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Özyeğin University

Professor Ekrem Duman
Department of Industrial Engineering
Özyeğin University

Date Approved: 21 August 2013



To my lovely son, Hezarfen Yahya Çelebi
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ABSTRACT

World is creating the same quantity of data every two days, as it created from up

until 2003. Evolving data streams are key factor for the growth of data created over

the last few years. Streaming data analysis in real-time is becoming the fastest and

most effective way to get useful information from what is happening right now, thus

allowing organizations to take action quickly when problems occur or to detect new

trends to improve their performance. Data stream analytics is needed to manage the

data currently produced from applications such as sensor networks, measurements in

network monitoring, mobile traffic management, web click streams, mobile call detail

records, social media posts/blogs and many others. Stream data analytics is hard

because data are temporally ordered, fast changing, massive and potentially infinite.

In order to cope with the challenges of data stream mining, in this thesis two main

contributions are discussed. Both of them summarize the high volume streaming

data and present meaningful, actionable information to end users. The first one is

finding “event correlations” over the data stream pairs on real GPS data of public

transportation buses. The second one is alarm sequence rule mining, with a new

parameter called “time confidence”, that helps automatically set time-window values

for registered rules and also reduces the generated alarm rule count.
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ÖZETÇE

Dünya, her iki günde bir 2003 yılına kadar ürettiği veri miktarı kadar veri oluşturmak-

tadır. Gelişen veri akışları son birkaç sene içerisinde üretilen verinin büyümesindeki en

önemli etkendir. Gerçek zamanlı olarak yapılan veri akışı analizi, şu an gerçekleşenler

hakkında yararlı bilgi edinilmesini sağlayan en hızlı ve en etkili yol olması, organiza-

syonların ortaya çıkan problemler için hızlıca aksiyon almalarına ya da yeni trendleri

keşferek kendi performanslarını arttırmalarına yardımcı olmaktadır. Gerçek zamanlı

veri akışı analizi, sensör ağları, ağ izlenmesindeki ölçümler, mobil trafik yönetimi,

web gezintisindeki tıklama akışları, mobil arama detay kayıtları, sosyal medya ileti-

leri/günlükleri ve benzeri daha birçok uygulamalardan üretilen verinin yönetimini

yapmak için gereklidir. Veri akışı analizi zordur çünkü veri akışları geçici olarak sıralı,

hızla değişen, yığın ve potansiyel olarak sonsuzdurlar. Veri akışı madenciliğindeki bu

zorluklarla başa çıkabilmek için bu tezde iki çalışma yapılmıştır. Her iki çalışma

da yüksek miktardaki veri akışını, son kullanıcılar için anlamlı ve aksiyon alınabilir

şekilde sunmaktadır. Birinci çalışmada, toplu taşımada kullanılan otobüslerin gerçek

GPS veri akışı çiftleri üzerinde “olay ilişkilerinin” bulumasıdır. Diğeri ise “zaman

güvenilirliği” olarak adlandırılan yeni alarm ardışıl kural madenciliği parametresidir.

Bu parametre kayıt edilen kurallar için pencere zamanı sağlar ve aynı zamanda

üretilmiş kuralların doğru bir şekilde azaltılması üzerinde etkisi vardır.
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CHAPTER I

INTRODUCTION

1.1 Motivations for Real-Time Data Stream Analysis

We are seeing increase in data stream applications over the last years. The world

is creating the same quantity of data every two days, as it created from up until

2003. The applications that generate data include computer network monitoring,

Radio Frequency Identification (RFID)-based supply chain and traffic management

systems, route tracking, alarm management, e-trading, online financial transactions,

web click-streams, mobile communication applications and civilian or military sen-

sor networks. All of these applications are mission-critical for related organizations

and require real-time stream processing to detect simple or complex events, so that

strategic decisions can be made quickly. Signals and patterns inside data streams

allow organizations to take quick action before/when problems occur or to detect

emerging trends to improve system performance. Currently, many organizations still

use Database Management Systems (DBMS) in an ad-hoc fashion for data stream

analytics. They face performance or technical problems with continuous and time-

window based analysis over high-volume data streams, since DBMS architecture was

designed for first storing the data and then analyzing it. The requirements are not

met and the expensive investments become inadequate. An emerging system archi-

tecture called Data Stream Management System (DSMS) is better suited to address

the analysis needs of emerging data stream applications.

Today’s database architectures have a 50 year old history. Several significant

milestones such as definition of the relational model and structured query language

(SQL), implementation of the first engines, query plan optimization, and distributed
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design concepts have been completed and are still being advanced. These milestones

in database history were followed by integration of data warehouses, triggers, data

mining algorithms, and addition of numerous middleware and software components

into the database suites. However, these gigantic and complex architectures were

optimized for analysis of relatively static data (and even only for hard-disk drives),

therefore they could not provide an effective solution for the real-time analysis needs

of high-volume data stream applications whose number has been increasing due to

the developments in the Internet, sensor and mobile technologies. For these reasons

several DSMS systems have emerged [3] [4] in the last ten years and they have been

following a similar advancement path with the traditional DBMS. A comparision of

DBMS versus DSMS is given in Table 1.

