
COMPARISON OF TEXT-INDEPENDENT SPEAKER
VERIFICATION SYSTEMS IN A MULTI-CLASS,

SEMI-AUTOMATIC DETECTION SCENARIO

A Thesis

by

Fatih Yeşil
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COMPARISON OF TEXT-INDEPENDENT SPEAKER
VERIFICATION SYSTEMS IN A MULTI-CLASS,

SEMI-AUTOMATIC DETECTION SCENARIO

Approved by:

Assistant Professor Cenk Demiroğlu,
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ABSTRACT

Performance of the speaker verification systems is typically measured based on their

binary decision accuracy. Soft outputs of the systems are used mostly for calibration

or multiple system combination purposes. However, in speaker verification applica-

tions where close to 100% accuracy is required, such as the systems that are used in

the call centers of finance companies, it is not possible to rely on the binary decisions

of the existing verification systems. Still, in such cases, multi-class verification out-

puts (for example, high, medium and low verification score) returned by the speaker

verification systems can be used by a human agent to either reduce the verification

time and/or increase the verification accuracy compared to a human-only scenario.

In this thesis, an overview of a speaker verification system is given explaining in

detail the algorithms that are implemented. Particularly the details about a classi-

fier, GDA, which was firstly used by us for a verification purpose are given. It does

relatively better job than state of the art algorithms for non-linear data like in our

case. In the experiments section, some of the most popular speaker verification sys-

tems are compared in terms of the classical performance metric used in the literature.

Then, multi-class output performance of them is compared when a human agent is

assumed to be in the verification loop. Performance is measured by the reduction

in the number of questions used by the human agent for verifying the identity of

the caller without compromising the security. Experiments are performed using the

NIST 2006 and 2008 databases. Eight and one conversation sides (5 minutes each)

enrollment data and 1 side and 10 seconds verification data conditions are used.
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ÖZETÇE

Konuşmacı doğrulama sistemlerinin başarısı tipik olarak bu sistemlerin ikili karar ver-

medeki doğruluğuna dayanarak ölçülür. Sistemlerin gerçek değerli çıktıları çoğunlukla

sistem kalibrasyonu veya çoklu sistem kombinasyonları gibi amaçlar doğrultusunda

kullanılır. Ancak, finans firmalarının çağrı merkezleri gibi yerlerde kullanılan ve

%100’e yakın kesinlik gerektiren konuşmacı doğrulama uygulamalarında, varolan sis-

temlerin ikili kararlarına güvenmek mümkün değildir. Yine de bu tür durumlarda,

konuşmacı doğrulama sistemi tarafından döndürülen çoklu-sınıf doğrulama çıktıları

(örneğin yüksek, orta, düşük doğrulama yüzdesi) çağrı merkezi temsilcisi tarafından,

sadece insan olan senaryoya göre doğrulama süresini kısaltmak ve/veya doğrulama

kesinliğini arttırmak için kullanılabilir.

Bu tezde ilk olarak gerçekleyip kullandığımız algoritmaları detaylı bir şekilde an-

latarak bir konuşmacı doğrulama sisteminin genel görünümünü vereceğiz. Bilhassa

bir doğrulama amacı için ilk defa bizim kullandığımız, bir sınıflandırıcı olan GDA

hakkında detaylı bilgi vereceğiz. GDA bizim ele aldığımız problemdeki gibi doğrusal

olmayan verilerin sınıflandırılmasında görece olarak daha iyi çalışıyor. Deneyler bölümünde

ise öncelikle bazı çok bilinen konuşmacı doğrulama sistemlerinin başarımlarını klasik

başarım ölçütlerini kullanarak karşılaştırdık. Daha sonra, doğrulama döngüsünde

bir çağrı merkezi temsilcisinin de olduğunu varsayarak, bu sistemlerin çoklu-sınıf

başarımlarını karşılaştırdık. Başarım, temsilcinin güvenlikten ödün vermeden sor-

ması gereken soru miktarındaki azalmaya göre ölçüldü. Deneyler NIST 2006 ve

2008 veritabanları kullanılarak gerçekleştirildi. Herbiri beşer dakikalık olan bir ve

sekiz karşılıklı konuşmadan alınan kayıtlar ses imzalarının çıkarımında kullanıldı.
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Doğrulama yapılacak konuşma içinse beş dakikalık bir ve on saniyelik bir kayıt kul-

lanıldı.
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CHAPTER I

INTRODUCTION

Recognition lexically is the agreement that something is true or legal1. In speech

processing domain, speaker recognition is the detection of a person by means of

his/her voice. Recognition of a speaker using voice signature can be classified in two

groups of research topic: speaker identification and speaker verification. In speaker

identification problem, there is a pool of target speakers and the system tries to

determine the identity of the trial speaker by matching the most possible one from

the speaker set. The system may reject the trial if it gets a relatively low score

below the threshold trained previously. On the other hand, speaker verification is

the decision process of whether a trial speaker it matches the claimed id or not. To

verify a speaker, that person should have a voice signature trained and kept in the

database.

1.1 Overview of a Speaker Verification System

Basically a verification scenario consists of two main parts: training and decision.

In Figure 1, the steps of training phase which is offline, is illustrated. Likewise the

training decision phase is online and it is illustrated in Figure 2.

Speaker verification is basically a binary classification problem where each speaker

is assumed to be a single class. To make a decision between two classes, firstly discrim-

inative features should be defined using raw speech. In speaker verification frequently

used features are short-term spectral features. They are called low-level features too,

1http://dictionary.cambridge.org
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Figure 1: Training phase of a verification system. It is a time consuming process per-
formed offline. Gathering the proper database, training the parameters, the threshold
tuning and calibration of the system are all done during this phase.

which will be given in Section 8.1.1 in detail. Some well known examples are mel-

frequency cepstral coefficients (MFCC), linear predictive cepstral coefficients (LPCC),

perceptual linear prediction (PLP) coefficients, line spectral frequencies (LSFs) [1].

Proper features are extracted and generally delta and delta-delta features are also

used within the static features.

Silence parts are removed using a voice activity detector (VAD). Energy based

classification is one of the detector type. In short-term analysis, energy of each frame

is computed then a relative thresholding may be applied. For example the frames

that are 30dB below the frame with maximum energy are discarded. Histogram

method is another way of silence removing. Two Gaussians are fit on to the energy

2



Figure 2: Decision phase of a verification system. It is done online. Likelihood
of data captured from the current speaker is computed using the previously trained
claimed ID model. A zero-one decision after thresholding or a probability is returned.

values and the component with higher energy is labeled as speech. Further processing

may also be needed to avoid from keeping the high-energy noise frames. Long-term

spectral divergence (LTSD) method and periodicity based VAD are other options to

be used [1].

Time domain signal can be enhanced to suppress the noise effects. Due to compu-

tational loads of time domain analysis feature domain normalizations are done [1].Cepstral

mean normalization (CMN),also called cepstral mean subtraction (CMS) and cepstral

variance normalization (CVN) are simple and well known normalization methods.

Mean of each feature is subtracted from each frame and then each frame is divided by

the standard deviation of that feature. This can be applied globally or locally using

3



a sliding window (mostly 3 second windows are used in literature). Feature warp-

ing, short-time Gaussianization and feature mapping are other channel compensation

techniques that can be applied in feature domain. Feature warping and short-time

Gaussianization both try to convert the cumulative distribution of frames to a target

distribution. 3s length of sliding windows are used generally and for each feature

vector warping is applied independently before delta features are computed. This

independency brings a high computational load. In feature mapping labels of chan-

nel type,i.e. landline, cell, cordless, are needed. For each type of channel a unique

GMM is adapted by MAP adaptation from a more general GMM. According to the

likelihood proper MAP adapted GMM is used for an unknown channeled utterance.

After getting ready the features, next step is speaker modeling. There are two

types of methods dealing with the model generation: discriminative and generative

methods. Discriminative methods, like support vector machine(SVM) and artificial

neural networks (ANN) [2], try to separate two classes as much as possible. In

SVM, the purpose is to obtain the proper hyperplane with the maximum margin.

Gaussian mixture model (GMM) is the mostly used, well known method which is a

generative model. Unlike discriminative methods, generative methods are based on

model fitting and computation of likelihoods instead of decision boundaries. For a

text-dependent verification task hidden Markov models (HMMs) can be used for the

likelihood functions since there exist a prior knowledge of what text will be spoken [2].

In general, session variability is the main problem of a speaker verification system.

Channel mismatches, telephone type, handset type, background noise, record envi-

ronment, mood of the speaker are the leading reasons causing the session variability.

To remove these affects and build a robust system, there are some methods proposed

both for generative and discriminative methods.Joint factor analysis (JFA) [3] is a

successful method where the speaker mean supervectors (GMMs for each speaker)

are assumed to be linear combinations of channel and speaker variabilities. They are

4



called channel and speaker factors. Estimation of these factors are done jointly. As

a discriminative method, for SVM, nuisance attribute projection (NAP) and within-

class covariance normalization (WCCN) are proposed methods to compensate the

session variabilities. They will be both in detail given in Chapter 5.

Calibration of the system is an another significant issue which is related with

scoring and thresholding namely back-end section. For example NIST provides devel-

opment data for preparation of the system and training of the parameters to be used

in the application. The developed system parameters and thresholds may not work

as good as expected. Each speaker may have a different threshold that separates the

target speaker from its impostors. Some sort of score normalizations are proposed to

overcome these problems. ZNorm, TNorm, ZTNorm [2] are frequently used ones. In

ZNorm obtained likelihood score ls is normalized as l̂s = ls−µI
σI

. The parameters µI

and σI are computed offline for each speaker using a cohort of impostors.

