
COMBINED AES + AEGIS ARCHITECTURES FOR
HIGH PERFORMANCE AND LIGHTWEIGHT

SECURITY APPLICATIONS

A Thesis

by

Furkan Şahin

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in the
Department of Electrical and Electronics Engineering

Özyeğin University
August 2014

Copyright c© 2014 by Furkan Şahin

COMBINED AES + AEGIS ARCHITECTURES FOR
HIGH PERFORMANCE AND LIGHTWEIGHT

SECURITY APPLICATIONS

Approved by:

Assoc. Prof. H. Fatih Uğurdağ,
Advisor
Department of Electrical and
Electronics Engineering
Özyeğin University

Asst. Prof. Tolga Yalçın, Co-Advisor

University of Information Science and
Technology, Macedonia

Assoc. Prof. Sezer Gören Uğurdağ
Department of Computer Engineering
Yeditepe University

Asst. Prof. Tankut Barış Aktemur
Department of Computer Science
Özyeğin University

Asst. Prof. Ali Özer Ercan
Department of Electrical and
Electronics Engineering
Özyeğin University

Date Approved: 20 August 2014

To my family

iii

ABSTRACT

Cryptography is going into everything, from bank cards to cell phones, cars,

communication devices, cloud services, etc. There are many cryptographic algo-

rithms to protect information from unauthorized accesses. The Advanced Encryp-

tion Standard (AES) is the most important block cipher today, since it is ratified as

a standard by National Institute of Standards and Technology of the United States.

It’s proven security and reasonable resource usage makes it a right choice for almost

all new applications. Several versions of AES have been implemented in both hard-

ware and software with design targets varying from high-performance to lightweight.

Since today’s information security applications require both confidentiality and au-

thentication, authenticated encryption (AE) has gained more importance. AES is

considered by many cryptographers as the most appropriate choice for AE implemen-

tations. More recently, special AE schemes that utilize AES in its native form (or

with minimal modifications) have emerged. While these modes claim better perfor-

mance and resource usage, very few implementations exist to support these claims,

yet. In this thesis, AES is combined with one of the most recent AE ciphers, namely

AEGIS, in an effort to analyze the combined performance and resource usage of the

two ciphers. This thesis proposes and implements in hardware two different architec-

tures (i.e., high-performance and lightweight) for AES and AEGIS combined as well

as AES alone, hence four architectures in total. This work is the first work to our

knowledge to report a hardware implementation of AEGIS as well as it’s combined

implementation with AES, which reuses most hardware resources between AES and

AEGIS. Implementation results obtained by using UMC 90nm low-leakage standard

cell library and Cadence RTL Compiler are also reported and evaluated.

iv

ÖZETÇE

Günümüzde kriptografi banka kartlarından telefonlara, arabalardan haberleşme

araçlarına ve bulut hizmetlerine kadar pek çok alana girdi. Dijital bilgiyi yetk-

ilendirilmemiş erişimlere karşıkorumak için bir çok şifreleme algoritması mevcuttur.

Gelişmiş Şifreleme Standardı (AES) Amerikan Ulusal Standartlar ve Teknoloji En-

stitüsü (U.S. NIST) tarafından standart şifreleme algoritması olarak onaylandıktan

sonra en önemli blok şifreleyici olmuştur. AES’in kanıtlanmış güvenliği ve makul

donanım kullanımı onu yeni bilgi güvenliği uygulamaları için mantıklı bir seçim

yapmaktadır. Bugüne kadar, yüksek performanstan düşük alan kullanımına kadar

pek çok tasarım yaklaşımını hedefleyen AES versiyonları donanımsal ve yazılımsal

olarak gerçeklendi. Ancak günümüz bilgi güvenliği uygulamaları hem gizlilik hem

de kimlik doğrulama gerektirdiği için, kimlik doğrulamalı şifreleme giderek daha çok

önem kazanmaktadır. AES, bir çok kriptografi bilimcisi tarafından kimlik doğrulamalı

