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ABSTRACT

Design of clock distribution circuits for Sampled Data Analog Circuits (SDACs), is

a manual process that takes serious work hours and is susceptible to errors that

cause silicon respins. Providing an automatic or even a semi-automatic solution to

this problem will benefit the industry greatly. The equivalent problem in the digital

domain, named clock tree synthesis, is fully automated, and there are commercial

software that handle it. This encouraged us to work on an automated flow for the

analog problem. The analog version of the problem is similar to the digital version

but there are key differences. While the goal in the digital problem is to distribute

a source clock to thousands of end points with zero skew, the analog problem aims

to distribute a source clock to a few hundred points with deliberate skew between

some end points. In the analog problem, sometimes generating divided versions of

the source clock and constraining their skew with respect to the source clock may

also be part of the problem. Our approach not only speeds up the design of clock

circuits for SDACs but also reduces the chances of a respin. As an added benefit,

it speeds up the design of analog circuit as the designer does not need to spend

time to make sure the clock routes are symmetric inside the analog design. Our

proposed flow has four phases, namely, requirements analysis, target determination,

design & synthesis, and verification. The first phase, requirements analysis, starts

by interviewing the designer, continues with extraction of some physical parameters

from the analog design, and results with a list of clock phases and timing constraints

between them. The second phase of target determination has several graph-oriented

tools. In this phase, we solve a specialized longest path problem efficiently to come

up with a schedule of clock edges as a result that satisfies the constraints discovered
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in the first phase. In the third phase, we break up the clock circuit synthesis problem

into two levels, namely, intrinsic and extrinsic clock trees, and drive a commercial

clock tree synthesis software in an automated fashion with targets produced in the

previous phase. The last phase is verification, in which we check to see if we satisfied

the timing constraints we put together in the first phase. In this phase, we also

do SPICE simulations and check if the circuit as a whole has acceptable figures of

merit such as effective number of bits (ENOB). The conclusion is that our flow saves

considerable design time and makes it less error-prone. The ENOBs obtained after

our flow, when the flow is applied to a particular test design (a 10-bit 0.18 micron

2-step differential input 60 MSps Flash ADC), show that with this flow we are able

to achieve ENOBs that are quite close to the best possible ENOBs under the given

timing constraints. Last not but least, we have to mention that three phases of our

flow (except the third one, design & synthesis) can be used with a manual clock tree

design approach to make it more systematic, hence faster and less error-prone (i.e.,

the semi-automatic flow).
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ÖZETÇE

Anahtarlamalı analog devrelerin (AAD) saat ağı tasarımı ciddi zaman gerektiren ve

yongaların tekrar elden geçirilmesine sebep olabilecek hatalara açık, elle yapılan bir

işlemdir. Bu probleme otomatik ya da yarı-otomatik bir çözüm getirmenin sektöre

büyük katkısı olacaktır. Problemin dijital alandaki karşılığı olan saat ağı sentezinin

otomasyonu mümkün olup, halihazırda bu işi yapan ticari yazılımlar bulunmaktadır.

Bu durum, bizi problemin analog alandaki karşılığının otomasyonu üzerinde çalışmaya

teşvik etti. Problemin analog hali dijital karşılığıyla benzer olmakla beraber bazı

kilit noktalarda farklılıklar bulunmaktadır. Dijital problemdeki amaç kaynak saat

sinyalini sıfır kaykı ile binlerce noktaya iletmek iken, analog devrelerde hedef kay-

nak saat sinyalini yüzlerce noktaya bazı noktalar arasında bir miktar kaykı olacak

şekilde iletmektir. Ayrıca analog tasarımda kaynak saat sinyalinin bölünmüş versi-

yonlarını üretip, bu üretilmiş sinyallerin kaykılarını kaynak saat sinyaline bağlı olarak

sınırlandırmak da problemin bir parçası olabilir. Yaklaşımımız AAD saat ağı dev-

re tasarımını hızlandırmakla kalmayıp, tasarımın tekrarına sebep olacak hataların

oluşumunu da azaltmaktadır. Yaklaşımımızın bir faydası da devredeki saat yollarının

simetrik ayarlanması için vakit harcamaya gerek kalmamasından dolayı analog dev-

renin tasarımının süresinin de kısalmasıdır. Önerdiğimiz akış, gereksinim analizi,

hedef belirleme, dizayn & sentez ve doğrulama adında dört aşamadan oluşmaktadır.

İlk aşama olan gereksinim analizi, analog tasarımcı ile mülakat yaparak başlayıp,

analog tasarımdan bazı fiziksel parametrelerin elde edilmesi ile devam edip, saat

fazları ve bu fazlar arasındaki ilişkileri içeren bir listenin hazırlanmasıyla bitmek-

tedir. Hedef belirleme isimli ikinci aşamada graf bazlı programlar kullanılmaktadır.

Burada, özelleşmiş bir ”en uzun yol” problemini birinci fazda elde edilen kısıtları
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sağlayan bir saat çizelgesi çıkarmak amacıyla etkin bir biçimde çözmekteyiz. Üçüncü

aşamada saat devre sentezi problemini iç ve dış saat ağacı adında iki seviyeye ayırıp,

bir önceki aşamada üretilen hedefleri otomatik olarak kullandığımız ticari saat ağı

sentez yazılımına iletmekteyiz. Son aşama olan doğrulama aşamasnda, ilk aşamada

elde ettiğimiz zamanlama kısıtlarını sağlayıp sağlamadığımızı test etmekteyiz. Burada

ayrıca devrenin etkin bit sayısı (EBS) gibi başarım ölçütlerini sağlayıp sağlamadığını

kontrol etmek amacıyla SPICE simulasyonları da yapmaktayız. Vardığımız sonuç,

önerdiğimiz akışın tasarım süresini önemli ölçüde azaltıp, hata ihtimalini oldukça

azalttığı yönündedir. Akış sonucunda elde edilen EBS değerleri, akışı test tasarımımıza

(10-bit 0.18 mikron 2-basamaklı farksal girişli 60 MSps Flash ADC) uyguladığımızda

elimizdeki zaman kısıtları altında elde edebileceğimiz en olası EBS değerlerine oldukça

yakın olduğumuzu göstermektedir. Son olarak, önerdiğimiz akışın üç fazını (üçüncü

faz olan dizayn & sentez hariç) elle yapılan saat ağı tasarımında kullandığımız takdirde,

elle yapılan tasarımı da daha sistematik, hızlı ve hataya toleranslı hale getirebildiğimizi

(yarı-otomatik akış) belirtmeliyiz.
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I would also like thank my fellow labmates at Özyeğin University: Cihan Tunç,
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CHAPTER I

INTRODUCTION

Sampled Data Analog Circuits (SDACs) are used widely in many applications. Since

they do not include resistors, as it can be seen from an example shown in Figure 1,

their die areas are reasonable, their transfer functions are not too sensitive to process

variations, and most importantly they can be implemented in CMOS. SDACs are used

in designs such as capacitor filters, instrumentation amplifiers, voltage-to-frequency

converters, balanced modulators, peak detectors, oscillators, data converters (ADCs

and DACs) and Programmable Capacitor Arrays. A table that shows SDACs’ region

of operation can be seen in Table 1.

Figure 1: An SDAC example

Table 1: Classification of circuits by their voltage and temporal behaviors

Time
Continuous Discrete

V
ol
ta
g
e Continuous Analog Circuits SDACs

Discrete
Asynchronous Synchronous

Digital Circuits Digital Circuits
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Today’s chips (analog or digital) are extremely complex and can not be designed

without automation software. When design tasks are automated:

• development time is reduced,

• different architectures may be explored,

• errors are minimized,

• first manufactured chip is more likely to succeed.

SDACs require clock trees to operate, and designing SDAC clock trees manually

takes too much time and forces the designers to use practices that are not exactly

area friendly. Its design to product effort and methodology is not straightforward and

may include several iterations. It is also more error prone, therefore it is more likely

to waste much time and more resources this way.

Since SDACs require clock signals to operate, they behave somewhat like digital

circuits. The sampling concept present in these circuits bear significant resemblance

to their digital counterparts, like latches and flip-flops.

Transistors present in SDACs are controlled by different clock signals and these

clock signals’ timings are important to schedule the analog blocks accordingly. For

instance, it may be required that a clock signal A should rise 200ps later than clock

signal B’s rising edge, or clock signal C should not be overlapping with clock signal

A. There are 3 possible requirements in a clock tree that are mentioned below.

• non-overlapping, requires that some clock signals are not high at the same time.

An example is in Figure 2(a).

• specific order, requires that some clock signals should come after/before other

clock signals, as seen in Figure 2(b)

• enclosing, requires that a clock’s high time envelopes another clock’s high time,

like in Figure 2(c).

2



(a) non-overlapping (b) in a certain order

(c) enclosing

Figure 2: Types of Clock Requirements for Clock Trees

These different clock phases required in SDACs are actually derivatives of a main

clock. The manual approach to SDAC clock tree design revolves around symmetrical

design practices. This way, the designer can arrange timings by adjusting connection

lengths.

Clock distribution network can be imagined as a two-level design. The first level

is called ”clock generation”. Here, clock phases are generated from one main clock

signal. The second level is the clock distribution part. At this level, phases generated

at clock generation level are distributed to the receiving pins. Figures 3(a) and 3(b)

visualize these levels.

Looking at the ”clock distribution network problem” above, it is evident that the

main objectives are:

1. producing several phases from a single clock signal, and

2. maintaining the relationship between these phases while fanning each phase out

to dozens of switches by keeping the skew under control.

Distribution of the main clock and/or its periodic multiples to a number of flip-

flops in digital design is a similar situation. In case of using techniques such as ”time

stealing” and ”good clock skew”, a clock tree with each clock having different period,

delay and duty cycle is necessary. In digital design, this problem is solved automati-

cally by clock tree synthesis tools that are present in digital design software. Knowing

3



(a) Clock Tree Generation

(b) Clock Tree Distribution

Figure 3: Clock Tree Generation and Distribution

that digital design handles this problem automatically, while a similar problem in

SDACs is handled manually is the idea behind this thesis.

