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ABSTRACT

Underwater wireless communication is a rapidly growing field of research and en-

gineering as its applications, which were once exclusively military, are extending

into commercial fields. The need for underwater wireless communications exists

in a wide range of applications including offshore oil field exploration/monitoring,

oceanographic data collection, maritime archaeology, seismic observation, environ-

mental monitoring, disaster preventing, port and border security among many oth-

ers. Although capacity calculations for terrestrial radio-frequency channels have been

extensively studied, the literature on the capacity of underwater acoustic (UWA)

channels is sporadic with many remaining open questions. Aiming to fill research

gaps in this growing field, this thesis makes several contributions to the information

theoretical performance analysis of point-to-point and relay-assisted UWA systems.

A single-carrier communication architecture and sparse Rician frequency-selective

UWA channel with intersymbol interference (ISI) is considered in our work. We

assume non-white Gaussian distribution to model the ambient noise and consider

Francois-Garrison path loss formula to take into account the effects of environmen-

tal parameters such as temperature, salinity, pressure as well as system parameters

such as distance and frequency. We develop an equivalent channel model for UWA

channel with ISI under consideration and show that the capacity of the equivalent

channel converges to that of the operating channel in the limit of infinite block length.

Using these results, we first obtain a capacity expression for the UWA channel and

demonstrate the dependency on channel parameters such as the number and loca-

tion of significant taps and power delay profile, and environmental parameters such

as temperature, salinity, and pressure. Then, we use this expression to determine
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the optimal carrier frequency, input signaling, and bandwidth. A closed-form for-

mula for the optimum carrier frequency is further obtained. In the second part of

the thesis, we extend our results to cooperative UWA systems and obtain achievable

rates of single-carrier cooperative UWA systems with orthogonal decode-and-forward

(DF) relaying. We take into account the effect of relay geometry in the derivations

of achievable rates, and use the derived expressions to optimize location of the relay.
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ÖZETÇE

Kablosuz sualtı haberleşme alanındaki araştırma ve mühendislik faaliyetleri hızla

gelişmektedir. Bir zamanlar sadece askeri uygulamalar söz konusu iken, günümüzde

sivil amaçlı uygulamaları da ortaya çıkmaktadır. Sualtı kablosuz haberleşmenin kul-

lanıldığı uygulamalara örnek olarak petrol arama/izleme, oşinografik bilgi toplama,

deniz arkeolojisi, sismik gözlem, çevresel gözlem, afet önleme, liman ve sınır güvenliği

sayılabilir. Karasal radyo kanal kapasitesi üzerine kapsamlı hesaplama çalışmaları

bulunmasına rağmen, sualtı akustik kanal kapasitesi üzerindeki çalışmaların sayısı

azdır; dolayısıyla bu alanda açık birçok araştırma problemi bulunmaktadır. Bu tezde,

gelişmekte olan bu alandaki mevcut araştırma boşluğunu doldurmak amacıyla, nok-

tadan noktaya ve röle destekli sualtı akustik haberleşme sistemlerinin bilgi kuramı

perspektifinden başarım analizleri yapılmıştır. Çalışmada tek taşıyıcılı bir system

mimarisi ele alınmış ve seyrek Rician sönümleme ile simgelerarası girişime maruz

kaldığı varsayılmıştır. Kanaldaki gürültüyü modellemek için ise, beyaz olmayan

Gaussian dağılımı kullanılmış; sıcaklık, tuzluluk oranı, basınç, mesafe ve frekans gibi

çevresel parametreleri de kanal modeline dahil etmek adına, Francois-Garrison yol

kaybı formülü kullanılmıştır.

Tezin ilk kısmında, sualtı akustik kanal için eşdeğer bir kanal modeli geliştirilmiş

ve bilgi çerceve genişliği sonsuza gittiğinde kanal kapasitesi ifadesi elde edilmiştir. Bu

ifadenin ışığında, kanal kademe yer ve sayısı, güç gecikme profili gibi kanal parame-

treleri ile sıcaklık, tuzluluk oranı ve basınç gibi çevresel etkenlerin kanal kapasitesine

etkisi ortaya konmuştur. Ardından, kanal kapasitesini eniyileyecek şekilde optimum

taşıyıcı frekansı, giriş sinyali ve bant genişliği tesbit edilmiştir. Optimum taşıyıcı

frekansı için analitik bir ifade çıkarımı da yapılmıştır. Tezin ikinci kısmında ise,
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tek taşıyıcılı işbirlikli sualtı haberleşme sistemlerinde çöz-ve-ilet röleleme varsayımı

altında erişilebilir veri hızı çıkartılmıştır. Hesaplamalarımızda röle noktalarının yer-

leri de göz önünde bulundurulmuş ve başarımı eniyileyecek şekilde röle yerleri tesbit

edilmiştir.
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CHAPTER I

INTRODUCTION

Underwater wireless communication is a rapidly growing field of research and en-

gineering as the applications, which were once exclusively military, are extending

into commercial fields. The need for underwater wireless communications exists in a

wide range of applications including offshore oil field exploration/monitoring, oceano-

graphic data collection, maritime archaeology, seismic observation, environmental

monitoring, disaster preventing, port and border security among many others.

Underwater wireless communication can be achieved through radio, optical, or

sound (acoustic) waves. The low frequency radio waves (30 Hz - 300 Hz ) can propa-

gate long distances through the sea water; however, require large antennas and high

transmitter powers. Optical waves do not suffer so much from attenuation but are

affected by scattering. In particular, those in the blue-green region, offer much higher

throughput albeit over short distances (up to about 100 m). Among the three meth-

ods, acoustic transmission is the most practical and commonly employed method due

to favorable propagation characteristics of sound waves in the underwater environ-

ments and therefore research efforts have mainly focused on acoustic communication.

The idea of transmitting information in underwater through acoustic waves, can be

traced back to the time of Leonardo Da Vinci who could detect ships by listening on a

long tube submerged under the sea [1]. In modern sense, one of the first underwater

acoustic communication systems was developed during the Second World War for

military purposes [2]. It used single-sideband suppressed carrier (SSB-SC) amplitude

modulation and was capable of sending acoustic signals over distances of several

kilometers within frequency range of 8-11 kHz.
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Due to time variability and dispersive multipath propagation aspects of UWA

channels, it was believed in the past that phase coherent modulation techniques such

as phase shift keying (PSK) and quadrature amplitude modulation (QAM) can not be

employed in UWA systems. Hence, in the 1980s, the UWA system designs were based

on frequency shift keying (FSK) modulation. However, FSK suffers from bandwidth

inefficiency and consequently low data rate. Following the increasing demands for

high data rates in the 1990s, researchers started exploring the design of coherent

acoustic modems [3]. Much research effort has particularly focused on the design of

low-complexity equalization schemes, which is a key issue for underwater channels

with large delay spreads. Particularly, sparse channel estimation/equalization and

turbo equalization have been investigated by several research groups [4–7].

Emerging data-heavy underwater applications impose further requirements on

acoustic modem design. To address such challenges, recent advances in terrestrial

wireless radio-frequency systems have been succesfully applied to UWA communi-

cation. These include orthogonal frequency division multiplexing (OFDM) [8–10],

multiple-input multiple-output (MIMO) communication techniques [11–14] and co-

operative communication [15–17].

In UWA communcation system design, unique characteristics of UWA channel

such as multipath fading, bandwidth limitations, and sparsity should be carefully

taken into account. UWA channels suffer from time/frequency spreading and sig-

nificant attenuation as a function of distance and frequency. In UWA channels, the

transmitted signal is subject to multipath propagation and experiences frequency

selectivity which causes intersymbol interference (ISI). In shallow water, reflections

from bottom, surface, or any objects in the water, and in deep water, the effect of

ray bending effect, cause multipath fading. Furthermore, in UWA channels, the path

loss increases not only with range, but also with frequency which pose significant

limitation on the available bandwidth [18]. Noise observed in the ocean exhibits
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strong frequency dependence. Most of the ambient noise sources can be modeled by

non-white correlated Gaussian noise [18].

For an efficient UWA communication system design, it is important to understand

the fundamental performance limits imposed by the underwater channels. From an

information theoretic point of view, the basic performance measure is the capacity

of a channel which determines the maximum data rate that can be supported with

an arbitrarily small error probability. Although capacity calculations for terrestrial

radio-frequency (RF) channels have been extensively studied, the literature on the

capacity of UWA channels is sporadic [19–21] with many remaining open questions.

To the best of our knowledge, the capacity of UWA channel has been first studied

by Kwon and Birdsall [22]. However, they oversimplify the UWA channel model

ignoring the multipath fading effects and use a time-invariant channel model with

additive Gaussian noise that may or may not be white. In [23], Leinhos assumes

a Rayleigh fading model with additive white Gaussian noise (AWGN). Neither of

these works takes into account the path loss in signal models, therefore their results

do not reflect the dependence of the capacity on distance. The path loss effects are

further taken into account in [19–21]. These works, either implicitly [19] or explicitly

[21] consider an OFDM-based multi-carrier architecture and assume frequency-flat

channel for each narrow sub-band. In an OFDM system, assuming that there are

enough parallel channels, the frequency-selective channel effectively disintegrates into

a number of frequency-flat channels and no ISI is observed. Therefore, the fading

effect is modeled as a multiplicative coefficient. On the other hand, single-carrier

systems over frequency-selective channels are subject to ISI which needs to be taken

into account in the performance analysis.

The works which consider UWA channels with ISI are rather sparse. In [20],

Choudhuri and Mitra derive capacity bounds for the UWA relay channels with ISI

and investigate optimum power allocation. They however consider some idealistic
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assumptions such as Thorp’s path loss formula [18] which depends on only distance

and frequency ignoring the effect of environmental parameters.

This thesis makes several contributions to the information theoretical performance

analysis of point-to-point and relay-assisted UWA systems. A single-carrier architec-

ture and sparse Rician frequency-selective UWA channel with ISI is considered in our

work. We assume non-white Gaussian distribution to model the ambient noise [24]

and consider Francois-Garrison formula [25,26] to take into account the effects of en-

vironmental parameters such as temperature, salinity, pressure as well as distance and

frequency. Exploiting the methodology introduced in [27], we develop an equivalent

channel model for UWA channel with ISI and show that the capacity of the equivalent

channel converges to that of the operating channel in the limit of infinite block length.

Using these results, we first obtain a capacity expression for the UWA channel under

consideration and demonstrate the dependency on channel parameters such as the

number and location of significant taps and power delay profile and environmental

parameters such as temperature, salinity, and pressure. Then, we use this expres-

sion to determine the optimal carrier frequency, input signaling, and bandwidth. A

closed-form formula for the optimum carrier frequency is further obtained.

In the second part of the thesis, we extend our results to cooperative UWA systems.

Considering a sparse Rician frequency-selective UWA channel with ISI, we obtain

achievable rates of single-carrier cooperative UWA systems with orthogonal decode-

and-forward (DF) relaying. We take into account the effect of relay geometry in

the derivations of achievable rates, and use the derived expressions to optimize the

location of the relay.

The rest of the thesis is organized as follows: In Chapter II, we describe the

UWA channel model under consideration including path loss, fading and ambient

noise for point-to-point and relay-assisted systems. In Chapter III, we investigate

the information theoretical analysis and optimization of point-to-point UWA channel
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with ISI. In Chapter IV, we present achievable rate, power allocation, and optimized

relay location for single-carrier cooperative UWA systems with DF relaying. Finally,

we conclude in Chapter V.

Notation: (.)T , (.)∗ denote transpose and complex conjugate-transpose operations

respectively. E (.) denotes statistical expectation and |.| denotes determinant. ∗, ⊗

denote linear and circular convolutions. [x]+ is equivalent to max {0, x}. R denotes

real numbers and Z0 denotes the set of integers. Bold upper-case and lower-case let-

ters denote matrices and column vectors respectively. Rx [l] = E (x [k + l − 1]x [k]),

l ∈ {1, 2, . . . , N} denotes the autocorrelation function of discrete signal x [k], k ∈

{1, 2, . . . , N}. x [k]
F←→ x (fn) denotes the Discrete Fourier Transform (DFT) of

the discrete signal x [k] which are the samples of the function x (t). Here, x (fn) =∑N
k=1 x [k] e

−j2π(k−1)fn∆f , n ∈ {1, 2, . . . , N}, ∆f = 1/N , and fn = (n− 1)∆f . F is

defined as the DFTmatrix with elements F (k, n) = (1/
√
N) exp (−j2π (k − 1) (n− 1) /N)

and ∀k, n ∈ {1, 2, . . . , N}.
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CHAPTER II

UNDERWATER ACOUSTIC CHANNEL MODEL

In this chapter, we describe the large-scale path loss, small-scale fading, and colored

Gaussian noise models of UWA channels.

