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ABSTRACT

This thesis explains problems of and solutions for storing and processing big volumes

and streaming types of data in a cost-effective way for enterprise companies. There

are several problems like operational, infrastructural and usability problems about

these new concepts of Big Data. The basic data processing concepts are not new,

but the data generation volumes and velocities are pushing the limits of centralized

architectures. Distributed systems using distributed programming models such as

the Hadoop framework are used today to handle big data problems. This thesis will

try to combine the structural, architectural and financial issues to address big data

storage and processing problems and will give practical examples based on real-life

experiences from several big data applications in different sectors including mobile

telecommunications, finance and oil-gas fields.
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ÖZETÇE

Bu tez kurumsal firmalardaki büyük miktarlardaki verinin, işlenmeside ve saklan-

masındaki zorlukları ve çözümlerini açıklmaktadır. Yeni ortaya çkan büyük veri

kavramında işletimsel, mimari ve kullanımsal olarak birçok problem bulunmaktadır.

Temel veri işleme yöntemleri yeni olmamasına karşın, oluşan veri miktarı ve hızı,

merkezi mimarilerin sınırlarını zorlamaktadır. Hadoop gibi, dağıtık işleme mod-

ellerini kullanan, dağıtık mimariler günümüzde büyük verinin işlenmesi ve saklan-

masında anahtar rol oynamaktadırlar. Bu tez büyük veriyi işlemede, yapısal, mimari

ve finansal olarak sorun teşkil eden durumların gerçek hayat deneyimleri üzerinden,

telekominikasyon, finans ve petrol rafinerileri gibi sektör bazlı çözümlerini açıklamayı

amaçlamaktadır.
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CHAPTER I

INTRODUCTION

In modern enterprises there are two types of data sources, which are human generated

data, machine generated data. The total amount of the data is growing increasing

exponentially. GPS systems, base stations of a telecommunication company, smart

roads, smart cities, smart electricity meters, sensors in an Oil & Gas company, In-

ternet activities of a person, social media data, banking activities, etc. are generate

enormous amount of data every day. In certain cases there is no need to store the

incoming data, but to process them to generate real time alarms and inform people

about anomalies. However in most cases companies have to store the data for report-

ing, analysis or regulative purposes. In both cases, there is huge amount of data to

be dealth with, and traditional systems such as mainframes and RDBMS’s do not

scale in a cost effective or affordable way.

1.1 Big-Data

What is Big-Data? and Why is it a problem? Is it just about the data volume?

This question was answered by IBM researchers in a book called “Understanding

Big Data”[1]. According to them, when the data have high volume, velocity, variety,

and/or veracity properties, we call this data as Big-Data.

• Volume: Usually the high volume aspect will be the necessary condition. Be-

cause with this property the data becomes unmanageable easily.

• Velocity: If the data is piling fast and the processing environment cannot catch

up with its arrival speed, the system becomes inefficient or looses data.

• Variety: In most Big-Data applications there are more than one data source
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and type. For example for targeted advertisement applications, most of the

companies are enriching their customer info with social media posts, comments

etc. to generate personalized campaigns. Structured and unstructured data are

also mixed together.

• Veracity: The data quality must be preserved while the data volume is in-

creasing. Especially the sensor type of data, can be broken and needs to be

validated first before processing.

1.2 Types of Data Processing Tasks in Enterprise Compa-
nies

Almost every enterprise today, not just technology based or related companies realised

the power of information. There are lots of data analysts and computer engineers that

try to find ways to grow their business by utilizing the computing analytics’s tools.

Some data processing tasks are CPU intensive, and some are I/O intensive. I will try

to explain these processing types in the following subsections.

1.2.1 CPU Intensive Data Processing

CPU intensive tasks usually do not require Big-Data to work on. There is small

amount of data and the most of the computing done inside the CPU. For example,

assume a banking example where, there is a customer table and a table for stocks of

the public companies. We have done this kind of work as a PoC (Proof of Concept)

for Turkey’s biggest bank. The purpose of the PoC is to determine, which stocks to

buy together for highest profit. This PoC gets two inputs, one is the lists of stocks

of all their customers, that the customers are already have the stocks and the lists of

available stocks. These two inputs occupies about 100 KB of text data, but there are

about 228 calculations and this task was finished by four IBM server Hadoop cluster

in 1450 minutes (1 Day and 10 minutes). This kind of calculations one being used by

banks, statisticians, cryptologists (to get big prime numbers to encrypt data safer).
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1.2.2 I/O Intensive Data Processing

In I/O bound processing, input and output devices such as hard disks, network etc.

are much more important than CPU because, the work itself requires scanning the

data from top to bottom. For example in ETL (Extract Transform Load) type of jobs,

the work begins with reading the data line-by-line because the application needs the

extraction of the required fields or tuples. the next thing about the process is the

transformation of data in another format, and the final step is loading the transformed

data into another system or computer. In these kind o processes, CPU is not so

important because for today’s technology almost every CPU is faster than any kind

of I/O devices. These kind of processing is being used by banking for governmental

regulative purposes, for all industries to backup and restoration purposes, and system

integrations for adaptability purposes (an ETL job works as an adaptor between two

systems).

1.3 Data Storage Technologies

Processing Big-Data solves just one part of the problem. In most cases there is a

storage part and again in most cases the data is stored for future analysis, reporting,

batch processing, querying purposes. Data storage is the most expensive (price wise)

part of the Big-Data. We will try to explain storage types and technologies to get

an idea why this part is the expensive one. There are two server-ready and one

experimental usage of storage types:

• SAN: SAN (Storage Area Network) technology developed to create disk arrays

to get maximum bandwidth with distribution of the data across the disk array.

SAN appliances do not have usually public network connection, but it connects

directly to the server via special SAN cards and those cards sold separately with

a yearly renewal license. This technology allows to allocate block storage spaces

(slice of storage space from each disk) for lots of servers. This technology comes
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with reliable storage and on-line backup capabilities. Because of the special

card and port licensing method, this technology can store 1 TB with a price of

10,000 USD. For most of the Enterprise companies this is a huge expense, but

this technology comes with lots of capabilities for data integrity and recovery.

• JBOD: JBOD (Just a Bunch Of Disks) is a simple technology. It is a network

shared disk array. There are no advance storage technologies in it, so in most

cases this storage technology could not give reliable service to its users. There

are network shared usage, so technology limited by the network speed and

architecture, although it is an affordable technology, it is not suitable for Big-

Data and Batch processing purposes.

• NAS (Experimental for Big-Data Platforms): NAS (Network Attached

Storage) technology does not include built-in reliability or distribution function-

ality, but it has network interface and the user can mount this storage type to

a server or computer as a local storage device. NAS technology is not used for

handling Big-Data but, we experimented NAS storages with Hadoop to see per-

formance results because the technology is affordable and has potential to get

benefit from distribution. For Hadoop its important to increase distribution for

both for machine wise and the distinct storage device wise. All of the Linux OS

distributions support multiple mounting points for network devices so, in theory

the user can mount unlimited NAS devices to get distribution and increasing

bandwidth, but in reality the user is limited to the network bandwidth. Also al-

most all of the NAS devices run with 7200 rpm commodity disks with powerless

CPU included (about 600 Mhz operating CPU of the NAS box). This is not a

high-end technology but, limitations permit to get benefit from NAS technology

for Hadoop typed distributed systems. May be in a controlled and specialized

network architecture, this technology could produce high I/O throughput, but
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this architecture will require dedicated network (separated from public network)

and it will not be a cost effective or ideal solution for distributed systems.

1.4 Computational Technologies

There are so many data types generated by machines and people, such as structured,

unstructured, text based, binary, video, audio etc. all of these data types may pro-

cessed by one system or programming logic, but if the user wants to go beyond the

singular hardware unit’s limit, some programming and architectural logics generated

to get the best performance and benefit from the hardware to generate affordable

and efficient systems. For example, to get performance and scalable architectures for

matrix types of data, such as video, image, or statistical matrix data there are GPU

based solutions because the problem is divisible to chunks and all of the chunks could

be processed with a powerless small CPU’s inside the graphic card (part of the GPU)

and after processing of each chunk is done we can merge all of the individual chunks

to solve the original problem. GPU is a specialized hardware, that developed to solve

matrix type of problems and it has its own programming logic. This approach enables

us to get benefit of performance and efficiency for just one type of the problem with

specialized hardware. This section aims to explain computing approaches and their

pros and cons for data type, affordability, efficiency and operational difficulties.

Big-Data is today’s hottest computational problem, but it is not a new concept.

Today we are talking about terrabytes, petabytes or even exabytes, but our compu-

tational power and technologies creates this much data. The concept of the Big-Data

existed almost with invention of the computer. At the beginning 1 MB was ”big”,

because the computational power was not enough to handle this much data. As we

say, the Big-Data was a problem since the invention of the computer, there would be

a solution for the problem. There are two approaches, first one is an old technology

called Scale-Up or centralized architecture, and the second one is a relatively new
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concept called Scale-Out or distributed architecture.