Table 1: Principles of DBMS and DSMS(Adopted from [1])

DBMS DSMS

Persistent data (relations) Volatile data streams

Random Access Sequential access

One-time ad-hoc queries Continuous queries

Unlimited secondary storage Limited main memory

Relatively low update rate Extremely high update rate

Assumes exact data Assumes outdated or inaccurate data

Plannable query processing Variable data arrival and characteristics

After demonstrating simple operations such as filtering and aggregations over

streams some of these leading DSMS were incorporated into real industrial appli-

cations. Parallel to the developments in DSMS, software programs called Complex

Event Processing (CEP) engines, which internally utilize a rule engine or a Finite

State Automaton (FSA), have emerged within the last 10 years.

These concepts and data stream processing also attract mobile telecommunication

operators. These operators have lots of application areas for deploying DSMS or CEP

engines. They have large networks which consist of thousands of devices/network
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equipments that generate different sets of alarms.

The goal in this thesis is to design and implement a real-time CEP engine that can

be used for alarm management especially in wireless cellular networks for streaming

data. The innovative aspect of the design is the integration of stream correlation

and stream event sequence mining capabilities (that will be described in detail) into

the same advanced CEP engine. Successful implementation of the proposed system

will satisfy the real-time or near real-time data analysis requirements of the mobile

cellular data stream applications.

1.2 Wireless Sensor and Cellular Networks

Wireless Sensor Networks (WSN) are used for real-time monitoring of physical en-

vironments. They help higher-level applications collect relevant data that can be

transformed into actionable information. These applications include earthquake mon-

itoring, asset tracking, traffic management, national security, green data centers [5],

and recently regulatory hygiene-compliance tracking in hospitals [6]. People manag-

ing or using these applications are interested in detecting and even predicting concise

“special events” (e.g. anomalies) upon which they can take an application-specific

action.

Events are semantically different from primitive numeric sensor readings. For

example, an event can refer to a numeric threshold violation or a more complex

pattern such as an ordered (possibly nested) sequence of any datum. Finding complex

event patterns in high-speed, unbounded, bursty data streams can be as challenging

as finding a needle in a haystack. Sometimes checking only the “existence” of a simple

reading in the stream may be of interest and sometimes we look for the “absence” of

an event instead of its existence. Doing these becomes hard when the streams come

from distributed sources. Ability to aggregate, order, join or correlate streaming data

is the key to detecting many of these complex situations. Event correlation engines,
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some of which will be described here, help us describe these scenarios and find event

patterns effectively. However, even the state-of-the-art systems including Hadoop [7]

cannot cope with today’s real-time and distributed event processing challenges.

Wireless cellular networks also consist of thousands of networks equipments. Due

to the large volume of alarms, network operators may overlook or misinterpret some

of the important alarm data. Additional Operational and Capital Expenditures

(OpEx,CapEx) by the operators are incurred when the network support administra-

tors spend all of their time for analyzing and interpreting the daily alarm information.

In addition, faults that can interfere with routine services offered by the network op-

erator decreases quality of service. This could decrement the competitive advantage

of an operator and lead to customer churn. In order to circumvent this, the network

management systems should automatically apply efficient alarm filtering and rule dis-

covery procedures to reduce the high numbers and varying types of daily alarms that

are received in Network Operation Centers (NOC). In this context, discovering alarm

correlations and extracting the most meaningful rules has a key importance.

Most of these stream processing and analytics challenges can be addressed through

the use of Data Stream Management Systems (DSMS) [3] [4] in the data pipelines

of organizations. Therefore, enterprises increasingly utilize these systems and extend

their basic filtering facilities with complex online analytics and mining capabilities.

The resulting software tools are sometimes called Complex Event Processing (CEP)

engines in the literature [2]. The benefits of using DSMS and CEP systems are at

least three-fold:

1. They can eliminate unwanted data early in the pipeline, saving further CPU,

memory, storage and energy costs.

2. They can turn raw data into actionable information quickly, thus helping busi-

nesses catch profitable opportunities or avoid losses due to fraud or operational
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inefficiencies.

3. They can catch transient or emerging patterns, which never show up in an offline

data mining analysis.

1.3 Thesis Problem Statement and Contributions

The contributions of this thesis are briefly as follows: we implement and demonstrate

that both statistical analysis (e.g. stream correlation) and data mining (e.g. rule

mining) can be implemented over the same system and be used for different real-time

applications. We also show that for both analytic and mining tools, the semantics of

time-windows (type and size) can have a great impact on both the performance and

usability in different applications.