2.1 Path Loss

The large-scale UWA path loss is given by [19] A (f, d) = dsa(f)d where d is the

distance between the transmitter and receiver, and 1 ≤ s ≤ 2 is the spreading factor

which describes the geometry of propagation. Its commonly used values are s = 2

for spherical spreading and s = 1 for cylindrical spreading. a(f) is the absorption

coefficient which can be expressed empirically, using either Thorp’s formula [18] or

Francois-Garrison (FG) formula [25], [26]. According to Thorp’s formula, the absorp-

tion coefficient is expressed as

a (f) =
0.11f 2

1 + f 2
+

44f 2

4100 + f 2
dB/km (1)

where f is the carrier frequency (in kHz). Thorp’s formula takes into account only

frequency dependency of absorption coefficient while FG formula takes into accounts

the environmental parameters as well. According to FG formula, the absorption

coefficient is expressed as

a (f) =
A1B1C1f

2

C2
1 + f 2

+
A2B2C2f

2

C2
2 + f 2

+ A3B3f
2 dB/km (2)

where Ai, i = 1, 2, 3 are the temperature and salinity dependencies, Bi, i = 1, 2, 3

are the pressure dependencies, and Ci, i = 1, 2, 3 are the relaxation frequencies. In

Fig. 1, Thorp’s and FG formulas are compared where FG formula is plotted assuming

temperature of 4◦C, salinity of 35 ppt, acidity of 8.0 pH, and depth of 1000 meter.
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Figure 1: Comparison of Thorp and FG formulas as a function of frequency.

In a point-to-point link (which will be investigated in Chapter III), we define

G (d, f) = d−sa(f)−d as the path gain between the source and the destination (see

Fig. 2.a). In a relay-assisted link (which will be explored in Chapter IV), we use dSD,

dSR, and dRD to denote the distances of source-to-destination (S→ D), source-to-relay

(S→ R), and relay-to-destination (R→ D) links respectively. Using the Pythagorean

theorem, it is possible to define geometrical gains

GSD (f) = d−s
SDa(f)

−dSD (3)

GSR (f) =
(
d2h + d2r

)−s/2
a(f)−

√
d2h+d2r (4)

GRD (f) =
(
d2h + (dSD − dr)

2)−s/2
a(f)−

√
d2h+(dSD−dr)

2

(5)

where dh denotes the distance of the relay node from the direct (S → D) link and

dr denotes the distance of the source node from the projection of relay node on the

S→ D link (see Fig. 2.b).
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(a)

(b)

Figure 2: a) Point-to-point link, and b) Relay-assisted link.

2.2 Fading Model

The average received power is determined by the path loss, but instantaneous level of

the received power fluctuates as a result of small-scale fading effects due to multipath

propagation in underwater environments. The resulting frequency-selective sparse

UWA channel for an X→ Y link can be modeled as a finite impulse response (FIR)

filter with impulse response given by1 [28]

hXY [k, l] =

LXY∑
i=1

hXY,i [k] δ [l − i] (6)

where hXY,i
F←→ hXY (fn), i ∈ {1, 2, .., LXY } denote channel tap coefficients and the

corresponding discrete channel frequency gains. In (6), LXY = ⌈Td/T ⌉ is the channel

length where Td is the delay spread, and T ∼= 1/W (< TD) is the sampling rate of the

input symbols with W denoting the transmission bandwidth.

Although there is not a general consensus within the research community on the

1In analysis of point-to-point links (Chapter III), the subscript XY will be dropped for simplicity.

8



statistical characterization of tap coefficients in UWA channels, the small-scale effects

are often modeled as Rayleigh or Rician fading [29]. In this thesis, we consider Rician

fading which also includes Rayleigh fading as a special case. Under Rician fading

assumption, hXY,i is modeled as a non-zero mean complex Gaussian random process

with independent real and imaginary parts having a mean of µXY,i/
√
2 and a variance

of σ2
XY,i. The power of the ith tap is therefore ΩXY,i = E

(
|hXY,i|2

)
= µ2

XY,i + 2σ2
XY,i

and the normalized total power is
∑

iΩXY,i = 1.

The channel power delay profile (PDP) vector is defined as ΩXY = [ΩXY,1,ΩXY,2,

. . . ,ΩXY,L] with cardinality |ΩXY | = LXY . Since the UWA channel exhibits sparse

characteristics, we further define vectors ΨXY and ΓXY which respectively denote

the PDP and the locations of significant channel taps. Their cardinality is |ΨXY | =

|ΓXY | = mXY where mXY << LXY is the number of significant taps. Introducing

the Rician factor as kXY,i = µ2
XY,i/2σ

2
XY,i, each channel tap can be written as

hXY,i =

√
ΩXY,ikXY,i

kXY,i + 1

(
1 + j√

2

)
+

√
ΩXY,i

kXY,i + 1
αXY,i (7)

where αXY,i is a Gaussian random variable with zero mean and unit variance.

2.3 Ambient Noise

There are four main sources of ambient noise (turbulence, shipping, waves, and ther-

mal noise) each of which becomes dominant in different frequency regions. The fol-

lowing empirical formulas give the power spectral density (PSD) of the four noise

components in dB re 1 µ Pa per Hz as a function of frequency in kHz [24]:

10 logZt (f) = 17− 30 log (f) Turbulence noise (8)

10 logZs (f) = 40 + 20 (sa− 0.5) + 26 log (f)− 60 log(f + 0.03) Shipping noise (9)

10 logZw (f) = 50 + 7.5ω1/2 + 20 log f − 40 log(f + 0.4) Waves noise (10)

10 logZth (f) = −15 + 20 log (f) Thermal noise (11)

9



Figure 3: PSD of ambient noises and overall ambient noise (w = 0, sa = 1).

where sa is shipping activity factor and ω is the wind speed. The overall PSD of the

ambient noise is given by

Z (f) = Zt (f) + Zs (f) + Zw (f) + Zth (f) . (12)

The PSD of the each noise type and the overall ambient noise are presented in

Fig. 3 assuming w = 0 and sa = 1. The PSD of overall ambient noise for different

values of wind speeds is further plotted in Fig. 4.

It is observed from the above figures that turbulence noise is effective in low

frequency region (f < 10 Hz). Noise caused by shipping activities is dominant in the

frequency region 10 < f < 100 Hz and thermal noise becomes dominant in frequency

region f > 100 kHz. Considering that most practical UWA systems operate in the

frequency range of 10-100 kHz, waves’ noise becomes the dominating factor. For a

tractable mathematical model, PSD of waves’ noise can be approximated by [17]

10 logZw (f) = 50 + 7.5ω1/2 − 10 log(f 2 + f 2
0 ) (13)
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Figure 4: Overall PSD of ambient noise for different values wind speeds.

which can be rewritten as Zw (f) = f0σ
2
n/(πf

2 + πf 2
0 ) where σ2 = E[w (t)w∗ (t)] =

(π105+0.75
√
w)/f0 and f0 is the lowest cut-off frequency. The corresponding autocor-

relation function can be then easily obtained by taking inverse Fourier transform of

Zw (f) and is given by

Rw (τ) = σ2 exp (−2πf0 |τ |) ,∀τ ∈ R. (14)

This approximate PSD is further included in Fig. 4 and provides a good match to the

actual one for the frequency band of 10-100 kHz.
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CHAPTER III

INFORMATION THEORETICAL PERFORMANCE

ANALYSIS AND OPTIMIZATION OF POINT-TO-POINT

UWA CHANNELS

In this chapter, we investigate the information theoretical limits of UWA channels.

As detailed in the Chapter II, we assume a frequency-selective sparse Rician fading

channel with non-white Gaussian noise and consider Francois-Garrison path loss [25,

26] to take into account the effects of environmental parameters such as temperature,

salinity, pressure. Exploiting the methodology introduced in [27], we develop an

equivalent channel model for UWA channel with ISI and show that the capacity of the

equivalent channel converges to that of the operating channel in the limit of infinite

block length. Using these results, we first obtain a capacity expression for UWA

channel under consideration and then use this expression to determine the optimal

carrier frequency, input signaling, and bandwidth. We further demonstrate the effect

of several system and environmental parameters such as distance, temperature, depth,

salinity, etc. on the capacity.

3.1 Transmission Model

Consider a transmission block size of N and let the discrete signal transmitted by the

source represented by x [k], k = 1, 2, . . . , N . The autocorrelation function and the cor-

responding discrete PSD of the input signal are Rx [k]
F←→ P (fn), k ∈ {1, 2, . . . , N}.

The autocorrelation matrix of the input signal is therefore defined by Rx = E (xx∗)

12



where x = (x [1] , x [2] , . . . , x [N ]). The power constraint is given by

1

N

N∑
k=1

E
(
|x [k]|2

)
≤ Pt (15)

where NPt is the maximum average energy allowed per block and expectation is with

respect to the distributions of x [k], k = 1, 2, . . . , N , i.e., p (x) =
N∏
i=1

p (x [i] |x [i− 1]).

The received signal is given by

y [k] = h [k, l] ∗ g [k] ∗ x [k] + w [k] , k = 1, 2, . . . , N (16)

where w [k] is the additive non-white Gaussian noise term with autocorrelation func-

tion, and corresponding discrete PSD of Rw [k]
F←→ Zw(fn), k ∈ {1, 2, . . . , N}. Note

that in the limit of N →∞, Zw (fn) converges to Zw (f) in (13) by the definition of

DFT. The autocorrelation matrix of noise signal is defined asRw = E (ww∗) based on

the discrete version of autocorrelation function given by (14). In (16), g [k]
F←→ g (fn),

k ∈ {1, 2, . . . , N} represents the effect of large-scale impairments and is the discrete

version of function g (t) whose PSD is given by G (f, d) = 1/A (f, d) (c.f. Section 2.1).

In discrete time domain, it can be shown that the discretized version of the PSD, i.e.

G (fn, d) is equivalent to |g (fn)|2. Under the assumption that the channel remains

constant over a transmission block and replacing (6) in (16), we have

y [k] =
L∑
i=1

hi (g ∗ x) [k − i] + w [k] . (17)

The channel in (17) is referred to as “N -block discrete-time Gaussian channel

(N -DTGC)” in [27]. In the following, we exploit a technique introduced in [27] which

develops an equivalent hypothetical circular channel model for the N -DTGC channel.

This is named as “N -block Circular Gaussian Channel (N -CGC)” and shown to have

the same capacity with that of N -DTGC in the limit of infinite block length. In this

equivalent model, the received signal is given by

ȳ [k] =
L∑
i=1

N∑
j=1

hig [j]x [(k − i− j)N ] + w̄ [k]

= h [k, l]⊗ g [k]⊗ x [k] + w̄ [k] (18)
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where the operator (.)N is defined as

(k)N =


k −N

⌊
k
N

⌋
if k ̸= lN, l ∈ Z0

N if k = lN, l ∈ Z0

. (19)

In (18), w̄ [k] is additive non-white Gaussian noise term with periodic autocorrelation

function [30] given by Rw̄[k] = E (w̄ [k] w̄ [j]) = Rw[k−j]+Rw[k−j+N ]+Rw[k−j−N ]

and Rw̄ [k]
F←→ Zw̄(fn), k, j ∈ {1, 2, . . . , N}. Noting that it is a periodic repetition of

Rw and noise samples from different blocks are independent, we have Rw̄ [k] = Rw [k]

and Zw̄ (fn) = Zw (fn) for ∀n ∈ {1, 2, . . . , N}.

