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ABSTRACT

Rapid development of sensor, computer and display technologies led to increased us-

age of structure from motion techniques in many applications including navigation,

human-computer interaction, training, entertainment, and augmented reality. Struc-

ture from motion techniques usually involve 2D feature detection, feature matching,

and 3D feature extraction. We present a software platform which brings together

state-of-the-art open-source third-party tools for structure from motion. These tools

are generally used via a command prompt and have a large number of parameters.

The output files of these tools also have their own specific format and users usually

need to write special parsers to extract the information they need from these files.

Our software platform provides several easy-to-use visual interfaces to configure and

set the important parameters of these tools as well as parse/save their out files as

desired. Our platform also provides visual interfaces to display the detected 2D fea-

tures and extracted 3D points on their respective image frames, as well as allowing

for making 3D distance measurements between feature points. We are planning to

make the source-code of our system openly available to researchers.

Keywords: Feature Detection, SIFT, Feature Matching, Camera Calibration,

Radial Un-distortion, Structure from Motion

iv



ÖZETÇE

Sensör, bilgisayar ve görselleme teknolojilerindeki hızlı gelişme, hareketten yapı çıkarımı

tekniklerinin navigasyon, insan-bilgisayar etkileşimi, eğitim, eğlence ve eklenmiş gerçeklik

gibi uygulamalarda kullanımını arttırmıştır. Hareketten yapı çıkarımı, genel olarak

2B öznitelik tespiti, öznitelik eşleştirme ve 3B öznitelik çıkarımından oluşur. Bizler

gelişmiş bazı açık kaynak kodlu 3. parti araçları biraraya getiren bir yazılım platformu

sunuyoruz. Bu araçlar genellikle komut satırından kullanılmaktadırlar ve birçok

parametreye sahiptirler. Bu araçlar çıktı olarak kendi özel formatlarında dosyalar

üretmektedirler ve kullanıcının bilgileri alabilmesi için bu dosyaları çözümlemesi gerek-

mektedir. Yazılım platformumuz, bu araçların konfigürasyonu ve önemli parame-

trelerin ayarlanması ve bunların yanı sıra da çıktıların istenildiği gibi çözümlenmesi ve

saklanması için görsel birtakım arayüzler sunmaktadır. Platform ayrıca 2B özniteliklerin

ve çıkarılan 3B noktaların karşılık gelen imgeler üzerinde gösteriminin yanında öznitelik

noktaları arasında 3B mesafe ölçümüne olanak tanıyan görsel arayüzler de sağlamaktadır.

Araştırmacıların kolayca erişimi için platformun kaynak kodunu açmayı planlıyoruz.

Anahtar Kelimeler: Öznitelik Tespiti, SIFT, Öznitelik Eşleştirme, Kamera

Kalibrasyonu, Radyal Bozulma Düzeltme, Hareketten Yapı Çıkarma
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CHAPTER I

INTRODUCTION

The motivation of the thesis and the targeted contributions of the thesis are given

in this chapter. Also a literature overview of SfM and augmented reality tools is

provided here.

1.1 Motivation

The importance of multi-view Structure from Motion and Augmented Reality re-

searches based on camera and object tracking in 3D environment and supporting

with virtual items gradually increases. In order to achieve a realistic feeling of im-

mersion, the rendering of the virtual content has to be in alignment with real objects

in the video and this requires a high-accuracy 3D tracking. Reliability of tracking

systems should be increased by using true and reliable methods and tools. The first

and the most important stage of these kind of applications is estimating the 3D scene

model and motion information.

Augmented Reality (AR) is one of the fields of computer vision research that com-

bines real world and digital data which enables users to see real and virtual objects

together in the same place. This area is closely related with almost all computer

vision subjects such as 2D-3D geometries, feature detection and match, 3D recon-

struction, camera and object tracking, multi-view stereo, 3D animations etc. Instead

of replacing the real world totally, AR systems require to complete and enrich the

real world [1].

Figure 1 shows a flowchart for a simple augmented reality system [2]. The captur-

ing module captures the image from the camera. The tracking module calculates the

correct location and orientation for virtual overlay. The rendering module combines
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the original image and the virtual components using the calculated pose and then

renders the augmented image on the display.

Figure 1: Flowchart for a simple AR system

The main issues need to be solved for a successful AR experience can be listed as:

1. A reliable 3D scene map (3D feature points on scene) must be extracted.

2. An accurate way of 2D feature detection method is needed.

3. The correspondence between of 2D features need to be found with a convenient

method.

4. Feature detection and match algorithms should run real-time for a realistic

feeling.

5. An effective sensor-fusion method is needed to combine data for a more accurate

estimation.

6. And finally the virtual reality objects should be added on the scene and they

should be stable according to the movement of the camera.

The scope of the provided platform in this thesis is to develop a high performance

visual user interface enabling feature detection and 3D map extraction for use of

real-time applications such as 3D camera motion tracking and Augmented Reality

systems.
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1.2 Objective of the Thesis

The objective of the software platform we developed in this thesis is to develop a user

interface that provides researchers an easy-to-use toolkit to do some common com-

puter vision processes and get the data they need for their work. So the researchers

working on sensor fusion, augmented reality, occlusion tracking etc. could benefit

from this platform. This platform will:

1. Isolate the users from the inner details of the methods and tools out of their

research scopes.

2. Include an effective feature detection and matching component.

3. Include a reliable Structure from Motion tool.

4. Output of this software can be used as input data or ground truth of for many

computer vision tasks and applications such as scene reconstruction, object/-

camera tracking, augmented reality and interaction.

5. The output information can also be used in sensor fusion tracking experiments

to correct the drift on tracking.

6. Users can configure the application and set the parameters of the tools.

1.3 Literature Review

1.3.1 AR Applications

AR is applicable to many areas such as medical education, remote control, entertain-

ment, and cultural heritage [3] [4]. An application sample of revitalization of historic

heritage can be seen in Figure 2.

3



Figure 2: An AR based system for personalized tours in cultural heritage sites

In Figure 3 you can see some usages of tablet PCs and mobile phones as AR

medium. WIKITUDE Augmented Reality browser (left) on tablet PC and a free

iPhone application called Home Scan (middle) which allows users to stand on a side-

walk and open their iPhone and visually see which homes are for sale. Another appli-

cation is an exhibition at the Newcastle Museum entitled Reconstructing Victorian

Newcastle.

Figure 3: Sample AR applications. A mobile application (left) and two tablet appli-

cations

AR is also used for training purposes (Figure 4). On the left side you can see

a system for teaching maintenance and repair, and for training purposes in several

other fields as well. And on the right side a Dismounted Soldier Training System

(DSTS) comprises of sensors attached to various body parts, a virtual reality headset

4



and life-sized/weight weapons. Up to nine soldiers can be simultaneously immersed

in a 3D combat environment where they can train in realistic but safe simulations.

The sensors detect physical moment and moving through the scenes is achieved using

a joystick toggle.

Figure 4: Two applications for training. Augmented reality for maintenance and

repair (left), and a tactical training systems for use of security forces.

1.3.2 SfM and AR Toolkits and Libraries

Researchers and developers have created a great number of augmented reality tools

(software libraries, toolkits, SDKs, etc.) that are used for AR application develop-

ment. They usually contain the methods for core augmented reality functionalities:

3D reconstruction, tracking, graphic adaptation and interaction [2].

In the context of augmented reality, authoring means defining the content for an

AR application and creating the rules for augmentation (e.g. animation paths), and

an authoring tool is the implement for doing so. Some AR tools have components of

both core AR functionalities and authoring, such as Artisan [5], which is a front end

and management system for FLARToolkit and Papervision3D.

AR tools often use third party libraries for lower level tasks (external tools) and

wrap them into the level needed for AR. They use OpenCV for computer vision

and image processing, for example, and Eigen or LAPACK for linear algebra. In

addition, they may provide an interface for existing tools for image acquisition (e.g.

5



Highgui) and camera calibration (e.g. OpenCV), or provide their own utilities for

these tasks. An AR application developer may naturally use any other software for

image acquisition and calibration as well. Respectively, AR applications normally use

existing graphics libraries and 3D engines for graphics and rendering (e.g. OpenGL,

Open Scene Graph, OGRE, Papervision3D, etc.).

1.3.2.1 ARToolKit

The first library for creating augmented reality applications was ARToolKit [6]. To-

gether with its descendants, it is probably the best-known and most commonly used

tool for creating augmented reality applications. ARToolKit product family consists

of libraries for creating stand-alone applications, web applications and mobile ap-

plications for several platforms, e.g. ARToolKitPro (C/C++ markerbased tracking

library), FLARToolKit (the Flash version of ARToolKit), ARToolKit for iOS (the

iPhone port of ARToolKit Pro) [6] [7].

1.3.2.2 VisualSFM

Some open-source toolkits provide Structure from Motion (SfM) functionalities which

are critical for AR systems. VisualSFM [8] is a GUI application for 3D reconstruction

using SfM. VisualSFM is able to run very fast by exploiting multicore parallelism in

feature detection, feature matching, and bundle adjustment. This toolkit is can work

with Yasutaka Furukawa’s multi-view stereo system PMVS/CMVS [9] tool and to

prepare data for Michal Jancosek’s CMP-MVS [10].