The rest of the thesis is as follows. In Chapter 2, stream correlation for sensor

data is discussed. Basic filtering and aggregation over streams, window types and

correlation are also explained in detail. In Chapter 3, we discuss the background

and terminology for alarm domain as well as sequential alarm correlation and the

proposed alarm mining method. Chapter 4 concludes the thesis and discusses some

of the future work.
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CHAPTER II

A STREAM CORRELATION MODEL FOR SENSOR

DATA

2.1 Challenges of Sensor Data Processing

Consider the data sample in Table 2 pertaining to only one vehicle collected from a

real geo-tracking system. For this vehicle with the unique id (00-123) the data shows

the geolocation (longitude and latitude), speed and time information for every 20

seconds. However, due to intermittent disconnects or noise in the channel many data

fields are prone to different types of errors. For example, while a normal value for

the longitude and latitude fields would have 8 digits (e.g. 28.866.064, 41.052.856) we

see that many entries lost several of their least-significant digits. Similarly, we find

that the highly-varying speed information may also be erroneous. Note that some

rows can be completely missing. For example, at minute 12/8/2009 7:26 only one

measurement was recorded instead of three. Other potential data anomalies include

accuracy errors and out-of-order arrivals [8]. This is only one data stream and yet

there are thousands of vehicles and millions of objects that need to be tracked in

WSNs. Mass transportation administrators want the flexibility to be able to accu-

rately track a single vehicle or average recordings from all vehicles on a certain route

or certain region.

Streaming data from sensors is also prone to errors, which reduces its “veracity”

(or accuracy). The tuples can be missing, broken, out-of-order, or they can have

wrong values. Table 2 shows sample data from a real bus tracking application, which

shows multiple such cases. The system accidentally dropped zeros from the least

significant digits of longitude and latitude of bus locations, missed some tuples and
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possibly inserted inaccurate speed values (0, 1 km/h).

Table 2: Sample Data From a Real Geo-Tracking Application

ID LONGITUDE LATITUDE SPEED DATEandTIME

00-123 28,863,169 4,105,348 42 12/8/2009 7:23
00-123 2,886,469 41,052,845 3 12/8/2009 7:23
00-123 28,866,064 41,052,856 26 12/8/2009 7:23
00-123 28,867,975 410,522 37 12/8/2009 7:24
00-123 2,886,879 4,105,189 1 12/8/2009 7:24
00-123 28,869,068 41,051,792 6 12/8/2009 7:24
00-123 28,869,884 41,051,376 16 12/8/2009 7:25
00-123 28,870,121 41,051,258 0 12/8/2009 7:25
00-123 2,887,055 41,051,044 16 12/8/2009 7:25
00-123 28,870,613 4,105,191 15 12/8/2009 7:26
00-123 28,868,597 4,105,249 46 12/8/2009 7:27
00-123 28,866,816 4,105,319 19 12/8/2009 7:27
00-123 288,657 41,053,898 20 12/8/2009 7:27

Overall, the challenges and issues [4] [9] in managing WSNs data streams include:

1. Limitations on communication range, power, CPU and memory of the wireless

sensors and sensor networks resulting in broken data and out-of-order arrivals

2. Need for real-time data cleansing and sanity checking and associated challenges

3. Need to eliminate duplicate or unnecessary data to save resources without de-

stroying the essence of information carried inside the streams and without miss-

ing critical events

4. Finding correlations over high-speed raw or aggregated or sketched/summarized

data streams [10] [11] [12]

5. Having large number of streams to join and correlate; Holistic querying and

monitoring over distributed streams
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6. Differences in observed data types (integer, float, string, date-time) and varying

data values (0-1, 28868597, “BUS- 00-130”, etc.)

7. Widely-varying data sampling frequencies (from microsecond, to seconds-minutes,

to hours-days-months) among different sensor types.

8. Lack of trust among organizations for sharing raw data. The need to operate

over encrypted or compressed data (e.g., using fully homomorphic functions).

9. Effective data visualization.

2.2 Basic Filtering and Aggregation Over Streams

DSMS engines provide effective queuing, scheduling, time and count-window support,

and fast in-memory processing of high-speed, continuous, unbounded data streams

[3]. They parse, optimize and execute queries written in declarative languages such

as Event Processing Language (EPL) in Esper [2]. EPL syntax and semantics are

quite similar to that of Structured Query Language (SQL) in databases, but there are

additional clauses such as WINDOWs to support sliding or tumbling window-based

analytics over data streams. Figure 1 shows these two types of windows.

Figure 1: Tumbling vs. Sliding Window semantics

Sliding-time windows are used to buffer event tuples whose occurrence times fall

within a certain time period (e.g., last 1 minute) and to replace events that are

older than the time window. The window will move or slide in time with a EPL

queries can be used for continuous filtering (e.g., SELECT x,y FROM Stream <

x, y, z > WHERE ) as well as aggregations: algebraic (COUNT, SUM, AVERAGE)
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or holistic (MIN, MAX). Complex aggregation functions such as TOP-K, DISTINCT,

QUANTILES, and SKYLINE can also be found or implemented.

Sliding windows enable users to limit the number of events considered by a query.

As a practical example, consider the need to determine all accounts where the average

withdrawal amount per account for the last 4 seconds of withdrawals is greater then

1000. The statement to solve this problem is shown below.

SELECT account, avg(amount)

FROM Withdrawal.win:time(4 sec)

GROUP BY account

HAVING amount >1000

The Figure 2 serves to illustrate two types of the functioning of a time window.

For this figure, it is assumed that a query simply selects the event itself and does not

group or filter events.

SELECT *

FROM Withdrawal.win:time(4 sec)

The figure starts at a given time t and displays the contents of the time window

at t + 4 and t + 5 seconds and so on.

