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ABSTRACT

The purpose of this thesis is to develop an efficient framework to implement secure

FPGA-based (Field Programmable Gate Array) systems. An FPGA is a reconfig-

urable device that has the ability to adapt the hardware during runtime by loading a

new circuit on the reconfigurable fabric. However, a circuit design formed as configu-

ration data (bitstream) can be easily counterfeited and needs to be protected against

the risks of cloning, overbuilding, and reverse-engineering. Although many applica-

tions could be implemented on low-cost FPGAs, protection schemes and dedicated

hardware are mostly available on high-end FPGAs. In addition to this, only high-end

FPGAs support dynamic partial self reconfiguration (DPSR), which is the ability to

change a part of a design at runtime. This thesis focuses on developing a security

scheme leveraging hardware intrinsic features on low-cost FPGAs by using physical

unclonable functions (PUFs). A PUF provides a way to extract security keys which

are unique to each device. This thesis combines PUFs with another security scheme

called obfuscation. Obfuscation is the act of intentionally modifying the description or

structure of a circuit in order to conceal its functionality. Obfuscation is implemented

in this thesis at RTL-level and is used to authenticate and control the device by using

the keys by exploiting the PUF technique within a finite state machine (FSM). These

methods are further used to implement “secure MultiBoot”. The MultiBoot feature

allows to reconfigure the FPGA fully at runtime as opposed to DPSR for devices

which do not support partial reconfiguration. This thesis also establishes a frame-

work that enables secure remote MultiBoot. A bitstream compression technique is

applied to reduce the transmission time over the network. A proof-of-concept example

is implemented using the proposed framework.
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ÖZETÇE

Bu tez çalışmasının amacı, sahada programlanabilir kapı dizisi (Field Programmable

Gate Array ya da FPGA) tabanlı güvenli sistemler meydana getirmek için verimli bir

iskelet yapı oluşturmaktır. Bir FPGA, çalışma zamanı sırasında donanıma yeni bir

yapılandırma verisi yüklenerek donanımını yeniden uyarlayabilme yeteneğine sahip

bir tür yeniden yapılandırılabilir cihazdır. Fakat, yapılandırma verisi (bitstream)

kolaylıkla taklit edilebilir ve kopyalama, üzerine ekleme, ya da tersine mühendislik

gibi tehlikelere karşı korunması gerekmektedir. Birçok uygulama düşük maliyetli

FPGA’ler kullanılarak gerçeklenebildiği halde, bahsedilen tehlikelere karşı koruyucu

yöntemler ve özel donanımlar çoğunlukla üst seviye FPGA cihazlarında mevcut-

tur. Ayrıca, sadece üst seviye FPGA’ler Dinamik Kısmi Kendi Kendine Yeniden

Yapılandırma (DPSR) özelliğini desteklemektedir. DPSR, FPGA’in çalışırken do-

nanımının bir kısmını belli durumlarda kendi kendine değiştirmesidir.

Bu tezde, fiziksel klonlanamaz fonksiyonlar (PUF) kullanılarak düşük maliyetli FPGA

aygıtları için, donanımın doğasında bulunan ve donanımın üretimi esnasında meydana

gelen karakteristik varyasyonlardan faydalanarak bir güvenlik şeması geliştirilmesi

üzerinde durulmuştur. PUF, her bir cihaza özgü seri numaraları ve güvenlik anahtar-

ları elde etmeyi sağlamaktadır. Bu tezde, PUF ve bulandırma adlı bir başka güvenlik

yöntemi birleştirilerek sistemin taklit edilebilirliğini önlemek amaçlanmıştır. Bu-

landırma, bir devrenin tanımını ya da yapısını kasıtlı olarak değiştirerek çalışma

zamanı sırasında işlevselliğini gizlemek üzerinedir. Bulandırma tekniği, RTL (Regis-

ter - Transfer Language) seviyesinde gerçekleştirilmiştir ve PUF yöntemini bir sonlu
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durum makinesi içerisinde kullanarak cihazı yetkilendirmek ve kontrol etmek için kul-

lanılmıştır. Daha sonra bu yöntemler güvenli çoklu yükleme (MultiBoot) tekniği ile

birleştirilmiştir. MultiBoot, DPSR’dan farklı olarak, FPGA’in çalışırken tamamen

yapılandırılmasını sağlamaktadır. Bunun yanı sıra, sisteme uzaktan bağlanabilme

özelliği eklenerek sistemin ağ üzerinden denetimi sağlanmıştır. Ağ üzerindeki ile-

tim zamanını azaltmak için bir bitstream sıkıştırma tekniği kullanılmıştır. Sonuç

olarak, bu tez düşük maliyetli FPGA’li sistemlerde güvenli uzaktan MultiBoot için

bir iskelet yapı oluşturmaktadır. Önerilen iskelet yapı örnek bir uygulama kullanılarak

gerçeklenmiştir.

vi



ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Professors Sezer Gören Uğurdağ
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CHAPTER I

INTRODUCTION

In this chapter, we intended to give a comprehensive introduction about the purpose

of the thesis with the reason and the motivation behind concentrating on this topic.

1.1 Problem Statement

This thesis work aims at implementing an efficient and combined methodology to

make applications more secure and powerful which exploit low cost FPGA-based

systems.

One of the motivations of this thesis is the increasing importance of reconfigurable de-

vices in global electronics market. Although deciding an optimal hardware platform

solution requires to compare criteria concerning costs, tool availability, and effec-

tiveness, time-to-market comes often at the top of the list. Today verification stage

spans most of the time in any design cycle and in general, time pressure is the main

reason for poor verification effort. As a consequence, poor design verification prac-

tices manifest themselves in unexplained system crashes and delayed product releases.

Therefore, FPGAs as a reconfigurable device offer the fastest solution among other

hardware options most of the time. Also, when FPGA is chosen as a main platform,

the cost effect of nonrecurring engineering minimizes. Moreover, modern FPGAs

come with phase-locked loops (PLLs), low-voltage differential signal (LVDS), clock

data recovery, high speed, hardware multipliers, dedicated memory, programmable

I/O, IP (Intellectual Property) blocks and even microprocessor cores. This provides
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a better way to implement cost-effective and high-speed applications. For example,

a part of an application which requires high speed audio processing could be im-

plemented on dedicated DSP blocks on FPGA die. Then, dedicated Ethernet PHY

IP could be used to connect to the network for the sake of power consumption and

performance. Finally, the hard microprocessor core could be utilized for performing

decision-making control tasks relatively in slower clock frequencies.

The secondary motivation of this thesis is the increasing significance of mobile and

smart electronic devices extensively more than ever. Today, energy-saving products

control homes and workplaces. Many public transport and traffic systems are con-

trolled via sensors and managed by centralized computers. Cars are equipped with

infotainment systems which provide driver-free functionality such as self-parking and

connectivity throughout Wi-Fi or cellular network. Recent estimations show that

more than 50 billion devices will be connected by 2020. As people become more de-

pendent to these devices, it is inevitable to make these platforms more reliable and

secure.

Today’s semiconductor business model separates design and manufacturing phases by

using offshore manufacturing fabrication plants (foundries) around the world. This

makes the design company rather out of control during manufacturing period. From

a security perspective, this brings out many issues for manufacturers, design houses,

3rd party vendors, and end-users.

Today one of the biggest problems that semiconductor companies encounter is coun-

terfeiting. Counterfeiting refers to the activity of building and marketing of phony

semiconductor devices and covers every phase of the semiconductor supply chain

from design stage to market. Figure 1 shows graphically the number of counterfeiting

incidents between 2006 and 2011.
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Figure 1: Number of incidents reported by semiconductor businesses [1].

The most encountered counterfeiting activities are achieved by using one of the fol-

lowing methods:

• Cloning is the method of directly copying a design, circuit or device without

modifying or improving it. This provides the counterfeiters with direct replace-

ment of the product with fast time-to-market. In addition to this, counterfeiters

can offer lower cost products than the original ones.

• Overbuilding is the method of adding extra functionality into the device or

product, in contrast to cloning. However, overbuilding offers better profits and

lower product costs than cloning provides. Today, overbuilding is by far the

most common counterfeiting method that takes place. With regard to original

equipment manufacturer (OEM) or company, overbuilding becomes a big issue

since it does not have an idea about what has been added to the original one.
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As a consequence, this makes management and support of the product in the

market more difficult.

• Reverse Engineering is different from both cloning and overbuilding, as it re-

quires engineering investment, technical work and development time and cost.

In a common sense, reverse engineering refers to the work that at which a sys-

tem, a product or a device is deeply analyzed by tampering it using sophisticated

instruments and qualified knowledge.

The biggest effect which brings out with these counterfeiting methods is that the

result can badly hit the company’s market potential leaving them with greatly reduced

income and reliability.

Today the five most commonly counterfeited semiconductor types are analog inte-

grated circuits (ICs), microprocessors, memory ICs, programmable logic devices and

transistors, all of which are commonly used in commercial and military applications,

as shown in Figure 2 [2].

Figure 2: Most counterfeited semiconductors in 2011 (% of counterfeit reports) [2].

This conclusion is particularly important for designers, manufacturers and users of

programmable logic devices such as FPGAs. In many cases, these devices make
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it possible to reprogram the functionality of a system in the field and to transfer

circuitry and IP from one system to another simply by copying the configuration

information. Without adequate protection against such situations, an FPGA cannot

provide effective design or data security. As functionality is encapsulated in firmware

(bitstream) and reconfigurable circuits that may be unlocked at runtime by providing

a key, design security becomes increasingly important to data security.

FPGAs are the most important and preferred type of reconfigurable devices in elec-

tronic systems today. Furthermore, the performance and cost disadvantage gap com-

pared previously to ASIC (Application Specific Integrated Circuit) or ASSP (Appli-

cation Specific Standard Product) devices are negligible or even better in some cases.

Hence, it will be not surprising to use electronic products that have at least one

programmable SoC (System-on-Chip) or more in the near future.

What puts FPGAs forward with respect to design security is the availability of bit-

stream stored in an off-chip memory. Figure 3 represents a basic FPGA system which

consists of a configuration interface and an external configuration memory. As shown

in Figure 3, whenever a new configuration needs to be downloaded into FPGA, the

bitstream on the configuration memory is read over the configuration interface and

downloaded into the FPGA device. However, during transfer operation, one can eas-

ily intercept the communication and capture the bitstream in behalf of copying and

implementing the same design on another FPGA. Hence, it is required to use a pro-

tection mechanism such that a design should be able to work only on a specific set of

devices in order to prevent such attacks.
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Figure 3: Downloading configuration data into FPGA over configuration interface.

Today, solutions exist on the market targeting FPGA design security. In general,

FPGA manufacturers handle this problem by equipping their products with factory-

set ID numbers, encryption/decryption logic or advanced cryptographic IP blocks.

There are also 3rd party solutions [3, 4] which offer similar solutions.

Although encryption support seems a powerful technique to protect FPGA designs,

a recent study [5] showed that it is possible to extract secret keys from an FPGA

where the bitstream encryption feature of the device is enabled.

Xilinx [6] offers a feature called “Device DNA” [7], available on Xilinx Spartan-6 FP-

GAs, which is a per-chip ID code that has a fixed factory-set number which can be

extended by supplementary data bits. Hence, one can use a DNA-based authentica-

tion to at least prevent cloning (if not reverse engineering). If the design includes a

module that checks the device’s DNA with the pre-stored DNA value in the design,

then the same bitstream would not function on a different device as the DNA value
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in the copied bitstream would not match the new device’s DNA. Instead of a direct

comparison, the key inside the bitstream can be a scrambled version of the DNA of

the authorized device. Nevertheless, designs with Device DNA can be cloned using

the following methodology:

• Read the DNA from the device that you want to clone.