1.3.2.3 SFMToolkit

SFMToolkit [11] is yet another SfM-MVS toolkit using Bundler, SiftGPU, and PMVS/CMVS

inside. You can see the workflow and a sample application result of SFMToolkit in

the Figures 5 and 7. This workflow is almost the same for all MVS systems. You

can see a brief list of SfM-MVS softwares in Table 1 [12].

6



Figure 5: MVS worklow of SFMToolkit

User takes or collects a lot of pictures from different angles of the same place

(Figure 6). And then compute structure from motion and get a sparse point cloud

using Bundler). At the end you can see the 3D reconstruction of the scene angles.

Finally we have a dense point cloud divided in cluster by CMVS and computed by

PMVS2 (Figure 7).

1.3.2.4 Bundler

Bundler [13] is a Structure from Motion system for unordered image collections (for

instance, images from the Internet). Bundler takes a set of images, image features,

Figure 6: Picture of Place de la Bourse, Bordeaux, FRANCE taken from Bing(top)
and a collection of images of it(bottom)
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CMVS / PMVS2

Figure 7: 3D points as a point cloud extracted by Bundler(top) and Reconstruction
of the place with CMVS/PMVS(bottom)

and image matches as input, and produces a 3D reconstruction of the camera and

(sparse) scene geometry as output. This SfM system was used in a lot of projects like

Photo Tourism [14], SFMToolkit, VisualSFM etc.

1.3.2.5 ALVAR, SMMT and DART

For example, VTTs ALVAR [15] is a software library for creating virtual and aug-

mented reality applications with support for several platforms, PC and mobile envi-

ronments alike. It has both a marker-based and a feature-based tracking functionality.

Furthermore, it has some support for diminished reality and rendering. The SMMT

library (SLAM Multimarker Tracker for Symbian) [16] is an example of a very spe-

cialised AR tool. As its name suggests, it is suitable for multi-marker AR application

development on Symbian and it uses the SLAM approach for tracking. On the other

hand, some tools are more core AR tools such as the abovementioned ALVAR and

SMMT libraries, and others are more authoring tools such as DART (The Designer’s

Augmented RealityToolkit) [17].

8



Augmented reality tools are difficult to compare, as some of them are specialised to

one purpose (e.g. marker-based tracking or mobile environments), some support only

certain platforms (e.g. Windows or iOS) and others support several platforms and are

used for several purposes. We may classify AR tools based on the environments they

use (mobile, PC, VR, etc.), the platforms they support (Windows, Linux, Symbian,

iOS, Android, etc.), the language they use (C++, Java, etc.), the approach they use

for tracking (marker, multi-marker, features), the algorithms they use for tracking

(SLAM, PTAM etc.), or the functionalities they have (diminishing, interaction, etc.)

Alternatively, we could have a more commercial viewpoint and compare the licensing

and pricing issues as well.

In practice, people are often more interested in the performance of the applications

created with the tools rather than the approach they use. However, the performance

comparison is difficult due to the large diversity of abovementioned platforms, lev-

els and functionalities, and because there is no standard for AR, not to mention a

standard for benchmarking AR tools.

We can summarise that there is a large variety of tools available for AR application

development and the best tool depends mostly on the application, which defines the

environment, platform, functionalities needed, etc. Yet, developers have other aspects

as well, e.g. how familiar they are with the tools, how easy they are to use and what

third party libraries they require, etc.

To be able to choose right tools and methods, we need to consider some design

constraints.

Speed: Feature tracking system we will employ in our platform must be able

to run at interactive rates with high-performance to have a real-time sense and a

successfully augmented vision. For the purposes of real-time augmentation, the speed

of our tracking and pose estimation process is critical. This requirement will be hold

by using a GPU based feature detection and match module (SiftGPU) implemented
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in C++.

Robust to Scale and Orientation Changes: The frames used in this system

can be in different scale and orientations. The feature detection method should be

robust to these changes. SIFT based feature detection methods provide scale and

orientation invariant process ability.

Robust to Lighting Changes: Major changes in lighting could affect an aug-

mentation systems ability to detect certain features in a pattern layout. Thus a

method that can handle lighting changes is a major consideration when it comes

to robustness in augmented reality. SIFT also provide a solution that is robust to

lighting changes.

Reliable 3D Space Map: The 3D space map should be constructed before the

Augmented Reality tracking and its reliability must be high. For 3D space model

extraction we use pre-recorded video of the application area and process a high per-

formance Structure from Motion tool named Bundler.

Easy-to-use User Interface: Third party tools such as Bundler or SiftGPU are

generally used via command prompt. User needs to know the usage, provided SDKs

and the parameters. By developing the application as a Windows desktop application

with windows forms we aimed to provide an easy to use interface.

Configurability: Application should be configurable and user could be able set

the parameters of modules. Platform architecture is designed as modular so any new

component can be integrated in it with a minimum effort. User interface has settings

screens and parameter inputs to set and configure the system.

To conclude, we determined two main open-source computer vision tools to inte-

grate in our design. These are Bundler [13] for Structure from Motion and SiftGPU

[18] for feature detection and match. The details of these tools are given in Chapter

2.
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1.4 Contributions of the Thesis

We present reliable 3D map reconstruction and real-time robust feature detection and

matching utilities that every researcher working on AR and feature tracking subjects

may need. So they can focus on their own subject and gain time. Output of this

software can be used as input data or ground truth of some computer vision researches

and applications such as scene reconstruction, object/camera tracking, augmented

reality and interaction. The output information can also be used in sensor fusion

tracking experiments as corrective information to correct the drift on tracking.

Third party tools such as Bundler or SiftGPU are generally used via command

prompt and have their own mechanisms and they have a lot of parameters to run.

Users need to know the usage and the parameters. By developing this application as

a Windows desktop application, we aimed to provide an easy to use interface. Our

system contains tools for feature extraction and 3D reconstruction integrated inside.

It also provides an interface to reach the functions of the modules inside via the

wrapper utility functions. Bundler’s or SiftGPU’s outputs are in the form of text files

including a lot of information. User needs to know the format details of the files in

order to parse it, convert it to format he/she needs and then use it. ArOZU provides

user interfaces to configure and set the processes and parse/save the files created.

There are also some interfaces we provide to view the detected 2D features on

frames or extracted 3D points on respective frames.

We are going to distribute the source-code and binary of the system. Any re-

searcher needs the functionalities provided with our system or wants to add new

functionalities on it can use it.

1.5 Outline of the Thesis

This thesis is organized in the following way:
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First chapter contains the motivation of this thesis, literature overview, contri-

butions achieved. It mentions on the problem and its importance, real time AR

applications and the purpose and the objectives of this work.

In the second chapter, background information used in this thesis is given. It gives

overview of EKF-based tracking, 3D reconstruction and feature extraction concepts

and tools used in the thesis. Details of two main tools we integrated in our platform

is given here.

Chapter 3 gives details of the platform designed and developed for use in aug-

mented reality and sensor-fusion experiments. The user interface and components

developed and the usage of the platform is detailed in this chapter.

In Chapter 4 the experimental setup and the results and the evaluation of results

are given. Chapter 5 gives a summary and discussion together with possible future

research directions.

1.6 Chapter Summary

In this chapter we talked about Augmented Reality subject and main issues of realistic

applications to present our motivation. We also did a brief survey on AR applications,

prominent tools and softwares used for 3D map reconstruction and motion tracking.

Next chapter provides background information about the methods and tools we chose

in our research.
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Table 1: Examples of software implementing SfM-MVS

Software Notes

Freely available
Bundler Photogrammetry Packageb, c Photogrammetry tool using Bundler

and PMVS2
SFMToolkitb, c Similar software to above
OSM-bundlerb, c Open source equivalent of Microsoft

Photosynth, uses Python scripts and
has a Linux distribution.

VisualSFM c A graphical user interface and versions
for Windows, Linux and Mac. OSX,
but camera model is more restricted
than that used in Bundler.

Commercial
Photosynth Evolved from Bundler. SfM only, no

dense reconstruction. Can incorporate
a very wide variety of images, but does
so at the cost of reconstruction accu-
racy.

Arc3D A webservice allowing users to upload
digital images to our servers where we
perform a 3D reconstruction of the
scene and report the output back to the
user.

CMP SfM Web service b SfM webservice similar to above
Autodesk 123D Catch SfM webservice similar to above
My3DScanner SfM webservice similar to above

Web sites
PhotoScan Full SfM-MVS-based commercial pack-

age
Acute3D Full SfM-MVS-based commercial pack-

age
PhotoModeler Software based on close-range pho-

togrammetry, now implements some
SfM technology.

b uses Bundler to compute structure from motion
c uses PMVS2 as a dense multi-view matcher
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CHAPTER II

BACKGROUND

This chapter provides an overview of the concepts, techniques and software tools we

used in our platform in order do 3D reconstruction, feature detection and feature

matching.

