
A SMART CLOUD PLATFORM SERVICE FOR
SOCIALIZED TRAVEL AND TRANSPORTATION WITH

MOBILE SUPPORT

A Thesis

by

Yaprak Ayazoğlu Yazıcı
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ABSTRACT

It is now clear that social networking services are evolving towards mobile web appli-

cations and continuous location sharing is also becoming a trend. In this evolution, we

believe that the next step will be complete and continuous route and experience shar-

ing. A route-based social networking cloud platform is a service in which users share

their travel routes as well as experiences and stories using their mobile devices, or

search for and get matched with people with similar travel and transportation habits

in real-time. This work mainly focuses on the development of an end-to-end route-

based social networking cloud platform service and its client-side mobile application.

First, we describe the design and implementation of our real-time taxi ride-sharing

service for metropolitan areas, which is a specific application of the route-sharing ser-

vice. This system is composed of 1) taxi location data collection system, 2) real-time

passenger coupling service and 3) a dashboard for visualization and analysis of the

results. Second, we describe our location tracking mobile application that captures

rich location-based information and saves it to the cloud.
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ÖZETÇE

Günümüzde sosyal paylaşım servisleri mobil cihaz kullanımını ön plana çıkartmaktadır

ve kullanıcıların da konum bazlı içerik paylaşımları giderek yaygınlaşmaktadır. Bu

değişim sürecinde bir sonraki adım yaşadığı deneyimleri bütün bir yol hikayesi şeklinde

paylaşımına olanak sağlayan servisler olacaktır. Rota tabanlı sosyal paylaşım hizmeti,

kullanıcıların mobil cihazlarını kullanarak gerçek zamanlı olarak deneyimlerini gerek

belli başlı noktalar, gerekse bütün olarak ifade edebilmelerini ve ortak gezi zevk-

lerine, ulaşım güzergahlarına sahip diğer insanlarla tanıştırılmasını ve eşleştirilmesini

sağlayacak bir hizmettir. Bu çalışmada uçtan uca rota tabanlı sosyal paylaşım hizme-

tini bulut üzerinde gerçeklenecek ve bu hizmete uygun bir mobil uygulama geliştirilecektir.

Birinci olarak, gerçek zamanlı taksi paylaşımı servisi tanımlanacaktır. Bu sistem 1)

Taksi jeolokasyon verisi toplama birimi, 2) gerçek zamanlı yolcu eşleme sistemi, 3)

yolcu eşleştirme ve birleştirme algoritmalarının görsel ve sonuç analizi için web tabanlı

panel sisteminden oluşmaktadır. İkinci olarak, takip edilen güzergahın gerçek zamanlı

olarak bulut üzerinde kaydedilmesini sağlayan mobil uygulamadan bahsedilecektir.
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CHAPTER I

INTRODUCTION

The top 10 social networking sites as of March 2012 are listed in Table 1. The striking

fact is that these social platforms have attached 12-750+ Million users in a relatively

short time, which shows their popularity and the need for such services. While, many

of these cloud web sites also have accompanying mobile applications, none of them

have end-to-end route-based travel experience sharing features. Some sites have only

recently added pin-point location publishing support especially for mobile devices,

which is also shown in Table 1.

The first motivation of our project is to reach tech-savvy traveling crowds by

adding the mentioned route-based socialization features and potentially generate a

new revenue stream for all. The second motivation is to contribute to the new wave of

“location-based social networking” trends currently set by Foursquare.com and alike.

Note that, even Foursquare currently does not have a continuous route-based experi-

ence sharing feature. Combination of mobile-driven information, backed by scalable

Cloud Infrastructure (IaaS) and Platform Services (PaaS) and recommendation sys-

tems constitutes the core of our work as well as Web 3.0.

The Geographic Information Systems (GIS) date back to 1854. With rapid growth

of the web, users have begun to use GIS over the Internet which led to standardiza-

tion of geography-related data and message transfer formats. Geography Markup

Language (GML), which was developed in 2007, is the most commonly used mod-

eling language for geographic objects and a standard for geographic transactions on

the Internet. When it comes to route-sharing alone, GML is sufficient. However, our

project also aims to include text and media content generated or collected over routes,

1



Table 1: Top 10 social networking sites based on user count 1.

Rank Name Users Location-Support

1 Facebook 750 M Yes
2 Twitter 250 M Yes
3 LinkedIn 110 M No
4 Pinterest 85.5 M Yes
5 MySpace 70.5 M Yes
6 Google Plus+ 65 M Yes
7 DeviantArt 25.5 M No
8 LiveJournal 20.5 M Yes
9 Tagged 19.5 M Yes
10 Orkut 17.5 M Yes

for which GML is inadequate. When “experience sharing” is concerned, yelp.com,

forums, etc. are suitable web sites and services. Forums contain unstructured travel-

related data and websites similar to yelp.com usually contain experiences without any

geographic markup support. The closest project that allows us to define routes with

user content is Open Street Map[1], however there is no travel or transportation web

service that implements the Open Street Map and can serve real-time route-based

queries. This thesis is a step towards this ideal goal.

1http://www.ebizmba.com/articles/social-networking-websites
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CHAPTER II

MOBILE RIDE-SHARING

This thesis addresses the technical issues that hinder massive adoption of emerging

mobile ride-sharing applications used in metropolitan areas. There can be variety

of spatio-temporal passenger matching applications ranging from short-term, ad-hoc

taxi ride-sharing to long-term carpooling. Yet, the most challenging technical issues

occur for the city-wide, massive-scale and dynamic passenger coupling scenarios. To

analyze and address these issues, we created a metropolitan taxi ride-sharing sce-

nario involving 1000s of vehicles traveling in the city of Istanbul by making real web

service calls to the Google Directions service. We describe three passenger match-

ing algorithms called Source-based, Source-and-Destination-based and OnRoute-based

matching and compare their performances using occupancy rates, total travel dis-

tances, travel time, monetary savings and effects on traffic. We defined two new

success metrics for occupancy rates and called them transportation throughput and

goodput. The results show that ∼30-50% improvement in occupancy rates and mone-

tary savings are possible at the same time. We hope that our findings will encourage

people (drivers and passengers equally) to adopt mobile application and cloud services

for ride-sharing, thus removing a substantial number of private cars from the traffic.

Our findings clearly demonstrate the power and social impacts of mobile, ubiquitous

and cloud computing technologies when used in harmony.