• Copy the bitstream from the Flash memory.

• Reverse engineer it into a netlist [8].

• Locate where the DNA hooks up to the design.

• Disconnect the DNA port and hard-wire it to the DNA values (apply step 1).

• Convert the new netlist to a bitstream.

• Copy it to as many devices as you like, and it will work although they have

unauthorized DNA codes as the modified bitstream bypasses the DNA.

Most of these security techniques are mostly available for high-end family of FPGA

devices [9, 10, 11]. However, many applications could be designed and implemented

on low-cost FPGAs instead of using these expensive devices equipped with advanced

protection schemes.

1.2 Contributions of the thesis

In this thesis, we propose a security framework that enables secure remote reconfigu-

ration of low-cost FPGAs. Our framework combines two important security schemes.

The first scheme deploys hardware intrinsic features of a device to realize a kind of

security shield against mentioned attacks above. More specifically, this technique is
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also known as physical unclonable function (PUF) [12, 13, 14, 15, 16, 17, 18, 19] and

provides a way for utilizing the inherent uniqueness in each silicon device to extract

unique ID numbers or more appropriately keys. Today PUF technology attracts at-

tention by several design companies and semiconductor manufacturers [20, 21, 22, 23]

in the market.

The second scheme that we utilized in our proposed framework is the hardware ob-

fuscation technique [24, 25, 19]. Hardware obfuscation is locking the functionality

of the design. An obfuscated design could only be unlocked when a specific sequence

of events have occurred. Although obfuscation received skepticism [26] in the past,

several works [24, 19, 27] have shown the feasibility of secure key-based obfuscation.

Recently, Koushanfar [19] demonstrated proofs for developing secure integrated cir-

cuit (IC) control mechanism with the functional description of the design as well

as unique and unclonable IC identifiers. In an earlier work [28], we combined PUF

key-based obfuscation and MultiBoot feature of Spartan-6 devices to achieve full bit-

stream protection. In MultiBoot, FPGA has to overwrite its configuration completely

and externally from a Flash memory.

Another aspect this thesis focuses on is reconfiguration of low-cost FPGAs. It is

common that today’s systems have to support many standards. That results in

situations some of the features are not needed and new features are required to be up

and running. This behavior can be efficiently implemented with Dynamic Partial Self

Reconfiguration (DPSR), where an up and running FPGA decides what subdesigns

to download from the Flash memory (i.e., new features) and reclaims resources taken

up by subdesigns not needed anymore (i.e., old features).

This thesis targets low-cost FPGAs that do not have advanced protection and security

schemes. Hence, we propose a security framework by combining PUF and obfuscation

techniques. Additionally, we leverage a MultiBoot feature to enable reconfiguration of
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FPGAs over the network in a secure way. This thesis uses the following technologies

to achieve the equivalent of DPSR with encryption [29]:

• PUF→ in place of DNA –as a security key

• HDL-level obfuscation → in place of encryption

• MultiBoot → in place of DPSR

1.3 Overview

The remainder of this thesis is organized as follows: Chapter 2 gives an introduction

about generic FPGA design flow, configuration details and how a MultiBoot operation

takes place within FPGA. Chapter 3 introduces PUF methodology, explains previ-

ously proposed PUF structures and describes our proposed PUF technique. Chapter

4 gives a brief introduction to obfuscation and then describes our proposed security

methodology which combines PUF and hardware obfuscation. Chapter 5 represents

our security framework which enables fast, secure, and remote MultiBoot for low-cost

FPGAs. Conclusions and suggestions for future work are given in Chapter 6.

9



CHAPTER II

FPGA DESIGN FLOW

This chapter covers topics which provide a technical background for the material

used in this thesis work. At first, most fundamental features of FPGAs will be intro-

duced. Then FPGA MultiBoot embedded design flow for Xilinx Spartan-6 FPGAs is

explained in detail.

FPGA is a type of IC designed to configure its logical functionality after manufac-

turing. An FPGA can be used to implement any logical function that an ASIC, a

microprocessor or other types of devices could perform. One of the biggest advan-

tages of FPGAs is that they have the benefits of both hardware and software. From

a hardware perspective, FPGAs implement circuits providing power, area, and per-

formance benefits. From a software perspective, FPGAs implement circuits that can

be reprogrammed cheaply and can be used to perform a wide range of tasks. In this

way, it is possible to design more efficient systems than both ASIC and microprocessor

based platforms.

Since early ages of FPGAs, they were fabricated via various manufacturing technolo-

gies as antifuse, Flash, SRAM, and Flash-SRAM hybrid. Devices based on antifuse

technology are one-time programmable (OTP) and use a dedicated antifuse with each

configuration cell. In its unprogrammed state, an antifuse has such a high resistance

to make its wire open circuit. Programming of device is done by applying pulses of

relatively high voltage and current on particular antifuses, thereby lowering resistance

on those wires to implement a particular circuit.
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Flash-based devices are nonvolatile, so they can keep their configuration data after

power is cut off. Additionally, they can be reprogrammed again. Flash-SRAM hybrids

contain both Flash and SRAM configuration cells. One disadvantage of both antifuse

and Flash-based FPGAs is that their fabrication requires additional process steps in

addition to CMOS process.

Today SRAM-based FPGAs are the dominant type among reconfigurable platforms.

They can be fabricated using a pure CMOS process hence they can benefit from the

latest manufacturing technology and can offer higher capacities and higher perfor-

mance. The distinctive feature of SRAM-based FPGAs than others is that they are

reprogrammed every time power is up.

Figure 4 illustrates the internal organization of a general SRAM-based FPGA. Herein,

reconfigurable area is divided into two main categories as logic and interconnect.

Logic blocks are spread through the silicon die and contain processing elements for

implementing both combinational and sequential logic. Each logic block generally

contains LUTs (look-up table), multiplexers, and FFs (flip-flop). The general routing

structure is also spread equally on silicon die and provides the connection and wiring

between these logic blocks. By appropriate programming of device by utilizing the

particular wires and logic blocks, any boolean function with different complexity could

be implemented on an FPGA.
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Figure 4: An abstract view of an SRAM-based FPGA [30].

A typical FPGA design flow is organized as shown in Figure 5. Design Entry repre-

sents an abstract description of circuit design which is usually defined using an HDL

(Hardware Description Language) like Verilog, VHDL, etc. Logic Synthesis step takes

design entry as input and converts to logic gate equivalents as output. This process

is followed by Technology Mapping which deals with utilizing FPGA’s logic resources

by using the output from logic synthesis step. Then Placement step determines which

specific logic blocks are allocated to be used by design and Routing step utilizes the

specific interconnect resources which provide signal and data transmission between

instances of design.
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Figure 5: Typical FPGA design flow.

Technology mapping, placement, and routing could be grouped as Implementation

stage as these steps generate a netlist called NCD (Native Circuit Description). A

netlist is a kind of context that contains specific data for a selected device, technology,

and all required circuit information as connectivity, instances of design, attributes,

etc. Configuration step takes this netlist and then translates it to generate a binary

file called Bitstream. A bitstream contains utilization data for each logic and routing

element present on FPGA as well as initialization commands to the FPGA configura-

tion logic. Programming of FPGA is done by configuring memory locations assigned

to each of these logic and routing elements.
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2.1 Xilinx Spartan-6 FPGA Configuration Sequence

Each configuration operation in Xilinx Spartan-6 FPGAs starts with a few steps which

initialize the device and perform some operations to make it functional before down-

loading and running the configuration. Control of the operations are managed by an

on-chip state machine and a set of configuration registers. On-chip state machine is

a configuration controller which takes bitstream and processes it by utilizing configu-

ration memory and configuration registers. Configuration registers hold some control

and status information as well as keep configuration commands and data processed

by the state machine.

Configuration sequence starts by supplying the device with appropriate level of volt-

ages at specific device pins. Once the device is powered up, configuration memory

is cleared consecutively and mode pins (See Appendix C) are sampled when INIT B

signal transitions to logic-1. Before sampling the configuration data, there is a period

of time that FPGA needs to synchronize and align its internal configuration logic with

upcoming configuration data. Thus, a synchronization word/bus detection pattern is

processed first. Then, device becomes ready to capture the configuration data on the

rising edge of the clock signal.

As shown in Table 1, synchronization word consists of 32 bits or 4 bytes: 0xAA, 0x99,

0x55, 0x66. Bus-width detection logic checks these incoming bytes on input pins. For

8–bit configuration, bus–width detection logic first finds 0xAA on the D[0:7], followed

by 0x99, 0x55, and 0x66. For 16–bit configuration, bus–width detection logic checks

the first byte to find 0x99 on D[0:7], followed by 0x66 the next cycle. The rest of the

sync word is received on the upper bits. Then FPGA is ready on which bus width to

receive the rest of the data.
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Table 1: Sync Word sequence for x8 (8–bit) and x16 (16–bit) modes [7].

Cycle F irst Second Third Fourth

x8 Mode
D[7:0] 0x55 0x99 0xAA 0x66

x16 Mode
D[15:0] 0x5599 0xAA66 N/A N/A

After synchronization of device, a device ID check is performed to prevent the device

from loading faulty configurations. A faulty configuration could be a bitstream that is

formatted for a different device. If a device ID check error occurs during configuration,

the device attempts to do a fallback reconfiguration. For more information about this

step, see Appendix C.

The next step after the synchronization word has been loaded and device ID has

been checked is loading of configuration data frames. As the configuration data

frames are loaded, the device calculates a Cyclic Redundancy Check (CRC) value.

After finishing of loading of configuration data frames, the configuration bitstream

can issue a “Check CRC” instruction followed by the expected CRC value. If the

expected CRC value does not match the value calculated, then the device does not

continue to configuration and abort the process.

After configuration frames are loaded, controller state machine initiates a couple of

startup events. These are a sequence of tasks each have to be performed before device

starts to run actual design. An eight-phase sequential state machine controls these

events. Table 2 shows these events which can be customized by user.
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Table 2: User-selectable cycle of startup events [7].

Phase Event

1-6 Wait for DCMs and PLLs to lock (optional)

1-6
Assert Global Write Enable (GWE),

allowing RAMs and flip-flops to change state

1-6 Negate Global 3-State (GTS), activating I/O

1-6 Release DONE pin

7 Assert End Of Startup (EOS)

2.2 Xilinx Spartan-6 FPGA MultiBoot Design Flow

Today many systems that use FPGAs may have to support many standards, integrate

IP (intellectual property) cores into the system or run various applications. Generally,

a fully functioning system at a specific time do not need all of these. Hence, one that

uses or employs all these functional units at the same time may need a large chip

area. In addition to this, unused blocks can increase power consumption and may

lead to performance penalty.

Since FPGAs are reprogrammable in the system, it is possible to update configuration

information of device during normal operation. In this way, relatively small-size

FPGAs become equivalent to larger and more expensive devices such as ASICs or

FPGAs just programmed or configured once.

A variety of methods (download modes) exist to reconfigure FPGAs during normal

operation. Through an external intelligent agent, such as a computer, processor,

microcontroller, or a test device, FPGA can be reprogrammed or reconfigured many

times. Xilinx Spartan-6 FPGAs have 5 different configuration modes [7] as Master

Serial/SPI, Master SelectMAP/BPI, JTAG, Slave SelectMAP, and Slave Serial.
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Besides these, the reconfiguration process could be automated using a modular-based

approach. Some FPGA devices provide a capability named “MultiBoot” which al-

lows FPGA to selectively reprogram itself from an external memory device. Xilinx

Spartan-6 FPGAs support MultiBoot operation in SPI (x1, x2, and x4) and BPI

configuration modes.