The output sequence in vector form is given by

ȳ = CHx+ w̄ (20)

where ȳ = (ȳ [1] , ȳ [2] , . . . , ȳ [N ]) and w̄ = (w̄ [1] , w̄ [2] , . . . , w̄ [N ]). In (20), C and H

are circulant matrices with elements [H]i,j = h(j−i+1)N
and [C]i,j = g [(j − i+ 1)N ].

Note that circulant matrices can be diagonalized by DFT matrix F. Let us define

Ȳ = Fȳ, then we have

Ȳ = GDX+ W̄ (21)

where G = FCF∗, D = FHF∗, X = Fx, and W̄ = Fw̄. Note that G and D are

diagonal matrices with diagonal elements Gnn =
∑N

k=1 g [k] e
−j2π(k−1)(n−1)/N∆f and

Dnn =
∑L

i=1 hie
−j2π(i−1)(n−1)/N∆f or, equivalently, Gnn = g (fn) and Dnn = h (fn).

3.2 Capacity Analysis

In this section, we first present the derivation of instantenous channel capacity for

a given realization of the fading channel. Then, performing an expectation over the

fading distrubution, we obtain average channel capacity.

The equivalent N -CGC model decomposes the multipath channel into a set of

N parallel Gaussian channels via DFT decomposition. Considering the input-output
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relation in (21) and noting that the linear DFT operation does not affect the infor-

mation rate of the channel, the capacity of N -CGC is given by

Cc
N = sup

p(x)

1

N
I
(
X; Ȳ

)
. (22)

The capacity of the N -DTGC under consideration can then be found by letting N →

∞, i.e.,

C = lim
N→∞

Cc
N = lim

N→∞
sup
p(x)

1

N
I
(
X; Ȳ

)
(23)

where the maximization is taken over the input distribution. The mutual information

is given by

I
(
X; Ȳ

)
= H

(
Ȳ
)
−H

(
Ȳ|X

)
(24)

where H (.) is differential entropy. Replacing (21) in (24), we have

I
(
X; Ȳ

)
= H

(
GDX+ W̄

)
−H

(
W̄
)

≤ 1

2
log2πe |GDKXD

∗G∗ +KW̄| −
1

2
log2πe |KW̄| (25)

where KX = E (XX∗) = FRxF
∗ and KW̄ = E

(
W̄W̄∗) = FRw̄F

∗ are, respectively,

the DFT of input and noise autocorrelation matrices. Due to the periodic property

of autocorrelation function Rw̄ [k], the autocorrelation matrix Rw̄ is circulant. Hence,

Rw̄ can be diagonalized by the DFT which results in the diagonality of KW̄. The

inequality comes from the fact that Gaussian distribution of input maximizes the

entropy.

Hadamard’s inequality [31] implies that diagonal KX maximizes the mutual in-

formation. Therefore, (25) is further upper bounded by

I
(
X; Ȳ

)
≤ 1

2

N∑
n=1

log

(
1 +
|Gnn|2|Dnn|2KXnn

KW̄nn

)
(26)

whereKXnn =
N∑
k=1

Rx [k] e
−j2π(k−1)(n−1)/N∆f andKW̄nn =

N∑
k=1

Rw̄ [k] e−j2π(k−1)(n−1)/N∆f

are the diagonal components of KX and KW̄ and correspond to the discrete values of

input signal PSD and noise PSD, i.e., KXnn = P (fn), KW̄nn = Zw (fn). In (26), we
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replace |Gnn|2 and |Dnn|2 with G (fn, d) and |h (fn)|2 respectively. We can therefore

rewrite the capacity as

C = lim
N→∞

max
P (fn)

1

2N

N∑
n=1

log

(
1 +

G (fn, d) |h (fn)|2P (fn)

Zw (fn)

)

subject to
1

N

N∑
n=1

P (fn) ≤ Pt. (27)

As the number of sub-bands N grows, the frequency width, i.e., ∆f , goes to zero in

the limit of N →∞, and they represent a finer sampling of the continuous spectrum.

Then (27) converges to

C = max
P (f)

1

2

∫ 1/2

−1/2

log

(
1 +

G (f, d) |h (f)|2P (f)

Zw (f)

)
df bits/sec/Hz

subject to

∫ 1/2

−1/2

P (f)df ≤ Pt. (28)

Considering a carrier frequency fc and a specific bandwidth W , the capacity of the

link in bits/sec can be found with the same procedure by replacing ∆f = W/N in

the definition of DFT. Capacity in bits/sec is therefore obtained as

C = max
P (f)

1

2

∫
W

log (1 + SNR(f)) df

subject to
1

W

∫
W

P (f)df ≤ Pt. (29)

Here, the integration is over the operating band and the narrowband SNR is defined

as SNR (f) = G (f, d) |h (f)|2P (f) /Zw (f). It is worth mentioning that the above

capacity expression also includes Gaussian channel with no ISI, i.e., |h (f)|2 = 1, and

frequency-flat Rician fading channel, i.e., |h (f)|2 = |h1|2, as special cases.

The expression in (29) is provided for a given realization of the channel. To

find the average capacity, one needs to take expectation of (29) with respect to the

distribution of |h (f)|2. h (f) is the Fourier Transform of the discrete channel taps,

i.e., h (f) =
∑L

i=1 hie
−j2πf(i−1) where hi’s are complex Gaussian random processes

with independent real and imaginary parts having a mean of µi/
√
2 and a variance
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of σ2
i (c.f. Section 2.2). Since h (f) is a linear summation of independent com-

plex Gaussian random processes, it is also a complex Gaussian random process with

mean µ (f) =
∑L

i=1E (hi) e
−j2πf(i−1) and variance σ2

h =
∑L

i=1 2σ
2
i . Considering that∑

i (µ
2
i + 2σ2

i ) = 1 (c.f. Section 2.2), it is easy to show that |h (f)|2 follows the

exponential pdf [32]

p
(
|h (f)|2

)
=

1

1 + λ
exp

(
−|h (f)|

2

1 + λ

)
where λ is defined as

λ = 2
L∑
i=1

L∑
j=i+1

µiµj cos (2πf (j − i)). (30)

Under the assumption that channel state information (CSI) is only available at

the receiver side, the source allocates equal power across the subbands since there is

no knowledge of the channel at the transmitter side. Setting P (f) = Pt in (29), we

need to calculate

C̄ = E|h(f)|2

1

2

∫
W

log

(
1 +

G (f, d)Pt

Zw (f)
|h (f)|2

)
df

 . (31)

Assuming ρ = |h (f)|2/ (1 + λ), (31) can be written as

C̄ =
1

2

∫
W

∞∫
0

log

(
1 +

(1 + λ)G (f, d)Pt

Zw (f)
ρ

)
exp (−ρ)dρdf. (32)

Using the results of [32], we can rewrite (32) as

C̄ =
log2 (e)

2

∫
W

exp

(
Zw (f)

(1 + λ)G (f, d)Pt

)
Γ

(
0,

Zw (f)

(1 + λ)G (f, d)Pt

)
df (33)

where Γ (a, z) =
∫∞
z

ta−1e−tdt denotes the incomplementary gamma function [32].

Using the first series expansion of Γ (0, z) [32,33] and substituting it in (33), we have

C̄ =
log2 (e)

2

∫
W

exp

(
Zw (f)

(1 + λ)G (f, d)Pt

)[
−γ + ln

(
(1 + λ)G (f, d)Pt

Zw (f)

)

−
∞∑
k=1

1

k.k!

(
−Zw (f)

(1 + λ)G (f, d)Pt

)k
]
df (34)
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where γ is the Euler constant (γ = 0.577215665). At high SNR values, (34) can be

approximated as

C̄ ≃ log2 (e)

2

∫
W

exp

(
Zw (f)

(1 + λ)G (f, d)Pt

)[
−γ + ln

(
(1 + λ)G (f, d)Pt

Zw (f)

)

+
Zw (f)

(1 + λ)G (f, d)Pt

]
df (35)

3.3 Effect of Channel Parameters on the Average Capacity

In this section, we investigate the effect of PDP and location of significant channel

taps on the average capacity.

3.3.1 Effect of significant taps’ locations

Note that the term λ defined in (30) contains all the information about PDP and

location of significant taps. It can be readily verified that we will have λ = 0 for

a frequency-flat channel. Considering the expression of average capacity in (34), we

observe that the term 1 + λ is multiplied to the transmit power, meaning that PDP

and taps’ location will affect the received power through this term. Therefore, in order

to understand the effect of PDP and taps’ location on the capacity, we investigate

the behaviour of the term 1 + λ.

Recall from Chapter II that Γ = [Γ1,Γ2, ...,Γm] defines the location vector of

significant taps. Therefore, we can rewrite (30) as

1 + λ = 1 + 2
m∑
i=1

m∑
j=i+1

µΓi
µΓj

cos (2πf (Γj − Γi)). (36)

After some mathematical manipulations, we obtain

1 + λ =
1

1 + k
+

(
m∑
i=1

µΓi
cos (2πΓif)

)2

+

(
m∑
i=1

µΓi
sin (2πΓif)

)2

(37)

where k is the Rician factor. Using Cauchy-Schwarz inequality, we can find bounds

on 1 + λ as

1

1 + k
≤ 1 + λ ≤ 1 +mk

1 + k
. (38)
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Assume uniform PDP (i.e. Ωi = 1/m). Consequently we can write

µΓi
=

√
k

m (1 + k)
for ∀i. (39)

Under the assumption that difference between the locations of two consequence chan-

nel taps is constant and equal to r (i.e. Γi+1 − Γi = r for ∀i), we can rewrite (37)

as

1 + λ =
1

k + 1
+

(
k

m (k + 1)

)
1− cos (m2πrf)

1− cos (2πrf)
. (40)

The minimum and maximum values of (40) are found as

min {1 + λ} = 1

k + 1
(41)

max {1 + λ} = 1

k + 1
+

(
k

m (k + 1)

)
max

{
1− cos (m2πrf)

1− cos (2πrf)

}
︸ ︷︷ ︸

m2

(42)

The maximum value takes place when 1 − cos (2πrf) = 0. For 0 ≤ f ≤ 1, the

solution is f = i/r, i = 0, 1, 2, ..., r and the number of peaks is equal to r + 1. As r

increases, the number of peaks in 1 + λ increases, therefore, the capacity increases.

As a conclusion, we can state that, under the assumption of uniform PDP, as the

spacing between significant taps increases, capacity increases and becomes closer to

the capacity of frequency-flat channel.

3.3.2 Effect of PDP

The PDP vector of significant taps Ψ = [Ψ1,Ψ2, ...,Ψm] is related to 1 + λ by

µΓi
=

√
kΨi

k + 1
. (43)

Replacing this in (37), we have

1+λ =
1

1 + k
+

k

1 + k

(
m∑
i=1

√
Ψi cos (2πΓif)

)2

+
k

1 + k

(
m∑
i=1

√
Ψi sin (2πΓif)

)2

. (44)

It can be argued that, in most cases, the power of earlier taps are stronger than the

later ones since later taps experience more delay and more attenuation (i.e. Ψ1 ≥
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Ψ2 ≥ · · · ≥ Ψm). Therefore, we can use Chebyshev’s Inequality and write(
m∑
i=1

√
Ψi cos (2πΓif)

)2

≥

(
m∑
i=1

√
Ψi

)2( m∑
i=1

cos (2πΓif)

)2

(45)

(
m∑
i=1

√
Ψi sin (2πΓif)

)2

≥

(
m∑
i=1

√
Ψi

)2( m∑
i=1

sin (2πΓif)

)2

. (46)

This lets us write a lower bound on (44) as

1 + λ ≥ 1

1 + k
+

k

1 + k

(
m∑
i=1

√
Ψi

)2
( m∑

i=1

cos (2πΓif)

)2

+

(
m∑
i=1

sin (2πΓif)

)2
 . (47)

Furthermore, since 0 ≤ Ψi ≤ 1 for ∀i, we have(
m∑
i=1

√
Ψi

)2

≥
m∑
i=1

(√
Ψi

)2
= 1 (48)

and (47) is further lower bounded as

1 + λ ≥ 1

1 + k
+

k

1 + k

( m∑
i=1

cos (2πΓif)

)2

+

(
m∑
i=1

sin (2πΓif)

)2
 (49)

where the equlity holds if Ψ1 = Ψ2 = · · · = Ψm = 1/m (i.e., uniform PDP).

