
IMPROVING MODELS FOR MODEL-BASED TESTING
BASED ON EXPLORATORY TESTING

A Thesis

by

Ceren Şahin Gebizli

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Computer Science

Özyeğin University
August 2014

Copyright c© 2014 by Ceren Şahin Gebizli

IMPROVING MODELS FOR MODEL-BASED TESTING
BASED ON EXPLORATORY TESTING

Approved by:

Professor Hasan Sözer (Advisor)
Department of Computer Science
Özyeğin University

Professor Barış Aktemur
Department of Computer Science
Özyeğin University

Professor Ali Özer Ercan
Department of Electrical and Electronics
Engineering
Özyeğin University

Date Approved: 2014

ABSTRACT

Model-based testing facilitates automatic generation of test cases by means of models

of the system under test. Correctness and completeness of these models determine the

effectiveness of the generated test cases. Critical faults can be missed due to omissions

in the models, which are primarily created manually. In practice, these faults are

usually detected with exploratory testing performed manually by experienced test

engineers. In this thesis, we propose an approach for refining system models based on

the experience and domain knowledge of these test engineers. Our toolset analyzes the

execution traces that are recorded during exploratory testing activities and identifies

the omissions in system models. The identified omissions guide the refinement of

models to be able to generate more effective test cases. We applied our approach

in the context of two industrial case studies to improve the models for model-based

testing of a Digital TV system. After applying our approach, three and four critical

faults were detected for the first and second case studies, respectively. These faults

were not detected by the initial set of test cases and they were also missed during the

exploratory testing activities.

iii

ÖZETÇE

Model bazlı test, test edilen sistemin modelleri sayesinde otomatik olarak test senary-

oları oluşturulmasını sağlar. Bu modellerin doğruluğu ve tamlığı, oluşturulan test

senaryolarının etkinliğini belirler. Genelde manuel olarak oluşturulan modellerdeki

eksikliklerden dolayı bazı kritik hatalar tespit edilemeyebilir. Pratikte bu hatalar

tecrübeli test mühendisleri tarafından uygulanan araştırma tabanlı testler ile tespit

edilebilmektedir. Bu tezde, araştırma tabanlı test aktivitelerinden elde edilen bil-

gileri kullanarak test senaryosu oluşturulmasında kullanılan modelleri iyileştirmek

için bir yöntem ve araç sunuyoruz. Model iyileştirme aktivitelerinin bir araç ile

destekleneceği yarı otomatik bir işleyiş öneriyoruz. Bu araç, araştırma tabanlı test

aktiviteleri sırasında kayıt altına alınan yazılım koşum yollarını analiz etmekte ve

sistem modellerindeki eksiklikleri belirlemektedir. Belirlenen eksiklikler, daha ver-

imli test senaryoları elde edilebilmesi için modelde yapılması gereken iyileştirmeler

konusunda bir geribesleme sağlamaktadtır. Bu yaklaşımımızı, bir Dijital TV sistem-

inin model bazlı testi için model geliştirmesi amacıyla, iki endüstriyel vaka çalışması

kapsamında değerlendirdik. Yaklaşımımızı uyguladıktan sonra, birinci endüstriyel

vaka çalışmamız sonucunda, 3 kritik hata bulduk. İkinci endüstriyel vaka çalışmamız

sonucunda ise, 4 kritik hata daha bulduk. Bu hatalar ilk olarak oluşturulan test

senaryoları ile bulunamamıştı ve bu hatalar ayrıca tecrübeye dayalı test aktiviteleri

süresince de bulunamamıştı.

iv

ACKNOWLEDGMENTS

We would like to thank software developers and software test engineers at Vestel

Electronics for sharing their code base and experiences with us and supporting our

case studies.

v

TABLE OF CONTENTS

ABSTRACT . iii

ÖZETÇE . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

I INTRODUCTION . 1

II BACKGROUND . 3

2.1 Exploratory Testing . 3

2.2 Model-Based Testing . 4

III OVERALL APPROACH . 9

IV INDUSTRIAL CASE STUDY: DIGITAL TV 11

4.1 ESG Models . 12

4.2 Mapping Model Elements to Execution Traces 19

4.3 Refinement of the Models . 21

4.4 Results and Discussions . 26

V RELATED WORK . 33

VI CONCLUSIONS AND FUTURE WORK 35

REFERENCES . 36

vi

LIST OF TABLES

1 Properties of the DVB-TCI ESG model and the number of faults found
before and after the refinement of the model based on 2 additional
faults found during exploratory testing. 26

2 Properties of the MB ESG model and the number of faults found before
and after the refinement of the model based on 4 additional faults found
during exploratory testing. 31

vii

LIST OF FIGURES

1 The basic exploratory testing approach. 3

2 The basic model-based testing approach. 5

3 Comparison between a FSA model and the corresponding ESG model. 7

4 An example ESG model of a simple music player. 7

5 The Overall Approach. 10

6 The top level DVB-TCI model. 12

7 DVB-TCI AutoSearch model. 13

8 The top level MB model. 14

9 Entering MB model. 15

10 Playing Audio sub-model . 16

11 Playing Video sub-model . 17

12 Exiting from MB model. 18

13 The refined AutoSearch model. 22

14 The refined top level DVB-TCI model. 24

15 The refined Enter Media Browser model. 27

16 The refined Playing Audio model. 28

17 The refined Exit Media Browser model. 29

18 The refined Playing Video model. 30

viii

CHAPTER I

INTRODUCTION

“Software testing is an investigation conducted to provide stakeholders

with information about the quality of the product or service under test”

C. Kaner [1]

Software testing is generally considered as a process of executing test cases, which

are designed by using test case design techniques. From a broader perspective, it

can be defined as any activity aimed at evaluating an attribute or capability of a

program/system and determining if it meets its requirements [2].