Figure 6 represents a system which exploits MultiBoot. There are N different bit-

streams which reside in external memory. When existing FPGA configuration triggers

a MultiBoot operation, FPGA reconfigures automatically with a new configuration

bitstream.

Figure 6: Basic MultiBoot framework.

Xilinx Spartan-6 FPGAs have dedicated MultiBoot logic which is used when a fallback

or MultiBoot operation is required. Fallback is a recovery mechanism which could be

a critical solution for application updates during MultiBoot operations.

After initiating a MultiBoot reconfiguration, the entire configuration logic is cleared

except the dedicated MultiBoot logic and some of the configuration registers. Then,

configuration process is restarted by clearing configuration memory and following the

similar steps as described in previous section.
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Xilinx has a reference MultiBoot method [7] which consists of three images for Multi-

Boot operation. The first image is called as Header and contains the sync word, the

commands which set the addresses for the next bitstream and the fallback bitstream.

The second image is the configuration that user intends to run first. The third image

is the fallback (golden) bitstream. The fallback bitstream is a fail safe bitstream

in case of an error during configuration. If the configuration fallback occurs and the

fallback bitstream is reached, the only way to boot back into the MultiBoot bitstream

is to toggle the PROGRAM B pin or power cycle the device.

Figure 7 shows the fail safe MultiBoot design proposed by Xilinx. Here, MultiBoot

logic utilizes a strike count which keeps the number of attempts to perform a succesful

configuration and is stored in BOOTSTS configuration register. The only way to clear

strike count is to perform a hard reboot (pulse the PROGRAM B pin) or cycle power.

Figure 7: MultiBoot cycle [7].

Accordingly, the header image must start at address 0x000000. If an error is de-

tected or the watchdog timer times out, the strike count increments and configura-

tion restarts if the strike count is less than 3. When the strike count becomes 3,
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configuration halts with INIT and DONE signals driven low.

The address location of MultiBoot image is defined by GENERAL1 and GENERAL2

configuration registers. MultiBoot image has also three strikes assigned to it. If an

error is detected, the strike count increments and configuration restarts at the address

specified in GENERAL1 and GENERAL2 if the count is less than 3. If the count

hits 3, configuration moves to the fallback bitstream.

The fallback image can reside in memory locations defined by GENERAL3 and GEN-

ERAL4 registers. The fallback image has also 3 strikes allotted to it. If an error is

detected, the strike count increments and configuration will restart at the address

specified in GENERAL3 and GENERAL4, if the count is less than 6. The value is 6

since it shares the strike counter with the MultiBoot image. If the strike count be-

comes 6, configuration tries an attempt to boot the header image. Then, MultiBoot

logic attempts to access both the MultiBoot image and the fallback image three more

times before halting configuration. If fallback reconfiguration fails after three strikes,

configuration halts with both INIT B and DONE driven low.

2.2.1 IPROG Command and ICAP

Every MultiBoot operation requires an IPROG command to be issued. IPROG

command has similar effect as pulsing PROGRAM B pin, except that it does not reset

the dedicated reconfiguration logic. IPROG command can be issued as embedded in

the bitstream or using a dedicated block called ICAP (Internal Configuration Access

Port) on FPGA. ICAP is an internal configuration interface on FPGA fabric and

allows the user to access configuration registers and readback configuration memory

after a configuration.

Although not all Xilinx FPGAs contain ICAP primitive, Xilinx Spartan-6 FPGAs
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have a dedicated ICAP block called ICAP SPARTAN6. Figure 8 shows block diagram

and I/O interface for Xilinx Spartan-6 FPGAs.

Figure 8: Xilinx Spartan-6 ICAP interface signals.

Table 3 gives definitons for each I/O signal of ICAP SPARTAN6 primitive.

Table 3: ICAP SPARTAN6 port descriptions [7].

Port Type Width Function

BUSY Output 1 Busy/Ready

CE Input 1 Active–Low ICAP Enable

CLK Input 1 Clock

I Input 16 Configuration Data Bus

O Output 16 Configuration Data Bus

WRITE Input 1 Read/Write Control

2.2.2 MultiBoot using ICAP

MultiBoot operation in Xilinx Spartan-6 FPGAs is supported in SPI or BPI config-

uration modes. Therefore, an SPI or BPI supported nonvolatile memory should be

employed and configured properly with configuration bitstreams at specific address

locations before starting a MultiBoot operation.
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MultiBoot operation can be initiated anytime after a successful configuration. It

starts with by setting GENERAL1 and GENERAL2 configuration registers. GEN-

ERAL3 and GENERAL4 configuration registers are also set if there is a second con-

figuration or fallback bitstream or they keep their default values (0x0000). Here,

GENERAL1 and GENERAL3 configuration registers are used to store lower 16-bit

part of memory address locations ([15:0]) of MultiBoot and fallback bitstreams, re-

spectively. The upper 8-bit of memory address locations ([23:16]) of MultiBoot and

fallback bitstreams are stored respectively in lower byte field of GENERAL2 and

GENERAL4 configuration registers. The upper byte fields of GENERAL2 and GEN-

ERAL4 are used to store opcode which refers to the read instruction of nonvolatile

storage device over SPI or BPI.

After utilizing GENERAL1 and GENERAL2 (optionally GENERAL3 and GEN-

ERAL4) configuration registers, ICAP primitive must be synchronized before any

command to be sent. Hence, a bus-width detection logic is employed inside ICAP

primitive by sending Sync Word (0xAA99 and 0x5566 in subsequent cycles) to syn-

chronize its configuration interface. Following the synchronization step, a command is

sent which tells the ICAP state machine to write the next 16-bit data to GENERAL1

configuration register. Similar operations are performed for each GENERAL2, GEN-

ERAL3, and GENERAL4 configuration register. After setting all the configuration

registers, another command is sent which tells the ICAP state machine to write a

special command into CMD register which will be sent the following cycle. The next

cycle CMD register is set to IPROG command which starts a sequence of events: first,

device is reset and configuration memory is cleared, then configuration bitstream is

downloaded from nonvolatile memory over SPI or BPI interface and FPGA is recon-

figured. The sequence of commands are given in Table 4. Dummy Word and NO OP

(No operation) command have no effect in MultiBoot.
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Table 4: Example sequence of commands for MultiBoot over ICAP interface.

ConfigurationData Definition

0xFFFF Dummy Word

0xAA99 Sync Word

0x5566 Sync Word

0x3261 Type 1 Write 1 Words to GENERAL1

0xXXXX MultiBoot Start Address [15:0]

0x3281 Type 1 Write 1 Words to GENERAL2

0xXXXX Opcode and MultiBoot Start Address [23:16]

0x32A1 Type 1 Write 1 Word to GENERAL3

0xXXXX Fallback Start Address [15:0]

0x32C1 Type 1 Write 1 Word to GENERAL4

0xXXXX Opcode and Fallback Start Address [23:16]

0x30A1 Type 1 Write 1 Word to CMD

0x000E IPROG Command

0x2000 Type 1 NO OP

2.2.3 SPI and BPI Configuration Modes

The Serial Peripheral Interface Bus or SPI Bus is a synchronous serial data link

standard named by Motorola that operates in full duplex mode. There are master

and slave operating modes in which devices communicate to each other. Multiple

slave devices can be connected at the same time.

As shown in the Figure 9, clock of the slave SPI device is provided by the master.

Hence, there is no need for specific handshaking protocols to synchronize the devices.

In addition to this, there are two data lines (MOSI and MISO) which allow data
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transfer in full duplex mode. An active-low slave select signal is used to enable and

select the slave device.

Figure 9: SPI bus with one master and one slave device.

The simple structure of SPI bus without complex data transfer logic provides a con-

venient way to implement it on an FPGA. A small-sized logic (less than 2-3 % of

logic cell number of a generic FPGA with approximately 45K logic cells) could easily

handle SPI operations and the rest of the logic could be used for other requirements.

Figure 10 shows the configuration interface in SPI mode for MultiBoot.

Figure 10: FPGA configuration interface for Master Serial/SPI mode [7].

Similarly, the Byte Peripheral Interface (BPI) Bus could be used to reconfigure an

FPGA (See Figure 11). However, the number of configuration interface pins and its
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timing specification makes SPI more advantageous over BPI with respect to configu-

ration complexity.

Figure 11: FPGA configuration interface for Master SelectMAP/BPI mode [7].

Put it in a nutshell, MultiBoot is a powerful technique with SPI. A fully functioning

system which uses MultiBoot could store configuration bitstreams in an SPI supported

memory with only a few megabytes1.

1Our reference system has a 128 Mbit (16 MB) SPI NOR FLASH memory.
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CHAPTER III

PHYSICAL UNCLONABLE FUNCTIONS

A physical unclonable function (PUF) is a physical pseudo-random function. It is

based on the idea of utilizing intrinsic features of a physical instance. More specifically,

a PUF is characterized by unique manufacturing variances that are present within

a device. This makes a PUF device practically impossible to duplicate. In this

respect, it is the hardware analog of a one-way function. The concept of PUF was

first proposed by Pappu et al. [12] as “Physical One-Way Functions”. Pappu et al.

described the physical one-way function as a function “if there exists a deterministic

physical interaction between the probe (challenge) and the system which produces

an output in constant time, inverting the function is difficult, simulating the physical

interaction is computationally demanding and the physical system is easy to make

but difficult to clone”. In other words, a PUF is easy to evaluate but hard to predict.

PUFs implement challenge-response authentication unlike the cryptographic key-

based schemes. When a physical stimulus is applied to the physical structure, it

reacts in an unpredictable way due to the complex interaction of the stimulus with

the physical microstructure of the device. This exact microstructure depends on

physical factors introduced during manufacturing processes which are unpredictable.

The applied stimulus is called the challenge, and the reaction of the PUF is called

the response. A specific challenge and its corresponding response together form a

challenge-response pair or CRP.
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There are three types of PUFs: optical PUFs [12], coating PUFs [15, 16], and silicon-

based PUFs [13]. Optical and coating PUFs exhibit explicitly-introduced randomness

while silicon-based PUFs use intrinsic randomness.

3.1 Silicon-based PUFs

The first integrated PUF on a silicon device was proposed by Gassend et al. [13].

Gassend et al. claimed that a complex integrated circuit could be viewed as a silicon

PUF and described a technique to identify and authenticate individual integrated

circuits. In addition to this, Tuyls et al.[16] proposed that an implementation of

read-proof hardware that is resistant against invasive attacks by employing protecting

coating that contains a lot of randomness.

Many PUF implementations proposed by now exploit the intrinsic randomness on

the silicon device without modifications to the manufacturing process. As PUFs are

implemented by exploiting the small manufacturing variances within a device, for

an integrated circuit (IC), PUF could be implemented by utilizing variances of the

wire and gate delays even if they are logically identical. Hence, it could be used to

represent the fingerprint of a particular device.

The most common type of PUFs on integrated circuit devices are delay based PUFs.

Delay based PUFs consist of at least two logically identical transition paths. Given

an input challenge, a race condition is set up in the circuit, and these transitions that

propagate along different paths are compared to see which comes first. An arbiter,

typically implemented as a latch, produces a 1 or a 0, depending on which transition

comes first. When a circuit with the same layout mask is fabricated on different chips,

the response is different for each chip due to the random variations of delays.

There are three types of delay based PUFs which are the most common used:
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• Arbiter PUF or APUF [15] is composed of two identically configured delay

paths that are stimulated by an activating signal. The difference in the prop-

agation delay of the signal in the two delay paths is measured by an edge

triggered flip-flop known as the arbiter. The delay difference is a function of

the manufacturing process variation present in the delay paths.