2.1 SiftGPU - 2D Feature Detection and Matching

For real time systems such as tracking and augmented reality applications all the

steps should run at interactive rates with high-performance to have a real-time sense

and a successfully augmented vision. First step of 3D structure reconstruction is

feature detection. Finding point correspondences is vital to successful triangulation

and calculating camera pose. In order to find corresponding features over video frames

it must be possible to detect features as described in the previous section, but it is

also important to identify features and match them between frames. We call this

feature description and it involves extracting feature information. As with feature

detection, a wide variety of feature description algorithms have been presented over

the years. A good feature descriptor must exhibit these three characteristics [19]:

1. Repeatability: The feature descriptor should be reliable, finding the same phys-

ical interest points under different viewing conditions. It must have high accu-

racy and a low false-positive rate. It should be invariant to changes in rotation,

translation and scale.

2. Robustness: The feature descriptor must be able to identify the same point

between frames even if there are changes in illumination, changes in noise and

small changes of the viewpoint.
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3. Speed: It must be able to extract feature information and match it against a

large database as quickly as possible, preferably in real-time.

To meet the performance requirements we decreased the time of feature extraction

and matching steps by using a GPU accelerated component. In these section we will

give a brief information about Scale Invariant Feature Transform (SIFT) method and

then the SiftGPU [18], GPU version of it, integrated in our platform.

D. Lowe [20] introduces a method for image feature extraction called the Scale

Invariant Feature Transform (SIFT). It is invariant to image scaling, translation and

rotation as well as being at least partially invariant to changes in illumination and

3-D projective transforms. This approach transforms an image into a large collection

of local feature vectors called “SIFT keys” that are used for identification.

The major stages of SIFT used to generate the set of image features are: scale-

space extrema detection, keypoint localization, orientation assignment and keypoint

descriptor.

2.1.1 SiftGPU

SiftGPU [18] is an implementation of David Lowe’s Scale Invariant Feature Transform

(SIFT) [20] for GPU. SiftGPU processes pixels parallelly to build Gaussian pyramids

and detect DoG Keypoints. Based on GPU list generation, SiftGPU then uses a

GPU/CPU mixed method to efficiently build compact keypoint lists. Finally key-

points are processed in parallel to get their orientations and descriptors. SiftGPU

also includes a GPU exhaustive/guided sift matcher SiftMatchGPU. It basically mul-

tiplies the descriptor matrix on GPU and finds the closest feature matches on GPU.

Both GLSL and CUDA implementations are provided. It runs on GLSL by default

, which works for both ATI and nVidia. You can optionally use CUDA for nVidia

graphic cards. The following steps can use GPU to process pixels/features in a parallel

way:
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1. Convert color to intensity , and up - sample or down - sample input images

2. Build Gaussian image pyramids (Intensity, Gradient, DOG)

3. Keypoint detection ( sub - pixel and sub - scale localization )

4. Generate compact feature lists with GPU histogram reduction

5. Compute feature orientations and descriptors

By taking advantages of the large number of graphic processing units in modern

graphic cards, this GPU implementation of SIFT can achieve a large speedup over

CPU. Not all computation is faster on GPU, so this library also tries to find the

best option for each step. Running SiftGPU requires a high - end graphic card that

has a large graphic memory to keep the allocated intermediate textures for efficient

processing of new images. The GPU must also support dynamic branching.

2.1.1.1 Running SiftGPU

SiftGPU is open source C++ project and can be downloaded from official web site.

SiftGPU uses DevIl Image library, GLEW and GLUT inside. User will need to make

sure target system has all the depending libraries. SiftGPU should be able to run

on any operation system that supports these libraries. For Windows system Visual

Studio solution files are provided. Linux/Mac makefile is also provided. When source

code compiled on Windows a dll named SiftGPU.dll is built. After adding this library

to any C++ project, classes and their functionalities can be used.

Table 2: Parameters of SiftGPU

parameter description

-fo (int) First Octave to start detection (default: 0)
-tc2 (int) Set a soft limit(max.) to number of detected

features (ML)
-e (float) SIFT detection edge threshold (ET) (default

: 10.0)
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SiftGPU has a large parameter set for different purposes. We just list some of

important parameters that we used in our experiments in Table 2. Two important

parameters of SIFT detection represented in Configuration Window are “SIFT Edge

Threshold (default 5.0)” (ET) and “Maximum Feature Number Per Frame (default

1000)” (ML). First parameter defines the edge threshold that we also used it to keep

the number of features in appropriate range. Second one is the upper limit of feature

numbers to be detected. It is not a strict rule, SiftGPU tries to keep the numbers

around the limit set. SIFT match has only one parameter “Match Threshold (default

16)” can be modified on user interface. You can find details in official documentation

[21].

2.1.1.2 Output Format

SiftGPU creates an individual file for each frame with “.key” suffix. The format of

this file is shown in Listings 2.1.

Listing 2.1: Format of SIFT key files

<num features> <s i z e d e s c r i p t o r > [ two i n t e g e r s :# o f f e a t u r e s and

d e s c r i p t o r s i z e ( de f . 128 ) ]

<f ea ture1>

<f ea ture2>

. . .

Each feature entry “featureI” contains the 2D point information (in y, x, scale,

orientation order) and descriptor of the feature. Each feature entry has the form as

in Listings 2.4.

Listing 2.2: SiftGPU 2D Feature Format

<point> [ a 4−vec to r d e s c r i b i n g the 2D point ( in y , x , s ca l e , o r i e n t a t i o n ) ]

<de s c r i p t o r> [ a 128−vec to r d e s c r i b i n g the f e a tu r e ]

Note that SiftGPU takes the top-left corner of the frame as coordinate center as

illustrated in Figure 8.
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Figure 8: The coordinate system of SiftGPU takes top-left of frame as coordinate
center.

2.2 3D Map Extraction with Bundler

2.2.1 Obtaining 3D information from 2D Images, SfM

Structure from Motion (SfM) [20] refers to the process of estimating three-dimensional

structures from two-dimensional image sequences which may be coupled with local

motion signals. It is studied in the fields of computer vision and visual perception. In

biological vision, SfM refers to the phenomenon by which humans (and other animals)

can recover 3-D structure from the projected 2D (retinal) motion field of a moving

object or scene. Humans perceive a lot of information about the three-dimensional

structure in their environment by moving through it. When the observer moves and

the objects around him move, information is obtained from images sensed over time

[22].

Finding structure from motion presents a similar problem as finding structure

from stereo vision [23]. In both instances, the correspondence between images and

the reconstruction of 3D object needs to be found.

To find correspondence between images, features such as corner points (edges with

gradients in multiple directions) need to be tracked from one image to the next. The

feature trajectories over time are then used to reconstruct their 3D positions and the

camera’s motion [22].
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Given: n matching image points xi
j over m views

Find: the cameras P i and the 3D points Xj such that xi
j = P iXj

min︷ ︸︸ ︷
P iXj

∑
j∈points

∑
i∈views

d(xi
j, P

iXj)
2

Algorithm for Structure from Motion:

1. Compute interest points(features) in each image

2. Compute point correspondences between consecutive image pairs

3. Extend and verify correspondences and cameras over image triplets

4. Extend correspondences and cameras over all images

5. Optimize over P iXj

SfM recovers camera poses and 3D points. However, the reconstructed 3D points

are usually sparse, containing only distinctive image features that match well across

photographs. The next stage in 3D reconstruction is to take the registered images

and recover dense and accurate models using a multiview stereo (MVS) algorithm.

The output of SfM (cloud of 3D points) is enough for our case so we do not need any

MVS stage.

2.2.2 Bundler

Bundler is one of the state-of-the-art SfM systems for unordered image collections (See

Figure 9). Extracting high quality 3D models from such a collection is challenging

for several reasons and by developing such a SfM tool writers aim to meet these needs

[24].

1. The photos are unstructured they are taken in no particular order and we have

no control over the distribution of camera viewpoints.
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2. They are uncalibrated the photos are taken by thousands of different photog-

raphers and we know very little about the camera settings.

3. The collections are enormous so that there may be thousands of photos to

process.

4. The algorithms must be fast to reconstruct an entire city in a single day, making

it possible to repeat the process many times to reconstruct all of the worlds

significant cultural centers.

3D reconstruction is an off-line process that does not need to run real-time. You

do it once per scene and use it as reference in every tracking experience in the same

scene. 3D Map extraction with Bundler is an incremental reconstruction process that

may take days with respect to the numbers and sizes of images and the size of feature

match list. Bundler is not implemented on GPU and its iterative and incremental

algorithm is not that convenient for parallelization. 3D reconstruction of does not

need to work real-time. It is a preparation done before real-time tracking.

2.2.2.1 Bundler Inputs and Outputs

Bundler takes a set of images, image features, and image matches as input, and

produces a 3D reconstruction of the camera and scene geometry as output as seen in

Figure 10. The system reconstructs the scene incrementally, a few images at a time.

Figure 9: Bundler takes unordered image collections as inputs and outputs 3D map
of the scene

20



At the end we come up with a 3D map file named “bundle.out”. Content of this map

file is used to produce the point cloud of the scene and the camera poses.

Figure 10: Flowchart of Bundler SfM Tool, inputs, process and output

To be able to evaluate the results of experiments we used same camera during all

video recordings (same intrinsic parameters and same resolution) so all the frames

has the same parameters. We also did some changes in Bundler software to integrate

it in our platform. You can see the details of these modifications in section 4.2.

Bundler has a number of internal parameters, so there are a large number of

command-line options [25] [13]. There are a number of other options in addition to

the default ones listed below in Table 3.