There exist many different testing methods in software engineering today and

there are several test design techniques that are used for designing test cases for

software testing [3, 4, 5]. Over the last decade, many of these techniques have been

employed in the industry to increase the quality of software systems. Model-based

testing (MBT) and exploratory testing can be counted as two of such techniques.

MBT [6] systematizes test case generation based on models that represent the

desired behavior of the system under test (SUT) [7]. The effectiveness of the generated

test cases relies on the correctness and completeness of these models. Critical faults

can be left undetected if the associated scenarios are not reflected to the models.

More often than not, this happens to be the case because the models of the SUT are

usually defined manually, based on (informal) functional requirements.

Exploratory testing is commonly applied as a complementary approach. Hereby,

test engineers make use of their domain knowledge and experience to perform tests and

improve their testing strategies by using the new knowledge gained during the testing

process [8, 9]. It was showed that exploratory testing is highly effective in practice

1

to detect critical faults [10] and to improve the effectiveness of the testing process

[11]. In practice, however, exploratory testing activities are performed manually and

their success depends on the experience and skills of the test engineer. Moreover,

the experience gained during these activities is not exploited effectively for improving

other techniques such as MBT.

In this work, we aim at utilizing the knowledge and experience gained during ex-

ploratory testing activities as a feedback to improve the models of the SUT and as

such, generate more effective test cases during the application of MBT. In our ap-

proach, we employ event sequence graphs (ESGs) [12] to model system behavior. The

execution traces are recorded as a sequence of events observed during the exploratory

testing activities. Our toolset analyzes these traces and the ESG model of the SUT to

provide a list of warnings regarding missing paths (events and/or transitions among

events) in the model. The test engineer can use these warnings to refine the ESG

model and generate a new set of test cases.

We applied our approach in the context of two industrial case studies to improve

the models for the MBT of a Digital TV system. In the first case study, three critical

faults were detected after applying our approach to improve the models of the SUT

and the generated test cases. These faults were not detected by the initial set of test

cases and they were also missed during the exploratory testing activities. Similarly,

we have found four additional faults after applying our approach in the second case

study.

The remainder of this thesis is organized as follows. In Chapter 2, we provide

background on exploratory testing and MBT, the ESG formalism and our modeling

approach. We present the overall approach in Chapter 3. The approach is illustrated

in Chapter 4, in the context of the industrial case studies. Hereby, we present and

discuss the results as well. Chapter 5 summarizes the related studies. Finally, in

Chapter 6, we provide the conclusions and discuss possible future work directions.

2

CHAPTER II

BACKGROUND

In this chapter, we provide relevant background information regarding exploratory

testing and model based testing. The chapter is divided into two sections. First,

exploratory testing is described in the following section. Then, we introduce model

based testing in the second section. In particular, we explain and illustrate the usage

of ESG models, which are employed in our approach and in the case studies.

2.1 Exploratory Testing

Exploratory software testing [3, 2] is characterized by a continuous learning and adap-

tation process, where the tester iteratively learns about the product and its faults,

plans the testing work to be done, designs and executes the tests, and reports the

results. The tester dynamically adjusts test goals during execution and prepares only

lightweight documentation[13]. The basic approach is depicted in Figure 1.

Figure 1: The basic exploratory testing approach.

As the main difference from traditional software testing, exploratory testing is not

based on a set of predesigned test cases. Instead of predesigned test cases, testers

use their creativity and experiences to steer the process dynamically. Test design,

3

execution and learning are all concurrent activities in exploratory testing, which aims

at reducing the testing cost by utilizing human intuition and experience. It is based

on the error guessing technique described in Bach’s report [14]. Hereby, Bach briefly

defines exploratory testing as simultaneous learning, test design and test execution.

There also exist other various definitions [1, 8]. For instance, Tinkham and Kaner

define exploratory testing as “a style of software testing that emphasizes the personal

freedom and responsibility of the individual tester to continually optimize the value of

her work by treating test-related learning, test design, test execution, and test result

interpretation as mutually supportive activities that run in parallel throughout the

project” [1].

There are no formal descriptions or detailed methodologies defined for exploratory

testing yet. Neither there exist strictly described procedures that should be followed

by testers during test execution. That is why, exploratory testing has been mainly

considered to be an ad-hoc approach. Nevertheless, it is one of the mostly applied

and one of the most successful approaches [10], also based on our observations in the

industry1. Although, formal and automated techniques such as model-based testing

are also being applied, critical faults are more often revealed during the exploratory

testing activities. This fact also provided the motivation for the problem addressed

in this thesis.