1.4.1 Centralized Architectures

This architecture type based on a powerful single mainframe (basically it is a server,

with lots of CPU, disk and memory slots). When the mainframe can not respond

to the client’s needs, performance could be increased by adding extra memory, CPU

and disk etc. As long as this architecture is based on a single powerful mainframe,

there will be some limits in terms of available slots, compatibility etc. If all the slots

are full, the client can not increase the performance, and client have to buy new

mainframe and have to migrate data, applications and the other systems to the new

mainframe. Scale-up architecture has useful in some specific areas but it has limits

and almost any type of Big-Data will exceed its limits eventually.

Figure 1: Scale-Up Architecture

1.4.2 Distributed Architectures

Scale-Out architecture is commonly being used by distributed systems, token-ring

architectures with p2p communication, grid computing and new generations of cloud

computing environments. This architecture offers flexibility and scalability features

with adding new commodity servers (affordable low-end servers) to get performance

increase. This architecture flexible because, there is no important component or

server for the system and if one of the servers becomes unreachable, the system

remains running. This architecture scalable, because as long as the system owner
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adds new servers, performance will increase linearly. There are modern cloud based

frameworks like Hadoop, that are using this kind of architecture to keep working

despite unexpected hardware issues.

Figure 2: Scale-Out Architecture

The definition of distributed computing, is making a cluster of computers to work

as one and shared computer system. The power of the distributed computing comes

from the flexibility and scalability of the architecture. The owner of the system can

add or remove bunch of servers to manage the usability of the system.

Distributed computing based on “Divide and Conquer” strategy. Algorithmic

strategy, can be applied to specific type of problem sets, those can be solved by

dividing the problem into smaller chunks of problems, but these chunks have to be

the same type of problem with the original problem. All of these chunks becomes

small problems, those can be solved by one computer, are distributed all over the

clusters of computers. After solving all the small problems, the merging process will

begin to get the original problem’s solution. This concept is being used by recursive

algorithms, grid computing, graphic card computing, and distributed systems such

as Hadoop.
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1.4.3 Cloud Computing

Definition of cloud computing is giving applications (SaaS), platforms (PaaS) or in-

frastructures (IaaS) as a service on a shared asset (hardware, platform or software)

to a private group or everyone who pays the service tuition. Cloud computing gives

chance to small groups, companies or even an ordinary person to make their calcula-

tions or job without any big investments for hardware, data center, software, service

or operational costs. With cloud computing, the location does not matter, because

the service is accessible from everywhere via the Internet and the users can reach

their data or application where ever they want.

The main benefit of the cloud computing is the sharing of resources, because in

most cases the systems are running with low utilization. With shared usage, servers

are running with high utilization and this causes efficiency for electricity, hardware

and owning costs.

There are three types of cloud services, that are differentiates access and usage

types:

• Private Cloud: This type of cloud has limited access to some group or or-

ganization’s members. Private cloud architectures are commonly used by large

enterprise companies and the access is limited to company employees. Usually

this type of cloud services contain company specific or privacy sensitive data

so, private clouds are not connected to the Internet for security and for some

cases governmental privacy regulations. Also since the owner of the cloud is

an enterprise company, private cloud services has operational and owning costs

too.

• Public Cloud: Public cloud services, as the name implies, are public access

to every one who agrees to pay the tuition. Almost all public cloud service

providers do not use monthly or yearly licensing fees, but they are using “pay
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Figure 3: Private Cloud Example

per use” or “pay per hour” pricing types. This pricing strategy gives chance to

SMB’s (Small Medium Business) for competing with larger competitors. Be-

cause there are no owning, operational or electricity costs for them and they

can use their resources efficiently and they are not paying while they are not

using the system.

Figure 4: Public Cloud Example

Also the scaling problem is solved by the service provider with adding new com-

puters (Virtual or Physical servers). This feature is the most beneficial property

of the public cloud for the seasonal systems like or on-line video broadcasting

company. For example during the world cup of football (soccer) they can al-

locate more servers and after the world cup ends they can release the servers,

which they do not need any more.

• Hybrid Cloud: Hybrid cloud is a combination of public and private cloud
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systems. The private data, like customer data of a bank, remains in the private

cloud of the bank and when they want to do some data enrichment process with

social media data for targeted marketing campaign they can use both data with

advantages of the both systems. The customer data could be used for other

operational needs and it cannot be removed, but when the marketing campaign

is over, bank could close the public part of the cloud.

Figure 5: Hybrid Cloud Example

1.4.4 Grid Computing

Grid computing is a kind of parallel computing with loosely coupled computers try-

ing to solve large problems like SETI@home[2] project. SETI project aims to collect

data from space with radio telescopes distributed all over the world and after col-

lecting the data, SETI institute processes the data and looks for meaningful radio

signals, that might be generated by the intelligent life forms. There are lots of radio

telescopes scanning the space continuously and produces terabytes of data for every

day and this data needs to be processed in one day. This is a hard job when there

is continuously generated new data, because of this issue University of California,

Berkeley University decided to start SETI@Home project. SETI@Home is simply a

screen saver application, when the user is not using the computer, screen saver turns

on and computer makes calculations about radio data, that is collected from the radio

telescopes and returns its results back to the SETI institute.
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CHAPTER II

DATA PROCESSING

2.1 Batch Data Processing

Batch data processing is very important for most of the technology companies, ETL

jobs, data migrations, targeted advertisements, backup and restring processes for the

new generations of archiving systems etc. This kind of processing begins with a pile

of data, that waits for the processing phase. Almost for every case there is an easy

task to do, but the data volume, velocity and variety of the data complicates this

simple task. For example in Turkey, there are governmental regularities and all of the

Telecommunication companies have to give their customers’ Internet access, call, SMS

logs to the government for every day in a certain format. Telecommunication company

buys their hardware from variety of telecom vendors, such as Ericcsson, Huawei etc.,

and all of the hardware produces log data in different format (CSV, XML etc.), and

these are not acceptable for government because their format is common and all the

telecom companies have to transform their data into the common data format with

ETL jobs. The raw log data is collecting from systems and a periodically working

ETL job processes the data batch-by-batch.

2.1.1 Hadoop

Hadoop is a distributed, scale-out architecture based computing and storage frame-

work. The framework allows its users either write applications through its API or

extend capabilities by installing software packages, such as Hive, HBase etc.

The idea behind the Hadoop is getting benefit from power of the distribution and

solving problems with dividing them. The parallelism or parallel computing itself

is not a new concept, it is being used by MPI[3] and alike applications since late
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1992, but parallelism done by programmer. Programmer have to think about, CPU

management, synchronization, dividing the problem into smaller chunks etc. there

are so many parameters to write successful parallel applications. Hadoop solved all

of the parallelism, synchronization, resource management issues and it has a flexible,

reliable and scalable architecture with high capacity storage capabilities.

2.1.2 Little History About Hadoop

The Hadoop’s story begins with two publications from Google Labs. The first publi-

cation was about specialized large scale distributed file system called GFS[4] in 2003

and the other publication was about the data processing with large scale clusters[5]

in 2004. These publications were the base of the Hadoop project. After these pub-

lications, two Yahoo members, Doug Cutting and Mike Cafarella, started to develop

Hadoop, and after two years of hard working they released the first working version

of Hadoop and in 20007 they open-sourced the project to the Apache foundation.

2.1.3 Virtual Architecture of Hadoop

There are two architectural views for the Hadoop, first one is the virtual view. This

is the conceptual an algorithmic view of the Hadoop. There are two components.

These are: Map-Reduce and HDFS. This view represents the conceptual and high

level architecture of the Hadoop.

• Map-Reduce: Map-Reduce is the processing engine of the Hadoop, and it is

a programming style. The logic behind the Map-Reduce comes from divide and

conquer algorithm strategy.

In Hadoop, every processing data must be a key-value pair. If the file format

is text based, Hadoop gets all the text line-by-line and assigns the offset byte

number as a key to the related line. After this loading and dividing process,

Hadoop distributes all the lines to the mappers (or machines). Mapper is a
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specialized method, that takes key-value pair list process the data and pass the

resulting data to the reducers. For ETL type of jobs mapping phase would be

the end of the job (Map-only job). After Mapping phase is done for a task

there is a automatic phase called shuffle. Shuffle phase simple includes sorting

and hashing the mapper outputs. Hashing needed for the reduce phase because

Hadoop decides which data will be reduced by which reducer (or machine)

with simply hashing the mapper output and the hash result maps to a specific

reducer. After the reducer has done its job, writes results back to the disk

(HDFS). There is a word count Map-Reduce example shown in figure 6.

Figure 6: Word Count Example Diagram.
Source: http://www.slideshare.net/cloudera/hadoop-distributed-data-processing

• HDFS: Hadoop Distributed File System (HDFS) is the storage part of the

Hadoop. HDFS designed for big data and it is a virtual file system. Virtual
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means, for every disk of the all cluster’s nodes, there is a real file system under

the HDFS. HDFS’s main purpose is managing all of the cluster’s total storage

capacity as a one big storage system.

