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ABSTRACT

We propose an adaptive and domain-specific service monitoring approach to detect

partner service errors in a cost-effective manner. Hereby, we not only consider generic

errors such as file not found or connection timed out, but also take domain-specific

errors into account. The detection of each type of error entails a different monitoring

cost in terms of the consumed resources. To reduce costs, we adapt the monitoring

frequency for each service and for each type of error based on the measured error

rates and a cost model. We introduce an industrial case study from the broadcasting

and content-delivery domain for improving the user-perceived reliability of Smart TV

systems. We demonstrate the effectiveness of our approach with real data collected

to be relevant for a commercial TV portal application. We present empirical results

regarding the trade-off between monitoring overhead and error detection accuracy.

Our results show that each service is usually subject to various types of errors with

different error rates and exploiting this variation can reduce monitoring costs by up

to 30% with negligible compromise on the quality of monitoring.
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ÖZETÇE

Bu çalışmamızda harici hizmet sağlayıcılardan kaynaklanan hataları tespit etmek

üzere, maliyeti göz önünde bulunduran, uyarlanabilir ve hizmet tipine özel olarak

çalışan bir izleme yaklaşımı öneriyoruz. Bu kapsamda, sadece dosya bulunamaması

ve bağlantının zaman aşımına uğraması gibi hataları bulmakla kalmayıp, hizmet tip-

ine özel hataları da tespit ediyoruz. Hizmet tipine özel bu hataların herbirinin tespiti

için, kullandıkları kaynaklara göre farklı izleme maliyetleri oluşuyor. Bu maliyetleri

düşürmek için hata oranlarına ve maliyetlere göre her hizmetin ve hata tipinin izleme

sıklıklarını uyarlıyoruz. Akıllı televizyon kullanıcılarının yayın ve içerik alanındaki

hizmet güvenilirliklerini arttırmak için endüstriyel bir vaka çalışması sunuyoruz. Yakla-

şımımızın verimliliğini göstermek için akıllı TV uygulamaları tarafından erişilen hizmet-

lerden elde edilen gerçek veriler kullanıyoruz. İzleme maliyetleri ve hata belirleme

doğruluğuna ilişkin deneysel sonuçlarımızı paylaşıyoruz. Sonuçlarımız gösteriyor ki,

her hizmette farklı hata tiplerine farklı oranlarda rastlanıyor ve bu farklılıkları değerlen-

direrek izleme maliyetlerini %30 oranına kadar düşürebiliyoruz.
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CHAPTER I

INTRODUCTION

Service-oriented architecture (SOA) allows composing loosely-coupled services to build

software; a typical SOA may utilize several third-party services. However, relying on

external services comes with a price; if a service fails or has degraded quality, an error

or an unsatisfactory quality can be observed by the users. To remedy this problem,

a monitoring approach [1, 2, 3, 4, 5] can be utilized to tolerate [6] or avoid/mask

[7] detected errors and to measure service quality. Existing approaches are mainly

dedicated to monitoring basic quality factors such as availability, and they detect

only common errors such as file not found or connection timed out. However, there

also exist certain types of errors that are specific and highly relevant to particular

application domains. For example, services that provide audio/video content over

broadband connection might be subject to a variety of content-related errors such

as wrong URLs, faulty feeds (e.g. unsupported formats and codecs), or undesired

quality (e.g. low resolution). These problems may result in fatal errors, audio/video

freezes, long buffering periods, synchronization errors, and poor customer satisfaction.

Detecting each kind of content-reated problem entails a different monitoring cost in

terms of the consumed computational resources. For instance, on one hand, a simple

ping request is sufficient to check system availability. On the other hand, to detect

a codec-related error in a video file, the file should be partially downloaded and the

header of the video must be examined. Our work in this thesis is built on top of this

observation: different error types have different monitoring costs. This variation of

cost has not been considered by the service monitoring approaches proposed so far.

