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ABSTRACT

Automatic detection of unusual events such as falls is very important especially for

elderly people living alone. Real-time detection of these events can reduce the health

risks associated with a fall. There has been a series of ongoing researches in the field

of unusual event detection using the Microsoft‘s depth sensor Kinect. It has been

applied in areas like fall detection using only the depth images and features derived

from skeletal data having exaggerated dimensionality. This thesis will propose a novel

method for automatic detection of fall event by using depth cameras. Depth images

generated by these cameras are used in estimating the skeletal data of a person. The

contribution here is to use features extracted from this data to form a strong set of

features which can help us achieve an increased precision at low redundancy. The

achievements indicate that the calculated features which are derived from skeletal

data are moderately powerful for detecting unusual events such as fall.
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ÖZETÇE

Düşme gibi anormal durumlarda otomatik algılama, özellikle yaşlı ve yalnız yaşayan

insanlar için çok önemlidir. Bu durumların gerçek zamanlı algılanması düşmeyle

alakalı sağlık risklerini azaltabilir. Hali hazırda Microsofts depth sensor Kinect kul-

lanılarak anormal durumların algılanması alanında bir seri araştırmalar mevcuttur.

Aşırı boyutlara sahip olan iskelet verilerinden elde edilen yalnızca derinlik görüntüleri

ve özellikleri kullanılarak düşme algılama gibi alanlarda uygulandı. Bu tez derin-

lik kameraları kullanarak düşme olaylarının otomatik algılanmasıyla ilgili yeni bir

yöntem sunuyor. Bu kamaralardan elde edilen derinlik görüntüleri, kişinin vücut

lekesi ve iskelet verilerin hesaplanmasında kullanılır. Buradaki katkı ise güçlü bir

özellik kümesi oluşturmak için bu verilerden alınan özellikleri kullanmaktır. Düşük

sayıda fazlalıkla, bu bize doğruluğu başarmamıza yardım eder. Bu başarı gösteriyor

ki insan vücudundaki leke ve iskelet verilerinin ikisinden de elde edilerek hesaplanan

özellikler, düşme gibi anormal durumların algılanmasında kısmen güçlüdür.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Elderly population has likely possibility of falling approximately 50% more than the

general population [8]. Falls being 40% more likely to occur in a hospital are of the

most common injuries in hospitals than in other industries and locations [9]. Doctors

and care takers administration have been held responsible and liable in the lawsuits

and therefore prone to overspend in areas like personnel [10]. Based on a medical

observation study [6], falling in elderly people are caused by different reasons like

incorrect transfer or body weight shifting (41%), trips or stumbles (21%), Hits or

bumps (11%), Loss of support with an external object like falling during sitting on a

wheelchair (11%), Collapse or loss of consciousness (11%) and slipping (3%).

This thesis attempts to suggest a more accurate and usable algorithm and sys-

tem to prevent falling problem in elderly people that has had multiple attempts at

solutions. Unfortunately, although many algorithms have been suggested in the last

two decades and even reach to near 100% of detection, but still there is no optimum

solution in case of usability for this problem as the false alarm rate is considerable.

Furthermore solutions that use a physical alarm, would be intrusive on the surround-

ing patients and may even increase the likelihood of falling. Solutions like movement

controlling systems via RGB cameras do not preserve the privacy of the patient. Many

approaches currently and in the past require users direct input for the system to be

able to function such as use of a belt-size alarm with a button on it that only sounds

when pushed. The system prevents fall to an extent in some types of injuries but

obviously failed to show robustness in the case of falls due to unconsciousness. Other
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techniques are based on generalization of a fall action but their accuracy remains a

big question mark in the case of detecting most fall scenarios. As there has been no

empirical evidence of a decrease in injuries resulting from falls so research is being

sought out.

Therefore, these two reasons, i.e., the importance of this issue based on the medical

observation statistics and the lack of a perfect algorithm/system in case of specificity

and usability are the biggest motivations of this work.

1.2 Contribution

The literature lacks a thorough survey on fall detection especially using Kinect. As it

is crucial for a researcher to be expert on the state of the art and the previous works,

we provide such a survey comparing the most recent works on fall detection mostly

using Kinect.

The existing fall detection algorithms exhibit considerable false alarm rates which

makes the algorithms hard to be accepted by the users. We also propose novel features

to be used for fall detection based on a recent fall-related observation and statistic as

reported in medical literature [6]. The main contribution in this part is to increase

fall detection accuracy and reduce false alarms in comparison with the state of the

art.

The main contributions of this thesis can be summarized as follow:

1. A brief survey of the studies, research, algorithms and developments in the field

of fall detection.

2. Proposing a new event named high motion and using it to distinguish fall events

more easily and accurately.

3. Achieving a good confusion matrix with low dimensionality feature with inter-

class confusion being equivalent to state of art by proposing a new method in
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this field, i.e., intelligent generation of synthetic data.

4. Developing a generalized algorithm which works for different persons, with dif-

ferent ways of doing the events and in different environments by working on a

general data-set.

5. Providing an extensive RGBD (i.e., RGB and depth) video database for future

vision-based fall detection researchs.

1.3 Outline

Chapter 2 does a comprehensive look at previous works and researches on fall detec-

tion topic. Algorithms will be categorized and compared to each other and pros and

cons of them will be discussed.

Chapter 3 describes how the depth video data was recorded using Kinect. Soft-

wares and frameworks which were employed for this issue will be discussed. It will

be continued by discussing about the features. First the main features used in the

state of the art will be introduced and defined mathematically and then the proposed

features by the thesis will be discussed and described. Then fall detection system

in the thesis will be discussed. Classifier which was used, feature calculation and

preprocessing on the calculated features are the last topics of this chapter.

In chapter 4, the experimental results of the proposed algorithm will be reported

and will be discussed in details.

Finally in chapter 5, the main contribution of the thesis which was introduced in

chapter 1, will be compared by the achievements of the thesis. Also the ideas of the

author which were not completed for this study will be presented as the future works.
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CHAPTER II

RELATED WORKS

In this chapter, a short survey on most recent works on fall detection works, systems

and algorithms will be presented. We categorized fall detection systems into two main

categories: Sensor-based approaches and Vision-based approaches.

2.1 Sensor-based Approaches

Briefly, sensor-based fall detection algorithms mainly rely on two main type of sensors:

Wearable sensors and environmental sensors. This section will discuss and compare

approaches using these two kind of sensors for fall detection.

2.1.1 Wearable Sensor-based Approaches

Wearable sensor based approaches are based on different kind of sensors which are

attached to the body parts via wearing them by patients. In this approach, the

location and motion of the body parts, i.e., speed and acceleration of them will be

recorded and collected as the raw data for the further processing analysis for activity

recognition.

2.1.1.1 Accelerometer

Accelerometer is a sensor which can measure the proper acceleration. The measured

value is not necessarily the gradient of velocity. It will measure the amount of force

applied to a test mass and calculate the acceleration value with respect to the second

law of Newton, i.e., a = F
m

in which a is the acceleration and F is the force applied to

a test mass m. Approaches that use these sensors, are usually looking for measuring

the acceleration of body parts using the accelerometers attached to them, in order to
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monitor the body activities.

Merryn et al. [11] employed an accelerometer mounted to waist of the object

person. They determine an activity as fall when a sudden negative acceleration

change occurs. This means that the patient/object′s position has been changed from

standing position into lying on the ground.