2.1 Motivations for Ride-sharing

As of 2013, there are approximately 4-6 million registered vehicles in the largest

metropolitan areas of the world including Los Angeles, Istanbul, Moscow, and Beijing

and this number increases by ∼10% each year. Adding the fact that the population
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of these cities are around 12-20 million, but vehicle occupancy rates are only ∼1.5

seats/car, the traffic congestions are inevitable. While different modes of mass trans-

portation have the biggest share in providing mobility in these cities, ride-sharing has

a bigger potential for reducing the traffic congestion problems as it directly replaces

existing vehicles from the traffic or avoids new ones to enter. Mass transportation

is usually not convenient for several reasons including crowdedness, spatial inconve-

nience (i.e. farness to origins and destinations of intended travel), temporal incon-

venience (i.e. unavailability when needed; possibility of long waits). Bad weather

conditions exacarbate all of these problems. Ride-sharing applications are gaining

momentum due to proliferation of smart mobile devices [2][3]. However, they have

not been deployed in massive scales yet despite their potential, due to computational

complexities and other social issues.

In this chapter we compare three passenger matching strategies called Source-based

Matching (SM), Source-and-Destination-based Matching (SDM) and OnRoute-based

Mathcing (ORM) in order to:

• reduce the number of cars in traffic,

• save money and time to ride-sharing passengers,

• increase taxi fill rates and income of the taxi drivers, and

• save gas and energy for the overall society.

Unless otherwise stated, the word taxi may also refer to private vehicles throughout

this thesis.

2.2 Design of Taxi Ride-sharing Scenarios

Our mobile ride-sharing service that depends on continuous route-sharing has two

parts:

4



• the smart mobile application, and

• the backend cloud platform service.

Passengers are assumed to have smart mobile devices (Android, iPhones, iPads,

etc.) with networking and global positioning system (GPS) capabilities. The mo-

bile ride-sharing applications installed inside allow them to make taxi requests from

anywhere, anytime. The request will have information about the pickup location,

destination location and possibly deadlines for pickup and drop-off times. Additional

personal profile information on ride-sharing preferences can also be added. Note

that we assume continuous mobile networking ability (i.e. access to a 2G-3G-4G or a

WiMax line) throughout the trip so that the passenger matching and fare calculations

can be done accurately.

Taxis also need to continuously and accurately feed their geospatial locations to

the cloud service, so that best matches can be made. This information is stored in a

database (or in our case MongoDB NoSQL engine [4] ) with spatial query support at

the cloud service side. Spatial (i.e. location) indexing techniques for fast K-Nearest

Neighbor (KNN) queries include R-trees[5][6], kd-trees[7], and Voronoi[8] diagrams.

MongoDB’s proximity query($near) uses R-tree.

Since KNN query support is a well-plowed research area and is currently avail-

able inside the database engines, we do not study this topic in further detail. The

cloud service collects these taxi requests and primarily matches people with the clos-

est taxis. It informs both parties about the locations, duration of travel, fare, etc,

details of which are described in the following sections. More importantly, the service

continuously checks the progress of the trip and groups (matches & merges) people

that will be traveling over similar routes. Similarity of trips is measured by the prox-

imity of origination, destination or on-route points by different strategies. A fare is

also calculated by the service for each passenger such that everyone can agree on it

without a dispute (since they already accepted to use the service and are aware of

5



the savings).

Figure 1: System design and components for taxi ride-sharing

Figure 1 shows a simplified operational workflow of the system. There are two

types of users and respective workflows: taxis and passengers. Passenger flow has two

steps: dial-a-taxi (inform taxi) and get information about assigned taxi (license plate,

estimated arrival time, etc.). Taxis with mobile support feed location (and possibly

occupancy) information to the cloud and they do not explicitly search for passengers.

2.2.1 Taxis With and Without Mobile Support

The taxi drivers are assumed (by default) to have the application installed on their

mobile phones or vehicular tablets. There are several advantages to this. Having the

mobile application allows taxi drivers to:

• Be called (i.e. dial-a-ride) from anywhere by the application’s users,

• See the profile of users and select accordingly,

• Get involved in fare calculations,

• Create their own profiles, and

6



• Collect points, recommendations, etc., to create a professional (ongoing) service

(with past memory).

What happens if the taxi drivers do not have smart phones or these applications

installed? Can we still bootstrap this system? The answer is, yes. Until drivers obtain

(or choose to obtain) the application, the first passengers (also the early adopters of

the mobile application) will act as the proxy and initiator for picking other requests

by passengers.

The possible constraints on real-time matching may include the maximum count

or limit passengers may place (which is a fixed-static profile metric) on the number of

ride-sharing people or a time deadline on the pickup or drop off times. The location

information is encoded with geohashing[9][10] technique, where the latitude-longitude

pairs are turned into a single globally unique identifier(GUID) via a hashing func-

tion. Geo-hashing makes it efficient to search nearest neighbors by storing multiple

geo-locations as a single B-Tree. Spatial databases primarily use R-trees for spatial

queries.

7



CHAPTER III

EVALUATION METHODOLOGY AND METRICS

We define two new metrics called throughput and goodput for measuring the success

of matching strategies given in Section 4. Our transportation metrics throughput

and goodput are analogous to their computer network counterparts. Goodput defines

the average number of passengers delivered with route-distance overheads removed.

Therefore, it is both more passenger-friendly and a stricter transport efficiency metric

than throughput. Throughput defines average number of passengers (i.e. similar to

network packets) that are moved from their sources to their destinations. Since route-

distance overheads may be involved in this metric, it can be viewed as driver-friendly,

since drivers still make money for extra travel. Figure 2 will be used to show how

transportation success metrics are calculated by example in the following section.

In this figure, a simplified set of routes are defined to describe some ride-sharing

scenarios.

Figure 2: Sample routes used for throughput, goodput metric descriptions.
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3.1 Throughput and Goodput

The formulation of throughput metric is defined in equation (1). First a personKM

is the value calculated by the multiplication of the total distance (km) traveled by

the number of people that traveled this distance at every part (pickup-drop off) of

the travel.