We motivate our work based on the architecture and use case of so called “Smart
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TVs”. Smart TVs enjoy the existence of broadband connection that has become

available to TV systems. Various third-party services are used in Smart TVs, includ-

ing video content providers, popular social media platforms and games. In particular,

video-audio content is considered to be among the most important services for Smart

TVs [8]. In this work, we investigated a Smart TV portal application developed by

Vestek1, a group company of Vestel, which is one of the largest TV manufacturers in

Europe. The portal application is being utilized by Vestel as an online television ser-

vice platform in Turkey. There are more than 200 third-party services in the portal,

providing audio/video content, news, weather and finance information, games, social

networking, etc. 70% of these services stream video content. The mostly-used appli-

cations are also video streaming applications like Youtube, BBCiPlayer, Netflix, and

Turkish national channels. The portal has currently more than 150,000 connected

TVs. This number increases by about 7,000 every week.

Smart TV market is very competitive; companies strive to provide richer content

and more features to their customers by extremely strict deadlines. This pressure

magnifies the importance of customer satisfaction. Because the Smart TV portal relies

heavily on third-party providers, availability and quality of external services is vital

to Smart TV systems. Vestek executes a test application daily to monitor the third-

party services. The test application visits the given URLs, checks their availability,

downloads and plays a portion of the audio/video content, and reports the findings

so that broken links can be fixed and unsupported content types can be replaced.

Some of the content providers frequently change their APIs and migrate/delete their

contents without an effective notification mechanism. Therefore, it is common that

the test application finds several errors — most typically missing content and video

codec errors.

1http://vestek.com.tr
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In this thesis, we propose an adaptive monitoring strategy. Adapting the fre-

quency of monitoring is not a new idea; the novelty in our work is based on the

observation that there are certain error types specific to the domain that require

separate treatment. Hence the monitoring frequency is adapted based on not only

the service availability [9], but also different types of errors relevant for the service.

We expect cost-reduction benefits from this adaptation to be significant, because al-

though third-party services usually have high availability rates, they have much lower

scores when it comes to domain-specific problems. This is because an unsupported

codec or a URL change, for instance, are types of errors that occur at the user-side,

not at the provider-side. Hence, providers usually fix these problems only when re-

ported by the users. From the customer’s point of view, however, a codec error is just

as disturbing as unavailability because what is observed in both cases is the same: a

video playback error.

Contributions: In this work we make the following contributions.

• We propose domain-specific adaptation of the monitoring frequency based on

the temporal history and the error rate for a particular partner service and error

type.

• We formulate a cost model to measure the cost of monitoring. Our cost model

is based on the price of paid resources consumed by the monitor in the cloud.

• We present an industrial case study from the broadcasting domain, where the

utilization of third party Web services become predominant. We provide data

set collected by using the Amazon Elastic Compute Cloud (EC2) [10] and Mi-

crosoft Azure [11] to monitor dozens of services from different locations for more

than one month. We evaluate the effectiveness of adaptive domain-specific mon-

itoring on this real-world data, using the cost model we derived. We also share

our data set with the research community to enable further analysis.
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Our results show that each service is indeed subject to various types of errors with

different error rates. We exploit this variation in the broadcasting domain and show

that monitoring costs can be reduced by up to 30% by compromising error detection

accuracy negligibly.

Here, we focus on the Smart TV domain and take codec-checking as a domain-

specific monitoring action. However, the approach we present is not limited to this

domain, nor tied particularly to codec-checks. The adaptation approach we propose

is applicable to any domain where various error types are experienced and each error

incurs a different cost.

This thesis is organized as follows. In Chapter II, we introduce Vestel Smart

TV Portal and explain data collection process and features of the collected data set.

In Chapter III, we introduce a set of analytical metrics and related mathematical

analysis with an experimental evaluation. An industrial case study for improving the

user-perceived reliability of Smart TV systems is given in Chapter IV. In Chapter V,

related previous work is summarized. Finally, in Chapter VI we discuss possible

extensions of this work for the future and provide the conclusions.
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CHAPTER II

EXPERIMENTAL SETUP AND DATA COLLECTION

Two times, for periods of five weeks, we monitored a set of third party services used by

Vestel’s Smart TV portal to collect real-world data regarding errors. We then applied

various monitoring approaches to these data as offline processes. We compared the

approaches according to the cost savings they offer, and the compromise they make

on the quality of monitoring. In this section we explain the experimental setup we

used and provide statistical information.