1.1.1 i-vector based systems

I-vector based systems have recently become the dominant approach in speaker recog-

nition area and they are constructed on Gaussian mixture models. I-vector extrac-

tion was introduced by Dehak [4]. Since the variabilities among the individuals and

sessions of individuals are taken into account together instead of modeling them sep-

arately as in JFA, this approach is also called total variability space(TVS) approach.

Extracted i-vectors that are used as the identities of individuals have lower dimensions

than the conventional GMM supervectors. Besides it provides channel compensation.

Dimensionality reduction reduces the computational load so that further improve-

ments follow the i-vector method and it leads the National Institute of Standards and

Technology(NIST) to raise the number of trials and present new challenges in the

speaker recognition evaluations. Details about the speaker recognition evaluations

conducted by NIST will be given in Chapter 2.
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Assuming that the i-vectors have Gaussian distribution probabilistic linear dis-

criminant analysis(PLDA) is used [5], which is firstly introduced for face recognition

task. System performances gained an improvement via PLDA which will be given in

detail in Section 5.2. Since the real i-vectors are not Gaussian due to the outliers,

Kenny [6] proposed heavy tailed probabilistic linear discriminant analysis(HT-PLDA)

where the prior distributions are chosen as Student′s t instead of Gaussian. Using

the heavy-tailed priors, the effect of outliers are aimed to reduce. Better performance

is obtained using this new prior assumptions. Although HT-PLDA shows better per-

formance, its being computationally expensive still remains a problem. Starting from

this point, in [7] it was shown that using a nonlinear transformation non-Gaussian

behaviors of i-vectors can be eliminated. Instead of defining a new distribution for

the original i-vectors converting them to Gaussian distributed i-vectors provides the

similar performance as HT-PLDA gets with less complexity in computations.

1.2 About this thesis

Speaker verification is becoming a widely deployed technology in many real-life ap-

plications such as call centers of financial institutions or telecom operators. Although

very high accuracies are obtained in text-dependent tasks, text-independent verifi-

cation is still problematic especially when the amount of verification data is very

small. Luckily, in many application scenarios, such as the call centers of financial in-

stitutions, multiple sessions are available for enrolling a speaker which helps improve

the performance. At the OZU speech lab, we are focused on such text-independent

verification problems when multiple enrollment sessions are available. To that end,

several popular speaker verification algorithms have been implemented and compared.

Moreover, as a novel approach, the use of generalized discriminant analysis (GDA)

[8] for speaker verification have been investigated and it has been found that GDA

outperforms the alternative techniques in all cases.

6



Our work is based on the total variability space (TVS) approach [4] at the core

since TVS has been found to be the dominant technique in most of the recent lit-

erature. One of the goals of this work is to compare different classifiers for the

identity vectors (i-vectors) that are produced by TVS. We have investigated cosine

distance scoring [4], support vector machines (SVM) [9], and generalized discriminant

analysis (GDA) as classifiers. It is well-known that inter-session variability is an im-

portant problem that has substantial impact on the verification performance. As a

second goal, we compared the performance of within-class covariance normalization

(WCCN) [10], linear discriminant analysis (LDA) [4], nuisance attribute projection

(NAP) [11], probabilistic LDA (PLDA) [5], and GDA algorithms in compensating

for the intersession variability. Not only we investigated the classifiers and chan-

nel compensation schemes but also we compared their performances when coupled

together.

Measuring the performance of the systems, we have found that none of the existing

techniques have probability of false alarm, PFA, that is low enough for some of the

real-life applications such as the call centers of banks where speaker verification is

perhaps most needed. Therefore, here, we investigate a semi-automatic verification

approach where human agent is still in the loop but the load on the agent is reduced

with the help of a multi-class automatic speaker verification system. Indeed, we have

found that the automatic system can substantially reduce the number of security

questions that an agent has to ask for verification without a sacrifice from security

especially if the caller is a true client. Considering that the substantial number of

calls in a typical call center application is made by true clients, the results indicate

huge potential reduction in the amount of time needed for verification over the phone.

7



1.2.1 Outline of this thesis

This thesis is organized as follows. In Chapter 1 definition of a speaker verification

system and an overview of it are given. In Chapter 2 NIST is introduced and de-

tails about the evaluations conducted by NIST are given. In Chapter 3 universal

background modeling is introduced and details about the training phase is given.

In Chapter 4 total variability space approach is described. Since it has been the

dominant approach in this research area recently, i-vector extraction steps are given

in detail. In Chapter 7, we give the generalized discriminant analysis approach that

we proposed the usage of it in the speaker verification domain. Channel compensation

algorithms that are used here are described in Chapter 5.

In Chapter 6 different scoring techniques and performance metrics are given. We

also propose semi-automatic approach and describe performance metric used within

this new approach in this chapter. Experimental results are presented in Chapter 8.

All details about the set-up, dimensions and datasets are described in Section 8.

Conclusion is done in Chapter 9

8



CHAPTER II

NIST SPEAKER RECOGNITION EVALUATIONS

Speaker Recognition Evaluations have been held by a speech group at National In-

stitute of Standards and Technology (NIST) since 1996. The purpose of these SRE’s

is to contribute to the direction of research and the calibration of the existing text-

independent speaker recognition systems. It is open to all interested sides, researchers

from universities and industries.

Evaluation period starts with the announcement of upcoming evaluation plan

that gives of information about the tasks, rules and deadlines. After registration,

firstly development data is sent to participants to make them train and calibrate their

systems. Then evaluation data is sent and they are asked to submit the results in a

limited time period. The sides are also asked to submit the description of their system

including the algorithms used, execution time per CPU, computational sources, etc.

Eventually the evaluation ends up with a workshop where the official results are

declared and sides present their findings. By means of the new findings, algorithms

or problems encountered next evaluation’s main point starts to be figured out. The

current plan of NIST is to organize this evaluation biyearly which was conducted

annually till 2006.

The basic test in NIST SRE’s has been speaker detection since 2004, i.e., to decide

whether a known target speaker is speaking during a given segment of speech or not.

Previously speaker segmentation, speaker tracking were also asked to be done.

The storage format for all the utterances is 8− bit µ− law encoded speech signals

that are sampled at 8 − kHz sampling rate. The utterances are kept in SPHERE1

1ftp : //jaguar.ncsl.nist.gov/pub/sphere2.6a.tar.Z
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files separately. The header file of a SPHERE file contains record information(i.e.,

phone call, phone call recorded over microphone, interview recorded over microphone),

sample count, channel count, sampling rate, encoding type etc. The language spoken

in the utterance is also provided in the header. Until 2012 SRE automatic speech

recognition (ASR) transcriptions have also been provided to the participants for the

records in English. All these informations are allowed to be used.

2.1 General Evaluation Rules

• Only the informations of specified trial and claimed speaker can be used. Any

other test segments information can not be used except for the unsupervised

adaptation mode which is given in Section 2.2.1. For instance: the use of

evaluation data for impostor modeling in a normalization purpose.

• If an unsupervised adaptation mode is used, the process order of the test seg-

ments should be considered.

• Manually created transcriptions or any other information can not be used.

• Gender information is provided and it is allowed to be used. Anyway there is

no cross gender test segment.

• Information about the telephone transmission channel type(i.e., landline, cord-

less, cell phone) and of the telephone instrument type(i.e., speaker-phone, ear-

bud, head mounted) used in all segments is not provided and allowed. If they

are determined by automatic means, they can be used.

• Listening the records or any other interaction, testing is not allowed.

• Any information given in the header part of each utterance is allowed.
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2.2 Milestones in NIST SRE’s through Training and Test
Conditions

Since 2004 SRE is an important milestone and currently used NIST database by sides

start from 2004, a brief information will be given by 2004.

2.2.1 2004 SRE

In 2004, new conversational speech data was used. This data was collected in the

mixer project where Linguistic Data Consortium’s new ”‘Fishboard”’ platform was

used. This database mostly consisted of conversational telephone speech in English,

but it had some speech in non-English languages and some data recorded over micro-

phone. Previous evaluations primarily concentrated on either regular telephone data

or cellular phone data. In 2004 SRE both of them were utilized for the tasks.

For SRE’04 speaker detection is the basic test as in the last eight years from 1996.

The evaluation included twenty-eight different speaker detection tests named by the

amount and type of data both in train and test segments. These twenty-eight tests

composed of the combinations of seven train and four test segments. One of them is

the obligatory test to be submitted by the participants. Table 1 shows the possible

combinations, the required one is typed in bold font.

• Training Conditions

Unlike previous years there was no prior removal of intervals of silence. While

for the past evaluations regular phone or cellular phone data had the priority,

in 2004 evaluation both of them was the interest point.

1. A sample from a single channel conversation side which is approximately

10 seconds speech

2. A sample from a single channel conversation side which is approximately

30 seconds speech
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3. Single channel conversation side which has approximately five minutes to-

tal duration including silence.2

4. Three single conversation sessions that belong to the same speaker

5. Eight single conversation sessions that belong to the same speaker

6. Sixteen single conversation sessions that belong to the same speaker

7. Three summed-channel conversations, created concatenating the two sides

of existing conversations sample by sample. That conversations include

a common speaker who is the target speaker for all three summed and a

second person who is different for each of them

• Test Conditions

1. A sample from a single channel conversation side which is approximately

10 seconds speech

2. A sample from a single channel conversation side which is approximately

30 seconds speech

3. Single channel conversation side which has approximately five minutes to-

tal duration including silence.

4. A summed-channel conversation, created concatenating the two sides of

existing conversations sample by sample.

participants were asked to complete core condition, 1side-1side, which means the

target speaker has one utterance for enrollment and one for testing, both are ∼5 min.

durations. Remaining 27 conditions were up to the sides whether to submit or not.