In order to automate the process, providing a methodology is essential. In fact,

formal approach provided by the methodology is a significant asset even without au-

tomation. The methodology proposed in this thesis consists of three main objectives

that are:

1. providing a formal approach to SDAC clock tree design and developing analyt-

ical methods to calculate the target timings for the clock tree,

2. automation of the clock tree target timing calculation process,

3. interpreting the target timings calculated above to CTS (Clock Tree Synthesis)

software, and running the CTS software from a script for full automation.

In order to test our methodology, our collaborators in Boğaziçi University tried

to build a 10-bit, 0.18 micron, 180MHz flash ADC with 2-phase differential input [1].

However, our methodology was successful in building a 60MHz flash ADC with the
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remaining specifications. Our design can actually work at higher clock frequencies,

but the effective number of bits (ENOB) goes down with the increased frequency.

Thus, testing our methodology with 60MHz ADC seems to give the best trade-off

according to the resolution vs speed relation.

The automation scripts take the clock requirements in a constraint list, and then

checks whether the requirements are attainable or not. If the requirements seem

satisfiable, the scripts use this constraint list to form a target list. Since this target

list is the best that can be achieved theoretically, it is useful even if the clock tree

is designed manually. So, automating the clock tree generation process shortens

design time and minimizes errors for even manual approach. In addition to providing

the target clocks to achieve, the methodology can also identify unattainable clock

frequencies and clock constraints. In short, design automation for SDAC clock trees

can be beneficial for even manual design.

Using the generation and automation scripts, a design flow that automatically

generates required clock signals is established. Running the flow with the test design,

a clock tree can be synthesized automatically. Proof of the methodology is done as

follows.

1. Target clock values are applied to the test circuit schematic, and the effective

number of bits (ENOB) are obtained.

2. Using time analysis of the layout synthesized by the Cadence Encounter tool, a

clock list is obtained. Using the clock list on the test circuit schematic, another

ENOB value is obtained.

3. First ENOB value is compared with the second. The more the second value is

closer to the first value, the more successful the methodology is.

The ENOB values obtained by the flow above can be found at Chapter 6, and the

results show that the methodology can be considered successful.
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Figure 4 shows the critical stages of our flow that constitute ACTreS. Require-

ments Analysis is the initial stage that creates the base files such as the con-

straint file (which holds the relation between each clock phase) that will be processed

throughout automation. Target Determination stage generates target clock phases

that fit the constraints. Target clock phases calculated in Target Determination

are fed to the digital CTS tool and the clock tree circuit that satisfies the targets is

synthesized at Design and Synthesis stage. In Verification, the resulting clock

phase timings are confirmed with the constraints in the constraint file. If timing

values pass the confirmation, SPICE files that represent the clock tree are generated.

Each stage will be thoroughly explained in their respective chapters.

Figure 4: Stages of ACTreS

There are many publications on clock tree synthesis automation for digital chips

in the literature as observed from the survey in [2]. However, there is no work directly

dealing with general SDAC clock tree synthesis. There are works such as [3] and [4]

that attempt to automate the complete circuit (even layout) design process for a

particular subclass of SDACs. However, they do not include much detail in terms of

CTS and how it can be generalized. There are also works that focus on the generation

of two non-overlapping clocks ([5], [6]). Two non-overlapping clocks is enough for

some SDACs, but for many SDACs we need more phases such as multi-rate SDACs

[7], some SDACs for power electronics applications [8], and SDACs with interleaved

operation [9], which is a subclass that our test circuit also falls in.
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Even though there are also numerous publications and mostly patents on non-

overlapping clock generation for specific designs, there is no publication for generalized

SDAC clock tree generation. The reasons could be that,

1. Researchers that are proficient in analog design generally work on specification

of a common design. These specific design problems are seriously hard and

overall design automation is generally impossible.

2. Even it is time consuming and error prone, it is still possible to do SDAC clock

tree generation manually. Analog designer workforce in the industry may be

sufficient so that the task is not a priority.

3. Researches that have the required expertise on clock tree automation for SDACs

are most probably working on digital clock tree automation. Since these peo-

ple have limited knowledge on analog design, they may not be aware of such

automation problem for SDACs.

Creating a software from scratch for a serious design project like our ADC design

requires considerable amount of workforce and resources. On the other hand, the

automation practices present in commercial software used in the industry (in our

case, CTS tool in Cadence Encounter) are sophisticated and up-to-date. So, using a

digital CTS tool for SDAC clock tree synthesis was a viable option.

The normal digital CTS paradigm is about distributing a clock to many end

points with zero skew if possible. That is useful in our problem in distributing the

generated clock phases but does not help generate the various clock phases an SDAC

needs. Thanks to the idea of clock-skew scheduling [10], digital CTS tools have the

capability of generating deliberate timing offsets between end points and hence can

be used to generate different phases of a main clock. Note that a preliminary and

condensed version of our work was published in [11]. At the time we were trying to

clock our test circuit at 180 MHz. However, we had some analog design challenges
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(not in the CTS part) that we could not overcome. To successfully complete the

analog design of our test circuit, we had to lower the clock frequency to 60 MHz.

Further information on our design flow can be found in the following chapters.In

Chapter II (Requirements Analysis), we cover the base file generation (like the con-

straint file) for automation. In Chapter III (Target Determination), we generate tar-

get clock phases that fit the constraints. Chapter IV (Design and Synthesis) guides

us through the clock tree synthesis step. In Chapter V (Verification), we explain

confirmation process for the synthesized clock phase timings.

Figure 4 shows the critical stages of our flow that constitute ACTreS. Require-

ments Analysis is the initial stage that creates the base files such as the con-

straint file (which holds the relation between each clock phase) that will be processed

throughout automation. Target Determination stage generates target clock phases

that fit the constraints. Target clock phases calculated in Target Determination

are fed to the digital CTS tool and the clock tree circuit that satisfies the targets is

synthesized at Design and Synthesis stage. In Verification, the resulting clock

phase timings are confirmed with the constraints in the constraint file. If timing

values pass the confirmation, SPICE files that represent the clock tree are generated.

Each stage will be thoroughly explained in their respective chapters.
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CHAPTER II

REQUIREMENTS ANALYSIS

CTS software and the design scripts require certain files to solve the clock tree prob-

lem. Clock requirements and other important parameters such as pin capacitance,

delay and location values of the SDAC should be provided in a predefined structure.

Moreover, for maximum performance, each library cell used in clock tree generation

should also be analyzed. In this chapter, the preliminary work handled before run-

ning the generation scripts is instructed. Flowchart that shows the steps that make

up Requirements Analysis can be seen in Figure 5.

Figure 5: Requirements Analysis flowchart

2.1 Determining the Clock Requirements for Sampled Data
Analog Circuits

In order to design the SDAC clock tree, the clock requirements should be determined

first by observing the SDAC circuit. For this purpose, the general architecture of our

test design (ADC) is provided in Figure 6. Each switch symbol provided in the figure

represents an array of switches instead of one.

Figure 7 shows the timing diagram derived from the test circuit. We can also
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Figure 6: Test ADC Design Architecture

observe the work done at each time slot, and the pipelining of the process if we look

at time steps 5-6. Our ADC operation consists of 10 sub-processes that are: Smp, H,

CRes, CC, DlyIn1/DlyIn2, DlyOut1/DlyOut2, FRes, FC, CT2B, FT2B .

Taking the diagram on Figure 7 into account, we can observe that the throughput

of our circuit is 2 time steps, while its latency is 6 time steps. We must keep in mind

that each time step seen in Figure 7 equals half of the main clock period.

Figure 7: Timing Diagram of ADC Design

The test ADC’s operations are explained briefly below (following Figure 7 step by
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step):

• Smp: Here we do sampling. Sampling is controlled by switches S1 and S2 on

Figure 6. Our S1 clock phase should cover the S2 clock phase. They have the

same high time and period values which are Tclk/2 and Tclk

• H: H is the abbreviation for hold. When H switch on Figure 6 is closed, the

sampled input signal during Smp operation is sent to the circuit for processing.

• CC + CRes: CC is the Coarse Comparison operation. By coarse comparison,

we try to determine the upper part of our ADC’s output (most significant bits).

CRes (Coarse Reset) resets the coarse comparator output to zero. When CRes

switch on Figure 6 is open CC does comparison, otherwise it is zero.

• DlyIn: is a sub-operation of Analog Delay Element (ADE) operation, which is

a 3 step long operation. It is one step long.

• DlyOut: is the second sub-operation of ADE. It takes two steps.

• DAC + Sub: Digitized output of CC is converted to an analog signal again by

the DAC block. The analog output from DAC block is subtracted from ADE

blocks by Sub operation. These two blocks do not require a clock phase.

• FC + FRes: FC is the Fine Comparison block. Fine comparison tries to deter-

mine the lower part of our ADC’s output (least significant bits). FRes (Fine

Reset) resets the fine comparator output to zero. When FRes switch on Figure

6 is open FC does comparison, otherwise it is zero.

• CT2B + FT2B: 31-bit thermometer codes produced by CC and FC blocks are

converted to 5-bit binary codes by CT2B and FT2B blocks respectively. As

result, we finally obtain a 10-bit digital ADC output.
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Looking at the time diagram on Figure 7, we are able to determine the ideal clock

waveforms on Figure 8.