Bianchi et al. [12] introduced a barometer pressure sensor for measuring the alti-

tude. As sudden negative change in acceleration can be caused by different activities

like jumping down and not only by falling, height measurement using an altitude

sensor can improve the fall detection performance in accelerometer based approaches.

In [13] Tamura et al. proposed an airbag worn by the person. This study is

actually a kind of effort to prevent injuries caused by fall. Their system adjusts the

inflation of the airbag based on the signals received from the accelerometer and gyro

sensor attached to the person. This system is a kind of useful device for construction

sites and places with a high risk of falling occurrences for reducing the fall related

injuries. Chen et al. [14] developed a low-power wireless sensor network by taking

the advantage of small sensor nodes. It performs the acceleration sampling which

cause the reduction of burden on the network. In the processing step they obtained

the angle of motion by taking a dot product of acceleration vector and orientation

information. [10] tried a kind of signal monitoring. They monitor the amplitude of

the acceleration signal measured by an accelerometer on the patients head and [11]

raises a fall detection alarm if the speed and acceleration goes beyond the specific

reference. Using this velocity and acceleration reference, fall would be distinguished

from non-fall events.

2.1.1.2 Fusion of Accelerometery and Posture Sensors

It is logical to take advantage of body posture sensors directly or indirectly for per-

forming a good job in fall detection. Employing a group of sensors on a belt, Luo
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et al. [15] represented the acceleration vectors in 3D space and by filtering the noisy

components with a Gaussian filter, a three dimensional body motion model was pro-

duced that can has a direct dependency to various body posture and the output of

the accelerometers.

[13] took advantage of a two-axis accelerometer with a posture sensor for detecting

fall. In this article they developed a wrist-worn device which measure and record the

bio-signals in addition to acceleration and reporting the injuries caused by fall for

emergency reporting and help.

In [16] Ghasemzadeh et al. studied EMG (electromyogram) signals and the body

acceleration in order to propose a model for body balance based on muscle signals

and body acceleration. This research will have a great contribution on fall detection

topic as a fall is always followed by losing balance.

2.1.1.3 Inactivity With Accelerometery

Generally a fall is considered as a dangerous activity when it causes a long time

of body inactivity which can be followed by injuries. One of the advantages of

accelerometer-based approaches is that the duration of activity and inactivity can

simply and accurately be measured. This information can assist the fall detection

systems.

[17] and [10] used motion sensors beside the wearable wireless accelerometer sen-

sors to record the activity or inactivity durations to understand whether a fall event

is occurred as a dangerous event or not.

2.1.1.4 Discussion on Wearable Devices

As all developed fall detection systems, wearable sensor based devices have specific

pros and cons. The main advantage of these kinds of algorithms/devices is their

cost. They are cheap and also easy to install and use. On the other hand, these

devices should be worn by the person that makes them hard to be accepted for daily
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use. Furthermore as they are always attached to the body, the probability of being

damaged or disconnected for them is higher than the other kind of sensor based

approaches.

2.1.2 Environmental Sensor-based Approaches

Most of these approaches use analysis of vibration, pressure and sound produced by

human activities in order to detect and distinguish fall. Zhuang et al. [30] employed

a far-field microphone to monitor the noise of the environment. They created a GMM

(Gaussian Mixture Model) model super vector using SVM (support vector machine)

classifier. In this approach they analyze the noise in the environment and their model

raise an alarm for those which are distinguished as fall related noise.

In [17], Alwan et al. proposed a totally passive system that uses the floor vibration

for its analysis. Although this approach has some limitation as the type of floor

material is not the same everywhere and therefore the type of vibration produced by

falling will change from one place to other.

2.1.2.1 Discussion on Environmental Sensor-based Approaches

Pressure and vibration sensors are common in almost all environmental sensor based

fall detection approaches. These sensors are cost effective and more acceptable by

people rather than the wearable ones. But their main problem is that they will sense

vibration by every object dropping or falling on the ground. Therefore the amount

of false alarms is so high in these approaches.

2.2 Vision-Based Approaches

The literature related to our work can be grouped into three categories: Those that

use RGB data captured by a video camera, those that use depth data captured by a

Kinect sensor and those that use human skeletal data obtained from the depth data.
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2.2.1 Skeletal Data as the Data Set

Among those papers that explicitly use the skeletal data obtained through the use

of a Kinect sensor, [18] estimates the ground plane from the v-disparity map. This

is possible through the linear increase of depth along the ground. Then it fits a line

to five joints, namely head, neck, torso and mean position of their knees. The line

fitted to these points forms a major axis. Their features included length and ori-

entation of this major axis. However their scope was limited only to fall detection.

They used different Kinect data and compared the results. Using 3D sensor in world

coordinate, they achieved 95.8% accuracy and 92.5% recall. Data set in [18] has a

disadvantage. The orientation of fall in the whole data set is static, perpendicular

to Kinect camera view which can stop generalizing the classifier for falling in other

orientations. Another effort [19], which uses depth data too, detects routine activities

using a Maximum Entropy Markov Model (MEMM) based approach. Their features

included viewing all rotation according to a man’s torso (to capture body pose). It

takes ten joints and represents the rotations as quarternions. Also the foot is mea-

sured with respect to the torso and the angle of line joining head and hip with the

vertical. All these reflect the pose information. For motion information they select

some frames for past 3 seconds and compute the temporal joint rotations. Also, they

used skeletal and RGBD Histogram Of Gradient (HOG) features. First of all common

observation yields and the [19] admits that activities in general are unstructured for

which they use a two-stage MEMM. Furthermore it is our observation, which stems

from common-sense that unusual activities are more structure-less than usual activ-

ities, which manifested in their results when they got bad results in some scenarios

(with F-numbers less than 0.5). Hence we did not find it suitable to detect unusual

events using Markov Model.
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2.2.2 Depth Data Based Vision Approaches

Following papers used depth data. [20], used a 3-D bounding box approach. Their

features were smoothed temporal gradients of height and width to depth ratio. The

features were compared with a temporally varying threshold found by a search tech-

nique. Their work produced good results (100% accuracy) but their scope was limited

only to fall. Also searching can be computationally tedious and no basis for the frame

duration required for searching was given. [21] forms depth motion maps from three

2D perspectives from the 3-D data obtained from the Kinect. A linear SVM classifier

was used to detect certain sample events like tennis serve, hand clapping etc. But

there is nothing specific in their work about abnormality detection other than some

cases of sport related too much motion. [22] uses skeletal data involving intra-frame

joint difference for posture, inter-frame joint differences for motion and deviation from

an overall pose for the global dynamics. Subsequently PCA was taken and a 128 di-

mensional vector was an input to a Naive Bayes classifier. Again the scope of the

events that they covered was limited to fall, though the features were innovative. [23]

uses just the depth data. It extracts the blob and its centroid and the ground plane

via the v-disparity map. It again uses 2-D features, namely distance of blob from the

ground and the velocity of the blob. A fall is signalled if these features violate a 97%

confidence interval from their mean values. Unique feature of their work is that there

is no sign of Bayesian spirit in their work as they used a search technique.