Assuming that taps are located at equal distances of r, the right hand side of

above inequality can be written as

1 + λ ≥ 1

k + 1
+

(
k

m (k + 1)

)
1− cos (m2πrf)

1− cos (2πrf)
(50)

which yields the formula in (40) obtained under the assumption of uniform PDP in

the previous subsection.

Our results indicate that uniform PDP results in the lowest capacity among dif-

ferent PDP types. Furthermore, it is observed from (44) that when more power is

localized at a small number of taps, capacity increases and becomes closer to the

capacity of frequency-flat channel in which all of the power is localized at only one

tap.
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3.4 Numerical Results

In this section, we present numerical results for the derived expressions within this

chapter. Unless otherwise noted, we have the following assumptions: We consider a

carrier frequency of 30 kHz and a transmission distance of d = 1 km. We assume

temperature T = 22◦C, depth D = 50 m, acidity of 8 pH, salinity S = 35 ppt, wind

speed ω = 0 m/s and spreading factor s = 1.5. We assume that the UWA channel

experiences a multipath delay spread of 13 ms and has the order of L = 130. The

number of significant delay taps is m = 10 and located at equal distances from each

other with a uniform PDP, i.e., the power of each significant tap is 1/m1 . The Rician

k factor for the significant taps is 2 dB.

Accuracy of derived expression: In an effort to demonstrate the accuracy of

derived expression for average channel capacity, we plot (34) and compare it with

the numerical evalution of (29). In the calculation of (34), first hundred terms of the

series are considered. It is observed from Fig. 5 that the derived expression coincides

perfectly with the numerical results.

Effect of ISI and distance: In Fig. 6, we present the capacity as a function

of SNR for different link distances. As benchmarks, the capacity of AWGN and

frequency-flat Rician fading channel are also depicted in this figure. Comparison

with frequency-flat case under the assumptions of same colored noise and path loss

reveals that the presence of ISI reduces the capacity. Specifically, at SNR=20 dB, a

capacity of 3.19 bits/s/Hz is achieved for d = 1 km over frequency-flat Rician fading

channel. This reduces to 2.78 bits/s/Hz over frequency-selective channel for the same

link distance. It is further observed that an increase in distance would result in a

decrease in capacity as expected. Specifically, at SNR=20 dB, a capacity of 2.78

bits/s/Hz is achieved for d = 1 km. This reduces to 2.45 bits/s/Hz for d = 2 km. It

1Since the total power of channel taps is normalized to 1, i.e.
∑

i Ωi = 1.
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Figure 5: Comparison of derived expressions for average channel capacity vs. nu-
merical results.

Figure 6: Capacity as a function of SNR for different link distances.

22



Figure 7: Capacity vs. distance for different temperature values (SNR=20 dB).

further reduces to 2.07 and 1.75 bits/s/Hz, respectively for d = 3 km and d = 4 km.

Effect of temperature and depth: In Fig. 7 and 8, we study the effect of

temperature and depth on the capacity. In Fig. 7, we consider three temperatures,

namely 0◦C, 10◦C and 25◦C. We observe that for a distance of d = 1 km, the low-

est capacity among three cases is achieved for 0◦C. Specifically, a capacity of 1.86

bits/s/Hz is obtained. This climbs up to 2.00 bits/s/Hz for 10◦C and 2.32 bits/s/Hz

for 25◦C. Our results demonstrate that higher underwater temperature is more favor-

able for acoustic transmission. In Fig. 8, we assume a fixed temperature of 25◦C and

consider depths of 50 m, 500 m, and 1 km. We observe that an increase in depth will

result in an increase in capacity as well. However, this increase is not noticeable in

comparison to the wider variation of capacity with respect to temperature.

Effect of salinity: In Fig. 9, we investigate the effect of salinity on the capacity.

Specially, we consider salinity of 30 ppt and 35 ppt. We observe that the capacity

for salinity of 30 ppt (assuming d = 1 km) is 2.39 bits/s/Hz which is more than the

capacity obtained for salinity of 35 ppt.
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Figure 8: Capacity vs. distance for different values of depth (SNR=20 dB).

Figure 9: Capacity vs. distance for different values of salinity (SNR=20 dB).
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Figure 10: Capacity vs. distance for different wind speeds (SNR=20 dB).

Effect of wind speed: In Fig. 10, we examine the capacity for wind speeds of

0, 1, and 2 m/s . The highest capacity among these three cases is achieved when the

wind speed is zero. Specifically, a capacity of 2.32 bits/s/Hz is achieved for ω = 0

m/s. This reduces to 1.38 bits/s/Hz for ω = 1 m/s and further reduces to 1.04

bits/s/Hz for ω = 2.

Effect of taps’ locations: In Fig. 11, we investigate the effect of significant

channel taps’ locations on the capacity. We assume ten significant taps (i.e., m = 10)

with uniform PDP and consider the following Γ vectors to indicate the location of

significant taps:

• Γ1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] , (i.e., the locations of significant taps are consecutive)

• Γ2 = [1, 2, 3, 4, 5, 6, 7, 8, 11, 20]

• Γ3 = [1, 2, 3, 4, 5, 6, 11, 20, 47, 128]

• Γ4 = [1, 15, 29, 43, 57, 71, 85, 99, 113, 127] , (i.e., equally spaced taps)
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Figure 11: Capacity vs. SNR for different locations of significant taps (d = 1 km).

It is observed from Fig. 11 that as the spacing between significant taps increases,

capacity becomes closer to the capacity of frequency-flat channel. For example, in a

channel with Γ1, a capacity of 1.27 bits/s/Hz is achieved at dB. This climbs up to

1.49 bits/s/Hz for a channel with Γ3, where the spacing between the significant taps

is more. This further increases to 1.54 bits/s/Hz for Γ4 which is the case of equal

spacing. These observations further confirm the concluding remarks of Section 3.3

which states that capacity increases as the spacing between significant taps (r) in-

creases. Specifically, in a channel with Γ1 with r = 1, the lowest capacity is achieved.

On the other hand, for the case of Γ4 with r = 14, the capacity increases and becomes

closer to the capacity of frequency-flat channel.

Effect of PDP: In Fig. 12, we study the effect of significant channel taps’ PDP

on the capacity. Assuming m = 10, we consider the following PDPs:

• Ψ1 = [1] , (i.e., frequency-flat Rician fading channel)

• Ψ2 = [.7, .1, .025, .025, .025, .025, .025, .025, .025, .025]
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Figure 12: Effect of PDP of significant taps on the capacity (d = 1 km).

• Ψ3 = [.5, .1, .05, .05, .05, .05, .05, .05, .05, .05]

• Ψ4 = [.1, .1, .1, .1, .1, .1, .1, .1, .1, .1] , (i.e., uniform PDP)

Our results demonstrate that uniform PDP results in the lowest capacity among the

considered PDPs. This confirms our observations in Section 3.3 which states that

under the assumption of equally spaced taps, uniform PDP results in lowest capacity

as Ψ4 does in Fig. 12. It is also observed that when more power is localized at a small

number of taps (c.f., Ψ3, Ψ2) capacity increases and becomes closer to the capacity

of frequency-flat channel (i.e. Ψ1) as discussed in Section 3.3.

Effect of the number of significant channel taps: In Fig. 13, we examine the

effect of the number of significant channel taps on the capacity. We consider, m =

2, 4, 6, 8, 10 and 20 and assume that significant taps are located at equal distances

from each other with a uniform PDP. As limiting cases, we also include the case of

m = 1 (i.e., frequency-flat channel) and m = L = 130 (i.e., non-sparse channel). It is

observed that as the number of significant taps increases and the total power is spread

over many taps, the capacity decreases. This is expected as discussed in Section 3.3.
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Figure 13: Capacity vs. SNR for different numbers of significant taps (d = 1 km).

It can be checked from (40) that when m increases, the term 1 + λ decreases and,

consequently, the capacity also decreases.

3.5 Capacity Optimization

In this section, we aim to determine carrier frequency, input signal PSD, and band-

width as to optimize the capacity.

3.5.1 Choice of Optimal Frequency

Maximization of the channel capacity in (29) with respect to carrier frequency is

equivalent to maximizing G (f, d) /Zw (f). Recalling the definition of the path gain

and differentiating the resulting expression with respect to f and setting it to zero,

we have

d
∂a(f)dB

∂f
+

∂Zw(f)dB
∂f

= 0. (51)
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Figure 14: Optimal carrier frequency fopt in terms of environmental parameters.
Solid lines indicate the approximation formula given by (52).

After some mathematical manipulations (see Appendix A), we find the optimal fre-

quency as

fopt ∼=

√
367.5

S
35

(
1 + T

43

)
exp

(
−D

6
− T

17

)
d− 0.28 exp

(
−2T

17

) (52)

where S, D, and T represent the salinity, depth, and temperature respectively.

The optimal frequency as a function of transmission distance is illustrated in

Fig. 14 for different values of temperature, depth and salinity. It is also observed that

direct numerical solution of (51) and the derived approximate closed-form solution

in (52) provide a perfect match. Assuming temperature of 22◦C, depth of 50 m, and

salinity of 35 ppt, the optimal frequencies are found to be 55, 30, 21.37, and 17.17

kHz respectively for distances of d =350 m, 1 km, 2 km, and 3 km. This indicates

that the optimal frequency decreases with increasing range.

Furthermore, we consider four cases to demonstrate the effect of temperature,

depth and salinity on the optimal frequency. It is observed from Fig. 14 that an

increase in temperature and/or depth results in an increase in optimal frequency,

while an increase in salinity results in a decrease in optimal frequency. For example,

at 22◦C, depth of 50 m, and salinity of 35 ppt, the optimal frequency is 30 kHz for
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d = 1 km. Keeping temperature and salinity fixed and changing the depth from 50

m to 2 km, the optimal frequency increases from 30 to 37 kHz. Keeping temperature

and depth fixed and changing the salinity from 30 to 35 ppt, the optimal frequency

reduces from 40 to 37 kHz. On the other hand, keeping depth and salinity fixed and

changing the temperature from 15◦C to 22◦C , the optimal frequency increases from

25 to 30 kHz.

3.5.2 Optimal Power Allocation

If the CSI is present at both transmitter and receiver side, we can maximize the

capacity with respect to the PSD of input signal. A direct maximization of (28)

appears to be intractable. By equivalency of (27) and (28), we reconsider the power

allocation problem in the continuous frequency domain via a finite dimension domain.

We then take the limit as N →∞ to get the desired result. Let Cn be the capacity for

one realization of the channel and assume that n belongs to time interval [0, T ]. For

each sub-channel, we define βn (fi) = Zw (fi) /
(
G(fi, d)|hn(fi)|2

)
. We first maximize

Cn with respect to the input PSD Pn (fi), then we average over all realizations of

fading states [33]. The objective function Cn is given by

Cn = lim
N→∞

1

2N

N∑
i=1

log

(
1 +

Pn (fi)

βn (fi)

)
. (53)

The solution involves a combination of water-filling over frequency and time, i.e.,

Pn,opt (fi) = [vn − βn (fi)]
+. (54)

In the limit of N →∞, as the number of sub-bands N grows, the width of sub-bands

goes to zero and the optimal power allocation converges to

Pn,opt (f) = [vn − βn (f)]
+ (55)
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Figure 15: Input power allocation for one realization of the channel (m = 10).

where vn is the power price chosen to satisfy the power constraint for the nth realiza-

tion of the channel. Considering a defined bandwidth W , we can write

1

W

∫
W

[vn − βn (f)]
+df = Pt. (56)

In Fig. 15, the power allocation procedure for a single realization of the channel is

depicted for fc = 30 kHz, W = 40 kHz, and m = 10. The active regions (i.e., the re-

gions where the power is allocated and is not equal to zero or non-zero power regions)

are the areas between the solutions of the equation βn (f) = vn where βn (f) ≤ vn

(i.e. shaded areas in Fig. 15). This procedure is carried out for all realizations of the

channel. By averaging over all realizations of the channel, the optimized capacity is

obtained. Fig. 16 depicts results for equal and optimal power allocation. For d = 1.5

km, a capacity of 0.77 bits/s/Hz is achieved for equal power allocation. This increases

to 0.84 bits/s/Hz for optimal power allocation.
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Figure 16: Capacity versus distance for optimal and equal power allocation of input
PSD (SNR=10 dB).