Throughput =

∑
personKMi∑
distancei

(1)

For example, assume that a taxi will pick up a passenger from location A and

travel through |ABDE| route to drop this passenger at point E (Figure 2). The

length of the route |ABDE| is 12 kilometers. When a single passenger travels alone

calculation is as follows,

PersonKM = #person ∗ |ABDE|(km) Calculate PersonKM (pkm)

PersonKM = 1person ∗ 12km Substitude numbers

= 12pkm

Throughput =

∑
personKMi∑
distancei

Calculate Throughput

Throughput =
12pkm

12km
Substitute numbers

= 1p

Suppose that this same route is traveled by two people, then throughput would be,

Throughput =

∑
personKMi∑
distancei

Calculate Throughput

Throughput =
2person ∗ 12km

12km
Substitute numbers

= 2p

Lets analyze another scenario: taxi picked a passenger from point A, the destination

of this passenger is E. When taxi is at point A and picked the first passenger, another

passenger(2nd passenger) requested for a taxi from point G to F. Initially route was

9



[ABDE], after this second request the final route is [AGFE]. For this route, the

throughput can be calculated as follows,

PersonKM = #person ∗ |AG|+ #person ∗ |GF |+ #person ∗ |FE|

PersonKM = 1person ∗ 4km+ 2person ∗ 8km+ 1person ∗ 4km

= 24pkm

Throughput =

∑
personKMi∑
distancei

Throughput =
24pkm

16km

= 1.5p

If the 2nd passenger were to travel on [HI], the new route would have been

[AHIE] and this would affect the calculations as follows,

PersonKM = #person ∗ |AH|+ #person ∗ |HI|+ #person ∗ |IE

PersonKM = 1person ∗ 5km+ 2person ∗ 6km+ 1person ∗ 5km

= 22pkm

Throughput =

∑
personKMi∑
distancei

Throughput =
22pkm

16km

= 1.4p

If the 2nd passenger were traveling from point C to D ([CD]), then the throughput
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will be,

PersonKM = #person ∗ |AC|+ #person ∗ |CD|+ #person ∗ |DE|

PersonKM = 1person ∗ 6km+ 2person ∗ 3km+ 1person ∗ 6km

= 18pkm

Throughput =

∑
personKMi∑
distancei

Throughput =
18pkm

15km

= 1.2p

Note that, for 2 passengers, maximum throughput is 2 and 1 is the minimum

throughput. Further, in this metric the extra distances traveled benefits to the taxi

driver more, therefore it is more “driver-friendly” where as the goodput metric is

more “passenger-friendly” as shown next.

Goodput metric minimizes the distance traveled for transporting multiple pas-

sengers, thus it also saves gas. The formula for goodput is defined at Equation 2.

Goodput =

∑
originalDistancei∑

distancei
(2)

If we re-calculate the scenarios defined at the begining, For scenario 1 (1 pas-

senger travels the [ABDE] path.),

TotalKM = |ABDE| = 12km

OriginalDistances = passenger1.dist

= 12km

Goodput =

∑
originalDistancei∑

distancei

=
12km

12km
= 1

11



For scenario 2 (2 passengers want to go from A to E)

TotalKM = |ABDE| = 12km

OriginalDistances = passenger1.dist+ passenger2.dist

= 12 + 12 = 24km

Goodput =

∑
originalDistancei∑

distancei

=
24km

12km
= 2

For scenario 3 (Passenger 1 wants to go from A to E, Passenger 2 wants to go

from G to F)

TotalKM = |AGFE| = 16km

OriginalDistances = passenger1.dist+ passenger2.dist

= 12km+ 8km = 20km

Goodput =

∑
originalDistancei∑

distancei

=
20km

16km
= 1.25

We skip calculation of goodput for scenarios 4-5 and conclude with the Table 2

that compares the throughput and goodput of given routes. According to this table,

route 5 has the worst goodput since it diverts significantly from its original route to

deliver 2nd passenger to a short distance. Goodput values are always smaller than or

equal to the throughput values, as goodput denotes a more conservative utility. Note

that, the first scenario is the calculation for the 1-passenger trip.

3.2 Money Calculation

Our goal is to propose a practical taxi ride-sharing service, thus in our work we

also define a practical pricing model that considers the benefits of both riders and

taxi drivers. In this model shown in Algorithm 1, 1) the initial fee is paid by both

12



Table 2: Throughput and Goodput for the Scenarios Described in Section 3.1

Scenario# Throughput Goodput
1 1 1
2 2 2
3 1.5 1.25
4 1.4 1.125
5 1.2 1

passengers, 2) fee is incremented every 100 meters, 3) the total fare is proportionally

divided among passengers based on their travel distances.

Algorithm 1 calculateMoney()

1: Totalfee = incrementalfee ∗ (distance(m)/100m) + (initialfee ∗#passengers)

13



CHAPTER IV

PASSENGER MATCHING AND MERGING

4.1 Passenger Matching Strategies

In this section, we describe our passenger matching strategies.

1

2

2’

0

t0

t1
t2

3’
3

r r1

r2

t3

0’

1’

t4

Figure 3: Routes for 4 passengers (0-4) and their movements in time (t0-t4). r =
600m, r1 = 230m, r2 = 350m.

In Figure 3, assuming t0 < t1 < t2 < t3, we show movements of four passengers

0,1,2, and 3 at different times t0, t1, t2 and t3. At t0, passenger 0 found a taxi and

he/she wants to reach 0’. The approximate time to reach 0’ is t3. At this same

moment(t0), passenger 1 is makes a taxi request to transport him/her to 1’ and

passenger 2 calls for a taxi to the destination point of 2’. At t1, passenger 3 asks

for a taxi to destination point 3’. Taxi starts its journey from 0 to 0’ in 3 steps.

Path covered between [t0, t1] is step0, between [t1, t2] is step1, between [t2, t3] is step2.

Passenger 0 starts the journey alone in the taxi. At t0 passengers 1 and 2 also make

a taxi call. We assume that these emerging requests can actually represent either

calls for taxis or attempts to ride private vehicles. Depending on the strategy to be

selected, passenger grouping decisions may change as described next.

4.1.1 Source-Based Matching (SM)

Algorithm 2 gives the psuedo-code for SM strategy that continuously makes nearest

passenger or nearest neighbor(NN) queries to the database with the current location
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of the moving vehicle at the center and a radius parameter (e.g. r = 600 m ) as

shown in Figure 3. At t0, when passengers 1 and 2 made their taxi calls and got

into a request queue, the algorithm sorts the returned lists in the increasing order of

their distances to the current location. For instance, in Figure 3, since r1 (distance of

passenger 1 to passenger 0) is smaller than r2 (distance of passenger 2 to passenger

0) the Euclidian distance-sorted list becomes < passenger1, passenger2 >, in order.

The vehicles that are already carrying passengers are not considered as candidates

for merging and are removed from this list. As this strategy only considers source

proximity, it is prone to make large errors when the destinations of the two passengers

are far apart.