(a) Basic structure of arbiter PUF. (b) Arbiter block

Figure 12: Arbiter PUF [15].

• Ring oscillator based PUF or ROPUF [17, 31] is composed of identically ar-

ranged ring oscillators, RO1 to ROn, with frequencies f1 to fn, respectively and

a pair of multiplexers to take inputs from ring oscillator outputs. PUF chal-

lenge bits are used as the select inputs to multiplexers. A response bit r is

obtained by selecting a pair of frequencies, fa and fb (a 6= b) and using a simple

comparison method. Due to process variations, fa and fb tend to differ from

each other and the response bit is defined as follows:

r =















1, fa > fb,

0, otherwise.
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(a) Ring oscillator (b) A basic five-stage

ring oscillator loop

Figure 13: Ring oscillator PUF [17, 31].

• Butterfly PUF or BPUF [18] circuit defines two cross-coupled latches to gen-

erate a response bit. The main idea here is that it is desired to create a race

condition temporarily on cross-coupled latches. While circuit goes to stable

after some time, the output is either logic 1 or logic 0, depending on the man-

ufacturing process variations.

Figure 14: Butterfly PUF [18].

PUF implementations explained above could be used such that several PUF response
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bits can be generated by configuring the delay paths in multiple ways using the chal-

lenge inputs. So far many security schemes for SRAM-based FPGAs are developed

and implemented by using delay-based PUF circuits. Indeed, they are relatively eas-

ier to realize with respect to other approaches. However, they have the disadvantage

of creating combinational logic on FPGAs since it is not straightforward to create

combinatorial paths using available resources (i.e., flip-flops). Another challenge for

these PUF approaches is that they assume exact symmetric routing between logical

components which is not feasible using current design automation tools. For this

reason, it is more convenient to use a PUF structure that specifically targets FPGAs.

As shown in Figure 15, the smallest functional unit in FPGA consists of a logic

block which generally includes FFs, LUTs, and multiplexers, etc. and a switch block

which provides the signal communication between near and remote logical resources.

Although design automation tools allow to place logical resources symmetrically, it is

not feasible to create symmetric routing paths between logic elements.
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Figure 15: An example of common logic block and switch block.

Another example in Figure 16 represents the top view of a configurable logic block

(CLB) on Xilinx Spartan-3 FPGA after a place&route (PR) operation. The thin red

lines represent the routing path for a butterfly PUF circuit which are needed to create

two cross-coupled latches for a single PUF instance. As can be seen in the picture,

apart from the complexity of implementing combinational logic by using sequential

logic components (flip-flops), it is not an efficient solution with asymmetric routing

paths between FPGA logical resources.

3.2 An FPGA-specific PUF Design: Anderson’s PUF

The proposed PUF structures above are designed specifically for silicon devices such

as ASICs and other type of integrated circuits. Since FPGAs contain regular arrays

of logical elements and interconnect, it is not likely to implement an appropriate
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Figure 16: Routing asymmetry of wires in Butterfly PUF.

arbiter, ring oscillator or butterfly PUF circuit using logical components along with

routing blocks. Instead, a PUF architecture should be employed which benefits from

available device resources inside FPGA.

In a recent study, Anderson [14] proposed a PUF design that specifically targets

FPGAs. The novelty of this PUF design comes from the fact that it makes use of

the underlying FPGA architecture and it could be integrated into a design at RTL

level. Anderson [14] claimed that it consumes a very little area and does not require

the use of hard macros with fixed routing.

Figure 17(a) depicts a configurable logic block or CLB on a Xilinx Virtex-5 FPGA

which provides combinatorial and synchronous logic as well as distributed memory

and shift register capability. A CLB comprises two slices. Each slice (Figure 17(b))

contains four 6-input LUT (look-up table), four storage elements (FFs), multiplexers,

and arithmetic circuitry.

Figure 17(c) represents a slice which is utilized for the proposed PUF design [14]. In
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this diagram, each LUT output is connected to the select input of a 2-to-1 multiplexer.

Multiplexers are arranged in a “carry chain” style such that each multiplexer receives

one of its data inputs from the multiplexer below it.

(a) CLB (b) Slice (c) Slice details

Figure 17: Xilinx Virtex-5 logic block architecture [14].

Although LUTs are mostly used to implement combinational logic functions, it is

intended to use them as memory units in the proposed PUF design [14]. Such LUTs

reside in SLICEM1 [32] blocks in Xilinx Virtex-5 where the “M” indicates that LUTs

can be used as memories. In this way, LUTs in a slice can be combined to obtain

SRAM units with different sizes. Additionally, the SLICEM architecture allows the

LUTs to be chained together serially to function as a shift register.

Figure 18 shows block diagram for proposed PUF design [14]. A single PUF instance

produces a single bit and consists of 2 LUT blocks and 2 multiplexers. LUTs are

configured as shift registers and concatenated with 2-to-1 carry chain multiplexers.

Shift register contents are pre-initialized such that

• LUT A: 0101 0101 0101 0101 (0x5555)

• LUT B: 1010 1010 1010 1010 (0xAAAA)

Note that the contents of both LUTs are compliment of each other. Shift register

125% of the LUTs in Xilinx Virtex-5 can be configured to operate as either shift registers or
distributed RAM.

32



Figure 18: Block diagram of Anderson’s PUF [14] in Xilinx Virtex-5.

inputs IN continue to supply the same sequences and shift register outputs OUT

drive the select input pins on carry chain multiplexers. “0” data input on both carry

chain multiplexers are tied to logic-0. The bottom carry chain multiplexer has its “1”

data input tied to logic-1. The output of bottom carry chain multiplexer drives the

“1” data input of the upper carry chain multiplexer.

Considering the ongoing behavior of this block, this PUF circuit will produce either a

logic-0 or logic-1 based on random process variations. Initially, the OUT pin of LUT

A is at logic-0, and consequently N2 signal is at logic-0. Likewise, the OUT pin of

LUT B is at logic-1 which drives N1 signal at logic-1. At the rising clock edge, the

OUT pin of LUT A will transition from logic-0 to logic-1 and the OUT pin of LUT

A will transition from logic-0 to logic-1 and select N1 signal.

After this point, there are two available scenarios. In the first case, LUT B and

the multiplexer it drives are faster than LUT A and its multiplexer. Hence, when

LUT B transitions from logic-1 to logic-0, signal N1 also transitions from logic-1

to logic-0. After that, slower LUT A drives the multiplexer from logic-0 to logic-1

and consequently signal N2 is held constant at logic-0. In the second case, LUT A
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and its multiplexer behaves faster than the other ones. Therefore, output of LUT A

transitions from logic-0 to logic-1 before N1 signal transitions from logic-1 to logic-0.

As a result, a glitch appears on N2 signal for a while before N1 transitions to logic-0.

The presence or absence of the glitch and the period of that glitch are all due to

complex manufacturing process variations present on physical components. Conse-

quently, the presence or absence of glitch could be used to determine the output that

will be either logic-0 or logic-1.

Figure 19 shows the proposed structure for how to capture a PUF signature bit from

N2 signal. N2 signal is connected to the asynchronous preset input of a D-type flip-

flop. The flip-flop is initialized to logic-0 and its output Q is fed back to its input

D. Accordingly, when a glitch on N2 line occurs, flip-flop output Q becomes logic-1

and it is said the PUF signature is 1. Otherwise, flip-flop output Q is logic-0 and it

is said the PUF signature is 0.

Figure 19: N2 signal captured by a D flip-flop to generate the PUF signature bit

[14].

However, one issue that should be handled is that process variations may trigger

a short pulse such that it may be filtered out due to electrical characteristics of

the wires causing to obtain a logic-0 as the PUF signature with a high probability.
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Conversely, a glitch which is too wide makes the PUF signature logic-1 with high

probability. Therefore, it is needed to arrange the slice locations in order to maximize

the randomness of the PUF signature.

Anderson [14] found that the arrangement like in Figure 20 produced the best results.

LUTA is in the top position of the top SLICE while LUTB is in the third position

of the bottom SLICE. Select inputs of intermediate multiplexers between LUTA and

LUTB are tied to logic-1. The flip-flop receiving the N2 signal is placed in the

top SLICE. The interconnection between SLICEs are provided with a dedicated wire

instead of SLICE-to-SLICE general-purpose interconnect.

Figure 20: PUF bit generator rearranged [14].

One of the most important aspects of Anderson’s PUF is that it is completely de-

scribed in VHDL and can be handled by synthesis and place&route tools without

requiring manual intervention. It could be implemented by using only two SLICEs
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without any hard block or routing elements.

3.3 Our Modification of Anderson’s PUF

This study on this work targets relatively low-cost FPGAs and implements a security

framework which utilizes hardware intrinsic features for these devices. For this reason,

a security scheme could be developed by modifying Anderson’s PUF structure [14]

for low-cost FPGAs.

As a part of the thesis work, Xilinx Spartan-6 FPGAs were used as the reference

for low-cost FPGA devices. As opposed to Virtex series, Xilinx Spartan family of

FPGAs [11] covers applications that require low-power footprint and have extreme

cost sensitivity and high-volume potential. However, Virtex family of FPGAs [9] have

more advanced features such as system monitor, tri-mode EMAC (Ethernet MAC),

etc. If reconfigurable logic section of both Virtex and Spartan family of devices are

compared, it can be seen that both family of devices are based on the same style of

architectural arrangement and pretty much accomodates the same features. Besides

these, the “SLICEM” type of slice block -which provides the logical functionality

in Anderson’s PUF design [14]- is found within both family of devices with slight

differences (See Appendix A).

The function generators existed in each slice in Spartan-6 FPGAs are implemented as

6-input LUTs as in Virtex-5. Additionally, SLICEM block in Spartan-6 can also be

configured as 32-bit or 16-bit shift register and a fast carry logic is found along with 8

storage elements (There are 4 storage elements in each slice of Virtex-5). Therefore,

the same approach followed in Anderson’s PUF [14] could be employed for Spartan-6

with minimal effort.

The main difference between SLICEMs in Virtex-5 and Spartan-6 is the initialization
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state of storage elements. Figure 21 shows available attributes for storage elements

within slices of Virtex-5. As shown in the figure, the initial state after configuration

or global initial state is defined by separate INIT0 and INIT1 attributes apart from

SRLOW and SRHIGH.

Figure 21: Register/Latch configuration in a slice of Virtex-5 [32].

However, the initial state of storage elements in each slice of Spartan-6 are specified

by SRINIT0 and SRINIT1 attributes which also provide set and reset functionality,

as shown in Figure 22. The problem lies in the fact that the initialization attributes of

storage elements in a slice of Spartan-6 do not allow to implement the same circuitry

as in Anderson’s PUF design [14]. Remember that Anderson’s PUF design [14] needed

a storage element to capture a potential glitch to define the PUF signature as shown

in Figure 23.
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Figure 22: Register/Latch configuration in a slice of Spartan-6 [33].

Figure 23: N2 signal captured by a D flip-flop to generate the PUF signature bit [14].

In Spartan-6, there is no separate attributes that one defines the initialization state

and one another defines set/reset state. Therefore, to capture a potential glitch, a

storage element in a SLICEM could be utilized as shown in Figure 24.

The design in Figure 24 rearranges the glitch capture circuit by setting the data

input D to logic-0 and the initial state of FF by an external signal called RESET
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which is connected to CE (Clock Enable) input of FF. Whenever CE is asserted, FF

is initialized to logic-0 and hence a glitch could be captured by the SR input which

is set by SRINIT1 attribute and asserted by PRESET signal coming from the top

carry chain multiplexer, thereby achieving the same functionality as in Anderson’s

PUF [14].