2.2 Model-Based Testing

Model-based testing (MBT) is a testing technique that systematizes test case gener-

ation based on models that represent the desired behavior of the system under test

(SUT) [6, 7]. It has been employed in the industry for more than a decade to increase

the effectiveness and efficiency of the testing process and for improving the software

quality [15]. The overall MBT process is depicted in Figure 2.

1We discuss our observations based on the industrial case studies in Chapter 4.

4

Figure 2: The basic model-based testing approach.

First, system requirements are manually analyzed to create a model of the SUT.

This model defines the expected behavior of the SUT with respect to a set of inputs

and actions of the user. The SUT model is provided as an input to a MBT tool, which

automatically generates a set of test cases by traversing the possible behavioral sce-

narios on the model. These test cases are executed and compared with respect to the

expected results to report any deviation from the expected behavior. In principle,

the test case execution and the comparison of results can also be automated. How-

ever, MBT is mainly concerned with the automation of test case generation. This

automation decreases the testing time and helps to achieve increased (and measured)

coverage of possible execution scenarios. In addition, the SUT model and the gen-

erated test cases help to document and analyze the system behavior. Changes in

requirements can be reflected to the SUT model to generate new test cases with less

effort compared to manual test case development.

There are several types of formalisms that are used for expressing the SUT model.

These include finite state automaton (FSA), Unified Modeling Language (UML),

Markov chains and Event Sequence Graphs (ESG).

FSA is a commonly utilized formalism for MBT, especially to represent state-

based behaviors of a system [16]. It is mainly depicted with a set of inputs and

states as presented in Figure 3(a). States are represented by nodes and inputs are

5

annotated on the edges, which represent transitions among the states. FSA is scanned

for executable paths to generate test cases. Each possible execution path can be

specified as a test case.

UML state charts [17] are similar to FSA models, but they are more complex

to comprise additional information associated with a state. They can be used to

model the dynamic behavior of classes, use cases, subsystems or the whole system.

Conformiq2 is a MBT tool for embedded software that provides automatic test case

generation, execution and analysis based on UML models.

A Markov chain is a discrete-time stochastic process with the Markov property

[18]. The main advantage of this formalism is to be able to specify probabilities for

state transitions [19]. The system may change its state from the current state to

another state, or remain in the same state, according to a probability distribution.

Markov Chains are usually used for statistical analysis and reliability assessments.

MaTeLo3 is a MBT tool that employs Markov Chain models as input. It makes use

of the specified state transition probabilities for generating test cases that cover the

most probable execution scenarios.

In our approach, we used the ESG formalism to express the models of the SUT.

This formalism and our modeling approach is described in the following.

2.2.1 ESG Models

In this section, we briefly introduce the ESG formalism and our modeling approach

that we used for defining SUT models to generate test cases. ESG facilitates hierar-

chical modeling and it employs a more abstract representation compared to a state

transition diagram or FSA [16]. As such, ESG is a simplified model relative to FSA.

Hereby, inputs and states are represented together by assigning them to edges [12]

[20]. Each node represents an event, which is a user-observable action. Transitions

2http://www.conformiq.com
3http://www.all4tec.net

6

(a) FSA (b) ESG

Figure 3: Comparison between a FSA model and the corresponding ESG model.

among the events, i.e., edges, are not labeled.

For example, Figure 3(b) depicts an ESG model that is equivalent to the FSA

model presented in Figure 3(a). In Figure 3(a), there exist two transitions labeled

as “x” and “y”. In the corresponding ESG model, “x” and “y” are represented with

nodes in the graph as events.

Figure 4 presents an example ESG model of a simple music player. The basic

events are represented as nodes. The model starts with special start node, which is

labeled as “[” and ends with a special end node, which is labeled as “]”. We can see

that one of the nodes (labeled as “Jump”) is drawn with dashed lines. This notation

means that such events further comprise other sub-models.

Figure 4: An example ESG model of a simple music player.

7

In a typical ESG model, events correspond to user-observable actions in general.

However, we also needed to explicitly represent some special types of events to facili-

tate automated testing. For instance, in some cases, a special event is expected to be

observed just after the preceding event. In some other cases, a condition must hold

before switching to the next event. In our modeling approach, we used the prefixes

“EXP:” and “CND:” for representing expected events and conditions, respectively.

Special scripts are created to check these two types of events and automate the test

execution and the comparison of outcome with expected conditions/results. In Fig-

ure 4, we can see one condition (“10 sec. Passed”) and one expected event (“Music

Paused”) depicted as an example.

ESG models are created manually based on informal specifications. Usually the

possible actions of the user, events and conditions are not completely and precisely

defined in these specifications. As a result, models can be incomplete and/or incor-

rect with respect to the actually implemented system. In the following section, we

describe our approach to overcome such deficiencies by refining ESG models based

on exploratory testing.

8

CHAPTER III

OVERALL APPROACH

The overall approach is composed of three steps, which rely on a set of tools and

artifacts as depicted in Figure 5.