Algorithm 2 srcMatch(taxi t, queryRadius r )

1: init : Lsrc = ∅, sortedList = ∅

2: Lsrc = queryNearPassengers(t.currentLocation, r)

3: {Sort in ascending order of Euclidean distance}

4: sortedList = sort(Lsrc)

5: return sortedList

4.1.2 Source & Destination-Based Matching (SDM)

SDM strategy can be considered an extension to the SM strategy. As shown in

Algorithm 3, this strategy also continuously makes NN queries to the database with

the current location of the moving vehicle at the center and a radius parameter to

find the closest source-based matching candidates. Additionally, it makes an NN

query based on the destination of the current taxi and destinations of all “emerging”

requests of passengers for vehicles to obtain a destination-based candidate list. Next,

it takes the intersection of the two lists to find passengers that are close both source

and destination-wise. Vehicles that are already carrying passengers are eliminated

from the candidate list again. Intersection list is sorted in the ascending order of
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both source and destinaton based Euclidean distances (i.e. sum of distances) to the

current taxi.

Algorithm 3 srcDstMatch(taxi t, queryRadius r)

1: init : Lsrc = ∅, Ldst = ∅, sortedList = ∅, Lsrcdst = ∅

2: Lsrc = queryNearPassengers(t.currentLocation, r)

3: Ldst = queryNearPassengers(t.destination, r)

4: Lsrcdst = Lsrc ∩ Ldst

5: {Sort in the ascending order of sum of src+dst Euclidean distances}

6: sortedList = sort(Lsrcdst)

7: return sortedList

4.1.3 On Route-Based Matching (ORM)

In some scenarios, the destination of the second candidate vehicle for merging may

not be within the proximity radius of the destination of the current vehicle. However,

it may be on the route of the first vehicle while it is traveling towards its destination.

ORM strategy searches for all candidate vehicles with destinations in the radius prox-

imity of the travel path of the current taxi as shown in Algorithm 4. The algorithm

can also be extended (for every source-based candidate) to check if the destination of

the first passenger is on the route of the second candidate passenger, so that the case

of partially-overlapping routes is also covered. Note that if there are many candidates,

then the cost of these calculations can be high.
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Algorithm 4 onRouteMatch(taxi t, queryRadius r)

1: init : Lsrc = ∅, LonRoute = ∅, sortedList = ∅, Lsrcdst = ∅

2: Lsrc = queryNearPassengers(t.currentLocation, r)

3: for all step : t.taxiRoute do

4: LonRoute = LonRoute ∪ queryNearPassengers(step.startLocation, r)

5: Lsrc OnRoute = Lsrc ∩ LonRoute

6: sortedList = sort(Lsrc OnRoute)

7: return sortedList

4.2 Decision to Merge or Not? (After Matching)

At the initial attempts of our taxi ride-sharing simulations we found that the utility

(see Section 3.1 for definition of goodput) of the ride-sharing could be lower than 1

when non-ideal matches were made. To improve the utility an additional merging step

was added. The major criteria is to merge the routes that together have a goodput

greater than 1. As an additional second step, the route that maximizes the utility

among all will be selected. With 2 passengers, there are 4 ways to define a merged

route as shown in Figure 4. In the first two cases, origin “a” and destination “d” is

constant and [c,b] in between can permute. Thus, two possible schedules are listed

in item 1 and 2 below. In list item 3,4 the origin “a” and destination “b” is constant

and [c,d] can permute.

1. a,c,b,d

2. a,b,c,d

3. a,c,d,b

4. a,d,c,b Eliminated

First of all, Route 4 is eliminated from the begining, since it requires 2nd passenger

to be dropped off before she/he were picked up, which is not logically possible. For
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each of those 3 remaining alternatives, goodput value will be calculated and the best

merged route will be scheduled.

b

d

a

c

d

Figure 4: 2 sample routes. a-b is the route of first passenger, c-d is the route of second
passenger.
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CHAPTER V

IMPLEMENTATION

5.1 Route Generation

Data set to run tests are collected by using Google Directions service. In Google

Directions Service input for a route is two < lat, long > pairs for source and desti-

nation, respectively. Output is a complete route that is optimized by Lazy Shortest

Path Strategy. We first took the big rectangular area denoted with north-west(41.434,

28.410) and south-east (40.784, 29.660) which covers the city of Istanbul.Next we ran-

domly picked two “start” and “end” locations inside this box. With this method, most

of the output routes were somewhat unreasonable from the perspective of anyone who

knows the city well,e.g. you would not travel from Zekeriyaköy to Şile by taxi as it

would be too costly. Initially, we used the well-known Voronoi diagrams to generate

Figure 5: Istanbul regions generated using Voronoi diagrams.
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such zoning and we used the QuichHull[11] library to generate Voronoi regions by

giving it a set of landmarks. However, since the zones were automatically generated

(with no topological concerns) many of them were overlaid on top of the sea as can be

seen in Figure 5. Routes that originated from or were destined to a random location

on the sea returned faulty results from Google Directions service. Thus, we decided

to tune the zones generated by hand. Figure 6 shows the map of Istanbul with 24

overlaid zones defined based on population density. To define a realistic origin point

Figure 6: Istanbul regions generated manually

for a passenger, a random lat-long pair will be selected in a randomly chosen region

(among the 24 zones). Next we needed to find a realistic way to decide on the pos-

sible destination points. For instance, the probability to traveling from region 1 to 1

and from region 1 to 24 shouldn’t be equal. Thus, inter-regional probabilities were

determined to define the likelihood of general passenger travel habits. Table 3 shows

the matrix for probability of travel between two selected zones. For the total table

please refer to the Table 4 at Appendix A. For instance, intra-zone travels are the

most probable and trips to neighbor zones occur relatively more infrequently. Table
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3 can be read as follows: The probability of a taxi to travel inside region 3 is 100/236,

whereas it is 20/236 for a travel from region 3 to 4. Additional biasing may include

landmarks of extreme popularity. For example, there is an airport in region 3 and

the probability of travel to this region is higher. Regions 8-9-12-13 have touristic

attractions, universities, famous entertainment and food locations which increases

probability of travel to these place. In some metropolitan areas, taxis (or minibuses)

may be constraint to operate in certain zones or routes only (that they paid for). We

currently did not place such constraints, but will discuss such issues later.

Table 3: Inter-region travel probabilities between the regions 15 to 18

Region# 15 16 17 18
15 0.75 0.07 0.07 0.04
16 0.04 0.88 0.02 0.01
17 0.04 0.01 0.81 0.01
18 0.01 0.01 0.08 0.80

Defining all the building blocks in the data generation process, the main procedure

can be summarized as follows:

Algorithm 5 routeGeneration

1: Pick a random region number and a random geo-location in that region.

2: Based on the biases randomly pick a destination region and a random geo-location

in that region.

3: Make a Google Directions web service call using the start and end geo-points.

There are nearly 18,000 registered taxis in İstanbul. Thus, using the algorithm

above, more than 20,000 taxi routes are collected from Google Directions Service.