2.2.3 RGB Data Based Vision Approaches

[24] does something analogous to [19] using trackers in the pre-Kinect era in terms of

classifiers. However, the duration of a sub-activity was modeled by a novel Coxian

distribution. [25] used a criterion derived from spatiotemporal energy of the blob,

which was made from RGB video data. Large motion was detected from the variation

in area of the blob over time. Furthermore, an ellipse was used to approximate the
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blob. The high temporal variance of orientation of the ellipse was used to detect

slip and low value of the major axis as compared to minor axis was used to detect a

fall. They got 91.11% accuracy for fall detection. [26] introduced a structural cost

where norm of the 3-D inter-joint angles were considered. The mean and variance of

this cost along with maximum and minimum value of height formed a 4-D kinematic

feature. Also there were features based on 2-D blob and histogram of width to height

ratios. Additionally, they used RGB data when depth was not available. They trained

an SVM tree classifier. The feature dimensionality was too high and the scope was

limited to detecting only fall, i.e., there is high redundancy in their features.

As our work is primarily related to unusual activity detection for elderly and

child care, it is imperative to refer to [27]. It is based on multisensor fusion and

detecting Normal Activities of Daily Living (NADL). Also data used in [27] is RGB

and classification is based on Markovian relation between events. Although number

of events are much which can be considered as an advantage of the classifier design,

but number of sensors and dimension of feature are too high for NADL detection

which is a disadvantage. Privacy preservation was not considered in [27] which is

its other con. Another work [28], though very early outlined some challenges faced

by the vision-based event detection systems (apart from axiomatically defining three

different types of falls). Some of them were night-time surveillance. Other problems

outlined in various other references are texture dependency (as blobs inferred from

RGB data are dependent on texture) and privacy preservation [27].

[29, 30] which use depth data, evaluate the credibility of Kinect as a sensor based

on some gait features. They conclude that although the performance of Kinect was

comparable to a state-of-art camera, it had some minor pitfalls like blending of depth

data near walls, limited field of view etc. It has also outlined a ”smart fusion” of RGB

and depth data to address such issues. They conclude that Kinect is a moderately

accurate cost-effective sensor. Also, depth map of Kinect apart from being a useful

10



feature, preserves privacy.

Table 1 shows the most important vision-based fall detection approaches and works

which are discussed above in order to compare their features, performance, classifier,

pros and cons, events they tried to detect and their used data type.
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Table 1: Comparison of important works in fall detection using vision based ap-
proaches. The first column is the reference numbers. Second column shows the
activities which were trying to be detected in the references. Third column shows the
detection performance achieved in the references. Classifier column shows the classier
which was used. The sixth column lists the pros and cons the works. The last column
shows the type of data-set which was processed.

Reference Event Features Performance Classifier Cons and Pros Data Type
[2] Fall 1) Estimation of the ground plane

2) Length and orientation of the
spine

1) 0.87 F-score
using image coor-
dinates 2) 0.96 F-
score using world
coordinates

One-class classi-
fiers introduced
by Pospescu et.
al.

1) Scope limited
only to fall. 2)
Need for estimat-
ing ground plane
3) Need to eval-
uate the spinal
chord.

Skeletal data.

[19] Daily Activi-
ties

Body pose features Precision=84.7%
- Recall=83.2%

maximum-
entropy Markov
model (MEMM)

1) High dimen-
sionality of fea-
tures. 2) Scope
limited only upto
detecting usual
events 3) Bad
performance in
some scenarios

RGBD and skele-
tal data.

[31] Fall Height and width to depth ratio of
the bounding.

100% detection
rate

NA 1) Scope limited
only to fall. 2)
Lacks Bayesian
spirit.

Depth meta-
Data.

[32]
Fall 1) Height 2) Fraction of frames

where head drops
100% detection
rate with only 7%
false alarm

Naive-Bayes 1) Scope lim-
ited to fall.
2)Independence
assumption.
3)High Redun-
dancy in features
for detecting just
fall.

RGB data.

[24] Daily Activi-
ties

The entire room is divided into
cells. Observations of cells that a
human visits during his activity.

97.5% - 100% de-
tection rate

The hidden semi-
Markov model
(HSMM)

1)None of the
above is an
unusual activ-
ity. 2)Does
not address
the illumina-
tion dependence
problem.

RGB data.

[33] Slip and Fall If dimensions of the bounding box
over the foreground blob is a and b,
they used b

a
and the orientation of

the blob into the bounding box as
their features

91.11% detection
rate

Arbitrary Choice of thresh-
olds of 15 degrees
and ratio of 0.3
not justified in a
Bayesian manner.

RGB data.

[21] Horizontal
Wave, Ham-
mer, Forward
Punch, etc.

1) Activity recognition using HOG.
2) 2-D maps are analyzed from dif-
ferent views and motion energy is
calculated. 3) Three 2-D maps
(front, side and top)

80%-95% detec-
tion rate for all
activities

Linear SVM 1) High dimen-
sionality of fea-
tures.

Depth Motion
Map.

[22] Horizontal
Wave, Ham-
mer, Forward
Punch, etc.

1) Static Posture Intra Frame Joint
Differences. 2) Motion- Inter Frame
Joint Differences. 3) Overall Dy-
namics Deviation from a calibra-
tion pose. 4) Take PCA.

55%-85% detec-
tion rate for all
activities

Naive-Bayes
Nearest Neighbor

Comparatively
bad results in
some scenarios
with high data
dimensionality.

Depth Motion
Map and Skeletal
data.

[23] Fall 1) Ground plane estimation from
the V-disparity map. 2) Find the
foreground blob from the depth im-
ages. 3) Distance of the blob cen-
troid from the ground plane. 4) Ve-
locity of the blob centroid in 1 sec

98.7% 97% accuracy 1)Scope limited
only to fall.
2)High dimen-
sional data for
detecting only
fall.

Depth Map

[27] Daily Activi-
ties

1) RGB data plus other sensors. 2)
Contact Sensor 3) Pressure Sensor.

63% - 88% detec-
tion rate

Dempster-Shafer
Theory of Evi-
dence for Fusing
Sensor

1) Thesis basi-
cally based on
fusing sensors. 2)
Gives definitions
about what is
an event, sensors
etc.

RGB
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CHAPTER III

FEATURES AND FALL DETECTION

Selecting the appropriate set of features makes us able to do a good job in classi-

fication. in order to make feature-based classification work, we need to have some

knowledge of what features make good predictors for the classes we are trying to

distinguish. For example, body height distinguishes falling and walking, but doesn’t

distinguish falling from lying. Depending on the classification task we are facing,

different sets of features may be important.

Activity recognition using classification is not an exception. To be able to distin-

guish falling from the other activities, we need to consider or define features which

works well for fall detection.

3.1 Definition of Features Used in the Depth Video-Based

Literature

In this section we summarize the features calculated from depth and skeletal data for

fall detection which were used in state of the art.

3.1.1 Features Calculated From RGBD Data

In [34], they used RGBD data. They formed MHI (i.e., Motion History Image) from

their dataset and then Hu moments were used to extract the features from the MHIs.

It is worth mentioning that using MHI and its seven central moments, we can define

the picture having the rotation, scaling and translation. Imagine I(x, y, t) be an im-

age sequence and the threshold value for generating the MHI mask be K. t to be the

fixed duration and τ , the maximum time window. Each pixel intensity value in MHI

video will be a function, Ht, of that pixels history of motion.
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Ht(x, y, t) =

⎧⎪⎪⎨
⎪⎪⎩
τ, if (I(x, y, t)− I(x, y, t− 1)) > K

max(0, Ht(x, y, t− 1)− 1), Otherwise

(1)

Also in this work they added a third dimension to conventional MHI which is depth.

They introduced DMHI (Depth Motion History Image) which is exactly the same

as the conventional MHI, but instead of image sequence I(x, y, t), they used depth

D(x, y, t) as follows.