Figure 24: Glitch capture circuit by a D flip-flop in a SLICEM of Spartan-6.

3.3.1 Multi-bit PUF Signature Extraction

Our design methodology could be further generalized to extract multiple PUF sig-

natures [34]. For the experimental validation, we instantiated 64 instances of our

proposed design to generate a 64-bit signature. We evaluated the design using five

Xilinx Spartan-6 XC6SLX45 FPGAs on Digilent ATLYS design platforms. The Xil-

inx Spartan-6 XC6SLX45 FPGA has 43.661 logic cells which are comprised of 6.822

slices, 54.576 FFs and maximum of 401Kb distributed RAM. 1602 of these slices are

type of SLICEMs which corresponds to circa 25% with respect to total number of

slices. If we take into account that it is required 2 SLICEMs to generate a single-bit

PUF signature, we can calculate the required logic resource to generate a 64-bit PUF

signature as 128 SLICEMs in total which is approximately 8% of total number of

SLICEMs.
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As Spartan-6 XC6SLX45 FPGA has a large island-style of logical resources, it is

reasonable to organize the FPGA die into partitions such that each PUF signature

set could be extracted from different portions of the FPGA silicon die.

Figure 25 shows general CLB and slice hierarchy inside Spartan-6 FPGAs. With

reference to this, each CLB column contain two slice columns. One column is a

SLICEX column, and the other column alternates between SLICEL and SLICEM.

Since we need SLICEM type of slices to implement our PUF design, we can arrange

each PUF instance in FPGA die as shown in Figure 26 [34].

Figure 25: Row and column relationship between CLBs and Slices in Spartan-6 [33].
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(a)

(b) (c)

Figure 26: Multi-bit PUF signature extraction [34].
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CHAPTER IV

PUF KEY-BASED ACTIVE HARDWARE OBFUSCATION

In this chapter, the protection method called “obfuscation” is introduced and then is

presented a robust security approach which leverages hardware security by combining

obfuscation and PUF.

Obfuscation is the concept of hiding the intended description or structure of a sys-

tem in order to conceal its functionality and hence make it secure against reverse-

engineering. Apart from encryption, obfuscation does not include ciphering and de-

ciphering phases. Instead, it protects the design or application by covering it and

creating transition paths such that one can only access the correct functionality if it

has the sequence of the right path.

In terms of FPGA design flow, there are two approaches for hardware obfuscation.

The first one is called passive obfuscation in which the comprehensibility of the de-

scription of the hardware (Hardware Description Language (HDL)) is concealed with-

out changing the functionality of the circuit. As opposed to passive obfuscation, active

obfuscation directly alters the functionality of the circuit. Active obfuscation tech-

niques are often “key-based” in which normal functionality of the obfuscated design

can only be unlocked by applying a key or a sequence of keys; otherwise the circuit

exhibits incorrect functionality.

The advantage of utilizing hardware intrinsic features for device security and authen-

tication could further be expanded by combining hardware obfuscation technique with

PUF method. “PUF key-based active hardware obfuscation” is done by embedding
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a well-hidden finite state machine (FSM) or modifying the controller FSM of the

circuit such that modified FSM controls the functional modes based on the PUF re-

sponse of the device. An obfuscated FSM includes the original FSM, and additional

initialization and isolation state spaces and transitions as shown in Figure 27.

Figure 27: Basic diagram for an obfuscated FSM.

Initialization state space defines a path controlled by a key sequence to authenticate

the access to original state space. Depending on the key size, states and paths be-

tween those states form a state machine linking with both original and isolation state

spaces. However, there is only one path taking to original state space such that state

transitions is done only by having the correct keys. Once an erroneous key is detected

in a particular state, there is no way of accessing one of the states inside the original

state space and then the next state is mapped to isolation state space.

Isolation state space prevents an attacker from accessing the original state space. It is

controlled by the modified state machine which continuously map the next transition

into one of the states inside the isolation state space.

Designing an obfuscated FSM with PUFs was previously examined by Koushanfar
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[19]. Koushanfar demonstrated the BFSM (Boosted Finite State Machine) to enable

designers to control their chips after fabrication by adding enough states and gen-

erating unique passkeys by using PUFs for some parts of the unlocking sequence of

BFSM.

What is proposed by Koushanfar [19] is that upon power-up, the initial values of the

design’s added FFs are determined by the unique response from the PUF module.

The number of added FFs should be large enough so that there is a high probability

that PUF response sets the initial power-up state to one of the added states. Then

one needs to provide a sequence of keys (PUF K1, PUF K2, , PUF KN) required for

traversal from the power-up state to the reset state of the original FSM.

Assuming the original FSM has |S| states, it can be implemented using K = log |S|

FFs. Now if we add |S′| more states to build BFSM, it can be implemented using K′′

= log {|S|+ |S ′|} FFs. Hence, for a linear growth in the number of FFs, the number

of states exponentially increases.

In terms of security, it is highly important that there should be large numbers of

added states. Therefore, the number of states should be set such that the value 2K
′′

>> 2K . For this reason, our security framework consists of 32-bit state registers

(FFs) so that one must try every time tampering one of the 232 possible state values,

thereby reducing the risk of reverse-engineering.

In addition to this, our security framework combines FPGA-based PUF method [14]

which is explained in previous chapter with hardware obfuscation. As mentioned in

PUF chapter, we obtain a multi-bit PUF signature by utilizing various portions of

FPGA die. Then these obtained signatures are used as initial power-up state value

and state transition passkeys in obfuscated FSM design.

Figure 28 describes how extracted PUF signature is associated with obfuscated FSM
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design. We mentioned in chapter 3 that we instantiated 64 instances of our proposed

design to generate a 64-bit signature. Consequently, 32-bit part of 64-bit PUF signa-

ture value is used to define the initial power-up state of obfuscated FSM by utilizing

32-bit state registers. Then, the other half of the PUF signature is arranged as four

8-bit transition passkeys such that each 8-bit is required to map succesfully to the

next state in initialization state space. Otherwise, FSM controller sets the state reg-

isters to one of the states in isolation state space. The number of possible set of PUF

keys can be calculated as follows:

232 × 28 × 28 × 28 × 28 = 17.592.186.044.416

As can be seen, the probability to find the correct set of PUF keys is very low and

an attacker must try every possible combination to find the correct initialization

sequence by probing state registers manually at runtime. This result could be further

generalized as follows:

• 2N : Number of states

• M : Number of bits for transition passkeys

• K: Number of transitions

Then the number of possible combinations C could be calculated as

C = 2N × 2M×K
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Figure 28: Multi-bit PUF signature defines initial power-up state and state transition

passkeys.

The obfuscated FSM design used in our tests utilizes a state machine with 32-bit

state registers by adding isolation states to the original design, thereby satisfying S ′′

>> S condition. The table below gives a brief idea about area overhead in terms of

slice utilization caused by 32-bit state registers for a couple of reference designs. The

results were obtained for Xilinx Spartan-6 XC6SLX45 FPGA1 by running Xilinx ISE

DS 13.2 design automation tool.

As shown in Table 5, a reference set of circuits were compared with respect to the

design with original FSM and the design which is obfuscated the original FSM by

employing 32-bit state registers. As the number of states of original FSM increases,

area overhead shows a reasonable growth with respect to total reconfigurable region.

1Xilinx Spartan-6 XC6SLX45 FPGA has 43.661 logic cells which correspond to 6.822 slices.
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Table 5: Comparison of slice utilization between original and obfuscated FSM.2

# of

States

# of

Inputs

# of

Outputs

Slices Occupied Area Overhead

%Original FSM Obfuscated FSM

8 8 8 7 81 1.08

8 16 16 14 90 1.11

8 32 32 19 96 1.13

16 8 8 10 114 1.52

16 32 32 24 114 1.32

32 32 32 39 181 2.08

64 32 32 79 324 3.59

128 32 32 144 499 5.20

Reference circuits used in tests were given to design software as HDL entries which

were generated by a custom Perl script. An example of these scripts can be found at

the end of this thesis at Appendix B.

2The results are the estimated values generated by the software after mapping stage.
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CHAPTER V

PROPOSED METHODOLOGY

In this chapter, our proposed methodology will be described in detail and then a

reference design which exploits our methodology will be introduced.

We propose fast, secure and remote MultiBoot which is a security framework for

reconfigurable embedded systems. Our methodology is secure since it leverages hard-

ware security by combining PUF method with hardware obfuscation. Additionally,

our methodology is fast since it minimizes bitstream transmission time over network

by implementing an efficient compression method. The remote feature of our method-

ology points to the fact that our proposed system could be controlled as a remote

client over network. Figure 29 represents a general view of the proposed framework.
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Figure 29: Proposed framework.

Here, server represents a design house and client represents an FPGA-based system

which is maintained and checked by design house. Additionally, server has possible

PUF signatures of that particular device before the client system has been dispatched

to the user.

Client obtains an application design which is obfuscated with particular PUF keys by

design house whenever it needs to change its configuration. Such an example could

be an update operation where user needs to update its design with a new version, or

a case in which a faulty design has to be changed with a correct one in a secure way.

The proposed framework could be explained step-by-step as follows:

Step 1: Client initiates a new configuration request by sending a particular key
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to server over unsecure network. The key could be Device-DNA of FPGA, device

ID of nonvolatile memory, or a combination of them which is a predefined number

and known by the server. We used 56-bit Device-DNA key of FPGA device in our

reference platform.

Step 2: Server takes the request of a new configuration with key sent from the client

system. Then, server checks its database to control if the client system is genuine by

using the key.

Step 3: If the key of client system is found in device database of the design house,

server obfuscates the design with specific PUF keys of client system. Otherwise,

server terminates the process.

Step 4: Server compresses obfuscated design along with PUF signature generator

circuit.

Step 5: Server sends compressed and obfuscated design and compressed PUF signa-

ture generator circuit to the client system.

Step 6: Client takes PUF signature generator circuit and obfuscated design, decom-

presses them and writes to the nonvolatile memory at particular locations. Then,

client sets the related configuration registers for a MultiBoot operation and reconfig-

ures with PUF signature generator circuit.

Step 7: PUF generator circuit extracts 64-bit PUF signature of device and write

them into nonvolatile memory.

Step 8: PUF generator circuit sets client system for a MultiBoot operation and

reconfigures with obfuscated design.

Step 9: Obfuscated design reads 64-bit PUF signature from nonvolatile memory and
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uses them to unlock the design.

5.1 Building Blocks of the Proposed Framework

In this section, main blocks of our proposed framework will be described in detail.

5.1.1 PUF Key Generator Design

PUF key generator design is used to extract 64-bit unique keys from client device.

As previously explained in Chapter 3.3, we utilize a “PUF farm” on FPGA to ob-

tain particular PUF keys of client. Then extracted keys are written into nonvolatile

memory via SPI interface and a MultiBoot operation is performed. Figure 30 shows

the block diagram of PUF key generator design.

Figure 30: Block diagram of PUF key generator design.

Main controller unit employs a finite state machine which controls PUF block, ICAP

interface, and SPI operations. When the design starts running, first it initiates PUF
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key extraction process. After that, it takes extracted keys and write them into the

nonvolatile memory by using SPI block which incorporates a custom SPI controller.

Finally, main controller unit utilizes ICAP interface in order to restart FPGA with

obfuscated design by MultiBoot.

