
FAULT MASKING AS A SERVICE

A Thesis

by

Koray Gülcü

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
January 2013

Copyright c© 2013 by Koray Gülcü

FAULT MASKING AS A SERVICE

Approved by:

Professor Hasan Sözer (Advisor)
Department of Computer Science
Özyeğin University

Professor Ali Özer Ercan
Department of Electrical and
Electronics Engineering
Özyeğin University

Professor Barış Aktemur (Advisor)
Department of Computer Science
Özyeğin University

Professor Pınar Yolum
Department of Computer Engineering
Boğaziçi University

Professor İsmail Arı
Department of Computer Science
Özyeğin University

Date Approved: 2013

ABSTRACT

In service-oriented architectures, composite services depend on a set of partner ser-

vices to perform their tasks. These partner services may become unavailable due to

system and/or network faults, leading to an increased error rate for the composite ser-

vice. In this dissertation, we propose an approach to prevent the occurrence of errors

that result from the unavailability of partner services. We introduce an external Web

service, FAS (Fault Avoidance Service), to which composite services can register at

will. After registration, FAS periodically checks the partner links, detects unavailable

partner services, and updates the composite service with available alternatives. Thus,

in case of a partner service error, the composite service will have been updated before

invoking the partner service. We provide mathematical analysis regarding the error

rate and the ratio of false positives with respect to the monitoring frequency of FAS

for various partner service availability rates. We obtain empirical results regarding

these metrics based on several tests we performed using the Amazon Elastic Compute

Cloud. We use these results to evaluate our mathematical analysis.We also introduce

an industrial case study for improving the quality of a service-oriented system from

the broadcasting and content delivery domain.

iii

ÖZETÇE

Hizmet odaklı mimarilerde birbirinden bağımsız ve dağıtık olarak çalışan hizmetler

bir araya gelerek ihtiyaçlarımızı karşılayan bileşik hizmetleri oluşturulur. Bu harici

hizmetler sistem ya da ağ kaynaklı hatalardan dolayı kullanılamaz hale gelebilir ve

bir bileşik hizmetin hata oranını arttırabilir. Bu çalışmamızda harici hizmetlerin kul-

lanılamaz olmasıyla bileşik hizmetlerde meydana gelebilecek hataları önlemeye yönelik

bir yaklaşım sunmaktayız. Bu yaklaşımda bileşik hizmetlerin istedikleri zaman kay-

dolabilecekleri harici bir Web hizmeti, orijinal adıyla FAS (Fault Avoidance Ser-

vice) tasarladık. FAS kendisine bildirilen harici servis baglantılarını periyodik olarak

gözlemek, ulaşılmaz olanlarını tespit etmek, varsa alternatiflerini bulmak ve kaydolan

bileşik hizmete bu tespitleri iletmekle görevlidir. Böylece, harici hizmetlerde bir hata

oluştuğunda, bileşik hizmet söz konusu hatalı hizmeti kullanmadan FAS tarafından

güncellenebilir. Çalışmamızda harici hizmetin farklı kullanılabilirlik durumlarında

FAS’a ait gözleme frekansını degiştirerek hata oranı ve yanlış kabul oranını ölçmeye

çalıştık. Bu verileri kullanarak matematiksel analiz gerçekleştirdik. Amazon bulut

bilişim servislerini (Amazon Elastic Compute Cloud) kullanarak yaptığımız testlerle

bu metrikler ile ilgili deneysel veriler topladık. Bu deneysel verileri matematiksel anal-

izimizi değerlendirmek için kullandık. Ayrıca yaklaşımımızı televizyon ve yayıncılık

sektöründe kullanılan bir sistem üzerinde uygulayarak bir vaka analizi gerçekleştirdik.

iv

ACKNOWLEDGMENTS

This work is supported by the joint grant of Vestel Electronics and the Turkish

Ministry of Science, Industry and Technology (00995.STZ.2011-2).

v

TABLE OF CONTENTS

ABSTRACT . iii

ÖZETÇE . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

I INTRODUCTION . 1

II PROBLEM STATEMENT AND THE SOLUTION APPROACH 4

2.1 Problem Statement . 4

2.2 Overview of the Approach . 6

III DEPENDABILITY ANALYSIS . 8

3.1 Mathematical Analysis . 8

3.2 Experimental Evaluation . 14

3.2.1 Realization of the Approach 14

3.2.2 Experimental Setup . 15

3.2.3 Results and Discussion . 16

3.2.4 Threats to Validity . 23

IV INDUSTRIAL CASE STUDY . 25

4.1 Motivation . 25

4.2 Realization of the Approach . 28

4.2.1 Preliminary Analysis . 30

4.3 Implementation . 32

4.3.1 The Portal Application . 33

4.3.2 The FAS Service . 34

4.4 Experimental Setup . 36

4.5 Results and Discussion . 37

vi

V RELATED WORK . 42

VI CONCLUSIONS AND FUTURE WORK 45

APPENDIX A — SIMULATION RESULTS 47

REFERENCES . 53

vii

LIST OF TABLES

1 Experiment results for the average strategy. 39

2 Experiment results for the minimum strategy. 39

3 Experiment results for the exponential back-off strategy. 40

4 Comparison of the monitoring strategies. 40

viii

LIST OF FIGURES

1 A typical process in service-oriented systems. 4

2 An error recovery scenario. 5

3 The overall approach. 7

4 A scenario showing the important events in a system that uses FAS. . 9

5 Two scenarios for when the duration between two FAS checks is larger
than the period of unavailability. 11

6 Change of expected and maximum values of error and false positive
rates with respect to FAS frequency. 13

7 Simulation results of the error and false positive rates for T = 400 s
and A = 90%, using Octave. 14

8 E[ER], Max[ER], and the measured error rate (Measured[ER]) with
respect to F , when A is 60%, 70%, 80%. 17

9 E[ER], Max[ER], and the measured error rate (Measured[ER]) with
respect to F , when A is 85%, 90%, 92%. 18

10 E[ER], Max[ER], and the measured error rate (Measured[ER]) with
respect to F , when A is 94%, 95%. 19

11 E[FP], Max[FP], and the measured false positive rate (Measured[FP])
with respect to F , when A is 60%, 70%, 80%. 20

12 E[FP], Max[FP], and the measured false positive rate (Measured[FP])
with respect to F , when A is 85%, 90%, 92%. 21

13 E[FP], Max[FP], and the measured false positive rate (Measured[FP])
with respect to F , when A is 94% and 95%. 22

14 A snapshot from a portal application. 26

15 Sequence diagram of video streaming on the portal application. . . . 29

16 Content changes of the Ekolay service in a 14-day period. 32

17 Class diagram of the error detection module. 35

18 Content changes of the Izlesene service in a 14-day period. 37

19 Content changes of the Bloomberght service in a 14-day period. . . . 38

20 Content changes of the Vidivodo service in a 14-day period. 38

21 Content changes of the ShowTV service in a 14-day period. 38

ix

22 Simulation results for A = 60%. 47

23 Simulation results for A = 65%. 47

24 Simulation results for A = 70%. 48

25 Simulation results for A = 75%. 48

26 Simulation results for A = 80%. 49

27 Simulation results for A = 85%. 49

28 Simulation results for A = 91%. 50

29 Simulation results for A = 92%. 50

30 Simulation results for A = 93%. 51

31 Simulation results for A = 94%. 51

32 Simulation results for A = 95%. 52

x

CHAPTER I

INTRODUCTION

Service-oriented computing facilitates the development of distributed software sys-

tems based on loosely-coupled and self-contained services in heterogeneous environ-

ments [1]. These services can be discovered and composed with each other to provide

more sophisticated, higher-level, so-called composite services [2]. A composite Web

service can utilize several other Web services, which are discovered from a registry

service, such as UDDI [3]. Usually, a service aggregator [4] creates and offers a com-

posite service that is defined by means of specialized composition languages such as

WS-BPEL [5]. A composite service invokes the aggregated set of services via so-called

partner links. Hence, the services that are utilized by a composite service are named

partner services.

Some of the partner services can cease to be available due to system and/or

network faults, which have been shown in recent experimental studies [6] to be very

common. These faults result in an error and possibly a failure of the composite service

that relies on the availability of its partner services. Preferably, the composite service

should discover and utilize alternative services to tolerate such external faults. As

such, there have been several fault tolerance approaches proposed in the literature

[7, 8, 9]. However, error detection and system recovery increase the response time due

to the extra time they take.1 The consequential delay can be significant especially for

the composite services that utilize many other services [10]. Therefore, faults should

1If the composite service employs the Active fault tolerance strategy (i.e., connects to all of the
partner services in parallel and proceeds immediately after receiving a response from a partner),
occurrence of a fault in a partner service would not affect the composite service. However, this is
not possible in many cases due to constraints imposed by limited resources or the problem domain.