2.1 Vestel Smart TV Portal

There exist around 80,000 daily connections to the Vestel Smart TV portal from

25,000 different TV systems. These connections are related with various types of

services, of which approximately 52% are based on image and video content; 15%

are life-style and social networking applications; 9% provide text-based information.

Services that are dedicated to sports, music, and games constitute 3%, 3%, and 2%

of the whole set of services, respectively. The remaining 16% include miscellaneous

services. 75% of all the services are free, whereas the rest of the services are paid.

2.2 Data Collection Process

We identified the 6 mostly used service providers that provide content for free on the

Vestel Smart TV portal. Half of these service providers are associated with nation-

wide TV channels in Turkey, and they stream video. The other half provide short

videos and text-based content.

We developed a data collection application (DCA) to monitor the selected services

and create our data set for offline processing. We first ran DCA on three different
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machines deployed to Amazon’s Elastic Compute Cloud (EC2) [10] for five weeks.

These instances were located in the USA, Ireland, and Japan. For the first data

collection period, we wanted to collect data from geographically far away locations

because each DCA has its own view of the network. We wanted to see whether

the results from different locations are consistent with each other. Each instance on

Amazon EC2 and Microsoft Azure ran DCA individually and independent from the

others. They queried each service with a period of about 40 minutes. Each DCA had

its own database where the results are stored. Later, we deployed DCA to Microsoft

Azure [11] and ran it for another five weeks. This time we have deployed only one

instance, which was located in Ireland.

For text-based services, DCA checks the availability over HTTP. If the service

returns HTTP 200 (OK), the response time is logged into the database. In case of

an error, the error stack trace along with the error code is stored. The video services

return a page in JSON or XML format where the video links are included. DCA

parses the contents, obtains video URLs, and puts these URLs into the list of URLs

to be checked. A video service potentially returns a different list of videos each time

it is queried (e.g., the video links returned for the category of “cats” are likely to

be updated frequently). Hence, the set of videos monitored in each period may have

differences with the previous one.

For each video link, DCA first checks the video’s codec type, which is included in

the first 1024 Kbytes of the video request response. If no proper codec is found in this

header, an error message is logged for the corresponding service. If a proper codec is

found, DCA attempts to play the frst three seconds of the video1 using the Windows

Media Player API. If the video player successfully plays the video, DCA logs the

successful response in the database along with the video duration, file size, resolution

1Even if the file header is fine, the content can be inconsistent with the header. Such cases can
be revealed by actually playing the video.
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and bit rate information. If any problem is encountered during video replay, the error

message raised from the player is logged in the database.

2.3 Collected Data Set

Both the DCA instances on Amazon EC2 and the one deployed to Microsoft Azure

ran for five weeks. We observed that the data collected from Amazon EC2 at different

geographical locations were consistent with each other. This was confirmed by the

cosine similarity measures of error rates between data sets collected from each pair

of locations: Japan-Ireland (0.99), Japan-USA (0.98) and Ireland-USA (0.97). But

the DCA instance on Microsoft Azure ran on different time interval so error rates

are different from Amazon EC2 error rates. Therefore, we used the results from

one of the DCA instances on Amazon EC2 and DCA instance on Microsoft Azure.

We selected the DCA instance deployed in Ireland for Amazon EC2 since it is the

closest geographical location to Turkey. The data we collected are publicly available

at http://srl.ozyegin.edu.tr/projects/fathoms/.

Amazon EC2 collected data revealed that in total 132,532 requests were made to

51 different services of the selected 6 service providers. Among these requests, 8127

requests were subject to “HTTP 404 not found” error and 9079 requests were subject

to a “codec error”. Microsoft Azure collected data revealed that in total 113,966

requests were made to 45 different services of the selected 6 service providers. Among

these requests, 169 requests were subject to “HTTP 404 not found” error and 11926

requests were subject to a “codec error”.
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CHAPTER III

ADAPTIVE DOMAIN-SPECIFIC MONITORING

The aim of monitoring a third-party service is to detect when it raises errors and

notify the client so that the client may omit using the service or may be directed to

an alternative service, and hence avoid the error. A monitor that notifies the clients as

soon as a service state change occurs is considered to be high quality. To achieve high

quality, monitoring should be done very frequently. However, frequent monitoring

puts a high load on the monitoring server. To reduce the associated costs, frequency

should be kept as low as possible. This raises a trade-off between the quality and cost

of monitoring.