The parameters set we used in our experiments is told in section 4.2.

2.2.2.2 Running Bundler

Bundler works with images in JPEG format [25]. The easiest way to start using

Bundler is to use the included bash shell script, “RunBundler.sh”. The process steps

in the “RunBundler.sh” file is listed below:
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Table 3: Parameters of Bundler

parameter description

functional parameters
–variable focal length directs bundler to optimize for an indepen-

dent focal length for each image
–use focal estimate directs bundler to use the estimated focal

lengths obtained from the Exif tags for each
image

–constrain focal constrain the focal length of each camera to
be close to the initial focal length estimate
(from Exif tags). This option adds penalty
terms to the bundle adjustment objective
function

–constrain focal weight 0.0001 weight on the penalty terms for the focal
length constraints (a small weight is typically
sufficient)

–estimate distortion directs bundler to estimate radial distortion
parameters for each image

–run bundle directs bundler to estimate radial distortion
parameters for each image

file and folder settings
–match table matches.init.txt specifies the file where the match files are

stored
–output bundle.out specifies the name of the final output recon-

struction
–output all bundle specifies that all intermediate reconstruc-

tions should be output to files with prefix
”bundle ”

–output dir bundle the directory all output files should be writ-
ten to, typically called ”bundle”

1. Set base path (BASE PATH) and other file directories

2. Create image list as txt file (list.txt)

3. Extract focal from a xml list (f)

4. Update image list by including f

5. Run SIFT detection and create key files (imageName.key )
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6. Run key match and create match file(matches.init.txt)

7. Set options of Bundler

8. Run Bundler with the files created and get output file (bundle.out)

Bundler itself is typically invoked as:“>bundler list.txt –options file options.txt”

The first argument is the list of images to be reconstructed (created with the “ex-

tract focal.pl” utility). Next, an options file containing settings to be used for the

current run is given. “RunBundler.sh” creates an options file that will work in many

situations.

2.2.2.3 Output Format and Scene Representation

After all possible images have been registered and 3D reconstruction completed,

Bundler outputs a final file named “bundle.out”.

Bundler also produces a “ply” file containing the reconstructed cameras and points

is written after each round. These “ply” files can be viewed with several viewer tools.

The bundle files contain the estimated scene and camera geometry as in Listings 2.3

[25]:

Listing 2.3: Bundler File Format

# Bundle f i l e v0 . 3

<num cameras> <num points> [ two i n t e g e r s ]

<camera1>

<camera2>

. . .

<cameraN>

<point1>

<point2>

. . .

<pointM>

Each camera entry “cameraI” contains the estimated camera intrinsics and extrin-

sics. It includes focal length, two radial distortion coefficients, 3x3 rotation matrix

and translation vector as a 3-vector.
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Each point entry has the form as in Listings 2.4.

Listing 2.4: Bundler 3D Point Format

<pos i t i on> [ a 3−vec to r d e s c r i b i n g the 3D po s i t i o n o f the po int ]

<co lo r> [ a 3−vec to r d e s c r i b i n g the RGB co l o r o f the po int ]

<view l i s t > [ a l i s t o f views the po int i s v i s i b l e in ]

You can see the details in official documentations [25]. The coordinate system of

Bundler is illustrated in Figure 11.

Figure 11: The coordinate system of bundler takes center of frame as coordinate

center.

The pixel positions are floating point numbers in a coordinate system where the

origin is the center of the image, the x-axis increases to the right, and the y-axis

increases towards the top of the image. Thus, (−w/2,−h/2) is the lower-left corner

of the image, and (w/2, h/2) is the top-right corner (where w and h are the width

and height of the image). In addition, in the camera coordinate system, the positive

z-axis points backwards, so the camera is looking down the negative z-axis. Bundler

uses a pinhole camera model; focal length (f), two radial distortion parameters (k1

and k2), a rotation (R), and translation (t). The formula for projecting a 3D point
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X into a camera (R, t, f) is:

P = R ∗X + t (conversion from world to camera coordinates)

p = −P/P.z (perspective division)

p′ = f ∗ r(p) ∗ p (conversion to pixel coordinates)

where P.z is the third (z) coordinate of P . In the last equation, r(p) is a function

that computes a scaling factor to undo the radial distortion:

r(p) = 1.0 + k1 ∗ ||p||2 + k2 ∗ ||p||4

Finally, the equations above imply that the camera viewing direction is:

R′ ∗ [00− 1]′ (i.e., the third row of −R or third column of −R′, where ′ indicates

the transpose of a matrix or vector) and finally the 3D position of a camera is:

−R′ ∗ t .

2.3 Sensor Fusion and Tracking

Sensor fusion is the combining of sensory data or data derived from sensory data

from disparate sources such that the resulting information is in some sense better

than would be possible when these sources were used individually. The term better

in this case can mean more accurate, more complete, or more dependable, or refer to

the result of an emerging view, such as stereoscopic vision (calculation of depth infor-

mation by combining two-dimensional images from two cameras at slightly different

viewpoints) [26].

Basic block diagram of the whole process of fusion of measurements from Inertial

Measurement Units with visual data from cameras is shown in Figure 12.

Because the results of both IMU and camera measurements contain errors, a

special method has to be used to combine the results from both sources is fused using

an Extended Kalman Filter (EKF). This method heavily relies on accurate modeling

(in the form of process and observation models) of the system [27] [28]. EKF consists

of two main steps: predict and update. The predict phase uses the state estimate from
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Figure 12: Block diagram of a camera and sensor based tracking system

the previous time step to produce an estimate of the state at the current time step.

This predicted state estimate is also known as the a priori state estimate because,

although it is an estimate of the state at the current time step, it does not include

observation information from the current time step. In the update phase, the current

a priori prediction is combined with current observation information to refine the state

estimate. This improved estimate is called as posteriori state estimate. Typically, the

two phases alternate, with the prediction advancing the state until the next scheduled

observation, and the update incorporating the observation [29].

2.3.1 IMU Sensor and Camera Calibration

To have a successful camera and IMU sensor fusion and use both sensor data together

for a better tracking we need to know the calibration parameters between two sensors

[45]. If calibration could not successfully done the error of motion estimation will

cumulatively increase by time and cause inaccuracy on pose estimation. Figure 13

shows the coordinate system used for calibration process. We assumed that the z-axis

of world coordinate system is parallel to gravity vector.
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Figure 13: Camera, world and IMU coordinate systems

For calculations we used a set of calibration frames and IMU measurements cap-

tured from different angles (Figure 14). Camera position is found on these frames

with RANSAC method.

Figure 14: Frame samples used for calibration

2.3.2 IMU Sensor and Camera Synchronization

It is crucial to synchronize two sensors before fusing them. Reliability of sensor

fusion and pose estimation results depends on the time rates and relation between
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the sensor measurements. There are two alternatives for synchronization: software

solution and hardware solution. Software solution is easier to apply but it is error-

prone and success depends on the external factors such as software method used

and speed of the hardware configuration running it. In the hardware solution the

devices communicate directly over hardware so the delay amount will be less but

more predictable than the software way.

In our setup we use Firefly MV FFMV-03M2C camera unit supports ) IIDC v1.31

Trigger Modes 0 and 3 trigger modes. There is a 7-pin GPIO trigger connection used

to trigger camera to capture frames. The IMU device is STM 66 STEVAL MKI062V2

that can give logical outputs via its GPIO pins. These pins connected with cameras

pins to trigger camera and have synchronized sensor data. One of the difficulties

while trying to run sensor devices together in a sync mode was the difference in frame

rate capacities. IMU sensor supports high rates (up to 120 Hz) but camera supports

(up to 60Hz). We had to do some researches on hardware specifications and did

some experiments by changing device firmware and configuration softwares in order

to come up with an accurate sync trigger.

2.4 3D Rendering and Visualization

A detailed information about AR applications is provided in Chapter 1. For graphics

rendering and visualization some open source tools like are commonly used. Ogre(Object-

oriented Graphics Rendering Engine) [30] is one of these tools. It supports a number

of common file formats, but also makes use of Ogre specific file formats. Cam Pose

and sparse point cloud (3D points) created by any SfM system and the virtual 3D an-

imation characters are given to Ogre3D. Ogre combines 3D Map information, frames

and 3D animation character together. User can navigate in all directions inside the

scene via mouse and keyboard.
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Figure 15: A sample illustration of AR applications on OGRE using camera informa-
tion

2.5 Chapter Summary

We provided a brief overview of Structure from Motion tool Bundler, SIFT and it’s

graphical processing unit accelerated version SiftGPU and sensor fusion for tracking.

The details of software platform presented by us are given in Chapter III.
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CHAPTER III

PLATFORM DEVELOPMENT

This chapter provides an overview of the components of the developed platform, the

hardware setup and the graphical user interface application.

We touched on some requirements of the targeted application in previous chapter.

Also presented some solutions and decisions to overcome these issues. Here we de-

scribe the details of the system designed and developed. This chapter briefly touches

on the other modules presented by the main project to give an idea on overall 3D

map extraction, AR and camera tracking life-cycle.

3.1 Development Environment

The need for real-time tracking and the data rate to be processed of the system di-

rected us to develop a system with C++ language to get high performance processing

capability. Some of the open-source tools we used such as Bundler and SiftGPU are

also developed in C++.