1

be avoided (if possible) to improve the dependability and performance of service-

oriented systems. One way to avoid fault is to execute the service selection process

per each request [11, 12] or per each flow of requests [13]. However, a partner service

might be accessed multiple times during the processing of a request and it can cease

to be available at any time. Moreover, executing the service selection process per each

request/flow also introduces an overhead, just like the overhead of error detection and

recovery.

Research efforts so far have mainly focused on providing service brokers [14, 12],

middleware [15, 16, 8] and framework support [17, 18, 19, 9] to compose dependable

services. In this thesis2, we propose fault masking as a service, whose utilization does

not require a particular composite service model. We introduce an external Web

service, FAS (Fault Avoidance Service), to which a composite service registers the

set of its partner services. FAS periodically and independently checks the availability

of the registered partner services for the presence of errors and compensates when

they are unavailable. Here, our goal is not to provide health monitoring or error

handling. Instead, FAS aims at fault avoidance by proactively reconfiguring composite

services and as such, masking [21] faults. Faults are avoided by updating the links

for unavailable partner services with available alternatives before they are invoked by

the composite service. This reduces the error-rate.

We studied the impact of the monitoring frequency of FAS on the effectiveness

of our approach. In particular, we defined analytical metrics regarding the error

rate and the false positive rate for various monitoring frequencies and partner service

availabilities. We performed several tests using a prototype implementation deployed

in the Amazon Elastic Compute Cloud (EC2) [22]. Our measurements confirmed the

accuracy of our analytical metrics, which can be used for determining an optimal

monitoring frequency depending on varying partner service availabilities.

2This thesis presents an extended version of our previous work [20].

2

Contributions of this thesis are threefold. First, we propose the implementation

of forecasting, detection and handling of external faults as external services. In this

way, a set of services can provide dependability support for other services, i.e., De-

pendability as a Service (DaaS). To our knowledge, so far this concept has only been

realized in the context of software/service testing (Testing as a Service - TaaS [23]).

Second, we provide analytical metrics regarding the impact of monitoring frequency

on the error rate and the false positive rate. We also validate these metrics with em-

pirical results for various partner service availabilities. We have not encountered such

an analysis in the literature although service monitoring has been employed in many

studies [24, 25, 8, 26]. Third, we present an industrial case study from the broadcast-

ing domain, where the utilization of third party Web services become predominant.

We discuss the deployment of FAS in this context and evaluate the effectiveness of

fault masking based on real data regarding the availability of third party content

providers.

The remainder of this dissertation is organized as follows. Chapter II presents the

problem statement and our solution approach. In Chapter III, we introduce a set of

analytical metrics and related mathematical analysis with an experimental evaluation.

An industrial case study for improving the availability of services employed in Smart

TVs is given in Chapter IV. In Chapter V, related previous work is summarized.

Finally, in Chapter VI we discuss possible extensions of this work for the future and

provide the conclusions.

3

CHAPTER II

PROBLEM STATEMENT AND THE SOLUTION

APPROACH

In this chapter we explain the problem statement and give details of our solution

approach.

2.1 Problem Statement

In service-oriented systems, a typical process involves a service requester and a service

provider that communicate with each other through service requests [1]. Usually a

service provider registers its services at a service broker that maintains a registry of

“available” services [1]; a service requester can look up and discover these services

through the service broker. For instance, a UDDI [3] service registry is a specialized

type of service broker.

composite
service

partner
services

service
registry

[2] lookup [1] registration

[3] invocation

Figure 1: A typical process in service-oriented systems.

Figure 1 depicts a typical process involving a composite service that discovers and

utilizes a set of partner services. In this figure, solid arrows represent actions that

are supposed to be performed once, during the deployment/activation of services.

4

composite
service

partner
service

alternative
service

service
registry

tlookup

ttimeout

toverhead

MTTF

MTTR

Figure 2: An error recovery scenario.

Dashed arrows, on the other hand, represent actions that are performed many times

throughout the life-time of services. The figure also depicts a scenario in which one

of the requests fails. After registering itself to the service registry, or after being

discovered by the composite service, or even after being successfully invoked several

times, a partner service can become unavailable due to system and/or network faults.

In fact, recent experimental studies [6] show that the majority of service invocation

failures are caused by these types of faults (connection timeout, service unavailability,

etc.). As a result, the invocation attempt leads to an error. In turn, the composite

service can i) report a failure to its service requester, or ii) discover and utilize

alternative services (might be hard-coded in the source code, UDDI and WS-BPEL

description, or it might be stored in an external cache) to recover from the error.

Figure 2 presents a scenario for the second case where it is assumed that there is

an available alternative service in the environment. In this scenario, the previously

designated partner service fails and becomes unavailable. Hereby, MTTF and MTTR

correspond to the mean time to failure and the mean time to recover for this service,

respectively. After the failure and before the recovery of the partner service, the

5

composite service makes an invocation without success. The composite service waits

for a timeout duration (ttimeout) to decide whether the partner service is available

or not. Once it is deemed to be unavailable, the composite service discovers an

alternative service from the service registry. The duration of this discovery is tlookup.

In case there is already a designated alternative service tlookup will be negligibly small.

In any case, a new invocation has to be made to the designated/discovered alternative

service. The total time that is necessary to recover from the error is toverhead.

Failure of a partner service is an external fault from the perspective of the compos-

ite service that tries to utilize the failed service. A composite service can be exposed

to many such external faults and for each of these faults, toverhead will be added to

its overall response time as a cost of fault tolerance. The consequential delay can be

significant especially for composite services that utilize many other services [10] to

perform their tasks. In the following, we introduce a fault masking approach, where

these external faults are handled to improve the dependability and performance of

composite services.

2.2 Overview of the Approach

In our approach, we introduce a Web service for masking faults. We name this

service Fault Avoidance Service (FAS). A composite service first determines the list

of partner services that are going to be utilized, and registers this list of services to

FAS. FAS periodically checks the availability of these services. In case a partner service

becomes unavailable, FAS locates alternatives and reconfigures the composite service

accordingly. When needed, the composite service uses the updated partner links.

This prevents composite service from trying to invoke erroneous partner services, as

such reduces the error rate and the overall response time of the process. To be able

to incorporate partner link updates, a registered composite service exposes a callback

method to receive updates from FAS.

6

composite
service

partner
services

service
registry

[2] lookup [1] registration

[5] invocation

fault
handling

error
detection

partner
service

list

service
cache

FAS

[3] registration

[4]
availability
 check

 [4.2]
update

[4.1] lookup

KEY: FAS boundary data flow among
the FAS components

one-time actions

latent actionsrepetitive actions

Figure 3: The overall approach.

Figure 3 depicts our overall approach. FAS stores a partner service list that is

provided by the composite service as the list of services to be monitored. This list

is used by the error detection module to check if the invocation of these services can

cause an error due to system/network faults that make the services unavailable. The

detected faults are reported to the fault handling module. This module is responsible

for reconfiguring the composite service by updating its partner links associated with

the unavailable partner services. As such, the composite service becomes oblivious to

the faults rooted at its partner services. The fault handling module may make use of a

service cache and occasionally the service registry to locate alternative and available

services. If a faulty service becomes available again, FAS updates the composite

service’s partner link back to its original setting. FAS checks the availability of the

registered partner links periodically. In the following chapter, we analyze the effect

of FAS checking frequency on the error rate and the false positive rate.

7

CHAPTER III

DEPENDABILITY ANALYSIS

In this chapter, we introduce a set of analytical metrics and related methametical

analysis. Afterwards, we explain our experimental evaluation and discuss its results.

3.1 Mathematical Analysis

In an ideal situation, FAS will immediately detect whenever a partner service becomes

unavailable or available. This way, the composite service can be notified right away so

that no request from the composite service will fail (i.e., no errors) and no request will

be unnecessarily forwarded to the secondary service (i.e., no false positives). However,

in real life, there will be cases where the composite service sends its request to the

partner service before FAS notices that the service is down, or the cases where the

composite service still uses the secondary service because FAS did not notice yet that

the partner service is back in life. If the service is down, it threatens the customer

satisfaction since the composite service will be trying to invoke an erroneous partner

service. If the primary service is back in life, using the secondary service can cause

several problems depending on the deployment. The second replica may have limited

resources and a higher cost for access. Hence FAS should be utilized as effective as

possible to avoid such unwanted consequences.