To answer the question of how frequent monitoring should be done, we take a

domain-specific, adaptive approach. In Section 2.2 we explained how a video codec

error checking is different than checking a text-based service. The associated costs

also differ significantly as the former requires downloading a piece of the video and

playing it. We adapt the frequency of monitoring by taking into account the history

of the occurrence of particular errors for a particular service. If a service has been

relatively healthy for a certain error check, following the temporal locality principle,

we decrease the corresponding frequency of monitoring in anticipation that the service

will continue to be in good status regarding the same error type. When considering

the history of a service, we put more value on the recent past than the older history,

and make this adjustable via a parameter.

In the following we first present the model we used to calculate the costs incurred

by monitoring, followed by the parameters we used for adaptation.
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3.1 Cost Model

The goal of our work is to reduce the cost of monitoring. Text-based services consume

very little of the network bandwidth, and require almost no computation. Therefore,

their cost is negligible when compared to video-based services. Checking a video

service consumes resources in two dimensions: (1) part of the video is downloaded,

using the network connection, (2) the downloaded video is played, consuming CPU

time. Hence, the cost of a video service check, Cvideo, is

Cvideo = (Size× Cnet) + (Duration× Ccpu)

where

Size is the size of downloaded piece of the video

Cnet is the cost of network usage per unit size

Duration is the duration of the video

Ccpu is the cost of using the CPU per unit time

In our case, the Duration parameter is fixed as 3 seconds (recall that we only play

the first 3 seconds of the video). The size of a video is on the average 705 Kbytes

for 3 seconds of video content, and the file header is 1024 bytes, adding up to 706

Kbytes in total. The parameters Cnet and Ccpu depend on the cloud provider and the

allocated instances. For instance, Ccpu is currently around $0.15 per hour, based on

the pricing of Amazon [10], Microsoft Azure [11] and Google Cloud [12]. If a service

has a charge, it should also be included in the formula; in our case all the services are

free, therefore we ignore this issue.

Under these assumptions, the total cost of monitoring, denoted as C, is

C = (# of videos checked)× Cvideo

Hence, C is directly proportional to the number of video checks performed.
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Undetected client-side errors affect customer satisfaction and thus indirectly incur

costs (e.g., by influencing the customers’ perception of the brand). Because measuring

this effect is outside the scope of our study, we do not include customer satisfaction

in our cost model; instead, we define the quality of monitoring, denoted Q, as

Q = # of detected errors

because the more number of errors monitoring detects, the better the quality of

monitoring is. The quality gets compromised as more errors are left undetected and

as such, the error detection accuracy is degraded.

In our evaluation of adaptation, we present the reduction of total cost along with

the change in the quality of monitoring.

3.2 Adaptation of Monitoring Frequency

We adapt the frequency of monitoring a service against a particular error type based

on the history of occurrence of that error type for that service. To refer to the

past, time is divided into enumerated periods (e.g., day 1, day 2, etc.). To keep the

discussion straightforward and without loss of generality, we limit ourselves to two

types of errors, availability and codec, with the following counts:

Vi is the total number of video checks during the time period i.

Eavaili is the number of availability errors during the time period i.

Ecodeci is the number of codec errors during the time period i.

Note that an availability check is a prerequisite to a codec check: if a video is

unavailable, no codec validation can be made. So, the codec error rate at time period

i, denoted as Êcodeci , is defined as

Êcodeci =
Ecodeci

Vi − Eavaili

10



Based on these, the accumulated error rate (AER) at the end of the time period

n, denoted as AERn, is

AERn =


Êcodec0 if n = 0

α ∗ AERn−1 + (1− α) ∗ Êcodecn if (n > 0)

where α is a coefficient (0 ≤ α ≤ 1) that allows us adjust the weight of the calculated

past AER values on calculating the current one. If α is 0, calculation of AER does

not depend on the past AER values but is completely determined by the error rate

measured in the latest time period. As α gets closer to 1, previously calculated AER

values have more influence on the future. Also note that according to this formulation,

a relatively older error rate has less influence on the current value than a more recent

error rate. This means, the effect of a measured error rate gradually diminishes as

time goes by.