3.5.3 Optimal Bandwidth

It is possible to further optimize the capacity in (29) with respect to bandwidth.

In order to compare the capacities with different bandwidths in a fair way, neither

a pre-specified SNR nor a fixed transmit power is applicable in our case. In UWA

communication under consideration, SNR is dependent on the operating frequency

band (due to frequency dependency of ambient noise and path loss) and, therefore, to

achieve a fixed SNR, either an increase in bandwidth or an increase in transmission

power is needed. In both cases, this results in an increase of the total energy of the

signal. Likewise, a fixed transmission power Pt is not fair since the larger bandwidths

will result in larger capacity as the total energy of the signal (i.e., PtW ) increases.

Here, we make our comparisons under the assumption of fixed total energy of the

signal, i.e., Es = PtW and find the optimal bandwidth.

In order to optimize the capacity with respect to bandwidth, we can adopt two

different approaches:
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• Finding the optimal bandwidth for each realization of the channel,

• Finding a single optimal bandwidth for the average capacity.

The derivations for the first approach can be found in Appendix B. Here, we investi-

gate the second approach which is also of more practical values since most communi-

cation systems typically work in a predefined bandwidth region.

The capacity of the Gaussian channel is a concave function of Pt [34], therefore

under the assumption of fixed value for Es, it is also a concave function of W . The

optimum value of W , Wopt, can be found by iterative methods. The optimized Cn

can be then written as

Cn =
1

2

∫
Wopt

log

(
1 +

[vn − βn (f)]
+

βn (f)

)
df. (57)

The optimal input PSD has a water-filling type structure over both frequency and

time and shows a ”floating” effect since it changes with respect to time. In order to

capture the effect of fading, we need to average Cn over time interval [0, T ] which is

given by (1/T )
∑T

n=1Cn. As T → ∞ this quantity converges to the expectation by

the law of large numbers and can be expressed as

C = E|h(f)|2

1
2

∫
Wopt

log

(
1 +

[v − β (f)]+

β (f)

)
df

 . (58)

In the following, we assume d = 350 m, T = 22◦C, D = 50 m, S = 35 ppt and

use the corresponding optimal carrier frequency (i.e., fopt = 55 kHz). In Table I, the

optimal bandwidth Wopt is presented for optimal and equal power allocation.

In Fig. 17, the capacity in bits/s versus different bandwidths is depicted assuming

Es = 50, 55, and 60 dB. As we expect from Table 1, the optimized capacity (with

respect to bandwidth) takes place at Wopt = 32, 43, and 55 kHz respectively for

Es = 50, 55, and 60 dB under the assumption of equal power allocation. This is
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Table 1: Optimal bandwidths obtained for different values of Es.

Es (dB) 10 15 20 25 30 35 40 45 50 55 60 65 70

Optimal Power

Wopt Allocation (CSI)
7 10 13 17 22 28 35 44 52 60 68 78 88

(kHz) Equal Power
2 3 4 5 8 12 17 23 32 43 55 69 82

Allocation (No CSI)

readily confirmed from Fig. 17. The corresponding capacity values are 2.65, 6.85, and

16.21 kbits/s.

As a benchmark, we also calculate the 3dB-bandwidth. This defines the range of

frequencies which satisfy

G (f, d)

Zw (f)
≥ 1

2

G (fopt, d)

Zw (fopt)
. (59)

In our case, the 3dB-bandwidth is obtained as W3dB = 72.7 kHz (see Fig. 18). The

corresponding capacity values are 5.28, 11.10, and 22.01 kbits/s respectively for Es =

50, 55, and 60 dB under the assumption of optimal power allocation.

Optimum power allocation along with optimized bandwidth will further increase

the capacity. From Fig. 17, we observe that the capacity climbs up to 5.76, 11.47,

and 22.11 kbits/s, respectively, for Es = 50, 55, and 60 dB in the case of optimal

power allocation. It should be noted that optimal power allocation does not help

for the bandwidths larger than the optimal bandwidth. In these cases, capacity

remains approximately constant in comparison to the capacity obtained under optimal

bandwidth. Since waterfilling prevents the use of excessive bandwidth, increasing

the bandwidth is useless. In equal power allocation, when the bandwidth is larger

than the optimal bandwidth, capacity is much reduced in comparison to the capacity

obtained under optimal bandwidth. The reason is that we allocate the power all over

the available bandwidth and energy is now wasted in parts of the channel that should

have been turned off because of the low channel quality.
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Figure 17: Capacity vs. different values of bandwidth (d = 350 m).

Figure 18: Definition of 3dB bandwidth.
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CHAPTER IV

INFORMATION THEORETICAL PERFORMANCE

ANALYSIS AND OPTIMIZATION OF RELAY-ASSISTED

UWA CHANNELS

Our main objective in this chapter is to determine the fundamental performance

bounds on information theoretical limits of single-carrier cooperative UWA communi-

cation systems with orthogonal DF relaying. Exploiting the methodology introduced

in [27] and [20], we will provide an information theoretic framework for the perfor-

mance analysis of relay-assisted UWA communication. Specifically, we will derive the

UWA channel achievable rates taking into account the effect of relay geometry and

determine the achievable maximum rates by optimal input signaling. We will further

determine the location of the relay to optimize the achievable rates. Analytical results

will be further confirmed through extensive Monte Carlo simulations.

4.1 Transmission Model

We consider a single-relay scenario where nodes are equipped with single transmitter

(speaker) and receiver (hydrophone). As illustrated in Fig. 2.b, source (S), relay (R),

and destination (D) nodes are assumed to be located in a two-dimensional plane.

Our cooperative system builds upon the orthogonal cooperation protocol of [35] (see

Fig. 19). In the broadcasting phase, the source transmits the message signals which

are received by both the destination and the relay. In the relaying phase, the source

is silent and the relay transmits the decoded signal.

We consider a block size of N . Let xS1 [k] and xR [k], k = 1, 2, . . . , N denote

the discrete time signals transmitted by the source during the broadcasting phase
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Figure 19: Orthogonal cooperation protocol.

and by the relay during the relaying phase. The autocorrelation function and the

corresponding discrete PSD of the input signals are defined as Rl [k]
F←→ Pl(fn),

k ∈ {1, 2, . . . , N}, l ∈ {S1, R}. Let xl = (xl [1] , xl [2] , . . . , xl [N ]), l ∈ {S1, R} denote

the transmitted source and relay signals over a block in a vector format. Rl = E (xlx
∗
l )

l ∈ {S1, R} denote the corresponding autocorrelation matrices.

We assume a total transmit power of 2PT during two phases (i.e., broadcasting

and relaying) yielding an average power in proportion to PT per phase. The power

constraint during each phase is given by

1

N

N∑
k=1

E
(
|xS1 [k]|2

)
≤ PT1 (60)

1

N

N∑
k=1

E
(
|xR [k]|2

)
≤ PT2 (61)

where PT1 + PT2 = 2PT and 2NPT is the maximum average energy allowed per

block. Expectations in (60) and (61) are with respect to the distributions of xl, i.e.,

p (xl) =
N∏
i=1

p (xl [i] |xl [i− 1]) and l ∈ {S1, R}.

We assume that the relay decodes the received signal correctly and re-transmits

after performing a scaling operation to control the transmit power. Mathematically

speaking, we define a scaling matrix V = diag {V1, V2, . . . , VN} and the transmitted

signal by the relay can be represented as xR = VxS1. Consequently, we have RR =

VRS1V
∗. Assuming the channel remains unchanged during two phases, the received

37



signals at the destination and the relay are given by

yR [k] = hSR [k, l] ∗ gSR [k] ∗ xS1 [k] + wR [k] , k = 1, 2, . . . , N (62a)

yD1 [k] = hSD [k, l] ∗ gSD [k] ∗ xS1 [k] + wD1 [k] , k = 1, 2, . . . , N (62b)

yD2 [k] = hRD [k, l] ∗ gRD [k] ∗ xR [k] + wD2 [k] , k = 1, 2, . . . , N (62c)

where wl [k], l ∈ {D1, D2, R} are independent additive non-white Gaussian noise

processes with Rw
l [k]

F←→ Zw(fn), k ∈ {1, 2, . . . , N} denoting the autocorrelation

function and the corresponding discrete PSD. Note that in the limit of N → ∞,

Zw (fn) converges to Zw (f) in (13) by definition of DFT. The autocorrelation matrix

of noise signal is defined as Rw
l = E (wlw

∗
l ) based on the discrete version of auto-

correlation function given by (14). In (62a-c), gl [k]
F←→ gl (fn), l ∈ {SR, SD,RD}

k ∈ {1, 2, . . . , N} represent the effect of large-scale impairments and are discrete

versions of function gl (t) whose PSD is given by the geometrical gains Gl (f), l ∈

{SR, SD,RD} defined in (3-5). We assume a common channel length, L, for the

underlying links. Replacing (6) in (62a-c), we have

yR [k] =
L∑
i=1

hSR,i (gSR ∗ xS1) [k − i] + wR [k] , (63a)

yD1 [k] =
L∑
i=1

hSD,i (gSD ∗ xS1) [k − i] + wD1 [k] , (63b)

yD2 [k] =
L∑
i=1

hRD,i (gRD ∗ xR) [k − i] + wD2 [k] . (63c)

The channels in (62a-c) are referred to as “Linear Gaussian Relay Channel (LGRC)”

[20]. In the following, we exploit a technique first introduced in [27] and extended to

relay channels in [20]. This technique is based on the development of an equivalent

hypothetical circular channel model for the N -LGRC channel. This is named as “N -

block Circular Gaussian Relay Channel (N -CGRC)” and has been shown to have the

same capacity with that of LGRC in the limit of infinite block length [20]. In this
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equivalent model, the received signals are given by

ȳR [k] =
L∑
i=1

N∑
j=1

hSR,igSR [j]xS1 [(k − i− j)N ] + w̄R [k] (64a)

ȳD1 [k] =
L∑
i=1

N∑
j=1

hSD,igSD [j]xS1 [(k − i− j)N ] + w̄D1 [k] (64b)

ȳD2 [k] =
L∑
i=1

N∑
j=1

hRD,igRD [j] xR [(k − i− j)N ] + w̄D2 [k] (64c)

where the operator (.)N is defined as

(k)N =


k −N

⌊
k
N

⌋
if k ̸= lN, l ∈ Z0

N if k = lN, l ∈ Z0

. (65)

Considering the definition of circular convolution, (64a-c) can be rewritten as

ȳR [k] = hSR [k, l]⊗ gSR [k]⊗ xS1 [k] + w̄R [k] (66a)

ȳD1 [k] = hSD [k, l]⊗ gSD [k]⊗ xS1 [k] + w̄D1 [k] (66b)

ȳD2 [k] = hRD [k, l]⊗ gRD [k]⊗ xR [k] + w̄D2 [k] . (66c)

In (66a-c), w̄l [k], l ∈ {D1, D2, R} are additive non-white Gaussian noise terms with

periodic autocorrelation function [30] given by E (w̄l [k] w̄l [j]) = Rw
l [k − j] +Rw

l [k −

j+N ]+Rw
l [k−j−N ]. Noting that it is a periodic repetition of Rw

l and noise samples

from different blocks are independent, we have Rw̄
l [k] = Rw

l [k] and Zw̄ (fn) = Zw (fn)

for ∀n ∈ {1, 2, . . . , N}.

The received signals in (66a-c) can be written in a vector form as

ȳR = CSRHSRxS1 + w̄R (67a)

ȳD1 = CSDHSDxS1 + w̄D1 (67b)

ȳD2 = CRDHRDxR + w̄D2 (67c)

where ȳl = (ȳl [1] , ȳl [2] , . . . , ȳl [N ]), w̄l = (w̄l [1] , w̄l [2] , . . . , w̄l [N ]), l ∈ {D1, D2, R}.