5.1.2 Base Design

Our reference platform has a Base Design which is the base configuration in our

proposed framework and it is used by the client system should it needs a new config-

uration. Basically, it sends a configuration request along with a key specific to client

system. Then it receives compressed obfuscated design and PUF key generator design

bitstreams. After that, base design decompresses these bitstreams and write them

into nonvolatile memory. Finally, it initiates a MultiBoot operation to reconfigure

FPGA with obfuscated design.

The underlying hardware of base design consists of a soft processor based system. It

employs a 32-bit soft processor named MicroBlaze [35] and a set of IP blocks and

peripherals needed during the authentication process between client & server and for

other tasks. Figure 31 shows main hardware blocks employed in base design.
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Figure 31: Block diagram of base design.

As shown in Figure 31, MicroBlaze soft-processor core is at the center of our hardware

design. All the IP blocks and peripheral interfaces are connected to MicroBlaze and

each other by 32-bit PLB (Processor Local Bus) [36] interface. A short description

about each hardware block used in base design is given as follows:

• BRAM: XPS Block RAM (BRAM) [37] interface controller is utilized to imple-

ment a 64 KB local memory. It is used to start a bootloop program on software

which waits for a configuration request.

• DDR2 RAM: Multi-Port Memory Controller (MPMC) [38] is used to interface

with 128 MB DDR2 RAM. This memory is used to implement a basic file

system.

• ICAP: Basic design utilizes ICAP to enable the access to the configuration logic

and to initiate MultiBoot process. For this reason, the XPS HWICAP [39]

IP core was added to enable MicroBlaze core to read and write the FPGA

configuration memory through the ICAP at run time. Hence, it is possible to

control configuration memory and FPGA by a software program.
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• ETHERNET MAC: LogiCORE IP XPS Ethernet Lite Media Access Controller

(MAC) [40] is used to enable network access of client system.

• SPI: A custom SPI block is added to interface with Flash memory in order to

write obfuscated design and PUF key generator design bitstreams into Flash

memory which are received from server.

• Flash Memory: 16 MB SPI Flash memory is used to store base design bit-

stream, PUF key generator design bitstream, obfuscated design bitstream, and

PUF keys. Memory organization of these items on Flash memory is given in

Figure 32.

Figure 32: Memory organization on Flash memory.

Base design employs a software application which is built on a low-level software layer

(Standalone BSP) to control hardware. Additionally, Xilinx Memory File System

(xilmfs) is used to implement a basic file system and lwIP TCP/IP Stack [41] library
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is used to run a network application in order to communicate with server.

The software application on base design starts a TCP/IP session in order to send a

configuration request to server and then take compressed obfuscated design and PUF

key generator design bitstreams. We used TFTP (Trivial File Transfer Protocol) in

our reference platform to send & receive data over a local network, but any TCP/IP

protocol could be selected.

The next step of software program is to decompress the received obfuscated design and

PUF key generator design bitstreams and then write them into nonvolatile memory by

using custom SPI controller. After that, a MultiBoot operation is started by utilizing

ICAP to reconfigure FPGA with obfuscated design.

5.1.3 Obfuscated Design

Obfuscated design is the next configuration of client after extracting PUF keys. We

described the methodology for obfuscating a design by using PUF keys of a device in

Chapter 4. As previously mentioned, a 64-bit PUF key is used in order to “unlock”

the obfuscated design. Therefore, PUF keys which are extracted from device and

then written into nonvolatile memory by PUF key generator design are read from

nonvolatile memory by an SPI controller block in obfuscated design. 32-bit part of

PUF key defines the initialization state of obfuscated design and the other four 8-

bit PUF keys defines transition keys between states in initialization state space (See

Figure 28). In our proposed framework, we applied our proposed PUF-key based

active hardware obfuscation method by creating an obfuscated finite state machine

with a computer program (See Appendix B). Then we manually modified the example

application to integrate it into generated obfuscated finite state machine. Although

this process represents a semi-automatic flow, a fully automatic flow is considered as
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a future work.

5.1.4 Bitstream Compression

Majority part of a typical bitstream consists of configuration data which utilizes each

reconfigurable cell of FPGA during configuration. Therefore, a bitstream generally

has a fixed size for each design to be implemented on a particular device. However,

if utilization rate of these identical elements are low for any specific implementation,

then bitstream could contain many redundant bits which may lead an increase at

both transmission and configuration time. Another issue is that one who has access

to the bitstream can discover the device model by measuring its size. Then he can

analyze or modify and compare the attacked bitstream to extract data. Therefore,

bitstream compression could be used to prevent these circumstances.

Xilinx BitGen tool which is built-in its ISE toolkit can generate a compressed bit-

stream for the netlist (by using -g option), however the compressed bitstream data

still contains redundancies. For this reason, an additional compression technique

would be meaningful in order to increase protection during both transmission and

configuration.

Our proposed framework applies a simple bitstream compression algorithm over Bit-

Gen compressed bitstream. In this algorithm, repeated bytes or words are represented

with a “MW” which stands for “Marker Word”. A marker word indicates that the

data which comes after the marker word represents the number of consecutive data

which is received just before the marker word. After compressing the bitstream, the

marker word is appended at the beginning of the compressed bitstream to inform the

recipient side. As a result, we obtain a “double-compressed bitstream”. Figure 33

shows an example flow for the algorithm.
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Figure 33: “Double-compressed” bitstream using proposed technique.

In this flow, at first BitGen compressed bitstream is analyzed by “Marker Word

Generator”. Marker word generator tries to find a unique data which is not included

in the bitstream. Once the marker word is found, BitGen compressed bitstream and

the obtained marker word is sent to “Compressor”. Then compressor generates the

“double-compressed” bitstream and appends the marker word with its length at the

beginning of the bitstream. Table 6 shows the obtained results by applying double-

compression technique and compares them with BitGen-compressed technique for a

couple of reference designs.
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Table 6: Comparison of BitGen-compressed and double-compressed techniques for

various application bitstreams.

Design

Content

Bitstream Size [byte] Overall

ReductionBitGen-Compressed Double-Compressed

Simple I/O operations

ICAP interface

483.818 144.714 70.1%

20-bit counter

Simple I/O operations

ICAP interface

492.780 146.359 70.3%

RGB to YCrCb

Color Space

Converter

530.542 157.480 70.3%

1024 word 18-bit FIFO

ICAP interface

488.146 145.868 70.1%

32-bit

Floating-to-Fixed Point

Conversion

489.920 146.115 70.2%

The inverse operation is performed at the recipient side and Xilinx BitGen compressed

bitstream is reobtained. Since FPGA can detect and decompress BitGen compressed

bitstream, there is no need to perform another decompression process again.

The implementation of compression algorithm is performed on server side by a Perl

script which finds the marker word and generates the compressed bitstream. For

the implementation of decompression algorithm, client system runs a software which

decompresses the received bitstreams.
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5.1.5 Server

Server runs a software program which waits for a configuration request from a client

system. When a configuration request is received, server program examines whether

client system is authentic. If server finds that the client is authentic, then it obfus-

cates the design by using PUF keys of client device. In our proposed framework,

we manually modified the design by applying the flow in Chapter 4. After design

is obfuscated, server program compresses both PUF key generator and obfuscated

designs as described in previous subsection and sends them over network.

5.2 Implementation of Proposed Framework

As an example implementation of our proposed framework, we demonstrated a ref-

erence video application for the representation of client system. This reference ap-

plication runs on a development board from Digilent Inc. [42] called “Atlys Spartan-

6 FPGA Development Board” which includes a Xilinx Spartan–6 LX45 FPGA, a

128Mbyte DDR2 RAM, a 16Mbyte SPI Flash memory, 10/100/1000 Mbps Ethernet

PHY, and many more features to accommodate our system requirements. During all

the design process of our proposed framework, Xilinx ISE DS 13.2 toolkit was em-

ployed. Additionally, a stereo camera module from Digilent Inc. [42] called “Vmod-

CAM” which employs two 2-megapixels CMOS digital image sensors is integrated

with the development board. Figure 34 shows an image of hardware of our reference

client system.
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(a) Atlys Development Board

(b) VmodCAM - Stereo Camera Module

Figure 34: Reference client system.

In this reference client system, two development boards were used to represent the

genuine system and the counterfeited system respectively. First, we started the gen-

uine system by initiating a configuration request and sending its Device DNA to

server. Then server approved that the system is authentic and responded with com-

pressed PUF key generator and obfuscated design bitstreams. After taking these

compressed bitstreams and decompressing them, client system generated 64-bit PUF

key and wrote them into Flash memory and reconfigured with obfuscated bitstream.

Finally, 64-bit PUF signatures were read from Flash into FPGA and state registers
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utilized with correct PUF keys. As a result, the video application started to operate

normally.

We repeated the same process above for the other client which represents a coun-

terfeited system. First, counterfeited client sent its Device DNA to server and then

server terminated the process since it could not find a paired Device DNA in its

database. After that we modified counterfeited client system by modifying the value

which is sent to server as the same of the genuine device. Then server confirmed the

request and sent compressed PUF key generator and obfuscated design bitstreams.

Although the counterfeited client was able to decompress and reconfigure with obfus-

cated design, it couldn’t run the video application correctly since it didn’t have the

correct PUF keys.

Table 7 shows the Hamming distance results for our 64-bit PUF key implementation

on five Spartan-6 devices. We used one PUF farm area for PUF key generation.

The average value of our data points is 29.2 which is relatively close to the expected

32. This result can further be improved by utilizing more area on FPGA die and

comparing larger set of data points.

Table 7: Hamming distance of 64-bit PUF keys on five Spartan-6 devices.

DEV ICE #1 #2 #3 #4 #5

#1 28 31 25 24

#2 31 33 28

#3 24 39

#4 29

#5

Table 8 shows comparison of resource utilization between the original design and the
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obfuscated version of original design for the reference video application. The increase

in resource utilization is reasonable since an additional SPI block is included into

obfuscated design to read the extracted PUF keys from Flash memory.

Table 8: Comparison of resource utilization between original and obfuscated designs.

Resources Original Design Obfuscated Design

Slice Registers 910 1827

Slice LUTs 1452 1882

Occupied Slices 547 697

Bonded IOBs 102 108

Slice LUTs

used as Memory
42 59
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CHAPTER VI

CONCLUSION

This thesis focused on developing a framework for secure reconfiguration of low-cost

FPGAs which have limited design protection options against counterfeiting. For this

reason, we adapted PUF methodology for FPGAs by using an efficient PUF imple-

mentation technique and then combined it with another powerful design protection

scheme called active hardware obfuscation. The combination of these two technique

provided an advantage over other solutions since the proposed framework utilizes

hardware intrinsic features of the device, thereby eliminating the need for a particu-

lar security key. Another advantage which comes out with this methodology is that

a design, which is obfuscated with PUF keys of a particular device will only operate

correctly if user has that particular device. Additionally, our proposed framework

protects designs without a dedicated protection block. Another difference is that

high-end FPGA-based systems have dedicated encryption blocks and an encrypted

design does not work on a counterfeited product if the attacker has not the correct key.

However, our framework deceives the adversary by locking the design and exhibiting

incorrect input and output behavior at runtime.

The proposed framework also established a server-client relationship to enable recon-

figuration of device over network. Since the transmission time over network could be

a bottleneck for timely critical systems, we used a simple compression algorithm to

shrink the bitstream size. As a result, our framework forms a strong infrastructure

for companies or design houses which need to control their products in the market.
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As a proof-of-concept, we demonstrated the effectiveness and feasibility of our frame-

work by implementing a video application. We showed that the application can only

function properly on genuine client system for which the application design is obfus-

cated by using PUF keys dedicated to that system.