At the end of each time period, AER is calculated according to the formula above.

Then, the monitoring frequency is adjusted based on this AER. The new frequency

is used during the next time period. Frequencies are set using a frequency pattern. A

frequency pattern is a circular bit-value sequence read from left to right where each

bit value denotes whether to skip the corresponding test. For instance, the bit pattern

1110 means that for every four checks, the last codec check shall be skipped, resulting

in 25% reduction compared to the original number of codec checks. Availability checks

are always performed, regardless of the adopted pattern.

Frequency mappings with regard to AER values are given in Table 1. The table

is interpreted as follows. For instance, if frequency scheme F8 is in effect, frequency

pattern 1000 is used when AER is less than or equal to 0.1%; pattern 100 is used when

AER is larger than 0.1% but less than or equal to 0.2%, and so on. For AER values

that are larger than 0.5%, the full frequency pattern is used. Frequency schemes

have a varying level of conservatism. On one hand, F0 is very conservative; it uses

11



Scheme Accumulated error rate cutoff values (%)
F0 - - - - 0 100
F1 - - - 0 0.001 100
F2 - - 0 0.001 0.002 100
F3 - 0 0.001 0.002 0.003 100
F4 0 0.001 0.002 0.003 0.004 100
F5 0.001 0.002 0.003 0.004 0.005 100
F6 0.01 0.02 0.03 0.04 0.05 100
F7 0.05 0.1 0.15 0.2 0.25 100
F8 0.1 0.2 0.3 0.4 0.5 100
F9 1 2 3 4 5 100

Frequency
patterns

1000 100 10 110 1110 1

Table 1: Adaptation schemes for the monitoring frequency based on accumulated
error rates.

frequency pattern 1110 (and hence reduces corresponding frequency by 25%) only

for extremely reliable services where AER = 0. On the other hand, F9 is the most

aggressive/optimistic approach; it reduces the frequency of monitoring for any service

that has an AER value of 5% or less. In the following section, we evaluate how these

frequency schemes compare in terms of cost savings and quality of monitoring.
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CHAPTER IV

EVALUATION

We evaluate the effectiveness of frequency adaptation by simulating an adaptive mon-

itor according to the original data collected during our five-week testing periods (see

Section 2.2). Recall that the data contain responses of services to requests sent in

periods of approximately 40 minutes. We call a single 40-minute period a test batch.

Based on the frequency pattern associated with a service, the simulator may skip

monitoring the service in a particular test batch. If the pattern requires the service

to be monitored, the simulator reads the response from the collected data instead

of sending an HTTP request to the service. This way, our simulator behaves like a

second monitor that would have been monitoring requests at exactly the same time

as the actual monitor. The only difference is that some subset of the test batches for

certain services would have been skipped. During the simulation, for each service,

we calculate AER values at the end of each day. The current error rate, Êcodeci , is

calculated over the last three days. In the following, we present our results for the two

data sets we collected; the one collected by the monitor deployed on Amazon EC2,

and the data set that was collected later by another monitor deployed on Microsoft

Azure. In the rest of this chapter, we will refer to these data sets as EC2 and MA,

respectively.

Figure 1 and Figure 2 show the ratio of skipped codec checks to the number of

checks in the original monitor for EC2 and MA, respectively. Recall that the more

codec checks we skip, the more we can save on the cost of monitoring; therefore,

larger numbers mean more savings. It is not surprising to see that conservative

schemes provide less savings (as little as ∼15% skipped checks in F0 for EC2 and

13



Figure 1: The change in the ratio of skipped codec checks to the number of checks
in the original monitor for Amazon EC2. Recall that the number of codec checks
is directly proportional to the cost of monitoring; hence, this graph illustrates cost
savings.

∼10% skipped checks in F0 for MA), whereas significant savings can be obtained

when the scheme is more liberal (57% omitted checks in F9 for EC2 and 60% omitted

checks in F9 for MA). Also notice that savings gradually decrease as we increase α

in MA, that is, as we decrease the role of current error rate and put more weight in

older history when determining the new frequency pattern. On the other hand, cost

savings remain the same for most of the F values in EC2. This is due to the relatively

stable error rates observed for EC2. For both figures, we can see a sudden increase

for α = 1. This is because of the fact that the monitoring is performed based on only

the first observed error rate when α = 1. The monitoring frequency is not adapted

according to the error rates that are observed thereafter.