şifrelemenin gerçeklenmesinde mantıklı bir seçim olarak düşünülmektedir. Son za-

manlarda literatürde, AES algoritmasını olduğu gibi kullanan ya da AES’te küçük

değişiklikler yaparak kullanan kimlik doğrulamalı şifreleme algoritmları çokça gözük-

meye başlamıştır. Bu yeni kimlik doğrulamalı şifreleme algoritmalarının bazılarında

daha iyi performans ve daha az kaynak kullanımı başarılabileceği iddia edilmekte-

dir. Ancak bu algoritmalar henüz literatüre yeni girdiği için bu iddiaları destekleyen

çok az donanım gerçeklemesi mevcuttur, hatta bazıları donanımsal olarak henüz

gerçeklenmemiştir. Bu tezde AES’i, çok yakın zamanda literatüre giren AES tabanlı

kimlik doğrulamalı şifreleme algoritması olan AEGIS ile aynı donanımda birleştiren

mimariler tasarlanmştr. Buradaki amacımız iki algoritmanın tek bir devrede gerçeklen-

mesine örnek teşkil edecek bir mimari sunmak, birleşik performans ve donanım kaynağı

v

kullanımını analiz etmek ve AEGIS’ın tasarımcılarının kaynak kullanımı konusun-

daki iddialarının tartışılabileceği sentez sonuçları elde etmektir. Ayrıca bilgilerim-

ize göre literatürde AEGIS’ın donanımda gerçeklenmesini sunan bir çalışma henüz

yapılmamıştır ve AEGIS ilk kez bu çalışmada donanımsal olarak gerçeklenmiştir. Bu

tezde yüksek performans ve az donanım kaynağı kullanan olmak üzere iki değişik,

birleşik AES + AEGIS donanım mimarisi sunulmuş ve bu devreler Verilog donanım

tanımlama dilinde (Verilog HDL) yazmaç transfer seviyesinde (RTL) kodlanmıştır.

Ayrıca sadece AES şifrelemesi yapan devreler de gerçeklenip, her iki birleşik mi-

marinin kaynak kullanımı bu devreler ile kendi kategorisinde kıyaslanmıştır. Devreler

UMC 90nm standart hücre kütüphanesiyle ve Cadence RTL derleyicisi kullanılarak

gerçeklenmiştir. Sentez sonuçları raporlanmış ve değerlendirilmiştir.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisors Assoc. Prof.

H. Fatih Uğurdağ and Asst. Prof. Tolga Yalçın for their continuous support during

my M.S. work, for their care, patience, immense knowledge and invaluable guidance.

It would not have been possible to complete this thesis without their understanding.

Besides, I want to thank Assoc. Prof. Sezer Gören, Asst. Prof. Ali Özer Ercan

and Asst. Prof. Tankut Barış Aktemur for taking part in my thesis committee and for

dedicating their valuable time to my thesis. Their helpful comments and feedbacks

improved the quality of this thesis.

Also, I express my warm thanks to all of nEMESysLab people who made my

life enjoyable during my graduate studies. Especially, Fatih Temizkan, Bilgiday Yüce,

Waqas Hussain, Mustafa Tosun, Ahmet Kakacak, Mert Kaya, Aydın Emre Güzel,

Mehmet Polat Küntüz, Gökhan Güner, Abdullah Yıldız and Batuhan Yapanoğlu.