All training and test segment condition pairs are given in Table 1. What to submit

2Each conversation side has the last five minute excerpt of an approximately six-minute conver-
sation. By means of this, beginning part of the conversation which seems to be less informative is
eliminated. Silence removal is not done anymore, it contains silence
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for each trial of given train-test pairs was to decide whether ’true’ or ’false’ within the

likelihood score as a system confidence. The participants were also allowed to submit

their unsupervised adaptation mode results where the target models can be updated

using the previously evaluated trials that are determined as clients. Unsupervised

adaptation mode was allowed for the first time in 2004 SRE.

Test Segment Condition

10 sec 30 sec 1 side 1 conv

T
ra

in
in

g
C

o
n

d
it

io
n 10 sec optional optional optional optional

30 sec optional optional optional optional

1 side optional optional required optional

3 sides optional optional optional optional

8 sides optional optional optional optional

16 sides optional optional optional optional

3 convs optional optional optional optional

Table 1: Enrollment and test conditions for SRE’04. The bold typed area is the
required condition of the evaluation. The rest is up to the participants.

2.2.2 2005 SRE

One year later, in 2005, there was a big change. For the first time both side of all two

channel conversations were provided to the sides. The purpose was to aid systems

in echo cancellation and dialog analysis. Data was collected in the mixer project

where Linguistic Data Consortium’s new ”‘Fishboard”’ platform, same as the previous

year, and additionally some ”‘multi-channel”’ data recorded at the same time from

different microphones. The records were mostly in English. 20 different conditions

were provided to be tested but one of them was obligatory, 1conv-1conv as shown in
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Table 2. For 2005 SRE summed-channel tests were identical to those of 2004 SRE,

so the results can be compared to see the improvement of the system performance

from the previous year if desired. But for the rest there are some significant changes

made.

• Training Conditions

Unlike pre-2004 years there was no prior removal of intervals of silence from

the utterances. For the two channel sided segments, the identity of the target

speaker is given.

1. A sample from a two-channel conversation segment which has approxi-

mately 10 seconds speech for the target speaker(The NIST energy based

automatic speech detector is used to capture ∼10 seconds of speech.)

2. One two-channel conversation segment which has approximately five min-

utes total duration including silence

3. Three two-channel conversation segment, each has approximately five min-

utes total duration including silence

4. Eight two-channel conversation segment, each has approximately five min-

utes total duration including silence

5. Three summed-channel conversations, created concatenating the two sides

of existing conversations sample by sample. That conversations include a

common speaker for all three summed and a second person who is different

for each of them

• Test Conditions

As it will be mentioned soon, auxiliary microphone data was also new for 2005.
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1. A sample from a two-channel conversation segment which has approxi-

mately 10 seconds speech for the target speaker(The NIST energy based

automatic speech detector is used to capture ∼10 seconds of speech.)

2. One two-channel conversation segment which has approximately five min-

utes total duration including silence

3. A summed-channel conversations, created concatenating the two sides of

existing conversations sample by sample.

4. One two-channel conversation segment where the usual telephone speech

segment was replaced by microphone data for the target speaker side. This

microphone data was provided with 8 kHz sampling rate and 8-bit µ− law

encoding form.

Test Segment Condition

10 sec 2-
chan

1 conv
2-chan

1 conv
summed-
chan

1 conv
aux mic

T
ra

in
in

g
C

o
n
d
it

io
n 10 sec 2-

chan
optional optional optional optional

1 conv 2-
chan

optional required optional optional

3 conv 2-
chan

optional optional optional optional

8 conv 2-
chan

optional optional optional optional

3 conv
summed-
chan

optional optional optional optional

Table 2: Enrollment and test conditions for SRE’05. The bold typed area is the
required condition of the evaluation.
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2.2.3 2006 SRE

In 2006 the conditions are almost same with SRE’05. The corpus for 2005 is reused

and additional data was collected by the same way for 2006 too. 1conv-1conv condi-

tion is required to submit whereas other 14 conditions are optional. The required one

and other possible tests are shown in Table 3. The test conditions of 2006 SRE are

identical with those of 2005 so direct performance comparisons could be done fairly.

• Training Conditions

1. A sample from a two-channel conversation segment which has approxi-

mately 10 seconds speech for the target speaker(The NIST energy based

automatic speech detector is used to capture ∼10 seconds of speech.)

2. One two-channel conversation segment which has approximately five min-

utes total duration including silence

3. Three two-channel conversation segment, each has approximately five min-

utes total duration including silence

4. Eight two-channel conversation segment, each has approximately five min-

utes total duration including silence

5. Three summed-channel conversations, created concatenating the two sides

of existing conversations sample by sample. That conversations include a

common speaker for all three summed and a second person who is different

for each of them

• Test Conditions

1. A sample from a two-channel conversation segment which has approxi-

mately 10 seconds speech for the target speaker(The NIST energy based

automatic speech detector is used to capture ∼10 seconds of speech.)
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Test Segment Condition

10 sec 2-
chan

1 conv
2-chan

1 conv
summed-
chan

1 conv
aux mic

T
ra

in
in

g
C

o
n

d
it

io
n 10 sec 2-

chan
optional

1 conv 2-
chan

optional required optional optional

3 conv 2-
chan

optional optional optional optional

8 conv 2-
chan

optional optional optional optional

3 conv
summed-
chan

optional optional

Table 3: Enrollment and test conditions for SRE’06. The bold typed area is the
required condition of the evaluation.

2. One two-channel conversation segment which has approximately five min-

utes total duration,i.e. with silence

3. A summed-channel conversations, created concatenating the two sides of

existing conversations sample by sample.

4. One two-channel conversation segment where the usual telephone speech

segment was replaced by microphone data for the target speaker side. This

microphone data was provided with 8 kHz sampling rate and 8-bit µ− law

encoding form.

2.2.4 2008 SRE

In 2008 short2-short3(1conv-1conv) condition was required out of 13 conditions. All

possible training and test condition combinations are shown in Table 4. Unlike the

past years interview data over microphone channel was added to the required trial

segment both for training and test, additionally telephone data over microphone

channel added to the test segment. Information of channel type, i.e. telephone or
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microphone was given. Also it is known that whether the record is a usual telephone

conversation or an interview scenario. Some of the data of 2006 SRE is reused for

2008 SRE.

Within the significant changes from the previous years conditions, it is possible

to compare the results of conversational telephone data with 2006 SRE. For the rest

of the conditions it is unfair.

• Training Conditions

1. 10sec : A sample from a two-channel conversation segment which has ap-

proximately 10 seconds speech for the target speaker(The NIST energy

based automatic speech detector is used to capture ∼10 seconds of speech.)

2. short2 : One two-channel conversation segment which has approximately

five minutes total duration over telephone channel or three minutes over

microphone channel within an interview scenario where mostly the target

speaker speaks.

3. 3conv : Three two-channel conversation segment, each has approximately

five minutes total duration including silence

4. 8conv : Eight two-channel conversation segment, each has approximately

five minutes total duration including silence

5. long : A single channel conversation segment which is eight minutes or

more recorded over microphone channel, involving mostly the speech of

the target speaker not the interviewer.

6. 3summed : Three summed-channel conversations, created concatenating

the two sides of existing conversations sample by sample. That conversa-

tions include a common speaker for all three summed and a second person

who is different for each of them
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• Test Conditions

1. 10sec : A sample from a two-channel conversation segment which has ap-

proximately 10 seconds speech for the target speaker(The NIST energy

based automatic speech detector is used to capture ∼10 seconds of speech.)

2. short3 : One two-channel conversation segment which has approximately

five minutes total duration over telephone channel or three minutes over

microphone channel within an interview scenario where mostly the target

speaker spoke.

3. long : A single channel conversation segment which is eight minutes or

more recorded over microphone channel, involving mostly the speech of

the target speaker not the interviewer.

4. summed : Three summed-channel conversations, created concatenating

the two sides of existing conversations sample by sample. That conversa-

tions include a common speaker for all three summed and a second person

who is different for each of them

2.2.5 2010 SRE

2010 SRE is similar to 2008 SRE except some minor changes on the core condition.

Core condition unlike the previous years includes conversational telephone speech

recorded over room microphone or conversation from an interview scenario additional

to the conversational telephone data recorded over usual(wired or wireless) telephone

channels. Some of the data from above mentioned all types is recorded by producing

relatively high or low vocal effort. Instead of fixed length interview segments, varying

length of interview segments are used. They vary from three minutes to fifteen min-

utes. Vocal effort information is not given whereas the knowledge of record type(i.e.,

telephone conversation or interview scenario, microphone or ordinary telephone chan-

nel) is given.
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Test Segment Condition

10sec short3 long summed

T
ra

in
in

g
C

o
n
d
it

io
n 10sec optional

short2 optional required optional

3conv optional optional

8conv optional optional optional

long optional optional

3summed optional optional

Table 4: Enrollment and test conditions for SRE’08. The bold typed area is the
required condition of the evaluation.

Since the participants of previous years’ evaluations were not so much interested

in unsupervised adaptation mode and the performance measure was changed in 2010,

unsupervised adaptation mode is not involved among the optional conditions any

more. There are some changes in performance measurement parameters given by

NIST. It will be given in details in Section 6.2.1. Since normal vocal effort English

conversational telephone data is similar to those belonging to 2008 SRE, fair compar-

ions can be done between two evaluations.

Out of 9 conditions shown in Table 5 core-core(1conv-1conv) test is the required

one in SRE’10. The database consists of all English records and number of trials is

increased a lot compared with previous years.