Here, Cl and Hl , l ∈ {SR, SD,RD} are circulant matrices with elements [Hl]i,j =
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hl,(j−i+1)N
and [Cl]i,j = gl [(j − i+ 1)N ]. Note that circulant matrices can be diago-

nalized by DFT matrix F. By taking the DFT of both sides in (67a-c), we have

ȲR = GSRDSRXS1 + W̄R (68)

ȲD1 = GSDDSDXS1 + W̄D1 (69)

ȲD2 = GRDDRDXR + W̄D2 (70)

where Gl = FClF
∗, Dl = FHlF

∗ for l ∈ {SR, SD,RD}, Ȳl = Fȳl, W̄l = Fw̄l for

l ∈ {D1, D2, R}, Xl = Fxl for l ∈ {S1, R} and XR = V̄XS1 with V̄ = FVF∗.

Note that Gl and Dl are diagonal matrices with diagonal elements Gl,nn =∑N
k=1 gl [k] e

−j2π(k−1)(n−1)/N∆f and Dl,nn =
∑L

i=1 hl,ie
−j2π(i−1)(n−1)/N∆f . Equiva-

lently, we have Dl,nn = hl (fn) and Gl,nn = gl (fn) where l ∈ {SR, SD,RD}. The

output sequence at the destination node in matrix form is given byȲD1

ȲD2

 =

 GSDDSD

GRDDRDV̄

 [XS1] +

W̄D1

W̄D2

 . (71)

4.2 Derivation of Instantaneous Achievable Rate

Let R denote the transmission rate associated with the signal vector XS1. The equiv-

alent N -CGRC model decomposes the multipath channel into a set of N parallel

Gaussian channels via DFT decomposition. The achievable rates of the LGRC under

consideration can be then found by letting N → ∞. Considering the input-output

relation in (68-70) and noting that the linear DFT operation does not affect the

information rate of the channel, R must satisfy [36]

R ≤ lim
N→∞

sup
P (xS1)

1

N
I
(
ȲR;XS1

)
, (72)

R ≤ lim
N→∞

sup
P (xS1)

1

N
I
(
ȲD1, ȲD2;XS1

)
(73)

in order to have successful decoding at the destination terminal. Here, the maximiza-

tion is taken over the input distribution P (xS1) subject to power constraints. The
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transmission rate R must satisfy (72) for an error-free estimate of the transmitted

signal at the relay in DF mode.

First, we assume that CSI is present at both transmitter and receiver sides. In

order to find the first constraint on R, i.e., (72), we start by defining the mutual

information on the right hand side of (72) as

I
(
ȲR;XS1

)
= H

(
ȲR

)
−H

(
ȲR|XS1

)
(74)

where H (.) is differential entropy. Replacing (68) in (74), we have

I
(
ȲR;XS1

)
= H

(
GSRDSRXS1 + W̄R

)
−H

(
W̄R

)
≤ 1

2
log2πe

∣∣∣GSRDSRKS1D
∗
SRG

∗
SR +KW̄

R

∣∣∣− 1

2
log2πe

∣∣∣KW̄
R

∣∣∣ (75)

where KS1 = E (XS1X
∗
S1) = FRS1F

∗ and KW̄
R = E

(
W̄RW̄

∗
R

)
= FRw̄

RF
∗ = FRw

RF
∗

are, respectively, DFT of input and relay noise autocorrelation matrices. Due to

periodic property of autocorrelation function Rw̄
R [k], the autocorrelation matrix Rw̄

R

is circulant. Hence, Rw̄
R can be diagonalized by the DFT matrix F which results

in diagonality of KW̄
R . The inequality in (75) comes from the fact that Gaussian

distribution of input maximizes the entropy.

Hadamard’s inequality [31] implies that diagonal KS1 maximizes the mutual in-

formation. Therefore, (75) is further upper bounded by

I
(
ȲR;XS1

)
≤ 1

2

N∑
n=1

log

(
1 +
|GSR [nn]|2|DSR [nn]|2KS1 [nn]

KW̄
R [nn]

)
(76)

whereKS1 [nn] =
N∑

k=1

RS1 [k] e
−j2π(k−1)(n−1)/N∆f andKW̄

R [nn] =
N∑

k=1

Rw̄
R [k] e−j2π(k−1)(n−1)/N∆f

are respectively the diagonal components of KS1 and KW̄
R . These correspond to the

discrete values of input PSD and noise PSD evaluated at the n′th frequency bin

fn, i.e., KS1 [nn] = PS1 (fn), K
W̄
R [nn] = Zw (fn). In (76), we replace |GSR [nn]|2 and

|DSR [nn]|2 with GSR (fn) and |hSR (fn)|2 respectively. Using the resulting expression,
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we can rewrite (72) as

R ≤ lim
N→∞

max
PS1(fn)

1

2N

N∑
n=1

log

(
1 +

GSR (fn) |hSR (fn)|2PS1 (fn)

Zw (fn)

)
. (77)

In the limit of N → ∞, as the number of sub-bands N grows, the frequency width

W/N of the sub-bands goes to zero and they represent a sampling of the continuous

spectrum. Then (77) converges to

R ≤ max
PS1(f)

1

2

∫
W

log

(
1 +

GSR (f) |hSR (f)|2PS1 (f)

Zw (f)

)
df (78)

where the integration is over the operating band W . In the following, we define

βSR (f) = Zw (f) /
(
GSR(f)|hSR(f)|2

)
for the sake of presentation simplicity. This

lets us rewrite (78) as

R ≤ max
PS1(f)

1

2

∫
W

log

(
1 +

PS1 (f)

βSR (f)

)
df. (79)

In order to find the second constraint on R, i.e (73), we start by defining the

mutual information in (73) as

I
(
ȲD1, ȲD2;XS1

)
= H

(
ȲD1, ȲD2

)
−H

(
ȲD1, ȲD2|XS1

)
. (80)

Replacing (71) in (80), we have

I
(
ȲD1, ȲD2;XS1

)
= H

(
GSDDSDXS1 + W̄D1,GRDDRDV̄XS1 + W̄D2

)
−H

(
W̄D1,W̄D2

)
≤ 1

2
log2πe

∣∣∣∣∣∣∣
 GSDDSDKS1D

∗
SDG

∗
SD GSDDSDKS1V̄

∗D∗
RDG

∗
RD

GRDDRDV̄KS1D
∗
SDG

∗
SD GRDDRDV̄KS1V̄

∗D∗
RDG

∗
RD

+

KW̄
D1 0

0 KW̄
D2


∣∣∣∣∣∣∣

− 1

2
log2πe

∣∣∣∣∣∣∣
KW̄

D1 0

0 KW̄
D2


∣∣∣∣∣∣∣ (81)

where KW̄
l = E

(
W̄lW̄

∗
l

)
= FRw̄

l F
∗ = FRw

l F
∗, l ∈ {D1, D2} are DFT of noise

autocorrelation matrices at the destination. Note that KW̄
l is diagonal, since noise

autocorrelation matrix Rw̄
l is circulant. The inequality in (81) comes from the fact
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that Gaussian input distribution maximizes the entropy. Diagonal KS1 maximizes

the mutual information and (81) can be further upper bounded as

I
(
ȲD1, ȲD2;XS1

)
≤ 1

2

N∑
n=1

log

(
1 +
|GSD [nn]|2|DSD [nn]|2KS1 [nn]

KW̄
D1 [nn]

+
|GRD [nn]|2|DRD [nn]|2

∣∣V̄ [nn]
∣∣2KS1 [nn]

KW̄
D2 [nn]

)
(82)

where KW̄
D1 [nn] = KW̄

D2 [nn] = Zw (fn). Considering Vi
F←→ V (fn), it can be eas-

ily found that
∣∣V̄ [nn]

∣∣2 is equivalent to V (fn). In (82), we replace |GSD [nn]|2,

|DSD [nn]|2, |GRD [nn]|2, and |DRD [nn]|2 respectively with GSD (fn), |hSD (fn)|2,

GRD (fn), and |hRD (fn)|2. Therefore, we have

R ≤ lim
N→∞

max
Pl(fn)

l∈{S1,R}

1

2N

N∑
n=1

log

(
1 +

[
GSD (fn) |hSD (fn)|2

Zw (fn)

+
GRD (fn) |hRD (fn)|2V (fn)

Zw (fn)

]
PS1 (fn)

)
. (83)

In the limit of N →∞, (83) converges to

R ≤ max
Pl(f)

l∈{S1,R}

1

2

∫
W

log

(
1 +

[
GSD (f) |hSD (f)|2

Zw (f)

+
GRD (f) |hRD (f)|2V (f)

Zw (f)

]
PS1 (f)

)
df (84)

where the integration is over the operating band. Further defining βSD (f) = Zw (f) /(
GSD(f)|hSD(f)|2

)
and βRD (f) = Zw (f) /

(
GRD(f)|hRD(f)|2

)
for the sake of pre-

sentation simplicity, (84) can be written as

R ≤ max
Pl(f)

l∈{S1,R}

1

2

∫
W

log

(
1 +

PS1 (f)

βSD (f)
+

V (f)PS1 (f)

βRD (f)

)
df. (85)

43



Recall from (60) and (61) that the maximization of R is subject to power con-

straints. In the limit of infinite block length (N →∞), we can rewrite these

1

W

∫
W

PS1 (f) df ≤ PT

1

W

∫
W

PR (f) df ≤ PT

If CSI is not available at the transmitter, total power is distributed equally between

the source and relay. In the case of equal power allocation, input powers are set as

PS1 (f) = PT , PR (f) = PT and the associated overall achievable rate of the channel

is therefore obtained as

R =
1

4
min


∫
W

log

(
1 +

PT

βSR (f)

)
df,

∫
W

log

(
1 +

PT

βSD (f)
+

PT

βRD (f)

)
df

 . (86)

Note that achievable rate is divided by two, because the transmission of a symbol

requires two time slots.

4.3 Derivation of Average Achievable Rate

The expression in (86) has been obtained for a given realization of the channel. To

find the average capacity, one needs to take expectation of (86) with respect to distri-

bution of |hl (f)|2, l ∈ {SR, SD,RD}. hl (f) is the Fourier Transform of the discrete

channel taps, i.e., hl (f) =
∑L

i=1 hl,ie
−j2πf(i−1) where hl,i’s are complex Gaussian ran-

dom processes with independent real and imaginary parts having a mean of µl,i/
√
2

and a variance of σ2
l,i (c.f. Section 2.2). Since hl (f) is a linear summation of inde-

pendent complex Gaussian random processes, it is also a complex Gaussian random

process with mean µl (f) =
∑L

i=1E (hl,i) e
−j2πf(i−1) and variance σ2

l =
∑L

i=1 2σ
2
l,i. It

is therefore easy to see that |hl (f)|2follows the exponential pdf given by [32]

p
(
|hl (f)|2

)
=

1

1 + λl

exp

(
−|hl (f)|2

1 + λl

)
(87)

where λl = 2
∑L

i=1

∑L
j=i+1 µl,iµl,j cos (2πf (j − i))and l ∈ {SR, SD,RD}.
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To find the average achievable rate, we need to calculate

R̄ = E|hl(f)|2

1

4
min


∫
W

log

(
1 +

PT

βSR (f)

)
df,

∫
W

log

(
1 +

PT

βSD (f)
+

PT

βRD (f)

)
df


 . (88)

Replacing βSR (f) in (88), we rewrite the first limiting expression in (88) as

R̄1 = E|hSR(f)|2

1

4

∫
W

log

(
1 +

GSR (f)PT

Zw (f)
|hSR (f)|2

)
df

 . (89)

Here, we need to take an expectation with respect to |hSR (f)|2 which has an expo-

nential PDF given by (87). Defining ρ = |hSR (f)|2/ (1 + λSR), (89) can be written

as

R̄1 =
1

4

∫
W

∞∫
0

log

(
1 +

(1 + λSR)GSR (f)PT

Zw (f)
ρ

)
exp (−ρ)dρdf. (90)

Defining the integral In (x) as

In (x) =
∫ ∞

0

tn−1 ln (1 + t) e−xtdt; x > 0, n = 1, 2, ... (91)

we can rewrite (90) as

R̄1 =
log2 (e)

4

∫
W

(
Zw (f)

(1 + λSR)GSR (f)PT

)
I1
(

Zw (f)

(1 + λSR)GSR (f)PT

)
df. (92)

Using the results of [32], we can write

R̄1 =
log2 (e)

4

∫
W

exp

(
Zw (f)

(1 + λSR)GSR (f)PT

)
Γ

(
0,

Zw (f)

(1 + λSR)GSR (f)PT

)
df (93)

where Γ (a, z) =
∫∞
z

ta−1e−tdt denotes the incomplementary gamma function [32].