In order to have a better and easy operation we developed graphical uses interfaces

using QT C++. Other tools and technologies used are: MATLAB, MS VS 2008,

C++, OpenCV, OpenGL, CUDA and some open source CV tools such as SiftGPU

and Bundler. SiftGPU and Bundler are also using some other third party tools inside.

3.2 Overall System Design

Design of the platform is illustrated in Figure 16.
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Figure 16: Flowchart of overall system

Flow of the system can be summarized as below:

1. Camera calibration is done to estimate camera intrinsics by Calibrator

2. Camera frames are radial-undistorted and resized to fit undistorted content by

Undistorter

3. Features on each frame are detected using SIFT Detector

4. Features are matched by SIFT Matcher

5. The 3D Space(map) and camera pose information is extracted by Reconstructor

6. Any other external application consumes the output of the system
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System is designed modular, so any module can be easily changed, new methods

can be easily added. We only show the main modules here. These modules have some

sub-software modules inside, but we do not touch these object oriented software design

concepts to keep it more comprehensible. All the components except the graphical

user interface application are built as dynamic link libraries (dll) so that they can be

used in any other application. We call the executable application as “ArOZU” which

is the short version of “Augmented Reality Tool of Özyeğin University”. Detailed

descriptions of the system will be given in the upcoming chapters.

3.3 Description of the Components and Data Flow

Table 4 lists the components of the developed platform, their inputs, functions and

outputs.

Table 4: Components of the System

component input output

Calibrator calibration frames camera matrix including focal length

Undistorter camera frames undistorted frames

SIFT Detector corrected(undistorted) frames Sift key files

SIFT Matcher SIFT key files SIFT match file

Reconstructor corrected frames + SIFT match file 3D camera poses and 3D feature points

3.3.1 Data Acquisition

To record camera frames we used a HMD setup with the inertial sensors (IMU) and

cameras in a coupled approach designed for a 3D EKF tracking research. In our

experiments we just used the saved frames coming from one of the cameras of this

setup. Camera frames are stored as “.pgm” files.
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Figure 17: Camera and IMU combined on same media and mounted on an industrial

safety helmet

3.3.2 Calibrator

Calibrator is the module responsible for camera calibration. Calibration stage is

important to extract camera intrinsic parameters. A special set of frames (calibration

frames) recorded by camera are given to this module and the camera parameters are

estimated as output.

3.3.3 Undistorter

Next stage after camera calibration process is Undistortion. By the help of this mod-

ule the camera frames will be undistorted and resized to remove the radial distortion

caused by camera lenses.

3.3.4 SIFT Detector

Sift Detector is a wrapper module over GPU based SIFT (Scale-Invariant Feature

Transform) detection implementation tool called SiftGPU [18]. This utility module

gets real-time camera frames as input to detect features (GPU based SIFT imple-

mentation) and gives detected features and 128-byte descriptor vectors as output.
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3.3.5 SIFT Matcher

SIFT Matcher has feature matching skills. Does pairwise across each pair of frames

using approximate nearest neighbor matching. Matched features are saved in a text

file.

3.3.6 Reconstructor

Reconstructor is the 3D Map constructer module. The work flow of mapper is:

1. Gets video file as input

2. Uses SiftGPU and Bundler

3. Gives reconstructed 3D Map of space

4. 3D Map is saved once and used during all tracking process

This module is a wrapper module that calls SiftGPU and Bundler methods inside.

SiftGPU is used to detect and match features on the frames and provides input to SfM

tool Bundler. Bundler is used to create 3D Map of the environment. Simply, takes

detected features and matches of multiple frames as input and gives 3D structure

information as output.

The basic usage of Bundler on Windows platforms is done over the tool called

Cygwin simulating the linux environment [25]. The actual purpose of using Cygwin

is to run linux scripts on Windows platform. But user can write Windows script files

for the same purpose. In Cygwin based scripts third party tools are used to do SIFT

feature detection and matching processes. Bundlers executable gets the outputs of

detection and match processes as input with some user defined parameters. Detailed

description of Bundler tool and usage is told in Section 2.2. In our case we did some

basic modifications on original Bundler code to build it as a dynamic linked library

(dll). So we could integrate it with our own user interface application written in QT

C++. This method came up with the opportunity to debug in Bundler code. SIFT

34



related modules are employed to do SIFT detection and match stuff as fast as it can

by using GPU card skills. Bundler takes created file list and match file as input

parameters. Bundler, also do focal length extraction and radial distortion jobs if its

configuration says to do. In our case we use radial undistortion and focal extraction

pre-applied images. Brief information about this pre-process is given in Section 4.2.

All the images are taken from same camera setup, so all the frames has the same

focal length value. We pass this fixed focal length value and undistorted frames to

decrease the complexity and increase the reliability of 3D map extraction process.

3.3.7 3D Map

Mapper employs Bundler and creates 3D information of the scene. This information

is stored in a file named bundle.out. 3D Map basicly contains :

• the camera information of each frame containing the focal length f, radial dis-

tortion parameters, rotation matrix and translation vector

• the 3D points found containing the 3D position of each point and the list of

frames and feature indexes related with the 3D point

The details of bundle files are told in Section 2.2.

3.3.8 External Applications

The products or sub-products of our system can be used in any application or research.

For example the 3D map created by our platform is used as input in an EKF based

sensor fusion research.

3.4 User Interface Development

Third party tools such as Bundler or SiftGPU are generally used by some shell scripts

via command prompt. Running reconstruction process rely on bash and perl being

installed. User need to know the usage of these tools and other external tools such
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as Cygwin to run the scripts written to run the executables and share data between

them. By developing the application as a Windows desktop application aimed to

provide an easy to use interface and isolate the user from the confusing details.

3.4.1 Development Platform

All the tools we used are C++ based, so the user interface is developed with QT

which is a C++ based graphical user interface development toolkit. It has a very well

documented SDK and wide variety of demos and samples [31].

3.4.2 Windows and Use-cases

Figure 18 shows the main screen of the application.

Main screen of our AROzu has three main parts. Toolbar(1), Main Pane(2) and

Progress Pane(3). Main Pane hosts the widgets developed for calibration, feature

detection, feature match and SfM steps. There are four tool buttons on the Toolbar

opening the widgets: “Calibration and Lens Undistortion Window”, “SIFT Detec-

tion and Match Window”, “Reconstruction Window” and the “Batch Experiment

Window”. Progress information of the processes is listed in the right pane.

1

2
3

Figure 18: ArOZU main secreen
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3.4.2.1 Calibration and Lens Undistortion Widget

Calibration button on toolbar opens the window used for camera calibration and lens

undistortion (See Figure 19). Camera calibration runs the Calibration module with

the parameters set in “calibration pattern settings” part on a set of frames containing

a checkerboard pattern. After the calibration process the camera intrinsics and the

coefficients vector estimated will be displayed on the screen. During camera recordings

depending on the camera lenses some amount of distortion (radial distortion) happens

on frame. This artifact should be removed before a successful experiment. Lens

(radial) distortion is corrected in the Lens Undistortion panel. This operation also

crops the content of the frame to remove the effects (black content occurred around

the frame) of undistortion. Parameter settings and brief descriptions of these two

stages are listed in Table 5.

Figure 19: Calibration screen
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After the undistortion process camera matrix is updated with respect to the new

form of the frame.

Table 5: Parameters of calibration and undistortion

component description

Calibration frame folder Folder of calibration frame set

Checkerboard size Number of columns(X) and rows(Y). 9x6 is set as default.

Board cell size Size of each cell in mm

Cropped frame size Size of frame after undistortion

Camera frame folder Folder of frames to be undistorted

There are some other buttons on the screen for different functionalities as described

in Table 6.

Table 6: Functionalities of buttons on calibration screen

button functionality

Load from file Loads pre-calculated calibration parameters from a file

Save as file Exports the calibration parameters as a file

Export to config Sets the configuration (focal length) with new values calculated

Show sample Opens a viewer screen to see sample frames (before/after)

3.4.2.2 SIFT Detection and Match Window

SIFT button on the toolbar is for opening SIFT Detection and Match Window. This

window calls the Sift Detector module’s functions inside. Options pane on this screen
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is for parameter settings of detection and match operations. Parameter settings and

brief descriptions are listed in Table 7.

Table 7: Parameters of SIFT detection and match

component description

Frame folder Folder of frames to detect features

Feature folder Folder including the key files generated during detection

Match threshold Threshold used for limiting the minimum match count between frames

SIFT upper limit (ML) Integer value set for limiting upper limit of features detected

SIFT edge threshold (ET) Another way of limiting the detection. Higher the threshold higher the feature count.

Print console Print process details on console screen during run

First tab of this window is for feature detection (Figure 20). On this tab user

manually chooses the frame folder to apply SIFT detection and starts the process.

After Detect button finishes its action, some statistics such as frame number, total

detection time and the name of the Matlab data file (“.mat”) file that contains de-

tection time per frame of the process is shown on the screen. To see the detected

SIFT features marked on the screen user can press the SIFT Viewer button and open

a display screen. A screenshot of SIFT Viewer Window during experiments can be

seen in Section 4.2. User can view the list of detected features of each frame and

features marked image and can save this image as a “jpeg” file.
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Figure 20: SIFT Widget screen (detection tab)

Next step after detecting features is to match them. Second tab on the screen

(Figure 21) is for matching features and saving the result as a single file.