The error rate and the number of false positives depend on the frequency of

requests sent from the composite service, the frequency of FAS checks, and the chance

of a FAS check occurring right after a partner service status change. Increasing the

frequency of FAS checks would obviously decrease the error rate and false positives,

however, an increased frequency means more load and resource usage. Being aware

of this trade-off is vital for system administrators in adjusting the checking period for

8

Figure 4: A scenario showing the important events in a system that uses FAS. This
scenario also illustrates the case where 1/F ≤ TU .

FAS. In this section we provide the mathematical analysis focusing on the expected

values of the error rate and the false positive rate.

Figure 4 shows the important events in a system using FAS. In this scenario, we

assume that the composite service (CS) periodically sends requests at some frequency

C, FAS checks availability of the partner service at a frequency F , and the partner

service becomes unavailable for a certain period of its lifetime TU . For simplicity, we

assume that TU is a fixed duration and its starting time is uniformly distributed over

the total lifetime. It is also assumed that the requests, checks and partner service

up/down events are instantaneous. The duration between the moment the partner

service becomes unavailable and the time FAS detects this, is the period of errors,

because any request sent from the CS during this period will fail. Similarly, the

duration between the moment the partner service becomes available again and the

time FAS detects this, is the period of false positives, because any request sent from

the CS during this period will unnecessarily be forwarded to the secondary service.

For example, the third CS request in Figure 4 fails because FAS has not notified

the CS for the unavailability of the partner service yet. After the third FAS check,

FAS notifies the CS, the fourth CS request is successfully forwarded to the secondary

service and the potential error is avoided. However, the fifth request will still be

forwarded even though the partner service is back to life, resulting in a false positive.

9

This is because the fourth FAS check occurs after the fifth CS request.

The question we look into at this moment is the expected rate of errors that are

not avoided and the false positive rate. The smaller these values are, the more useful

FAS is. To calculate these values, we first list the metrics and units we use.

• A (%): Availability of the partner service.

• F (1/s): Frequency of FAS checks.

• C (1/s): Frequency of CS requests.

• T (s): Total lifetime of the system.

• TU (s): Period of unavailability of the partner service, i.e., TU = (1− A)T .

• TE (s): Period of errors.

• TF (s): Period of false positives.

• ER: Error rate, calculated as the ratio of the number of errors to the total

number of requests.

• FP: False positive rate, calculated as the ratio of the number of false positives

to the total number of requests.

• Ncheck: Number of FAS checks during TU .

Based on these terms, the expected error rate is calculated using the following for-

mulas:

E[ER] =
Expected number of errors

Total number of requests
=

Expected length of TE

Duration between two CS checks
Total lifetime

Duration between two CS checks

= E[TE]/T

Similarly,

E[FP] = E[TF]/T

E[TE] and E[TF] are calculated according to a case analysis as follows. We ignored

the case when F is 0 because it means that FAS is inactive and 1/F is undefined.

10

up

down
Partner service

FAS checks

CS requests

1 2 3 4 5

1 2

up

down
Partner service

FAS checks

CS requests

1 2 3 4 5

1 2

Figure 5: Two scenarios for when the duration between two FAS checks is larger than
the period of unavailability (i.e., 1/F > TU). In this case, a FAS check may or may
not occur during unavailability.

• Case 1 : 1/F ≤ TU . Figure 4 is a depiction of this case. In this scenario, the

minimum value of TE can be 0 (if a FAS check occurs immediately after the

partner service goes down), the maximum value can be 1/F (if a FAS check

occurs immediately before the partner service goes down). Assuming that the

starting time of FAS is uniformly distributed,

E[TE | 1/F ≤ TU] = (1/F)/2 =
1

2F

Similarly, the minimum value of TF can be 0, the maximum value can be 1/F .

Assuming uniform distribution,

E[TF | 1/F ≤ TU] = (1/F)/2 =
1

2F

• Case 2 : 1/F > TU . In this case, a FAS check may or may not occur during the

period of unavailability. Illustration of both cases is given in Figure 5.

– Case 2.1 : A FAS check occurs (i.e. Ncheck > 0). In this case, the value of

TE is between 0 and TU ; the value of TF is between 1/F − TU and 1/F .

Hence, assuming uniform distribution,

E[TE | 1/F > TU ∧Ncheck > 0] = (TU + 0)/2 = TU/2

E[TF | 1/F > TU ∧Ncheck > 0] = (1/F + (1/F − TU))/2 = 1/F − TU/2

11

– Case 2.2 : A FAS check does not occur (i.e. Ncheck = 0). In this scenario,

FAS misses the unavailability of the partner service; CS is never notified

by FAS. Hence, there are no false positives and all the requests that occur

during TU result in error:

E[TE | 1/F > TU∧Ncheck = 0] = TU E[TF | 1/F > TU∧Ncheck = 0] = 0

Again assuming uniform distribution, P (Ncheck > 0 | 1/F > TU) = TU/(1/F) =

F TU ; and P (Ncheck = 0 | 1/F > TU) = 1− F TU . Thus, the expected values in

Case 2 are calculated as below:

E[TE | 1/F > TU] = P (Ncheck > 0 | 1/F > TU)× E[TE | 1/F > TU ∧Ncheck > 0]

+ P (Ncheck = 0 | 1/F > TU)× E[TE | 1/F > TU ∧Ncheck = 0]

= F TU × TU/2 + (1− F TU)× TU

= F T 2
U/2 + TU − F T 2

U

= TU − F T 2
U/2

E[TF | 1/F > TU] = P (Ncheck > 0 | 1/F > TU)× E[TF | 1/F > TU ∧Ncheck > 0]

+ P (Ncheck = 0 | 1/F > TU)× E[TF | 1/F > TU ∧Ncheck = 0]

= F TU × (1/F − TU/2) + (1− F TU)× 0

= TU − F T 2
U/2

Putting the cases together, we have:

E[ER] = E[FP] =


1/(2FT), if 0 < 1/F ≤ TU

(TU − F T 2
U/2)/T, if 1/F > TU

Note that T is inversely proportional to the expected error and false positive rates.

This means, the advantage of using FAS will be higher in longer-running systems.

12

 0

 2

 4

 6

 8

 10

 12

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER], E[FP]
Max[ER], Max[FP]

Figure 6: Change of expected and maximum values of error and false positive rates
with respect to FAS frequency.

Following a similar case analysis, below are the upper bounds to ER and FP. They

are used to obtain the worst case values analytically for any given conditions in the

experimental evaluation. The plots of the expected and maximum values are given

in Figure 6 for when T = 400 s and TU = 40 s (i.e., A = 90%).

Max[ER] = Max[FP] =


1/(FT), if 0 < 1/F ≤ TU

TU/T, if 1/F > TU

We simulated our mathematical model by using Octave1 to verify our analysis.

We took T = 400 s and varied A from 60% to 95%. We changed F from 0.01 to

0.5 and repeated each combination of these metrics 10000 times and calculated the

average values of TE and TF to obtain ER and FP values. Figure 7 shows the results

for A = 90% and the remaining results can be found in the Appendix.

Looking at the simulation results, we see that E[ER] and E[FP] values overlap, and

the results are coherent with the mathematical analysis. Hence, the derived formulas

regarding E[ER] and E[FP] are verified by simulation.

1http://www.gnu.org/software/octave/

13

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 7: Simulation results of the error and false positive rates for T = 400 s and
A = 90%, using Octave.

3.2 Experimental Evaluation

We made a prototype implementation and performed several tests to evaluate our

mathematical analysis. In the following subsections, we discuss the realization of our

approach, the experimental setup and the results.

3.2.1 Realization of the Approach

We developed FAS using Java as a stand alone Web service that provides an inter-

face to composite services for registration at start-up. During registration, composite

services convey two types of information: i) a callback method to be used by FAS to

send partner link updates, and ii) a list of partner services and methods to be moni-

tored. FAS uses high-level (service-level) transactions to monitor the partner services

This is to guarantee that the target Web service is functional and reachable. Other

low-level mechanisms (e.g., ping requests) can be used for confirming the availability

of a system, however, this does not necessarily imply the functional availability of

services. For sending updates, FAS uses nonblocking Web service invocation. Hence,

14

in principle, FAS should be able to handle multiple clients simultaneously without

significant delay.

The utilization of FAS does not require the use of a platform/middleware or any

composite service model. However, composite services should have i) a FAS registra-

tion process as part of their initialization, and ii) an interface implemented for receiv-

ing partner link updates. In accordance with these two requirements, we developed

a composite service in Java. We did not use WS-BPEL because it does not directly

support stateful (i.e., persistent and global) data. Therefore, partner link updates in

a FAS instance cannot be reflected to the other, subsequently created instances. In

principle, our approach is agnostic to the composite service implementation and the

employed composition language. It is also possible to utilize WS-BPEL, for instance,

using the extension proposed by Wu et al. [27].