HDFS does lots of management tasks at once. When a file located to the

HDFS, if the file is bigger than the HDFS block size (independent from the

local file system’s block size and by default it is 64 MB), HDFS splits the file

into block sized chunks and distributes to all over the cluster by itself (see

figure 7). This blocking mechanism is the only part of the Hadoop, which is

written in native code (C and C++). Distributed systems have some issues

about unbalanced or different machine combinations. HDFS is smart enough to

manage the storage and balance the entire cluster in storage wise. Also storing

data reliably is another issue, and HDFS replicates (by default replication factor

is 3) the data and redistributes the replica data to other nodes, so if one node

becomes unreachable the system remains working.

2.1.4 Physical Architecture of Hadoop

The second architectural view is the physical view of the Hadoop. This view represents

the master-slave hierarchy and it has five major components.

In most cases there is no difference between master and slave servers in terms of

hardware. The installation of the components determines the master and the slave

nodes. Hadoop has five main components. These are:

• Name Node: This is a master node and HDFS component. Name node is a

metadata and management server. It keeps track of the blocks and files. The

other job of the name node is managing the file locations, keeping the cluster

balanced and providing a reliable storage system.

• Secondary Name Node: This is a snapshot server, and gets snapshots from the

name node periodically (by default one hour) to restore system from the name

14



Figure 7: HDFS Replication Example.

node failure situations.

• Data Node: This is the slave node and HDFS component, and this is the where

the data actually storing. It is a bridge from node’s local file system to name

node (HDFS).

• Job Tracker: This is a master node component for the map-reduce part of

the Hadoop. Its main job is dividing the Big-Data job into smaller tasks and

assigning these tasks to the nodes in a balanced way.

• Task Tracker: This is a slave node component for the map-reduce part of

the Hadoop. This is where mappers and reducers run on, and basically it is a

processing engine.
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2.2 Big-Data Warehousing

Storing the Big-Data, solves just one problem, but almost all of the enterprise com-

panies gets some reports, and do some analytical processes. Writing Map-Reduce

jobs require lots of programming knowledge, and the most of the analysts are do not

have this knowledge, so they can learn or already know the SQL interface. Therefore

some Hadoop packages emerged to develop for warehousing, reporting and analysing

purposes. There are two open-sourced Hadoop packages for warehousing.

2.2.1 Hive

Apache Hive is a distributed warehousing software, and it is developed by Facebook

in 2008 to add SQL and warehousing capabilities to Hadoop. The main purpose of

the system is reading certain schema based formats as an input and runs HQL queries

on the data. HQL is a specialized version of SQL 92 standard with extra Hadoop

specific commands added. Because of extension of the SQL 92 standard, they called

as HQL.

Hive simplified the Hadoop operations for structured data. There are no prereq-

uisites except the SQL knowledge, easy to use and control. After the installation

process, the user could open the command line interface and start writing HQL com-

mands. Extensional commands are for file data import and export commands, and

these commands required by the distributed usage nature of the Hadoop and they

are required.

2.2.2 Impala

Former Cloudera Impala, now called Apache Impala is an indexing mechanism for

Apache Hive to add low latency capabilities to the Hive. It has its own indexing

service and the user can start using Impala with just running one indexing job (this

is a one time job, and it is for importing the index data to the memory). After

indexing job finishes, the user can use the Impala like using Hive.
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2.3 Stream Data Processing

Stream data processing is a must, where low latency is critical and it sis required to

get on action in a short time after or even before the event happens. If the event has

a pattern, the streaming engines could monitor for the pattern, and if the pattern

comes up, the system could inform the people, who is in charge.

Almost every device is generating data and streaming the data to a central place.

For example in Istanbul, almost all public transportation vehicles have a GPS device

and in every certain amount of time they are generating a GPS data and sending

to a public transportation center. The data may not seem very important, but just

this GPS data could generate lots of useful applications, like when the bus comes to

a station?, or if there is a problematic situation like engine failure and the bus does

not move the system could generate an alarm and send help to the bus, or the bus

following the right route.

Also there are lots of applications for the streaming data like, wearable tech-

nologies, with hearth monitor, and controls the patient every time, and if there is a

irregular pulse, the system could catch the irregularity, and send paramedics to the

patient, before the patient gets a hearth attack.

2.3.1 Complex Event Processing

Today’s complex sensor networks, mobile systems, GSM enabled devices etc. generate

huge amount of data, in some the data needs to be processed on the fly to get

immediate results and actions. There are lots of applications, like customer experience

management systems, alarming systems, targeted marketing systems which are mostly

using complex event processing engines to catch events from the data with a set of

predefined rules. These rules could be user defined rules or algorithm generated rules,

like the output of the rule growth algorithm.
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2.3.2 Rule Mining

Rule mining1 is the task of finding interesting relationships in large datasets. These

interesting relationships can take two forms. The first form is frequent item sets

or association rules. Frequent item sets are a collection of items that frequently

occur together. The second form to view interesting relationships is association rules.

Association rules suggest that a strong relationship exists between two items. In rule

mining, first of all we need to find frequent patterns after that we create association

rules base on frequent item patterns.

There are two most important metrics in rule mining that measures the relation-

ships in a collection of items.

• Support: The support of an item set is defined as the percentage of the dataset

that contains this item set. Support applies to an item set, so we can define a

minimum support and get only the item sets that meet that minimum support.

• Confidence: The confidence is defined for an association rule like {A} →

{B}(Let’s say A and B are products in a grocery. We know that, if someone

buys item A, and also he/she buys item B in same transaction/shop ). The

confidence for this rule is defined as support({A, B})/support({A}).

The support and confidence are ways we can quantify the success of our rule mining

analysis.

There are many algorithms to discover relationships between items in a collection

of items. Apriori and FP-Growth are well known algorithms in this field. These

algorithms generate frequent item sets. To find association rules, we use those item

sets that those algorithms produced.

• Apriori Algorithm: As mention before, in rule mining, we first need to find

the frequent item sets, and then we can find association rules. The way to

1Rule mining explanations brought from http://ylzhj02.iteye.com/blog/2078673
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find frequent item sets is the Apriori algorithm. The Apriori algorithm needs a

minimum support level as an input and a data set. The algorithm will generate

a list of all candidate item sets with one item. The transaction data set will

then be scanned to see which sets meet the minimum support level. Sets that

do not meet the minimum support level will be thrown away. The remaining

sets will then be combined to make item sets with two elements. Again, the

transaction dataset will be scanned and item sets not meeting the minimum

support level will be thrown away. This procedure will be repeated until all sets

are finished.

• FP-Growth Algorithm: FP-Growth algorithm is another algorithm that is

used for finding frequent item sets. It builds from Apriori but uses some different

techniques to accomplish the same task. That task is finding frequent item sets

or pairs, sets of things that commonly occur together, by storing the dataset in

a special structure called an FP-tree.

The FP-growth algorithm is faster than Apriori because it requires only two

scans of the database, whereas Apriori will scan the dataset to find if a given

pattern is frequent or not Apriori scans the dataset for every potential frequent

item. On small datasets, this is not a problem, but when you are dealing with

larger datasets, this will be a problem. The FP-growth algorithm scans the

dataset only twice.

The basic approach to finding frequent item sets using the FP-growth algorithm

has two steps. The first step is building the FP-tree, and the second step is

mining frequent item sets from the FP-tree.

To find association rules, we first start with a frequent item set. We know this

set of items is unique, but we want to see if there is anything else we can get

out of these items. One item or one set of items can imply another item. For
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example if we have a frequent item set, {A, B, C}, one example of an association

rule is A B → C. This means, say, if someone purchases A B, then there is a

statistically significant chance that they will purchase C.

Similar to frequent item set generation , we can generate many association rules

for each frequent item set. It would be good if we could reduce the number of

rules to keep the problem tractable. So, we use metric confidence for reducing

rules.

2.3.3 Clustering

Clustering is all about organizing items from a given collection into groups of similar

items. These clusters could be thought of as sets of items similar to each other in

some ways but dissimilar from the items belonging to other clusters.

Clustering a collection involves three things:

• An algorithm: This is the method used to group the items together.

• A notion of both similarity and dissimilarity: A metric to determine how

item belongs to same group or not.

• A stopping condition: When should stop the grouping process.

Clustering is simply a process of putting things into groups. To do more than

simple grouping, you need to understand the different kinds of problems in clustering.

These problems and their solutions fall mainly into four categories:

• Exclusive Clustering: In exclusive clustering, an item belongs exclusively to

one cluster, not several. We could have simply associated a book like Harry

Potter only with the cluster of fiction books. Thus, Harry Potter would have

exclusively belonged to the fiction cluster.
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• Overlapping Clustering: What if we wanted to do non-exclusive clustering;

that is, put Harry Potter not only in fiction but also in a young adult cluster

as well as under fantasy. So an item can belong to more than one cluster.

• Hierarchical Clustering: Now, assume a situation where we have two clusters

of books, one for fantasy and the other for space travel. Harry Potter is in the

cluster of fantasy books, but these two clusters, space travel and fantasy, could

be visualized as sub-clusters of fiction. Hence, we can construct a fiction cluster

by merging these and other similar clusters. The fiction and fantasy clusters

have a parent-child relationship.