Using the first series expansion of Γ (0, z) [32,33] and substituting it in (93), we have

R̄1 =
log2 (e)

4

∫
W

exp

(
Zw (f)

(1 + λSR)GSR (f)PT

)[
−γ + ln

(
(1 + λSR)GSR (f)PT

Zw (f)

)

−
∞∑
k=1

1

k.k!

(
−Zw (f)

(1 + λSR)GSR (f)PT

)k
]
df (94)
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where γ is the Euler constant (γ = 0.577215665). At high SNR values, (94) can be

approximated as

R̄1 ≃
log2 (e)

4

∫
W

exp

(
Zw (f)

(1 + λSR)GSR (f)PT

)[
−γ + ln

(
(1 + λSR)GSR (f)PT

Zw (f)

)

+
Zw (f)

(1 + λSR)GSR (f)PT

]
df. (95)

Replacing βSD (f) and βRD (f) in (88), we rewrite the second limiting expression

in (88) as

R̄2 = Ejoint

1

4

∫
W

log

(
1 +

GSD (f)PT

Zw (f)
|hSD (f)|2 + GRD (f)PT

Zw (f)
|hRD (f)|2

)
df

 (96)

where the expectation is with respect to the joint distribution of |hSD (f)|2 and

|hRD (f)|2. Note that |hSD (f)|2 and |hRD (f)|2 are independent and identical dis-

tributed (iid) with exponential distribution. Let us define ρ1 = |hSD (f)|2/ (1 + λSD),

ρ2 = |hRD (f)|2/ (1 + λRD) , b1 = Zw (f) / [(1 + λSD)GSD (f)PT ], and b2 = Zw (f) /

[(1 + λRD)GRD (f)PT ] . We can therefore rewrite (96) as

R̄2 =
log2 (e)

4

∫
W

∞∫
0

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−(ρ1+ρ2)dρ1dρ2df. (97)

First we investigate the integration over ρ1. Using the integration by parts technique,

it can be simplified as

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−ρ1dρ1 = ln

(
1 +

ρ2
b2

)
+

∞∫
0

e−ρ1

b1 (1 + ρ2/b2) + ρ1
dρ1 (98)

where the right hand side integration can be expressed in terms of complementary

gamma function by changing the variable of integration. This yields

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−ρ1dρ1 = ln

(
1 +

ρ2
b2

)
+ eb1(1+ρ2/b2)Γ (0, b1 (1 + ρ2/b2)) . (99)
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Now we perform the integration over ρ2. This yields

∞∫
0

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−ρ1dρ1e

−ρ2dρ2

=

∞∫
0

ln

(
1 +

ρ2
b2

)
e−ρ2dρ2 +

∞∫
0

e

(
b1+

b1−b2
b2

ρ2
)
Γ (0, b1 (1 + ρ2/b2)) dρ2 (100)

= eb2Γ (0, b2) +
b2e

b2

b1

∞∫
b1

e

(
b1−b2

b1
t
)
Γ (0, t) dt (101)

where we define t = b1 (1 + ρ2/b2). Assuming b1 ̸= b2 and by using the integration by

parts technique, (101) can be expressed as

∞∫
0

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−ρ1dρ1e

−ρ2dρ2 (102)

= eb2Γ (0, b2) +
b2e

b2

b1

 b1
b2 − b1

e(b1−b2)Γ (0, b1) +
b1

b2 − b1

∞∫
b1

e

(
b1−b2

b1
t
)
∂Γ (0, t)

∂t
dt

 .

Noting ∂Γ (0, t) /∂t = −t−1e−t and replacing it in (102), we have

∞∫
0

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−ρ1dρ1e

−ρ2dρ2

= eb2Γ (0, b2) +
b2e

b2

b2 − b1

e(b1−b2)Γ (0, b1)−
∞∫

b1

e

(
− b2

b1
t
)
t−1dt

 . (103)

Defining u = (b2/b1) t, we change the variable of integration at the right hand side of

(103) and the integration becomes an incomplementary gamma function. Therefore,

we have
∞∫
0

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−ρ1dρ1e

−ρ2dρ2

= eb2Γ (0, b2) +
b2e

b2

b2 − b1

(
e(b1−b2)Γ (0, b1)− Γ (0, b2)

)
(104)

which can be also rewritten as
∞∫
0

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−(ρ1+ρ2)dρ1dρ2 =

b2
b2 − b1

eb1Γ (0, b1) +
b1

b1 − b2
eb2Γ (0, b2) .

(105)
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Note that for solving the integration in (101), we assumed b1 ̸= b2 which is equivalent

to dSD ̸= dRD. Considering b1 = b2 = b (i.e. dSD = dRD), the integration in (101)

becomes

∞∫
0

∞∫
0

ln

(
1 +

ρ1
b1

+
ρ2
b2

)
e−ρ1dρ1e

−ρ2dρ2 = ebΓ (0, b) + eb
∞∫
b

Γ (0, t) dt

= ebΓ (0, b) + eb (Γ (1, b)− bΓ (0, b)) . (106)

Replacing Γ (1, b) = exp (−b) in (106) yields

∞∫
0

∞∫
0

ln
(
1 +

ρ1
b
+

ρ2
b

)
e−(ρ1+ρ2)dρ1dρ2 = 1 + (1− b) ebΓ (0, b) . (107)

The average rate can be found by replacing (105) or (107) in (97) which yields

the final form as

R̄2 =


log2(e)

4

∫
W

[
b2

b2−b1
eb1Γ (0, b1) +

b1
b1−b2

eb2Γ (0, b2)
]
df for dSD ̸= dRD

log2(e)
4

∫
W

[
1 + (1− b) ebΓ (0, b)

]
df for dSD = dRD

. (108)

where b1 = Zw (f) / [(1 + λSD)GSD (f)PT ] and b2 = Zw (f) / [(1 + λRD)GRD (f)PT ].

The gamma functions in (108) at high SNR values can be approximated as Γ (0, b) =

−γ − ln (b) + b.

Finally, the average achievable rate is found as

R̄ = min
{
R̄1, R̄2

}
(109)

where R̄1 and R̄2 are, respectively, given by (94) and (108). In an effort to demonstrate

the accuracy of derived expressions for average channel achievable rate, we plot the

derived expressions R̄1, R̄2 in Fig. 20 and compare them with the numerical evaluation

of the limiting expressions in (88).

In this figure, we assume dh = 0.5 km, dr = 0.5 km, fc = 30 kHz, W = 40 kHz,

temperature T = 22◦C, depth D = 50 m, acidity of 8 pH, salinity S = 35 ppt, wind

speed ω = 0 m/s and spreading factor s = 1.5. We assume that the UWA channel
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Figure 20: Comparison of derived expressions of average channel achievable rate vs.
numerical results.

experiences a multipath delay spread of 13 ms and has the order of L = 130. The

number of significant delay taps is m = 10 and located at equal distances from each

other with a uniform PDP. It is observed from Fig. 20 that the derived expressions

(94) and (108) coincide perfectly with numerical results. Furthermore, approximated

formulas of (94) and (108) obtained by replacing Γ (0, b) ≃ −γ − ln (b) + b provide

efficient approximations for high SNR values.

4.4 Optimization of the Average Achievable Rate

In the following, we will maximize the average achievable rate through optimal power

allocation and relay location under the assumption that CSI is present at both trans-

mitter and receiver side.

4.4.1 Optimal Power Allocation

A direct maximization of (79) and (85) appears to be intractable. We consider the

power allocation problem in the continuous frequency domain via discrete frequency

domain. We then take the limit as N → ∞ to get the desired result. Therefore, we
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formulate our problem as

max
PS1(fn)

min

{
N∑

n=1

log

(
1 +

PS1 (fn)

βSR (fn)

)
,

N∑
n=1

log

(
1 +

PS1 (fn)

βSD (fn)
+

V (fn)PS1 (fn)

βRD (fn)

)}
. (110)

We use Lemma 6 of [20] which further simplifies the N -dimensional optimization

problem into N parallel optimization problems corresponding to each of the frequency

sub bands. For further simplification, we define

R1 (fn) = log

(
1 +

PS1 (fn)

βSR (fn)

)
(111)

R2 (fn) = log

(
1 +

PS1 (fn)

βSD (fn)
+

V (fn)PS1 (fn)

βRD (fn)

)
. (112)

Therefore, the aforementioned lemma reduces the original problem into the form of

max
PS1(fn)

min {R1 (fn) , R2 (fn)} . (113)

First, we assume a non-degraded channel [31] where βSR (fn) ≥ βSD (fn) for ∀n.

In this case we have R1 (fn) ≤ R2 (fn). Therefore, the problem reduces to

max
PS1(fn)

N∑
n=1

log

(
1 +

PS1 (fn)

βSR (fn)

)
. (114)

We observe that the resultant solution will be of a water-filling form, i.e., PS1,opt (fn) =

[vt − βSR (fn)]
+ and PR,opt (fn) = 0. If the quality of the (S → R) link is poor, it

is better to not allocate any power to the relay and just using the direct link is

preferred. However, if the relay is not involved in transmission, the optimal strategy

is to transmit with full power of 2PT during the first phase and allocate power with

respect to βSD (fn), i.e. PS1,opt (fn) = [vt − βSD (fn)]
+ where vt is the power price

chosen to satisfy the overall total input power constraint, i.e.,

1

N

N∑
n=1

[vt − βSD (fn)]
+ = 2PT . (115)

Second, we assume a degraded channel where βSR (fn) ≤ βSD (fn) for ∀n. In this

case the sub-channel rate is maximized when R1 (fn) = R2 (fn) [20] or equivalently

PS1 (fn)

βSR (fn)
=

PS1 (fn)

βSD (fn)
+

V (fn)PS1 (fn)

βRD (fn)
. (116)
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From (116), V (fn) can be found as

V (fn) = βRD (fn)

(
1

βSR (fn)
− 1

βSD (fn)

)
. (117)

Again PS1 (fn) has a waterfilling form as PS1,opt (fn) = [vt − βSR (fn)]
+ and PR (fn) is

given by

PR-opt (fn) = βRD (fn)

(
1

βSR (fn)
− 1

βSD (fn)

)
[vt − βSR (fn)]

+ (118)

where vt is the power price chosen to satisfy the overall total input power constraint,

i.e.,

1

N

N∑
n=1

[
1 + βRD (fn)

(
1

βSR (fn)
− 1

βSD (fn)

)]
[vt − βSR (fn)]

+ = 2PT . (119)

Finally, we can find the solution in continuous domain by letting N →∞.

4.4.2 Optimal Relay Location

First, we replace (3-5) in (78) and (84) and express them in terms of dh and dr.

Assuming R̄ = min
{
R̄1, R̄2

}
, we will have

R̄1 = E

1

4

∫
W

log

(
1 +

|hSR (f)|2PS1 (f)

Zw (f) (d2h + d2r)
s/2

a(f)
√

d2h+d2r

)
df

 (120)

R̄2 = E

1

4

∫
W

log

(
1 +

[
|hSD (f)|2

Zw (f) dsSDa(f)
dSD

+
|hRD (f)|2V (f)

Zw (f)
(
d2h + (dSD − dr)

2)s/2a(f)√d2h+(dSD−dr)
2

PS1 (f)

 df

 . (121)

In order to maximize R̄1 and R̄2 with respect to dh and dr, we need to set
[
∂R̄1/∂dh

]
=

0,
[
∂R̄1/∂dr

]
= 0 and

[
∂R̄2/∂dh

]
= 0,

[
∂R̄2/∂dr

]
= 0. A closed-form solution does

not exist, however it can be solved numerically by changing the values of dh and

dr from zero to the constraint given by
√

d2h + d2r ≤ dSD. Since the channel will be

categorized as non-degraded channel otherwise and, according to earlier discussions in

Section 4.4, relay should not be involved in the transmission. When optimized R̄1 and
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Figure 21: Representative scenarios.

