Figure 4.1. Different growth curves of different breeds of cattle (Lopes, 2008) 

A large number of growth equations or functions have been reported trying to 

describe the growth curve of animals (Table 4.1) best in terms of a few parameters that 

can be interpreted biologically and used to derive other relevant growth traits.  

Table 4.1. Equations used to describe the growth curves 

Name Equation Parameter meaning 

Bridges Yt= Y0+Yf{1–exp[ - (ktn)]} 
Parameter k define 
the scale and shape 
of the curve 

Brody 
𝑡ܻ = ଴ܻ݁௞భ𝑡 ,               Ͳ ൑ 𝑡 ൑ 𝑡∗, 
𝑡ܻ = ௙ܻ − ( ௙ܻ − ܻ∗)݁−௞మሺ𝑡−𝑡∗ሻ,       𝑡 ൒ 𝑡∗ 

Parameters k1 and k2 
define the scale and 
shape of the curve 



 

35 
 

Chanter 

𝑡ܻ = ௒బ஻௒బ+ሺ஻−௒బሻ௘௫௣[−𝑘ೌ(ଵ−௘−𝑘𝑡)] ,  where  

ܤ = ଴ܻ ௙ܻሺ݁௔ ௞⁄ − ͳሻ଴ܻ݁௔ ௞⁄ − ௙ܻ  

Parameters a and k 
define the scale and 
shape of the curve 

Count 𝑡ܻ = ଴ܻ  +  ܾ𝑡 +  ݈ܿ𝑛ሺ𝑡 + ͳሻ 
Parameters b and c 
define the scale and 
shape of the curve 

Exponential 
𝑡ܻ = ଴ܻ݁௞𝑡,    Ͳ ൑ 𝑡 ൑ 𝑡௙ 𝑡ܻ = ௙ܻ,           𝑡 > 𝑡௙ 

Parameter k define 
the scale and shape 
of the curve 

Exponential polynomials      Yt = Y0 exp( b1t + b2t
2 + … + bnt

n) 

Parameters b1, b2,…, 
bn define the scale 
and shape of the 
curve 

Exponential quadratic Yt = ଴ܻexp [k (t - 
௔𝑡మଶ )] 

Parameters k and a 
define the scale and 
shape of the curve 

France 
Yt = 0,                                                                                               t ޒ T 
Yt = Yf–(Yf–Y0)exp[-k(t–T)+2c(√𝑡-√ܶ)],     t ≥ T 

Parameters k and c 
define the scale and 
shape of the curve 

Gaussian Yt = Y଴ + ሺYf– Y଴ሻሺͳ– ݁−௞𝑡మ
) 

Parameter k define 
the scale and shape 
of the curve 

Gompertz 𝑡ܻ = ଴ܻexp [ܽ݇ ሺͳ − ݁−௞𝑡ሻ] 
Parameters a and k 
define the scale and 
shape of the curve 

Jolicoeur’s generalized 
Gompertz 𝑡ܻ = ଴ܻ + ሺ ௙ܻ − ଴ܻሻexp 𝑝ݔܾ݁−] ( ͳ݇ଵ𝑡 − ݇ଶ𝑡)] 

Parameters b, k1, k2 
define the scale and 
shape of the curve 

Kouchi 𝑡ܻ = ଴ܻ  +  ܾ𝑡௖ 
Parameters b and c 
define the scale and 
shape of the curve 

Levakovic 𝑡ܻ = ௙ܻ [ 𝑡𝑛݇ ′ + 𝑡𝑛]௖
 

Parameters k and c 
define the scale and 
shape of the curve 

Logistic 𝑡ܻ = ଴ܻ ௙ܻ݁௞𝑡
௙ܻ − ଴ܻ + ଴ܻ݁௞𝑡 

Parameter k define 
the scale and shape 
of the curve 

Log-logistic Yt = Yf − ௒𝑓−௒బଵ+௘௫௣[𝑛௟𝑛ሺ௞𝑡ሻ] = Yf − ௒𝑓−௒బଵ+ሺ௞𝑡ሻ𝑛  
Parameter k define 
the scale and shape 
of the curve 