• Probabilistic Clustering: A probabilistic model is usually a characteristic

shape or a type of distribution of a set of points in an n-dimensional and adjust

the model’s parameters to correctly fit the data. Such correct fits rarely happen;

instead, these algorithms give a percentage match or a probability value, which

indicates how well the model fits the cluster.

2.3.4 Related Work

There are lots of researches about cost effective enterprise cloud solutions with Hadoop,

streaming engines and distributed systems. When we talk about cost effectiveness,

this topic includes for owning cost (CAPEX), and operational costs (OPEX). The

owning cost could be just a comparison for having a cluster, appliance etc., but the

operational costs includes energy consumption, having a support personnel and being

in a data center.

In enterprise data economy journal paper[9], W. Lou researched the data costs for

Big-Data for the enterprise companies. Also there are lots of researches for enterprise

readiness of the Hadoop like, F. Tongke researched[10] for a Hadoop platform for

Telecom companies. Tongke focused on the data growth of the telecommunication

companies and how companies could handle this data growth with Hadoop based
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platforms. There are performance based researches, about optimizing workload with

understanding the characteristics of the job[11] and get maximum throughput from

the jobs. This research is done with a 2000-node Hadoop cluster at Taobao. One of

the aims of the research is finding the majority of the jobs that is more important

to process and changing the scheduler with the Fair4S scheduler instead of using

fair scheduler (default scheduler of the Hadoop). According to their research they

decreased the waiting time for small jobs by a factor of 7 compared with the default

fair scheduler.

Streaming data is a strongly coupled feature with the Hadoop and Big-Data plat-

forms, because most of the Big-Data is being generated by streaming platforms. For

Complex event processing view, as we mentioned in section 2.3.1, there are two pa-

rameters for getting the rule and finding new patterns, the first one is support, and

the other one is confidence. In late researches, there is one new parameter conceptu-

ally added called time confidence to decrease resultant rule count, to generate more

clean results [12]. Time confidence is based on the appearance count in a time window

and if the rule’s time confidence is above the threshold value, the rule is accepted by

the algorithm.

Autonomous stream processing and rule mining systems are really important for

Telecom companies too, because finding rules and patterns could decrease faulty sit-

uations and increase the system reliability. For example with researching the alarms

by their natures [13] (for GSM ecosystem), and utilizing the time constraints with

the other patterns could increase the performance of the algorithm. Also doing some

historical processing with vertical turning machine with a similarity function to com-

pare, and validate the outputs of the turning machine is being used by some Telecom

based alarming systems [14].
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CHAPTER III

PC - LAPTOP BASED CLUSTERS

Hadoop and stream processing platforms are being used by lots of large enterprise

companies and research organisations, such as banks, telecommunication companies,

medical companies, finance and insurance companies, on-line shopping sites, genetic

research groups, search engines etc. These applications have their own purpose and

own specialized code running on their platforms. we are not studied on all of these

fields individually, but we have touched some of these fields, those have Big-Data,

and in this chapter, we will try to show what we have done so far.

We divided the Big-Data applications into two sections by the cluster installation

types in terms of architecture. The first one was PC - Laptop based clusters and the

other was the server based clusters.

Historically the companies and researchers developed the Hadoop clusters from

their own resources, like laboratory PC’s and retired laptops before making big in-

vestments. Therefore we followed this road and built our very first cluster from the

University’s computer lab PC’s.

We have tried to use Hadoop in almost every architectural environments to see

potential applications. Desktop PC’s are seem to be powerless and useless for almost

every Big-Data application, but the Hadoop’s aim was combining relatively powerless

servers (in this case PC’s) to create a powerful system, because of this, we decided to

find some applications for PC clusters.

3.1 Özyegin University Computer Lab Cluster

The idea behind this is same as the Hadoop’s distribution logic, and we wanted to see,

if the scale-out strategy would create a powerful computational system from powerless
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PC’s. This was the early project of master period, and this study was good merit to

compare the Hadoop installation types.

3.1.1 Set-up

The set-up has two parts. The first set-up, created with three (one node is in both

master and slave roles) powerful IBM blade servers on H22 Blade chassis, and the

second set-up developed with twenty (1 master + 19 slaves) laboratory PC’s (See

Table 2). Each side has one master and the other machines were configured as slave.

Blade Servers Laboratory PC’s
Count 3 19+1
CPU Intel Xenon 2.4 GHz, 8 Cores AMD Althron 1.7 GHz, 2 Cores
Hyper Threading Yes No
Disk 74 GB, 15,000 rpm 80 GB, 7,200 rpm
Memory 24 GB 4 GB
RAID RAID1 N/A
Network 1 Gbps 100 Mbps
OS RedHat EL 5 RedHat EL 5
Price (each) $ 6,000 $ 500
Cluster Cost $ 18,000 (W/o chasis) $ 10,000

Table 2: Blade Server - PC hardware comparison.

3.1.2 Test

We wanted to test the system for two merits. One was the utilization and the other

one is time. In this purpose we have tried two examples in Hadoop’s example set.

The first one was Teragen example, and the example simply generates random

4 Bytes unsigned integers and writes to the disk. In this case all of the nodes can

generate integers and write them to the disk independently (Map-only job), so there

are no noticeable network workload. We generated 10 GB of integers with both

systems.

Luckily the first test’s output is the input of the second test so we did not have
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to produce new data for the second test. The second test was Terasort example, and

it simply gets integer numbers as an input, and produces sorted output. Actually

there is no useful code in this example, mappers takes the input and sends them

directly to the reducers, and the reducers writes back the output of the mappers to

the disk, because there is already a built-in sorting mechanism in shuffle mechanism.

We expected to test three hardware parts of the computer with this example, these

are CPU, network and disk. Sorting requires data exchange between nodes and, that

will show us the importance of the network connection in distributed systems.

3.1.3 Results

Blade Servers Laboratory PC’s
Average CPU Utilization ∼40% ∼74%
Average Disk Write Speed 62.6 MB/s 22.3 MB/s
Completion Time 53 secs. 24 secs.

Table 3: Teragen Test Results

In the first example, we though generating random numbers could be challenging

for CPU’s, so we expected to test CPU and disk, but we could not test CPU, because

today’s CPU’s are much more faster than disk technology, therefore our test turned

out to a I/O bound test. Every node has one local disk and there were nineteen

disks produced about 423.7 MB/s writing throughput for PC cluster and, three disks

produced about 187.8 MB/s writing throughput for blade servers, and there were no

major network traffic because, all tasks can be done with the node’ local resources

independently.

Blade Servers Laboratory PC’s
Average CPU Utilization ∼32% ∼69%
Average Disk Write Speed 58.2 MB/s 8.1 MB/s
Completion Time 57 secs. 65 secs.
Network Utilization ∼40% ∼100%

Table 4: Terasort Test Results
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The second example concluded with blade’s victory, because PC’s have 100 MBps

network cards, and Blades have 1 GBps internal network bus (not using regular

network switch or router for intra chassis network traffic), and the terasort example

produces a huge amount of network traffic.

3.1.4 Conclusion

As the results show, our PC cluster is much more faster in Map-only jabs, because

they do not have powerful network cards, and when the reducers got involved to the

process, the work progress is slowly increasing because of the network cards. For both

tests, we expected to test CPU too but for both systems has faster CPU’s than the

other components. Also the importance of the count and the revolution speeds of

the disks have shown in these tests. We have shown the bandwidth increase for disks

even individual disk bandwidth is slow, the system’s disk bandwidth increased with

the disk count increase.

3.2 Customer Stock Portfolio Analysis for Banks

Banks are doing so many computer aided calculations to operate their processes.

These calculations can be regulatory, reporting, analysis and ETL etc. type of calcu-

lations or processes. For a bank the maximum profit calculations like customer stock

portfolio analysis is very important because, customers can be put more money to

banks to protect or increase their money.

The customer stock portfolio analysis has two parts and the input data is limited to

the customer data, which includes the stocks, those the customer currently has it, and

the other is the available stocks, those could be bought by the customer with banks

advice. The analysis look at the maximum profit combinations of these stocks. For

example, the customer has 3 stocks and there are 28 available stocks, the algorithm

takes all the possible combinations of the stocks and calculates the possible profit,

according to the possible combinations. This algorithm is a deterministic algorithm
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because, it tries every possible combinations, and its running time can be determined

with the number of the available stocks, and number of customers.

3.2.1 Algorithm

The algorithm is simple and makes CPU bound calculations. It takes customer info

and stock list data separately. The customer data is a 100 KB text file, includes the

customer code and stock codes, those owned by relevant customer, and the second

file includes the available stocks list in a plain text format. Algorithm takes the

customer data line-by-line, generates all the combinations with the available stocks

and calculates the maximum profit option, and writes the maximum profit option back

to the disk. We take the algorithm as a flowchart with lots of unknown parameters

and variable names, those have to be solved by us, and the hardware (cluster) is the

same blade servers, those used to compare the PC cluster test.