We also implemented a partner service and replicated it. If FAS updates the

partner link before the (unavailable) first replica is invoked, composite service sends

the request directly to the second replica. If not, the composite service tries to invoke

the first replica. In case of an error, the second replica is invoked and the received

response is returned to the client.

3.2.2 Experimental Setup

We used Axis v2.0 [28] and Tomcat v7.0 [29] to develop and deploy Web services in

our experiments. We globally distributed these services using the Amazon EC2 [22].

We utilized micro instances [22] and used identical machines, each of which has one

CPU core with one EC2 Compute Unit [22], 613 MB memory and 8 GB of storage.

All instances were running 32-bit Linux operating system. We deployed a composite

service and two replicas of our partner service. Partner service replicas were deployed

in Ireland and Tokyo, while composite service was in North California and FAS was in

Sao Paulo, Brazil. Tests were conducted and controlled with a PC located in Istanbul,

15

Turkey. The PC had Intel(R) Core 2 Duo P8600 at 2.40 GHz with 4 GB RAM. As

the client to the composite service, JMeter v2.4 [30] was used for executing different

test scenarios and collecting measurements automatically.

Throughout our tests, we varied availability (A) only for the first replica of the

partner service. The second replica is configured to be 100% available for all tests.

Hence, it is assumed that an available replica always exists in the environment.

We varied A between 60% and 95%, whereas F was varied between 0.02 (1/s)

and 0.5 (1/s). We performed tests for combinations of these parameters. For each

combination, the tests were repeated 20 times; ER and FP were calculated by taking

the average of measurements made over these repetitions. During a test, the client

sends 100 requests to the composite service at a frequency of 0.25 (1/s). Hence, for

each parameter combination, 2000 requests were sent in total for calculating the ER

and FP. The results are presented in the following subsection.

3.2.3 Results and Discussion

In this subsection, we present and discuss the results of our tests for different param-

eter settings. In Figure 8, 9 and 10, E[ER] and Max[ER] are plotted together with

the measured error rate (Measured[ER]) with respect to F . Results are shown when

A is 60%, 70%, 80%, 85%, 90%, 92%, 94% and 95%. Figures 11, 12 and 13 show

E[FP], Max[FP], and the measured false positive rate (Measured[FP]) for the same

range and settings of F and A.

It can be seen from the figures that E[ER] and Max[ER] values are consistent

with respect to the measured error rates. Likewise, the measured false positive rates

confirm the accuracy of our mathematical analysis regarding E[FP] and Max[FP].

By comparing the figures we can say that in higher availabilities, we obtain low ER

even if we use small F values. As an interesting observation, we noticed that in many

cases Measured[ER] converges to Max[ER] as F increases. We could not observe the

16

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(a) A = 60%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(b) A = 70%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(c) A = 80%

Figure 8: E[ER], Max[ER], and the measured error rate (Measured[ER]) with respect
to F , when A is 60%, 70%, 80%.

17

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(a) A = 85%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(b) A = 90%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(c) A = 92%

Figure 9: E[ER], Max[ER], and the measured error rate (Measured[ER]) with respect
to F , when A is 85%, 90%, 92%.

18

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(a) A = 94%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(b) A = 95%

Figure 10: E[ER], Max[ER], and the measured error rate (Measured[ER]) with re-
spect to F , when A is 94%, 95%.

19

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(a) A = 60%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(b) A = 70%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(c) A = 80%

Figure 11: E[FP], Max[FP], and the measured false positive rate (Measured[FP])
with respect to F , when A is 60%, 70%, 80%.

20

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(a) A = 85%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(b) A = 90%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(c) A = 92%

Figure 12: E[FP], Max[FP], and the measured false positive rate (Measured[FP])
with respect to F , when A is 85%, 90%, 92%.

21

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(a) A = 94%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 (

%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(b) A = 95%

Figure 13: E[FP], Max[FP], and the measured false positive rate (Measured[FP])
with respect to F , when A is 94% and 95%.

22

same trend consistently for Measured[FP]. We also observed some outliers especially

when F is just less than 0.05. See for instance the change of Measured[FP] in

Figure 13(b) and Figure 13(a). It is also worth noting that the measured values are

almost always slightly larger than the expected values. At the practical side, this

could be interpreted as a hint to system administrators that when configuring their

systems, they can choose to be pessimistic.

The rate of change of ER and FP with respect to F provides us a trade-off curve,

which can be utilized for selecting an (pareto-)optimal F for FAS. For our experimental

setup and parameter settings for instance, F = 0.1 could be a reasonable trade-off

point. In general, we can calculate F depending on the value of A and how much we

decide to compromise between ER and the load on FAS. The partial derivative of the

E[ER] function with respect to F defines the rate of change of E[ER] with respect to

F . If we want to balance the objectives of minimizing ER and minimizing the load on

FAS for instance, we can find the value of F for which this rate of change (i.e., slope)

is -1, e.g., for 1/F ≤ TU , E[ER] = 1/2FT ⇒ ∂(1/2FT)/∂F = −1/2TF 2 = −1 ⇒

F =
√

1/2T .

3.2.4 Threats to Validity

In our approach, we assume the availability of at least one replica of the partner

service. Accordingly, we deployed a partner service replica with 100% availability in

our experimental setup. There might be cases where i) there is no alternative partner

service, ii) the alternative service is also unavailable, or iii) the alternative service

cannot be directly substituted due to stateful properties [16]. We ignored these cases

in this work.

23

The availability of partner services are being monitored from the perspective of

FAS, which might possibly mismatch the experience of the composite service. Com-

plementary mediators [31] can be incorporated to monitor the dependability charac-

teristics of partner services from composite services’ perspectives.

There might be cases where extra logic is required to decide on partner service

substitutions. Even if the primary partner service becomes unavailable, the composite

service might have a tolerance margin for reconfiguration. Or it might be costly to

substitute a critical partner service. Depending on the process, composite services

might need to communicate with FAS to update critical information, service cache,

notification interface/protocol as well. We did not take these needs into account.

24

CHAPTER IV

INDUSTRIAL CASE STUDY

In this chapter, we introduce an industrial case study for improving the quality of

a service-oriented system from the broadcasting and content delivery domain. The

system is an example of so-called Smart TVs, which emerged after the introduction of

broadband connection to the TV systems. These systems utilize various services such

as third party video content providers, popular social media platforms and games.

Smart TVs combine these services into one portal application to facilitate user expe-

rience in various platforms such as set-top boxes and televisions. Nowadays various

manufacturers, operators and broadcasters from all around the world provide services

for Smart TVs.

In the following section we first motivate the relevance and importance of service

quality for these systems. Then, we describe the realization of our approach in this

context where different partner services roll into one composite service potentially

being consumed by millions of end users. Afterwards, we explain our implementation

and experiments. Finally, we discuss our observations and results as an evaluation of

the approach.

4.1 Motivation

In this work we investigated a portal application (see Figure 14) developed by Vestek,1

a group company of Vestel which is one of the largest TV manufacturers in Europe.

This application is being utilized by Vestel as an online television service in the local

market. The application is a platform comprising dozens of third party services,

1www.vestek.com.tr

25

including the most popular Web applications, audio/video streaming services and

games. Among these, there are services with similar content, some of which are the

most popular national broadcasters and online video sharing platforms. They serve

the same content on different platforms as well, such as PCs, tablets, smart phones

and Smart TVs. The application has unique user interfaces particularly designed for

various television and set-top box products.

Figure 14: A snapshot from a portal application.

Digital televisions and set-top boxes were renamed as Smart TV after the intro-

duction of broadband connection and Internet. This made televisions more capable

than displaying linear content fed by tuners – they could be used for sending emails,

surfing on the open Web, using social media services and watching movies, televi-

sion programs or online videos. Additional features enable users to start, pause, stop

and interact with television programs whenever wanted, known as non-linear con-

tent. Furthermore, recently introduced technologies mix linear and nonlinear content

by launching content-specific Web applications to enrich use cases. These technolo-

gies made it possible to watch online videos, movies or popular television shows

26

from different television channels over broadband connection bypassing broadcasting.

Hence, the target platforms are expanded to smart phones, tablets, PCs, MACs, game

consoles and media centers which brings the term “Multi-Screen TV”. The services

providing audio/video content over broadband connection, which are known as OTT

(Over the Top) services [32, 33], are considered to be major video services for Smart

TVs [34].