Lopez 𝑡ܻ = ଴ܻ𝐾𝑛 + ௙ܻ𝑡𝑛𝐾𝑛 + 𝑡𝑛  

Parameter K define 
the scale and shape 
of the curve 

Michaelis-Menten 𝑡ܻ = ଴ܻ𝐾 + ௙ܻ𝑡𝐾 + 𝑡  

Parameter K define 
the scale and shape 
of the curve 
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Mitscherlich 𝑡ܻ = ௙ܻሺͳ − ݁−௞𝑡ሻ,    if   Y0=0 
Parameter k define 
the scale and shape 
of the curve 

Modified Von 
Bertalanffy 𝑡ܻ = ଴ܻ + ሺ ௙ܻ − ଴ܻሻሺͳ − ݁−௞𝑡ሻଵ 𝑛⁄  

Parameter k define 
the scale and shape 
of the curve 

Monomolecular 𝑡ܻ = ௙ܻ − ሺ ௙ܻ − ଴ܻሻ݁−௞𝑡 
Parameter k define 
the scale and shape 
of the curve 

Polynomials                          Yt = Y0 + b1t + b2t
2 + … + bnt

n 

Parameters b1, b2,…, 
bn define the scale 
and shape of the 
curve 

Ratio of polynomials            𝑡ܻ =  ଴ܻ  +  ܾଵ𝑡 + ܾଶ𝑡ଶ  +  … + ܾ௜𝑡௜
଴ܻ  +  ܾଵ𝑡 + ܾଶ𝑡ଶ  +  … +  ܾ𝑛𝑡𝑛 

Parameters b1, b2, 
…bi ,…, bn define 
the scale and shape 
of the curve 

Peal-Reed Yt =  ௙ܻͳ + ܾ݁−ሺ௞భ𝑡+௞మ𝑡మ+௞య𝑡యሻ Parameters b, k1, k2 
and k3 define the 
scale and shape of 
the curve 

Reed                      

𝑡ܻ = ଴ܻ  +  ܾ𝑡 +  ݈ܿ𝑛ሺ𝑡 + ͳሻ + ݀𝑡 + ͳ 

𝑡ܻ = ଴ܻ  +  ܾ𝑡 +  ݈ܿ𝑛ሺ𝑡 + ͳሻ + ݀𝑡 + ͳ + ݁ሺ𝑡 + ͳሻଶ 

Parameters b, c and 
d define the scale 
and shape of the 
curve 

Richards 𝑡ܻ = ଴ܻ ௙ܻ[ ଴ܻ𝑛 + ( ௙ܻ𝑛 − ଴ܻ𝑛)݁−௞𝑡]ଵ 𝑛⁄  
Parameter k define 
the scale and shape 
of the curve 

Robertson 𝑡ܻ = ଴ܻ ௙ܻ଴ܻ + ( ௙ܻ − ଴ܻ)݁−௞𝑡 
Parameter k define 
the scale and shape 
of the curve 

Schnute and Richards 𝑡ܻ = ௙ܻ[ͳ + ܾ݁−௞𝑡𝑝]ଵ/𝑛 
Parameter b, k and p 
define the scale and 
shape of the curve 

Schumacher 

 𝑡ܻ = ଴ܻexp [ ௞𝑡బ𝑡𝑡+ 𝑡బ]    
𝑡ܻ = ଴ܻexp [ 𝑡𝑡 + 𝑡଴ ln ( ௙ܻܻ଴)] 

Parameter k define 
the scale and shape 
of the curve 

Sloboda 𝑡ܻ = ௙ܻexp[−ܾ݁ݔ𝑝ሺ−݇𝑡௖ሻ] Parameters b, k and 
c define the scale 
and shape of the 
curve 

Verhulst 𝑡ܻ = ௙ܻͳ +  ݁− ௞ሺ𝑡−𝑡∗ሻ Parameter k define 
the scale and shape 
of the curve 

Von Bertalanffy 𝑡ܻ = [ ௙ܻ𝑛 − ( ௙ܻ𝑛 − ଴ܻ𝑛)݁−௞𝑡]ଵ 𝑛⁄     Parameter k define 
the scale and shape 
of the curve 
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Wan’s generalized 
monomolecular 