Finally, I am most grateful to my family for their love and endless support.

vii

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGEMENTS . vii

LIST OF TABLES . xi

LIST OF FIGURES . xii

I INTRODUCTION . 1

1.1 Motivation . 2

1.2 Previous Work . 3

1.3 Outline . 3

II MATHEMATICAL PRELIMINARIES 5

2.1 Finite Field . 5

2.2 GF(2m) Extension Fields . 5

2.3 GF(2m) Addition . 6

2.4 GF(2m) Multiplication . 6

2.5 GF(2m) Inversion . 7

III AES OVERVIEW . 10

3.1 Notation and Conventions . 10

3.1.1 Inputs and Outputs . 10

3.1.2 The State . 10

3.2 AES Encryption Algorithm . 11

3.3 AddRoundKey . 13

3.4 SubBytes . 14

3.5 ShiftRows . 15

3.6 MixColumns . 15

viii

3.7 Key Expansion . 16

IV AEGIS OVERVIEW . 18

4.1 Notations, Variables and Functions 18

4.1.1 Notations . 19

4.1.2 Variables and Constants . 19

4.1.3 Functions . 20

4.2 AEGIS-128 . 20

4.3 The Initialization Phase of AEGIS-128 21

4.4 The Authenticated Data Processing Phase of AEGIS-128 21

4.5 The Encryption Phase of AEGIS-128 21

4.6 The Finalization Phase of AEGIS-128 22

V HIGH PERFORMANCE AES + AEGIS ENCRYPTION CORE
ARCHITECTURE . 23

5.1 An Iterative Standalone AES Encryption Core Architecture 23

5.1.1 Input Logic . 23

5.1.2 State Registers . 25

5.1.3 Round Unit . 25

5.1.4 KeyRound Module . 27

5.1.5 Output Registers . 28

5.2 Combined AES + AEGIS Architecture 28

5.2.1 Input Logic . 30

5.2.2 State Registers . 33

5.2.3 The Round Unit . 34

5.2.4 AEGIS Finalization-Tmp Unit 34

5.2.5 Output Logic . 34

VI LIGHTWEIGHT AES + AEGIS ENCRYPTION CORE ARCHI-
TECTURE . 36

6.1 Top Level I/O ports . 38

6.2 S-box Module . 39

ix

6.3 Byte Permutation Unit . 39

6.4 MixColumns Multiplier . 39

6.5 Modified Parallel-to-Serial Converter 40

6.6 AEGIS State Registers . 41

6.7 Key Expansion Unit . 42

6.8 AEGIS const ROM . 43

6.9 AEGIS finalization tmp Register . 43

6.10 Delay Unit . 44

6.11 Output Logic . 44

VII CONCLUSION . 45

REFERENCES . 47

VITA . 49

x

LIST OF TABLES

1 AES key sizes and number of rounds (Nr) 13

2 Cycle counts for AEGIS-128 and AES-128 operation phases 30

3 data in schedule for AES-128 and AEGIS-128 operation phases 32

4 The m signal of input logic for AES-128 and AEGIS-128 operation phases 33

5 State register contents for AES-AEGIS operation cycles 34

6 data out schedule for AES and AEGIS 35

7 Cycle counts for lightweight AEGIS-128 and AES-128 operation phases 38

8 Input schedule for data in . 38

9 Register and output schedule for byte permutation unit 40

10 MixColumns multiplier registers contents for a column multiplication 40

11 Output schedule for data out . 44

12 Synthesis results . 45

xi

LIST OF FIGURES

1 GF(28) inversion block diagram . 9

2 AES inputs and outputs . 11

3 AES I/O and state conventions . 12

4 AES AddRoundKey transformation 14

5 AES SubBytes transformation . 15

6 AES ShiftRows transformation . 15

7 AES MixColumns transformation . 16

8 Standalone AES architecture . 24

9 AES SubBytes module . 25

10 SubByte module . 26

11 ShiftRows module . 26

12 MixColumn module . 27

13 MixColumns module . 28

14 The KeyRound module . 29

15 The SubWord module . 30

16 The RotWord module . 30

17 Combined AES + AEGIS encryption core architecture 31

18 Lightweight AES + AEGIS encryption core architecture 37

19 Byte permutation unit . 39

20 MixColumns multiplier . 41

21 Modified parallel-to-serial converter 42

22 AEGIS state registers . 42

23 Key expansion unit . 43

xii

CHAPTER I

INTRODUCTION

Information security is gaining more importance everyday. Today, computation

and communication devices are everywhere. People make monetary operations on

their bank account via personal computers, mobile phones and tablets. Military and

intelligence informations are mostly secret, so they must be kept secure also. Various

cloud services also wide spread. People transfer and store their critical data on a

cloud servers. Therefore it is very important and critical to guarantee information

security, privacy and authenticity. Tool for the information security is cryptography.