R̄2 are found, we pick up the minimum one (recall the definition R̄ = min
{
R̄1, R̄2

}
)

and the corresponding values of dh and dr determine the optimum values of relay

location.

4.5 Numerical Results

In this section, we present numerical results for the derived expressions within this

chapter. Unless otherwise noted, we have the following assumptions: We consider a

carrier frequency of 30 kHz and a transmission distance of d = 1 km. We assume

temperature T = 22◦C, depth D = 50 m, acidity of 8 pH, salinity S = 35 ppt, wind

speed ω = 0 m/s and spreading factor s = 1.5. We assume that the UWA channel

experiences a multipath delay spread of 13 ms and has the order of L = 130. The

number of significant delay taps is m = 10 and located at equal distances from each

other with a uniform PDP, i.e. the power of each significant tap is 1/m. The Rician

k factor for the significant taps is 2 dB.

As examples, we consider three representative scenarios (see Fig. 21)

1) Scenario 1: dh = 0 and dr = 0.75

2) Scenario 2: dh = 0 and dr = 0.5

3) Scenario 3: dh = 0 and dr = 0.25
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Figure 22: Rate versus total transmit power for dh = 0 and dr = 0.75.

In Fig. 22, the achiveable rates versus PT are depicted for Scenario 1 where the

relay is closer to destination. As benchmarks, we include the achievable rate of of

a point-to-point non-cooperative channel (i.e., without the help of relay) assuming

both optimal power allocation (OPA) and equal power allocation (EPA). These are

illustrated respectively by the blue and green curves. The other two curves show the

derived bounds on the achievable rates in relay-assisted case, c.f., R̄1 in (94) and R̄2 in

(109). We observe that the minimum of R̄1 (violet) and R̄2 (red) curves is equivalent

to R̄1 (violet) and is worse than the rate achievable by point-to-point link for all PT

values. The reason is that the relay is far enough from the source and has a very poor

channel quality particularly because UWA channels suffer from significant attenuation

as a function of distance. So if the source-to-relay channel is not sufficiently better

than point-to-point link, it will limit the achievable rate and there would be waste

of capacity in such scenarios when EPA is used. In this case, which is categorized

as non-degraded channels (c.f. Section 4.4), the OPA performance (not shown in the

figure) is equivalent to not involving the relay in the transmission and optimizing the

point-to-point link which results the same as in the blue curve.
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Figure 23: Rate versus total transmit power for dh = 0 and dr = 0.5.

In Fig. 23, the achievable rates versus PT are depicted for Scenario 2 where the

relay is in the middle of the path from source to destination. It is observed that

the minimum of R̄1 (red) and R̄2 (violet) curves is equivalent to R̄1 (red). This

indicates that source-to-relay channel will limit the rate. For low SNR values, the

performance of relay channel is better and such cases are categorized as degraded

channel. For low SNR values, the OPA performance (not shown in the figure) yields

the same performance as violet curve (R̄2). But for high SNR values, the channel

will be categorized as non-degraded and since the source-to-destination channel has a

good quality itself, using the relay comes with some waste of capacity. The OPA for

high SNR values results in the same performance as OPA of non-cooperative scenario

(blue curve).
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Figure 24: Rate versus total transmit power for dh = 0 and dr = 0.25.

In Fig. 24, the rates versus PT are depicted for Scenario 3 where the relay is closer

to the source terminal. It is observed that the minimum of R̄1 (red) and R̄2 (violet)

curves is equivalent to R̄2 (violet). Since the relay is closer to source, it has better

channel quality and will not limit the rate (degraded channel). It has been discussed

in Section IV. d. that the achievable rate is optimized when the limitation bounds on

the rate are equal. The more improvement here occurs in the second limitation bound

on the rate, i.e. R̄2, which limits the achievable rate in EPA case. By optimized power

allocation strategy, the point-to-point case can be outperformed even in high SNR

cases.
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Figure 25: Rate versus total transmit power for different locations of relay (EPA is
assumed).

In Fig. 25, we investigate the effect of different relay locations under the assump-

tion of EPA. We observe that the optimized relay location is in the middle of the

straight line connecting the source and the destination path. This is denoted by

dr = 0.5 and dh = 0 (or equivalently by dSR = 0.5 and dRD = 0.5). We further ob-

serve that when the relay is more close to the source (dr = 0.25, dh = 0) , it has better

performance in comparison to the case when the relay is closer to the destination node

(dr = 0.75, dh = 0).
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Figure 26: Rate versus total transmit power for different locations of relay (OPA is
assumed).

In Fig. 26, we investigate the effect of different relay locations under the assump-

tion of OPA. We observe that the optimized relay location for OPA case is when the

relay is as much as possible close to source. The reason is that when the relay is very

close to the source node, it will need less power for transmission to the relay node and

more power is saved for the source and relay terminals to transmit with full power

(i.e. PT ) to destination node. Hence, the hypothetical case of dr = 0 and dh = 0

should yield the best performance. Following the fact that optimal cooperative case

happens when source and relay nodes are at the same place and transmit with full

power of PT to destination, it may be questioned that what is the advantage of relay

assisted case over a point-to-point scenario with transmit power of 2PT ? This point-

to-point scenario does not follow the power constraint, however, in cooperative case

we are using the benefits of relay node and it does not exceed the power constraint

and outperform the point-to-point case with transmit power of PT .
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CHAPTER V

CONCLUSION

In this thesis, we have worked on the information theoretical performance analysis and

optimization of point-to-point and relay-assisted UWA systems. We have assumed a

single-carrier communication architecture and sparse Rician frequency-selective UWA

channel with ISI. We have considered non-white Gaussian distribution to model the

ambient noise and taken into account the effects of environmental parameters such

as temperature, salinity, pressure as well as distance and frequency.

In the first part of the thesis, we have developed an equivalent channel model for

UWA channel with ISI under consideration and shown that the capacity of the equiv-

alent channel converges to that of the operating channel in the limit of infinite block

length. Using these results, we have first obtained a capacity expression for the UWA

channel and demonstrated the dependency on channel parameters such as the number

and location of significant taps and power delay profile, and environmental parame-

ters such as temperature, salinity, and pressure. Then, we have used this expression

to determine the optimal carrier frequency, input signaling, and bandwidth.

In the second part of the thesis, we have extended our results to cooperative UWA

systems and obtained achievable rates of single-carrier cooperative UWA systems with

orthogonal DF relaying. Specifically, we have derived the achievable rates taking into

account the effect of relay geometry and determined the achievable maximum rates

by optimal input signaling. We have further determined the location of the relay to

optimize the achievable rates. Our results have demonstrated that optimized relay

location in EPA case is in the middle of the straight line connecting the source and

the destination. On the other hand, for OPA case, we observe that the relay should

be located as much as possible close to source to optimize the performance.
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APPENDIX A

DERIVATION OF OPTIMAL CARRIER FREQUENCY

In order to derive the optimal frequency, we begin with (51). For 10 ≤ f ≤ 100 kHz,

we can approximate ∂Zw(f)dB/∂f by

∂Zw(f)dB
∂f

∼=
−20
ln(10)

1

f
. (122)

Recall that a(f)dB is given by (2). Let us define M1 = (A1B1C1f
2) / (C2

1 + f 2), M2 =

(A2B2C2f
2) / (C2

2 + f 2) , M3 = A3B3f
2. In the frequency range under consideration,

we can safely assume M1
∼= 0, M3

∼= 0, since M2 (involving MgSO4 contributions)

dominates the others [25]. Therefore, we have

∂a(f)dB
∂f

∼=
2A2B2C2

3f(
C2

2 + f 2
)4 . (123)

Replacing (122) and (123) in (51) and defining α = 10/d ln(10), we obtain

αf 4 +
(
2αC2

2 − A2B2C2
3
)
f 2 + αC2

4 = 0 (124)

which is a quadratic equation. Within 10 ≤ f ≤ 100 kHz and under the assumptions

of −2◦ ≤ T ≤ 22◦, S = 30 − 35ppt, and D ≤ 3.5 km [25], we have C4
2
≫ f 4.

Therefore, we can approximate (124) by
(
2αC2

2 − A2B2C2
3
)
f 2 + αC2

4 = 0 where

the approximated solution is given by

f = C2

√
α

A2B2C2 − 2α
. (125)

Noting A2B2 = 0.52 (1 + T/43) (S/35) e−D/6 and C2 = f2 = 42e(T/17) [37], the optimal

frequency can be found as

f ∼=

√
367.5

S
35

(
1 + T

43

)
exp

(
−D

6
− T

17

)
d− 0.28 exp

(
−2T

17

) . (126)
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APPENDIX B

OPTIMAL BANDWIDTH DERIVATIONS FOR SINGLE

REALIZATION OF UWA CHANNEL

In this appendix, we optimize the capacity with respect to bandwidth for one re-

alization of UWA channel. First note that the instantaneous capacity is given by

(28)

C = max
W

1

2

∫
W

log

(
1 +

P (f)

β (f)

)
df

subject to

∫
W

P (f)df ≤ Es (127)

where β (f) = Zw (f) /G (f, d). In the following, we will consider two cases.

No CSI at transmitter: Under the assumption that CSI is only present at the

receiver side, we can simply use equal power allocation. Simply replacing P (f) =

Es/W in (127) and differentiating the resulting expression with respect to W and

setting it to zero, we have

dC (W )

dW
=

d

[
1
2

fc+W/2∫
fc−W/2

log2

(
1 + Es/W

β(f)

)
df

]
dW

= 0. (128)

Here, we use the Leibnitz Rule, i.e.

g (x) =

b(x)∫
a(x)

f (x, t) dt → dg

dx
=

db

dx
f (x, b (x))− da

dx
f (x, a (x))+

b(x)∫
a(x)

∂f (x, t)

∂x
dt (129)

to solve (128), i.e.,

1

2
log2

(
1 +

Es/W

β (fc +W/2)

)
+

1

2
log2

(
1 +

Es/W

β (fc −W/2)

)
=

1

W ln 2

fc+W/2∫
fc−W/2

(
1 +

β (f)

Es/W

)−1

df.

(130)
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Figure 27: Averaged optimal bandwidth vs. total energy of input signal.

By some manipulations, we have

ln

(
1 +

Es/W

β (fc +W/2)

)
+ ln

(
1 +

Es/W

β (fc −W/2)

)
=

2

W

fc+W/2∫
fc−W/2

(
1 +

β (f)

Es/W

)−1

df (131)

from which the optimal bandwidth is solved. Then we average the optimal bandwidths

for all realizations of the channel.

In Fig. 27, we assume T = 22◦C, D = 50 m, S = 35 ppt, d = 350 m, and fopt = 55

kHz. In this figure we depict average of optimal bandwiths for different values of Es.

From this figure, we observe that the averaged optimal bandwidths of 29.02, 41.33,

57.22 kHz are achieved respectively for for Es = 50, 55, and 60 dB.

CSI available at the transmitter: Assuming CSI is present at the transmitter,

we can perform waterfilling to simultaneously optimize the PSD and bandwidth.

Specifially, assuming a fixed Es, optimal bandwidth can be found as the range of

frequencies between f1,opt and f2,opt . These are the solutions to the equation β (f) = v

where v is solved from
β−1
2 (v)∫

β−1
1 (v)

[v − β (f)]+df = Es. (132)
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Figure 28: Optimal bandwidth and water level for Es = 50 dB.

Therefore, the optimal bandwidth is given by Wopt = f2,opt − f1,opt where f1,opt =

β−1
1 (v), f2,opt = β−1

2 (v).

In Fig. 28, we assume T = 22◦C, D = 50 m, S = 35 ppt, d = 350 m, and fopt = 55

kHz and for a single realization of the channel the optimal bandwidth is depicted. By

numerical results, the optimal bandwidths for this scenario are equaivalent to the first

scenario, since input signalling, P (f), do not participate in bandwidth optimization.

In the first scenario, equal power is allocated and optimal bandwidhs are found,

while in this scenario, capacity is optimized through optimal signalling and optimal

bandwidths are found.
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