Yt =  Yf  − ͳ௕௒𝑓 + ( ଵ௒𝑓−௒బ − ௕௒𝑓) exp ሺ݇𝑡ሻ 
Parameters b and k 
define the scale and 
shape of the curve 

Weibull Yt =  Y௙– ሺ ௙ܻ − ଴ܻሻexp [− ሺ݇𝑡ሻ𝑛] 
Parameter k define 
the scale and shape 
of the curve 

Wingerd 
    

𝑡ܻ = ଴ܻ  +  ܾ𝑡 +  ܿ√𝑡 
Parameters b and c 
define the scale and 
shape of the curve 

Yt  is body weight (kg), t is age, Y0 and Yf are initial and asymptotic weights 

Fitting a curve with sufficient data for each individual would be expected to 

smooth out the random deviations. Parameters estimated after fitting growth functions 

can be useful to understand how genetic and environmental factors affect growth attributes, 

to identify alternative strategies to improve the efficiency of meat production, to assess the 

genetic merit and growth potential of meat animals, to estimate nutrient requirements of 

animals based on their expected daily weight gain or to make management, husbandry 

and marketing decisions. 

Different polynomial functions have been suggested to fit growth data, but the 

growth functions most extensively used are non-linear and belong to two main groups: 

exponential polynomials and asymptotic functions (Lopez, 2008). The simplest 

sigmoidal functions are characterized by a fixed inflection point (occurring at a fixed 

proportion of asymptotic weight), such as the logistic function or the Gompertz model. 

More complex and flexible sigmoidal functions are capable of describing either 

diminishing returns or sigmoidal patterns and, in this latter case, the inflexion point may 

be variable, occurring at any weight or time. A classical example is the Richards 

function, which, for some given values of its parameters, may result in the Mono-molecular, 

Logistic, Gompertz or Von Bertalanffy equations (Table 4.1). 

4.2. Milk yield models base 

A classical nonlinear curve is the representation of the time course of lactation. 

The lactation curve of the dairy cow shows a rapid increase in yield after parturition to a 

peak a few weeks later, followed by a gradual decline until the cow is dried off about 10 

months after calving, giving a dry period of about 8 weeks (Fig.4.2).  
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Figure 4.2. Lactation curve in a dairy cow (fitted and observed data), (Lopez, 2008) 

A similar trend has been observed in sheep and goats, although the shape of the 

curve may be slightly different, with a less sharp profile (a lower peak) and a faster or 

slower decline in the descending part of the curve. A number of mathematical equations 

have been proposed to describe the lactation curve, with the aim to fit them to milk yield 

data and to obtain estimates of some important performance features, such as initial 

yield after parturition, time to peak and production at that peak (maximum yield), 

duration of the lactation, total yield per lactation and persistency, defined either as extent 

to which peak yield is maintained or rate of decline in milk production after peak 

(Thornley and France, 2007; Lopez, 2008). Thus, accurate description of lactation 

curves has an important relevance to the dairy livestock industry for research, breeding 

and management, providing interesting information for determining nutrient allowances 

for lactating animals, estimating total yield per lactation from incomplete records and 

forecasting herd performance. Lactation equations represent a useful tool for developing 

and evaluating mechanistic models, aimed at explaining the main features of the milk 

production pattern in terms of known biology of the mammary gland during pregnancy 

and lactation. 

An account of some time-dependent functions proposed to describe the lactation 

curve in dairy cows, sheep and goats is given in Table 4.2.  