Figure 8: Ideal clock phases

Looking at both Figure 7 and Figure 8, clock requirements below are determined:

1. S2 w/in S1 (1r → 2r and 2f → 1f)

2. S1 and H NO (1f → 3r and 3f → 1r)

3. ’negedge CRes’ before ’posedge Flop’ (4f → 5r)

4. DlyIn w/in H (3r → 6r (9r) and 6f (9f) → 3f)

5. ’Flop posedge’ before ’H negedge’ (5r → 3f)

6. ’DlyOut posedge’ before ’DlyIn negedge’ (7r (10r) → 6f (9f))

7. ’Flop posedge’ before ’DlyOut posedge’ (5r → 7r (10r))

8. ’CRes posedge’ before ’H negedge’ (4r → 3f)
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Here ’NO’ represents Non-overlapping, ’w/in’ is within, posedge and negedge cor-

respond to positive and negative edges of a signal, ’a → b’ means ’from a to b’ and

’f’ and ’r’ are for falling and rising edges respectively.

2.2 Extraction of Capacitance, Location and Delay Values
of the SDAC Clock Pins

After determining the clock requirements and synthesizing the SDAC (without clock

tree), capacitance (pincaps.txt), location (pinlocs.txt) and delay (pinrcs.txt) values

should be extracted from the synthesized analog circuit. The extraction can be done

by the analog design software that was used in synthesis, and the resulting files are

copied into the ’pin locs’ folder that can be seen on Figure 48(c). ACTreS then refers

to these files whenever they are required. An example of these files’ contents can be

observed in Figure 9.

(a) pin caps.txt (b) pin rcs.txt (c) pin locs.txt

Figure 9: Extracted file contents from SDAC analog synthesis

2.3 Design Library Characterization

It is sometimes required to know how fast the design fares at fast PVT corner in

respect to slow and normal PVT corners. To obtain a rough estimate, each library

cell was tested on a binary tree. Resulting delays can be seen in Table 2.
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Table 2: Delay values for the CTS design library cells

Cell FastPV T NormalPV T SlowPV T Normal/Fast Slow/Fast
Name (ns) (ns) (ns) (cfast−normal) (cfast−slow)

BUF1CK 0.10 0.15 0.25 1.50 2.50
BUF2CK 0.08 0.13 0.20 1.63 2.50
BUF3CK 0.09 0.12 0.20 1.33 2.22
BUF4CK 0.08 0.12 0.19 1.50 2.38
BUF6CK 0.07 0.11 0.17 1.57 2.43
BUF8CK 0.08 0.10 0.17 1.25 2.13
INV1CK 0.11 0.14 0.23 1.27 2.09
INV2CK 0.08 0.11 0.16 1.38 2.00
INV3CK 0.07 0.10 0.15 1.43 2.14
INV4CK 0.07 0.09 0.14 1.29 2.00
INV6CK 0.06 0.08 0.14 1.33 2.33
INV8CK 0.06 0.08 0.13 1.33 2.17

By looking at the worst case values on Table 2, fast-normal and fast-slow coeffi-

cients are determined as 1.6 and 2.5 respectively.

2.4 Creating Constraint and Definition Files

After determining the clock requirements, minimum timing for each requirement

should be determined and the constraint file (constraints.txt) should be created.

Here, the ideal clock phases determined for the ADC design depicted on Figure 8

are converted to an operable format.

As first step, it is important to determine the identical clock phases in order to

create a simpler constraint file. This situation can be observed in our ADC circuit.

CRes and FRes switch arrays have the exact same requirements. DlyIn1 and DlyIn2

clock phases have the same situation. Moreover, regular output of DlyOut1 ( clk) has

the same requirements with the inverted output of DlyOut2 ( xclk). Taking these

identical phases into account, we are going to use CRes (CRes and FRes), DlyIn

(DlyIn1 and DlyIn2) and DlyOut (DlyOut1 and DlyOut2) for the phases mentioned
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above.

The second step is to identify the critical clocks and their timings. By critical

clocks, we refer to the clocks that affect the overall performance more than the other

clocks. We need to determine the minimum high time (minHiTime) for these critical

clock phases. To determine, we rely on the mathematical error modelling of the analog

circuit and the analog designer’s experience. S2, DlyIn and DlyOut are the critical

clock phases for our ADC design. After adding minHiTime values of the critical clock

phases to the requirement list, we obtain the constraint file in Figure 10(a) and the

realistic clock phases given in Figure 10(b) for Tclk = 16.6ns.

(a) constraint file
’constraints.txt’

(b) realistic clock phases

Figure 10: Constraint file and the clock phase waveform the constraint file is obtained
from

As observed from Figure 10(a), the constraint file has the following format:

<1st clock number><1st clock edge> <2nd clock number><2nd clock edge> <t2-t1>

Here t2-t1 denotes the timing distance between two edges. The constraint file

contains constraints such as minSepTime, minHiTime and minDurTime. With these

constraints, we are able to determine a safe operation zone in n-dimensional (n =
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number of clock phases) space for our SDAC.

Definition file is a simple input file that holds the following information for each

clock phase:

<phase number> <phase name> <high time> <period> <xclk> <comment>

A definition file example can be seen on Figure 11.

Figure 11: Definition file ’defFile.txt’

High time and period values in the definition file are in Tclk/2. The ’xclk’ column in

the format determines whether CTi will produce the regular clock (0) or the inverted

clock (1).

16



CHAPTER III

TARGET DETERMINATION

The constraint file created in the previous chapter defines a safe zone from where our

clock phases can be selected. However, feeding these constraints directly to the CTS

tool may result in two potential problems given below.

• Some of the synthesized clock phases may be beyond bounds of the safe zone,

• Performance of the overall circuit may be suboptimal.

The chapter will focus on achieving and verifying suitable targets that will be

fed to the CTS tool. Target generation methodology and scripts will be thoroughly

explained in the process. Flowchart seen in Figure 12 shows the steps that make up

the Target Determination phase of ACTreS.

Figure 12: Target Determination flowchart
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3.1 Updating the Constraint File and Observing its Graph

The analog circuit should satisfy the constraints for all PVT (Process, Voltage, Tem-

perature) corners. Different constraint types in the constraint file achieve their lowest

values at different PVT corners. For example, minSepTime constraints are the small-

est at fast PVT corners. If a minHiTime or minDurTime constraint is smaller than

the main clock’s period, its value is smallest at fast PVT corner, else its value is

smallest at slow PVT corner.

If we want better performance, we should update our constraint list according

to the PVT corners. For this reason, PVT corner to aim should be determined for

synthesis. It is clear that the design will not work properly if some minSepTime

constraints can’t be achieved. In the event of not satisfying some minHiTime con-

straints, the design will work with lower performance. Based on these information, it

is evident that satisfying the minSepTime constraints is more critical. Therefore we

need to aim for fast PVT corners.

To update the constraint file, speed ratio between fast and slow corners should be

determined first. If we refer to Section 2.3, this ratio can be determined as c(fast−slow)

= 2.5. The constraint file can be updated by dividing negative minHiTime and

minDurTime values to c(fast−slow). The difference between the original constraint file

and the updated constraint file (constraints fc.txt) can be observed in Figure 13.

Design automation starts with this task. The process of obtaining updated con-

straint file from the original one is handled by a Perl script called ’script1.pl’. Further

information about the script can be found in Table 3.

The constraint files observed in Figure 13 can also be identified as directed graphs.

This enables the use of directed graph algorithms on the constraint files. Directed

graphs for the constraint files at Figure 13 can be seen in Figure 14. Each clock edge

in the constraint file is implemented as a node, and each constraint in the files is an

edge on the graph.
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(a) Original constraint file
’constraints.txt’

(b) Updated constraint
file ’constraints fc.txt’

Figure 13: Updating the constraint file for fast corner

Table 3: ’script1.pl’ summary

Function Updating the constraint file for fast PVT corner.
Input Original constraint file ’constraints.txt’
Output Updated constraint file ’constraints fc.txt’
Usage perl script1.pl
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(a) Graph for the orig-
inal constraint file ’con-
straints.txt’

(b) Graph for the up-
dated constraint file ’con-
straints fc.txt’

Figure 14: Directed graphs depicting constraint files
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The graphs provided in Figure 14 were printed by an open source software called

’GraphViz’. For easily handling debug issues, we automated this process by using

a script named ’consToGraph.pl’. More information about the script and the graph

generation process can be found in Table 4 and in Figure 15 respectively.

Table 4: ’consToGraph.pl’ summary

Function Conversion of the constraint file to a ’.dot’ file in Graphviz format
Input Any file in constraint file format
Output GraphViz Input ’.dot’ file
Usage Generation of graphViz input by using

perl consToGraph.pl constraints fc.txt constraints fc.dot
Printing the graph file by using the

dot -Tpng constraints fc.dot -o constraints fc.png commands.

Figure 15: Obtaining directed graphs from the constraint file

3.2 Producing the Target File

The updated constraint file defines a safe zone for each clock phase. Providing these

constraints directly to the CTS design tool may result in two potential problems given

below.

• some of the clock phases may be out of bounds,

• performance of the overall circuit may suffer from the boundary clock phases.
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In order to overcome these potential problems, extra reaction time should be

added to each constraint. The new constraints are stored in a target file named

’targets fc.txt’.

Two different algorithms were implemented for target file generation. The first

algorithm relies only on centering the safe zone, while the second algorithm tries

maximizing minHiTime constraints for better performance.

The Perl script ’target noloop.pl’, whose details can be seen in Table 5 calls the

Python script ’cycles.py’ to determine the loops in the updated constraint file. The

script ’cycles.py’ is an outside source that was obtained from a blog site created by

a researcher named Josch Schauer [12]. Shauer states that the script was created by

using Robert Tarjan’s paper ’Enumeration of the Elementary Circuits of a Directed

Graph’ [13]. Author of the paper claims that redundant operations were eliminated

by using ’backtracking with lookahead’ method. The algorithm was updated more

than once in time to overcome its limitations. However, since these limitations don’t

affect our work, the script based on the original algorithm was used.