• Training Conditions

1. 10sec : A sample from a two-channel conversation segment which has ap-

proximately 10 seconds speech for the target speaker(The NIST energy

based automatic speech detector is used to capture ∼10 seconds of speech.)
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2. core : One two-channel conversation segment which has approximately five

minutes total duration over telephone channel or three to fifteen minutes

over microphone channel within an interview scenario where mostly the

target speaker spoke.

3. 8conv : Eight two-channel conversation segment, each has approximately

five minutes total duration including silence

4. 8summed : Eight summed-channel conversations, created concatenating

the two sides of existing conversations sample by sample. That conversa-

tions include a common speaker for all three summed and a second person

who is different for each of them

• Test Conditions

1. 10sec : A sample from a two-channel conversation segment which has ap-

proximately 10 seconds speech for the target speaker(The NIST energy

based automatic speech detector is used to capture ∼10 seconds of speech.)

2. core : One two-channel conversation segment which has approximately

five minutes total duration over telephone channel or three minutes over

microphone channel within an interview scenario where mostly the target

speaker spoke.

3. summed : Three summed-channel conversations, created concatenating

the two sides of existing conversations sample by sample. That conversa-

tions include a common speaker for all three summed and a second person

who is different for each of them

2.2.6 2012 SRE

Most of the targets data are taken from the corpora used in the past evaluations by

2004 Large and varying number of sessions are used per target speaker. In SRE12
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Test Segment Condition

10sec core summed

T
ra

in
in

g
C

o
n
d
it

io
n 10sec optional

core optional required optional

8conv optional optional optional

8summed optional optional

Table 5: Enrollment and test conditions for SRE’10. The bold typed area is the
required condition of the evaluation.

knowledge of all targets is allowed in computing each trials detection score. This dif-

fers from all previous SREs. Previously systems were restricted to use only knowledge

of the single target speaker that was specified as the trial target.

There are 9 possible training and test segment combinations for 2012 SRE as can

be seen in Table 6. Core-core test is the one that should be submitted.

The direct comparison of results partially possible between 2010 and 2012 because

of the significant changes related with data amount, number of sessions, training and

test conditions.

• Training Conditions

1. core : All speech data available for each target speaker. There is no dis-

tinction according to data amount or channel type.

2. telephone : All telephone channel data available for each target speaker.

Microphone data from any target speaker can not be used, but microphone

data belonging to others can be used for a background speaker purpose.

3. microphone : All microphone channel data available for each target speaker.

Telephone channel data from any target speaker can not be used, but tele-

phone data belonging to others can be used for a background speaker
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Test Segment Condition

core extended summed known unknown

T
ra

in
in

g
C

o
n
d
it

io
n core required optional optional optional optional

microphone optional optional

telephone optional optional

Table 6: Enrollment and test conditions for SRE’12. The bold typed area is the
required condition of the evaluation.

purpose.

• Test Conditions

1. core : A sample from a two-channel telephone conversation or interview

segment which has between 20 and 160 seconds speech for the target

speaker. Some of these utterances have additive noise.

2. extended : Conditions are same as the conditions of core with larger

number of trials than the core tests.

3. summed : A summed-channel excerpt from a telephone conversation or

an interview, created concatenating the two sides of existing conversations

sample by sample. The excerpt has between 20 and 160 seconds of target

speaker speech.

4. known : The trial list used in extended condition is used here too. The

system should presume that all of the impostors belong to known speakers.

5. unknown : The trial list used in extended condition is used here too.

The system should presume that all of the impostors belong to unknown

speakers.
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CHAPTER III

UNIVERSAL BACKGROUND MODEL (UBM)

State-of-the art speaker verification systems are mostly based on the Gaussian mixture

models (GMM). GMM based approaches use a background model which is assumed

to represent whole speaker space within all possible variabilities. Mathematically it is

a large GMM trained using the available acoustic features of speakers. This speaker

independent model is called universal background model (UBM).

UBM is utilized for a variety of purposes in speaker verification. It is used in

classical maximum a posteriori (MAP) adaptation to train the speaker models [12].

In GMM-SVM approach GMM supervectors are used [11]. It is also important part of

i-vector based systems, which is recently dominant method [4]. UBM is used to align

the acoustic features before training the i-vector extractor which will be explained in

Section 4.1.

In the decision part of a verification task, likelihood ratio test is mostly performed.

It is a zero-one decision task consisting comparison of two hypothesis: H0 for speaker

model and H1 for other speakers.

H0 = O is from speaker S

H1 = O is not from speaker S

As mentioned before, UBM is assumed to represent a large variety of speakers so

it can be used as an alternative hypothesis for below purpose:

∆(X) =
p(X|λS)

p(X|λS̄)


≥ θ acceptH0

<θ rejectH0

(1)
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There is a myth which can be generalized as ”‘There is no data like more data”’

for training UBM, so training dataset consists of tens of hours of speech data. There

are some parameters that are related to algorithm and data separately while train-

ing UBM. Algorithm parameters are such as: proper mixture number, initialization

method, training method, number of iterations. Which corpus to choose, number of

speakers, data amount per speaker, selection way of features, variability that can be

captured are the considered points related to data parameters. These concerns are

in detail analyzed in [13]. It is shown that instead of gathering a large dataset and

constructing UBM using whole data, smarter and faster algorithms can be utilized.

Leading feature selection (LFS), uniform feature selection (UFS), random feature

selection (RFS) and intelligent feature selection (IFS) from each utterance are the

methods in detail worked on. The main point is using as less data as possible that

satisfies enough variability and over-all performance for the system. As given in

[12], over-all system performance saturates after some point while increasing the data

amount. In parallel with this result, as the data amount raised the variability spanned

also saturates.

3.1 GMM Training

In our work mixture splitting and random feature selection methods are used. Starting

from two mixture, each mixture is split to two mixtures up to the desired mixture

number reached. Defined percentage of data per speaker is randomly selected and

used to train the GMM parameters.

One single Gaussian has the parameters mean (µ), variance (σ2). Gaussian mix-

tures have parameter weights (w) in addition to those belonged to single Gaussian.

The probability distribution function (pdf) of a GMM is defined as below.

p(x) =
M∑
m=1

wmN (x|µm,Σm) (2)
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where the weight parameters wm satisfy these two conditions: 0 ≤ wm ≤ 1 and∑M
m=1wm = 1. To estimate the optimum parameters of GMM related with the train-

ing data, first likelihood function is defined. Since using logarithm of the likelihood

function makes the computations easier(multiplications turn out to be summation

and exponential term goes off), log-likelihood function of a GMM is defined instead

of Eq. 2.

ln p(X|w, µ,Σ) =
F∑
f=1

ln

(
M∑
m=1

wmN (xf |µm,Σm)

)
(3)

Optimum parameters that maximize the likelihood of data to the model are es-

timated using the expectation-maximization(EM) algorithm [14]. It is an iterative

method since Eq. 3 has no closed-form solution that can be solved at one swoop.

1. GMM parameters; means µm, covariances Σm and mixture weights wm are

initialized and log likelihood is computed initially.

2. In E step the responsibilities of each mixture on the generation of each sam-

ple(frame) are calculated using the current parameter values of GMM.

γ(zfm) =
wmN (xf |µm,Σm)∑M
j=1 wjN (xf |µj,Σj)

(4)

3. In M step GMM parameters are estimated and updated to be used in the next

iteration using the responsibilities evaluated above Eq. 4

µnewm =
1

Fm

F∑
f=1

γ(zfm)xf (5)

Σnew
m =

1

Fm

F∑
f=1

γ(zfm)(xf − µnewm )(xf − µnewm )T (6)

wnewm =
Fm
F

(7)

where Fm, number of frames belonging to GMM component m is

Fm =
F∑
f=1

γ(zfm) (8)
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4. The log likelihood function in Eq. 3 is computed and the convergence condition

is examined to make a decision whether to keep iterating starting from step 2

or to stop.
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CHAPTER IV

TOTAL VARIABILITY SPACE (TVS)

Total variability space (TVS) modeling which was introduced by Dehak [4] has re-

cently been the mostly used paradigm in state of the art speaker verification systems.

This model can be formulated as shown below

Ms = M0 + Tws (9)

In above model M0 is the speaker independent supervector, namely concatenated

UBM means. T is the low rank total variability matrix and called projection matrix

or i-vector extractor too. ws is the latent variable which is assumed to be normally

distributed. Specifically ws is called as i-vector. Using this model each utterance

can be projected on to the space with a very low dimension compared with speaker

supervector, Ms. TVS modeling both provides dimensionality reduction and channel

compensation gathering whole variability in one space.

4.1 Training of The T-Matrix

In TVS modeling the eventual purpose is to extract a low dimensional i-vector for

each speaker. For this purpose, firstly T −matrix, so called i-vector extractor should

be trained using a large database consisting of speakers who have multiple sessions.

Each session is assumed as a different speaker unlike the eigenvoice modeling in [15].

Training procedure has just this minor difference between eigenvoice modeling and

TVS modeling.

Considering Eq. 9, it can be said that for any speaker s, frames aligned with

kth mixture of UBM, are distributed with mean Mk(s) and covariance matrix Σk.
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Σ denote the DKxDK block diagonal matrix whose block diagonals are Σ1, ...,ΣK .

Likelihood function over all speakers in the database is given as below

S∏
s=1

max
w

P (χ(s)|M0 + Tw,Σ) (10)

where χ(s) is speaker’s training data and s ranges over all utterances in the train-

ing set. Since in total variability space both speaker and channel variabilities are

considered, each utterance is assumed to belong to a different speaker.