Table 4.2. Equations used to describe the lactation curve 

Name Equation Parameter meaning 

Ali and Schaeffer    Y t = a + bt + ctଶ– dlogሺtሻ − k[logሺ𝑡ሻ]ଶ 
Parameters a, b, c, d, k 
define the scale and shape of 
the curve 
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Cobby and Le Du Yt = aሺͳ − ݁−௖𝑡ሻ − bt )  Parameters a, b and c define 
the scale and shape of the 
curve 

Cobby and Le Du                        
(double exponential) 

Yt = aሺͳ − ݁−ௗ𝑡ሻe−ୠt = a(e−ୠt − e−ୡt); 
 c=b+d 

Parameters a, b, c and d 
define the scale and shape of 
the curve 

Dhanoa  Yt=atkc݁−௖𝑡 
Parameters a, k, c define the 
scale and shape of the curve 

Dijkstra  Yt = aexp [ܾܿ ሺͳ − ݁−௖𝑡ሻ –  dt] 
Parameters a, b, c and d 
define the scale and shape of 
the curve 

Emmans and Fisher  Yt = aexp[−݁ௗ−௕𝑡]݁−௖𝑡 
Parameters a, b, c, d define 
the scale and shape of the 
curve 

Gaines of Brody  
(declining exponential) 

Yt = a݁−௖𝑡 
Parameters a and c define the 
scale and shape of the curve 

Guo and Swalve  Y t =  a +  b√𝑡 + clogሺtሻ  

Parameters a, b and c define 
the scale and shape of the 
curve 

Hyperbolic                                   Yt = a + b/t 
Parameters a and b define 
the scale and shape of the 
curve 

Jenkins and Ferrell                     Yt = at݁−௖𝑡 
Parameters a and c define the 
scale and shape of the curve 

Morant and Gnanasakthy Yt = aexp (−bt + ctଶ + 𝑡݀ ) 
Parameters a, b, c and d 
define the scale and shape of 
the curve 

Nelder  Yt = 𝑡ܽ + ܾ𝑡 + ܿ𝑡ଶ 
Parameters a, b, c define the 
scale and shape of the curve 

Quadratic                                    Yt = a + bt – ct2 
Parameters a, b, c define the 
scale and shape of the curve 

Pollott   

Yt = [aଵ/ ቀͳ + ଵ−௕௕ ݁−௖𝑡ቁ −aଶ/ ቀͳ +  ଵ−ௗௗ ݁−௚𝑡ቁ] ሺͳ − ݁−ℎ𝑡ሻ  

Parameters a1, a2, b, c, d, h 
and g define the scale and 
shape of the curve 

Ratio of polynomials                 Yt = ܽሺ𝑡 + ܾ ሻሺ𝑡 + ܾሻଶ + ܿଶ 
Parameters a, b and c define 
the scale and shape of the 
curve 

Sauvant and Fehr                       Yt = d + atୠ݁−௖𝑡 
Parameters a, b, c, d define 
the scale and shape of the 
curve 

Scheeberger  Yt = a(t – t0 )
b݁−௖ሺ𝑡−𝑡బሻ Parameters a, b, c define the 

scale and shape of the curve 

Sikka Yt = a݁ሺ௕𝑡−௖𝑡మሻ Parameters a, b, c define the 
scale and shape of the curve 
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Singh and Gopal  
Yt = a – bt + d ln(t) 
Yt = a + bt +ct2 + d ln(t) 

Parameters a, b, c and d 
define the scale and shape of 
the curve 

Wilmink                                        Yt = a + b݁−௞𝑡 + ct 
Parameters a, b, c and k 
define the scale and shape of 
the curve 

Wood                                           Yt = atb݁−௖𝑡 
Parameters a, b, c define the 
scale and shape of the curve 

Yt  is a milk yield, t is time of lactation (day, week, month)  

A large number of equations have been reported, ranging from simple linear 

functions (to fit only the declining phase of the lactation) to complex multiphasic models 

with a large number of parameters. Equations are presented attempting to group them 

according to their functional form. Most of the equations are empirical models, based on 

the similarity between observed lactation profiles and the fitted curves achieved with 

each equation. For instance, growth functions, such as logistic and Gompertz, written in 

their differential form and expressed as a function of time, have potential application as 

lactation equations, because the lactation curve is similar to the plot of growth rate (daily 

weight gain) against time (Thornley and France, 2007; Lopez, 2008). 