The activity as illustrated by the Figure 2(a) can be summarized as : At time t

+ 4 seconds an event W1 arrives and enters the time window. At time t + 5 seconds

an event W2 arrives and enters the time window. The engine reports the new event

to update listeners. At time t + 6.5 seconds an event W3 arrives and enters the time

window. The engine reports the new event to update listeners. At time t + 8 seconds

9



(a)

(b)

Figure 2: Output example for a statement with (a) Sliding Window (b) Tumbling
Window (Adopted from [2])
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event W1 leaves the time window. The engine reports the event as an old event to

update listeners. On the other hand, the tumbling window buffers events and releases

them every specified time interval in one update. Time windows control the evaluation

of events, as does the length batch window. The Figure 2(b) illustrates the function-

ing of a tumbling window. For this Figure 2(b), it is assumed a simple query as below:

SELECT *

FROM Withdrawal.win:time batch(4 sec)

The Figure 2(b) starts at a given time t and displays the contents of the time

window at t + 4 and t + 5 seconds and so on. The activity as illustrated by the

diagram can be summarized as: At time t + 1 seconds an event W1 arrives and

enters the batch. No call to inform update listeners occurs. At time t + 3 seconds

an event W2 arrives and enters the batch. No call to inform update listeners occurs.

At time t + 4 seconds the engine processes the batched events and a starts a new

batch. The engine reports events W1 and W2 to update listeners. At time t + 6.5

seconds an event W3 arrives and enters the batch. No call to inform update listeners

occurs. At time t + 8 seconds the engine processes the batched events and a starts

a new batch. The engine reports the event W3 as new data to update listeners. The

engine reports the events W1 and W2 as old data (prior batch) to update listeners.

CEP is an important modern application framework to submit complex queries

to track events sequences that can provide a matching for a given pattern. Moreover,

sequentiality is the primary way to relate events to each other in CEP systems. In this

thesis, we use a CEP engine called Esper, which has been developed by EsperTech

as an open source product [2]. The Esper CEP engine uses EPL (event processing

language) which is a SQL-like language. Event stream queries in Esper follow EPL

syntax that provide the aggregation, joining, windows and analysis functions for use
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with events streams. In SQL-based continuous query language, the output relation in

time-based sliding windows on a ordered stream S is defined as relation over time by

sliding an interval of size W time units in order to capture the last W time units of

the ordered stream. On the other hand, in tuple-based window the output relation is

defined over time by sliding a window of the last N tuples of an ordered stream [13].

The input to a CEP system is event streams generated by external processes. In

order to detect sequences of correlated events, i.e. event patterns, users have to reg-

ister or subscribe to running queries. CEP queries have the following format [14]:

PATTERN composite event expressions

WHERE value constraints

WITHIN time constraints

RETURN output expression

where composite event expressions are set of rules to match an event pattern in

the data stream, value constraints are the predicates on the composite events, time

constraints describe predefined time interval where matching event patterns must

occur and output expression defines the output stream from the pattern query.

2.3 Correlation over Streams

In this section, we describe Pearson Product Moment Correlation (PPMC) [15] oper-

ator over streams and show its application to route-matching over GPS data streams.

Briefly, correlation is the covariance of two variables divided by their standard de-

viations. The correlation value can change between [-1,+1], where +1 denotes a

high-positive correlation, 0 denotes no correlation and -1 denotes high-negative cor-

relation. For this thesis, to correlate a bus to its previously recorded route or to

ensure that two vehicles move together,continuous queries on vehicle latitudes and
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longitudes is implemented and used the following (Figure 3 shows longitude):

SELECT CorrelationLatitude

FROM VehiclePairStream

WIN length(50).stat:correl(a.long, b.long)

SELECT CorrelationLongitude

FROM VehiclePairStream

WIN length(50).stat:correl(a.lat, b.lat)

where the VehiclePairStream is constructed by joining the two streams (a, b). Figure 3

shows the time-series data for longitudes collected for two different busses on the

same route. The two stream variables could also belong to the current bus under

investigation and its pre-recorded route obtained by averaging the longitudes of the

busses that travel daily on the same route. The goal is to continuously track buses

and detect anomalies in real-time such as group separation, out-of-route movements

or extreme traffic delays.

2.4 Bus data evaluation

GPS data from a single bus (00-130) moving along the same route on two different

days (denoted as 7 and 8) was used for the evaluations in this section. Two different

buses that move along the same route on the same day or different dates could also

be used. We expect to find high correlations for vehicles that go over the same route,

share sub-routes, or move together. Because the correlation is tracked over streaming

data we will be able to detect emerging patterns such as traffic congestions or unique

violations in real-time and publish short alerts as interesting events to watch to the

related people. Note that some of this data may have to be stored or buffered before
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(a)

(b)

Figure 3: Moving vehicle coordinates over the same route on different days and start
times (a) Latitude (b) Latitude .
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(a)

(b)

Figure 4: Tracking vehicles over Google Maps and correlating sensor readings to
automatically detect which vehicles and routes are related and how (a) The complete
route for the same bus on two consequtive days is tagged and correlated (b) Zooming
into one of the subjections of the route. Satellite data is dispersed (accuracy is lost)
when vehicles are around buildings

being correlated with others as well. The experiments were executed by running the

correlation queries over the open-source Esper engine on a personal computer with

Intel i5 processor and 3GB memory.