After choosing the feature file folder and pressing Match button, SiftGPU matches

all the feature files (“.key” files) and finally some statistics about the process such as

frame number, total match time and the file name that contains the match result is

shown on screen.

Figure 21: SIFT Widget screen (match tab)
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By pressing the SIFT Viewer button after detection process completed, a window

named SIFT Viewer is opened. This window consists of two main parts. The canvas

that shows the 2D feature points as randomly colored dots on frame and the list of

2D points in a form of (X,Y) coordinates.

3.4.2.3 Reconstructon Window

SfM button opens the Bundler Widget window (see Figure 23) that employs MAP-

PER module to construct 3D Map. Bundler Widget screen provides the main func-

tionalities needed for experiments. In first tab (Run Bundler) it is possible to start

processing from feature detection (integrating SiftGPU detect and match functional-

ities inside) or start using ready-made feature and match files.

Figure 22: SIFT Viewer screen
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Figure 23: Reconstruction screen

As shown in Figure 24 second tab (Ready Bundle File) is for loading the results

(3D map) of a previous run. As mentioned before we prefer to give calibrated frame

sets (so that focal length is extracted and lens-undistortion applied on Calibration

Window) instead of leaving it to Bundler. User can justify the results by applying a

reprojection error threshold.

Figure 24: Reconstruction screen (ready bundle file tab)

Bundler Widget Window provides the main functionalities needed for experiments.
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It is possible to start processing from feature detection or start using ready feature

and match files. As mentioned before we prefer to give fixed focal length extracted in

preprocessing steps instead of leaving the focal length extraction process to Bundler.

User can justify the results by applying a reprojection error threshold on the

Configuration Pane. The functions of the four buttons at the bottom-left side of the

window are listed in Table 9.

Table 8: Parameters of Bundler

component description

Frame size Size of the input frames

Fixed focal length Determines if focal length is fixed or not

Undistort Determines if undistortion will be done or already done before

Add prefix File name prefix for output files

Do SIFT / SIFT Ready SIFT detection and match done before or not

Frame folder The folder path of frames

Match file The path of match file

Bundler file The path of bundler file to read

Feature folder The folder path contains the SIFT key files

There are some other buttons on the screen for different functionalities as described

in Table 9
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Table 9: Functionalities of buttons on Bundler screen

button functionality

Save Result As File Exporting the output of the SfM process

Calc. Reprojection Error Calculate reprojection error of 3D map

3D Features Viewer View 3D map results and 2D features

Save Images With SIFT Features Save frame with features marked on it

Bundler Viewer Window provides a viewer screen that user can see the 3D features

and 2D features with respect to the related frame. When user moves mouse on a dot

(3D point) 3D point information is shown in a tooltip. User can also view the 3D

distance (with Bundler’s unit) between two dots by dragging mouse between them.

Info panel lists the camera pose information and the 3D points extracted for the

current frame. User can see these 3D points in 3D by pressing the 3D Render button

at bottom-left of Bundler Viewer screen. A 3D rendering window using Ogre opens

and user can navigate in 3 dimensions in the 3D point cloud.
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Figure 25: Bundler Viewer screen

Bundler viewer basically projects extracted 3D points as 2D points on the frame.

If user wants to see the points in a 3D scene an Ogre based navigation window by

pressing the 3D View button. User can move in all directions inside the scene via

mouse and the direction keys on keyboard.
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Figure 26: Ogre 3D Render window

3.4.2.4 Batch Experiment Window

Experiments including feature detection, match and SfM stages takes long time for

big number of frames. And sometimes user needs to run same experiment a few times

to calculate the average of process times. For experimental purposes such as batch

processing and iterations, another window is provided. A prepared xml file including

the frame and feature folder paths and parameters needed for SIFT and SfM processes

can be loaded and processed as a batch for experiments.
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Figure 27: Batch Experiment screen

3.5 Chapter Summary

We designed and developed a desktop software for use of Computer Vision researchers,

especially working on camera pose tracking and augmented reality subjects. Chapter

III provided details of this software platform. Our platform used and tested on Ex-

tended Kalman Filter based tracking for augmented reality experiments. Information

and results of these experiments are given in Chapter IV.
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CHAPTER IV

EXPERIMENTS AND RESULTS

Experiments done using our platform and results are provided in this chapter. There

are three main stages followed in order: “Camera Calibration and Radial Undis-

tortion”, “Detecting Features and Matching Them” and finally the “Structure from

Motion”.

4.1 Preprocessing of Data

4.1.1 Setup Configuration and Data Record

We designed the software as it can be used in both indoor and outdoor applications.

But the experiments are done in laboratory environment. As described in Section

2.2, Bundler takes a bunch of multiple frames and feature point lists of each frame

as input. These inputs stand for the motion information. Structure of the scene is

constructed using these motion data. SfM process takes long time and the number

and the sizes of frames, and the amount of the features effects the processing time.

The quality of frames effects the performance of the feature extraction process that

provides input to SfM. Quality here stand for the video motion speed, resolution of

frames and the lighting conditions can cause noise or blur effect on image data.

While recording we tried to be realistic that camera motions are not to slow and

not too fast. We did recording in a closed room has windows getting sunlight inside

and the lights were on. Although the surfaces of furniture were not that reflective but

we still had some white reflected frames. Our setup has two cameras on it. Because

it is not necessary for SfM to use stereo pairs coming from two cameras, we used only

frames coming from one of the cameras.

We combined all frames from different short records and came up with a frame

48



set of 3540 frames that corresponds to 118 sec of 30fps video. Table 10 lists some

statistics about the records.

Table 10: Numbers on records

Infromation Value

Rate of camera 30 Hz

Total duration of record 118 sec

Total # of frames 3540 frames

Recording resolution 1600 x 1200

Resolution after pre-processing 1280 x 720

To see the effects of the number of frames on results we created 5 different frame

sets sampled from whole set of 3540.

1. Frame set contains 708 frames - every 5th of the frames (0,5,10,...,3530)

2. Frame set contains 304 frames - every 10th of the frames (0,10,20,...,3530)

3. Frame set contains 177 frames - every 20th of the frames (0,20,40,...,3520)

4. Frame set contains 89 frames - every 40th of the frames (0,40,80,...,3520)

5. Frame set contains 45 frames - every 80th of the frames (0,80,160,...,3520)

4.1.2 Hardware Platform Configuration Running the Application

Setup connections and configurations, video recordings and experiments are all done

on the same hardware platform. Table 11 shows the configuration of the platform.

It is a powerful workstation with large processing and memory capacities. Graphic

card was employed for GPU acceleration.

49



Table 11: PC hardware configuration

Property Detail

CPU Intel i7-3930K 3.20 GHz

Memory 16 GB

GPU NVIDIA GeForce GTX 680, 4095MB, 1536 Cores, Driver 311.06

HDD 1 TB

OS Windows 7 Proefessional SP1 64 Bit

4.1.3 Camera Calibration and Radial Undistortion

Our cameras add some amount of lens-distortion on frames. Bundler has a parameter

that activates a undistortion step, and another parameter setup to estimate focal

length of frames using a camera model dictionary in the form of xml file.

In our experiments we preferred to use our own undistortion and focal-length

estimation methods instead of leaving it to Bundler. In our case all the frames are

from same camera. So the focal length of all frames are same and fixed.

To extract the camera parameters we used a calibration pane with checkerboard

pattern. This pattern has 6x9 squares having dimensions of 5x5 cm. 30 frames

captured from different angles are used for calibration. In Figure 28 three sample

calibration frames can be seen.
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Figure 28: Sample frames used for camera calibration

The calibration window of the application is shown in Figure 29.

Figure 29: Screenshot of Camera Calibration window

After calibration we come up with the camera parameters including the focal

length (f) and the 8 distortion parameters. Table 12 lists the parameters found

after calibration. These parameters are saved as configuration parameters used to
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undistort and rectify the frames. Extracted focal length will be used as input of 3D

feature detection and 3D map extraction processes.

Table 12: Camera parameters extracted

Focal length and translations Distortion parameters

fx = 1116.3

fy = 1116.3

cx = 816.3

cy = 674.7

k1 = 0.48636

k2 = −0.14510

k3 = 0.09204

k4 = 0.08288

k5 = −0.11004

k6 = 0.10856

p1 = −0.00073

p2 = 0.00001

Lens undistortion process is a kind of distortion applied to overcome the dis-

tortion caused by camera lens. So some portions of images become invisible and the

aspect ratio and dimensions are changed after a crop operation. After resizing undis-

tortion and rectification size of frames is reduced from 1600 X 1200 to 1280 X 720.