4.2. Egg production models base 

  Another classical nonlinear curve is the time course of egg production in laying 

poultry, particularly in commercial laying hens. Typically, the curve is a representation 

of the average production rate of a flock of birds (Fig. 4.3), plotting the average 

percentage of birds in the flock laying an egg on a daily basis; where eggs is the total 

number of eggs laid in the flock each week and birds is the total number of hens in the 

flock) against time (either in weeks of age or in weeks after onset of laying). The curve 

is very similar to the lactation curve and several equations have been used to describe it, 

some of them similar to those used to fit lactation data (Thornley and France, 2007; 

Lopez, 2008). 
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Figure 4.3. Egg production curve for a commercial laying hen (Lopez, 2008) 

Some of the models have been derived to represent the production cycle of 

each individual hen. Although the general pattern of this curve is similar, the discrete 

nature of the variable (number of eggs laid by a given hen weekly) results in a 

decreasing part of the curve with several successive descending steps or phases 

(Grossman and Koops, 2001). Table 4.3 shows nonlinear models used in egg 

production. 

Table 4.3. Equations used to describe the egg production curve 

Name Equation Parameter meaning 

Adams and Bell Yt =  
௔ଵ+௕௖𝑡 –d(t–g) 

Parameters a, b, c, d, g 
define the scale and shape of 
the curve 

Fialho and Ledur  
(piecewise or segmented 
model) 

Yt=a–3a[
𝑡𝑝−𝑡𝑡𝑝 ]2+2a[

𝑡𝑝−𝑡𝑡𝑝 ]3,  0 ≤ t ≤ 𝑡௣        

Yt=a–c(t-𝑡௣),                     t ≥ 𝑡௣ 

Parameters a and c define the 
scale and shape of the curve 

Grossman and Koops , 2001         Yt=a(
ଵ− ௘−𝑡ଵ+௘−𝑡  ) – b(

ଵ− ௘−𝑡ଵ+ ௘−ሺ𝑡−೎ሻ) Parameters a, b, c define the 
scale and shape of the curve 

Grossman et at., 2000 
(simplified egg production 
persistency model for the flock) 
    

Yt=aቀ ௕𝑡మ−𝑡భቁ [݈𝑛 ቀ௘𝑡 ೌ⁄ +௘𝑡భ ೌ⁄ଵ+௘𝑡భ/ೌ ቁ −݈𝑛 ቀ௘𝑡/ೌ+ ௘𝑡మ ೌ⁄ଵ+ ௘𝑡మ ೌ⁄ ቁ]+ac݈𝑛 ቀ௘𝑡/ೌ+ ௘ሺ𝑡మ+𝑝ሻ ೌ⁄ଵ+ ௘ሺ𝑡మ+𝑝ሻ ೌ⁄ ቁ 

Parameters a, b, c define the 
scale and shape of the curve 

Grossman et at., 2000 
(simplified egg production 
persistency model for an 
individual bird ) 

Yt=
௕𝑡మt-a

௕𝑡మln(
௘𝑡/ೌ+ ௘𝑡మ/ೌଵ+௘𝑡మ/ೌ )+ 

acln(
௘𝑡/ೌ+௘ሺ𝑡మ+𝑝ሻ/ೌଵ+ ௘ሺ𝑡మ+𝑝ሻ/ೌ ) 

Parameters a and b define 
the scale and shape of the 
curve 

Kovalonko and Tribat 
(exponential of a 2nd, or 3rd 
order polynomial) 

YT = exp( a + bt + ct2 + dt3 ) 
Parameters a, b, c, d define 
the scale and shape of the 
curve 

Lokhorst Yt = 
ଵ଴଴ଵ+௔௕𝑡 – (ct2 + dt + f ) Parameters a, b, c, d, f define 

the scale and shape of the 
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curve 

McMillan et at.1970 
(compartmental model ) 

Yt = a(1 – be-ct ) e-kt 
Parameters a, b, c, k define 
the scale and shape of the 
curve 

McMillan, 1981  
(double exponential) 

Yt = a(e-bt – e-ct) 
Parameters a, b, c define the 
scale and shape of the curve 

McNally Yt = atୠe−ୡt+ୢ√t  Parameters a, b, c, d define 
the scale and shape of the 
curve 