The word cryptography originates from Greek words of kryptos (hidden, secret)

and graphein (writing) [1]. Cryptography is defined as the science of protecting

information by transforming it into an unintelligible format, called cipher text. Only

those who possess the secret key can decipher the message back to plain text.

Cryptography is a new and growing field; it gained much importance with dig-

ital communication becoming widespread . However, it is also an old business, it’s

early examples dating back to about 2000 B.C. [2]. Ancient Egyptians used secret hi-

eroglyphics. Hiding information has always been important for human beings. In the

earlier times, simple cryptographic algorithms such as Caesar substitution was used.

As time progress, cryptography evolved into today’s modern cryptography. With

increasing security needs, many cryptographic algorithms were developed, and they

have been implemented in both hardware and software by researchers and engineers.

Some of them are broken by attackers, some of them has proven secure and unbroken

to this date. The most well-known one is the Advanced Encryption Standard (AES)

[3]. It is approved by Federal Information Processing Standards in 2001. Since AES

1

was introduced, many attackers have tried to break it, no one has been successful yet.

The protection of a message involves both confidentiality and authenticity.

1.1 Motivation

The Advanced Encryption Standard (AES) is the most widely used symmetric

cipher today. The AES block cipher is mandatory in several industry standards and

is used in many commercial systems. The Internet security standard IPsec, TLS, the

Wi-Fi encryption standard IEEE 802.11i, the SSH (Secure Shell), Skype and numer-

ous security products around the world are among the commercial standards that

include AES. To date, there are no attacks better than brute-force known against

AES. AES is mainly designed and used to perform encryption and decryption. It

can also be used with block cipher modes of operations to provide authentication as

well. For example CCM mode (Counter with CBC-MAC), uses AES for encryption

and authentication. So it turns into an authenticated encryption cipher [4]. Au-

thenticated encryption (AE) ciphers are backbones of Internet Protocol Security [5].

Block ciphers with a hash function also an alternative for implementing AE cipher.

However, none of the offered solutions are resource efficient. Some of them are worse

throughput wise, since they runs AES twice, once for encryption and once for authen-

tication. Some of them worse resource usage-wise, since they use a second module to

perform hashing.

Recently, many specialized AE ciphers have been proposed. They can be cat-

egorized into three groups. First group introduced a completely new structure for

AE. The second group uses hash functions in AE. The third group modifies the AES

somehow to achieve authenticated encryption. AES-based Lightweight Authenticated

Encryption (ALE) and AEGIS are two such examples of this type of ciphers [6] [7].

Cryptographers who proposed these AES-based AE ciphers also claim that these

ciphers can be easily implemented by using an existing AES implementation, and

2

resulting circuit will be resource efficient. However, since these type of ciphers intro-

duced most recently, there is no implementation that prove these claims.

In this thesis, we choose AEGIS, the most recent AES-based AE proposal at

the time we started to this work. We targeted to design architectures and implement

them in hardware to examine the validity of such claims. In the end we propose

combined architectures for both high performance and lightweight applications that

users can switch between AES block cipher and AEGIS AE modes by using a simple

switch.

1.2 Previous Work

AES has been implemented both on hardware and on software many times by

researchers and engineers since it was introduced. High speed and high throughput

hardware architectures introduced in [8] [9] [10] [11]. On the other hand low area

architectures are introduced in [12] [13] [14] [15] [16]. Different approaches to increase

speed and throughput are presented in literature. Look-up table (LUT) based FPGA

implementations are presented in [17] [18]. High speed pipelined architectures are

presented in [19] [20]. A sub-pipelined high speed very large scale integrated (VLSI)

architecture is presented in [9]. Since AES-based AE ciphers are in infancy period,

there is no hardware implementation for AEGIS yet. AEGIS designer claims, it can

be easily implemented with a minimal effort by utilizing existed native AES hardware

[7]. These claims are not proven yet.