In Figure 30 a sample frame can be seen.
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Figure 30: Before (left) and after (right) un-distortion and rectification

After undistortion process the distortion parameters listed in Table 12 becomes

0 and the new focal length is calculated as:

f = 727.403

4.2 3D Map Estimation

After preprocessing steps and applying undistortion process and estimating the focal-

length, the next step is extraction of 3D map. In addition to frame set alternatives

listed in Section 4.1.1 we have three experiments done as listed below:

1. Experiment: Changing frame number (see Section 4.1.1) while ET and ML

parameters are at default values (5.0 and 1000)

2. Experiment: Changing ML parameter (500, 750, 1000 and 1500 features) while

ET is at default value (5.0)

3. Experiment: Changing ET parameter (2.5, 5, 7.5 and 10) while ML at values

(1000 and 2000)

Results of these experiments and some comparison graphs are provided in next

sections.
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4.2.1 Detecting Features and Matching Them

First step of 3D structure reconstruction and tracking is feature detection. The details

of SIFT and SiftGPU can be seen in Section 2.1.

To examine the effect of the “Maximum Feature Number Per Frame” (ML) pa-

rameter on results we applied 4 cases of this parameter value as 500, 750, 1000 and

1500 features. We also done another experiment to examine the effect of the “Edge

Threshold” (ET) parameter on results we applied 4 cases of this parameter value as

2.5, 5.0, 7.5 and 10 (see Table 13 for these experiments).

Table 13: SIFT parameter values examined
ML ET

500 5.0
750 5.0
1000 5.0
1500 5.0

ML ET

1000 2.5
1000 5.0
1000 7.5
1000 10.0

ML ET

2000 2.5
2000 5.0
2000 7.5
2000 10.0

For each frame, SIFT detection process creates a text file located in the same

directory with the frame. These text files have an extension of “.key”. These key files

contain SIFT keys, the 2D feature point information and descriptor of each feature

point. File names have a format of “[framename].key”.

For the set of 354 (every 10th of all records) frames, with respect to the content

and the quality of the frame we got from 44 to 1263 feature points changing from

frame to frame. The screenshot of SIFT Window is shown in Figure 34.
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(a) SIFT Detection Tab

(b) SIFT Match Tab

Figure 31: SIFT Detection and Match window

SIFT Viewer screen including detected features is shown in Figure 32. Feature

points are marked with randomly colored small circles drawn on frame. As shown,

there are 1037 featured detected for sample frame (the first frame named as “im-

age0000.jpeg”).
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Figure 32: SIFT Viewer screen

The content of one key file of the frames is shown in Listings 4.1.

Listing 4.1: A sample portion of a sample key file

1037 128 // 1037 f e a tu r e po in t s detec ted and each f e a tu r e has a d e s c r i p t o r array o f 128

3 .19 806 .96 1 .417 3 .306 // f i r s t po int ’ s X, Y coo rd ina t e s and d i s t o r t i o n va lue s ( not used )

0.01948869 0.01035761 0.01700283 0.00020683 . . . // array o f d e s c r i p t o r

. . .

14 .62 802 .62 1 .266 1 .443 // second po int ’ s X, Y coo rd ina t e s and d i s t o r t i o n va lue s ( not used )

0.00001684 0.00017596 0.00193922

. . .

// cont inues u n t i l 1037 th po int

Figure 33 shows the number of features detected per frame. It changes from 44

points to 1263 points depending on the quality of the frame.
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Figure 33: Feature numbers detected per frame

To reconstruct 3D map and find depth information from 2D frames we need to

find correspondences between features of different frames. This matching process is

the second step of our 3D structure reconstruction. It is also implemented using

SiftGPU’s respective functions. Matching is done frame by frame by comparing the

descriptors of features. To get a more reliable match lists we applied a threshold that

checks for a minimum number of matches (in our case it is 15).

After matching step, a new file named as “matches.init.txt” is created. This single

file contains all the frame to frame feature point matches. For the frame set of 354

used in SfM process the text file of matches took 63.5 MB of space. In case of whole

set of 3540 frames the file size is about 640 MB that any text editor application could

not be able to open and view it.

During the runtime all the feature arrays of frames detected by SiftGPU and 3D

map reconstructed by Bundler are also stored in custom data structures on computer

memory. For the memory limits we chose to not to whole matches array in memory.

Matching process is done between two frames, found matches are appended to text

file and another pair of frames are matched and so on. Bundler takes this match file

as parameter and parses it.

A sample portion of match file “matches.init.txt” is shown in Listings 4.2.
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Listing 4.2: Match file content sample

0 1 // frame 0 and 1 matched

794 // there are 794 f e a tu r e po in t s matched

1 0 // f e a tu r e po int 1 o f frame 0 i s matched with f e a tu r e po int 0 o f frame 1

2 1 // f e a tu r e po int 2 o f frame 0 i s matched with f e a tu r e po int 1 o f frame 1

. . .

0 2 // frame 0 and 2 matched

770 // there are 770 f e a tu r e po in t s matched

. . .

352 353 // frame 352 and 353 matched

765 // there are 765 f e a tu r e po in t s matched

. . .

Some numerical results including both detection and match stages of this set of

354 frames are shown in Table 14.

Table 14: Information about output data of SIFT detection and match

Infromation Value

Parameter set of SiftGPU ”-fo”, ”-1”, ”-v”, ”0”, ”-tc2”, ”1000”, ”-e”, ”5.0”

Min # of feature points per frame 44 points

Max # of feature points per frame 1263 points

Avg. # of feature points per frame 815.44 points

Match file size for 354 frames 63.5 MB

# of lines in match file for 354 frames 7.230.272 lines

4.2.1.1 SIFT Detection and Match Results of Experiments

Increasing the frame number (see Section 4.1.1) while ET and ML parameters are

at default values (5.0 and 1000) is also increases the total process times (Figure 34).

But it does not cause a considerable change in numbers of detected features.

58



45 89 177 354 708
0

50

100

150

200

250

frame count

to
ta

l S
IF

T
 d

et
. t

im
e 

(s
ec

s)

(a)

45 89 177 354 708
0

200

400

600

800

1000

frame count

av
er

ag
e 

fe
at

ur
e 

co
un

t

(b)

45 89 177 354 708
0

500

1000

1500

2000

frame count 

S
IF

T
 m

at
ch

 ti
m

es
 (

se
cs

)

(c)

45 89 177 354 708
0

0.5

1

1.5

2

2.5

3
x 10

7

frame count 
to

ta
l S

IF
T

 m
at

ch
 c

ou
nt

(d)

Figure 34: Experiment 1: SIFT results by frame count

ML parameter is used for limiting the maximum numbers of features to be detected

(Figure 35). If we increase it detected features number increases. Because of the

feature number to be detected on an image is limited, the increase is not continuous

and saturates after a while.
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Figure 35: Experiment 2: SIFT results by ML

ET parameter is for eliminating the edge-like features in SIFT algorithm. If this

value increases the detected features number increases (Figure 36). As in ML this

increase saturates after a while. Both ML and ET parameters effect the the key

numbers (features) and the key file sizes and so the process times of SIFT detection

and match stages.
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Figure 36: Experiment 3: SIFT results by ET while ML is 1000 or 2000

4.2.2 Structure from Motion

Bundler gets frame list and match list as input and reconstructs the scene incre-

mentally, a few images at a time, using a modified version of the Sparse Bundle

Adjustment. It took too long time (about a day) to process the list of 354 frames.

At the end of the 3D reconstruction process we come up with a 3D map file named

bundle.out. Reconstruction Window can be seen in Figure 37.

61



Figure 37: Reconstruction window

A sample portion of bundle.out file is shown in Listings 4.3. To see details of file

format please refer to Section 2.2. It is assumed that each corresponds a different

camera that has its own extrinsic and intrinsic parameters. As mentioned before we

fixed the f value to 7.2740298534e+002 which was extracted by the process told in.

We also found and undistorted the radial distortion effects in another pre-process. So

the distortion coefficients as are automatically set to 0.0.

Listing 4.3: Content of bundle.out

Bundle f i l e v0 . 3 // ve r s i on o f Bundler f i l e format

354 7949 // there are 354 cameras and 7949 3D po in t s

7.2740298534 e+002 0.0000000000 e+000 0.0000000000 e+000 // f i r s t camera i n f o

3.7405324690 e−001 1.4107802249 e−001 −9.1661396457e−001

−3.2516582176e−001 9.4556983331 e−001 1.2840510028 e−002

8.6853402745 e−001 2.9324849856 e−001 3.9956721744 e−001
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−5.4305285046 e+000 1.2628757794 e+000 −2.3787100785 e+000

7.2740298534 e+002 0.0000000000 e+000 0.0000000000 e+000 // second camera i n f o

. . .

. . . // cont inues un t i l 354 th camera

−5.6898003631 e+000 8.1801938072 e−001 −8.3186371934 e+000 // 1 s t 3D point X, Y and Z

49 43 42 // RGB co l o r va lue s o f po int

69 138 958 −517.6100 77.1800 141 796 . . . // v i ew l i s t o f po int

. . . // cont inues u n t i l 7949 th po int

NOTE: Some camera information could not be calculated by Bundler and their

matrices are returned as null (consists of 0s). This is because there are not enough fea-

ture or match information to find out rotation and translation matrixes of respective

camera (frame).