Ht(x, y, t) =

⎧⎪⎪⎨
⎪⎪⎩
τ, if (D(x, y, t)−D(x, y, t− 1)) < −K

max(0, Ht(x, y, t− 1)− 1), Otherwise

(2)

DHMIs contain two kind of information. Forward-DHMI (fDHMI) which gives in-

formation about forward motion history, i.e., increase of depth. Backward-DHMI

(bDHMI) which gives information about backward motion history, i.e., decrease of

depth. According to the upper brief introduction, they used 21 features which are

the 7 hu-moments for each of the 3D-MHIs

In [1] they used RGBD video as their dataset. Also as the previous paper, they

consider a time threshold after falling to raise a fall alarm. The features they used

are as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Intra-frame features:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bi : Bounding Box Aspect Ratio

Oi : Orientation

Ai : Ellipse Axis Ratio

Inter-frame feature:

{
Mi : Motion Speed

(3)

The more detailed definition of the features are:

Bi :. Height of the bounding box surrounding the person divided by the mean of

its both widths.

Oi : The orientation of the major axis of the ellipse fitted to the person, specified

as the angle between the major axis and the ground plane.

Ai : The ratio between the lengths of the longest axis and the second longest axis

of the ellipse fitted to the person.

Mi : The relative number of new motion voxels νi in the current frame compared

to the previous frame. In other words, Mi is the ratio of the ith frames new voxels

and its all voxels.

By motion voxel νi they meant the voxels which can be changed because of the

movement of the object. They defined Mi as follow:

Mi=|νi\(νi ∩ νi−1)|/|νi| (4)

i: Frame number

νi : Voxels in frame i

In Figure 1, the second picture is a bounding box fitted to the human body.
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The third one is showing an ellipse fitted to the body. Generally the vertices of the

bounding box and axes of the ellipse are more concerned as feature in papers.

Figure 1: Bounding box and ellipse fitted to the body [1].

In [35], the research team used the height of the human 3D centroid from the

ground plane. They estimated the ground plane using the V-disparity approach

which is computationally better than RANSAC plane fitting approach which is the

common way of ground plane estimation. They found the coefficients in the ground

plane aX + bY + cZ + d = 0 by least squares of the 3D points estimated from the

ground. And to detect the person they used the background subtraction by having the

background firstly. If we say each pixel (i, j) in a current frame is I, and each one of the

background is , a pixel will be considered as foreground if |I(i, j)−B(i, j)| ≥ T (i, j)in

which T (i, j) is 2 times the pixel standard deviation.

Also they calculate the human body velocity as their other feature. The body ve-

locity I was computed as the centroid displacement over a one second period. Finally

the mathematical expression of the feature they used, height of the body centroid, is:
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Features :

⎧⎪⎪⎨
⎪⎪⎩
Dt =

|aXCOG(t)+bYCOG(t)+cZCOG(t)+d|√
a2+b2+c2

Vt= |COGt(x, y, z)− COGt−1(x, y, z)|
(5)

In [2] the authors used different sensing ability of the Kinect. Sound sensor, RGB

camera and depth camera were the data recording facilities they took advantage of.

As we concern about depth data features, we just mention the features they used

regarding the depth data. Firstly it should be mentioned that they used MS Kinect

SDK as the depth recorder.

As it is shown in Figure 2 The orientation of the body major axis is calculated

using the coordinates of the head, shoulder, spine, hip and knee joints obtained from

MS SDK. Using the least squares algorithm to fit a straight line to the data points

results in the orientation of the major axis. The angle between this major axis and

the estimated ground plane was one of their features. Also they use the height of the

spine from the ground plane. Fall alarm will be raised if the major axis orientation

become almost parallel to the ground plane and the spine height be near the ground.

According to me as a person who worked on this topic, these features cant help

distinguishing the lie and fall. So they are not strong enough. Also in their result

report, they say a fall is considered to be detected if the algorithm alarms within the

period of falling, either for one single frame.

In [3] they used skeletal data obtained from MS Kinect SDK when the person is

in the range of Kinect (4m) and RGB data in other case. As it is shown in Figure 3

they chose 8 joints on head and torso from the 20 available joints in MS SDK. Their

reason is that other joints (on limbs) introduce more noise than useful information to

distinguish whether a person is falling.

17



Figure 2: Line fitted to the body. Image is borrowed from [2].

Figure 3: Joints marked on the body using MS SDK [3].

In the case of using skeleton joints, they use the structure difference cost C(ξ) as

follows:

C(ξ) =
n∑

i=1

n∑
j=i+1

‖θ(ξi, ξj)− θ(φi, φj)‖ (6)

θ(i, j) =
arcsin( ix−jx

dist(i,j)
)

2π
(7)

Where θ(ξi, ξj) and θ(φi, φj) denote the angles between two joints i and j on two
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skeletons.

ξ and φ, respectively, the geometry distance between two joints i and j is denoted

as dist(i, j).

When the person is out of the range of the Kinect, they use RGB as mentioned.

They do background subtraction to get the human body. From that they form a

bounding box and use its height as the feature. Briefly, they used the following fea-

tures as their features

Features :

⎧⎪⎪⎨
⎪⎪⎩
C(ξ) if human is in the range of Kinect (4m)

Hboundingbox if human is outside the range of Kinect

(8)

3.1.2 Features Calculated From Depth and Skeletal Data

In [36] the used dataset was depth video. The motions they tried to detect were

sitting, bending, lying and standing. They used the height of the center of gravity

(COG) from the floor plain and the orientation of the body spine as their features.

Orientation of the human spine (angle between the Head-Torso line and a horizon-

tal line) φ obtained from an appropriate extracted 3D skeleton. The Discrete Reeb

Graph (DRG) is used for the skeleton extraction. Also they defined a 4 second time

threshold for their detection. If COG remains lower than a threshold for 4 second,

they alarm it as fall; otherwise this reduction in COG height will be interpreted as a

movement rather than fall.
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F (t) =

⎧⎪⎪⎨
⎪⎪⎩
hCOG(t)− hfloor(t)

φ = ∠BodySpine

(9)

[37] used depth image. The used a bounding cylinder instead of bounding box

or ellipse. The features they used are position, speed and acceleration of the COG

of the body and of the highest point and the Bounding Cylinder with its height to

diameter ratio.

Features :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

COG(x, y, z)

SpeedCOG

AccelerationCOG

hi : Position of the Highest point of the detected body

Speedhi

Accelerationhi

Bounding Cylinder height to diameter ratio

(10)

In [31] they used depth image as their data captured by OpenNI. Their features

are height, width and depth of the 3D bounding box they obtained from OpenNI and

their first derivative.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H= |Ymin − Ymax|

W= |Xmin −Xmax|

D= |Zmin − Zmax|

(11)

As their analysis showed the relation of fall and a combination of W and D, they de-

cided to combine them together and define and use a new feature WD =
√
W 2 +D2

instead of using W and Dseparately. So their final features which their algorithm

used to detect fall event are:

Features :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi

WDi =
√
W 2

i +D2
i

νHi
= Hi−Hi−1

ti−ti−1

νWHi
= WHi−WHi−1

ti−ti−1

(12)

This was a summary of almost all features which were calculated using RGB

and/or depth video data for fall detection. Based on their results, they could reach

almost 100% detection rate but their false alarm rate is still high and make their

algorithm unusable in real life. This means that these features are unable to separate

fall and non-fall activities completely without any confusion. Also in order to achieve

an acceptable result, they used high dimensionality feature space which makes the

classification process complex. Therefore we propose new features and modify the

features in the state of art in order to cover these problems, i.e., high false alarm rate
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and high dimensionality of the feature space.