For visual confirmation we marked the movements of vehicles on Google Maps as

shown in Figure 4. Each mark in this figure shows where each vehicle was during a

specific recording. This also allows us to compare how a single bus moved at different

times along the same route or two different buses moved with respect to each other -

faster or slower- on the same path. Figure 3 shows the extracted longitude and latitude

information from the two routes. These are the two values that are being separately
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Figure 5: The effect of changing sliding window size on the correlation coefficient

correlated, respectively. Correlation coefficient is our statistical tool for finding event

correlations (e.g., group asset tracking or route enforcement). To test its sensitivity,

we investigate how changing the sliding window size affects the coefficient value and

the processing performance (average latency of getting the results). Ultimately, we

dont want to depend on any magic parameters.

Figure 5 shows the effect of window size on the correlation coefficient. Smaller

window sizes have less data to compare, therefore when buses move differently with

respect to each other the correlation value can drop sharply for that period. For larger

window sizes like 50-100 this effect is compensated for, as one bus usually catches up

with the other (or the same bus compensates for its transient delay over the same

route at different times). To reduce the amount of output produced, we could use

tumbling windows which only publish results at the end of a time or count period. A

tumbling window is basically a discrete version of the continuous sliding window.

Figure 6 shows the correlation results for the tumbling windows. The results

are similar to their corresponding sliding windows (on average higher for the larger

windows), but they are published less frequently. While tumbling compensates for

some of the jitter, the cost to calculate results increases as the window size increases
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Figure 6: Calculating correlations using tumbling windows

as shown in Figure 7. Our future work includes running these queries over our high-

end IBM Blade HS22 servers and testing performance over multi-core and distributed

resources.

Figure 7 shows that changing the sliding window size does not affect the output

tuple (correlation result) latency. This is because the each component of the correla-

tion operation can be done incrementally. For example, we can maintain a running

average of the scalar values by using the formulas:

TotalValNew = TotalValOld ValueOut + ValueIn

NewAve = TotalValNew / WindowSize

For tumbling windows the delay increases logarithmically as the window size also

increases logarithmically (shows linear on log-log scale), because the data is collected

and processed at once for the time interval at the end of that time period.

Figure 8 illustrates different uses of lat-long correlation information on a city map.
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Figure 7: Performance comparison of sliding and tumbling windows at different
window sizes.

Using statistical correlation, a moving vehicle can be correlated to its assigned route to

assert in-route movement (a correct reference path is recorded beforehand), multiple

vehicles on the same route can be correlated to spot erratic driving behavior, or assets

moving in a supply-chain can be grouped together to assure intact delivery of goods

to the distribution centers or retailers. However, we should carefully understand the

issues with the new operator (i.e. Correlation) before we can use it for complex event

detection. For example in Figure 8, two vehicles that are moving in different parts

of the city (shown in rectangular boxes) on a very similar trajectory can have high

correlation values since the latitude and longitude vectors are the same except only a

spatial shift. Additional domain specific information may have to be used to detect

whether these two vehicles are actually the same vehicle, are on the same route or

belong to an asset group. Applying range queries (like the boxes in Figure 8) may be

useful for assuring spatial relations.

The other challenge is related to the temporal component of the correlation. Ve-

hicles on the same route pass from same points at different times and possibly move

along the same trajectory with varying time-scales. Time-shifting and time scaling

is necessary to associate vehicles with their routes and other vehicles on the same
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Figure 8: Detecting and enforcing in-route or group movement of vehicles using
statistical correlations

route. We applied a time shift manually for the data used in this thesis, but we plan

to use either the Regressions or B-Splines techniques to create feature vectors for

the routes and automatically correlate time shifted and time-scaled events series in

real-time. Finally, running these correlations over broken data is a big challenge and

the only-solution is to do real-time data cleaning, preprocessing over the stream.

To summarize, correlation over geo-spatial streaming data is quite insensitive to

spatial shifts, but is very sensitive to time shifts and broken data. We observe that

running separate regressions on each variable can both correct broken fields and help

us estimate missing or wrong values.

2.4.1 Results and Discussion

Figure 5 shows the results of correlation for different sliding and tumbling window

sizes (25− 50− 100). If the correlation C is lower than a certain threshold (e.g., C ¡

0.8) an alarm can be generated. The bus has either gone out of route or is not moving
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timely, both of which denote anomalies. Note that smaller window sizes have less data

to compare, therefore when buses move even slightly different with respect to each

other, the correlation value drops sharply for that period. Therefore, small windows

result in high false positive rates. For larger window sizes like 50-100 this effect is

compensated for, as one bus usually catches up with the other (or the same bus

compensates for its transient delay over the same route at different times). To reduce

the amount of processing and output produced, we could use tumbling windows which

only publish results at the end of a time or count period. We found that tumbling

window is basically a discrete version of the continuous sliding window and similar

correlation results are published by both. Therefore, we skip tumbling window results

for brevity. As shown in Figure 7, changing the sliding window size does not affect the

processing latency, since parts of the correlation formula are calculated incrementally.