’cycles.py’ takes the number of nodes and the list of edges as input. Since the

script is an outside source, required input data recovered from the updated con-

straint file should be interpreted in ’cycles.py’ format. This requires representing

each edge as a different natural number, and more so the numbers should increase

arbitrarily. After obtaining the loops, the number values should be converted back to

the original updated constraint file format. Both conversion operations are carried by

the ’target noloop.pl’ script, however these operations are not shown in Figure 22 for

simplicity. An example to conversion operation can be observed on Figure 16. The

’cycles.py’ command for this example should be ”python cycles.py 4 0,2 2,1 3,1 1,0”,

and the output of such command would be the line ”0 2 1”.

After running the script ’cycles.py’ using the data from the updated constraint file

for the test ADC design, the following loops marked with red edges shown in Figure
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(a) Graph format for the con-
straint file

(b) Graph format for the script
’cycles.py’

Figure 16: Graph conversion for ’cycles.py’

17 are obtained.

After determining the loops present in the constraint file, target file is generated.

Target file is obtained by adding extra reaction time (total slack) to the constraints,

which results in increased performance. Two different algorithms are used to de-

termine the slack. The script ’target noloop.pl’ chooses one of the algorithms by

checking the variable ’$slackMode’. Details of the algoritms are can be observed with

an example according to the graph in Figure 17 below.

1. The length of each loop in the updated constraint file is calculated. The length

of a loop is the sum of the edge weights on the loop. Length of each loop seen

in Figure 17 is given below.

loop length1 = -2140

loop length2 = -1140

loop length3 = -2120

2. Slack for each loop is calculated. It is the average extra reaction time given for

each edge in the loop calculated by the formula below.

slack[j] = loop length[j] / # of vertices in the loop
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(a) loop 1 (b) loop 2 (c) loop 3

Figure 17: Loops present in the updated constraint file
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Calculated slack values for the loops shown in Figure 17 are given below.

slack1 = -267.5

slack2 = -114.0

slack3 = -265.0

The two algorithms differ at this point. The first algorithm that sets the oper-

ating point at the center of the safe zone (active when $slackMode = 1) takes

the maximum of these slack values (-114 for this example) and adds that value

to each constraint in the updated constraint file. The resulting values are stored

in the target file (’targets fc.txt’).

The second algorithm which keeps the minHiTime constraints as high as possible

while trying to center the safe zone moves on to the next step.

3. The aim of this step is the calculation of the slack values for each minSepTime

constraint. For each minSepTime constraint, the maximum of the constraint’s

eligible slack values is chosen. Eligible slack values are the slack values of

the loops the constraint is in and the default slack value the user determines.

Looking at the example in Figure 17, it can be observed that the edge ’1r 2r

0’ is a minSepTime edge that is inside all three loops. The slack value for this

edge is calculated as below (default slack value is determined as -100 for this

example).

max(slack1, slack2, slack3, -100)

= max(-267.5, -114, -265, -100)

= -100

4. Each slack value calculated above is subtracted from the total slacks it’s part

of to determine the remaining total slacks. The remaining total slacks for each

loop in Figure 17 are calculated below.
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remaining total slack1 = −2140− 7× (−100) = −1440

remaining total slack2 = −1140− 9× (−100) = −240

remaining total slack3 = −2120− 6× (−100) = −1520

5. At this step, slack values for each minHiTime constraint in a loop are calculated.

Each remaining total slack value calculated at the previous step is divided to the

number of minHiTime constraints present in that loop. Each quotient is a slack

candidate for the minHiTime constraints present in the loop quotient belongs

to. Then for each minHiTime constraint, the maximum of the candidates is

chosen as slack. Slack for the Figure 17’s minHiTime constraint ’2r 2f -2320’

which is present in all three loops is calculated as below.

average of remaining total slack1 = remaining total slack1/1 = -1440

average of remaining total slack2 = remaining total slack2/1 = -240

average of remaining total slack3 = remaining total slack3/2 = -760

Taking the values above into account, the slack for minHiTime constraint ’2r

2f -2320’ is calculated as:

max(-1440, -240, -760) = -240

6. The steps above determine slack values for each loop constraint. Slack value

for all constraints that don’t belong to any loop is calculated as the maximum

of the slacks of each loop and the standard slack. After appointing every slack

value, target file is generated by adding the slacks to the updated constraint

file. Resulting target file and its graph for our example can be seen at Figure

18.

Pseudocode describing target file generation steps given above can be seen in

Figure 19.
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(a) Target file
’targets fc.txt’

(b) Graph representing the
target file

Figure 18: Target file and its graph representation
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Figure 19: Pseudocode describing generation of the target constraints
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3.3 Producing the Acyclic Target File

Target file generated above needs to be loopless for the scheduling phase. The loop

clearing phase is handled by the script ’acycl.pl’ and the resulting output is stored in

the file ’noloop fc.txt’. The loop clearing algorithm is based on ’Deep First Search

(DFS)’ method, whose steps will be given below.

The process starts with equating ’visited’ and ’onPath’ variables of each node to

zero. The variable ’visited’ determines whether the node is visited or not, whereas

(onPath == 1) represents the edges that do not cause loops. There are also two

pointers named ’parent’ and ’child’. Parent is the node that current node comes

from, while child is the node current node goes to. For an edge ’1r 2f 300’, ’1r’ is the

parent of ’2f’, whereas ’2f’ is a child of ’1r’. The algorithm goes through the steps

given below for each node.

1. For the current node (parent) the algorithm inspects whether it was processed

or not by checking the variable ’visited(parent)’. The algorithm returns to Step

1 with the next node if ’visited(parent)’ equals 1, otherwise it continues on Step

2.

2. At this step variables ’visited(parent)’ and ’onPath(parent)’ are equated to 1.

3. Each ’children’ of the parent is identified, and for each child variable ’on-

Path(child)’ is checked. If ’onPath(child)’ equals 0, parent and its child are

both printed out. Otherwise they are not printed out, so that the loop is sev-

ered.

4. Here, a selected child node becomes the parent node and the algorithm returns

back to Step 1 recursively. If no child node is left, then by assigning variable

’onPath(parent)’ to 0, the algorithm climbs up the hierarchy and continues the

process with the remaining child nodes.
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Pseudocode for the script ’acyclic.pl’ is given in Figure 20. Loopless target file

’noloop fc.txt’ generated by the algorithm above and its graph can be observed on

Figure 21.

Figure 20: Pseudocode for the script ’acycl.pl’

To automate target file and acyclic target file generation, a Perl script named

’target noloop.pl’ is used. The script whose flow is given in Figure 22 calls a Python

script named ’cycles.py’ and another Perl script named ’acyclic.pl’ during operation.

Details of these scripts can be observed at Tables 5, 6 and 7.

Table 5: ’target noloop.pl’ summary

Function Generating loopless target file from the updated constraint file
Input Updated constraint file ’constraints fc.txt’

Definition file ’defFile.txt’
Output Loopless target file ’noloop fc.txt’
Usage perl target noloop.pl

3.4 Forming the Timing Schedule

Up until this point, delay values were defined as a constraint. A constraint such as

’1r 2f 300’ can be translated as ’1r < 2f -300’. However, for synthesis each clock edge
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Figure 21: Loopless target file ’noloop fc.txt’ and its graph

Figure 22: Workflow for the script ’target noloop.pl’
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Table 6: ’cycles.py’ summary

Function Identifying and storing the loops present in the constraint file
Input Number of vertices and the list of edges present in the updated constraint file
Output Loop list file ’pyFile’
Usage python cycles.py <number of corners> <vertex list(v1, v2 v3,v7 ...)>

Table 7: ’acycl.pl’ summary

Function Clearing the target file off loops
Input Target file ’targets fc.txt’
Output Loopless target file ’noloop fc.txt’
Usage perl acycl.pl

should target an exact time value rather than a constraint such as ’1r 1200’ that is

’1r = 1200’ when translated. Here, the edge ’1r’ aims an exact delay of 1200 ps.

According to the constraint ’1r 2f 300’, 2f will aim for a delay greater than 1500 ps

(1200ps + 300 ps) which can subsequently change depending on the other constraints.

Delay values for both edges of each clock phase is calculated here by using the

loopless target file ’noloop fc.txt’ generated above. Scheduled clock edges are stored

in the file ’schedule fc.txt’. While generating the clock tree, two different algorithms

named ’sch hfu’ and ’sch gg’ were used. ’sch gg’ was used in development phase,

therefore it doesn’t yield optimal solutions. The second algorithm, ’sch hfu’ was

proposed later during development. It gives the optimum results, moreover timing

wise it is more efficient. Selection between two algorithms is done by checking the

’$schFlag’ variable. The resulting timing schedules for both algorithms are given in

Figure 23. The values observed below are the target delay timings for each edge in

CTi synthesis.

’sch hfu’ is a graph algorithm that uses Depth-First Search (DFS)method for

scheduling. The purpose of scheduling is to determine each node’s position depending

32



(a) Schedule
file generated
using ’sch hfu’

(b) Schedule
file generated
using ’sch gg’

Figure 23: Generated schedule files

on the loopless target file. For positioning, a reference node should be chosen and its

value (delay) should be assigned as zero. To determine the values of other nodes, the

following two steps should be repeated till every node value on the graph has been

determined.

1. Starting the search from the identified nodes and on every direction, each child-

less node (root node) is determined using DFS. This step is called ’Discovery’

or ’D’.

2. From each discovered node above, an assigned node should be searched using

DFS. After reaching an assigned node, search should turn back to the source

and assign values to each node on the way. This step is called ’Scheduling’ or

’S’.

The example given below will step by step explain the algorithm briefly described

above. In the example, red circles marked by an ’S’ are the scheduled nodes, while

the blue ones marked by a ’D’ are the discovered nodes. A discovered node is a node

that can be scheduled with the aid of the other scheduled nodes. Each node given
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in the example represents a clock edge, and each arrow between nodes represents a

constraint defined in the loopless target file. Starting graph of the example can be

observed on Figure 24.