3.2.2 PC Version of the Usage

The bank’s idea is running this algorithm in their employee PC’s with Hadoop out of

the working hours. There are 400 employee PC’s and a powerful master could operate

400 PC’s to run the customer portfolio analysis, and if there are more time slots, to

run other algorithms. This idea was good, but we never got a chance to apply it.

Although the ides was great, but there would be some management problems,

because there might be some employees (over-time workers) out of the working hours,

or some PC’s might be accidentally shut-downed by employees and these PC’s could

not be reached.

3.3 Queryable Long Term Storage Service for Sensor Data

There are so many areas for sensor data collection, stream processing over this data

and, storing to analyse the data for future processes or regulatory needs. Wearable

sensor added clothes for health care systems, also sensor added sports clothing, smart

27



roads with sensors, smart electric meters and, for energy sector, measuring tank health

with pressure and heat sensors etc. An Oil & Gas company have to monitor all the

oil tanks, petrol production steps with sensors for 24 X 7, and there is no difference

for the Turkey’s biggest Oil & Gas company. They have to collect the sensor data

and store for the reporting and analysis purposes. There are about 65,000 sensors for

monitoring heat, temperature etc. and the sensors collect data for every 3 seconds.

The data mostly composed by integer values with flags. The amount of data per day

can be calculated as follows:

65, 000 sensors x 3 seconds x 4 Bytes = 780000Bytes / 3 Seconds

780000 x 20 data reads per minute x 60 x 24 = 20.92 GB / Day

Even if there is no data enrichment like adding sensor number, date time etc., it

is a huge amount of data for almost every system, but there is a data enrichment

process, and this data amount groves exponentially. Therefore just storing the data

is a huge process, and this storage phase is not the only part of the problem, because

they have to query data for reporting and analysing.

The company did not want to invest money to a Hadoop system before they see

the benefit of the system, so they proposed us to use old employee laptops, and they

gave us 13 laptops to install Hadoop, Hive and impala. The laptop configurations

were identical and like this:

Laptop PC’s
CPU 2 GHz Intel i5 4 cores
Memory 4 GB
Disk 500 GB 7200 rpm
Network Card 1 Gbps
OS CentOS 6.5

Table 5: Laptop PC configurations

These laptops are connected to each other with a separate Gigabit switch, and

they are kept in the company data center (see figure 8) to control the temperature.
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Figure 8: Laptop Cluster in Data Center.

There were two issues about this installation. The first problem is the slow laptop

disks, and the second problem was the laptops were not designed to work 24 X 7.

3.3.1 Cluster

The cluster configured as 1 master node and 12 slave nodes, with about 5.5 TB

available storage space, and 48 GB memory in total, and we installed the Cloudera

version of Hadoop Distribution. This distribution adds some cluster management

capabilities, such as, monitoring, changing configurations, adding and removing nodes

or software packages from the web based interface.

3.3.2 Installation

We installed Cloudera with Hive and impala packages. Impala is a warehouse ap-

plication with indexing capabilities for fast query performances, that runs on top of

Hive warehousing package.

29



3.3.3 Application

There is no specialized application implemented for this service, but we had to do

lots of configurations to get maximum performance from the system. The need was

getting query results under 10 seconds. Data test data was produced by the 13,000

of 65,000 sensors for 1 year. The total data amount for the application was about 1.5

TB in a plain text format.

There are so many overheads for operating systems, because they are built for

general purpose of computing. The main overhead is visualization of the system.

Hadoop does not need desktop environment, and desktop environment occupies lots

of memory spaces, so the first thing we have done, was removing the desktop envi-

ronment. This released about 10% of the memory space. After this operation we

removed all the unnessary applications and services, like mailing, printing etc. and

the final move was changing some OS level flags like, THP feature of CentOS, this

feature enables the large page management[6] for the memory. this feature could

significantly improve for the memory indexed applications, that we were going to do

with impala indexing.

3.3.4 Compression

We could get benefit from tuning the system by doing some configurations, but work-

ing with the Big-Data requires some data specific tuning for almost all individual

systems to do real breakthrough. Therefore we have searched for some compression

algorithms to improve the I/O performance and making a cost effective high vol-

ume storage system. There are some late experiments on compression algorithms on

Hadoop environment[7], but back in the day there were none of them for Hadoop, so

we have ran some tests to find best compression algorithm for this job. Our tests are

focused on compression ratio, speed, and usability. The test data was the 10 GB of

database style schemed text, with 10 columns and some repetitive rows in a single
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file. I specially mentioned the test data was in a single file, because it effects the

read/write performance, and the best case for the compression is reading from and

writing to a single file. The test results are produced in four blade servers. The test

results are shown in figure 6.

GZip LZO Snappy
Ratio 1/8 1/6 1/8
Time 58 sec. 120 sec. 68 sec.
Split-able No Yes Yes

Table 6: Compression Algorithm Test Results

The test repeated for three times, and all the results above are the average values

of these tree tests. For all three tests GZip compression algorithm was the winner.

You might think the overhead of compressing the data could decrease the system

performance, but actually it helps to improve the system performance, because it

does less I/O from disk, and the disk is the slowest component of the computer, so

CPU’s can easily absorb the overhead of compression and decompression without

performance loss.

3.3.5 Indexing

Indexing required by the Apache Impala, and this one time indexing job generates

the indexes for doing fast lookups to make fast queries. To index all the data to

the memory, the user has to run a Map-Reduce job, after this process, Impala stops

using Map-Reduce framework (but still uses HDFS), and uses its own agents to handle

distributed queries. Because of Map-Reduce has high initialization step, Map-Reduce

could not response the queries in low-latency fashion.

3.3.6 Partitioning

Partitioning is done by Hive’s own partitioning mechanism, an it is simply moves

the data in a folder hierarchy. For example if the user wants to partition the

data by the date and if the example date is 24-01-2014, Hive stores this data in
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/user/hive/warehouse/<table-name>/2014/01/24 folder and the date part of the

data is not required to store in the text file. This approach saves storage space

and improves the query performance, because if the user’s queries are mostly time

based queries, Hive looks for only the relevant folders, it does not scan all the data.

Although if the single partitioned file is too small (like 2 MB each), both compression

ratio and I/O performances decreases, because the compression algorithms work best

with large files, and small file sizes increases data seek time on disk, an this decreases

the I/O performance.

3.3.7 Querying

Impala has three types of query interface. The first interface is the jdbc interface.

This interface allows the users connect to the Impala through Java based applications.

The second interface is command line interface, which is an application, that connects

through jdbc connector of the Impala and prints back the query results to the screen.

The last interface is the ODBC interface. This interface actually is an adaptor,

connects the jdbc interface of the Impala and serves the ODBC clients and makes

conversions from ODBC to jdbc, and allows users to make object based connections

(mostly using in Windows OS based systems). This interface is used to connect to

the Impala from Microsoft Office Excel software to visualize the data.

3.3.8 Results

The system itself is not so powerful, because of that we had to squeeze all the system

resources, we have made date based partitioning, indexing with Impala, OS flag

changes and removing unnecessary applications from the system, compression. The

goal was responding date based count queries under 10 seconds, and the final results

are shown in table 7. We could not achieve the goal but we were close, and we have

learned lots of new things with this Hadoop PC set-up. the results is additive, this

means we have tried first the compression, and we partitioned the compressed data,

32



and finally added indexes to the final compressed and partitioned data.

Raw Data Compressed Partitioned Indexed
Date Based Count Query 619 sec. 364 sec. 229 sec. 33 sec.

Table 7: Hive - Impala Test Results

3.3.9 Conclusion

Laptop cluster with lots of configurations and computational methods derived the

Oil & Gas company lots of savings in terms of software license and hardware costs,

because all of the software were open sourced projects, and using the old employee

laptops saved from the hardware costs. This project showed us, the importance of

the partitioning, indexing, compression and hardware specialized performance tuning.

Removing the unnecessary applications, saved us lots of disk and memory spaces, with

free CPU cycles from background jobs and services. For some specific conditions, even

laptops could derive unexpected performance with doing system specific tuning.

3.4 Conclusion About PC Clusters

Although the PC cluster competed with the powerful blade servers in the supercom-

puter test, PC’s have too many problems, because PC’s are not designed to run 24 X

7 and when you do, there will be some consequences, firstly the electricity bill goes up,

because of the power consumption. Blade chassis consumes just 2000 Watts per hour,

but total electricity consumption of twenty PC’s is 7000 Watts per hour. Second issue

is the PCs’ components are not designed to run 24 X 7, and they will stop running

after just few months. Third issue is the physical storage area, the standard blade

chassis occupies 7 Rack Unit which means 0,13 m3 by volume (Rack Unit dimensions:

28.26 X 4.45 X 92.71 cm) in a rack, but 20 PC’s occupies 1,74 m3 by volume and

this means the PC’s need 13 times bigger physical storage area. There is a need for

special storage rooms like data center, specialized cooling systems, specialized power

supplies with backups.
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The PC clusters are mostly good for Map-Only jobs with lots of special con-

figurations, because all the resources are limited and not designed for high density

calculations, and PC’s could not operate high speeded (10,000 - 15,000 rpm) disks.