However, due to 2500 query limit Google Directions Service, tests with 20,000 routes

takes days to finish. Thus, a 3000 subset of routes are extracted out of 20,000 routes.

The origin and destination points of those 3000 routes are selected from regions 15

to 18. To check the validity of the generated taxi routes, distance and duration
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histograms of 20.000 routes are plotted in Figure 7. This same histogram is also

plotted for 3000 routes in Figure 8. As observed in those figures, the average duration

for a route is around 10mins and average distance is around 4km.

Figure 7: Distance and duration histogram for 20000 Routes

Figure 8: Distance and duration histogram for 3000 Routes

For those plots, Gaussian fitting is calculated using the formula given in equation

3 where the parameters µ and σ denote the mean and variance of the distribution.
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We find that for both 20000 and 3000 taxis, route durations (10.5 ± 5.5 minutes) and

the travel distances (4 ± 2.5 km) are quite similar. Therefore, the system seems to

be self-similar in nature.

d(x) = c1 ∗ exp(−µ/σ2) (3)

With this taxi route set, we generated two large-scale simulation scenarios. The first

scenario consists of 20,000 routes all over Istanbul (24 regions in Figure 6) and in the

second one, the 3000 routes that reside in region [15-16]. Due to 2500 daily query

limit to Google servers, most experiments were run on 3000 route set.

5.2 Simulation Model

The next step is to develop a simulation setup based on the raw data that is collected

with the procedure defined in Section 5.1. Initially, the route data simply consists

of an array of GeoPoints, a data structure stores the coordinate of a location in <

lattitute, longitude > format. In the simulation model, this route will be transformed

into a taxi journey data by injecting time stamps and passenger information. First

of all, all taxis will be started in 60 seconds. Thus, the initial time stamp will be

randomly defined between 0 and 59 seconds. The duration and distance of rest of the

steps is already defined in data that is collected from Google Directions Service.

Thus, updates are done just by adding the duration of the step by the starting

time stamp. The basic attributes of a raw route data shall be defined as shown

below. Since this route data is stored inside the MongoDB NoSQL engine [4], its

format was intentionally selected as JSON (JavaScript Object Notation), which is

the native/default format for MongoDB.

1 {” route ” : {

2 ” s t ep s ” : {

3 [ { ”GeoPoint” : {” l a t ” : 40 . 9938 , ” lng ” : 29 . 1028} } ,

4 { ”GeoPoint” : {” l a t ” : 40 . 9943 , ” lng ” : 29 . 1034} } ,

5 { ”GeoPoint” : {” l a t ” : 40 . 9947 , ” lng ” : 29 . 1040} } ,

6 { ”GeoPoint” : {” l a t ” : 40 . 9939 , ” lng ” : 29 . 1067} } ,

7 { ”GeoPoint” : {” l a t ” : 40 . 9939 , ” lng ” : 29 . 1069} } ,

8 { ”GeoPoint” : {” l a t ” : 40 . 9935 , ” lng ” : 29 . 1081} } ,
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9 { ”GeoPoint” : {” l a t ” : 40 . 9934 , ” lng ” : 29 . 1086} }

10 ]

11 }

12 }}

The taxi simulator software is used to generate a taxi object out of this raw route

data and inject time and passenger values at the raw JSON format. The resulting

document will be as follows:

1 { t ax i : {” route ” : {

2 ” ut id ” : ”a4e68ad4−1 f 35−4c5a−a3e7−90 f c c 21 df 66d” ,

3 ”curLoc” : {”GeoPoint” : {” l a t ” : 40 . 9938 , ” lng ” : 29 . 1028}} ,

4 ” s t ep s ” : {

5 [ {”GeoPoint” : {” l a t ” : 40 . 9938 , ” lng ” : 29 . 1028} , ” s t a r tT ime InMi l l i s ” : 30000 , ” passenger ” : 1 } ,

6 {”GeoPoint” : {” l a t ” : 40 . 9943 , ” lng ” : 29 . 1034} , ” s t a r tT ime InMi l l i s ” : 47796 , ” passenger ” : 1 } ,

7 {”GeoPoint” : {” l a t ” : 40 . 9947 , ” lng ” : 29 . 1040} , ” s t a r tT ime InMi l l i s ” : 62896 , ” passenger ” : 1 } ,

8 {”GeoPoint” : {” l a t ” : 40 . 9939 , ” lng ” : 29 . 1067} , ” s t a r tT ime InMi l l i s ” : 119687 , ” passenger ” : 1 } ,

9 {”GeoPoint” : {” l a t ” : 40 . 9939 , ” lng ” : 29 . 1069} , ” s t a r tT ime InMi l l i s ” : 122888 , ” passenger ” : 1 } ,

10 {”GeoPoint” : {” l a t ” : 40 . 9935 , ” lng ” : 29 . 1081} , ” s t a r tT ime InMi l l i s ” : 161416 , ” passenger ” : 1 } ,

11 {”GeoPoint” : {” l a t ” : 40 . 9934 , ” lng ” : 29 . 1086} , ” s t a r tT ime InMi l l i s ” : 175093 , ” passenger ” : 1 }

12 ]

13 }

14 }

15 }}

As observed in the listings above, a “taxi route” is represented as a set of steps.

A step is represented by startTimeInMillis, passengerCount and a GeoPoint. Start-

TimeInMillis is the time when the taxi is at that GeoPoint. Passenger count shows

how many passengers are in the taxi in that step. This information is used for cal-

culating the success/performance/utilization metrics. A “taxi” object itself is named

with a unique identifier (utid), current location is assigned to the first step. The

simulation workflow is described in Figure 9.

The scenario time is set to 08:00 am and the 3000 taxis start within a minute

and start to transport their passengers. Remember that, in the time injection part,

the time when passengers start their journey with a taxi is picked randomly from

the [0-59] second range. In the simulation setup, the previous states of the taxis are

not considered and whenever the first customer starts her journey, it is assumed that

the taxi suddenly appears at that location. When the passengers are delivered the

taxi stops or disappears from the simulation (i.e. does not carry more passengers).
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Figure 9: Simulation workflow

This way we can compare the fill rate efficiency of different strategies. Another way

would be to let all taxis go and deliver as many passengers as they can and report

this value. In this context, passenger taxi request can be defined as one of the

3000 taxi routes that has just started. In other words, it means that current time is

equal to the starting time of the taxi route. If there is a passenger taxi request, the

system will find the list of “available” moving taxis that is physically in the range

of a certain radius. In our simulation, we run tests with 300m, 600m, and 1000m

search ranges. The “available” in simulation setup means taxi is not merged before,

however, in real setup, “available” may mean the taxi is either unoccupied or has

available seats. Thus, it is important to note that, in the simulation setup a taxi

shall have 2 passengers at most.
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Whenever there is a taxi request, the system will match this passenger with a list

of candidate taxis. If one found, the system will continue and calculate the feasibility

of the merge. Currently, if the goodput is greater than 1, two passengers will be

merged into a single taxi.