Listing 4.4: Format of 3D point information

<pos i t i on> [ a 3−vec to r d e s c r i b i n g the 3D po s i t i o n o f the po int ]

<co lo r> [ a 3−vec to r d e s c r i b i n g the RGB co l o r o f the po int ]

<view l i s t > [ a l i s t o f views the po int i s v i s i b l e in ]

<frameindex> <keyindex> <x> <y>// view 1 (x , y are Bundler ’ s 2D p r o j e c t i o n s )

<frameindex> <keyindex> <x> <y>// view 2

. . .

If we apply reprojection on the 3D points listed in bundler output file, it gives

a projection in pixels, where the origin of the image is the center of the image, the

positive x-axis points right, and the positive y-axis points up (in addition, in the

camera coordinate system, the positive z-axis points backwards, so the camera is

looking down the negative z-axis, as in OpenGL). This information is important to

understand and use the coordinate system of the 3D structure.

You can see the summary of 3D reconstruction process including pre-processing

and feature detection/matching steps below:

1. Pre-Process the frames

2. Find the focal length from a calibration set

3. Find lens distortion coefficients and rectify all frames
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4. Crop images to remove warping effects of rectification

5. Detect features and create key files of each frame

6. Do frame to frame feature matching

4.2.2.1 Quality of Extracted 3D Map (RMSE)

As described in previous section bundle.out file also contains reprojected 2D points

of 3D points found. To have a successful tracking experience it is crucial to check

the quality of 3D map will be used as a reference for real-time tracking. Figure 38

shows some sample 3D points reprojected frames taken from Bundler Viewer Window

shown in Figure 25.

398444

626

377

Figure 38: 3D points reprojected frame samples

To check the performance of SfM and the reliability of 3D map, we use the 2D

points in key files and 3D points and camera matrices in “bundle.out” file. We applied
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2D projection to all 3D points and compared them with the corresponding 2D point

in key files and calculated the pixel (Euclid) distances.

Bundler’s frame coordinate center is different from the SiftGPU’s coordinate cen-

ter. While Bundler takes the center of frame as coordinate center, SiftGPU takes

it as the left-top corner. Table 15 lists the numbers used or calculated during the

evaluation of the 3D map.

Table 15: Information about 3D points

Infromation Value

# Of Frames 354

# Of 3D Points 7949

# Of Views 22332 (number of projections done)

RMSE of Distance 1.0612 px

Mean Error of Distance 0.9013 px

Max Distance 7.7293 px

Min Distance 0.0 px

Min 3D point # per frame 0

Max 3D point # per frame 626

Avg. 3D point # per frame 63.08

The number of 3D points found varies for frame to frame. Figure 39 shows the 3D

points per frame (see view list in Listings 4.4). At the end of the 3D reconstruction

with Bundler we come up with a sparse point cloud as shown in Figure 40.
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Figure 39: 3D points per frame

Figure 40: 3D point clouds viewed with respect to the camera pose of current frame
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4.2.2.2 SfM Results of Experiments

For all of 4 experiments SfM process time and 3D points number reconstructed after

SfM stage changes depending on the parameters used but the 3D reconstruction error

values are below 2 pixels (Figure 41, 42, 43, 44). This results demonstrate the

success and accuracy of the SfM tool (Bundler).
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Figure 41: Experiment 1: SfM results by frame count

In Figure 41 count of total 3D points extracted directly increases while we increase

the number of frames. But at the same time the average 3D points count decreases

and RMSE value increases for our experiment. The quality of frames (brightness,

contrast, noise level, texture level, etc.) effects the count of the detected feature

numbers and the count of the extracted 3D points. If a frame is too blurred, too dark

or has no enough texture on it, only a few features can be detected and as a result
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no 3D points extracted. This situation decreases the average 3d points count (per

frame).
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Figure 42: Experiment 2: SfM results by ML

As told in SIFT results evaluation if we increase the ML parameter, detected

features number increases until a saturation level. Higher ML value results higher 3D

points count and lesser RMSE value (see Figure 42).

Figure 43 and Figure 44 shows the effect of ET parameter on SfM results. Any

change on ML and ET parameters effect the count of features and indirectly effects

the output of the SfM, 3D points count and the quality (RMSE).
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Figure 43: Experiment 3/1: SfM results by ET while ML is 1000
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Figure 44: Experiment 3/2: SfM results by ET while ML is 2000

4.2.2.3 Results of 354 Frames Set

To provide a global look and comparison opportunity for all cases of parameters

applied on set of 354 frames, we created graphs shown in Figure 45. Abbreviations

behind the graphs stand for the ET and ML parameter cases. DEF is for default

(ML=1000, ET=5.0), ML1 to ML4 stand for the cases ML= 500, 750, 1000, and

1500 cases respectively. ET1 to ET4 are cases of ET= 2.5, 5.0, 7.5, and 10.0 while

ML= 1000. Rest are for ET cases while ML=2000.
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Figure 45: Comparison of all 354 frame set cases.
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4.3 Comments on the Results

3D map reconstruction with Bundler may take long time depending on the number

and resolutions of frames, but the output of the process is reliable enough for tracking

applications. Real time SIFT feature detection on GPU makes it possible to have a

near-real-time camera tracking.

Changes in parameters or frame number cause minor effects on the average SIFT

detection time but increases the total time including detection of all frames. Average

detection time (ADT) is changes between 53 ms and 57 ms. In a motion tracking

or AR application the 3D scene reconstruction will be done at once at the beginning

and not need to be in real-time. So the total time (3D scene reconstruction from a

large frame set) is not that important for tracking and pose estimation.

4.4 Chapter Summary

Our platform used and tested on Extended Kalman Filter based tracking for aug-

mented reality experiments. We tried to give a brief explanation of the test environ-

ment, hardware setup used, the processing steps and finally the results of this work.

Our motivation was to present a usable and reliable software platform. Although we

came up with a successful tool, we still need some improvements and developments

on our system. Chapter V is touching on this subject.

72



CHAPTER V

CONCLUSION

Conclusion, contributions and future work plans are told in this chapter.

5.1 Conclusion

In this thesis we designed and developed an easy-to-use all-in-one platform that pro-

vides high performance feature detection, matching and Structure from Motion func-

tionalities. So the other researchers working on sensor fusion, augmented reality,

occlusion tracking etc. could benefit from this platform as we do.

The system we present in this thesis, contains important functionalities such as

robust feature detection, feature matching and extracting 3D structure from motion.

Motion here stands for multiple view. System provides a user interface to do some

common processes so the researchers working on sensor fusion, augmented reality,

occlusion tracking etc. could benefit from this platform as we do in our own project.

We benefit from some open-source computer vision tools such as SiftGPU [18] and

Bundler [13] and integrate them in our user interface application, so they can easily

be used.

We also did some experiments to show the usage of the system, time performance

and the reliability of its functions and the effects of the main parameters of the

components in results.

5.2 Contributions of the Thesis

We present reliable 3D map reconstruction and real-time robust feature detection and

matching utilities that every researcher working on AR and feature tracking subjects

may need. So they can focus on their own subject and gain time. Output of this
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software can be used as input data or ground truth of some computer vision researches

and applications such as scene reconstruction, object/camera tracking, augmented

reality and interaction. The output information can also be used in sensor fusion

tracking experiments as corrective information to correct the drift on tracking.

Third party tools such as Bundler or SiftGPU are generally used via command

prompt and have their own mechanisms and they have a lot of parameters to run.

Users need to know the usage and the parameters. By developing this application as

a Windows desktop application, we aimed to provide an easy to use interface. Our

system contains tools for feature extraction and 3D reconstruction integrated inside.

It also provides an interface to reach the functions of the modules inside via the

wrapper utility functions. Bundler’s or SiftGPU’s outputs are in the form of text files

including a lot of information. User needs to know the format details of the files in

order to parse it, convert it to format he/she needs and then use it. ArOZU provides

user interfaces to configure and set the processes and parse/save the files created.

There are also some interfaces we provide to view the detected 2D features on

frames or extracted 3D points on respective frames.

We are going to distribute the source-code and binary of the system. Any re-

searcher needs the functionalities provided with our system or wants to add new

functionalities on it can use it.

5.3 Future Work

Our platform still has some limitations:

• Current system does not support a plugin system. The only way to add a

new functionality for current version is modifying the source code. Source code

should be improved to support QT’s built-in plugin framework for extensibility.

• In our case we did some basic modifications on original Bundler code to build

it as a dynamic linked library (dll). So we could integrate it with our own user
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interface application written in QT C++. If any upgrade of Bundler version is

needed, similar modifications should be done in code.

• Platform is developed for 32 bit systems. So all components and the 3rd party

libraries are 32bit. A 64 bit implementation will provide more memory capa-

bility.

• Current configuration will only run on Windows platform. To support Linux

platforms all the components and dependencies must be rebuilt for Linux envi-

ronment.

Some suggestions for future research related to the work in this thesis are the

following:

• Add plugin support for extensibility

• Add 64 bit support

• Add support for other efficient SfM methods/tools and let users to add their

own SfM methods

• Add support for other efficient feature detection and match methods/tools and

let users to add their own feature detection modules

• Add pre-processing steps such as calibration, rectification etc. inside the plat-

form

• Add simulation demonstrations and evaluation screens

• Integrate a 3D visualization environment inside the platform with CMVS and

PMVS[9] tools

• Add more visualization and analysing tools

• Add 3D tracking and Sensor fusion methods

• GPU acceleration and system performance improvement
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