4.1.1 EM Algorithm

Maximum likelihood (ML) estimation problem in Eq. 10 has no closed form solution

so expectation maximization (EM) algorithm, an iterative method, is used. EM has

two steps:

1) Current estimates of T and Σ are used to to find speaker supervector which

maximizes the likelihood of each training data, χ(s) as shown below.

w(s) = arg max
w

P (χ(s)|M0 + Tw,Σ) (11)

2) V and Σ are updated by maximizing

S∏
s=1

P (χ(s)|M0 + Tws,Σ) (12)

In the E-step of EM algorithm, main computation is calculation of posterior dis-

tribution of w(s) given the speaker’s training data. This computation is done for all

speakers and using current estimates (or in first iteration initial random values) of T

and Σ.

For the calculation of posterior distribution purpose, each speaker’s training data

should be aligned with the speaker-independent model, UBM . Alignment means

that each frame of the data is labeled by a mixture component. Using the alignment

informations following statistics of χ(s) are extracted to be used in next calculations.
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Nk(s) is the number of frames of aligned with the kth mixture, where k = 1, ..., K.

First and zero order statistics SX,k(s) and SXXT ,k(s) are computed as follows:

SX,k(s) =
∑
t

(Xt − µk) (13)

SXXT ,k(s) =
∑
t

(Xt − µk)(Xt − µk)T (14)

where the summation is done over all frames Xt of speaker s aligned with the kth

mixture of speaker independent model UBM and µk is the kth component of UBM

mean vector.

N(s) is defined as a DKxDK block diagonal matrix whose block diagonals are

N1(s)I, ..., NK(s)I. I, the identity matrix, is DxD matrix. Sx(s) is defined as KD

dimensional column vector, formed by concatenating SX,1, ..., SX,K and l(s) is defined

as shown below:

l(s) = I + T TΣ−1N(s)T (15)

After giving all necessary statistic definitions, expectation of posterior distribution

of w(s), E[w(s)] and E[w(s)wT (s)] are given by these two formulas:

E[w(s)] = l−1(s)T TΣ−1SX(s) (16)

E[w(s)wT (s)] = E[w(s)]E[wT (s)] + l−1(s) (17)

In the M-step, new model parameters T and Σ that maximize the Eq. 12 are

calculated as below:

T i
S∑
s=1

Nk(s)E[w(s)wT (s)] =
S∑
s=1

SiX(s)E[wT (s)] (18)
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Σk =
1

nc

(
S∑
s=1

SXXT ,k(s)−Mk

)
(19)

Eq. 18 is just a linear equation system that is RxR. It is solved using basic linear

algebra.
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CHAPTER V

CHANNEL COMPENSATION ALGORITHMS

5.1 Linear discriminant analysis (LDA)

LDA is a classic dimensionality reduction technique that attempts to retain the di-

mensions that are most important for classification while removing the rest. To do

that, LDA tries to maximize the between class covariance, Sb, and minimize the within

class covariance, Sw, by maximizing the Rayleigh quotient in Eq. 47.

Sb and Sw are defined as follows:

Sb =
S∑
s=1

(ws − w)(ws − w)T (20)

Sw =
S∑
s=1

1

ns

ns∑
i=1

(wsi − ws)(wsi − ws)T (21)

where ws = 1
ns

∑ns

i=1w
s
i is the mean of the i-vector for each speaker s, ns is the

number of sessions for speaker s, S is the total number of speakers, and w is the mean

of all i-vectors and it is assumed to be null.

This maximization problem above, is solved by eigenvalue resolution. Sb and Sw

are both symmetric matrices and their sizes are equal. The quotient in Eq. 47 which

is desired to be maximized gets its largest value for eigenvector, v, related with the

largest eigenvalue , λ, of matrix Sw
−1Sb. To maximize the quotient, the derivative

with respect to v is taken and set to zero as below:

(vtSwv)(2Sbv)−(vtSbv)(2Swv)
(vtSwv)2

= 0 which yields Sw
−1Sbv = ( v

tSbv
vtSwv

)v.

Using the general eigenvalue equation:

Sbv = λSwv (22)
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a projection matrix A = Sw
−1Sb, which consists of the best eigenvectors (those

with largest eigenvalues) in Eq. 22 of where λ is the diagonal matrix of eigenval-

ues. Dimensionality of the i-vectors are then reduced by multiplying them with the

projection matrix A obtained as described above.

5.2 Probabilistic linear discriminant analysis (PLDA)

In [5], a probabilistic version of the LDA technique is proposed for the face recogni-

tion tasks. In [4], the PLDA algorithm was shown to be effective for reducing the

intersession variability in speaker verification.

In the PLDA method, jth utterance of ith speaker, xij, is denoted as follows:

xij = µ+ Fhi +Gwij + εij (23)

where µ is the mean of all i-vectors in the training data.

Eq. 23 can be given as a linear system as below for a speaker with N sessions.



x1

x2

.

.

.

xN


=



µ

µ

.

.

.

µ


+



F G 0 ... 0

F 0 G ... 0

. . . . .

. . . . .

. . . . .

F 0 0 ... G


×



h1

w1

w2

.

.

.

wN



+



ε1

ε2

.

.

.

εN


or it can be summarized as below

x′ = µ′ + Ay + ε′ (24)

This probabilistic model consists of two parts: (i) the signal component µ+ Fhi,

which represents the speaker and (ii) the noise component Gwij+εij, which represents
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the session variability given a speaker. F and G are factor loading matrices, hi are

the speaker factors, and wij are the channel factors. hi and wij have Gaussian prior

distributions, N (0; I). The residual noise εij is defined to be Gaussian with a diagonal

covariance matrix.

The parameters are θ = {µ, F,G,Σ} are estimated with a Maximum Likelihood

(ML) approach using the Expectation Maximization (EM) algorithm.

In the E-step posterior distribution over the latent variables, hi and wij are cal-

culated as below

E[yi] = (ATΣ
′−1A+ I)−1ATΣ

′−1(xi − µ′) (25)

E[yiy
T
i ] = (ATΣ

′−1A+ I)−1ATΣ
′−1(xi − µ′) (26)

Then in M-step optimum parameter values are estimated as follows

rewriting the Eq. 23 as:

xij = µ+

[
F G

] hi

wij

+ εij (27)

xij = µ+Bzij + εij (28)

B =

(∑
ij

(xij − µ)E[zi]
T

)(∑
ij

E[ziz
T
i ])−1

)
(29)

Σ =
1

IJ

∑
i,j

Diag[(xij − µ)(xij − µ)T −BE[zi](xij − µ)T ] (30)

5.3 Within-class covariance normalization (WCCN)

WCCN is used to whiten the within-class covariance matrix so that Sw becomes

an identity matrix after normalization. Its asymptotic optimality properties have
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been shown to improve the performance of SVM classifiers with generalized linear

kernels [10]. When WCCN is used with CDS, the distance score is

score(w1, w2) =
(BTw1)T (BTw2)

‖BTw1‖‖BTw2‖
R θ (31)

where B is obtained from the Cholesky decomposition of the inverse matrix of Sw,

as S−1
w = BBT .

5.4 Nuisance attribute projection (NAP)

The NAP algorithm [11] attempts to remove the nuisance directions in the i-vector

space that are not related to interspeaker variations. I-vectors are multiplied with

a projection matrix P = I − RRT where R is a low rank matrix whose columns

are the k eigenvectors corresponding to the k largest eigenvalues of the within class

covariance matrix Sw in Eq. 21. Thus, the NAP technique confines the i-vectors in a

lower dimensional space by removing the directions that cause most of the intersession

variability. In that sense, it can be seen as an eigenchannel technique.

The new cosine distance after projection with P is

score(w1, w2) =
(Pw1)T (Pw2)

‖Pw1‖‖Pw2‖
R θ (32)
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CHAPTER VI

SCORING ALGORITHMS AND PERFORMANCE

MEASUREMENTS

Once the speaker models are trained, next step is how to measure the success of these

models. Verification scenario can be simplified as follows: there is a caller who claims

to be a certain identity and the system is asked to make a decision either within a

confidence value or not. In this context, frequently used algorithms are likelihood

ratio (LR) test, cosine distance scoring (CDS), support vector machines (SVM). As

mentioned in Section 7 generalized discriminant analysis (GDA) can also be counted

in this group.

To examine the overall performance of a verification system, all trials are evaluated

against their target speakers and the scores are obtained. The performance can be

analyzed over the error rates or the costs predefined for each type of error. An

automatic system may shorten the verification time or raise the security level in a

call center scenario. The analysis results of this contribution will be given as an

evaluation of performance too.

6.1 Scoring Algorithms

Scoring algorithms may primarily return a label that implies which class the caller

belong to as in SVM. In CDS, the system computes the distance between the caller and

the target speaker in the speaker space. Likelihood ratio test compares the likelihood

of the target speaker model and the alternative model given the caller data.
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6.1.1 Likelihood Ratio Test

There are two choices when a caller is needed to verify. It may be accepted that the

caller and claimed ID are the same speaker or the claim is rejected. For these two

options, two different hypothesis need to be formulated and tested. H0 and H1 are

two hypothesis:

H0 = wc and wt are from the same speaker

H1 = wc and wt are from different speakers

where wt is the i-vector of claimed(target) speaker and wc for the caller.

∆(w) =
p(wt, wc|H0)

p(wt|H1)p(wc|H1)


≥ θ accept H0

<θ reject H0

(33)

Target speaker may have multiple sessions to be used for the enrollment. In that

case test in Eq. 33 can be modified as follows:

∆(w) =
p(wt1, wt2, ..., wtR, wc|H0)

p(wt1, wt2, ..., wtR|H1)p(wc|H1)


≥ θ accept H0

<θ reject H0

(34)

where R denotes the number of sessions belong to speaker t.