Important network and telecommunication companies such as Cisco, Alcatel-

Lucent, Ericsson and ATT have already started providing off-the-shelf solutions to

television operators or OTT service providers. Besides, there are alternative cloud-

based SaaS2 or CDN3 approaches. However, in general, the technological needs are

almost the same regardless of the adopted workflow: delivery, security and manage-

ment. In this work, we narrow our focus down to delivery, for assuring high service

availability in these composite systems.

The complexity of such environments creates various potential weaknesses which

might damage service quality tremendously considering the whole network. Overall

system might be affected in various ways depending on the type and location of faults.

Each type of problem requires its own way of handling. This makes it difficult to

provide a general approach covering all types of problems. For instance, considering

only one OTT service, there might be content-related problems which leave front

end devices unable to play (e.g. unsupported format) or server side problems which

result in faulty feeds, wrong URLs or no response at all. On the other hand, it

is also possible to experience intermittent network outages causing video and audio

freezes, long buffering periods, end-of-stream or lip-sync errors. In this work, we are

particularly interested in content-related faults that propagate through the portal

application and affect the user experience negatively.

2Software as a Service
3Content Delivery Network

27

Fortunately, most of the challenges are already addressed in existing systems like

IPTV4. However, it appears that current systems fall short for the next generation

Multi-Screen TV platforms. As detailed in [35], the reasons are: (i) Systems are

getting more complex with the increasing variation in playback devices, platforms,

protocols, formats, resolution and bandwidth requirements, causing more faults. (ii)

Higher demand from new devices will create extra traffic over their existing network.

(iii)Customer expectations will likely rise as the contents get enriched and extra fees

are put in charge by network providers. (iv) Viewers are willing to pay more for

better quality if content is satisfying. Content providers raise quality constraints to

differentiate and compete.

In the following section we focus on OTT services, how we can use FAS to mask

and avoid the faults threatening user satisfaction and service availability.

4.2 Realization of the Approach

Figure 15 describes a typical process when a client uses the portal application. When

the application is loaded, the client first selects a partner service. If the selected

service is a video provider, available categories are retrieved on the server side by

invoking the partner service. The response from the partner service is used for the

preparation of a page to convey available categories. This page appears on the client

device. The client picks a category and triggers another transaction. This time,

the portal application invokes the partner service again and retrieves an up-to-date

collection of video items for the selected category. Categories are distinguished with

a unique identifier that is passed as a parameter while using partner services’ APIs.

If the request succeeds, video items are displayed with additional meta information

such as thumbnail image, title, duration and popularity. Then the client chooses a

4Internet Protocol Television

28

video item and starts streaming which is performed directly between the client and

the partner service.

Client Portal Partner Service

retrieveServices()

selectService()

retrieveCategories()

selectCategory()

retrieveVideoItems()

selectVideo()

play()

Figure 15: Sequence diagram of video streaming on the portal application.

As we described in Chapter 2, this sequence resembles a typical service-oriented

process. The portal application, as a composite service, has dependencies to some

third party content providers which are essentially partner services. Multiplicity of

these video services fulfills the redundancy requirements to introduce fault masking

approach described in Chapter 2.2. Normally, there isn’t a mechanism in the portal

application to avoid possible external faults originated from the partner services.

Hence the application is vulnerable to propagation of these faults causing errors and

possibly failures. Here, we aim at detecting possible content problems and masking

them with FAS before they are demanded.

To experiment our approach, we exerted several applications. We implemented

a prototype composite service taking the role of the portal application. We kept

29

the utilization of partner services and server side interactions as original. However,

we changed the format of the responses so that we can capture, log and analyze

them easier. We also implemented the required interfaces so that the portal can

communicate with FAS. We deployed FAS as a stand alone web application. We

used several client applications to test our prototype portal application. We provide

detailed information in Section 4.3 about these implementations.

Before the actual experiments, we first made a preliminary analysis to gather in-

formation regarding the type and frequency of faults existing in the video services of

the portal application. Afterwards, we picked a particular partner service and per-

formed several tests with different monitoring frequencies. In the following subsection

we explain the preliminary analysis and present the results.

4.2.1 Preliminary Analysis

First, we analyzed what type of faults the partner services had. We picked two of

them, Izlesene5 and Ekolay6, to make observations about their availabilities. We

aimed at responding to these questions: (i)Are there any content problems in the

feeds? (ii) How are they changing within a period of time?

To investigate these questions, we used a test application that picked a random

video item from a random video category of a specified partner service to demonstrate

the real use-case scenario. We sent video URL of the selected item to the FAS service

in order to monitor and log the status of the video. The FAS service logged time,

URL and test result after each trial. We ran the system in this configuration for

11 days and collected data for approximately 1.6 million requests. For the Ekolay

service, 60% of the requests were unsuccessful, i.e. the system detected anomaly. On

the other hand, almost 100% of the requests were successful for the Izlesene service.

After observing broken links in the feeds from Ekolay service we decided to unveil

5http://www.izlesene.com/
6http://video.mynet.com

30

what type of faults were prevalent in the system. In case of frequent intermittent

faults, T would be proportionally small and F would be high as we discussed in

Chapter 3.2.3. Higher F causes more network traffic and resource usage that reduces

the efficiency. Yet, in case of infrequent changes in the feeds, we can set lower F and

leverage FAS more efficiently.

We went further and traced which video links were broken in the feeds. Results

pointed out two main observations: (i) If a video link was found to be erroneous, its

status never changed until removed from the service feed. (ii) The root cause was

HTTP 404 response code [36] when a video link was found to be broken. Based on the

first observation, we concluded that faults associated with the Ekolay service were not

intermittent network issues. Based on the second observation, we understood that

there was a server-side defect which caused broken links in the feeds. As a result of

these inferences, we conclude that it is possible to utilize the FAS service in order to

detect the anomalies associated with the Ekolay feeds.

As a next step, we focused on determining a reasonable T . Based on our first

observation, we know that a video item remains broken until it is unloaded. Hence,

we can estimate an efficient monitoring frequency based on how often Ekolay content

gets updated. It is unlikely to see an alteration in any video item until an update

occurs. However, if there is an update observed, several outcomes are possible: a

broken video item may get fixed, a new broken video item may be introduced, or a

video item may be unloaded. In any case, FAS must check Ekolay content again and

inform the composite service accordingly.

To reveal how often Ekolay content is updated, we implemented a client appli-

cation. At each turn, this application requests all video items by iterating through

available categories. Then it compares the video items one by one in the same order

with the items retrieved within the previous turn. It checks meta data and number

of video items for each category in addition to meta data and the order of each video

31

item. It logs time, service name and whether the service feed is changed or not. We

monitored Ekolay, Izlesene and 3 other video services available in the Vestek portal

for 14 days. Figure 16 shows the results for the Ekolay service. It can be seen that

the changes are observed in some certain time slices. Ekolay’s content is changing

relatively more sparsely compared to others. The results for other services can be

found in Section 4.5.

00:00 - 01:00
01:00 - 02:00
02:00 - 03:00
03:00 - 04:00
04:00 - 05:00
05:00 - 06:00
06:00 - 07:00
07:00 - 08:00
08:00 - 09:00
09:00 - 10:00
10:00 - 11:00
11:00 - 12:00
12:00 - 13:00
13:00 - 14:00
14:00 - 15:00
15:00 - 16:00
16:00 - 17:00
17:00 - 18:00
18:00 - 19:00
19:00 - 20:00
20:00 - 21:00
21:00 - 22:00
22:00 - 23:00
23:00 - 00:00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

H
ou

rs

Days

'ekolay.txt' matrix

 0

 3

 6

 9

 12

 15

N
um

be
r

of
 C

on
te

nt
 C

ha
ng

es

Figure 16: Content changes of the Ekolay service in a 14-day period.

4.3 Implementation

We developed applications using the Python language version 2.6. We did not use any

third party libraries. We utilized the HTTP protocol for the communication among

the stand alone web applications. Data exchange was performed by using XML to

handle serialization/deserialization. We also logged our test results in XML format

to facilitate post-processing. In the following subsections we give details about the

prototype portal application and the FAS service.

32

4.3.1 The Portal Application

We implemented a web application akin to the Vestek portal from the point of part-

ner service interactions. This application constitutes a composite service that can be

representative for investigating the effectiveness of a fault masking service. The main

reasons of utilizing our own composite service are threefold. First, the original im-

plementation uses .NET technology which requires Windows environment to deploy.