For tumbling windows the delay increases with window size, because all the data that

is collected until the end of a time interval is processed at once. This finding is in

line with the motivations for fast incremental updates (FUP) used in finding frequent

itemsets over streams [16] [17] [18].
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CHAPTER III

AN ALARM RULE MINING MODEL FOR CELLULAR

DATA

3.1 Background and Related Work for Alarm domain

In the analysis of alarm flows in telecommunication networks, there are different

approaches for dealing with the alarm correlation problem [19] [20]. Some of the

approaches focus more on implementing the alarm correlation engine [21], while others

focus on alarm modeling and validation scenarios [20].

There is also numerous prior work on temporal data mining that observe fre-

quent patterns in a sequence database (see [22] for a survey). Some of these papers

have considered only Top-K event sequence detection in an alarm database [23] [24].

Algorithms such as GSP [23] and WINEPI [24] were the first to apply Apriori algo-

rithm [25] to find sequential association rules temporally. These algorithms require a

user-defined sliding-time window duration to traverse the data.

Most of the sequential data mining methods proposed so far are based on dis-

covering order relations between events [23]. These methods are based on finding

the frequencies of event sequences and generating the rule candidates against the

database [26]. Some have concentrated on prediction problems for sequential rule

mining on several different application domains [26] [27]. However, these algorithms

do not focus on time-interval differences between events (item sets) in a rule. Wu,

etal. have defined an urgent window parameter where a fixed time range interval se-

lected by users will ensure that the events happening during this interval will become

a valid rule [28]. However, this paper does not discover the potential time interval

patterns between events for setting the urgent window size.
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CEP is an important approach for applications that need real-time responses for

event streams. CEP systems have become very popular for searching for sequences of

incoming events for occurrences of user-specified event patterns or pattern matchings.

CEP can also provide a strong query language, powerful mechanisms to create com-

plex events from elementary ones and potential performance improvements (see [29]

for a detailed survey on CEP).

Alarm standards like 3GPP [30] and X.733 [31] defined by ITU-T, define the

alarm protocols and parameters. X.733 is the standard for alarm interfaces where

almost all alarms adhere to the definitions that are defined in [31]. According to

X.733 protocol, an alarm typically contains the attributes such as equipment name,

device type, alarm time, alarm level, alarm type, interface type, alarm severity, alarm

name identifier, equipment address, etc. In this thesis, we extract equipment type

(e.g., network elements such as MGW, MSC, NE3G, etc), device type (e.g., devices in

each network elements), alarm name identifier (i.e. alarm message) and alarm time

to form an alarm event. An example of alarm generated by some of the network

components are shown in Table 3. An alarm correlation framework should adapt to

changes in alarm messages and also to component changes when extensions to the

network structure are performed.

3.2 Sequential Alarm Correlation for CEP

Real-time performance monitoring and optimization of the measured alarms require

a flexible alarm monitoring framework taking into account numerous alarm types,

alarm arrival frequencies and time intervals. In order to create an effective alarm

performance monitoring and optimization functions that rely on large-amounts of

event-based triggering data, a framework architecture is needed. This framework

should handle the received alarm data efficiently, process and forward this information

before the main event occurs.
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In this section, we define a method and propose a new time-confidence metric for

sequential rule mining algorithms in the domain of alarm correlation. Our proposed

method differs from previous works by relying on both input of time confidence values

by the user as well as determining the best sliding time window interval for the CEP

system. The main advantage of this method is to enable alarm handling with minimal

operating costs and human intervention. Therefore, this method achieves a more

intelligent and automated solution to correlate alarm prediction events.

The motivation for this work was the lack of an accurate and reliable alarm rule

discovery and reduction framework. Real time alarm tracking or event sequence de-

tection systems [6] use a fixed window size which may not be appropriate in real

settings. Due to vast amount of alarms and tickets that goes beyond manual man-

agement capabilities, automatic alarm rule discovery is of vital importance. In this

work, we try to answer the following questions:

1. How can the discovered alarm sequences be reduced effectively?

2. How can the constructed alarm rules be registered into a real-time warning

system more efficiently?

In order to answer the questions above, the time dimension must be taken into

consideration. We observed that the time difference between two alarm events can

help operators to predict and take appropriate actions before the subsequent alarm

event occurs. Accordingly, obtaining more time-related knowledge from the observed

sequences can reveal a better understanding of the internal structure of alarm events.

3.3 Proposed Sequential Alarm Correlation Mining Method

The problem which is addressed by the proposed method is to find the complete set of

patterns that satisfy a given minimum time-confidence threshold in the alarm trans-

action database. The time-confidence of a pattern is the maximum time interval for
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registration of query time into the CEP system. It is selected as the maximum occur-

rence of a specific time interval containing the discovered pattern from the generated

alarm rule database.

With this method, the minimum time-confidence threshold is used to prune the

infrequent time intervals between the series of events of a generated sequential pattern

of a sequential rule mining algorithm. Based on this threshold, if a pattern has a large

time interval variance, the candidates for the registration into the CEP system will

be small or even this rule will not be registered into the CEP system if the minimum

time-confidence threshold is high.