3.2 Ideas for Fall Detection

In this thesis, two different ideas with different feature sets were proposed and exper-

imented for fall detection study. In the first idea, new features were introduced and

in the second idea a new event, i.e., high motion, was tried to be detected as it was

supposed to have high confusion with fall event.

Let the body be represented by a set of skeletal joints positions {sni (x, y, z) ∈ R
3}

where i is the skeletal joint index as they are shown in figure 4 and table 2 and n

denotes the time index, i.e., the frame number.

Figure 4: Skeleton joints indexes provided by OpenNI. Figure is borrowed from [4].

The features definitions proposed in this thesis are:

3.2.1 Features Used in Evaluating Idea 1

In order to evaluate the first idea, five features were chosen and calculated. Some of

them are modified to be more stable and some are novel.
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Table 2: Skeleton joints indexes list provided by OpenNI.

Joint Name Joint Index

Head 1
Neck 2

Torso Center 3
Left Shoulder 6
Left Elbow 7
Left Hand 9

Right Shoulder 12
Right Elbow 13
Right Hand 15
Left Hip 17
Left Knee 18
Left Foot 20
Right Hip 21
Right Knee 22
Right Foot 24

3.2.1.1 Height

One of the indicators of body pose is the body height. Falling follows by a considerable

change in body height and can be a suitable feature for fall detection. Although this

feature was used in the literature before, certain modifications were applied during

its calculation. Skeleton data provided by Kinect is noisy in the end points of the

body, e.g., head, hands and legs. Central joints are more stable like shoulders, neck,

torso, hips and knees. Average of the shoulders heights were used for body height

approximation as they are provided more stable and with less noise by OpenNI;

Equation 13.

f1(n) =
sn6 (y) + sn12(y)

2
(13)

In which ”6” and ”12” are indexes of shoulders mentioned in Figure 4
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3.2.1.2 Height Vertical Temporal Gradient

Vertical speed of the upper body is also a major indicator in fall definition; Equation

14.

f2(n) = f1(n)− f1(n− 1) (14)

This feature is not novel but as more stable joints are used for its calculation, it

is more powerful than the one used in the state of art.

3.2.1.3 Body Orientation

The main orientation of the body can be estimated by a line fitted on it. In this study,

shoulders, torso and hip′s 3D positions were selected to find the body orientation. A

line l was fitted through these 3D points and the angle θ between the line and ground

plain was calculated as the third feature; Equation 15. Again this feature is a modified

version of the one used in the literature.

f3(n) = θ(n) (15)

3.2.1.4 Body Orientation Temporal Gradient

Fall is following by a big change is body orientation. Therefore the temporal gradient

of θ was chosen as the fourth feature; Equation 16

f4(n) = θ(n)− θ(n− 1) = f3(n)− f3(n− 1) (16)

This feature is novel. The main purpose for its introduction is to remove the

confusion between falling and sitting down quickly.

3.2.1.5 Distance Between Center of Mass and Body Support

The last feature is based on the main contribution of this research study, i.e., weight

shifting. The main idea is to calculate the distance between the body center of
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mass (COM) and body supports, i.e., the feet. Body balance is kept by feet. In a

well balanced situation, COM projection on the ground (COMP ) is between the feet

and has the least possible distance to them. Now consider the following to possible

fall instances; 1) Front/Backward fall in which the distance between (COMP ) and

the line between the feet (LP ) will increase. 2) Side fall in which this distance will

remains almost unchanged while the body balance burden will go to one foot. In the

first instance, distance between (COMP ) and (LP ) is an important information that

defines fall. In the second instance, as just the closer foot to (COMP ) should take

care of body balance, distance between (COMP ) and that foot will be the crucial

information to detect a fall.

In this study, torso was chosen as an approximation for COM. To write the math-

ematical expression of this feature, we need to introduce the following variables:

COMP : Projection of COM on the ground plain

RFP : Projection of right foot on the ground plain

LFP : Projection of left foot on the ground plain

LP : Line connecting RFP and LFP

PP : If we draw two perpendicular lines to (LP ) passing from RFP and LFP , part

of the ground plain which is bounded by these two lines is considered as (PP )

Figure 5 shows the upper descriptions. Equation 17 describes f5(n) mathemati-

cally.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Distance(COMP (n), PP (n));

if max(|COMP (n)− LFP (n)|, |COMP (n)−RFP (n)|) ≤ |LP (n)|

min(|COMP (n)− LFP (n)|, |COMP (n)−RFP (n)|);

if max(|COMP (n)− LFP (n)|, |COMP (n)−RFP (n)|) ≥ |LP (n)|

(17)
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Figure 5: Skeleton joints indexes provided by Microsoft SDK. Fifth Feature Defini-
tion; (a) Frontal view of the skeleton. Figure is borrowed from [5] (b) Top view of
skeleton (just feet and COM are displayed).

This novel feature is proposed for the first time based on a medical observation

study [6] which says weight shifting is the most reason of falling in elderly people. As

this thesis and its data set are based on falling in old people, and the main contribution

is to reduce the false positives as much as possible, this feature was suggested.

3.2.2 Features Used for Evaluation of Idea 2

In this idea we tried to detect fall, high motion events and normal events. In the idea

of this experiments, it was considered that every fall is a kind of high motion activity.

Therefore if we try to detect high motion activities along with fall, the confusion

between fall and normal will be reduced and the fall detection performance will be
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improved.

The feature for fall was defined as equation 18.

f1 =
1

4

∑
iε{head,neck,leftshoulder,rightshoulder}

∇ns
n
i (y) (18)

where y denotes the vertical component of the gradient feature.

For the second event, i.e., High Motion, we used a novel feature which its definition

is shown in equation 19.

f2 =
ΣM

i=1‖∇nsi‖2
M

(19)

We used the features f1 and f2 as discussed above, in the form shown in equation

20.

f(n) =

⎛
⎜⎝ f1(n)

f2(n)

⎞
⎟⎠ (20)

In this section the mathematical definitions of the features were shown. In section

3.4, the practical calculation of these features on an extended data for evaluating

their performances will be discussed.

3.3 Classifier Used In The Thesis

In this study we used Support Vector Machine (SVM) algorithm as the classifier. We

employed a Matlab interface for SVM named LIBSVM [38] to classify our data set.

The feature vectors in the experiments were fed to the classifier and using 3-fold cross

validation, the results were calculated and reported.

3.4 Data Preprocessing and Feature Calculation

As it was mentioned in section 3.2, in this thesis, two different ideas with different

feature sets are proposed and experimented for fall detection study. In the first one,
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new features are introduced and in the second one new event, i.e., high motion activity,

is tried to be detected as it is supposed to have high confusion with fall event in order

to improve the detection performance of fall.

Both of these ideas are using skeletal data as the raw data and the features were

calculated based on the joints positions.

Skeletal data is nothing but a fitted virtual skeleton pattern on the body depth

map. Therefore it is a function of camera viewing angel. In order to eliminate

this dependency, skeleton should be translated from camera coordinates to world

coordinates. Four points on three perpendicular lines were picked in real world as

origin points and their 3D position values according to the camera were recorded. By

minimum least squares error method, the translation matrix (which is a 3*3 matrix

as all points are 3D) was calculated and applied to all skeleton joints 3D positions

and the skeleton in the real world was created. Figure 6 shows this conversion from

camera coordination to world coordination.