As stated above, the scenario will start at 08.00 am and taxi locations will be

updated and new taxi request will be handled at each second. Checks will continue

till all the taxis drop their passengers.When the scenario finishes, the evaluation tool

will calculate and display the analysis of the scenario.

The results of scenarios are debugged, analyzed and visualized in the web-based

dashboard, whose snapshots are given at Figure 10, 11 and 12. As shown in Figure

10, there is just one taxi and one passenger. As time passes, there is a taxi request at

some certain distance, and the possible route for it is shown in Figure 11. However,

this second passenger is merged with the first taxi and the resulting route is shown

with the red route in Figure 12.

Figure 10: Demo: Taxi arranged for the 1st passenger
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Figure 11: Demo: 2nd passenger requests a taxi and she is merged with the 1st
passenger.

Figure 12: Demo: Offline view of merged passengers.

5.3 Mobile Location Tracker Application

This section describes the mobile application developed for collecting the route infor-

mation in real-time. It uses the PhoneGap API.

The technology that enables real-time taxi ride-sharing is smart phones. For this
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Figure 13: Location tracker application developed with PhoneGap

reason, a mobile location tracker application is developed. To easily deploy a single

application in various devices, PhoneGap API[12] is preferred. However, we need to be

careful that the location tracker function should continue to work in the background

when the device goes to sleep mode. Otherwise, no location data will be captured

during that time. We implemented this functionality during development.

The screenshot of this application is given in Figure 13.

28



CHAPTER VI

RESULTS

6.1 Experimental Setup

This system is tested for 3000, 20000 taxi setup in Istanbul. For route merging Google

Directions Service is used. Since there is 2500 Google Directions Service query limit,

simulations run mostly on 3000 taxi setup. For all the results of the tests refer to

Appedix B. 3 different matching approaches(SM, SDM and ORM) are tested. All of

those approaches search for available taxis within a certain range. In this work, the

performance of 300m, 600m and 1000m search range is tested. We also use the merge

strategy “goodput < 1 not accepted” and call these missed merges. Attemps to

merge NN-passengers, whether hit (goodput > 1) or missed (goodput < 1) lead to two

path queries to Google Directions Service. The first path query uses the destination of

the riding passenger as the waypoint and the second path query uses the destination

of the pickup passenger as the waypoint; we pick the path leading to higher goodput,

if of course the goodput is higher than 1.

6.2 Evaluation

As observed in Figure 14, at 300m SM strategy serves the maximum count of pas-

sengers. ORM and SDM follow SM, respectively. It is more likely to find a source

matched passenger than finding a source and destination matched passenger. Note

that if the taxi search range is increased, the amount of passengers served increase as

well.

For 3000 taxi setup, 1500 merges can occur at maximum. The percentage of the

passengers served is given in Figure 15 and when the taxi search range is increased
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Figure 14: Merged taxi count for SM, SDM and ORM strategies on 3000 taxi setup.

to 1000m, almost 80% of the passengers are served for both strategies. The good-

Figure 15: Ratio of merged taxis over maximum merge count for SM, SDM and ORM
strategies on 3000 taxi setup.

put, throughput and extra time of tests are analyzed in 2 different ways: Total and

Merged. In the “merged” calculation, only the routes of the merged passengers will

be calculated. For instance, in 300m range SM test for 3000 taxi test setup there are
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1259 merged and 482 unmerged passengers(Table 6 in Appendix B). While calculat-

ing “merged” results only the 1259 merged passenger routes will taken into account.

Whereas, on “total” results all of the passenger routes will be considered.

As observed in Figure 16, the best goodput is at 300m search range of SDM

strategy. ORM and SM follow SDM, respectively. It is also observed that SDM

strategy performs better in merged goodput value than ORM and and SM for all the

tested search ranges. Similarly, ORM is better than SM for both search ranges when

goodput metric is compared. Best goodput value is obtained with SDM at 1000m

search range. In total goodput 600m search range for all strategies is the optimal

solution. When the amount of unmerged taxis increases, the total goodput converges

to 1. If SDM strategy is considered, since the ratio of passengers served in 300m search

range is lower than 0.2, the difference between total goodput and merged goodput

is huge. For 1000m search range, more than 80% percentage of the passengers are

served, the merged, total goodput difference is relatively less.

The throughput of the system is given in Figure 17. This figure looks similar to

the goodput figure (Figure 16). However, since the overhead distances are also added

to the calculations, throughput is relatively larger than goodput results.

In taxi ride-sharing service, the cost for the passenger is the extra time she spent

for a ride. SDM with 300m search range has the minimum time cost as observed in

Figure 18.

The system cost in terms of Google Direction Service request count is given in

Figure 19. SDM strategy has the minimum request count. The maximum request

count is in the 1000m search range of SM strategy and it is close to 20,000 requests.

The reason for this relatively astronomic number is the merging condition that good-

put must be greater than 1. It is obvious that there will be numerous source matched

taxis for a passenger, however among those matched taxis, it takes a relatively large

number of Google Directions Service queries to find a merge with goodput greater
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Figure 16: Goodput comparison for SM, SDM and ORM strategies for 3000 taxi
setup.

than 1. Consider the 600m NN-search scenario in Table 7 in Appendix B. 1272/3000

trips were unmerged, meaning they served 1272 passengers only (1 per car), whereas

for 1000m NN-search the unmerged number dropped to 586/3000. The 600m NN-

search range led to 864 hit merges, i.e. 864∗2 = 1728, 1728/3000 requests were served,

whereas the 1000m NN-search led to 1207 hit merges, i.e. 1207∗2 = 2414, 2414/3000

requests were served. For the 864 merges of 600m NN-search we made 2434 Google

Directions service queries (including 2 for unshown 353 missed merges) and for the

1207 merges of 1000m NN-search we made 6080 Google queries. Making these Google

queries can have both latency and monetary costs (currently the service rate is ap-

proximately $10,000/month for 100K requests/day). This cost has to be justified by
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Figure 17: Throughput results for 3000 taxi test

increased throughput and goodput metrics (time, money, gas savings via carpool-

ing). However, we see that both the throughput and the goodput of 600m NN-query

searches are higher (1.65, 1.44 resp.) than 1000m searches (1.59, 1.34 resp.). This

clearly shows that the quality of the merges increases as the search distance decreases.