Figure 24: Initial unscheduled graph

1. Node 4 is chosen as the reference point and identified as scheduled as seen in

Figure 25. The scheduled node list is updated as {4}.

Figure 25: scheduled node list: {4}

2. Starting from the only scheduled node 4, root nodes on both directions are

identified as discovered.Going along the arrows, nodes 1 and 2 are discovered.

Proceeding in the opposite direction, nodes 7 and 8 are identified as discovered.
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Scheduled node list stays the same, discovered node list is updated as {1, 2, 7,

8}. The graph will now look like in Figure 26.

Figure 26: scheduled node list: {4}
discovered node list: {1, 2, 7, 8}

3. Starting from the discovered node list, node 1 is selected for scheduling. Search-

ing a scheduled node gives result immediately as node 1 is directly connected to

the initially scheduled node 4. So node 1 is scheduled according to the relation

between node 1 and node 4 as observed from Figure 27. Node discovery from

the newly scheduled node 1 yields no results. Scheduled node list is updated as

{4, 1}, discovered node list is updated as {1, 2, 7, 8}.

Figure 27: scheduled node list: {4, 1}
discovered node list: {2, 7, 8}
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4. Going through the next node in the discovered node list, node 2 is selected for

scheduling. Searching a scheduled node only gives node 4 like the previous step

same as before. Using the scheduled node 2, node 9 is discovered. Scheduled

node list is updated as {4, 1, 2}, discovered node list is updated as {1, 2, 7, 8,

9}. The resulting graph can be seen in Figure 28.

Figure 28: scheduled node list: {4, 1, 2}
discovered node list: {7, 8, 9}

5. Moving on the discovered node list, node 7 is chosen for scheduling. Search

finds node 4 as a scheduled node via node 6. After finding the scheduled node,

scheduling starts in the opposite direction. Using node 4, node 6 is scheduled

as seen in Figure 29(a). After that, node 7 is scheduled according to the value

of node 6 and the constraint between node 6 and 7. Discovery search from both

nodes 6 and 7 yields no results. After this step, scheduled node list is updated

as {4, 1, 2, 6, 7}, discovered node list is updated as {1, 2, 7, 8, 9}. The resulting

graph can be observed in Figure 29(b).

6. Next node in the discovery list is node 8. To schedule node 8, the scheduled

nodes 2 and 4 are found. Since node 8 should satisfy both branches, both
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(a) Scheduling node 6. (b) Scheduling node 7.

Figure 29: scheduled node list: {4, 1, 2, 6, 7}
discovered node list: {8, 9}

branches are explored. Returning back to node 8 from node 2, node 5 is sched-

uled as seen in Figure 30(a). A candidate value for node 8 is found by returning

further back to node 8 from node 5. Another candidate value is found returning

back to node 8 from node 4. The value that satisfies both relations is chosen as

schedule value for node 8. Using the newly scheduled node 8, node 3 is discov-

ered. Scheduled node list is updated as {4, 1, 2, 6, 7, 5, 8}, discovered node list

is updated as {1, 2, 7, 8, 9, 3}. The resulting graph can be observed in Figure

30(b).

(a) Scheduling node 5. (b) Scheduling node 8.

Figure 30: scheduled node list: {4, 1, 2, 6, 7, 5, 8}
discovered node list: {9, 3}
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7. Moving onto the remaining nodes in the node list nodes 3 and 9 are scheduled

according to the value of node 5. After scheduling these last two nodes, no

unscheduled node will be left. Finally, all nodes are scheduled as observed in

Figure 40(c).

(a) Scheduling node 9. (b) Scheduling node 3.

Figure 31: Scheduling the final nodes

The algorithm explained above is implemented with a C program called ’schedule’,

whose details can be observed from Table 8. Pseudocode for the algorithm is given

in Figure 32

Table 8: ’schedule.pl’ summary

Function Creating a schedule file that contains timings for every clock phase using the
loopless target file.

Input Loopless target file (noloop fc.txt)
Output Schedule file (schedule fc.txt)
Usage ’./schedule <# of nodes> <# of edges> noloop fc.txt’

3.5 Verifying the Timing Schedule

The timing schedule (schedule fc.txt) created in the previous section is confirmed

after checking the values in the constraint file (constraints.txt). The confirmation is
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Figure 32: Pseudocode for the scheduling algorithm
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done with a Perl script named ’schedule chk.pl’, whose details can be found below in

Table 9.

Table 9: ’schedulechk.pl’ summary

Function Verification of the schedule file
Input Schedule file (schedule fc.txt)

Constraint file (constraints.txt)
Output The script outputs true or false for each constraint on the console
Usage perl scheduleChk.pl

The script uses the scheduled values for each clock edge on the constraint file to do

the confirmation. Suppose there is a constraint ’1r 2r 300’ and the scheduled values

for these two clock edges are ’1r 500’ and ’2r 100’ in the schedule file. Script does

the check ’(1r-2r) <? 300’, which gives ’(500-100) 6< 300’ and prints ’FALSE’ on the

console.

3.6 Producing SPICE Files for the Scheduled Clocks

The schedule file contains target values for each clock phase that will be given to

the CTS tool. Before going through synthesis, it is beneficial to check these target

values on the analog circuit. SPICE files for fast(fc), slow(sc) and typical(tc) PVT

corners should be generated for simulation. Schedule file generation for each corner

is done with the script ’fast2corners.pl’, and the SPICE file generation is handled

with the script ’sch2spice.pl’. ’fast2corners.pl’ whose details can be seen on Table

10, scales the schedule file for typical and slow corners using the coefficients obtained

during characterization. ’sch2spice.pl’ whose details are given in Table 11, generates

the SPICE code from the schedule files.
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Table 10: ’fast2corners.pl’ summary

Function Scaling the schedule file for slow and normal PVT corners
Input Schedule file (schedule fc.txt)
Output Schedule file for slow PVT corner (schedule sc.txt)

Schedule file for normal PVT corner (schedule tc.txt)
Usage perl fast2corners.pl

Table 11: ’sch2spice.pl’ summary

Function Generating the SPICE code from schedule files
Input Schedule files (schedule fc.txt, schedule tc.txt, schedule sc.txt)

Definition file (defFile.txt)
Output SPICE files (targets fc.txt, targets tc.txt, targets sc.txt)
Usage perl sch2spice.pl schedule fc.txt defFile.txt targets fc.cir
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CHAPTER IV

DESIGN AND SYNTHESIS

Target clock delays were calculated and stored in the file ’schedule.txt’ in the previous

chapter. The next step is to synthesize a circuit that generates and distributes clock

signals according to this file. It was repeatedly stated in the previous chapters that

clock tree generation and distribution are seperate tasks and they are handled by

subcircuits CTi and CTe respectively. CTi and CTe generation will be explained step

by step throughout the chapter, following through Figure 33.

Figure 33: Design and Synthesis flowchart

4.1 Proposed Clock Tree Architecture

As discussed in Chapter 1 before, clock tree should generate the required clock phases

like in Figure 3(a) and distribute these phases without further shift among phases

like in Figure 3(b). Since it will be easier to handle these two tasks separately, the

architecture is divided into two parts. Clock tree generation part is named as Clock

Tree intrinsic (CTi), whereas distribution of the generated clocks is called Clock Tree

extrinsic (CTe). CTi takes the main clock signal and produces required clock phases,
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then CTe distributes the generated phases without changing the relation between

them. CTe even provides the reverse of a generated clock phase if required.

In Figure 34, a diagram that depicts the roles of CTi and CTe can be observed. The

triangles in the figure represent clock trees while the small circles represent inverters.

Clock trees present in the figure consist of buffer and inverter logic gates existing in

our design library. Also in the same figure it can be observed that the clock tree of

CTi is not horizontally aligned like the ones in CTe. This is because in CTi, the aim

is to generate clocks with their individual expected delays, so every clock is delayed

according to their timings. The main concern in CTe is to protect the relation that

was achieved in CTi. In order to do that, all clocks generated in CTi should be sent

to their respective analog pins with the same delay, resulting in horizontally aligned

triangles.

Figure 34: CTi and CTe forming the clock tree for the SDAC circuit

Detailed info on CTi and CTe architectures will be given on subsections 4.1.1 and

4.1.2 respectively.
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4.1.1 Clock Tree intrinsic (CTi)

Since CTi handles the timing relations between clock signals, it is the more crucial

part of our two part circuit. It is the relation between the clock signals that enables

the SDAC to perform as intended.

CTi circuit requires a 2x1 multiplexer and numerous buffers to generate each clock

phase. Clock phases are generated by feeding two delayed phases of the main clock

to a multiplexer. For example, to generate a clock signal with period Tclk and duty

cycle (Tclk/2 + ∆tA - ∆tB), two phases of the main clock (clkA and clkB) with delays

∆tA and ∆tB should be generated initially. Inputting these two phases (clkA and

clkB) to a multiplexer, a clock signal with the above mentioned period and duty cycle

values can be generated. Using the main clock signal as select input, the multiplexer

will output clkA when the main clock is 0, and clkB otherwise. The circuit depicting

this example can be seen in Figure 35.

Figure 35: Clock derivation from the main clock using a multiplexer

Each generated clock drives a switch in SDACs. These switches actually consist

of an NMOS and/or a PMOS transistor. That’s why each generated clock has a

negative pair. These positive and negative clocks will be named with ” clk” and

” xclk” suffixes respectively.

The reason we generate a regular or an inverted clock can be explained on Figure
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35 as follows: rising time of clkA and falling time of clkA that drive the multiplexer are

different edges, and clkB signal has the same issues. Moreover, rising time of clkA and

falling time of clkB have the same edge reference problem. Reverse case is also valid.