In this thesis, we consider the problem of sequential rule mining for correlated

sequences as follows: Let a sequence database SeqT be the set of ordered event se-

quences of denoted by SeqT = {c1, c2, ..., ck} where ci =< seq id, si > represents a

transaction, seq id is the identifier of a transaction, each si = {X1, X2, ..., Xm} is an

itemset I = {i1, i2, ..., in} where X1, X2, ..., Xm ⊆ I [26]. The length of the sequence

set SeqT is denoted by |SeqT |. Every item ik in an itemset Xi has a special attribute

called timestamp, denoted as ik.time, which records the time when the item occurred.

A sequential rule r ∈ R such as (Xi ⇒ Xj) is defined as a relationship between two

itemsets Xi, Xj ⊆ I such that Xi ∩Xj = ∅ and Xi and Xj are non-empty, where R is

the set of rules and items in Xi occur before the items in Xj. The ordering of items

within Xi and Xj are not restricted.

In sequential rule mining [24] [25] [27], two different measures can be defined :

the sequential support (denoted here as support in short), given as sup(Xi ⇒ Xj) =

sup(Xi�Xj)/|SeqT |, and sequential confidence (denoted here as confidence) given as

conf(Xi ⇒ Xj) = sup(Xi�Xj)/sup(Xi) [26] for ordered events. Here sup(Xi�Xj)

denotes the number of occurrences of Xi�Xj ∈ SeqT where all items of Xi appear

before all the items of Xj.

In addition to the above, this thesis introduces a new metric called time confidence

24



which is defined as:

time conf(Xi
T (r)
==⇒ Xj) =

sup(Xi, Xj, T (r))

sup(Xi�Xj)
(1)

where T (r) is the time interval set between two successive itemsets Xi and Xj, given

as T (r) = {T1, T2, ..., Tl} = {Ti|Ti ∈ |Xj[in.time]
− Xi[i1.time]

|}}, where l is the distinct

number of time interval differences for the rule r and sup(Xi, Xj, T (r)) = |{ci|ci ∈

SeqT
∩
(Xi

T (r)
==⇒ Xj)}| represents the number of transactions were each transaction

contains rule r for each time interval of T (r).

Our goal is to find the complete set of alarm rules that satisfy a given minimum

support, confidence and time-confidence thresholds in the alarm transaction database.

The time-confidence of a rule is basically calculated as the distribution of the time

intervals between the alarm events in a sequential association rule. Therefore, the

proposed method extracts only significant rules that also have a time-interval based

validity, which is a subset of all rules found by the traditional sequential rule mining

algorithm using only min support and confidence values. These significant rules with

time confidence can now be placed into the Complex Event Processing (CEP) engines

for accurate and reliable real-time alarm management.

The proposed method extracts more useful information than traditional sequential

data mining techniques by considering an additional time confidence value for each

associated rule. These important rule decisions can also be an input to Data-Stream

Management System (DSMS) based systems such as CEP engines.

The procedure for the proposed method is explained in Algorithm 1. The goal is

to select rules that have support, confidence as well as time-confidence values greater

than user-defined min supp, min conf and min time conf thresholds, respectively.

A rule that has support greater than a min supp is considered as frequent, a rule with

a confidence greater than min conf is confident and a rule with a time-confidence

higher than min time conf is considered to be time confident or significant.

Note that at step 4 of Algorithm 1, Ttime conf value is obtained for each rule. This
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Algorithm 1 Proposed method
Inputs:
SeqT : Event Sequence Database;
min sup,min conf,min time conf ;
Outputs: Significant Alarm Rules contained in SeqT
Method:

1. Scan the database SeqT to discover the sequential rules r ∈ R using a se-
quential rule mining algorithm (e.g., RuleGrowth [26]), GSP [23], PREFIXS-
PAN [32], SPADE [33] based on min sup and min conf .

2. Calculate the event time interval differences of all sequential alarm rules and
record them in T (r) = {T1, T2, ..., Tl}, ∀r ∈ R.

3. Calculate the time conf of each item in T (r) for rules r ∈ R using Equ.1
and remove each item in T (r) r such that time conf < min time conf . If
T (r) = ϕ, then exclude r from R.

4. Select Ttime conf = maximum{T (r)} and output remaining rules in R with
their Ttime conf

Ttime conf value can be used as a window time Tregistered for systems such as CEP.

Suppose that if Tregistered > Ttime conf is selected, then more data will have to be

stored in memory and if Tregistered < Ttime conf is selected, then most of the rules

will be missed by the CEP engine. The proposed method also reduces the candidate

rule generations compared to traditional sequential rule mining algorithms as seen in

step 3 of Algorithm 1. The time complexity of the algorithm is dominated by the

calculation of step 2 where the time difference each item on the left and right side of

the rule are compared because sets Xi and Xj do not guarantee time based ordering

internally.

3.3.1 Alarm Data Evaluation

We implemented our proposed method on top the RuleGrowth, which is a sequential

association rule mining algorithm [26]. To evaluate our method, we used a historical

alarm database from operational data of AVEA, one of the mobile telecom operators

in Turkey with nearly 14 million customers as of 2013. AVEA’s NOC receives up to
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1 million alarms per day that are generated and transmitted from different network

elements and IT infrastructure systems. Table 3 shows some of the most frequently

occurring alarms. For our experiments, we have used only the core network alarm

set, which consists of 50 MGW (media gateway), 9 MSC (mobile switching center),

17 NE-3G (UMTS) and 6 OMC (Operation & Maintenance Center) elements. We

show a sample of alarm database on 25th of May 2012 here with a total of 34, 584 core

network alarm events and observe the set of alarm rules in this data for only MGWs.