The first step is to record test engineer’ s interaction with the SUT. Hereby, test

engineers perform exploratory tests based on their knowledge about the SUT and we

collect execution traces with a built-in tool, Execution Trace Logger.

In the second step, the collected execution traces are analyzed by our Model Re-

finement Evaluator Tool. The tool takes two more inputs in addition to the execution

traces: i) the existing system model in ESG format [12], and ii) the mapping specifi-

cation, which defines a mapping from the events taking part in the collected traces, to

the events in the model. The mapping is specified in the form of regular expressions.

The tool generates a list of warnings regarding the missing paths in the model, which

can include a set of unmatched events and/or missing transitions among the events.

The third step is to refine the model according to these warning messages. Once

the model is refined, test cases can be generated and executed again. Currently, the

first two steps are automated, whereas the third step is performed manually.

In the next chapter we introduce two industrial case studies and illustrate all

the steps of our approach in the context of these case studies. We also explain the

employed tools, models and techniques in more detail.

9

e1*e2e3 → event A
e4 → event B
...

e1e1e1e1e2e3....
e2e3e4 ERROR...
...

System Model

Execution Traces

Event Mapping Specification

Warnings for Missing Paths
in the System Model

Model Refinement
Evaluator Tool

Execution Trace
Logger

System Under Test

A
B

C

D
E

1

1

2 2

2

Tool

Artifact

KEY:

Data Flow

3

Figure 5: The Overall Approach.

10

CHAPTER IV

INDUSTRIAL CASE STUDY: DIGITAL TV

TV Platforms are in fast transformation from old electromechanical systems to com-

plicated software systems. Due to complex interconnectivity and aggressive market

prospects, one of the biggest challenges becomes system verification. Migration from

using traditional testing techniques to advanced, automated testing techniques not

only provides effective use of labor force but also shortens the time to market, low-

ers product price (by increasing the total life time of the product in the market and

as such, the total revenue) and improves product quality; these are the uplifting 3

factors that enable market success. Quality expectations are high, whereas resources

are limited in the consumer electronics domain. This makes automation essential to

be able to detect and remove faults despite limited resources. Therefore, MBT is be-

ing adopted to automate test case generation for various features related to different

modules of the system. In our studies, we focused on two of such modules in Digi-

tal TV. One of them is related to channel installation, named as the Digital Video

Broadcasting - Terrestrial Channel Installation (DVB-TCI) module. The other one

is the Media Browser (MB) module. These modules are developed and maintained

by Vestel1, which is one of the largest TV manufacturers in Europe.

In the following subsection, we first explain the initial ESG models of the DVB-

TCI and MB modules. Then, we explain the mapping of these models to the collected

execution traces. Then, we describe the model refinement process. Finally, we present

and discuss the results.

1http://www.vestel.com.tr

11

4.1 ESG Models

We designed two ESG models for two case studies. DVB-TCI module of a Digital TV

was used for the first case study and Media Browser module was used for the second

case study.

4.1.1 ESG Model of the DVB-TCI Module

We used an ESG model of the DVB-TCI module that is created based on its require-

ment specifications. Figure 6 depicts the top level DVB-TCI model created with Test

Suite Designer (TSD) tool [12, 20].

Here, the event AutoSearch corresponds to the automatic channel installation

process, which is modeled by another ESG sub-model as depicted in Figure 7.

Figure 6: The top level DVB-TCI model.

The TSD tool [20] generated 217 test cases based on the provided ESG models of

the DVB-TCI module. TSD is used for creating test cases such that all the paths in

the model are covered by limiting the path length by 9. After executing the generated

test cases, 3 faults were found. Then, test engineers performed exploratory tests based

on their domain knowledge about the DVB-TCI module. We asked them to stop the

test when they found a fault and save the records that were logged during tests. The

logged data consists of execution traces, i.e., sequence of function calls recorded while

12

F
ig

u
re

7
:

D
V

B
-T

C
I

A
u
to

S
ea

rc
h

m
o
d
el

.

13

switching between events [12]. In total 5 faults were found during the exploratory

testing activities including the previously found 3 faults.

4.1.2 ESG Model of the MB Module

Figure 8 depicts the top level ESG model of the MB module. Here, the event Enter

MB corresponds to the Entering Media Browser process, which is modeled by another

ESG sub-model as depicted in Figure 9.

Figure 8: The top level MB model.

The event Audio corresponds to the Audio controls in MB, which is modeled by

another ESG sub-model and this sub-model also includes two further sub-models;

Playing Audio and Audio Menu Screen. Playing Audio ESG model is depicted in

Figure 10.

The event Video corresponds to the Video controls in MB, which is modeled by

another ESG sub-model and this sub-model also includes two sub-models; Playing

Video and Video Menu Screen. Playing Video ESG model is depicted in Figure 11.

The event Exit MB corresponds to the Exiting from Media Browser process, which

is modeled by another ESG sub-model as depicted in Figure 12.

The TSD tool [9] generated 132 test cases based on the provided ESG models of

the MB module. TSD is used for creating test cases such that all the paths in the

model are covered by limiting the path length by 2. After executing these test cases,

14

F
ig

u
re

9
:

E
n
te

ri
n
g

M
B

m
o
d
el

.