Considering these, we should declare all relations according to either rising or falling

edge of the main clock. For example, if we were to declare first clock phase’s falling

edge to be earlier than the second phase’s rising edge (1f → 2r) and if we generated

regular clock for both of them, we would have to relate 1f with falling edge of the

main clock, whereas 2r with rising edge of the main clock. To avoid confusion, we

can generate the complement of first phase and regular of the second. In our project,

we generated regular clocks ( clk) if the generated clock is high with the main clock,

and complementary clocks ( xclk) if the generated clock is high when the main clock

is low.

Another important issue that should be addressed here is the exceptional case of

generating 2Tclk period clock phases. Generally SDACs require phases with Tclk/2

duty cycle and Tclk period, however in some circumstances phases with 2Tclk period

may also be required. Even duty cycles might differ for some phases. In our test

design we used 2Tclk period clocks with duty cycles Tclk and Tclk/2. In order to

generate phases with these periods and duty cycles, the circuit should generate new

main clocks as shown in Figure 36.

To be able to generate clocks with 2Tclk period, we should first generate a reference

clock with 2Tclk period. We are using a one-bit counter shown in Figure 36(a) to

generate the reference clock. Generating a clock with 2Tclk period and Tclk/2 duty

cycle requires driving the multiplexer’s data and select inputs with the main Tclk

period Tclk/2 duty cycle clock, and connecting the output and 2Tclk reference clock

to an AND gate like shown on Figure 36(b). A clock with 2Tclk period and Tclk

duty cycle can be generated by driving a multiplexer’s inputs and select with a 2Tclk

period reference clock, and ANDing the output with logic HIGH (Figure 36(c). Clock
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(a) Main clock with 2Tclk period (b) Clock with Tclk/2 duty cycle and
2Tclk period

(c) Clock with Tclk duty cycle and
2Tclk period

(d) Clock with Tclk/2 duty cycle and
Tclk period

Figure 36: Modified CTi circuit
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with Tclk period and Tclk/2 duty cycle can be generated in similar way, except we

feed the multiplexer inputs and select with the main Tclk period clock like on Figure

36(d). The AND gates in Figures 36(c) and 36(d) may seem redundant but they are

actually required to apply the AND gate delay to every clock phase.

To sum all up, the rising and falling edge of each clock phase are generated sep-

arately, and each phase is generated by giving required delays via buffers. After

generating the edge signals, each phase is generated by selecting the required clock

edge via a multiplexer as shown in Figure 35.

4.1.2 Clock Tree extrinsic (CTe)

The role of CTe is to deliver the clock phases generated by CTi to the analog cir-

cuit without changing the relation between phases. Since SDAC is treated as a ’hard

macro’, it can’t be interfered with, such as inserting a metal line within SDAC bound-

aries. But since the location of each connection on SDAC boundaries is known, clock

signals can be delivered just outside the SDAC boundaries, ensuring metal on both

sides connect to each other.

Each SDAC clock pin has a capacitance value of its own. Moreover, delay between

each clock pin and the switch associated with the pin is different. Thus since clock

trees inside CTe rectify these effects, they act like an impedance transformer. Figure

37 illustrates CTe behavior.

In CTe we generate a clock tree for each CTi output, and every clock tree dis-

tributes its clock and the clock’s complement to the switches on analog macro as seen

in Figure 34. Each clock tree in CTe is very much like the ones in synchronous digital

systems, that is each clock tree tries to distribute the CTi generated clock signal to

the related switches with the smallest skew possible. One other goal of CTe is to

equalize the insertion delay (from source to destination) of each clock signal like in

Figure 37. In this example the software tries to assert ”ID1 = ID2 = ... = IDn” so
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Figure 37: CTe behavior

that the clock relations achieved in CTi are preserved.

4.2 Producing the CTS Tool Input Files for CTi Synthesis
and Analysis

The schedule file generated in the previous sections contains the target delays for

both edges of each clock phase. However, the schedule file needs to be interpreted

to CTS software for synthesis and analysis. The files that are generated for the CTS

software and the scripts that generate the files are given below.

• cti.cmd: The file should be created in Tcl scripting language. It contains the

necessary instructions that are given to the Cadence Encounter tool for clock

synthesis. It also determines the information that will be saved after synthesis.

The Perl script ’createCTiCmd.pl’ (Table 12) generates this file automatically.

• cti.conf: This file contains the commands that set the Verilog files, library files

and LEF files that will be used by Encounter. It is generated automatically by

the script ’createCTiConf.pl’ (Table 13).
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Table 12: ’createCTiCmd.pl’ summary

Function Generating ’cti.cmd’ Tcl script file
Input Definition file (defFile.txt)
Output ’cti.cmd’ Tcl script file
Usage perl createCTiCmd.pl defFile.txt

Table 13: ’createCTiConf.pl’ summary

Function Generating ’cti.conf’ command file
Input −
Output ’cti.conf’ file
Usage perl createCTiConf.pl

• cti.v: ’cti.v’ is a Verilog file that describes the logical structure of the CTi

design. It is generated automatically by the script ’createCTiVerilog.pl’ (Table

14).

Table 14: ’createCTiVerilog.pl’ summary

Function Generating ’cti.v’ Verilog file
Input Definition file (defFile.txt)
Output ’cti.v’ file
Usage perl createCTiVerilog.pl defFile.txt

• umc18.v: This file contains Verilog codes for the circuits in the standard design

library. Analog designer should provide this file in the folder CTi synthesis

takes place in.

• umc.lib: Contains characterization information (such as timing and power con-

sumption) for the standard design library. For clock tree synthesis, lib file for

the fast PVT corner will be used. Analog designer should provide this file in

the folder CTi synthesis takes place in.
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• umc.lef: Contains node geometries for the nodes present in the standard design

library. Analog designer should provide this file in the folder CTi synthesis

takes place in.

• cti.ctstch: ’clock tree specification’ file contains the necessary definitions and

constraints required for clock tree synthesis. Cadence Encounter synthesizes

the clock tree according to the contents of this file. It is generated by the script

’ctstchgen2.pl’ (Table 15).

Table 15: ’ctstchGen2.pl’ summary

Function Generating ’cti.ctstch’ file
Input Definition file (defFile.txt)

Schedule file (schedule fc.txt)
Output ’cti.ctstch’ file
Usage perl ctstchGen2.pl defFile.txt schedule fc.txt

’Clock tree specification file’ is the most important file above, because it interprets

the schedule file to the CTS tool. The details of this interpretation is given below.

A CTS tool aims to deliver the main signal (root node) to every recipient node

at the same time. Each node in the clock tree has different capacitance and internal

delay values. Suppose that there is a root node called n0, and there are 3 recipient

nodes n1, n2 and n3 with internal delays 200ps, 300ps and 400ps respectively. The

CTS tool will try to satisfy the following equation.

∆t1 + d1 = ∆t2 + d2 = ∆t3 + d3

Using the equation above, the latencies CTS tool will synthesize between u0-u1 (∆t1),

u0-u2 (∆t2) and u0-u3 (∆t3) will be determined as below.

∆t1 = max (d1, d2, d3) - d1 = 200,

∆t2 = max (d1, d2, d3) - d2 = 100,
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∆t3 = max (d1, d2, d3) - d3 = 0.

The CTS tool tries to deliver each signal at the same time by supplying each signal

with different delay lengths as observed above. For CTi synthesis, this feature is

used along with multiplexing. The schedule file contains the ∆ti values like above.

However, CTS tool only accepts the di values as inputs. So, the equations above

should be modified in the format below.

di = max (∆t0, ∆t1, ..., ∆tn) + ε - ∆ti

The values in the schedule file are converted using the formula above in the ’clock tree

specification’ file. The tolerance delay (ε) is provided to ensure that every delay is

bigger than zero, because CTe insertion delays are bigger than zero. Figure 38 shows

the example schedule file and its corresponding clock tree specification file. Using the

formula above for the schedule file line ’1r 0’ (assuming ε = 100ps),

d1r = 114 +100 - 0 = 214,

which is enclosed in Figure 38 is obtained.

Figure 38: Schedule file and the corresponding clock tree specification file

In addition to the synthesis related files explained above, a command file that

analyses and records the synthesis results should also be generated. This is auto-

matically handled by a Perl script called ’createCTiCommands’ whose details can be
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found on Table 16.

Table 16: ’createCTiCommands.pl’ summary

Function Generating the commands that handle CTi analysis
Input Definition file (defFile.txt)
Output ’cti report timing commands’ command file
Usage perl createCTiCommands.pl defFile.txt

4.3 CTi Synthesis and Timing Analysis via the CTS Tool

At this step CTi synthesis and analysis is done with Cadence Encounter software.

The cti generation top script (topScript cti.pl) should initialize the startup for Ca-

dence Encounter in order to fully automate CTi synthesis and analysis. Although the

software also has visual interface, console mode was used for automation. The soft-

ware is run with the command system(”/ECE/Cadence/IC/EDI 9.12/bin/encounter

-nowin -init cti top.tcl > encounterout.txt”) in the top script. The arguments are

explained below.

• -nowin: This argument determines that the program will be run on the console.

• -init cti top.tcl: This argument will run the program with script ’cti top.tcl’.

The script uses 2 command files that are:

– cti.cmd contains the necessary instructions that are given to the Cadence

Encounter tool for clock synthesis. It also determines the information that

will be saved after synthesis.

– cti report timing commands contains the ’report timing’ commands for

analysis. It also saves timing results for all clock phases to each PVT

edge file (cti results fc.txt, cti results tc.txt, cti results sc.txt).
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• > encounterout.txt: This argument prints the Encounter outputs into file ’en-

counterout.txt’ instead of displaying them on console.

Layout generated from CTi synthesis can be observed in Figure 39.

Figure 39: Layout of CTi circuit

4.4 Verification of CTi Synthesis Results

The verification is handled by the scripts ’b1.pl’ and ’b2.pl’. The script ’b1.pl’ skims

through CTi synthesis files and grabs rising delay, rising slew rate, falling delay and

falling slew rate for each clock phase and stores these values in the file ’b1Out.txt’

with the following format.