6.1.2 Cosine distance scoring (CDS)

In cosine distance scoring (CDS), the cosine distance between the claimed speaker’s

i-vector, wclaimed, and the test speaker’s i-vector, wtest, is calculated as follows:

score(wclaimed, wtest) =
wTclaimedwtest
‖wclaimed‖‖wtest‖

(35)

Then, score(wclaimed, wtest) is compared with an hard-threshold θ to make the

verification decision. CDS is a computationally simple method and its performance
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is often comparable to the SVM and GDA methods.

6.1.3 Support vector machines (SVM)

Support vector machine (SVM) [9] is a popular supervised binary classifier. Similar

to GDA, it works in a high dimensional, or infinite dimensional, space by using the

kernel trick. In training, supervised data is given as

D = {(xi, yi)|xi ∈ RN, yi ∈ {−1,+1}}, i = 1, ..,M (36)

where xi is an N -dimensional supervector, yi is the classification output which is

either +1 or -1, and M is the total number of training samples. The aim of SVM is

to find a hyperplane between the two classes such that the margin between them is

maximum which is achieved when the classes are separable. The decision function is

defined as follows:

f(x) = wTφ(x) + b =
N∑
i=i

yiβik(x, xi) + b (37)

where x is the input vector, xi are the support vectors and N is the total number

of support vectors. Support vectors, w, βi and b parameters are calculated in the

training phase. The final classification decision for the input vector x is the sign of

f(x).

6.2 Performance Measurements

6.2.1 Error Rates and Costs

Output of a speaker verification system can be a zero-one decision(hard thresholding)

or a soft score describing the reliability level. Considering the two type of trials:

client(target speaker) and impostor, performance measurements can be done. Client

is the trial where claimed speaker and actual speaker are same on the other hand

impostor is the trial where claimed speaker and actual speaker are different.
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The success of any system is mostly measured by its error rate and efforts are

based on the degradation this rate. In speaker verification there are two type of error

rates related with these two trials: false alarm probability and miss probability. False

alarm probability, PFA, is the rate of impostors who are accepted as target speakers.

Miss probability, PM , is the rate of target speakers who are rejected by the system

being considered as betrayers.

Equally error rate (EER) and detection cost function (DCF) are mostly used

metrics in literature. These metrics are defined by National Institutes of Standards

and Technology(NIST). EER is the point where the PFA and PM are equal. There is a

trade-off between PFA and PM within varying threshold in decision phase as shown in

Eq. 1. This trade-off can be figured using Detection Error Trade-off (DET) curve so

that performance and calibration of the system can be visually analyzed. An example

of a DET curve can be seen in Figure 3. The tool used to figure it out is provided

by NIST. Actually it computes error rates for each threshold changing by an epsilon

within a range.

Detection cost function (DCF) is the fundamental metric utilized in the Speaker

Recognition Evaluations (SREs) conducted by NIST. In DCF instead of searching the

point where the error rates are equal, weighted sum of PFA and PM are considered.

DCF is defined as below[16]:

CDet = CM × PM |Target × PTarget + CFA × PFA|Impostor × PImpostor (38)

where CM and CFA are relative costs of rejection of a target speaker and false

acceptance of a non-target speaker. PTarget is the prior probability specified for the

target speaker, it sums up to 1 with PImpostor. The parameter values in Table 7 were

used as the primary evaluation metric of the verification performance in all speaker

detection tasks defined by NIST in 2004, 2005, 2006 and 2008.

By 2010 SRE, NIST had made a change in cost model parameters. For core and
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Figure 3: A DET curve sample. It depicts the trade-off between two error rates:
false alarm and miss. The smoother the slope the better the calibration is said to be
obtained.

8conv-core test conditions, the weight of false alarm probabilities were increased by

decreasing the cost of miss, CM , and prior probability of being target, PTarget as can

be seen with comparison of Table 7 and Table 8. However for the rest of the test

conditions of SRE 2010, parameters in Table 7 were still primarily used while those

parameters were used in the evaluation of all conditions

To improve the intuitive meaning of CDet calculated in Eq. 38, it is normalized

dividing by the best cost that could be obtained as below:

CDefault = min{CM × PTarget, CFA × PImpostor} (39)

CNorm = CDet/CDefault (40)
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CM CFA PTarget

10 1 0.01

Table 7: Speaker Detection Cost Model Parameters for the primary evaluation deci-
sion strategy in NIST SREs

CM CFA PTarget

1 1 0.014

Table 8: Speaker Detection Cost Model Parameters for the core and 8conv-core test
segment conditions in 2010 SRE

For SRE12 detection cost was still basic performance metric, but there were two

important changes done related with the computation of this cost compared with the

previous evaluation SRE10 [17]:

1. Trial scores should be submitted as log likelihood ratios so the sides did not

need to submit any decision output. Detection decisions were determined by

thresholding the log likelihood scores using the threshold obtained from cost

parameters where threshold is a known function of them.

2. The primary cost measure in SRE12 was a combination of two costs where

SRE10 parameters and a greater target prior were used together. The purpose

of this change was to add to the stability of the cost calculation and to increase

the significance of score calibration over a wide range of likelihood ratios.

The cost function used in SRE12 for computation of costs for known and unknown

impostors (non-target speakers).

CDet =CM × PM |Target × PTarget + CFA × (PFA|KnownNonTarget × PKnown

+PFA|UnknownNonTarget × (1− PKnown))× PImpostor
(41)
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CM CFA PTarget−A1 PTarget−A2 PKnown

T
e
st

S
e
g
m

e
n
t

C
o
n
d
it

io
n extended

summed
core

1 1 0.01 0.001 0.5

known 1 1 0.01 0.001 1

unknown 1 1 0.01 0.001 0

Table 9: Speaker Detection Cost Model Parameters for all test segment conditions
in 2012 SRE

where PTarget is the prior probability that the trial speaker is the target speaker,

PKnown is the prior probability that the impostor is one of the target speakers in the

evaluation set. Detection cost model parameters are given in Table 9.

CDefault = CM × PTarget (42)

CNorm = PMiss|Target+PKnown × PFA|KnownTarget

+β × (1− PKnown × PFA|UnknownNonTarget)
(43)

where β = CFA

CM

1−PTarget

PTarget

Actual detection costs was computed from the trial scores applying the thresholds

of log(β) for the two values of β, with βA1(for PTarget−A1) being 99 and βA2(for

PTarget−A2) being 999.

The primary cost measure for SRE12 was defined as:

Cprimary =
CNormβA1 + CNormβA2

2
(44)

6.2.2 Semi-automatic Approach to Verification

In some applications, such as customer verification in the call centers of banks, prob-

ability of false alarm (PFA) has a very high cost and the current fully-automatic
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systems cannot guarantee low enough PFA. In the semi-automatic approach, we as-

sume the presence of a human agent that asks security questions to the clients in

addition to the automatic verification system. This scenario can be illustrated as in

Figure 41 [18]. The role of the automatic system here can be two folds: it can either

reduce the number of questions that the agent has to ask or it can improve the safety

of the system. Our focus in this paper is on the reduction of questions which reduces

the load on the human agent.

Figure 4: Automatic verification system aided call center scenario. The agent asks
certain number of questions according to the score returned by the system. No addi-
tive effort needed for the agent, scoring is done during the flow of natural conversation.

Because a semi-automatic system is proposed here with the goal of reducing the

number of security questions, classic performance metrics such as EER is not suitable

for measuring the performance. Instead, in accord with the task, the performance

metric used here is the reduction in the number of questions a human agent has to

ask a client without an increase in PFA compared to a fully-manual system.

1CTI:computer telephony integration, CRM:customer relationship management
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In a fully-manual system the agent asks Nq questions to all clients. A binomial

distribution is used to model the PFA given that a question is answered correctly.

Each question is assumed to have identical and independent distribution. If Q security

questions are asked and all of them are answered correctly by the caller, then

PFA = (1/k)Q (45)

where addition of every question increases PFA by factor of k. Similarly, elimination

of J security questions increases PFA by a factor of (1/k)J . To compensate, the auto-

matic system should have a PFA ≤ (1/k)J . Assuming that the automatic verification

score is independent of the questions, the resulting semi-automatic system has a new

P new
FA ≤ PFA which guarantees that the semi-automatic system is at least as good as

the fully-manual system.

As opposed to the binary decisions of most of the current systems, the proposed

systems here have Nq decision classes. If the system decision is class-i (Ci), where

i ∈ 1, 2..., Nq, then the agent asks the caller i questions.

All of our systems are tested and compared using this new metric. Moreover,

classifier fusion is used at the score and decision levels in an attempt get further

improvements in performance. Details of those approaches are given below.

6.2.2.1 Single-Classifier Comparison

In this approach, each classifier has (Nq − 1) number of threshold levels, γj, where

γj−1 < γj. The system decides on Ci, if γi−1 ≤ Si ≤ γi where Si the soft score of the

classifier. The threshold levels are tuned independently for each classifier such that

PFA given Ci, PFA/Ci
, is less than or equal to (1/k)i−1 with the objective that the

thresholds are set as high as possible. Such an approach has the benefit of minimizing

the number of questions without any sacrifice from the safety of the system.
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6.2.2.2 Multiple-Classifier Fusion

Besides comparing the individual systems, experiments with the score fusion tech-

niques have also been done to boost the performance. Logistic regression is used to

fuse the scores of the three systems. Before fusing the system scores, all scores are

first transformed into approximate probabilities using logistic regression. This step is

performed for normalization purposes. NIST 2006 database is used for training the

logistic regression parameters. Focal tool is used for logistic regression [19]. Once

the scores are fused, similar to the individual classifier case, 5-fold cross-validation is

used to measure the performance for multiple-classifier fusion on the 2008 test data.