However, we prefer to stay on the Linux environment with open source tools. Second,

the original implementation has authentication and session management causing ex-

tra complexity in the experiments. However, we are particularly interested in partner

service interactions and anomalies in the feeds. Third, the original HTTP responses

are in the form of HTML pages with dynamic contents particularly designed for hu-

man interaction on special target platforms. However, we aim at leveraging client

side applications that perform automated tests. Hence, our implementation employs

XML-based approach for data exchange to interact with automated client applica-

tions.

We defined an interface for clients to simulate the use-case scenarios described

previously. We ported five content provider services from the original application.

We parameterize partner service selection, which can be specified by filling in query

parameters in the HTTP requests. Extra business logic is also implemented to com-

municate with the FAS service and receive callbacks about the faulty video items in

the service feeds. To facilitate the testing process, we replicated the Ekolay binding in

our portal application. The first replica is left intact to respond original feed without

taking into account the FAS interventions. We call this service the “native replica”.

The second replica is implemented in a way that the original feeds are manipulated

according to the FAS interventions. We call this service the “rectified replica”.

To manipulate erroneous videos, our application maintains a list of video items

according to the FAS service callbacks. Whenever a callback is received, it handles

33

the notification and updates the list accordingly. A callback might inform a new

discovery of an erroneous video and its alternative. Or, it can inform a fix about a

video item which was previously reported as broken. When the portal application

receives a request for the rectified replica, it retrieves up-to-date content from Ekolay

and exchanges the items reported by the FAS service with their alternatives.

4.3.2 The FAS Service

We implemented a stand alone Web application to demonstrate FAS. This implemen-

tation is intended to be used in conjunction with the portal application described

previously. It maintains a list of video items which the portal application informs by

using the HTTP interface. It periodically checks the items in the list and observes

their up-to-date status. If an error is detected, it tries to find an alternative video

item from another partner service.

To detect errors, we implemented a checker mechanism as depicted with a class

diagram in Figure 17. Each checker is a necessary step that will be carried out while

testing a partner service. They are fine-grained, reusable, independent components

that create a high-level, functional verification utility when aligned together. A de-

tector represents a complete error detection utility that uses a sequence of checkers

to perform tests. We create concrete detectors by grouping and configuring desired

checkers considering the functional requirements of the services we monitor.

In this case study we particularly deal with video items. Error detection module

is responsible for detecting anomalous video items. The portal application sends the

video URLs via HTTP POST requests. To ensure that streaming is successful for a

particular video item, we make an HTTP request to its URL and follow these steps:

(i) Check that a valid HTTP response is received. (ii) Check that response body of

the HTTP response is not empty. (iii) Check that the MIME type7 of the HTTP

7An identifier for file types.

34

<<interface>>

Checker

+ test()

ConcreteChecker

Detector

+ check() 1..*

ConcreteDetector

Figure 17: Class diagram of the error detection module.

response is “video/mp4”.8 (iv) Check that a chunk of 100 KB can be buffered from

the response body. We implemented a checker corresponding to each step in this

strategy and created a VideoDetector that aligns these checkers. We parameterized

MIME type and buffer size in the related checker implementations so that they can

be configured and reused for different types of services.

For fault handling, we deployed only one partner service in the service cache. We

chose the Izlesene service to find alternative videos when an anomaly is detected. We

did not perform any lookup or interact with a service registry to discover new Web

services on the fly. When an anomaly is detected, the implementation uses Izlesene

APIs to find an alternative video item. If there is any, it sends a notification to the

portal application about the erroneous video and its replacement. If it detects a fixed

video which is known to be erroneous, a notification is sent to inform that the original

video can be used.

8There is a dedicated header in HTTP Response called “Content-Type”. It specifies the MIME
type of the response body.

35

We conducted several experiments as described in Section 4.4. We utilized this FAS re-

alization and the portal application for testing our approach.

4.4 Experimental Setup

We performed experiments to observe and measure the effect of FAS to the overall

availability of the portal application. For this purpose, we deployed a client applica-

tion requesting content from the portal by selecting both the native replica and the

rectified replica at each iteration. After obtaining the responses, the client picks a

video item randomly and tests streaming by using the meta data from two different

replicas. At each trial, it logs time stamp, video ID and test results for both partner

services. The results give us a chance to compare and count directly how many faulty

video items are successfully detected and masked by the FAS service.

We repeated this experiment three times by applying different approaches for the

monitoring strategy. These strategies are:

(i) Average: Take T as the average period of time between two content changes.

(ii) Minimum: Take T as the minimum period of time between two consecutive

changes.

(iii) Exponential back-off: Take T as the minimum period of time between two con-

secutive changes and apply exponential back-off when there is no content change.

By using the preliminary analysis results mentioned in Section 4.2.1 and our con-

clusion F =
√

1/2T from Subsection 3.2.3, we calculated the values of 1/F for each

strategy. There were 7 changes in 14 days in the Ekolay feed. Therefore we set 1/F

to 588 seconds for the average strategy. We compared the durations between each

consecutive changes and found the minimum as 60 seconds which yields 11 seconds

as 1/F for the minimum strategy. For the exponential back-off strategy, we again

used the same value with minimum but employed the exponential back-off algorithm

36

to double 1/F when there is no change.9 Until a change is detected, the new value is

determined as 1/Fk+1 = 2k/F where k is the number of iterations starting from the

last change.

Tests were conducted using a PC with Intel(R) Core 2 Duo P8600 at 2.40 GHz

processor and 4 GB RAM. The applications were run on Ubuntu 10.04 LTS and

Python 2.6.5 Runtime Environment.

4.5 Results and Discussion

We monitored five video services from the Vestek portal as we described in Subsec-

tion 4.2.1. We observed how often their feeds changed for 14 days. Figure 16 in

Section 4.2.1 and Figures 18, 19, 20 and 21 show the results for Ekolay, Izlesene,

Bloomberght, Vidivodo and ShowTv services, respectively.

00:00 - 01:00
01:00 - 02:00
02:00 - 03:00
03:00 - 04:00
04:00 - 05:00
05:00 - 06:00
06:00 - 07:00
07:00 - 08:00
08:00 - 09:00
09:00 - 10:00
10:00 - 11:00
11:00 - 12:00
12:00 - 13:00
13:00 - 14:00
14:00 - 15:00
15:00 - 16:00
16:00 - 17:00
17:00 - 18:00
18:00 - 19:00
19:00 - 20:00
20:00 - 21:00
21:00 - 22:00
22:00 - 23:00
23:00 - 00:00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

H
ou

rs

Days

'izlesene.txt' matrix

 0

 3

 6

 9

 12

 15

N
um

be
r

of
 C

on
te

nt
 C

ha
ng

es

Figure 18: Content changes of the Izlesene service in a 14-day period.

We observe that each service has its own change regime with some similarities as

well. Ekolay and ShowTv change very rarely compared to others. Hence, for these

two services, we can consider a lightweight monitoring strategy triggered with these

changes. On the other hand, Izlesene has a much more frequent change characteristic.

9F is bounded by a predetermined limit.

37

00:00 - 01:00
01:00 - 02:00
02:00 - 03:00
03:00 - 04:00
04:00 - 05:00
05:00 - 06:00
06:00 - 07:00
07:00 - 08:00
08:00 - 09:00
09:00 - 10:00
10:00 - 11:00
11:00 - 12:00
12:00 - 13:00
13:00 - 14:00
14:00 - 15:00
15:00 - 16:00
16:00 - 17:00
17:00 - 18:00
18:00 - 19:00
19:00 - 20:00
20:00 - 21:00
21:00 - 22:00
22:00 - 23:00
23:00 - 00:00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

H
ou

rs

Days

'bloomberght.txt' matrix

 0

 3

 6

 9

 12

 15

N
um

be
r

of
 C

on
te

nt
 C

ha
ng

es

Figure 19: Content changes of the Bloomberght service in a 14-day period.

00:00 - 01:00
01:00 - 02:00
02:00 - 03:00
03:00 - 04:00
04:00 - 05:00
05:00 - 06:00
06:00 - 07:00
07:00 - 08:00
08:00 - 09:00
09:00 - 10:00
10:00 - 11:00
11:00 - 12:00
12:00 - 13:00
13:00 - 14:00
14:00 - 15:00
15:00 - 16:00
16:00 - 17:00
17:00 - 18:00
18:00 - 19:00
19:00 - 20:00
20:00 - 21:00
21:00 - 22:00
22:00 - 23:00
23:00 - 00:00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

H
ou

rs

Days

'vidivodo.txt' matrix

 0

 3

 6

 9

 12

 15

N
um

be
r

of
 C

on
te

nt
 C

ha
ng

es

Figure 20: Content changes of the Vidivodo service in a 14-day period.