Note also that all the alarm logs generated by each media gateway is considered as

one transaction ci for our simulations.

Table 3: Some Frequently Occurring Alarms

ACDC FAULT
AIS RECEIVED

ALARMS FROM NETWORK ELEMENT NOT ARRIVING
BATTERY LOW
BTS FAULTY

CABINET OPEN
ETHERNET INTERFACE FAILURE

FAULT RATE MONITORING
INTERNAL LAN LINK BROKEN

LINK SET UNAVAILABLE
OSI SUBNETWORK INTERFACE OUT OF ORDER

RTCP SUPERVISION FAILURE
ROUTE SET UNAVAILABLE

SIGNALLING LINK OUT OF SERVICE

We set min supp = 12, min conf = 0.8 and min time confidence = 0.9, without

loss of generality. Under this set-up, withoutmin time confidence value RuleGrowth

algorithm finds 25 rules, whereas 9 rules were discovered with using the proposed

method. We have a good match between the suggested rules and the feedback from

the network support specialist. Fig. 9 shows the time difference histogram between

the left and right sides of an alarm rule:
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({AIS RECEIVED,

LINK SET UNAVAILABLE,

ROUTE SET UNAVAILABLE,

SIGNALLING LINK OUT OF SERVICE}

==>

{FAULT RATE MONITORING} )

The x-axis is time − confidence values in seconds, the y-axis is the number of

occurrences of them for this rule. In this Figure 9, green columns represent the time

interval values above the min time confidence value and red columns represent the

below ones. As can be observed from Fig. 9, in 15 transactions, an alarm type FAULT

RATE MONITORING is observed exactly after Ttime−confidence = 1263 seconds after

the alarm types AIS RECEIVED, LINK SET UNAVAILABLE, ROUTE SET UN-

AVAILABLE, SIGNALLING LINK OUT OF SERVICE occurs. Therefore, for this

example, the maximum occurrence of time difference value Tregistered = 1263 seconds

can be registered as the sliding-window time interval for the CEP system.

The experiments on the association rule queries can be run such as:

SELECT Alarm Correlation

FROM NOC Database

WHERE A,B,C,D ⇒ E

WIN 1263 sec. RETURN BTS FAULT

which can be registered into the CEP engine. This query means that if alarm type

A,B,C and D arrives in particular order, then alarm type E will happen within 1263
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seconds and notify the network support specialist about the event BTS FAULT.

Figure 9: Time-confidence occurrence histogram for alarm rule ({AIS RECEIVED,
LINK SET UNAVAILABLE, ROUTE SET UNAVAILABLE, SIGNALLING LINK
OUT OF SERVICE} ==> {FAULT RATE MONITORING})

We implemented the framework presented in the previous sections in a Java-

based prototype system. For the sequential association rule mining in the proposed

method, we adapt the current sequential algorithm named RuleGrowth [26]. The

prototype has a Java-based Graphical User Interface (GUI) that allows construction

and execution of proposed method. The GUI is also used to adjust the parameters

of the algorithms : minimum support, confidence and time-confidence. GUI can also

show the execution time of the proposed method.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

In this thesis, two main contributions are discussed. Both of them summarize the high

volume streaming data and present meaningful, actionable information to end users.

The first one is finding “event correlations” over the data stream pairs on real GPS

data of public transportation buses. Statistical correlation is described as a promising

type of event detection and volume reduction technique over sensor streams. We used

one type of sensor data and investigated one type of related application, which is real-

time traffic and transportation management. The second one is alarm sequence rule

mining, with a new parameter called “time confidence”, that helps to automatically

set time-window values for registered rules and also reduces the generated alarm rule

count. A new alarm correlation method for mining sequential rules common to several

alarm sequences is also presented. The proposed method has an extra time-confidence

parameter that can both give confident time intervals and more effective rules into a

CEP engine. This rule set with time confidence parameter can also be used with an

event monitoring engine, such as CEP system. The simulations were performed to

test the proposed method with real-world alarm data from AVEA. The evaluation of

this method demonstrates the effectiveness of the proposed approach. The proposed

method improves the accuracy of alarm rule finding space and can significantly reduce

the number of alarm rules while exploiting the alarm correlation between different

devices and network cards.

In this thesis, we concentrated on stream correlation and stream event sequence

mining. For the stream correlation study, our future work will include methods

for the correcting streaming data using regressions. Successful implementation of
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the proposed CEP system will satisfy the real-time or near real-time data analysis

requirements of data stream applications. While we were only concerned with wireless

sensor data, the techniques discussed can be used with wired sensor data (e.g., border

protection with sensor-equipped fences) and software-based (non-sensor) monitoring

in financial, e-trade, computer network applications as well. For the stream event

sequence mining, our future work will be integrating time-confidence value to the

RuleGrowth [26] algorithm. Moreover, in this thesis, we concentrated on generating

alarm correlation rules for each network element independently. As a future work,

developing correlation with different network elements will be investigated.
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