A second approach commonly used in multi-classifier systems is decision fusion.

A majority voting scheme was used in which the final decision is the class that gets

the majority of the votes from the individual classifiers. If none of the classes get

the majority of the votes, median number of questions suggested by the individual

classifiers is used by the human agent. Some other alternative techniques were also

tried such as using the minimum or maximum number of questions suggested by

the classifiers. Because there was no significant gain in performance compared to

individual systems the result for above fusion techniques are not reported here.
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CHAPTER VII

GENERALIZED DISCRIMINANT ANALYSIS (GDA)

Real life data is often not linearly separable and hence linear classification techniques

such as linear discriminant analysis (LDA) are not adequate in many situations. In

such cases, kernel methods can be powerful in discriminating between data classes. In

the kernel approach, i-vectors can be mapped to a higher dimensional space F with

a mapping function φ(w). Instead of actually computing φ(w), the kernel trick

k(wi, wj) =< φ(wi), φ(wj) > (46)

is used where k is the kernel function.

Similar to LDA, its kernel variant, GDA aims to maximize the Rayleigh quotient

J (v) =
v tSbv

v tSwv
(47)

but it operates on φ(w) ∈ F vectors instead of the i-vectors w. The kernel trick

is not directly usable in the GDA case. To express the Rayleigh quotient with the

kernel function, the following transformation is used:

v =
S∑
i=1

ni∑
j=1

αijφ(wij) (48)

where v is a discriminant direction in the space spanned by φ(wij). The objective

function J in Eq. 47, which will be given in Section 7.1 becomes

J(α) =
αTKDKα

αTKKα
(49)

where K is an nxn kernel matrix defined as Kij = k(wi, wj) for i = 1, ..., n; j =

1, ..., n where n is the total number of the training data for all speakers and all sessions.
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α is a vector with component αi. Note that if more than one v is used (multi-class

GDA), αi from all vectors v are concatenated. D = diag(D1, ..., Ds) where s is the

number of classes(speakers), Di is a diagonal matrix with all elements equal to 1/ni

where ni is the number of samples in class i. In the tests, both with one-versus-all

training (binary classification) and multi-class training where each class corresponds

to a speaker were experimented.

In training GDA, maximization of J is solved in terms of α which lands itself

to a generalized eigenvalue problem similar to LDA as described in more detail in

Section 5.1. In testing, projection of a test point x onto v can again be represented

using α and the kernel function by

vTφ(x) =
n∑
i=1

αik(wi, x) (50)

If GDA is used in one-versus-all scenario, the 1-d score calculated in Eq. 50 is

directly used for verification. For multi-class GDA, a vector is returned for each test

data. Cosine distance scoring is then used to calculate the final score.

7.1 Rayleigh Quotient in kernel approach

As mentioned before in GDA instead of i-vector, w, φ(w) is used in space F . Total

covariance of i-vectors into F can be denoted as below:

Sw =
1

n

S∑
i=1

ns∑
j=1

φ(wij)φ
t(wij) (51)

Eigenvalue resolution, finding the eigenvalues λ and eigenvectors v that are the

solutions of this equation is as follows:

λSwv = Sbv (52)

To derive the Eq. 49, Eq. 52 is multiplied by φt(wsi) and resulting equation:
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λφt(wsi)Swv = φt(wsi)Sbv (53)

has the same eigenvectors as Eq. 52 [20].

The left term of Eq. 53 yields using Eq. 48 :

Swv =
1

n

S∑
k=1

nk∑
l=1

φ(wkl)φ
t(wkl)

S∑
m=1

nm∑
p=1

αmpφ(wmp)

=
1

n

S∑
m=1

nm∑
p=1

αmp

S∑
k=1

nk∑
l=1

φ(wkl)[φ
t(wkl)φ(wmp)]

λφt(wsi)Swv =
λ

n

S∑
m=1

nm∑
p=1

αklφ
t(wsi)

S∑
k=1

nk∑
l=1

φ(wkl)[φ
t(wkl)φ(wmp)]

=
λ

n

S∑
m=1

nm∑
p=1

αmp

S∑
k=1

nk∑
l=1

[φt(wsi)φ(wkl)][φ
t(wkl)φ(wmp)]

Using this formula for all speaker s and for its sessions i:

λ(φt(wsi), ..., φ
t(wsi), ..., φ

t(wsi), ..., φ
t(wsi))Swv =

λ

n
KKα (54)

The right term of Eq. 53 yields this:

Sbv =
1

n

S∑
m=1

nm∑
p=1

αmpφ(wmp)
S∑
k=1

nk[
1

nk

nk∑
l=1

φt(wkl)][
1

nk

nk∑
l=1

φt(wkl)]
t

=
1

n

S∑
m=1

nm∑
p=1

αmp

S∑
k=1

[

nk∑
l=1

φ(wkl)][
1

nk
][

nk∑
l=1

φt(wkl)φ
t(wmp)]

φt(wsi)Sbv =
1

n

S∑
m=1

nm∑
p=1

αmp

S∑
k=1

[

nk∑
l=1

φt(wsi)φ(wkl)][
1

nk
][

nk∑
l=1

φt(wkl)φ(wmp)]

Using this formula for all speaker s and for its sessions i:

(φt(w11), ..., φt(w1n1), ..., φ
t(wsi), ..., φ

t(wS1), ..., φt(wSnS
))Sbv =

1

n
KDKα (55)
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After gathering Eq. 54 and Eq. 55 and multiplying by αt, λKKα = KDKα and

λ = αtKKα
αtKDKα

are obtained respectively.
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CHAPTER VIII

EXPERIMENTS

In speaker recognition community NIST SREs play a significant and dominant role

guiding the direction of researches. Here NIST as an organizer gets the suggestions

of participants and defines the problems and new challenges for the following years.

As a new group in the community we have participated in both NIST SRE 2010 and

SRE 2012. Sure it was not that easy to catch up with the community. Not only the

algorithms to be implemented also understanding the way that SREs work, getting

the database to be ready to use, text processing were all time consuming issues related

with preparation period.

In this chapter, details about the database and algorithms used for the verification

system will appear part by part. Our current system is an i-vector based system. The

details of dataset organization is given first. Sequentially front-end part, learning part

and testing part will be given.

8.1 Dataset Organization

8.1.1 Front-End

In front-end part relevant features of raw speech are extracted. Features used in a

speaker verification system can be classified as high-level features, prosodic&spectrotemporal

features and short-term spectral and voice source features [1] as shown below Figure 5.

High-level features are behavioral things that depend on socio-economic status,

education, born place, language background, personality, environment where grown

up. On the other hand low-level features are physiological things affected by size of

vocal folds, length and dimension of the vocal tract. A brief comparison of high and

low level features are shown in Figure 6.
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1. High-level features

• Phones, idiolect(personal lexicon), semantics, accent, pronunciation are in
these type of features.

2. Prosodic&spectro-temporal features

• Pitch, energy, duration, rhythm, temporal features are in these group

3. Short-term spectral and voice source features(Low-level features)

• Spectrum and glottal pulse features are low-level features.

Figure 5: Feature categories and sample of each category

In text-independent speaker verification systems mostly low-level features are used

and they do sufficiently good job. As can be seen from the Figure 6, low-level fea-

tures are more suitable to process a huge database without text information and

independent from language like NIST provides getting a good performance.

In our experiments mel frequency cepstral coefficients are extracted. 12 mel fre-

quency cepstral coefficients (MFCC) with their delta coefficients and delta coefficient

of log energy are used making 25 dimensional feature vectors. 20 ms Hamming win-

dow with shift of 10 ms is used in analysis. Energy-based voice activity detection

(VAD) is used where silence and speech are classified using the bimodal histogram

method.

8.1.2 Training The Voice Signatures

In GMM based approaches, firstly universal background model was trained using

the extracted features of training dataset. That model fits on the specified num-

ber of mixtures of Gaussians. Here 512 component GMM was used for UBM with

a diagonal covariance matrix. In Table 10 it can be seen that, for training UBM,

switchboard(Switchboard-1 Release 2)[21], NIST SRE 2004 and SRE 2005 databases

were used. Random sampling and mixture splitting methods were used while training

UBM. Random sampling was applied randomly choosing 10% of each utterance from
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Pros&Cons(High-level features)

+ Robust against channel effects and noise

- Difficult to extract

- A lot of training data needed

- Delayed decision making

Pros&Cons(Low-level features)

+ Easy to extract

+ Small amount of data is enough

+ Text and language independent

+ Real time recognition

- Sensitive to noise and mismatch

Figure 6: Comparison of high-level and low-level features in terms of advantages and
disadvantages

the above given database. Iteration number was chosen 25 for expectation maximiza-

tion (EM) algorithm used in maximum likelihood (ML) estimation.

Total variability space matrix, T , (also named i-vector extractor) was trained

on those same databases with UBM. Since T is a low rank matrix, dimension of

i-vectors were chosen 400 which is mostly like that in literature. Iteration number

was 5 for training the i-vector extractor. 400 dimensional i-vectors were extracted

as a signature for each speaker. For conditions that speakers have multiple sessions,

in CDS, all sessions of speakers were concatenated and one single i-vector for each

speaker was obtained.

8.2 Experiment Setup

Experiments are performed on the NIST 2006 and 2008 SRE database. One conver-

sation and eight conversation sides are used in enrollment. Both core condition (5

minute) and 10 seconds test data are used for testing. Experiments are performed
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Switchboard NIST 2004 NIST 2005
UBM x x x

T x x x
PLDA x x
WCCN x x
NAP x x
GDA x x

Table 10: Database usage organization for different training purposes.

for male speakers and telephone speech (landline and cellphone). Equal-error-rate

(EER) is reported for all conditions as the evaluation metric.