Minder and McMillan Yt = a
ሺଵ− ௘−೎𝑡ሻ௖  e-kt 

Parameters a, c, k define the 
scale and shape of the curve 

Modified Compartmental 𝑡ܻ = ܽሺ݁−௕𝑡ሻ/[ͳ + ݁−௖ሺ𝑡−ௗሻ] Parameters a, b, c and d 
define the scale and shape of 
the curve 

Modified Gamma function            Yt = a (t – t0 )
b݁−௖ሺ𝑡−𝑡బሻ Parameters a, b, c define the 

scale and shape of the curve 

Narushin and Takma  
(ratio of polynomials) 

Yt = 
௔𝑡య+௕𝑡మ+௖𝑡+ௗ𝑡మ+௙𝑡+௚  

Parameters a, b, c, d, f, g 
define the scale and shape of 
the curve 

Polynomials (3rd or 4th order)        Yt = a + bt + ct2 + dt3 + gt4 
Parameters a, b, c, d, g 
define the scale and shape of 
the curve 

Wood  or  Gamma function Yt = atb e-ct 
Parameters a, b, c define the 
scale and shape of the curve 

Yang  

(logistic – curvilinear) 
Yt = 

௔௘−೎𝑡ଵ+ ௘−𝑘ሺ𝑡−್ሻ 
Parameters a, b, c, k define 
the scale and shape of the 
curve 

Yt  is a measure of laying performance for a flock (egg production rate) or for an individual bird (eggs per week, 
perclutch or per month), t is time (bird’s age or time from onset of laying)  

Different comparative studies have concluded that performance of most of 

these equations fitting egg production data is satisfactory, attaining a similar goodness-

of-fit with all functions.  

4.4. Computer applications for nonlinear regression 

There are many functions that are used to describe growth, lactation or changes 

in concentration of some substance over time. Parameters of nonlinear functions can be 

estimated using various numerical iterative methods.  
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4.4.1.   SAS Example for Nonlinear Regression 

The NLIN procedure of SAS will be used to estimate parameters describing 

growth by fitting a Brody curve to weights of an Angus cow (Kaps and Lamberson, 

2004). The SAS program for nonlinear regression is as follows. Data represent weights 

of an Angus cow at ages from 8 to 108 months: 

Weight, kg: 280 340 430 480 550 580 590 600 590 600 
Age,months: 8 12 24 36 48 60 72 84 96 108 

The Brody curve was fitted to the data: ܹ݁𝑖𝑔ℎ𝑡௜ = ܣ − ሺܣ − Bሻ݁−௞ሺ஺௚௘౟−8ሻ 
where: 

A = the asymptotic (mature) weight 

B = the estimated initial weight at Age0 = 8 months 

k = the maturing rate index  

 
SAS program: 
 

DATA Growth; 

INPUT Age Weight @@; 

DATALINES; 

8 280 12 340 24 430 36 480 48 550 

60 580 72 590 84 600 96 590 108 600 

; 

PROC NLIN; 

PARMS A=600 B=280 k=0.05; 

MODEL Weight=A-(A-B)*exp(-k*(Age-8)); 

RUN 

procedure is used. The PARMS statement defines parameters with their priors. Priors are 

guesses of the values of the parameters that are needed to start the iterative numerical 

computation. The MODEL statement defines the model: Weight is the dependent and 

Age is an independent variable, and A, B, and k are the parameters to be estimated. 
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SAS output: 

Dependent Variable weight 

Method: Gauss-Newton 

Iterative Phase 

                                                                Sum of  

      Iter           A           B               k        Squares  

         0       600.0       280.0      0.0500      2540.5  

         1       610.2       285.8      0.0355      1388.7  

         2       612.2       283.7      0.0381       966.9  

         3       612.9       283.9      0.0379       965.9  

         4       612.9       283.9      0.0380       965.9  

         5       612.9       283.9      0.0380       965.9  

    NOTE: Convergence criterion met.  