Figure 6: (a) Skeletal data in camera coordinates (b) Skeletal data translated into
world coordinates.

3.4.1 Idea 1: Usefulness of New Features

Features mathematical expressions are described in the previous sections. For each

frame, the mentioned five features were calculated. For smoothing and eliminating
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the effect of noise added during data recording, after computing the feature vector

we applied a postprocessing step. Windows with one second length were pushed on

the feature vectors in the steps of 0.5 second. In each window, first the feature values

were sorted. The first and last 10% were removed. The average of the remaining

values in the window was selected to be saved instead of all window values. In other

words the following steps were done to the feature vectors:

Step1: 30 consecutive frames (which is one second as data was recorded at 30 fps)

will be chosen

Step2: They will be sorted

Step3: First and last 10% will be removed

Step4: Average of the rest values will be taken

Step5: All 30 values in the window will be replaced by the average obtained in Step4

Step6: Go 15 frames forward (which is 0.5 second)

Step7: Go to Step1

After windowing the feature vector, corresponding labels for each window were saved

as a label vector. The new windowed feature vector consist of 3152 window; 344

window for Fall and the rest 2808 windows for non-Fall events.

Figure 7 shows the five features calculated for a fall instance in data set.

3.4.2 Idea 2: Usefulness of Adding a New Activity Detection

In this idea we labeled and used 3 events; Fall, Normal and High Motion. When we

do not find a skeleton, we attribute it as a ”don’t know event” and keep it out of the

training and testing samples. Also some more events like ”Entry”, ”Exit”, ”Lying on

ground” and ”Sitting” are labeled in the data set but they are labeled in the category

of normal activities (non-fall activities). Table 3 shows the mentioned activities labels
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Figure 7: Features plotted v.s. time for a sample fall event, (a) Body Height: During
Fall, body height is expected to be decreased (b) Body Height Vertical Temporal
Derivative: Fall follows by a sudden decrease in body height (c) Body Orientation:
In a Fall, angel between body and ground is expected to go from 90 to 0 (d) Body
Orientation Temporal Derivative: A sudden change in body orientation is expected
in Fall (e) Distance between COM and body supports, i.e., feet.

in this work.

Also we imposed some selectivity on the skeletal data even if they are available

that affects the quality of features that we would be using. In this selectivity policy,

we defined a criteria named ”tracking” criteria. The criterion for the user to be de-

scribed as being ”tracked” is as follows:

Each frame and its 15 previous and 15 next frames should satisfy the following:

1) At least 60% of joints should exist in those frames, because to get an idea of

the feature f2(n)(which is turn is based on skeletal norm), we need to be assured that

we have at least some significant and reliable part of the skeleton available to us.

2) At least one of the upper body joints (head, neck, left shoulder and right

shoulder) should exist in those frames for Fall detection. This is because sometimes

one of the upper body joints may not be available. Hence we reduce the probability

of outage of skeletal data.

On the recordings, we had the time stamp of the events that we wanted to detect.

In our skeletal data, we know the frame number of each observation [si]i=1:N . N is

the total number of frames we have. As we know the frame rate of the skeletal data,

i.e., 30 Hz, we can draw a one to one correspondence between the skeletal data and

class labels corresponding to events (which are visible from video data).
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Table 3: Events and their corresponding labels in high motion detection.

Event Label

Normal 0
Fall 1
High Motion 2

We note that f2 has nothing to do with Fall and f1 has nothing to do with

detecting High Motion, because those features are in-built to detect two different

events. Although not uncorrelated, they carry little information about each other.

Hence for computational simplicity, we decide to use them separately. Both are in

fact factor loadings [39] for the Fall and High Motion events. Hence, during training

and testing our features should be (f1) for Fall/Not Fall classifier, (f2) for High

Motion/Not High Motion classifier and (f1 f2)
′

for Normal/Not Normal classifier.

To the Normal/not Normal classifier, we present the whole unfactored data set,

(i.e., without omitting f1 or f2), both during training and testing. This classifier

can provide a reinforcing evidence if either of the above classifiers goes wrong due to

some reason. This is because we have defined it as a three-class problem and two

decisions are enough to form some sort of a decision boundary. Therefore in reporting

the experiments results, we will report the results with both factored and unfactored

features, so that we can assess our idea of factorization which was mentioned above.

In this chapter the detailed paths and ideas of the proposed fall detection al-

gorithms were described. In chapter 4 the performance and the final experimental

results of these ideas will be reported and discussed.
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CHAPTER IV

EXPERIMENTS AND RESULTS

4.1 Data Collection

In order to study fall and experiment the ideas, we should have data, either real or

synthetic data. As we didn’t have access to real fall data occurred by elderly people,

we had to simulate this event in different positions and conditions. As we should

have played this role as natural as possible, we had to watch some videos showing the

event in real world. Figure 8 shows the real falling sequence in some of these videos

[6].

Figure 8: Falling event sequences in real videos. Images is borrowed from [6].

In the next section, the complete setup which was used for recording and collecting
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data will be described.

4.1.1 Data Collection Setup

4.1.1.1 Kinect

Kinect is a motion sensing input device developed by Microsoft corporation. It was

firstly developed for Xbox video game console but later a version for Windows was

released on February 1, 2012.

There are many wrappers and drivers released officially by the related organization

like Microsoft and unofficially by hackers for Linux/Windows since 2012. Microsoft

released Kinect SDK (software development kit) for Windows 7 on June 16, 2011. This

SDK was meant to allow developers to write Kinecting apps in C++/CLI (Command

Line Interface), C#, or Visual Basic .NET. OpenNI is an example of open source

interfaces to interact with Kinect in windows and Linux.

Figure 9 shows the audio and video sensors implemented in Kinect. As it can be

observed, Kinect has two microphone arrays, one simple RGB camera and a pair IR

sensors.

Figure 9: Kinect’s sensors. Image borrowed from [7]. Last visited on July 19. 2013.

The Kinect’s various sensors output video at a frame rate of 9 Hz to 30 Hz
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depending on resolution. The default RGB video stream uses 8-bit VGA resolution

(640 480 pixels) with a Bayer color filter, but the hardware is capable of resolutions

up to 1280x1024 (at a lower frame rate) and other colour formats such as UYVY.

The monochrome depth sensing video stream is in VGA resolution (640 480 pixels)

with 11-bit depth, which provides 2,048 levels of sensitivity. The Kinect can also

stream the view from its IR camera directly, i.e., before it has been converting into a

depth map, as 640x480 video, or 1280x1024 at a lower frame rate. The Kinect sensor

can maintain tracking through an extended range of approximately 0.76 m (2.320 ft).

The sensor has an angular field of view of 57 horizontally and 43 vertically, while

the motorized pivot is capable of tilting the sensor up to 27 either up or down. The

horizontal field of the Kinect sensor at the minimum viewing distance of 0.8 m (2.6

ft) is therefore 87 cm (34 in), and the vertical field is 63 cm (25 in), resulting in a

resolution of just over 1.3 mm (0.051 in) per pixel. The microphone array features

four microphone capsules and operates with each channel processing 16-bit audio at

a sampling rate of 16 kHz.

Figure 10 shows a sample image recorded by Kinect’s RGB video camera. Figure

11 and 12 show sample depth and IR images recorded by Kinect’s IR sensors.

Figure 10: RGB Image Sample.
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Figure 11: Depth Image Sample.

Figure 12: IR Image Sample.