<Clock Edge> <rising delay> <rising skew> <falling delay> <falling skew>

The script ’b2.pl’ uses the values in the file ’b1Out.txt’ on the constraint file, and

writes the results for each PVT edge in the file ’b2Out.txt’. Details of both scripts

are given in Tables 17 and 18.
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Table 17: ’b1.pl’ summary

Function Obtaining rising and falling delay and slew rate values for each clock edge
from CTi analysis results

Input Encounter result files (cti results fc.txt, cti results sc.txt, cti result tc.txt)
Output PVT analysis result files (b1Out fc.txt, b1Out sc.txt, b1Out tc.txt)
Usage perl b1.pl

Table 18: ’b2.pl’ summary

Function Verification of the synthesis results using the constraint file
Input PVT analysis result files (b1Out fc.txt, b1Out sc.txt, b1Out tc.txt)
Output Files (b2Out fc.txt, b2Out sc.txt, b2Out tc.txt)

Each line in these files contains ’Pass’ or ’Fail’ determining
whether the constraints are met or not

Usage perl b2.pl

With the verification of CTi synthesis results complete, CTi design phase is fin-

ished and CTe synthesis can start. A verification output example can be seen in

Figure 40.

(a) ’b1.pl’ output. (b) ’b2.pl’ output. (c) ’b3.pl’ output.

Figure 40: CTi verification file examples
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4.5 Producing the CTS Tool Input Files for CTe Synthesis

There are numerous files required for CTe synthesis like its CTi counterpart. Most

of the files are generated automatically by our scripts. However, some of the analog

information should be obtained from the analog designer. Luckily, most analog design

software can generate these files automatically as well. The required files and the

scripts that generate them (if any) can be found below.

• pinlocs.txt: contains location information of the clock pins on the analog circuit.

Analog designer can provide them using the analog design software.

• pincaps.txt: contains capacitance values for each clock pin on the analog circuit.

Analog designer can obtain these values using the analog design software.

• pinrcs.txt: contains parasitic delays for each clock pin on the analog circuit.

Analog designer can provide this file using the analog design software.

• cti.lef: contains the pin geometries and locations for each CTi clock pin. It is

generated by the script ’ctiLefGen.pl’ (Table 19).

Table 19: ’ctiLefGen.pl’ summary

Function Generating ’cti.lef’
Input ’cti.cmd’
Output ’cti.lef’
Usage perl ctiLefGen.pl

• adc.lef: This file contains layout information of the analog circuit’s pins such

as layer, location and geometry. It is generated automatically by the script

’adcLefGen.pl’ (Table 20).

• adc.lib: Contains the capacitance values of the analog circuit’s clock pins. It is

generated by the script ’adcLibGen.pl’.
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Table 20: ’adcLefGen.pl’ summary

Function Generating ’adc.lef’
Input File containing analog circuit’s clock pin locations (pinlocs.txt)
Output ’adc.lef’
Usage perl adcLefGen.pl

Table 21: ’adcLibGen.pl’ summary

Function Generating ’adc.lib’
Input File containing analog circuit’s clock pin capacitance values (pinlocs.txt)
Output ’adc.lib’
Usage perl adcLibGen.pl

• cte.cmd: is a command script written in Tcl language format. The script inputs

the files that will be used and the required commands to Cadence Encounter

software for CTe synthesis and analysis. It is generated automatically by the

script ’createCTeCmd.pl’.

Table 22: ’createCTeCmd.pl’ summary

Function Generating ’cte.cmd’
Input Files ’cti.lef’ and ’adc.lef’
Output ’cte.cmd’
Usage perl createCTeCmd.pl cti.lef adc.lef

• cte.conf: The file introduces the CTe design and the standard design library

to the Encounter session. It contains the names of Verilog files (.v), standard

library characterization files (.lib) and the LEF files (.lef) that will be used for

synthesis. It is generated automatically by the script ’createCTeConf.pl’.

• cte.v: contains the Verilog file that generates the structural frame of the CTe

design. It is created automatically by the script ’createCTeVerilog.pl’.
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Table 23: ’createCTeConf.pl’ summary

Function Generating ’cte.conf’
Input -
Output ’cte.conf’
Usage perl createCTeConf.pl

Table 24: ’createCTeVerilog.pl’ summary

Function Generating ’cte.v’
Input Definition file ’defFile.txt’

File that keeps the SDAC clock pin capacitance values ’pincaps.txt’
Output ’cte.v’
Usage perl createCTeVerilog.pl defFile.txt pincaps.txt

• cte.ctstch: The clock tree specification file ’cte.ctstch’ contains the required

definitions and constraints necessary for CTe synthesis. It assists Cadence En-

counter during synthesis. Details of the script that generates the file can be

found in Table 25.

Table 25: ’ctstchGen.pl’ summary

Function Generating ’cte.ctstch’
Input ’cti.cmd’

File that keeps SDAC pin capacitance values ’pincaps.txt’
File that contains SDAC pin parasitic delays ’pinrcs.txt’

Output ’cte.ctstch’
Usage perl ctstchGen.pl

• cte report timing commands: contains the commands that are necessary for

CTe result analysis. It is generated by the script ’createCTeCommands.pl’

automatically.
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Table 26: ’createCTeCommands.pl’ summary

Function Generating commands necessary for CTe analysis
Input Definition file ’defFile.txt’

File that keeps SDAC pin capacitance values ’pincaps.txt’
Output Command file ’cte report timing commands’
Usage perl createCTeCommands.pl defFile.txt pincaps.txt

4.6 CTe Synthesis and Timing Analysis via the CTS Tool

Cadence Encounter runs the file ’cte.cmd’ for CTe synthesis, and ’cte top.tcl’ for CTe

analysis and closing Encounter. The head script ’topScript cte.pl’ calls Encounter

with the command

system(”/ECE/Cadence/IC/EDI 9.12/bin/encounter -nowin -init cte top.tcl >

encounterout.txt”);

Details of the command was given in section 4.3. During CTe synthesis CTi

results are also taken into account. CTi clock pin locations and CTi clock rise and

fall skew values are all supplied to Encounter for analysis. This way CTi circuit can

be emulated during CTe synthesis. Resulting layout for the CTi + CTe circuit can

be observed in Figure 41.
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Figure 41: CTi + CTe layout
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CHAPTER V

VERIFICATION

Up to this point CTi and CTe synthesis have been done, completing clock tree gen-

eration. However synthesized clock tree should be verified by checking whether the

design is compatible with the constraints or not before merging it with the SDAC.

Verification consists of two steps as shown in Figure 42.

Figure 42: Verification steps

5.1 Verification of Clock Tree (CTi + CTe) Synthesis Re-
sults

As explained in Chapter 1 before, each clock phase generated in CTi may feed a

group of switches rather than one. So, each of these clock phases should be delivered

to several switches at once. This means, for CTe synthesis a CTi signal might be

represented with several subsignals. For a CTi signal S1, there may be variants such

as S1 L1 and S1 L2 in CTe. The example in Figure 43 shows such case.

Looking at the example in Figure 43, S1target is the aimed clock generated at

CTi. The clock signals S1 L1 clk, S1 L1 xclk and S1 L2 xclk are the clock variants

synthesized at CTe. The signal S1synthesis is the worst case scenario combination of

these variants. The combined signal has two rising edges (rmax, rmin) and two falling

edges (fmax, fmin). Worse edge is selected depending on the constraint. As an example,

for the constraint ’1f 3r 150’ one should choose the maximum value for ’1f’ and the
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Figure 43: A waveform depicting target clocks, generated clock variants, and the
combinations of each clock variant
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minimum value for ’3r’. Then the constraint will be verified with the values ’1fmax

3rmin 150’ and entering the values from Figure 43, the result will be ’3120-2897=223’

which satisfies the constraint. Since the constraint was checked with the worst case

combination, it is evident that each variant will pass the verification.

Verification is done in three steps given below.

1. The resulting delay values from both CTi and CTe synthesis are added up and

rising time, rising skew, falling time and falling skew values for each clock pin

is obtained.

2. Minimum and maximum edge values for each clock edge is calculated.

3. Verification of the constraint file with the values obtained at step 2.

The scripts that handle these steps and their details can be found below.

• cte1.pl: This script calculates the rising time, rising skew, falling time and

falling skew values for each analog clock pin for each PVT edge.

Table 27: ’cte1.pl’ summary

Function Calculating rise time, fall time, rise edge and fall edge values for each clock pin
using the resuls from CTi and CTe synthesis

Input File containing CTi synthesis results ’cti results.txt’
File containing CTe synthesis results ’cte results.txt’

Output ’cte1Out.txt’
Usage perl cte1.pl cti results.txt cte results.txt cte1Out.txt

• cte2.pl: determines the minimum and maximum delays for each clock edge

(rmax, rmin, fmax, fmin). The script is run for each PVT edge.

• cte3.pl: verifies the constraint file with the worst possible scenario values ob-

tained from ’cte2Out.txt’.
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Table 28: ’cte2.pl’ summary

Function Calculating maximum and minimum delays for each clock edge
(rmax, rmin, fmax, fmin)

Input cte1Out.txt
Definition file ’defFile.txt’

Output ’cte2Out.txt’
Usage perl cte2.pl cte1Out.txt defFile.txt cte2Out.txt

Table 29: ’cte3.pl’ summary

Function Verification of the constraint file using synthesis results
Input cte2Out.txt

Constraint file ’constraints.txt’
Output ’cte3Out.txt’
Usage perl cte3.pl cte2Out.txt constraints.txt cte3Out.txt

If each constraint pass the verification phase, the clock tree is generated success-

fully and it can be merged with the SDAC for analog verification. The resulting

outputs from the verification scripts can be seen in Figure 44.