Also the network connection is very important, if the network is not separated or

only low transmission speed cards are available, probably, these cards will be the

bottleneck of the system. Because of this we are recommending only Map-Only type

of usage with PC clusters.
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CHAPTER IV

SERVER BASED CLUSTERS

This type of clusters are more commonly used by enterprise companies. The aim of

Hadoop is using the low-end commodity servers to build clusters. There are lots of

usage types and applications for server based clusters. In a technology based or related

company, there is s huge amount of data, streaming and processing for operational

needs. In this section we will try to explain some of these usage areas, problems and

solutions.

4.1 ETL and Warehouse Solution for Telecommunication
Companies

Data processing is a daily routine for a Telecom company. In a Telecom company’s

infrastructure, there are lots of machine generated data, those are collecting and

processing from wide variety of vendors, systems, and machines for analysis, reporting,

investigation purposes and for governmental regulatory obligations. Also because of

the variety of vendors there are lots of format wise incompatible systems. Therefore

ETL jobs are indispensable parts for a Telecom company’s operations. In this section

we will explain the problems and their solutions for the Turkey’s third biggest GSM

company’s distributed ETL, and warehouse system.

In a telecom company, there are lots of data streaming, and storing for processing.

Almost all the data is generated by the machines. Even one SMS’s trip could generate

20 different logs in different systems, base stations, and gateways etc., and when

thinking all the customer’s SMS’s, only the SMS service derives huge amount of

data, that needs to be processed in one day due to the regulations, and in-company

processes. Also call initiation is a complicated process and generates twice logs as
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SMS service. There are so many operations, like call and SMS, so there must be a

system for just governmental regulatory ETL jobs.

Government wants the logs in daily basis and if the log stream is late or broken,

they could fine the amount of the company’s 3% of endorsement, so this is a critical

mission. Against to common sense, there is a increase for WAP usage, and the WAP

log transformation processing time was near to exceed the one day limit with one

machine, and long term storage part solved by Oracle Exadata system, which could

store just last months data, and there was a need for storing last six month’s data.

Hadoop completely fits the problem, because it has both processing and storage units.

The WAP specific log data is 160 GB / day (uncompressed data), and unlike the

common sense it is slowly growing. Wap was a dying technology since the invention

of the social networks with the Telecom operator’s social billing packets, and its usage

is slowly growing.

4.1.1 Governmental Regulations at a Glance

In Turkey all the Telecom companies have to give their customer’s Internet access

records, SMS, call, 3G etc. to the government in a certain text format. This regu-

lation applies to all Telecom companies, Internet service providers even to wireless

Internet available hotels, restaurants etc. As well as providers are giving their cus-

tomer Internet access log, they also store these logs for 5 years. This law creates two

problems. The first problem is the format transformation, and the second one is long

term data storage.

4.1.2 Variety of Data Sources

There are so many Telecom vendors like, NSN, Huawei, Ericcsson etc., and their

systems (for each system of all vendors) have different log format for all types of

operations, and in some operations, more than one vendor involves in the operation.

Government also has its own regulation log format, and all the vendor system’s (see
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Gateways in 9) logs needs to be transformed to the governmental log format. In

our case the company did choose Ericcsson, ZTE and their in-house gateway deve

lopment for WAP logs, and each vendor has its own format. Ericcsson wap gateways

produce XML, ZTE gateways produce CSV and aLabs wap gateways have CSV like

format with different separator and column sequence.

4.1.3 Reporting, Operational Investigation, and Long Term Storage

The Quality Assurance team of the company is generating some daily reports from

the WAP log data, such as top 100 queries, service quality, and maximum response

time etc. So they asked to us, to create a web based warehouse solution for WAP

log data. We thing the warehouse part can be handled by Apache Hive, and we can

develop a web based query interface for Hive. Our Hive solution fits for the problem

because, Hive can work with compressed files, works with Hadoop and It has a SQL

like query language (HQL). Therefore we used Hive for reporting but, we had to

improve Hive’s capabilities with query scheduling, and automatic recovery. Company

wanted to make daily queries scheduled, and finished by the start of the work hours,

so they can analyse and process the reports (see section 4.1.5).

When a customer calls the customer care service and complains about his/her bill,

customer care employee hangs up the phone, and opens a operational investigation

ticket to the operational teams. Operational teams get the ticket and start to inves-

tigate on relevant system(s). In WAP case, the most tickets are opening for unused,

but billed WAP usage. For the first phase of the project because of the architectural

problems, Hadoop system could not respond quickly, so the customer care service,

had to open a ticket for investigation, and operational teams look for the usage of the

customer (with our query mechanism), and if there is no usage, the company gives

the WAP usage entry of the bill. In second phase Hadoop could respond the WAP

usage requests while the customer still at the line. There are lots of cases like, court

37



orders to understand a criminal activity with looking to WAP usage reports.

The main goal of the Hadoop solution was creating a cost effective long term

query-able storage system, so the storage part was very important for the company.

Hadoop has a distributed storage system (see HDFS 2.1.3). The distribution handled

by the Hadoop but, the first phase (see section 4.1.7) of the project has limited

SAN type storage resource. Because of the resource limitations and the cost effective

requirements, we researched compression algorithms (see compression 3.3.4) and the

compressed Hive usage types. This research increased the storage capability from 12

days to 92 days. Although the second phase has 10 TB of storage space, according to

our research compression increases the performance too, so the second phase includes

compression too.

4.1.4 Enterprise-Ready Hadoop Based Architecture

There is a high level architecture of our WAP solution (see figure 9). Although Hadoop

seems to solve all of the distribution and storage problems, back in day there were

lots of problems with using an open sourced application in an enterprise company’s

infrastructure. Enterprise companies have lots of requirements, such as alarming, web

interface, job scheduling, KPI’s, statistical informations etc. to use a system in their

operation.

4.1.5 Enterprise Operational Needs

Job and query scheduling is a must for an enterprise company. There are so many

daily reports, analysis and queries. Also scheduling Hadoop jobs is a must, because

the system have to be automated. Job and query scheduling is done by our imple-

mentations. The scheduler starts the Hadoop ETL jobs for every hour and, after

ETL jobs finished, Hadoop moves the output data to Hive and a bucket to pile up

to send the data to the government. Also sending the data to the government is a

daily scheduled job. The query scheduler has a web interface, and the user can either
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Figure 9: Wap Hadoop Architecture

schedule or run instant queries from the web interface. This part is very important

to create an autonomous system.

This project has a governmental part, so for disaster situations informing the

responsible people is very important. There are three alarming interfaces of the

system. These are SMS interface, e-Mail interface and lastly HP OVO interface. HP

OVO is being used by mostly enterprise companies to monitor applications, machines,

systems with its monitor agents. In this installation HP OVO interface is used for

alarming.

Measuring the performance is both hard and important part of any kind of op-

eration. In our case, because of the most important part is sending data to the

government, we decided to use sending time of data to the government as a metric.

Every day the data has to be at the government’s servers at a certain time, and this

KPI have to be 100 % for every time.
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Also keeping statistical information about the system, like system up-time, the

amount of the input and output data etc., is important to understand, what amount

of Big-Data the system is dealing with.

For an enterprise company, interfaces could be very important for ease-of-use

and adapting (importing and exporting data) the system to other systems, so the

system has web based graphical interface to, schedule a query or job, and monitor

the system. Also the query mechanism can not be trigerred by only the web based

interface, therefore jdbc, and ODBC connectors also helps to adapt the system with

other systems such as Oracle Siebel.

4.1.6 Automatic Recovery, Backup and Restore

The system has a powerful recovery system for jobs, queries, and system failures, and

this is not a Hadoop feature. If the job fails, it looks for the job status and if it is

recoverable, continues from the last recovery point, if not system reschedules the job.

If the query fails, system automatically reschedules the query and lastly for system

failures the system has a unique mechanism. If the master node fails, it creates an

alarm and informs the responsible people, after alarming completed, each slave node

generates a random integer and throws to other nodes. The owner of the biggest

number brings the system up as the new master and the system continues running.

Hadoop has not a backup and restore features for the HDFS, because it is a

virtualization for the local file systems, so we decided to get regular file system backups

for the HDFS. Also the restore part is done by the regular file system restore processes.

4.1.7 Phase 1 Solution

This phase designed to see the capabilities of the Hadoop framework, so the system

created with servers and storage system, those are the company already have. The

connections and the adaptors are the same with the second phase, so the high level

picture (see figure 9) is valid for both phases, and phases are differentiated in terms
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of machine count, cluster implementation, and storage types.

This phase has two separate clusters (see figure 10). the first cluster contains two

powerful servers. This cluster is responsible from the ETL process, and keeping raw

data for disaster scenarios. The second cluster has only one server and it is responsible

for long term storage and querying. The cluster specifications are shown in table 8.

This is not a ideal cluster type, because in Hadoop is a distributed system, and phase

one does not have enough distribution, and it uses expensive SAN technology for

storage.