                                                    Sum of        Mean                          Approx  

Source               DF     Squares      Square       F Value       Pr > F  

Regression           3       2663434       887811     446.69        <.0001  

Residual             7       965.9            138.0  

Uncorrected Total  10      2664400  

Corrected Total     9        124240  

  

Approx 

Parameter   Estimate   Std Error   Approximate       95% Confidence Limi  

A                 612.9          9.2683          590.9                634.8  

B                 283.9          9.4866          261.5                306.3  

k                  0.0380        0.00383        0.0289              0.0470 
 

Approximate Correlation Matrix 

                         A                     B                    k 

A              1.0000000       0.2607907      -0.8276063 

B              0.2607907       1.0000000      -0.4940824 

k               -0.8276063     -0.4940824       1.0000000 

Explanation: The title of the output indicates that the numerical method of 

estimation is by default Gauss-Newton. The first table describes   iterations with 
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the current estimates together with residual sums of squares. At the end the 

program tells us that computation was successful (NOTE: Convergence criterion 

met). The next table presents an analysis of variance table including sources of 

variation (Regression, Residual, Uncorrected Total, Corrected Total), degrees of 

freedom (DF) Sums of Squares, Mean Squares, F Value and approximated P 

value (Approx Pr>F). The word 'approx' warns that for a nonlinear model the F 

test is approximate, but asymptotically valid. It can be concluded that the model 

explains the growth of the cow. The next table shows the parameter estimates 

together with their approximate Standard Errors and Confidence Intervals. The 

last table presents approximate correlations among the parameter estimates. The 

estimated curve is: ܹ݁𝑖𝑔ℎ𝑡௜ = 6ͳʹ.ͻ − ሺ6ͳʹ.ͻ − ʹͺ͵.ͻሻ݁−଴.଴ଷ8ሺ஺௚௘𝑖−8ሻ 
Fig. 4.4 presents a graph of the function with observed and estimated weights. 

 
Figure 4.4.  Weights over time of an Angus cow fitted to a Brody function (drawn by SAS); the 

linear presents estimated values and the points (•) observed weights. 
 

4.4.2.STATISTICA Example for Nonlinear Regression 

Statistics – Advanced Models – Nonlinear Estimation procedure will be used to 

estimate parameters describing growth by fitting a Brody curve to weights of an Angus 

cow given above. Nonlinear Estimation spreadsheet will be open as follow (Fig. 4.5):  
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Figure 4.5.  Nonlinear Estimation Window in STATISTICA 
 
 

It doesn’t matter selecting ‘User-specified regression, least squares’ or ‘User-

specified regression, custom loss function’. In second version also least squares will be 

given as default loss function. But you have chance to change it. Then typing function 

to be estimated we can realize the nonlinear estimation (Fig. 4.6).  

 

 

Figure 4.6.  Estimated and loss functions window 
 

Output of the STATISTICA Package was given below: 
 

Model is: Weight=A-(A-B)*EXP(-K*(Age-8)) 

 

Dependent variable: Weight   Independent variables:  1 

Loss function: (OBS-PRED)**2 

Final value: 965,89329887 

Proportion of variance accounted for:   ,992225585    R =   ,996105208 

 

 

 
Fig. 4.7 presents a graph of the function applied to the data. 
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Model:  Weight=A-(A-B)*EXP(-K*(Age-8))

y=(612,865)-((612,865)-(283,894))*exp(-(0,0379581)*((Age-8))
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Figure 4.7.  Weights over time of an Angus cow fitted to a Brody function; points present  

estimated values 
 

4.4.3. SPSS Example for Nonlinear Regression 

Analyze – Regression – Nonlinear procedure will beused to estimate parameters 

describing growth by fitting a Brody curve to weights of an Angus cow given above. 

Nonlinear Regression spreadsheet is as follow (Fig. 4.8):  

 
Figure 4.8.  Nonlinear Regression Window in SPSS 
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Here we will add ‘Weight’ variable to the Dependent section, and type model to 

the Model Expression section. Then typing estimated function we can solve the 

nonlinear function.  