5.2 Producing SPICE Files for the Synthesized Clock Tree

In this step, SPICE files for the clock tree are generated for the three PVT corners,

enabling analog simulation of the merged (analog circuit and clock tree) circuit. The

files are generated automatically by a Perl script. The analog simulation results can

be observed in Chapter 6.
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(a) ’cte1.pl’ output. (b) ’cte2.pl’ output. (c) ’cte3.pl’ output.

Figure 44: Outputs of the scripts cte1.pl, cte2.pl and cte3.pl respectively
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CHAPTER VI

RESULTS

As explained in the previous chapter, design of the SDAC is handled in two parts.

Analog circuit is designed without taking clock tree into consideration, and the clock

tree is generated via ACTreS software. Since both circuits can be implemented in

CMOS, these two circuits are merged into the actual SDAC circuit afterwards.

ACTreS obtains clock definitions and constraints along with clock pin locations,

capacitance values and RC delays from the analog designer. Layout of the synthesized

clock tree and resulting SPICE files are generated and provided to the analog designer

in return. After merging the clock tree with the SDAC, the designer can test the

circuit using an analog simulation software. The results obtained from the simulation

are then analyzed on MATLAB and the effective number of bits (ENOB) can be

determined. Figure 45 shows the SDAC clock tree testing environment used for

verification.

Figure 45: Testing environment for SDAC clock tree
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Using the test environment above, one can determine ENOB (Effective Number

of Bits), SNR (Signal to Noise Ratio), SFRD (Spurious-Free Dynamic Range), INL

(Integral Non-Linearity) and DNL (Differential Non-Linearity) values as seen in Table

30. The results in the table were obtained for:

• both slack algorithms (the one that tries to center each constraint slack(mean)

and the one that tries to center each constraint with highest possible HiTime

slacks (HiTime))

• targeted clock tree and synthesized clock tree (targeted/synthesized)

• each PVT corner (fast/normal/slow)

Table 30: ACTreS Verification Results

Target File Targeted/ PVT ENOB SNR SFDR Energy/bit INL/DNL
Algorithm Synthesized Corner (dB) (dB) (pJ/Cs) (LSB)
Mean Targeted Slow 7.58 47.39 56.23 6.5
Mean Synthesized Slow 6.78 42.57 55.30 11.45
Mean Targeted Normal 7.83 48.89 59.56 5.4
Mean Synthesized Normal 7.66 47.87 58.41 6.18
Mean Targeted Fast 6.61 41.55 55.28 12.79
Mean Synthesized Fast 6.77 42.52 55.26 11.45
HiTime Targeted Slow 7.63 47.69 57.35 6.31
HiTime Synthesized Slow 7.00 43.90 56.14 9.76
HiTime Targeted Normal 7.78 48.60 58.84 5.6 0.3/0.4
HiTime Synthesized Normal 7.63 47.69 58.60 6.31 0.3/0.5
HiTime Targeted Fast 6.61 41.55 55.64 12.79
HiTime Synthesized Fast 6.75 42.27 55.16 11.77

SNR is the ratio between the base signal and its noise components. The values at

SNR column are calculated by MATLAB using Fast Fourier Transform (FFT). The

following measures were taken to ensure reliability.

• the results were taken for 1024 data samples,

66



• sampling frequency was chosen so that inputfrequency
samplingfrequency

6∈ Z to prevent sample

repetition.

• settling time of the circuit was taken into account, data received during settling

time was not calculated.

Considering the results in Table 30, SNR is around 10%, which is consistent with

the 10% SNR goal of the project.

ENOB values were obtained directly from SNR values using the formula below.

’ENOB = (SNR - 1.76)/6.02’

Looking at the ENOB column in Table 30, it can be determined that for a cer-

tain method and PVT corner, ENOB values differ around 4% between targeted and

synthesized clock trees. These values prove performance of the design is affected

minimally from using a digital CTS tool, it greatly depends on the generated clock

list. Looking at the ENOB values for synthesized clock tree, it can be observed that

the values change between 6.75 and 7.63. The results seem to be close to the tar-

geted ENOB value 10, considering the theoretical ENOB values should differ from

the theoretical values and the maximum available ENOB value is not certain. It was

stated earlier that the analog designer needs a target clock tree and the target clock

tree which can be found in ’schedule.txt’ can be used by the analog designer.So if the

analog designer uses the target clocks generated by ACTreS, designing the clock tree

manually or by using Cadence Encounter CTS tool will differ around 4% according

to Table 30.

SFDR can be determined as the ratio between the base signal and the greatest

harmonic noise component. It is somewhat similar to SNR, however it only takes

the greatest noise component into account contrary to SNR. SFDR values for both

targeted and synthesized clock trees are almost the same (with 2% deviation at most)

according to Table 30.
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Energy per Conversion Step is a widely used criterion for ADC circuit com-

parison. It is the amount of energy spent for a complete conversion. The formula for

this criterion is given below.

E/Cs = Power/(2ENOBxSamplingFrequency)

As it can be observed from the formula, Energy per Conversion step requires

ENOB, sampling frequency, and Power. ENOB values were calculated using MAT-

LAB, as instructed above. Sampling frequency is determined by the tester. Power

value was obtained from Mentor Graphics software.

INL and DNL are values that give information about the static performance of

an ADC circuit. INL (Integral Non-Linearity) is the distance (in LSB) between the

ideal curve and transfer characteristics of the ADC circuit. DNL (Differential Non-

Linearity) is the analog distance (in LSB) between two consecutive digital codes.

There are numerous INL/DNL calculation methods in literature, however most

of these methods take up much time and they specifically uncover the mismatch

problems. Taking these into account, we discarded detailed INL/DNL simulations

and obtained INL/DNL values for our HiTime algorithm on typical PVT corner with

0.1 LSB sensitivity, presuming the other 5 comparison would yield similar results.

Figure 46: Ramp signal input and INL/DNL values
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We used ramp signal input method for calculation whose sensitivity rises with the

sampling rate. Approximately 100000 samples should be taken for each clock set for

a sensitivity value of 0.01 LSB. We have taken 10240 samples which resulted in 0.1

LSB sensitivity. As it can be seen from Table 30, difference between targeted and

synthesized values are not more than 0.1 LSB. An example for ramp signal input

method and the corresponding INL and DNL values can be seen in Figure 46.
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CHAPTER VII

CONCLUSION

Inspired by the automation of digital clock trees, we have devised a methodology

that can automatically generate SDAC (Sampled Data Analog Circuit) clock trees.

Our work enables faster and less error-prone SDAC design. To achieve our goals, we

proposed a systematic approach to the problem, which is also beneficial for traditional

manual SDAC clock tree design. Moreover, our systematic approach also shortens

analog design phase, since symmetrical design practices used in SDAC clock tree

design are less crucial.

For testing purposes, our collaborators at Boğaziçi University designed an ADC

(Analog-Digital Converter) [1]. Simulating this ADC along with the generated clock

tree in SPICE, we obtained ENOB (Effective Number Of Bits) values that are suffi-

ciently close to our ideal expectations.

ACTreS (Analog Clock Tree Synthesis) works automatically after obtaining the

circuit requirements from the analog designer. We encountered 3 core graph problems

during our research that are,

• finding loops in a graph,

• getting rid of the loops encountered above,

• generating a tight schedule from a constraints graph (a longest path problem).

We used an existing solution for the first problem and created a fast and simple

algorithm for the second problem. However, regarding the third problem, we think

that we were able to find a solution that will benefit the literature.
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Although we achieved our initial goals, ACTreS can be further optimized in the

future. During our discussions we found out that our target file generation algorithm

could be further optimized for better performance.

Our ADC design showed us that we can automate the process successfully, working

on other possible design problems and further collaboration with the industry may

help us in greater optimization and possible bug-fixing.
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APPENDIX

AUTOMATION SETUP

ACTreS is a set of scripts and files that follow a strict hierarchy, so it might be bene-

ficial to give a brief software overview. Various programming and scripting languages

such as Perl, C++, Python and Tcl are used throughout the project.

ACTReS automation software is formed by clusters of scripts. It consists of

the CTi synthesis cluster (namely topScript cti.pl) and CTe synthesis cluster (top-

Script cte.pl). These two scripts are at the top of the hierarchy, each followed by

several smaller scripts. Figure 47 shows the script hierarchy where CTi and CTe

script hierarchies can be observed respectively at Figures 47(a) and 47(b).

(a) CTi script hierarchy (b) CTe script hierarchy

Figure 47: ACTreS script hierarchy

Since automation scripts exchange data in form of files, a certain folder hierarchy

is required. Figure 48 shows the folder system in use. In this figure, bold names
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denote folders, italic names are used to identify the files that are obtained externally,

and the non-bold, non-italic names represent the script files. There is a top folder

called ACTReS, and under it we have 3 other folders as shown in Figure 48(a). The

CTi folder architecture can be observed in Figure 48(b), and CTe folder architecture

can be seen in Figure 48(c).

(a) top folder (b) CTi folder hierar-
chy

(c) CTe folder hierar-
chy

Figure 48: ACTreS folder hierarchy

There are some folders and files that are important to the user, so we should ex-

plain those briefly. The SPICE folder holds the circuit model of the generated clock

tree, which can be used for testing and manufacturing purposes. Files ’constraints.txt’

and ’defFile.txt’ should be created by collaborating with the analog designer, accord-

ing to the timing specifications of the SDAC. Folder ’pin locs’ and its contents should

be provided by the analog designer according to the SDAC analog design. File ’pin-

locs.txt’ contains the physical coordinates of each clock pin, ’pincaps.txt’ holds the

capacitance values of said pins, and finally ’pinrcs.txt’ has the parasitic delay values

for each clock pin. Since all these values can be extracted using analog design tools
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(assuming we have finished the SDAC design with or without taking clock tree phase

into account), they can be easily acquired. It can also be seen in Figure 48 that both

CTi and CTe folders have ’verification’ folders. If synthesis is not successful, the user

can look at these folders to find out the problem.
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