This phase architecture could handle only 2.7 TB data (on Hive cluster), and it

can run at maximum 70 % storage utilisation, so the system handle only 1.9 TB. The

total system price is about $ 55,000 , and it can store just 1.9 TB, so this system

is not ideal, not recommended and not wanted, but this was a great opportunity to

develop our solution, and see Hadoop’s behaviour in this kind of architecture.

Figure 10: First Phase Architecture

Hadoop Cluster Hive Cluster
CPU Intel Xeon 24 cores Intel Xeon 20 cores
Memory 24 GB 24 GB
Network 1 Gbps 1 Gbps
Storage Type SAN SAN
Storage Capacity 500 GB 2.7 TB
Server Count 2 1
Estimated Price $ 20,000 $ 15,000

Table 8: First Phase Server Specifications
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4.1.8 Phase 2 Solution

The second phase architecture developed by us, with local storages and near com-

modity hardware (see table 9). This architecture created to be fit into distributed

system’s architectural logic. The problem of the first phase was, the speed difference

with CPU and storage was too much, and the system could not utilize the CPU, and

valuable system resources remained unused. Second phase’s aim was to create cost

and performance effective ETL and storage system. This phase has 5 servers, with

30 TB storage system with a cost of $ 30,000. This price is nearly the half of the first

phase’s hardware cost.

The architecture implemented to use ETL and storage services together. This

simplified the system logic, and reduced to risk of loosing data, with multiple replicas.

This system has 30 TB storage area, even we use 5 replicas, we can store almost 3

times bigger data in this environment. Although the replica count remained 3 because

of the small cluster size, so we can store near 5 times more data. The query time,

and cumulative system performance dramatically increased because of the increase of

the I/O bandwidth.

Figure 11: Second Phase Architecture

42



Hadoop & Hive Cluster
CPU Intel Xeon 6 cores
Memory 24 GB
Network 1 Gbps
Storage Type Local 7,200 rpm
Disk Count 6
Storage Capacity 6 TB
Server Count 5
Estimated Price $ 6,000

Table 9: Second Phase Server Specifications

4.1.9 Tests and Results

The first phase solution was challenging because, Hadoop was a new software and we

had to do lots of experimental test, configurations and new views for the performance

increase and doing the job with limited resources.

As we mentioned before, there are lots of data sources and types for WAP log

data. We started with the Ericcsson’s XML log data. The data is compressed files

with a length of 3-4 MB’s per each file. As long as the Hadoop designed for big files, so

we thought, we need to group the small files into bigger files than start the processing

part[8]. We used 800 sample XML files for data load tests and there are 5 different

loading and processing tests (see figure 12). The first test was the control group,

every configuration, file types and formats were standard, with Hadoop’s standard

data loading interface. First test shows us the base results to see the improvements.

The second test does not include the grouping procedure, this test is done to show

the parallel loading difference. Instead of loading the data on just one computer, we

decided to divide the data into the machine count and load all the data from each

machine. Just doing the parallel loading task, saved us about 100 seconds for just

800 files. In second test there is no processing time improvement because the source

data is not changed or grouped. All the remaining tests were executed to show the

parallel loading and grouping affects for the data. The third test is the first data
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grouping test, and there are 80 files, those are grouped ten-by-ten. The interesting

thing about the fourth and the fifth tests, these two tests are completed almost in

the same time, because we reached the I/O bandwidth limit after 100 groups.

Figure 12: Parallel Data Loading

When a Hadoop performance benchmark released, they are just mentioning about

the processing time, however for distributed systems, data importing is also very time

consuming and problematic task, so we decided to release end-to-end benchmark (see

figure 13). Test results showed us the importance of the input data format and

size, because these tests are not related to a configuring Hadoop or making OS level

optimizations. These tests are designed to use hardware resources efficiently. The

test sequence starts with grouping process, and the second phase is the data loading

process with again 800 sample WAP files, followed by processing phase, and the last

part is getting data back to the local file system and sending to the governmental

places.

The third test was the job pipelining. The idea behind the job pipelining is using

all the system resources fully filled at once (CPU and I/O). For ETL jobs there are
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Figure 13: End-to-End WAP ETL Job Benchmark

three steps for the job completion. The data loading step, which is a I/O bound

step, processing phase mostly CPU bound step, and getting the data back, which is

also a I/O bound step, so we decided to run two independent ETL jobs by sliding the

starting point of the step (see figure 14). The first job is a SMS log based ETL job and

the second job is a WAP log based ETL job. The first test is running two jobs back-to-

back (no overlap), and this is our control test for this test sequence. In scenario 2, the

second job’s loading step is overlapping with the first job’s data unloading step, but

this pipelinig could not make a significant difference, because overlapping steps are

both I/O bound processes and resources are consuming by two different jobs. In third

scenario there are two overlapping steps, the first job’s processing task is overlapping

with the second job’s loading step. This test produced the best performance because,

overlapping steps are mostly differentiates with their bounding types. The processing

task is mostly a CPU bound task and the loading step is mostly I/O bound task,

therefore the system resources could be used fully utilized and in most efficient way.

The last test was about the full overlapping test.

The last part of this section is about the performance comparison of the previous
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Figure 14: Job Pipelining Results

one machine solution of the company, first phase and the second phase for both

ETL processing time and query times. The previous one machine solution does not

have storage and query capabilities, so the storage and querying parts are covered

by Oracle’s Exadata warehousing appliance, so the for the ETL and query costs are

separated in tables 10 and 11. Also the first phase handles the storage and the ETL

parts separately so the prices separated in tables. Although the second phase solution

includes both storage and ETL parts, so $ 30,000 is total price for the second phase

solution.

Non-Clustered First Phase 2 First Phase Second Phase
ETL Time 24 Hours 8 hours 45 mins. 15 mins.
Cost $20,000 $ 40,000 $ 40,000 $ 30,000

Table 10: ETL Performance Comparison

Table 10 shows the performance comparison for the ETL jobs for processing one

2Without doing any configuration
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day WAP log data (about 160 GB data). The non-clustered solution is the previous

one machine configuration is reached to its own limits for I/O and CPU, the only way

to improve this solution is replacing the machine with a more powerful server. Because

of this job is a daily job, this solution is not reasonable for the company. The first

phase solution with optimizations and configurations, like OS configurations, pipelin-

ing and grouping for small file problem improved the system performance by a factor

of about 10. Finally the second phase solution improved performance dramatically.

Because of the distribution of disks and multiple disks for each machine is increased

the data distribution and I/O bandwidth. The first phase’s cost is $ 40,000 for ETL

performance test because there are two separate clusters and the table includes the

ETL cluster’s cost.

Oracle Exadata First Phase Second Phase
Query Time 12 mins. 30 mins. 58 secs.
Storage Capacity (Month) 1 (1 replica) 3 (1 replica) 15 (3 replica)
Cost $625,0003 $ 15,000 $ 30,000

Table 11: Query Performance Comparison

Let we evaluate the second phase results. What does it mean 58 seconds for this

kind of data. Daily unprocessed WAP data is 160 GB, and the daily processed data

amount is about 100 GB. All of the test queries requires full data scan for a month’s

data, and the calculations are as follows:

100 GB X 30 days = 3, 000 GB processed data

3, 000 GB per month / 58 sec = 51.72 GB/sec

51.72 GB/sec / 4 machines = 12.93 GB/sec/machine

12.93 GB/sec/machine / 6 disks = 2.15 GB/sec/disk

The average read speed of a 7,200 rpm disk is 25-30 MB/sec not 2.15 GB/sec. This

result is far beyond the throughput of the disk. This is the result of the partitioning,
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indexing, compression and other fine-tunings for the OS and Hadoop. Without these

optimizations, let’s find how many servers we need to get this performance.

10 X GB processed data X 30 days = 3, 000 GB/month = 3, 072, 000 MB/month

30 MB/sec read speed X 6 disks = 180 MB/sec/machine

3, 072, 000 MB/month / 180 MB/sec/machine /58 secs. = 294 machines

This results shows us the importance of the optimization and the data oriented pro-

cessing.

4.1.10 Conclusion

All these test results and experiments show us, hardware and software configuration,

architecture and the data processing approach could make difference for performance

and query time. The cost of the previous one machine solution with Oracle Exadata

is about $ 645,000, but the ETL performance for a daily processing requires almost

more than a day, and getting query results from just one month’s query results in 12

minutes requires, a huge appliance with a huge price, and yearly renewal maintenance

cost. Although the fist phase pseudo-distributed architecture is not the answer for

desired query times, and distributed systems point of view. Because the first phase

includes powerful servers with costly SAN storage systems. The second phase is the

answer for all points of views. Second phase accomplished distributed architecture

with 5 identical mid-range serves with 6 independent local hard drives.

Making an enterprise ready Hadoop cluster and giving a 24 X 7 service is a hard

job to accomplish. There are lots of needs, and developments to integrate Hadoop

into a Telecom company’s operational environment. All these tests and experiments

show us, distributed systems has lots of potential to create powerful system with less

3Oracle Exadata price brought from http://www.oracle.com/us/corporate/pricing/exadata-
pricelist-070598.pdf. Storage capacity could change with configuration difference and/or hardware
difference.
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hardware, and the importance of the data oriented processing view, because data

specific optimizations like, grouping small files into bigger files, makes real difference.