However, limiting the search distance too much could result in lack of “good” merg-

ing opportunities (i.e. goodput > 1), so we need to strike a balance in selecting this

parameter.

Considering SDM has the best goodput and throughput results, least cost of time

and Google Directions Service, it is the best strategy for the taxi ridesharing service.

The most important incentive for both passengers and drivers is the money paid

and gained. 4 different strategies for money calculation were tried and displayed at

Figure 20. As observed in this figure, there are 4 different calculations for 300m,
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Figure 18: Time cost for SM, SDM and ORM strategies for 3000 taxi setup.

600m and 1000m search ranges. In the 1st payment strategy, the 2 passengers

that share the ride will also share the initial fee(2.7 units of money) in half and

money increment in 100m is still the same(0.17 units of money in our system). In

the 2nd strategy, the initial fee of the first will be divided evenly to the ridesharing

passengers. However, this time, the money increment for 100m will be 0.21 units of

money. In the 3rd strategy, each passenger will pay their initial fee. For instance,

if there are two passengers sharing the ride, the driver will be paid 2.7 ∗ 2 = 5.4 units

of money. The 100m distance will cost 0.17 units of money. In the 4th strategy,

different from 3rd strategy, 100m distance will cost 0.21 units of money.

As observed in Figure 20, passengers will earn more when the search range is
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Figure 19: Google Directions Service query count for SM, SDM and ORM strategies
on 3000 taxi setup

decreased and similarly larger search range work better for taxi drivers. In the SM

approach there is no crossing (or equal benefits) point for both taxi drivers and

passengers. In SDM approach, 300m search range and 3rd payment strategy (all

passengers pay the initial fee, 0.17 units of money for 100m) is equally adventageous

for both drivers and passengers. In ORM, this value is in the middle of 3rd and 4th

payment strategies.

There are several parameters (or knobs) we can adjust to distribute the savings

among taxi drivers and passengers. For example, if we charge the initial fee to all

passengers the driver will earn higher but the monetary savings for passengers may

diminish. If we divide the savings only among passengers then the drivers make

no additional income and are not motivated to carry carpooling passengers around.

In fact, recent news suggest that there is a growing unrest among taxi drivers (in

New York) against the users of these mobile carpooling applications. We believe the

drivers who are also stakeholders need to be included in this game, either as users of
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Figure 20: Percentage of the fee gains for drivers and savings for passengers for 3000
taxi setup.

the application collecting points-ratings or as an earning party.

6.3 Background and Related Work

Three categories of related works are studied to position this thesis in the research

community.

6.3.1 Recurring Ride-sharing

Recurring rideshares concerns routine commutes. Carpooling services such as 511.org

[13] and Avego[14] are the web services that also provide an official mobile support.

For static and small size of the problem, it is possible to find an optimal solution [15].

Compared to static recurring ride-sharing in which all routes and time schedules are

known in advance, our work that focuses on dynamic and real-time taxi ride-sharing

poses a more difficult challenge due to dynamically changing routes, time constraints,

etc.
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6.3.2 Dial-A-Ride Problem

Taxi ride-sharing problem can be viewed as a special member of the Dial-A-Ride

(DARP)[3] problem class. This problem also shall be named as a member of Traveling

Salesman Problem, or more specifically Vehicle Routing With Time Windows[16].

These problems are mainly focused on planing vehicles to a set of geographically

scattered passengers with certain constraints such as time windows, while minimizing

an objective, minimizing the path traveled, a.k.a shortest path as in the traveling

salesman problem. DARP has been analyzed for various transport scenarios such as

school bus routing[16], transits for handicapped and elderly people [17], etc. Solving

such optimization problems globally with 20K taxis and millions of people is still

challenging. Yet, in our scenario all of these entities are constantly moving, which

makes global optimization an impractical approach. Optimization techniques can be

layered on top of our system for offline analytics and optimization.

6.3.3 Real-Time Taxi Recommender Systems

Recently there are several works attacking the real-time and dynamic version of dial-

a-ride problem (static). For instance, the web service BiTaksi searches for available

taxis at real-time. This system is no different than an online cab stand. Applications

like BiTaksi aim to find one more passenger to taxis when the taxi is returning back

from a service. Different from those applications in our thesis, we further want to

improve the passenger count in a taxi.

In the literature, the closest work to ours is T-Share[2] project of Microsoft Re-

search Group which develops a taxi ride-sharing system in Beijing that aims to serve

real-time requests sent by taxi users and generates ride-sharing schedules. This sys-

tem is built on an offline set of taxi data that is provided by the Beijing municipality.

In comparison, we built a system that works and generates online taxi data with

Google Directions service.
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CHAPTER VII

CONCLUSION & FUTURE WORK

Social networking services are evolving towards mobile web applications and location

based services is becoming popular. In future, continous route and experience sharing

based applications will be the trend. Such applications can be applied in many fields

ranging from tourism to transportation. In this work, all of the building blocks to

develop an “end-to-end location-based application” was described. OpenStreetMap

was used due to its rich schema and extensibility. MongoDB was used for its geospatial

support, scalability and flexibility to define documents. PhoneGap was preferred

because of its portability and scalability. Using all of those building blocks, a real-time

taxi ride-sharing mobile cloud service was developed and its technical problems were

addressed. In this application, more than 20,000 realistic taxi routes were generated,

a simulator is developed to setup a scenario. In this simulator new passenger coupling

and merging strategies were implemented, those strategies were compared and results

were evaluated. To validate and debug the routes, merging and matching strategies,

a web-based dashboard was developed.

Based on our results, this system can reduce up to 40% of the city traffic us-

ing Source & Destination based matching strategy when candidate passengers are

searched within 600m range over the Istanbul metropolitan area. In addition to the

promise for reducing the traffic, the system has the potential to be deployed easily in

any city in the world.

In the future, we recommend the following research actions to be taken:

• Current recommendation engines all focus on item sales from online stores (e-

stores) such as Amazon, e-bay, etc. If our system is deployed, route based
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recommendation can be added. With data obtained for passenger and taxi

travel habits, a recommender engine shall be developed.

• In this thesis, we only showed applications for geolocation-based matching

strategies. In the future, we plan to extend the matching criteria to include

rider profile information and add rich metadata to the shared travel informa-

tion including images and videos of visited places.

• In this thesis, we did not address the security, privacy, and trust issues in mobile

ride-sharing applications and cloud services, which can be critical for the safety

and usability of the service. While this is an orthogonal design issue out of

our current scope, we do foresee a couple of mechanisms that will be useful.