15

F
ig

u
re

1
0
:

P
la

y
in

g
A

u
d
io

su
b
-m

o
d
el

16

F
ig

u
re

1
1
:

P
la

y
in

g
V

id
eo

su
b
-m

o
d
el

17

F
ig

u
re

1
2
:

E
x
it

in
g

fr
om

M
B

m
o
d
el

.

18

36 faults were found. Then, test engineers performed exploratory tests based on their

domain knowledge about the MB module. We asked them to stop the test when they

found a fault and save the records that were logged during tests. In total 44 faults

were found during the exploratory testing activities including the previously found

36 faults.

4.2 Mapping Model Elements to Execution Traces

During the exploratory testing activities, Execution Trace Logger collects execution

traces in the form of sequences of function calls. These function calls usually cor-

respond to the calls that are triggered when the user presses a key on the remote

controller. On the other hand, ESG model includes events that are represented at a

higher level of abstraction [12]. Therefore, an event mapping specification is used for

matching a sequence of recorded function calls to the events or conditions represented

in the ESG model.

Listing 4.1 shows a part of the mapping specification created for the DVB-TCI

AutoSearch model and Listing 4.2 shows a part of the mapping specification created

for the Media Browser model 2.

Listing 4.1: Part of the event mapping specification for the DVB-TCI AutoSearch

model.

1 // <Event Sequence > : <Model Element >

2 r : Install And Retune;

3 as : Auto Search;

4 an ,s : Analog;

5 st : Start Search;

6 ps : Press Standby;

7 po : Press 1;

8 f,l* : Freq =121.00 MHz;

2Due to confidentiality, we do not disclose the real function names used in the implementation.

19

9 m,p* : Media Video Playing;

10 //

Listing 4.2: Part of the event mapping specification for the Media Browser model.

1 // <Event Sequence > : <Model Element >

2 t,s* : Tune to DVB -S channel;

3 mb : Media Browser menu;

4 vd : Video part of Media Browser menu;

5 n*,p : While video playing ;

6 sub : Press Subtitle;

7 //

Hereby, each event sequence is represented by a regular expression. These expres-

sions are defined manually to map a sequence of low-level events to the events/states

in the model. For instance, we can see at line 9 of Listing 4.1 that a function call

named m, followed by zero or more function calls named p notifies that the event

Media Browser Video Playing has occurred. There is usually a specific function call

that handles a remote controller command. For this reason, a single function call is

mapped to an event in most cases. Also note that expected events and conditions

are not considered for mapping. Special scripts are created for these events, which

take the role of test oracles. Therefore, if an event is labeled with a prefix “EXP:” or

“CND:”, it is associated with a test script. Otherwise, the event has to be mapped

to a sequence of functions calls in the execution trace.

We developed the Model Refinement Evaluator Tool that compares the execution

traces of a module, which is collected during exploratory tests, with the ESG model

of that module. The tool takes the collected execution traces, the ESG model and

the mapping specification as input. It creates a finite automaton for each regular

expression. The list of execution traces is treated as a list of strings to check step-

by-step if they are accepted by any automaton or not. If a proceeding part of the

20

execution trace is not accepted by any automaton, it can not be mapped to an event

in the ESG model. A warning message is generated in this case regarding a missing

event.

The Model Refinement Evaluator Tool also checks the conformance of the ESG

model with respect to the transitions observed among the events. A warning message

is generated if a possible transition among the events is not reflected to the model.

For instance, a function call sequence as, an, s, as corresponds to the event sequence

AutoSearch, Analog, AutoSearch according to Listing 4.1. However, there is no edge

from Analog back to AutoSearch according to the ESG model. For the MB case study,

a function call sequence t,s*, mb, vd, n*,p, sub corresponds to the event sequence

Tune to DVB-S channel, Media Browser menu, Video part of Media Browser menu,

While video playing, Press Subtitle according to Listing 4.2. But there is no edge

from While video playing to Press Subtitle according to the ESG model. Hence, these

recorded function call sequences would lead to a warning regarding a missing edge in

the model. In the following subsection, we present and discuss the warning messages

generated for the case studies.

4.3 Refinement of the Models

4.3.1 Refinement of the DVB-TCI ESG Model

The output of the tool for DVB-TCI case study can be seen in Listing 4.3. There are

two warning messages. These warnings are actually related to the faults that were

missed by the 217 test cases, but later detected by the test engineer manually. The

first warning (Lines 1-5) is regarding a missing event in the model. A function call

sequence, which involves multiple calls of the prgup function is not mapped to any

event in the mapping specification. Based on this warning, we defined a new event,

namely “program up multiple times”, that represents one or more calls to the prgup

function following each other, i.e., “prgup+”. We also added a succeeding event that

21

F
ig

u
re

1
3
:

T
h
e

re
fi
n
ed

A
u
to

S
ea

rc
h

m
o
d
el

.

22

represents the expected event just after the “program up multiple times” event (See

Figure 13). The second warning (Lines 7-11) is regarding a missing transition from

one event to another. We added the corresponding transition to the ESG model as

well (See Figure 14).