00:00 - 01:00
01:00 - 02:00
02:00 - 03:00
03:00 - 04:00
04:00 - 05:00
05:00 - 06:00
06:00 - 07:00
07:00 - 08:00
08:00 - 09:00
09:00 - 10:00
10:00 - 11:00
11:00 - 12:00
12:00 - 13:00
13:00 - 14:00
14:00 - 15:00
15:00 - 16:00
16:00 - 17:00
17:00 - 18:00
18:00 - 19:00
19:00 - 20:00
20:00 - 21:00
21:00 - 22:00
22:00 - 23:00
23:00 - 00:00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

H
ou

rs

Days

'showtv.txt' matrix

 0

 3

 6

 9

 12

 15

N
um

be
r

of
 C

on
te

nt
 C

ha
ng

es

Figure 21: Content changes of the ShowTV service in a 14-day period.

38

As we can see in Figure 18, it is more stationary between 3:00 – 9:00 and hectic after

18:00. We can utilize a customized strategy based on this daily pattern with different

monitoring frequencies per each time slice. Vidivodo and Bloomberght appear to have

more uniform distribution of change on a daily basis. A fixed monitoring frequency

can be considered for these services. Besides, Bloomberght is slightly erratic between

3:00 – 5:00.

It is important to determine an efficient and suitable monitoring strategy while

utilizing FAS. But it can be seen that each service has its own regime which is subject

to change. Our observation was 14 days long. It would be more accurate over a longer

period of time. Hence an additional subsystem in FAS responsible for determining an

accurate and adaptive monitoring strategy would be useful.

Service Number of Faults Total Number of Attempts Availability (%)

Native Replica 9368 55835 83.22
Rectified Replica 10 55835 99.98

Table 1: Experiment results for the average strategy.

Table 1 shows the results of the average strategy described in Section 4.4. We

observed that 9368 streaming attempts out of 55835 failed for the native replica. This

corresponds to 16.78%. For the rectified replica, only 10 streaming attempts, which

is approximately 0.02%, failed. There are two attempts that failed for the native

replica and the rectified replica at the same time, i.e. FAS was unable to detect and

fix these. There are 8 attempts where the trial is successful from the native replica

but the rectified replica failed.

Service Number of Faults Total Number of Attempts Availability (%)

Native Replica 9269 54918 83.12
Rectified Replica 5 54918 �99.99

Table 2: Experiment results for the minimum strategy.

39

The results of the minimum strategy are given in Table 2. There are 9269 faults

out of 54918 attempts for the native replica. This corresponds to 16.88%. However

there are only 5 failing requests, which make less than 0.01% for the rectified replica.

There is only one failing request both for the native and rectified replica. There are 4

attempts that are successful for the native replica but failed for the rectified replica.

Service Number of Faults Total Number of Attempts Availability (%)

Native Replica 9490 56200 83.12
Rectified Replica 8 56200 ≺99.99

Table 3: Experiment results for the exponential back-off strategy.

Table 3 shows the results for the exponential back-off strategy. For the native

replica, 9490 failing attempts are detected out of 56200. This corresponds to 16.88%.

Only 8 trials were unsuccessful, which correspond to ∼0.01%. 2 attempts failed for

both replicas at the same time. There are 2 attempts failing for the rectified replica

while succeeding for the native one.

Strategy 1/F (seconds) Number of Faults Availability (%)

Average 588 10 99.98
Minimum 11 5 �99.99

Exponential Back-off 2k ∗ 11 and k=0,1,2... 8 ≺99.99

Table 4: Comparison of the monitoring strategies.

Table 4 sums up the results of the three monitoring strategies. The best ser-

vice availability is obtained with the minimum strategy, resulting slightly more than

99.99%. It is followed by the exponential back-off with a difference less than 0.01%,

and the average strategy with 99.98% availability. On the other hand, the average

strategy introduces the least overhead since network and resource usage is directly

proportional to the monitoring frequency. As we can see from Table 1, the average

strategy increased the availability from 83.22% to 99.98%. Even though the monitor-

ing frequency of the minimum strategy is approximately 53 times greater than the

40

average strategy, service availability is only increased by 0.01%. This makes the av-

erage strategy more appealing, assuming that the 0.01% difference in the availability

is negligible.

41

CHAPTER V

RELATED WORK

Anatoliy et al.[37] categorized errors and failures specific to service-oriented systems.

They introduced three main categories: i) network and system failures, ii) service

errors and failures, and iii) client-side binding errors. Our approach focuses on net-

work/system failures and client-side binding errors. Our goal is to forecast these

errors/failures, and if possible avoid them to increase the availability of composite

services.

So far, research efforts for improving the dependability of service-oriented systems

have focused on variety of fault tolerance strategies [9, 18, 17]. We particularly focus

on fault masking, a distinctive strategy compared to others. An analysis of the lit-

erature also reveals that dependability improvement has been mainly facilitated by

means of frameworks [37, 18], architectural methods [38, 10], reliable service connec-

tors [39], proxies [24] and service dispatchers [40]. We propose implementing a stand

alone service to which other services can register for improving their dependability.

There exist service brokers and architectural frameworks [14] that are responsible

for the creation/composition as well as the adaptation of a composite service. As an

advantage of this approach, structural changes (i.e., architecture selection) can also

be applied to the composite service [14]. However, such approaches are inherently

coupled with the adapted composite service based on a composite service model. FAS

does not change the structure and the behavior of the composite service and it does

not assume any composite service model.

Unlike fault tolerance, the dependability means such as error prevention, fault

forecasting and removal at run-time [21] have not received much attention in the

42

literature for their application to service-oriented systems. This is because, these

techniques are mainly considered to be applied at design time to avoid faults dur-

ing software development and maintenance. Another observation from the analysis

of the literature reveals that research efforts mainly focus on providing middleware

and framework support to develop dependable services. These results are valuable

especially for addressing internal faults; services should be developed/refactored in

a rigorous manner with the help of such middleware and/or frameworks. However,

forecasting, detection and the handling of many external faults can (partially) be

implemented by external services. In this way, a set of services can provide depend-

ability support for other services, i.e., Dependability as a Service (DaaS). To our

knowledge, so far this idea has only been realized in the context of software/service

testing (Testing as a Service - TaaS [23]) and not for fault handling at runtime.

Previously, the use of a proxy Web service was proposed to replace failed or slow

services with alternative services [24]. Hereby, the quality monitoring is performed

by the composite service. The source code of the composite service is automatically

instrumented to add this functionality. As a drawback, there is a hard-coded primary

service that is always tried first. The proxy service is used for diverting to an alterna-

tive service only when/after a failure occurs. So, this approach tolerates faults that

are detected when the composite service is demanded. However we aim at detect-

ing and masking faults seamlessly by an external Web service before the composite

service is demanded.

In this work, we assumed the existence of alternative services that can be directly

substituted with unavailable services. However, dynamic service substitution can

be problematic in case of stateful services. As a complementary work, SIROCO

middleware [16] was introduced to tackle this problem by enabling semantic-based

service substitution.

Zheng and Lyu [8] introduce a middleware for composite services to keep track

43

of the QoS information regarding the utilized services. This information is updated

at each use of a service and sent occasionally to a common server. The collected

QoS information is used for dynamically selecting the most appropriate fault toler-

ance strategy in case of an error. Empirical results show that their dynamic selec-

tion approach performs better than sticking to a statically-determined strategy. The

differences of their approach to ours are: i) They use a middleware; we propose im-

plementing a standalone service to which other services can register. ii) Our service

actively monitors the replicas. Their monitor is passive; it only stores data. iii) We

update the user’s list of preferred replicas, whereas they update the user’s preferred

fault tolerance strategy.

44

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

We introduced an approach for masking faults during the invocation of partner ser-

vices and as such, preventing errors in composite services. We developed FAS, an

external fault masking service that periodically checks the availability of a set of

partner services that are registered by a composite service. If one of the partner

services ceases to be available, FAS locates alternative services and sends an update

to the corresponding composite service, before the faulty partner service is invoked.

We defined analytical metrics for the error rate and the ratio of false positives

for different monitoring frequencies of FAS and partner service availabilities. We

performed several tests using a prototype implementation deployed on the Amazon

EC2. Our measurements confirmed the accuracy of our analytical metrics, which

can be used for configuring FAS based on varying partner service availabilities. Our

analysis also revealed that FAS is expected to be more effective in reducing the error

rate for long-running systems.