4.1.1.2 OpenNI

In this research work, we mainly used OpenNI interface to communicate with Kinect

and record data and process them. OpenNI or Open Natural Interaction is an

industry-led, non-profit organization focused on certifying and improving interop-

erability of natural user interface and organic user interface for natural interaction

devices, applications that use those devices and middleware that facilitates access

and use of such devices. Natural Interaction Devices or Natural Interfaces are devices

that capture body movements and sounds to allow for a more natural interaction

of users with computers in the context of a Natural user interface. The Kinect and
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Wavi X-tion are examples of such devices. The OpenNI framework provides a set of

open source APIs. These APIs are intended to become a standard for applications

to access natural interaction devices. The API framework itself is also sometimes

referred to by the name OpenNI SDK. The APIs provide support for:

• Voice and voice command recognition

• Hand gestures

• Body Motion Tracking

Using OpenNI processing programs, a simple raw depth data recorded by Kinect

can give us many information like skeletal shape data and a silhouette/blob based

on the body of the person standing in front of the Kinect. Sample produced body

skeleton and blob can be observed in Figure 13 and 14.

Figure 13: Skeleton Produced by OpenNI.

4.1.2 Recorded Data Statistics and Samples

By means of the frameworks mentioned in the previous sections, and having the real

falling videos in mind, we started simulating different falling events and recording

them. We tried to execute these activities as natural as possible and also as rich

as possible in case of different activities and not only falls. The recorded data set

consists of different activities like falling, sitting on the chair, sitting on the ground,
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Figure 14: Silhouette/Blob produced by OpenNI.

lying on the ground and high motion activities. Totally 19 video were recorded consist

of 3 hours and 47 minutes and 19 seconds with 409185 frames. Table 4 shows the

recorded activities statistics in the recorded data set.

Table 4: Statistics of activities in the recorded data set.

Activity Type Number of Occurrences (times)

High Motion 120
Sitting On the Ground 37

Sitting On Chair 48
Lying on the ground 64

Falling 176
Normal (Standing and Walking) Rest of the time

The instances of some activities in the data set are shown in the Figure 15, 16

and 17.

Figure 15: Fall instance sequence. Person is detected using a silhouette/blob.
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Figure 16: Fall instance sequence. Body skeleton is reconstructed using the joints
locations given by OpenNI.

Figure 17: High motion instance sequence. Person is detected using a silhou-
ette/blob.

4.1.3 Data Labeling

In labeling the recorded activities in the data set, we have video frames which should

be categorized based on the observation of a human which makes this work difficult,

time consuming and not unique for all instances. Therefore, we proposed a definition

for fall to do the labeling as similar as possible for all fall instances in the data set.

Fall is considered to be happened from the time the person looses control and can’t

recover to the balanced position till he/she completely lie on the ground. All the

frames in this period would be labeled as fall. We did the same for other activities as

well. The definitions are:

• High Motion: Starts from the time the person starts doing some activities with

high motion (kicking, punching, etc.) and ends by the time he/she finish doing

that.

• Sitting On the Ground: Starts when the object start descending from the not-sit

position till fully sat on the ground

• Sitting On Chair: Starts when the object start descending from the normal
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position till fully positioning on the chair.

• Lying on the ground: Starts when the object start descending from the not-lied

position till fully lied on the ground.

• Falling: Starts from the time the person looses control and can’t recover to the

balanced position till he/she completely lie on the ground.

• Normal: All activities rather than the upper mentioned ones would be labeled

as normal.

The raw recorded data set was in .oni format which contained the RGB and depth

video data. The problem was that it couldn’t be opened and viewed by normal video

players for labeling. Therefore our group wrote a program in C++ for converting the

.oni data set to two .avi file formats; one for RGB video and one for depth video data.

Figure 18 shows a snapshot of this program’s graphical user interface and Figure 19

shows the snapshot of the output of this program.

Figure 18: Snapshot of the .oni converter program’s graphical user interface

In order to check whether the labels which are the ground truth for the classifier

are created right, we should have checked them again. For evaluating the created

labels frame by frame we wrote a program in visual C#. In this program the main

target was checking the labels which were fed to the classifier as training data. So
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Figure 19: Snapshot of the .oni converter program’s video output

even if there is one frame mistake during labeling, the classifier will get confused

between classes and will give unexpected results. The program is written so that the

videos and the labels can be fed to it and one can see each event based on the labels

and check if start and end of the event (according to labels) are correct or not. A

sample snapshot is shown in Fig. 20.

Figure 20: Snapshot of the labeling evaluation program graphical user interface
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4.2 Experimental Results

As we tried two separate experiments, the results will be reported separately in the

following sections.

4.2.1 Experimental Results for Idea 1

By feeding the five dimensional windowed feature vector described in previous sec-

tions as the training data and their corresponding labels to the classifier and taking

advantage of 3-fold cross validation, the following results were achieved:

TP rate = 89.82%

TN rate = 99.86%

FN rate = 10.17%

FP rate = 0.14%

Which are calculated from the confusion matrix 21.

⎛
⎜⎝ 309 35

4 2804

⎞
⎟⎠ (21)

In which the first column of the confusion matrix 21 represents the fall events and

the second column represents the not-fall activities. By means of these results, we can

calculate accuracy = 98.76%, precision = 98.72%, recall = 89.83%, specificity =

99.86% and F − score = 0.94. The given results are window-based result. In other

words, during comparing the predicted values and target values, they were checked

window by window.

Furthermore as an additional experiment, we fed the frame based features (not

windowed features) to the classifier. we checked them based on events occurrences.

For all fall events, at least one frame was detected and made alarm as fall and non of
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them were skipped. In addition just one false alarm was observed. Therefore for all

fall occurrence, an alarm was raised by the algorithm and only one false alarm was

raised.

4.2.2 Experimental Results for Idea 2

4.2.2.1 Need for Balancing the Data Set

This section shows that if there is no means of balancing the skewed data set there

would be some unwanted confusion between classes. We present the following three

confusion matrices for the problem. Without factoring, the individual classifiers,

reported F-numbers as (0.68 (Normal/not Normal), 0.93 (Fall/not Fall), 0.34 (High

Motion/not High Motion)) and with factoring F-numbers will be (0.67 (Normal/not

Normal), 0.93 (Fall/not Fall), 0.34 (High Motion/not High Motion)). So we must

design our tree (for this simulation), such that the upper has better performance.

Hence according to the given F-numbers, the upper node is Fall/not Fall and the

next node is Normal/not Normal. The detailed results obtained by the architecture

shown in Figure 21 is written in section 4.2.2.

Figure 21: Architecture of the classifier before adding synthetic data.

The poor performance is obvious from confusion matrixes 22 and 23. But what we

see is that there is high confusion between the Normal and Too-much-motion classes.

This is due to the skewness of the too-much-motion class which can be removed by
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adding synthetic data, because of the need for it. Hence we decide to balance our

data set by generating synthetic data from the histogram of the observations. Also

we see a pattern; there is a high confusion between Normal and High Motion which

is due to class skewness of the data set (in an information theoretic sense).

4.2.2.2 Choosing the Order of the Classifiers in the Classifier Tree after Adding
Synthetic Data

First of all we estimated the pdf of High Motion class using Epanechnikov kernels,

generate synthetic data from it and add it to our data set. The details of making

and adding synthetic data to the original data set will be in described in details in

chapter 4.2.2.3.