Listing 4.3: The generated warning messages by the Model Refinement Evaluator

Tool for the DVB-TCI ESG model.

1 e4: Start search --> prgup , prgup

2 Missing destination event!

3 A new mapping must be added for

4 "prgup , prgup"

5 function call sequence

6

7 e4: Start search --> e1: InstallAndRetuneMenu

8 Missing edge!

9 A new edge must be added

10 from "e4: Start search"

11 to "e1: InstallAndRetuneMenu"

In total, we added two new events and four new transitions to the existing ESG

models based on the warning messages. Modifications are marked on the refined

models depicted in Figure 13 and Figure 14.

4.3.2 Refinement of the MB ESG Model

The output of the tool for Media Browser case study can be seen in Listing 4.4. There

are 9 warning messages. These warnings are actually related to the faults that were

missed by the 132 test cases, but later detected by the test engineer manually.

23

Figure 14: The refined top level DVB-TCI model.

Listing 4.4: The generated warning messages by the Model Refinement Evaluator

Tool.

1 Tune to analog channel --> e: Enter Media Browser

2 Missing source event!

3 A new mapping must be added for

4 "Tune to analog channel"

5 function call sequence

6

7 e58: While video playing --> Press subtitle for embedded subtitle

8 Missing destination event!

9 A new mapping must be added for

10 "Press subtitle for embedded subtitle"

11 function call sequence

12

13 Do not plug any USB or HDD --> e: Enter Media Browser

14 Missing source event!

15 A new mapping must be added for

16 "Do not plug any USB or HDD"

17 function call sequence

18

19 e58: While video playing --> Switch to SCART source

20 Missing destination event!

24

21 A new mapping must be added for

22 "Switch to SCART source"

23 function call sequence

24

25 Unplug signal cable --> e: Enter Media Browser

26 Missing source event!

27 A new mapping must be added for

28 "Unplug signal cable"

29 function call sequence

30

31 e63: Press Menu --> Enter picture menu

32 Missing destination event!

33 A new mapping must be added for

34 "Enter picture menu"

35 function call sequence

36

37 Enter picture menu --> e63: Press Menu

38 Missing source event!

39 A new mapping must be added for

40 "Enter picture menu"

41 function call sequence

42

43 e63: Press Menu --> e63: Press Menu

44 A new edge must be added

45 from "e63: Press Menu"

46 to "e63: Press Menu"

47

48 e63: Press Menu --> e: Enter Media Browser

49 A new edge must be added

50 from "e63: Press Menu"

51 to "e: Enter Media Browser"

25

In total, we added 23 new events and 28 new transitions to the existing ESG

models based on the warning messages. The refined models are depicted in Figure 15,

Figure 16, Figure 17 and Figure 18, where modifications are marked.

4.4 Results and Discussions

In the following, we present and discuss the results obtained by applying our approach

on the two case studies.

4.4.1 DVB-TCI Module

In total 349 test cases were generated after the refinement of the model. 8 faults

were found when these test cases were executed. 5 of these faults had been already

detected before, but 3 additional faults were found after employing the refined model.

Moreover, these faults were highly critical; one of them caused the TV to reset itself

after a channel search is performed; another one was the reason for duplicate channels

added at the end of channel search; the activation of the third fault resulted in a crash

of the system. Table 1 lists the properties of the model of the DVB-TCI module and

the number of faults found before and after the refinement of the model by applying

our approach.

Model # of Nodes # of Edges # of Test Cases # of Faults

Initial 1225 1501 217 3
Refined 2012 2868 349 8

Table 1: Properties of the DVB-TCI ESG model and the number of faults found
before and after the refinement of the model based on 2 additional faults found during
exploratory testing.

4.4.2 MB Module

In total 139 test cases were generated after the refinement of the model. 48 faults

were found when these test cases were executed. 44 of these faults had been already

detected before,but we discovered 4 additional faults. These faults were highly critical

26

F
ig

u
re

1
5
:

T
h
e

re
fi
n
ed

E
n
te

r
M

ed
ia

B
ro

w
se

r
m

o
d
el

.

27

F
ig

u
re

1
6
:

T
h
e

re
fi
n
ed

P
la

y
in

g
A

u
d
io

m
o
d
el

.

28

F
ig

u
re

1
7
:

T
h
e

re
fi
n
ed

E
x
it

M
ed

ia
B

ro
w

se
r

m
o
d
el

.

29

F
ig

u
re

1
8
:

T
h
e

re
fi
n
ed

P
la

y
in

g
V

id
eo

m
o
d
el

.

30

as well; the first one made the audio/video output disappear; the second one corrupted

remote controller key buffers; the third one made user commands undetectable; the

last one caused the TV to reset itself. Table 2 lists the properties of the model of the

MB module and the number of faults found before and after the refinement of the

model by applying our approach.

Model # of Nodes # of Edges # of Test Cases # of Faults

Initial 294 424 132 36
Refined 341 478 139 48

Table 2: Properties of the MB ESG model and the number of faults found before
and after the refinement of the model based on 4 additional faults found during
exploratory testing.