We examined an industrial use-case from the broadcasting domain. Hereby, we

applied our approach to real world video services. We performed a preliminary anal-

ysis on commonly used content providers to reveal common error types and possible

monitoring strategies while leveraging FAS. We investigated five of such services and

analyzed how frequent their feeds change. We applied three different strategies for

calculating the monitoring frequency. We conducted several experiments and com-

pared the effectiveness of these strategies. As expected, strategies that employ higher

monitoring frequencies resulted in higher availability. However, the improvement in

availability turned out to be insignificant with respect to the additional overhead of

45

increased monitoring frequency. Only 0.01% improvement in availabiliy was observed,

when the monitoring frequency was increased 53 times. A strategy based on expo-

nential back-off might provide an acceptable trade-off point among the alternative

strategies. The final choice would also depend on the available resources and the

importance of the content.

As future work, we plan to enhance FAS so that it can adapt both the service

checking strategy and the checking period at runtime, based on the monitored fail-

ure/usage frequencies and response times.

46

APPENDIX A

SIMULATION RESULTS

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 22: Simulation results for A = 60%.

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 23: Simulation results for A = 65%.

47

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 24: Simulation results for A = 70%.

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 25: Simulation results for A = 75%.

48

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 26: Simulation results for A = 80%.

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 27: Simulation results for A = 85%.

49

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 28: Simulation results for A = 91%.

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 29: Simulation results for A = 92%.

50

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 30: Simulation results for A = 93%.

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 31: Simulation results for A = 94%.

51

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

E[ER]
E[FP]

Figure 32: Simulation results for A = 95%.

52

References

[1] D. Georgakopoulos and M. Papazoglu, eds., Service-Oriented Computing. MIT
Press, 2009.

[2] B. Medjahed, A. Bouguettaya, and A. Elmagarmid, “Composing Web services
on the semantic Web,” VLDB Journal, vol. 12, no. 4, pp. 333–351, 2003.

[3] A. Tsalgatidou and T. Pilioura, “An overview of standards and related technol-
ogy in Web services,” Distributed Parallel Databases, vol. 12, no. 2, pp. 135–162,
2002.

[4] M. P. Papazoglou and D. Georgakopoulos, “Introduction to a special issue
on service-oriented computing,” Communications of the ACM, vol. 46, no. 10,
pp. 24–28, 2003.

[5] D. Jordan and J. Evdemon, “Web services business process execution language
version 2.0,” 2009. OASIS Standard.

[6] Z. Zheng, Y. Zhang, and M. Lyu, “Distributed QoS evaluation for real-world web
services,” in Proceedings of the IEEE International Conference on Web Services,
pp. 83–90, 2010.

[7] A. Zarras, M. Fredj, N. Georgantas, and V. Issarny, “Rigorous development of
complex fault-tolerant systems,” in Engineering Reconfigurable Distributed Sys-
tems: Issues Arising for Pervasive Computing, no. LNCS 4157, (Berlin, Heidel-
berg), pp. 364–386, Springer-Verlag, 2006.

[8] Z. Zheng and M. Lyu, “An adaptive QoS aware fault tolerance strategy for web
services,” Journal of Empirical Software Engineering, vol. 15, no. 4, pp. 323–345,
2010.

[9] A. Liu, Q. Li, L. Huang, and M. Xiao, “FACTS: A framework for fault-tolerant
composition of transactional web services,” IEEE Transactions on Services Com-
puting, vol. 3, no. 1, pp. 46 –59, 2010.

[10] L. Baresi and C. Ghezzi, “Towards self-healing service compositions,” Proceedings
of the 1st Conference on the Principles of Software Engineering, pp. 27–46, 2004.

[11] D. Ardagna and B. Pernici, “Adaptive service composition in flexible processes,”
IEEE Transactions on Software Engineering, vol. 33, pp. 369–384, 2007.

[12] V. Cardellini, V. D. Valerio, V. Grassi, S. Iannucci, and F. L. Presti, “A new
approach to QoS driven service selection in service oriented architectures,” in
Proceedings of the 6th IEEE International Symposium on Service Oriented Sys-
tem Engineering, pp. 102 –113, 2011.

53

[13] D. Ardagna and R. Mirandola, “Per-flow optimal service selection for web ser-
vices based processes,” Journal of Systems and Software, vol. 83, no. 8, pp. 1512–
1523, 2010.

[14] V. Cardellini, E. Casalicchio, V. Grassi, F. L. Presti, and R. Mirandola, “Ar-
chitecting dependable systems vi,” ch. Towards Self-adaptation for Dependable
Service-Oriented Systems, pp. 24–48, Berlin, Heidelberg: Springer-Verlag, 2009.

[15] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,
“QoS-aware middleware for web services composition,” IEEE Transactions on
Software Engineering, vol. 30, no. 5, pp. 311–327, 2004.

[16] M. Fredj, N. Georgantas, V. Issarny, and A. Zarras, “Dynamic service substitu-
tion in service-oriented architectures,” in Proceedings of the IEEE Congress on
Services, pp. 101–104, 2008.

[17] G. Dobson, “Using WS-BPEL to implement software fault tolerance for Web
services,” in Proceedings of the 32nd EUROMICRO Conference on Software En-
gineering and Advanced Applications, pp. 126–133, 2006.

[18] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, “Fault tolerant Web services,”
Journal of System Architure, vol. 53, no. 1, pp. 21–38, 2007.

[19] G. Canfora, M. D. Penta, R. Esposito, and M. Villani, “A framework for QoS-
aware binding and re-binding of composite web services,” Journal of Systems
and Software, vol. 81, no. 10, pp. 1754–1769, 2008.

[20] K. Gulcu, H. Sozer, and B. Aktemur, “FAS: Introducing a service for avoiding
faults in composite services,” in Proceedings of the 4th International Workshop
on Software Engineering for Resilient Systems, (Pisa, Italy), pp. 106–120, 2012.

[21] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing,” IEEE Transactions on Depend-
able and Secure Computing, vol. 1, no. 1, pp. 11 – 33, 2004.

[22] Amazon.com, “Elastic Compute Cloud (EC2),” 2012.
http://aws.amazon.com/ec2.

[23] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea, “Cloud9: a
software testing service,” SIGOPS Operating Systems Review, vol. 43, pp. 5–10,
2010.

[24] O. Ezenwoye and S. Sadjadi, “A proxy-based approach to enhancing the au-
tonomic behavior in composite services,” Journal of Networks, vol. 3, no. 5,
pp. 42–53, 2008.

[25] J. Simmonds, G. Yuan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, and J. Wa-
terhouse IEEE Transactions on Services Computing.

54

[26] W. Robinson and S. Purao, “Monitoring service systems from a language-action
perspective,” 2011.

[27] G. Wu, J. Wei, and T. Huang, “Flexible pattern monitoring for WS-BPEL
through stateful aspect extension,” in Proceedings of the IEEE International
Conference on Web Services, pp. 577–584, 2008.

[28] The Apache Software Foundation, “Axis,” 2012. http://axis.apache.org/.

[29] The Apache Software Foundation, “Tomcat,” 2012. http://tomcat.apache.org/.

[30] The Apache Software Foundation, “JMeter,” 2012. http://jmeter.apache.org/.

[31] Y. Chen and A. Romanovsky, “WS-Mediator for improving the dependability of
web services integration,” Journal of IT Professionals, vol. 10, no. 3, pp. 29–35,
2008.

[32] H. Zeadally, Media Networks: Architectures, Applications, and Standards. Taylor
& Francis Group, 2012.

[33] T. To and T. Hamidzadeh, Interactive Video-On-Demand Systems: Resource
Management and Scheduling Strategies. The Kluwer International Series in En-
gineering and Computer Science, Springer-Verlag GmbH, 1998.

[34] T. Lo, “Trends in the smart tv industry,” tech. rep., Digitimes Research, 2012.

[35] A. Breznick, “Assuring multi-screen video quality,” tech. rep., Heavy Reading -
IneoQuest, 2012.

[36] F. et al., “Hypertext transfer protocol – http/1.1,” tech. rep., Network Working
Group, 1999.

[37] A. Gorbenko, E. K. Iraj, V. S. Kharchenko, and A. Mikhaylichenko, “Exception
analysis in service-oriented architecture,” in Information Systems Technology and
its Applications, pp. 228–233, 2007.

[38] I. Chen, G. Ni, C. Kuo, and C.-Y. Lin, “A BPEL-Based fault-handling architec-
ture for telecom operation support systems,” Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. 14, no. 5, pp. 523–530, 2010.

[39] N. N. Salatge and J.-C. Fabre, “Fault tolerance connectors for unreliable Web
services,” in Proceedings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 51–60, 2007.

[40] G. Santos, L. Lung, and C. Montez, “FTWeb: A fault tolerant infrastructure
for Web services,” in Proceedings of the 9th IEEE International Conference on
Enterprise Computing, pp. 95–105, 2005.

55