SPSS output: 

Nonlinear Regression Analysis 

Iteration History
b
 

Iteration Numbera Residual Sum of 

Squares 

Parameter 

A B k 

1.0 2540,499 600,000 280,000 ,050 

1.1 1388,695 610,153 285,827 ,036 

2.0 1388,695 610,153 285,827 ,036 

2.1 966,891 612,152 283,717 ,038 

3.0 966,891 612,152 283,717 ,038 

3.1 965,895 612,891 283,911 ,038 

4.0 965,895 612,891 283,911 ,038 

4.1 965,893 612,863 283,893 ,038 

5.0 965,893 612,863 283,893 ,038 

5.1 965,893 612,866 283,894 ,038 

6.0 965,893 612,866 283,894 ,038 

6.1 965,893 612,865 283,894 ,038 
 

Derivatives are calculated numerically.b 

a. Major iteration number is displayed to the left of the decimal, and minor iteration 

number is to the right of the decimal. 

b. Run stopped after 12 model evaluations and 6 derivative evaluations because the 

relative reduction between successive residual sums of squares is at most SSCON = 

1,000E-008. 

 

Parameter Estimates 

Parameter Estimate Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

A 612,865 9,268 590,949 634,781 

B 283,894 9,487 261,462 306,326 

k ,038 ,004 ,029 ,047 

 

Correlations of Parameter Estimates 

 A B k 

A 1,000 ,261 -,828 
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B ,261 1,000 -,494 

k -,828 -,494 1,000 

ANOVA
a
 

Source Sum of Squares df Mean Squares 

Regression 2663434,107 3 887811,369 

Residual 965,893 7 137,985 

Uncorrected Total 2664400,000 10  

Corrected Total 124240,000 9  

 

Dependent variable: Weight
a
 

a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of 

Squares) = ,992. 

4.4.4. MINITAB Example for Nonlinear Regression 

Stat – Regression – Nonlinear Regression procedure will be used to estimate parameters 

describing growth by fitting a Brody curve to weights of an Angus cow given above. 

Nonlinear Regression spreadsheet is as follow (Fig. 4.9): 

 
 

Figure 4.9.  Nonlinear Regression Window in MINITAB 

Here we will add Weight variable to the ‘Response’ section, and type model to the ‘Edit 

directly’ section. Using Parameter button we have to assign starting values for 

parameters (Fig. 4.10). Then typing estimated function we can solve the nonlinear 

function. 
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Figure 4.10.  Starting values assignment for model parameters 

 

MINITAB Output: 

Nonlinear Regression: Weight = A - (A - B) * exp(-k * (Age - 8))  
Method 

Algorithm Gauss-Newton 

Max iterations 200 

Tolerance 0,00001 
Starting Values for Parameters 

Parameter Value 

A 600 

B 280 

k 0,05 
Equation 
Weight = 612,865 - (612,865 - 283,894) * exp(-0,0379581 * (Age - 8))  
Parameter Estimates 

Parameter Estimate SE Estimate 

A 612,865 9,26823 

B 283,894 9,48661 

k 0,038 0,00383 
 

 
Weight = A - (A - B) * exp(-k * (Age - 8))  
Lack of Fit 
There are no replicates. 
Minitab cannot do the lack of fit test based on pure error. 
Summary 

Iterations 7 

Final SSE 965,893 

DFE 7 

MSE 137,985 

S 11,7467 
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Fig. 4.11 presents a graph of the function with observed and estimated weights. 

 
Figure 4.11.  Weights over time of an Angus cow fitted to a Brody function (drawn by MINITAB); 

the linear presents estimated values and the points (•) observed weights 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusions 

In this study, general information of nonlinear regression models, commonly 

used families of nonlinear regression functions, statistical assumptions and inferences 

for nonlinear regression and parameter estimation in these models was given and growth 

models, lactation curves and egg weight and production models were investigated in the 

frame of this information.  

Selection of appropriate model with minimum parameters is very important in 

various model applications to the same data. It was given a range of model selection 

criteria in this study for this purpose. Also, computer applications for nonlinear models 

were introduced and step-by-step solving process was illustrated. 

In the end of the study it was given the base of nonlinear regression models with 

parameters and specific application areas in animal science. 

5.2. Recommendations 

Distinction of nonlinear models from linear models is that the choice of the main 

function is critical and this can be difficult without wide knowledge of regression 

analysis.  

This review of nonlinear models applied in animal science will make the task of 

choosing candidate models easier.  

 The created base of nonlinear regression models used in animal science will be 

widening by the researches in the future.  
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