In Table 2, note that the number of test cases increases by 7; however the number

of found faults increases by 12. This is because, more than one fault can be found

with one test case. In Table 2, note that the number of test cases increases by 7;

however the number of found faults increases by 12. This is because, more than one

fault can be found with one test case.

4.4.3 Discussions

Results of the case studies show that we can identify critical faults by updating the

models based on exploratory testing with the help of the Model Refinement Evaluator

Tool. Our approach and the tool support enabled the transfer of knowledge from

manual exploratory testing activities to MBT.

In the first case study for the DVB-TCI module, number of test cases increased

by 60.82% after refinement. The reason for the high increase in the number of test

cases is a missing edge update, which caused a loop in a model (See Figure 14). Due

to this loop, we can get more test paths and detect more faults, which could not be

detected before. As a result, we can find additional critical faults. The number of

detected faults is increased from 3 to 8.

31

In the second case study for the MB module, the number of test cases increased

by 5.3% after the refinement. The number of detected faults is increased from 36 to

48. These results were particularly interesting because a high number of critical faults

were detected despite of a relatively low number of additional test cases. Refinements

focusing on critical parts of the model helped to find other hidden faults that were

not detected before.

We observed that the effectiveness of the models used for MBT can be significantly

increased. Combining two testing techniques provides us more relevant test paths to

explore. We showed that our approach helps to detect critical faults and increase the

efficiency of the testing process.

32

CHAPTER V

RELATED WORK

There exist an extensive literature on model based testing (MBT) approaches [21],

tools [22] and different types of models employed like finite state machines [23] [24]

and Markov chains [19]. There also exist surveys on MBT [21] and several case

studies [22], [25] where the effectiveness of MBT is evaluated. The surveyed studies

and the applied MBT techniques are mainly focusing on the modeling approach and

test case generation methods. The evaluation is performed by comparing the number

of faults detected with respect to the number of faults exposed by traditional testing

approaches. Iterative refinement of the developed models and the incorporation of

domain knowledge have not taken much attention.

In a recently proposed approach [26], MBT and capture-replay testing techniques

are integrated. There are two differences between this approach and our approach.

First, the proposed approach focus on refining and adapting a capture-replay testing

tool based on changes in the user interface (model). In our work, we focus on refining

system models based on the captured execution traces instead. Although we did not

consider evolution explicitly, changes in the system can be reflected to our approach

in a modular way. In case the system evolves, one only needs to update the event

mapping specification. The second difference is that the effectiveness of the proposed

approach is not evaluated with case studies or controlled experiments. In this thesis,

we provide promising results based on industrial case studies as well.

There exist another approach [27] that proposes the automated refinement of

testing models. The approach employs event-sequence based test models for testing

applications through their GUI. Relationships among the GUI elements are observed

33

at runtime, during the execution of the generated test cases. The model is iteratively

updated based on the inferred relationships. The main advantage of this approach is

that it is fully automated, except the initial creation of the model. The disadvantage

is that the approach is limited in terms of potential for improvement. If some part

of the GUI is never exercised, for instance, relationships among the elements in that

part can never be discovered. Hence, the model can not be updated to take these

elements into account.

Exploratory testing has also been evaluated in the context of industrial case stud-

ies [28]. Research work in this area include the investigation of the impact of human

personality [29], learning styles [30] and the way that different types of knowledge

[31] are utilized like domain knowledge, system knowledge and general software engi-

neering knowledge. These studies are mainly based on interviews that are performed

at different companies [28].

Exploratory modeling [32] has been introduced as an approach for model devel-

opment based on the principles of exploratory testing. Hereby, a state diagram of

the expected behavior of the SUT is developed first. Then, this model is refined by

observing the different states and behaviors while interacting with the SUT. How-

ever, this approach has no tool support and it was not evaluated in the context of an

industrial case study.

In practice, exploratory testing is usually performed manually and model based

testing is applied as a complementary, rather than an integrated approach. To the

best of our knowledge, there has been no method or toolset to couple these approaches

and utilize the knowledge gained in exploratory testing as a feedback for model based

testing. In this work, we showed that such an approach is viable and effective in

detecting faults.

34

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

We introduced an approach and a toolset for incorporating information from manual

exploratory testing activities into model based testing to increase the effectiveness of

models that are used for test case generation. In our approach, the execution traces

that are recorded during exploratory testing activities are utilized as a feedback for

refining system models. We applied our approach in the context of two industrial case

studies to improve the models for model-based testing of a Digital TV system. We

could detect real and critical faults. These faults were not detected by model based

testing based on existing models and they were also missed during the exploratory

testing activities.

In our future work, we plan to extend our toolset to semi-automatically incorporate

refinements into existing models. We also plan to conduct more case studies.

35

References

[1] C. Kaner, “Exploratory testing,” in Quality Assurance Institute Worldwide An-
nual Software Testing Conference, 2006.

[2] W. C. Hetzel and B. Hetzel, The Complete Guide to Software Testing. New York,
NY, USA: John Wiley & Sons, Inc., 2nd ed., 1991.

[3] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley & Sons,
2004.

[4] C. Kaner, J. L. Falk, and H. Q. Nguyen, Testing Computer Software, Second
Edition. New York, NY, USA: John Wiley & Sons, Inc., 2nd ed., 1999.