Figure 3 and Figure 4 shows the ratio of undetected codec errors to the number

of codec errors in the original monitor for EC2 and MA, respectively. Recall that the

fewer errors we miss, the higher the quality of monitoring. Therefore, smaller numbers

14



Figure 2: The change in the ratio of skipped codec checks to the number of checks in
the original monitor for Microsoft Azure.

mean better quality. Not surprisingly, conservative schemes miss fewer errors; at the

extreme, F0 misses no errors for MA when the α value is between 0.1 and 0.99 and

misses as little as ∼1% for EC2. On the other hand, in our most optimistic scheme

F9, up to 4.4% of the codec errors go unnoticed for EC2 and up to 30% of the codec

errors go unnoticed for MA.

Finally we consider the combination of cost savings and quality. Ideally, one

would like to cut costs as much as possible while keeping the quality high. The two

are competing factors; to reduce costs, we need to decrease the frequency, which

results in worse quality by failing to detect errors. To be able to find an optimum

case, we define the following function to give an effectiveness score, denoted as F , to

a monitoring configuration.

F = (rate of skipped checks)− β × (rate of undetected errors) (1)

In this formulation, the effectiveness depends on how much weight, via the β
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Figure 3: Ratio of undetected codec errors to the number of codec errors in the
original monitor for Amazon EC2. Recall that the number of undetected codec errors
is inversely proportional to the quality of monitoring.

parameter, is given to the undetected errors as opposed to skipped checks. If the

calculated score is negative, we conclude that the corresponding configuration is not

feasible because the quality of the monitor has been compromised beyond the accept-

able limits by failing to detect errors.

Figures 5, 7, and 9 show the effectiveness score of monitoring for EC2, when β

is set to 10, 30, and 50, respectively. Figures 6 and 8 show the effectiveness score of

monitoring for MA when β is set to 10, and 30, respectively. We did not plot the

effectiveness score of monitoring for MA when β is set to 50. This is due to the high

error rates observed for MA, which lead to negative effectiveness scores for high β

values. Even when β is set to 30, the effectiveness scores for many schemes turn out

to be less than 0 (See Figure 8).

As it can be observed in the presented figures, more liberal schemes lose ranking

as the quality of monitoring is given more weight. In Figure 7, for instance, F9 is
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Figure 4: Ratio of undetected codec errors to the number of codec errors in the
original monitor for Microsoft Azure.

not even in the window of positive scores, hence it is not an acceptable choice; in

Figure 6, part of all F values except F0 are below the 0-line. For all effectiveness

score graphs, α is between 0.9 and 1 is the most effective configuration. In this case,

when β = 50 for Amazon EC2, F5 scheme for α = 0.9, the cost of monitoring can be

reduced by a significant amount of 34% by compromising the error detection accuracy

by 0.2%. Even when F1 scheme is adopted for α = 0.9, the monitoring cost is reduced

by more than 10%, while the ratio of undetected errors is 0.04%. Hence, significant

cost savings can be made by compromising the monitoring quality (error detection

accuracy) negligibly.

We can measure the amount of cost reduction based on current prices of cloud

services and the cost model that was described in the previous chapter. Cost of CPU

is currently around $0.15 per hour, based on the pricing of Amazon [10], Microsoft

Azure [11] and Google Cloud [12]. Only Google Cloud has network usage cost; so, we

ignore this cost. In Vestel portal, we have approximately 100 video services. Each one
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Figure 5: Effectiveness scores, calculated according to Equation 1 for Amazon EC2
when β = 10.

of them has more than 100 video links. According to our model the cost reduction

would be $1000.8 to $32.4 every month, and $12900.6 to $38800.8 every year.