First of all, just like any other product or service, there will be recommendation

(star-rating, reviewing, commenting) mechanisms in place to eliminate bad eggs

from the system. Second, messages will be encrypted, signed and authenticated

by their sender-receivers so that illegal location-tracking by eavesdroppers or

content modifications will not be possible. Finally, the cloud service can be

distributed and made fail-proof against Denial of Service (DoS) and distributed

DoS (DDoS) attacks with known techniques. We skip details here for brevity

and note these topics as interesting future work.

7.1 Threats to Validity

In this thesis, new matching and merging strategies are developed and tested. In

the simulation setup there are several assumptions made to make the system easily

tractable. However, these assumptions, that are listed below, can be a threat to the

validity of the system, as well.

• In taxi route generation process, the regioning and inter-region probabilities

may be different for Istanbul or other cities.
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• Taxis are assumed to have 2 passengers at most, which can in reality be a higher

number.

• After a taxi delivers their passengers, this taxi is not set as available in our

simulations whereas taxis will continue to carry more passengers in real life.

• In real life, passengers should have time and personal preferences. For instance,

a woman may not want to travel with a men, a passenger may request to be

picked up in a certain time, or may have an arrival deadline. Such preferences

were not taken into account in this thesis.

• All the taxis are dispatched in a 1 minute period in the simulation.. In this

setup, for instance, in the 3000 taxi test there shall be around 1500 active taxis

at a certain time. If the dispatch period was even longer(e.g. 5 mins or 10 mins),

the active taxi count, and thus, the merge and match counts would decrease.

We experimented these scenarios as well but found no additional benefits to

ridesharing.
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APPENDIX A

INTER-REGION PROBABILITIES

Table 4: Inter-region travel probabilities

Region# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 0.73 0.07 0.07 0.04 0.04 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.06 0.61 0.12 0.03 0.12 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.08 0.08 0.42 0.08 0.08 0.04 0.04 0.01 0.04 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.01 0.03 0.12 0.62 0.12 0.01 0.01 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.04 0.02 0.04 0.78 0.04 0.02 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.01 0.00 0.01 0.07 0.75 0.07 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.07 0.71 0.07 0.00 0.01 0.01 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.01 0.01 0.01 0.07 0.70 0.07 0.01 0.01 0.04 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.04 0.08 0.02 0.00 0.08 0.77 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.88 0.09 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.08 0.82 0.08 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.07 0.01 0.01 0.07 0.71 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.10 0.01 0.01 0.01 0.10 0.67 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.79 0.08 0.08 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.75 0.07 0.07 0.04 0.01 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.88 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.01 0.81 0.01 0.12 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.08 0.80 0.00 0.00 0.08 0.01 0.01 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.73 0.04 0.07 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.90 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.00 0.83 0.00 0.04 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.80 0.04 0.08
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.01 0.08 0.76 0.08
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.83
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APPENDIX B

SM, SDM & ORM RESULTS

Table 5: SDM results for 20000 taxis in Istanbul

Distance 600 m
UnMerged 10316
Merged 4842
Google Queries 14838
M-Throughput 1.66
T-Throughput 1.18
M-Goodput 1.46
T-Goodput 1.12
M-Extra Time (mins) 37.42%
T-Extra Time (mins) 15.26%
Initial Fee Incr

100m
Driver Passenger

One Fee(2.7)
0.17 25.43% 36.66%
0.21 40.85% 28.87%

Per Person Fee(5.4)
0.17 52.65% 22.92%
0.21 68.07% 15.13%
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Table 6: SM results for Uskudar Taxis (3000 taxis). P: Passenger, D: Driver

Distance 300 m 600 m 1000 m
UnMerged 482 204 142
Merged 1259 1398 1429
Google Queries 7628 11364 18858
M-Throughput 1.42 1.38 1.38
T-Throughput 1.35 1.36 1.37
M-Goodput 1.23 1.20 1.18
T-Goodput 1.19 1.18 1.17
M-Extra Time (mins) 39.09% 46.19% 51.84%
T-Extra Time (mins) 33.48% 43.83% 50.13%
Initial Fee Incr

100m
D P D P D P

One Fee(2.7)
0.17 50.40% 26.64% 52.60% 24.96% 58.39% 24.22%
0.21 62.78% 20.60% 64.18% 19.27% 70.34% 18.50%

Per Person Fee(5.4)
0.17 75.71% 14.30% 77.89% 12.53% 84.40% 11.77%
0.21 88.09% 8.25% 89.47% 6.84% 96.35% 6.06%

Table 7: SDM results for Uskudar Scenarios (3000 taxis). D: Driver, P: Passenger

Distance 300 m 600 m 1000 m
UnMerged 2608 1272 552
Merged 196 864 1224
Google Queries 460 2434 5758
M-Throughput 1.72 1.65 1.59
T-Throughput 1.04 1.26 1.40
M-Goodput 1.53 1.44 1.34
T-Goodput 1.03 1.18 1.24
M-Extra Time (mins) 28.15% 39.64% 48.53%
T-Extra Time (mins) 3.2% 21.34% 38.58%
Initial Fee Incr

100m
D P D P D P

One Fee(2.7)
0.17 19.85% 39.54% 26.37% 36.24% 31.46% 32.67%
0.21 35.11% 31.84% 41.54% 28.58% 45.89% 25.28%

Per Person Fee(5.4)
0.17 50.20% 24.23% 54.23% 22.18% 57.48% 19.35%
0.21 65.46% 16.54% 69.39% 14.53% 71.92% 11.95%
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Table 8: ORM results for Uskudar Taxis (3000 taxis) P: Passenger, D: Driver

Distance 300 m 600 m 1000 m
UnMerged 1608 782 370
Merged 696 1109 1315
Google Queries 2128 4162 7442
M-Throughput 1.48 1.48 1.48
T-Throughput 1.17 1.31 1.40
M-Goodput 1.32 1.29 1.27
T-Goodput 1.12 1.19 1.23
M-Extra Time(mins) 31.08% 40.27% 48.75%
T-Extra Time (mins) 13.97% 29.53% 42.97%
Initial Fee Incr

100m
D P D P D P

One Fee(2.7)
0.17 16.07% 31.34% 21.94% 29.64% 26.98% 28.90%
0.21 26.71% 25.04% 33.33% 23.07% 38.86% 22.25%

Per Person Fee(5.4)
0.17 38.41% 18.13% 44.45% 16.66% 49.59% 16.24%
0.21 49.05% 11.83% 55.84% 10.08% 61.47% 9.59%
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