We checked each of the three classifiers’ performance over simulations. For un-

factored data, individual classes’ F-numbers were 0.9700 for Normal/not Normal,

0.9587 for Fall/not Fall and 0.9714 for High Motion/not High Motion. For factored

data, individual classes’ F-numbers were 0.9705 for Normal/not Normal, 0.9507 for

Fall/not Fall and 0.9713 for High Motion/not High Motion. Again it is obvious that

the factorization doesn’t affect the results much. And also it is obvious that the

performances increased drastically after adding synthetic data. Hence according to

these F-numbers (which is a good reference of the classifier performance), we decided

to put High Motion classifier at the top node and Normal/not Normal classifier at

the bottom. A Fall would be signalled if it is not High Motion and not Normal. This

architecture which is shown in Fig. 22, will be fixed and our final classifier tree for

detecting the mentioned events.

4.2.2.3 Synthetic Data Generation and Balancing the Classes

As we are dealing with skewed classes we found it necessary to generate synthetic

data. The pdf of the data for High Motion (because it is the least informative class)

was estimated using Epanechnikov kernels. From that estimated pdf random samples
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Figure 22: Architecture of the classifier after adding synthetic data.

were drawn. The synthetic data was generated as follows: with 70% probability data

is drawn from the original masked data set (which contains Fall, High Motion and

Normal events) and for remaining 30% of time more High Motion synthetic data,

which is generated by sampling from the estimated distribution, was plugged in.

The rationale for this approach was found as follows;

The percentage of the synthetic data added to the original data set was varied

from 0 to 85% and found an optimal ratio in which the synthetic data and the original

data should be mixed. In this cross validation procedure we found an optimal mixing

ratio to be 0.7 as it is shown in the Figure 23.

Figure 23: F-score v.s. the percentage of the synthetic data.
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The results we got by the architecture shown in Figure 21 are shown in confusion

matrixes 22 and 23. The following confusing matrix 22 is with factored data.

⎛
⎜⎜⎜⎜⎝

87.42 0.00 66.39

12.57 100.00 0.27

0.00 0.00 33.33

⎞
⎟⎟⎟⎟⎠ (22)

F-numbers for the above confusion matrix 22 will be (0.68 (Normal/not Normal),

0.93 (Fall/not Fall), 0.50 (High Motion/not High Motion)).

If we remove factoring, we will get the following confusion matrix 23,

⎛
⎜⎜⎜⎜⎝

87.42 0.00 66.94

12.54 100.00 2.72

0.00 0.00 33.33

⎞
⎟⎟⎟⎟⎠ (23)

F-numbers for the above confusion matrix 23 will be (0.68 (Normal/not Normal),

0.92 (Fall/not Fall), 0.48 (High Motion/not High Motion)).

We see that keeping/not keeping factoring does not alter the results much. The

results are still not acceptable according to 23 and its F-numbers.

Using the new balanced data set (mixed up with synthetic data), we got the

confusion matrix 24, averaged over three folds [40] for unfactored data.

⎛
⎜⎜⎜⎜⎝

97.18 8.86 5.17

2.81 91.13 0.00

0.00 0.00 94.83

⎞
⎟⎟⎟⎟⎠ (24)

Which the F-numbers are 0.92 for Normal/not Normal, 0.94 for Fall/not Fall and

0.97 for High Motion/not High Motion.

And for factored data, confusion matrix 25 was reported by the classifier tree.
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⎛
⎜⎜⎜⎜⎝

94.60 0.00 5.08

5.39 100.00 0.0282

0.00 0.00 94.88

⎞
⎟⎟⎟⎟⎠ (25)

Which the F-numbers are 0.95 for Normal/not Normal, 0.97 for Fall/not Fall and

0.97 for High Motion/not High Motion.

It is obvious that factorization increased the F-number of the classes classified

by the classifier tree. So this experiments prove our theory of using factorization

technique. And the theory of adding synthetic data was proved by the previous

reported results.

We also have a live system running in our laboratory which flags the occurring

events. For developing this software, we connect Maltab engine and visual C++

together. Snapshots of the online fall detector software can be seen in figures 24 and

25. We can see in Fig. 24 that somebody has fallen down and an alarm was raised

for the fall event as an online detection. Also, a high motion event detection is shown

in Fig. 25.

Figure 24: Online detection of fall event.
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Figure 25: Online detection of a high motion instance.

Also the algorithm produced false alarms and in some cases it misses some events.

Figure 26 shows a high motion event which is missed by our algorithm. Figure 27

shows a false alarm raised as a wrongly detected fall event.

Figure 26: Instance of a high motion activity missed by our online event detection
system.

4.3 Comments on the Results

Based on the achieved results for idea 1 in section 4.2.1, the proposed features have a

reasonable performance. Sensitivity is 89.82% and specificity is 99.86%. Precision is

high which means a Fall is hard to be misclassified and the recall is low which means

false alarms are rare. The improvement in comparison to the state of the art is the

false alarm rate which is decreased to less than 0.5%.
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Figure 27: Instance of a false alarm raised by our online event detection system.

The results in idea 2 in section 4.2.2 shows a great achievement in fall detection

accuracy, i.e., 100% although it has around 6% false alarms which is still comparable

to the state of the art.
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CHAPTER V

CONCLUSION

5.1 Contribution of the Thesis

Quality of life is an important fact which shouldn’t be neglected. As the science

power is advancing second by second, we should use it to increase our quality of life.

As it was described in the introduction, falling is one of the problems old people

face. This thesis tried to have a review on related researches and achievements and

propose novel ideas to increase the performance of fall detection systems in order to

make it a usable and acceptable technology in daily life. One of the main problems

in the previous works, is that although they reach to a very high detection rate of fall

events, but considerable rate of false alarms makes them unusable. The novel feature

and ideas in this thesis, almost eliminates the false alarms while it has a reasonable

performance in detecting most of the fall events.

Furthermore all of these achievements have obtained by means of depth video

data which means not only the user doesn’t need to wear sensors or markers or ...,

but also their privacy will be preserved as the camera is IR sensors and not RGB

video recorders. To reach this goal, an extensive depth video data-set is recorded via

Kinect in this thesis that can be published for further researches on this topic.

Also this improvement in results was obtained using a low dimensionality feature

space which prevent the complexity of classification. Extracting features containing

high information and intelligent data preprocessing helped this work to have such an

achievement.
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5.2 Future Works

There are limitations in using skeleton data. It is not always reliable. Noise and

limited range is its major limitations. Figure 28 and 29 shows some instances of the

skeletal data unreliability.

Figure 28: Unreliable skeleton of a person while lying on ground.

Figure 29: Unreliable skeleton of a person while sitting on a chair.

Hence we must look for alternative features which are more reliable and available

for detecting various events. For this purpose, we have extracted blobs from the depth

data in different scenarios like the person being in normal condition, lying, siting on

the ground and sitting on the chair. Figures 30, 31 and 32 shows some examples
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of the extracted body blob. We will extract features from the blob and train our

classifier to detect these events in which the skeletal data is unreliable.

Also there is another idea of using blob morphology classification which can assist

the accuracy of the fall detection. Parts of this idea are completed and implemented

and it will be applied to this algorithm in the early future.

Figure 30: Blob of a person while standing.
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Figure 31: Blob of a person while lying down.

Figure 32: Blob of a person while sitting.
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to continue his studies in M.Sc. electrical engineering, Computer Vision field. He is

working with Professor Dr. Tanju Erdem on fall detection for elderly people using

Kinect. His main research interests are image processing, signal processing, video

signal processing, pattern recognition and machine learning.

57