4.2 Alarm Correlation on Streaming Data

Hadoop is suitable for Big-Data and batch processing, but today’s market requires

to be fast, so batch processing is not fast enough, so in most cases streaming engines

have to be involved to the system.

The ability of processing the streaming data is a must for telecommunication,

marketing, finance, banking and oil & gas companies. In section 3.3, we tried to

explain to process and query the sensor data in an example. Processing or storing Big-

Data is one thing, but combining the power of the stream processing and distributed

systems is called as a complete system for today.

In our case the Telecom company wants to know all the problematic situations in

their infrastructures including the base towers, and be prepared for these situations

before the event is done. The difficulty about this project is, there are lots of data

resources, and if an important data source brakes down, their business could effect

in so many levels. For alarm correlation on streaming data, this kind of system is a

must. The current system is based on human experiences, and when a new problem or

alarm raises, they have to look all the logs and, find the problem cause. After finding

cause, they have to be sure about the problem caused from the finding pattern and

they have to define a rule to their systems.

4.2.1 Finding Alarms in an Autonomous Way

There are so many approaches about finding new rules and patterns in data mining

field. Our approach was finding rules with a modified rule growth algorithm [15]. The

algorithm need two parameters to run (see section 2.3.2). Our approach was adding

a new parameter called time confidence and the aim of this parameter is reducing

the rule count, those are produced by the rule growth, to get more dependable rules.
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Time confidence looks the pattern and searches for the occurrence of this pattern in

a time window, and if the pattern occurs in the exact time difference, the algorithm

counts this occurrence as a successful catch. After doing all passes for all patterns,

the patterns, those have values above the threshold value, the pattern accepted by

the algorithm as a new rule.

The streaming architecture (see figure 15) is the combination of the streaming

engine with the Hadoop. The streaming data is firstly processed by the streaming

engine (CEP Engine) with registered rules if the CEP engine catches an event creates

an alarm and informs the company employee. After the stream processing phase

is ended, the data goes to the Hadoop system for storage and, further rule mining

analysis. A distributed data mining engine called Mahout runs on top of the Hadoop

and mines for new rules. If mahout finds a new rule, informs the company employee

and if the rule found is a valid rule, the employee registers the rule to the streaming

engine and the engine looks for the new rule too. Hadoop enables the long term

storage, and distributed processing power for the data mining purposes. The main

purpose of this project is finding the root causes of the problems and inform before

the system fails or something problematic is done.

4.2.2 Rule Mining Strategy

Our rule mining strategy is based on rule growth algorithm with time confidence

parameter included [12]. This approach is not used by the industry, but the number

of the rules, those are found by the original rule growth algoritm, is very high, and

finding the useful rules from the pile of not validated rules is like finding a needle in a

hail stack. The time confidence parameter reduces the number of the resultant rules,

this simplifies the system operator’s job.
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Figure 15: Streaming Engine Combined with Distributed Systems

4.3 Search Engine Project

This Hadoop deployment is the one of the biggest Hadoop cluster in Turkey. There

were 138 nodes for just one Hadoop cluster. The architecture is shown in figure 16.

There are three parts of this project. The first part is fetching the Internet site data

to the data center. This task requires lots of skills including the understanding of

which part of a web site is useful and which is not. Obviously we cannot crawl all

the web inside a data center, so we need to know the importance of a web page

autonomously and select information and send it to Hadoop. The second phase is

about creating indexes and storing the original data. This part is done by Hadoop

cluster with Hadoop’s HBase columnar database extension. The importance of the

Hadoop is, creating searchable indexes for the usage of the search engine. There is

a batch processing indexing job to create ready-to-import index files for Apache Solr

Cloud. Finishing the indexing part brings us to the last part of the project, which is

indexing and searching engine. This part is where the user interacts with the system.

51



Apache Solr Cloud is simply a indexing and searching engine based on Apache Lucine

indexing engine. Solr enables, making searches over the lucine indexes.

Figure 16: Search Engine Architecture

The high level architecture is very simple, but the node count makes the system

unmanageable. There are lots of systems and applications to manage this kind of

clusters, like salt project for sending commands to multiple nodes at once to simplify

the management process. Also monitoring, and alarming is important for knowing the

utilization of the cluster. Therefore Nagios got involved in the project for monitoring

the clusters.

4.4 Discussions

When I explain my thesis, I have mentioned lots of optimizations to improve sys-

tem performance. There is a common way, that I created to make decisions about

52



optimizations. I will try to explain all of them.

4.4.1 Indexing

This is a query oriented optimization, and not suitable for general purpose systems.

If the system administrator indexes all of the fields, at some point the memory will be

full and the system becomes unavailable. If the queries are mostly focused on some

specific fields, such as date, time, user ID etc. indexing becomes reasonable. There is

a basic indexing flowchart for indexing in figure 17. If the example data is like table

Figure 17: Indexing Flowchart

12 and if the system queries’ where clauses are mostly focused on one field like:

Sensor ID Value Date Time
18856 22.5 2014.03.24 18:56:23
18953 25.5 2014.03.24 18:59:15

Table 12: Example Sensor Data

Select count(∗), ′sensor id′ from tbl sensors where date = ’2014.03.24’ order by ′sensor id′

indexing date field becomes reasonable, and the system gets performance increase.
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4.4.2 Partitioning

For partitioning, decision making is more complicated than indexing, because there

are two views to partition a table for Big-Data platforms. The first view is data

view. As I explained in section 4.1.9, small files are problem for Big-Data platforms,

especially for Hadoop, so if the data amount of one partition is too small, partitioning

could decrease the overall system performance. Also the count of the partitions is

very important because each partition occupies space in meta data server of Hive

and the count must be lower than 2048. The second view is the query view. In this

approach, we must react exactly same as the indexing (see section 4.4.1). Partitioning

flowchart shown in figure 18.

4.4.3 Compression

Compression increases system performance for almost all text based data. Specially

text based data could be compressed more efficiently, because for enterprise companies

almost all of the Big-Data sources produce same type of data and data duplication is

very high. Therefore in most text based data cases compression could both increase

system performance, and reduce the storage space needs at once. If single compressed

file size is smaller than the block size of the Hadoop, the system does not requires

split-able compression algorithms. We recommend to use non split-able compression

algorithms because, these algorithms are faster, and have higher compression rates

than split-able algorithms.

For binary data types, it may not so beneficial because almost all the binary data

formats, also include the compression. If the project needs to process uncompressed

binary data types like *.wav audio files, split-able compression algorithms must be

used to get benefit from distribution. the compression flowchart shown in figure 19.
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Figure 18: Partitioning Flowchart
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Figure 19: Compression Flowchart
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4.4.4 OS Level Parameters

The OS level optimizations need for Linux expertise, so I will explain only some of

common optimizations. An Operational system requires a non stop running environ-

ment, and Hadoop opens lots of files at once for processing, network communication

and storage, and if the opened file descriptor count exceeds the maximum file descrip-

tor count, Hadoop crashes. For Linux, the default file descriptor count is 1024, the

command to increase the file descriptor count for system-wide is:

$ s y s c t l −w f s . f i l e −max=100000

For RedHat based Linux distributions there is a security software called SELinux,

to control file and directory access. This software is slows down the file access times, so

closing this software is also increases the system performance. To close SELinux, open

the file in path /etc/selinux/config and change the line SELINUX=enforcing, to

SELINUX=permissive, and after saving the file, restart the server.

A final hint for choosing the operating system, use RedHat for master nodes with

RAID1 configuration for operating system disks, and use CentOS for slave nodes

without any RAID configurations.
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CHAPTER V

CONCLUSION

In this thesis, we report experiences, from real-life projects. Almost all the projects

were owned by, Turkey’s top Telecom, finance and Oil & Gas companies. In conclusion

we have tried lots of techniques, and methodologies: PC clusters, server clusters,

indexing, partitioning, compression, and OS level optimizations.

PC clusters are good at map-only Hadoop jobs. PC’s are not designed for running

24X7, and they are not reliable for mission critical jobs. for instance recall the bank

job (see section 3.2), the job was not mission critical and the customer portfolio

analysis done in the employee computer while out of the business hours.

For Hadoop, the optimizations and the fine-tuning processes feels like I am sitting

in a aircraft’s cockpit, because there are lots of buttons, and parameters. Without

knowing how the buttons and parameters work, the aircraft is still flying but slowly.

The main purpose of this thesis is to prove the benefits and cost effective solutions

could derive results, that almost no appliances could derive this kind of performance

without special data driven optimizations.

Hadoop and its ecosystem can made a real difference in terms of performance.

We proved the price is not always the best indicator for the performance for Hadoop.

The architecture is very important for distributed systems. In section 4.1 the first

phase’s total price was $ 55,000 but the second phase’s query performance was 32

times better, besides its price almost the half of the first phase’s. Also the second

phase’s the ETL performance was three times faster than the first phase.
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