Figures 10 and 11 show error rate variations of EC2 and MA. Variations in MA

are more unsteady with regard to EC2, especially for service numbered 3, 5, 9, and

10. Most of the service error rates observed in EC2 are sinusoidal. This is why 0.9

turns out to be the best choice for α when we consider the effectiveness scores for

MA (See Figures 6 and 8). Because if the changes become more unsteady, we have to

decrease the importance of last observed error rate to achieve the best effectiveness

score. If the changes are steady like Amazon data, there is no significant changes

between the α values.
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Figure 6: Effectiveness scores, calculated according to Equation 1 for Microsoft Azure
when β = 10.

Figure 7: Effectiveness scores, calculated according to Equation 1 for Amazon EC2
when β = 30.
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Figure 8: Effectiveness scores, calculated according to Equation 1 for Microsoft Azure
when β = 30.

Figure 9: Effectiveness scores, calculated according to Equation 1 for Amazon EC2
when β = 50.
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Figure 10: Error rates of services for Amazon EC2.

Figure 11: Error rates of services for Microsoft Azure.

21



CHAPTER V

RELATED WORK

There have been many service monitoring approaches [1, 2, 3, 4, 5] proposed in the

literature to tolerate [2] or avoid/mask [9] detected errors in external services. Tech-

niques and tools have been introduced to automatically generate online monitors

based on Service Level Agreement (SLA) specifications [13]. These approaches mainly

adopt reactive monitoring. Hence, an adaptation can occur only after observing a

failure. Online testing of Web services [14] was introduced for facilitating pro-active

adaptation. This approach employs functional testing where test cases are generated

and executed based on a functional specification [15]. In general, service monitor-

ing approaches proposed so far rely on such standard specifications (or SLAs) and

they consider only common quality attributes such as reliability, throughput and la-

tency. However, standard specifications fall short to express domain-specific errors

(e.g., codec-related errors while using a video content delivery service) to detect them

and to facilitate runtime adaptation with respect to these error types. We have previ-

ously studied adaptive service monitoring for cost-effectiveness [9] but the scope of the

study was only a single monitor that considers a single quality attribute (availability)

regarding services.

There have been also other approaches that adopt adaptive monitoring; however,

the majority of these [16, 17, 18, 19, 20] are concerned with the monitoring of hardware

resources such as memory, disk and CPU. Other adaptive approaches [21] mainly focus

on general properties of web services such as the availability and response time. There

are a few studies, where domain-specific cases are considered. For instance, adaptive

monitoring was discussed for dynamic data streams [22]. In this domain, each user
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has a varying interest in each type of information. The approach exploits this fact and

adapts the monitoring mechanism for each user. Another approach for monitoring

streaming data [23] was proposed for providing adaptivity based on changes in the

content of data. Hereby, they propose an algorithm to detect changes in data. The

monitoring frequency is adapted based on the detected changes. A similar approach

was proposed for adaptive process monitoring [24] as well.

Domain-specific quality attributes have been taken into account in a recent study

[25] for service selection. However, the proposed service selection approach consid-

ers service monitoring to be out-of-scope and the selection of services is performed

based on monitoring results assumed to be available. A toolset and ontology have

been previously proposed [26] to express and monitor custom quality attributes re-

garding Web services. The toolset enables the specification of custom quality metrics

but these metrics are defined in terms of only a standard set of service properties

and measurements including, for instance, price, delay, throughput, the number of

packets lost and availability. The approach does not support the incorporation of

custom domain-specific service properties or errors. Similarly, previously proposed

customizable service selection policies [27] rely on reactive monitoring of common

service properties such as service cost (price), bandwidth and availability.
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CHAPTER VI

CONCLUSION

We introduced a novel domain-specific service monitoring approach. We instanti-

ated our approach for detecting errors specific to the services in the broadcasting

and content-delivery domain. We developed a cost model for calculating the mon-

itoring overhead in terms of the consumed resources in the cloud. The monitoring

frequency for each type of error is dynamically adapted based on this cost model and

the measured error rates. We prepared an extensive data set by monitoring services

used in a commercial Smart TV from a set of monitors deployed in the cloud. We

observed more than 30% reduction in monitoring costs without compromising the

error detection accuracy significantly.

Our approach can be applied to other application domains as well. In the future,

we plan to develop a plug-in architecture to provide a generic framework that can be

extended with custom monitor implementations for different domains. The execution

of these monitors will be managed by the framework based on a configurable cost

model.
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