CDS, SVM, and GDA algorithms described in Section 6 are used as scoring al-

gorithms. WCCN, PLDA, NAP, and multi-class GDA algorithms described in Sec-

tion 5 are used for channel compensation. Final verification decision is done by

hard-thresholding on the soft scores as discussed in Section 6.2.1.

UBM was trained on telephone data from the NIST 2004, 2005 SRE and Switch-

board Cellular-1 databases. Total variability space matrix, T, was trained on those

same databases. WCCN, PLDA, NAP, and GDA are trained on the NIST 2004 and

2005 SRE databases. A table that summarizes the databases used for training the

systems are shown in Table 10.

400 dimensional i-vectors are used for all systems. In the SVM-based approach, to

address the scarcity of client data in training, penalized cost function is used to put

high weight on missed detections. NAP is used for channel compensation for SVM

with a rank of 150. With the PLDA system, dimensionality of the i-vectors is reduced

to 300 while the number of channel factors is 100. Instead of a likelihood based

approach to scoring, cosine distance scoring (CDS) was used after dimensionality

reduction because of the substantial gain in computational complexity with CDS.

Similarly, CDS was used when dimensionality is reduced with PLDA.

GDA algorithm is used both in one-versus-all and multi-class configurations. One-

versus-all GDA is used with linear, polynomial, Gaussian, and Radial Basis Function

53



(RBF) kernels and the best results are obtained with the polynomial kernel. There-

fore, the results with the polynomial kernel are reported here for the one-versus-all

configuration. For the multi-class configuration, RBF kernel consistently outper-

formed the other kernels. Therefore, RBF kernel is used for the multi-class GDA

tests. For multi-class GDA, dimensionality of the i-vector is reduced to 300. Then,

those lower dimensional vectors are scored with CDS. Tuning of the kernel type and

kernel parameters is done on the NIST 2008 SRE database.

8.2.1 Performance of the baseline systems

8.2.1.1 Results

In Table 11, our results with NIST 2006 and 2008 SRE are presented for 5 minute

and 5 minute test data cases. GDA classifier with WCCN channel compensation

scheme consistently outperformed all other systems. Channel compensation methods

do not seem to have much effect on SVM probably because SVM is used with the

NAP algorithm that already compensates for the channel effects.

SRE 2006 SRE 2008
no WCCN WCCN no WCCN WCCN

TVS 3,68 2,64 5,5 4,33
PLDA 3,3 2,53 4,53 5,04
SVM 5 3,46 5,71 4,53
SVM+NAP 3,84 4,37 6,08 5,37
GDA multiclass 2,67 2,78 3,81 3,81
GDA 3,57 2,39 4,31 2,66

Table 11: Comparison of all individual techniques with or without WCCN. Results
are given on NIST 2006 and 2008 SRE databases for 1conv1conv condition. Perfor-
mance metric is EER (in%).

Experiment results for 5 minute and 10 sec test data cases with NIST 2006 and

2008 SRE are shown in Table 12. PLDA with WCCN channel compensation scheme

outperformed all other systems for NIST 2006 whereas GDA multiclass classifier out-

performed all others for NIST 2008.

In Table 13, our results with NIST 2006 and 2008 SRE are presented for 8 session
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SRE 2006 SRE 2008
no WCCN WCCN no WCCN WCCN

TVS 8,94 8,46 11,92 12,2
PLDA 8,2 7,52 10,4 12,23
SVM 11,4 10,01 15,18 13,08
SVM+NAP 10,73 11,71 14,47 15,13
GDA multiclass 8,9 8,27 11,03 10,3
GDA 9,32 8,52 13,34 10,5

Table 12: Comparison of all individual techniques with or without WCCN. Results
are given on NIST 2006 and 2008 SRE databases for 1conv10sec condition. Perfor-
mance metric is EER (in%).

enrollment where each of them is 5 minute and 10 sec test data cases. GDA classifier

outperformed the other systems as expected when used with channel compensation,

WCCN for NIST 2006. On the other hand for NIST 2008 data, PLDA outperformed

the others even without using the channel compensation technique, WCCN. This is

inconsistent with the above results.

SRE 2006 SRE 2008
no WCCN WCCN no WCCN WCCN

TVS 8,81 9,39 4,3 3,88
PLDA 8,38 9,54 2,38 3,37
SVM 9,17 8,13 4,25 5,88
SVM+NAP 10,99 10,53 7,36 6,93
GDA multiclass 9,38 8,2 8,82 6,86
GDA 8,88 7,6 5,31 3,19

Table 13: Comparison of all individual techniques with or without WCCN. Results
are given on NIST 2006 and 2008 SRE databases for 8conv10sec condition. Perfor-
mance metric is EER (in%).

In Table 14, our results with NIST 2006 and 2008 SRE are presented for 8conver-

sations 5 minute and 10 seconds test data cases. These 10sec excerpts are obtained

from 5min length records(8conv1conv) in order to obtain exactly fixed 10sec speech

data. GDA classifier using the channel compensation, WCCN again outperformed

the others for NIST 2006 data. But for NIST 2008 data, although GDA did a good

job, SVM classifier outperformed all others when used within WCCN.

Multi-class GDA-based dimensionality reduction with CDS classification results
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SRE 2006 SRE 2008
no WCCN WCCN no WCCN WCCN

TVS 4,64 5,45 3,35 3,27
PLDA 4,48 5,87 2,28 4,86
SVM 4,47 4,36 2,27 1,77
SVM+NAP 5,81 5,76 3,26 2,8
GDA multiclass 5,07 4,77 4,57 5,61
GDA 4,19 3,55 2,85 2,25

Table 14: Comparison of all individual techniques with or without WCCN. Results
are given on NIST 2006 and 2008 SRE databases for 8conv1conv-10sec condition.
Performance metric is EER (in%).

are shown for each test condition. Performance with multi-class GDA is significantly

worse than the one-versus-all results. Thus, the multi-class case was not investigated

any further.

8.2.2 Semi-automatic verification experiments

Semi-automatic verification experiments are done using the NIST 2006 and 2008 SRE

database with 8conv training data both for 5min and 10sec test conditions. These

10sec excerpts are obtained from 5min length records(8conv1conv) in order to obtain

exactly fixed 10sec speech data. The 8conv10sec condition results for 2006 SRE client

and impostor trials are shown in Figure 7 and Figure 8 respectively. The first clear

result from this figure is that most of the gain is obtained with the client data as

expected. Reductions in the impostor data is quiet modest compared to the client

data. Another observation from Figure 7 and Figure 8 is that the SVM system seems

to perform poorly compared to GDA and PLDA while the GDA system seems to

outperform the other two systems in most cases.

In the next phase, experiments have been done with the same test condition

for 2008 SRE. The results are shown in Figure 9 and Figure 10. In this case, all

algorithms perform similarly for the clients and the differences are not significant.

For the impostors, there are insignificant differences between the algorithms that

change with k.
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Figure 7: Reduction in number of questions with varying k values. Results are given
on NIST 2006 SRE, 8conv1conv-10sec test setup.
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Figure 8: Reduction in number of questions with varying k values. Results are given
on NIST 2006 SRE, 8conv1conv-10sec test setup.
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Figure 9: Reduction in number of questions with varying k values. Results are given
on NIST 2008 SRE, 8conv1conv-10sec test setup.
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Figure 10: Reduction in number of questions with varying k values. Results are
given on NIST 2008 SRE, 8conv1conv-10sec test setup.
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CHAPTER IX

CONCLUSION

Semi-automatic speaker verification techniques have been proposed using some of the

popular speaker verification algorithms. Firstly the performances of our individual

systems on the NIST 2006 and 2008 database were compared. Then it was showed

that, using the proposed methods, substantial reduction in the number of security

questions needed by the human agent for verification can be obtained without an

increase in the probability of false alarms. This result holds true especially for the

clients which constitute the majority of the callers in a typical call center. Also, in

par with the EER results, GDA system stands out as the best single option in most of

the test cases. In conclusion, our results indicate that the current speaker verification

systems can be effectively used in commercial applications that have tight security

constraints if deployed in a semi-automatic fashion.
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APPENDIX A

UTILIZED FUNCTIONS AND TOOLBOXES

• OzULibrary

extractFeaturesOZU.m : A MATLAB function for feature extraction

including different VADs

UbmCreating EM.m : A MATLAB wrapper function for UBM training

MEX ExpectationMaximization.cpp : A C++ class, implementation

of EM algorithm

estimateTparFastOZU.m : A MATLAB function for T training

getIvectorOZU.m : A MATLAB function for i-vector extraction

extractWCCNmodelUsingIvectorsOZU.m : A MATLAB function for

WCCN matrix training

PLDA Train.m : A MATLAB function for PLDA model training

getExpectedValuesPLDA.m : A MATLAB function for computing the

expected values of latent variables

PLDA Verification.m : A MATLAB function for calculating the likeli-

hood ratio given the enrollment and test data

detCurve.m : A MATLAB wrapper function for DET-Curve plotting

within EER and minDCF values via toolbox DETware

• Toolboxes

libsvm : A well known open source library written in C for SVM training

and test purposes
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drtoolbox : An open source library written in MATLAB and C for GDA

training and test purposes

SPro : A well known speech processing library written in C which provides

feature extraction functions for speaker and speech recognition purposes

FoCal : A MATLAB library which provides fusion and calibration of au-

tomatic speaker detection systems via logistic regression methods

DETware : DET-Curve plotting software written in MATLAB
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Fatih Yeşil was born in Konya. After completing high school in Mersin, he started to
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