As a future work, our framework will be enhanced by automating the process of

PUF-key based active hardware obfuscation with FSM extraction techniques.
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APPENDIX A

SLICEM DETAILS

XILINX VIRTEX-5 VS. SPARTAN-6

Figure 35: Block diagram of SLICEM in Xilinx Virtex-5 [32].
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Figure 36: Block diagram of SLICEM in Xilinx Spartan-6 [33].
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APPENDIX B

CUSTOM FSM GENERATORS

(AS PERL SCRIPTS)

B.1 Original FSM Generator

1 #!/usr/local/bin/perl

2 use warnings;

3

4 if( @ARGV != 3 ){

5 print "\nMISSING or EXCESSIVE NUMBER of ARGUMENTS\n";

6 print "\nSYNTAX: #_of_ORIGINAL_SPACE_STATEs #_of_INPUTS #

_of_OUTPUTS\n\n";

7 exit;

8 }

9

10 print "\nTemplate FSM Generator v0.1\n\n";

11

12 $maincontroller = "template_fsm.v";

13

14 $STATES = $ARGV [0];

15 $FF = log($STATES)/log (2);

16 $INPUTS = $ARGV [1];

17 $OUTPUTS = $ARGV [2];

18

19 open(MAINCONTROLLER , ">", $maincontroller) or die "can’t open the

file!";

20

21 create_top_module($FF);
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22 create_symbolic_states ($STATES , $FF);

23 create_state_registers ($FF);

24 insert_main_control_path_state_register ();

25 insert_main_control_path_next_state_logic ($STATES , $FF);

26 close_top_module ();

27

28 close(MAINCONTROLLER );

29

30 #SUBROUTINE -1: Create top module

31 sub create_top_module

32 {

33 print MAINCONTROLLER "module main_controller(clk , rst ,

ctrlin , ctrlout);\n";

34 print MAINCONTROLLER "\ninput clk , rst;";

35 print MAINCONTROLLER "\ninput [", $INPUTS - 1, ":0] ctrlin;"

;

36 print MAINCONTROLLER "\noutput reg [", $OUTPUTS - 1, ":0]

ctrlout ;\n";

37 }

38

39 #SUBROUTINE -2: Close top module

40 sub close_top_module

41 {

42 print MAINCONTROLLER "\n\nendmodule\n";

43 }

44

45 #SUBROUTINE -3: Insert state registers

46 sub create_state_registers

47 {

48 print MAINCONTROLLER "\n\n// STATE REGISTERS for the MAIN

CONTROL PATH";
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49 print MAINCONTROLLER "\nreg [", $_[0]-1, ":0] state_reg ,

state_next;";

50 }

51

52 #SUBROUTINE -4: Insert symbolic states

53 sub create_symbolic_states

54 {

55 my $i = 0;

56 for ($i = 0; $i < $STATES; $i++) {

57 my $i_str = unpack("B32", pack("N", $i));

58 $i_str =~ s/^0+(?=\d)//;

59 print MAINCONTROLLER "\nlocalparam [", $_[1]-1, ":0]

", "STATE" . $i, " = ", $_[1], "’b", $i_str , ";"

;

60 }

61

62 }

63

64 #SUBROUTINE -5: Insert main control path state register

65 sub insert_main_control_path_state_register

66 {

67 print MAINCONTROLLER "\n\n//MAIN CONTROL PATH STATE REGISTER

";

68 print MAINCONTROLLER "\nalways@(posedge clk) begin";

69 print MAINCONTROLLER "\n\tif(rst) begin";

70 print MAINCONTROLLER "\n\t\tstate_reg <= STATE0;";

71 print MAINCONTROLLER "\n\t";

72 insert_end ();

73 print MAINCONTROLLER "\n\telse begin";

74 print MAINCONTROLLER "\n\t\tstate_reg <= state_next;";

75 print MAINCONTROLLER "\n\t";

76 insert_end ();
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77 print MAINCONTROLLER "\n";

78 insert_end ();

79 }

80

81 #SUBROUTINE -6: Insert main control path next state logic

82 sub insert_main_control_path_next_state_logic

83 {

84 print MAINCONTROLLER "\nalways@ (*) begin";

85 print MAINCONTROLLER "\n\tstate_next = state_reg;";

86 $i = 0;

87 my $i_str = unpack("B32", pack("N", $i));

88 $i_str =~ s/^0+(?=\d)//;

89 print MAINCONTROLLER "\n\tctrlout = ", $OUTPUTS , "’b",

$i_str , ";";

90 print MAINCONTROLLER "\n\tcase(state_reg)";

91 for($i = 0; $i < $STATES; $i++){

92 print MAINCONTROLLER "\n\t\t", "STATE" . $i , ":";

93 print MAINCONTROLLER "\n\t\t\tbegin";

94 my $i_str = unpack("B32", pack("N", $i));

95 $i_str =~ s/^0+(?=\d)//;

96 if($i != ($STATES - 1)){

97 my $randout = int(rand(2 ** ($OUTPUTS)));

98 my $out_str = unpack("B32", pack("N",

$randout));

99 $out_str =~ s/^0+(?=\d)//;

100 print MAINCONTROLLER "\n\t\t\t\tctrlout = ",

$OUTPUTS , "’b", $out_str , ";";

101 my $randin = int(rand(2 ** ($INPUTS)));

102 my $in_str = unpack("B32", pack("N", $randin

));

103 $in_str =~ s/^0+(?=\d)//;
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104 print MAINCONTROLLER "\n\t\t\t\tif( ctrlin

== ", $INPUTS , "’b", $in_str , " ) begin";

105 print MAINCONTROLLER "\n\t\t\t\t\tstate_next

= ", "STATE" . ($i+1), ";";

106 print MAINCONTROLLER "\n\t\t\t\tend";

107 }

108 else{

109 my $randout = int(rand(2 ** ($OUTPUTS)));

110 my $out_str = unpack("B32", pack("N",

$randout));

111 $out_str =~ s/^0+(?=\d)//;

112 print MAINCONTROLLER "\n\t\t\t\tctrlout = ",

$OUTPUTS , "’b", $out_str , ";";

113 print MAINCONTROLLER "\n\t\t\t\tstate_next =

", "STATE0;";

114 }

115 print MAINCONTROLLER "\n\t\t\tend";

116 }

117 $i = 0;

118 print MAINCONTROLLER "\n\t\tdefault: ";

119 print MAINCONTROLLER "\n\t\t\tbegin";

120 my $randout = int(rand(2 ** ($OUTPUTS)));

121 my $out_str = unpack("B32", pack("N", $randout));

122 $out_str =~ s/^0+(?=\d)//;

123 print MAINCONTROLLER "\n\t\t\t\tctrlout = ", $OUTPUTS , "’b",

$out_str , ";";

124 print MAINCONTROLLER "\n\t\t\t\tstate_next = ", "STATE" . $i

, ";";

125 print MAINCONTROLLER "\n\t\t\tend";

126 print MAINCONTROLLER "\n\tendcase";

127 print MAINCONTROLLER "\nend";

128 }
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129

130 #SUBROUTINE -7 Insert ’end’ keyword

131 sub insert_end

132 {

133 print MAINCONTROLLER "end";

134 }

B.2 Obfuscated FSM Generator

1 #!/usr/local/bin/perl

2 use warnings;

3 use POSIX;

4

5 if( @ARGV != 3 ){

6 print "\nMISSING or EXCESSIVE NUMBER of ARGUMENTS\n";

7 print "\nSYNTAX: #_of_ORIGINAL_SPACE_STATEs #_of_INPUTS #

_of_OUTPUTS\n\n";

8 exit;

9 }

10

11 print "\nTemplate FSM Obfuscator v0.1\n\n";

12

13 $maincontroller = "template_obfuscated_fsm .v";

14

15 $STATES = $ARGV [0];

16 $INPUTS = $ARGV [1];

17 $OUTPUTS = $ARGV [2];

18

19 my @orig_space_state_array = ();

20 my @init_space_state_array = ();

21 my @tran_space_state_array = ();

22 my @main_state_array = ();

23 my @rand_state_array = ();
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24 my $ff;

25

26 $ff = 32;

27

28 open(MAINCONTROLLER , ">", $maincontroller) or die "can’t open the

file!";

29

30 create_top_module ();

31 create_symbolic_states ();

32 create_state_registers ($ff);

33 insert_main_control_path_state_register ();

34 insert_main_control_path_next_state_logic ();

35 close_top_module ();

36

37 close(MAINCONTROLLER );

38

39 #SUBROUTINE -1: Create top module

40 sub create_top_module

41 {

42 print MAINCONTROLLER "module main_controller(clk , rst ,

ctrlin , ctrlout);\n";

43 print MAINCONTROLLER "\ninput clk , rst;";

44 print MAINCONTROLLER "\ninput [", $INPUTS - 1, ":0] ctrlin;"

;

45 print MAINCONTROLLER "\noutput reg [", $OUTPUTS - 1, ":0]

ctrlout ;\n";

46 }

47

48 #SUBROUTINE -2: Close top module

49 sub close_top_module

50 {

51 print MAINCONTROLLER "\n\nendmodule\n";
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52 }

53

54 #SUBROUTINE -3: Insert state registers

55 sub create_state_registers

56 {

57 print MAINCONTROLLER "\n\n// STATE REGISTERS for the MAIN

CONTROL PATH";

58 print MAINCONTROLLER "\n(* KEEP = \"TRUE\" *) reg [", $_

[0]-1, ":0] state_reg;";

59 print MAINCONTROLLER "\nreg [", $_[0]-1, ":0] state_next;";

60 }

61

62 #SUBROUTINE -4: Insert symbolic states

63 sub create_symbolic_states

64 {

65 my $i = 0;

66 for ($i = 0; $i < $STATES; $i++){

67 push(@orig_space_state_array , "ORIGSPACE" . "STATE"

. $i);

68 }

69 @init_space_state_array = ("RESET", "INIT");

70 @tran_space_state_array = ("CHECKPOINT1", "CHECKPOINT2", "

CHECKPOINT3", "CHECKPOINT4");

71 @main_state_array = (@init_space_state_array ,

@tran_space_state_array , @orig_space_state_array );

72

73 print MAINCONTROLLER "\n\n// SYMBOLIC STATE DECLARATIONS";

74 $ff = 32;

75 $i = 0;

76 foreach (@main_state_array) {

77 my $randval = int(rand(2 ** 32));

78 while( $randval ~~ @rand_state_array ) {
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79 my $randval = int(rand(2 ** 32));

80 }

81 push(@rand_state_array , $randval);

82 my $i_str = unpack("B32", pack("N", $randval

));

83 $i_str =~ s/^0+(?=\d)//;

84 print MAINCONTROLLER "\nlocalparam [", $ff -

1, ":0] ", "GENERICSTATE" , $i , " = ",

$ff , "’b", $i_str , "; //", $_, " STATE";

85 $i++;

86 }

87

88 }

89

90 #SUBROUTINE -5: Insert main control path state register

91 sub insert_main_control_path_state_register

92 {

93 print MAINCONTROLLER "\n\n//MAIN CONTROL PATH STATE REGISTER

";

94 print MAINCONTROLLER "\nalways@(posedge clk) begin";

95 print MAINCONTROLLER "\n\tif(rst) begin";

96 print MAINCONTROLLER "\n\t\tstate_reg <= GENERICSTATE0;";

97 print MAINCONTROLLER "\n\t";

98 insert_end ();

99 print MAINCONTROLLER "\n\telse begin";

100 print MAINCONTROLLER "\n\t\tstate_reg <= state_next;";

101 print MAINCONTROLLER "\n\t";

102 insert_end ();

103 print MAINCONTROLLER "\n";

104 insert_end ();