[5] L. Copeland, A Practitioner’s Guide to Software Test Design. Norwood, MA,
USA: Artech House, Inc., 2003.

[6] L. Apfelbaum and J. Doyle, “Model-based testing,” in Software Quality Week
Conference, pp. 296–300, 1997.

[7] J. Boberg, “Early fault detection with model-based testing,” in Proceedings of
the 7th ACM SIGPLAN workshop on ERLANG, pp. 9–20, 2008.

[8] A. Tinkham and C. Kaner, “Exploring exploratory testing,” in Proceedings of
the Software Testing and Analysis and Review East Conference, 2003.

[9] C. Agruss and B. Johnson, “Ad hoc software testing: A perspective on explo-
ration and improvisation,” in Florida Institute of Technology, pp. 68–69, 2000.

[10] J. Itkonen, Empirical Studies on Exploratory Software Testing. Ph.D. thesis,
Aalto University, 2011.

[11] J. Itkonen, M. V. Mantyla, and C. Lassenius, “Defect detection efficiency: Test
case based vs. exploratory testing,” in First International Symposium on Empir-
ical Software Engineering and Measurement, pp. 61–70, IEEE Computer Society,
2007.

[12] F. Belli, “Finite state testing and analysis of graphical user interfaces,” in Pro-
ceedings of 12th International Symposium on Software Reliability Engineering,
ISSRE2001, pp. 34–43, 2001.

[13] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks, Tours, and Tech-
niques to Guide Test Design. Addison-Wesley Professional, 1st ed., 2009.

[14] J. Bach, “Exploratory testing explained,” tech. rep., 2003.

[15] E. Dustin, J. Rashka, and J. Paul, Automated Software Testing: Introduction,
Management, and Performance. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

36

[16] T. Chow, “Testing software design modeled by finite-state machines,” IEEE
Transactions on Software Engineering 4, vol. 4, no. 3, pp. 178–187, 1978.

[17] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of
Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[18] G. H. Walton and J. H. Poore, “Generating transition probabilities to support
model-based software testing.,” Softw., Pract. Exper., vol. 30, no. 10, pp. 1095–
1106, 2000.

[19] J. Whittaker and M. Thomason, “A markov chain model for statistical software
testing,” IEEE Transactions on Software Engineering, vol. 20, no. 10, pp. 812–
824, 1994.

[20] F. Belli, A. T. Endo, M. Linschulte, and A. Simao, “A holistic approach to model-
based testing of web service compositions,” Software: Practice and Experience,
vol. 44, no. 2, pp. 201–234, 2014.

[21] A. C. D. Neto, R.Subramanyan, M.Vieira, and G. H. Travassos, “A survey on
model-based testing approaches: A systematic review,” in Proceedings of the 1st
ACM international workshop on Empirical assessment of software engineering
languages and technologies, pp. 31–36, 2007.

[22] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton,
and B. M. Horowitz, “Model-based testing in practice,” in Proceedings of the
International Conference on Software Engineering, pp. 285–294, 1999.

[23] H. Robinson, “Finite state model-based testing on a shoestring,” in Proceedings
of the Software Testing and Analysis and Review West Conference, 1999.

[24] A. Chander, D. Dhurjati, S. Koushik, and Y. Dachuan, “Optimal test input se-
quence generation for finite state models and pushdown systems,” in Proceedings
of the IEEE Fourth International Conference on Software Testing, Verification
and Validation, pp. 140–149, 2011.

[25] J. Keranen and T. Raty, “Model-based testing of embedded systems in hardware
in the loop environment,” IET Software, vol. 6, no. 4, pp. 364–376, 2011.

[26] V. Entin, M. Winder, B. Zhang, and S. Christmann, “Combining model-based
and capture-replay testing techniques of graphical user interfaces: An indus-
trial approach,” in Software Testing, Verification and Validation Workshops
(ICSTW), 2011 IEEE Fourth International Conference on, pp. 572–577, March
2011.

[27] X. Yuan and A. M. Memon, “Generating event sequence-based test cases using
gui runtime state feedback,” IEEE Trans. Softw. Eng., vol. 36, pp. 81–95, Jan.
2010.

37

[28] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case study,”
in Proceedings of International Symposium on Empirical Software Engineering,
pp. 84–93, 2005.

[29] L. Shoaib, A. Nadeem, and A. Akbar, “An empirical evaluation of the influence
of human personality on exploratory software testing,” Multitopic Conference
and IEEE 13th International, pp. 1–6, 2009.

[30] A. Tinkham and C. Kaner, “Learning styles and exploratory testing,” in Pro-
ceedings of the Pacific Northwest Software Quality Conference, 2003.

[31] J. Itkonen, M. V. Mantyla, and C. Lassenius, “The role of the testers knowledge
in exploratory software testing,” IEEE Transactions on Software Engineering,
vol. 39, no. 5, pp. 707–724, 2013.

[32] H. Robinson, “Intelligent test automation a model-based method for generat-
ing tests from a description of an applications behavior,” Software Testing and
Quality Engineering Magazine, pp. 24–32, 2000.

38