105 }

106
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107 #SUBROUTINE -6: Insert main control path next state logic

108 sub insert_main_control_path_next_state_logic

109 {

110 print MAINCONTROLLER "\nalways@ (*) begin";

111 print MAINCONTROLLER "\n\tstate_next = state_reg;";

112 my $i = 0;

113 my $i_str = unpack("B32", pack("N", $i));

114 $i_str =~ s/^0+(?=\d)//;

115 print MAINCONTROLLER "\n\tctrlout = ", $OUTPUTS , "’b",

$i_str , ";";

116 print MAINCONTROLLER "\n\tcase(state_reg)";

117 $i = 0;

118 foreach(@init_space_state_array ){ #INIT SPACE STATES

119 print MAINCONTROLLER "\n\t\t", "GENERICSTATE

" . $i , ":", " //", $_ , " STATE";

120 print MAINCONTROLLER "\n\t\t\tbegin";

121 print MAINCONTROLLER "\n\t\t\t\tstate_next =

", "GENERICSTATE", ++$i, ";";

122 print MAINCONTROLLER "\n\t\t\tend";

123 }

124 $temp = @tran_space_state_array + $i;

125 $temp2 = @init_space_state_array + @tran_space_state_array ;

126 foreach(@tran_space_state_array ){ #TRANSITION SPACE STATES

127 print MAINCONTROLLER "\n\t\t", "GENERICSTATE

" . $i , ":", " //", $_ , " STATE";

128 print MAINCONTROLLER "\n\t\t\tbegin";

129 my $randout = int(rand(2 ** ($OUTPUTS)));

130 my $out_str = unpack("B32", pack("N",

$randout));

131 $out_str =~ s/^0+(?=\d)//;

132 print MAINCONTROLLER "\n\t\t\t\tctrlout = ",

$OUTPUTS , "’b", $out_str , ";";
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133 my $randin = int(rand(2 ** ($INPUTS)));

134 my $in_str = unpack("B32", pack("N", $randin

));

135 $in_str =~ s/^0+(?=\d)//;

136 print MAINCONTROLLER "\n\t\t\t\tif( ctrlin

== ", $INPUTS , "’b", $in_str , " ) begin";

137 $in_str = unpack("B32", pack("N", $temp2));

138 $in_str =~ s/^0+(?=\d)//;

139 $ff = 32;

140 if( $i == ($temp - 1) ){

141 print MAINCONTROLLER "\n\t\t\t\t\

tstate_next = ", "GENERICSTATE" .

($temp), ";";

142 print MAINCONTROLLER "\n\t\t\t\tend"

;

143 print MAINCONTROLLER "\n\t\t\t\telse

begin";

144 print MAINCONTROLLER "\n\t\t\t\t\

tstate_next = ", "state_reg + 1’

b1;";

145 $i++;

146 }

147 else{

148 print MAINCONTROLLER "\n\t\t\t\t\

tstate_next = ", "GENERICSTATE" .

++$i , ";";

149 print MAINCONTROLLER "\n\t\t\t\tend"

;

150 print MAINCONTROLLER "\n\t\t\t\telse

begin";
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151 print MAINCONTROLLER "\n\t\t\t\t\

tstate_next = ", "state_reg + 1’

b1;";

152 }

153 print MAINCONTROLLER "\n\t\t\t\tend";

154 print MAINCONTROLLER "\n\t\t\tend";

155 }

156 $temp1 = $i;

157 foreach(@orig_space_state_array ){

158 print MAINCONTROLLER "\n\t\t", "GENERICSTATE" . $i,

":", " //", $_ , " STATE";

159 print MAINCONTROLLER "\n\t\t\tbegin";

160 my $i_str = unpack("B32", pack("N", $i));

161 $i_str =~ s/^0+(?=\d)//;

162 if( $i != ($temp1 + $STATES - 1) ){

163 my $randout = int(rand(2 ** ($OUTPUTS)));

164 my $out_str = unpack("B32", pack("N",

$randout));

165 $out_str =~ s/^0+(?=\d)//;

166 print MAINCONTROLLER "\n\t\t\t\tctrlout = ",

$OUTPUTS , "’b", $out_str , ";";

167 my $rand = int(rand(2 ** ($INPUTS)));

168 my $i_str = unpack("B32", pack("N", $rand));

169 $i_str =~ s/^0+(?=\d)//;

170 print MAINCONTROLLER "\n\t\t\t\tif( ctrlin

== ", $INPUTS , "’b", $i_str , " ) begin";

171 print MAINCONTROLLER "\n\t\t\t\t\tstate_next

= ", "GENERICSTATE" . ++$i , ";";

172 print MAINCONTROLLER "\n\t\t\t\tend";

173 }

174 else{

175 my $randout = int(rand(2 ** ($OUTPUTS)));
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176 my $out_str = unpack("B32", pack("N",

$randout));

177 $out_str =~ s/^0+(?=\d)//;

178 print MAINCONTROLLER "\n\t\t\t\tctrlout = ",

$OUTPUTS , "’b", $out_str , ";";

179 print MAINCONTROLLER "\n\t\t\t\tstate_next =

", "GENERICSTATE", $temp1 , ";";

180 }

181 print MAINCONTROLLER "\n\t\t\tend";

182 }

183 print MAINCONTROLLER "\n\t\tdefault: ";

184 print MAINCONTROLLER "\n\t\t\tbegin";

185 my $randout = int(rand(2 ** ($OUTPUTS)));

186 my $out_str = unpack("B32", pack("N", $randout));

187 $out_str =~ s/^0+(?=\d)//;

188 print MAINCONTROLLER "\n\t\t\t\tctrlout = ", $OUTPUTS , "’b",

$out_str , ";";

189 $temp2 = @init_space_state_array + @tran_space_state_array ;

190 $in_str = unpack("B32", pack("N", $temp2));

191 $in_str =~ s/^0+(?=\d)//;

192 print MAINCONTROLLER "\n\t\t\t\tstate_next = ", "state_reg +

1’b1;";

193 print MAINCONTROLLER "\n\t\t\tend";

194 print MAINCONTROLLER "\n\tendcase";

195 print MAINCONTROLLER "\nend"

196 }

197

198 #SUBROUTINE -100 Insert ’end’ keyword

199 sub insert_end

200 {

201 print MAINCONTROLLER "end";

202 }
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APPENDIX C

XILINX SPARTAN-6 CONFIGURATION DETAILS

C.1 Configuration Modes

Xilinx Spartan-6 devices support several different configuration methods. There are

five different configuration interface available on Spartan-6 FPGAs as shown in Ta-

ble 9. The configuration interface by which the configuration operation is performed

is determined by 2-bit mode pins (M[1:0]).

Table 9: Spartan-6 FPGA configuration modes [7].

ConfigurationMode M [1 : 0] BusWidth

Master Serial/SPI 01 1, 2, 4

Master SelectMAP/BPI 00 8, 16

JTAG XX 1

Slave SelectMAP 10 8, 16

Slave Serial 11 1

In serial configuration modes, configuration of FPGA is done by loading one bit per

configuration clock cycle. The SelectMAP configuration interface is an 8-bit or 16-

bit bidirectional configuration interface and provides access to device configuration

logic hence can be used both for configuration and readback. The Master Serial

Peripheral Interface (SPI) allows an SPI-based serial Flash memory device to be

used to store configuration data. The Master Byte-Wide Peripheral Interface (BPI)

supports configuration over a parallel NOR Flash memory device. The JTAG interface
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is available as configuration interface anytime the device is powered up.

C.2 Device ID Check

Device ID check step compares device IDCODE register with the IDCODE value built

in the configuration bitstream. Xilinx Spartan–6 FPGA JTAG IDCODE register has

the following format:

vvvv:fffffff:aaaaaaaaa:cccccccccc1 where

v represents revision,

f represents 7–bit family code,

a represents 9–bit array code (4–bit subfamily and 5-bit device identifier),

and c represents 11–bit company code.

Table 10 shows ID codes which belong to some of Spartan–6 FPGAs.

Table 10: Spartan-6 FPGA family IDCODE values [7].

Device IDCode(Hexadecimal)

XC6SLX4 0xX4000093

XC6SLX9 0xX4001093

XC6SLX16 0xX4002093

XC6SLX25 0xX4004093

XC6SLX45 0xX4008093

XC6SLX75 0xX400E093

XC6SLX100 0xX4011093

XC6SLX150 0xX401D093
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APPENDIX D

GLOSSARY

Antifuse technology - A kind of fusible-link technology. Devices based on this

technology are said to be one-time programmable (OTP).

ASIC - Acronym for “Application Specific Integrated Circuit”. A semiconductor

device customized for a particular use.

ASSP - Acronym for “Application Specific Standard Product”. An integrated circuit

that implements a specific function.

Bitstream - Device configuration information for reconfigurable semiconductor de-

vices.

Bootloop - A special software application that keeps the processor in a defined state

until the actual application can be downloaded and run.

BPI - Acronym for “Byte Peripheral Interface”. A parallel configuration interface.

CLB - Acronym for “Configurable Logic Block”. The main logic resource for imple-

menting sequential as well as combinatorial circuits.

DCM - Acronym for “Digital Clock Manager”. A circuit for manipulating clock

signals by multiplying and dividing an incoming clock, changing duty cycle, phase

shifting, eliminating clock skew, etc.

FPGA - Acronym for “Field Programmable Gate Array”. A semiconductor device

designed to be configured in terms of hardware after manufacturing.

HDL - Acronym for “Hardware Description Language”. A computer language which

is used to describe and design electronic circuits.

ICAP - Acronym for “Internal Configuration Access Port”. A configuration interface
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that allows to access to the configuration memory of an FPGA.

IP - Acronym for “Intellectual Property”. A reusable unit of logic, cell, or chip layout

design that is the intellectual property of one party.

LogiCORE - A brand name for Xilinx-based IP units.

LUT - Acronym for “Look-Up Table”. A kind of logic resource inside FPGA to

implement a combinational logic function.

MAC - Acronym for “Media Access Control”. A data communication protocol which

provides addressing and channel access control mechanisms to communicate within a

network.

MicroBlaze - A soft processor core designed for Xilinx FPGAs from Xilinx. Imple-

mented entirely in the fabric of FPGA.

MultiBoot - A self-reconfiguration mechanism provided for some Xilinx FPGAs to

fully reconfigure the device from a nonvolatile memory.

NCD - Acronym for “Native Circuit Description”. A kind of description of a circuit

design that physically represents the design mapped to the components in FPGA.

Netlist - Describes the connectivity of an electronic design and contain description

of the parts or devices utilized.

PLB - Acronym for “Processor Local Bus”. A bus infrastructure designed for Xilinx

FPGAs.

PLL - Acronym for “Phase-Locked Loop”’. A control system that generates an out-

put signal whose phase is related to the phase of an input reference signal.

PUF - Acronym for “Physical Unclonable Function”. A function which utilizes in-

herent physical manufacturing variances to extract random output.

SelectMAP - A configuration interface that provides bidirectional data bus interface

to the FPGA configuration logic.

SLICE - Primary programmable logic block in Xilinx FPGAs.
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SoC - Acronym for “System-on-Chip”. An integrated circuit that integrates all com-

ponents of an electronic system into a single chip.

SPI - Acronym for “Serial Peripheral Interface”. A synchronous serial data link stan-

dard.

TFTP - Acronym for “Trivial File Transfer Protocol”. A file transfer protocol that is

generally used for automated transfer of configuration or boot files between machines

in a local environment.
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Gören S., Uğurdağ H.F., Özkurt Ö, Yıldız A. ”PUF, DPSR ve Bulandırma Yoluyla
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