1.3 Outline

After a brief introduction in this chapter, mathematical preliminaries are de-

scribed in Chapter II. Most AES and AEGIS calculations are done in Galois Field

(GF). Chapter III gives an overview of AES, operations and blocks of AES are

described and an iterative standalone AES architecture is presented. An AEGIS

overview is presented in Chapter IV. Functions and processing phases of AEGIS is

3

described in that chapter. In Chapter V, our high performance combined AES +

AEGIS architecture is presented. In Chapter VI, our lightweight combined AES +

AEGIS architecture is presented. Finally, synthesis results and future work are given

in Chapter VII.

4

CHAPTER II

MATHEMATICAL PRELIMINARIES

Since most AES calculations are done in GF(28), before describing internal

functions of AES, it is necessary to give an overview and describe Galois Field (GF)

operations.

2.1 Finite Field

In algebra, a field defined as a non-zero commutative ring that contains a multi-

plicative inverse for every non-zero element [21]. A finite field is a field that contains

a finite number of elements. Sometimes it is also called as Galois field (to honor

Evariste Galois) [22]. A finite field is a set that commutative addition, subtraction,

multiplication and division operations have been defined on it. the number of ele-

ments in the field is called as the order of the field. The following theorem defines

finite field and has a fundamental importance [2].

Theorem 2.1.1:

A field with order m only exists if m is a prime power, i.e., m = pn, for some positive

integer n and prime integer p. p is called the characteristic of the finite field.

2.2 GF(2m) Extension Fields

The finite field in AES contains 256 (0 to 255) elements and it is represented as

GF(28). AES treats every byte of internal data as an element of the finite field GF(28)

and manipulates the data by performing some arithmetic operations in this field. If

the order of a finite field is not a prime (e.g. 28) the addition and multiplication

operations cannot be operated by addition and multiplication of integers modulo 28.

If m > 1, such fields are called extension fields. There are different notations and

5

different rules for performing arithmetic operations on extension fields [2].

In extension field GF(28) elements are represented as polynomials with coeffi-

cients in GF(2). Maximum degree of polynomials is m-1. In the field GF(28) each

element A is represented as: A(x) = a7x
7 + ... + a1x + a0, where ai ∈ GF(2) = 0, 1

Totally there are 256 such polynomials in GF(28). Every polynomial can be

stored as an 8-bit vector A = (a7, a6, a5, a4, a3, a2, a1, a0).

Let A and B be polynomials defined over GF(2m):

A = am-1x
m-1 + am-2x

m-2 + ... + a1x + a0

B = bm-1x
m-1 + bm-2x

m-2 + ... + b1x + b0

In the following sections, arithmetic operations in GF(28) are described.

2.3 GF(2m) Addition

Addition is the simplest arithmetic operation in GF(2m). The sum of A and B is:

C = A + B = (am-1 + bm-1) xm-1 + ... + (a1 + b1) x + a0 + b0

Since ai and bi are defined over GF(2), addition is performed in modulo-2, which is

the logical xor operation.

C = (am-1 ⊕ bm-1) xm-1 + ... + (a1 ⊕ b1) x + (a0 ⊕ b0)

2.4 GF(2m) Multiplication

C = A x B = (am-1bm-1) x2m-2 + (am-1bm-2) x2m-3 + ... + (a0bm-1) xm-1 + (a0bm-2)

xm-2 + ... + a0b0

Since in GF(2m) it is not allowed any element with power greater than xm-1, an elim-

ination procedure have to be operated. To understand that procedure, let’s see it is

for m = 8:

The irreducible polynomial for multiplication in GF(28) is x8 + x4 + x3 + x + 1

Firstly calculate partial products:

Let S7 = M7 = m77x
14 + m76x

13 + ... m70x
7

6

b7 b6 b5 b4 b3 b2 b1 b0

x a7 a6 a5 a4 a3 a2 a1 a0

a7b7 a7b6 a7b0 → M7: m77m76m75m74m73m72m71m70

............................. → M6: m67m66m65m64m63m62m61m60

............................. → M5: m57m56m55m54m53m52m51m50

............................. → M4: m47m46m45m44m43m42m41m40

............................. → M3: m37m36m35m34m33m32m31m30

............................. → M2: m27m26m25m24m23m22m21m20

............................. → M1: m17m16m15m14m13m12m11m10

a0b7 a0b6 a0b0 → M0: m07m06m05m04m03m02m01m00

Rewriting S7:

S7 = x6 (m77x
8 + m76x

7 + ... m70x)

Recall that x8 = x4 + x3 + x + 1

S7 = x6 (m77(x
4 + x3 + x + 1) + m76x

7 + ... m70x)

S7 = x6 (m76x
7 + m75x

6 + m74x
5 + (m77 + m73)x

4 + (m77 + m72)x
3 + m71 x2 +(m77

+ m70) x + m77)

S7 = s77x
13 + s76x

12 + s75x
11 + s74x

10 + s73x
9 + s72x

8 + s71x
7 + s70x

6

Add M6 to S7 :

S6 = S7 + M6 = (s77 + m67)x
13 + (s76 + m66)x

12 + ... + (s70 + m60)x
6

S6 = x5 ((s77 + m67)x
8 + (s76 + m66)x

7 + ... + (s70 + m60)x)

Then substitute x4 + x3 + x + 1 to x8 and repeat same procedures for S6, S5, S4,

S3, S2, S1 to obtain S0 = s07x
7 + s06x

6 + s05x
5 + s04x

4 + s03x
3 + s02x

2 + s01x + s00,

which is the multiplication result in GF(28).

2.5 GF(2m) Inversion

GF(2m) can be also represented as GF((2m/2)2). Then any symbol in GF(28),

A, can be represented as :

A = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 A = A1y + A0, where A1,

7

A0 ∈ GF(24)

Then firstly apply a isomorphic transform to A to get Â = I(A). The isomorphic

transform is the multiplication of the vector A8x1 with a 8x8 transform matrix. Al-

though it seems complex in terms of hardware, thanks to multiplication being AND

operation and addition being XOR operation in GF(2), it is possible to end up with

a very simple design.

The isomorphic transform matrix is given below:

1 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0
0 0 0 0 1 1 0 0
1 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0
0 1 1 1 0 1 0 0
0 1 0 0 1 0 0 0
0 1 1 1 1 0 1 1

Â = Â1y + Â0 where y2 + y + w0 = 0

Then the inverse of Â is:

F̂ = Â-1 =
Â1

Â0(Â0+Â1)+w0Â1
y +

Â1+Â0
Â0(Â0+Â1)+w0Â1

Then apply the inverse isomorphic transform to F̂ to get F = A-1. Inverse isomorphic

transform is very similar to isomorphic transform, but 8x8 inverse transform matrix

multiplied with input matrix. The inverse isomorphic transform matrix is given below:

0 1 1 0 1 0 1 0
0 1 1 1 0 1 1 0
1 1 1 0 1 0 1 0
1 1 0 0 1 1 0 0
0 1 1 1 0 1 0 0
0 1 0 1 0 1 0 0
1 0 0 1 0 0 0 0
1 0 1 1 0 1 0 1

F = I-1(F̂) = IIT matrix× F̂

Block diagram of inversion in GF(28) is given in Figure 1

8

Isomorphic
Transform

A
8 8 +

()2

4

4Â

Â1

7:4

3:0

Â0

X

Â1+Â0 X

w0

Â1
2

+
Â1

2w0

Inverse
Isomorphic
Transform

()-1

X

X

Â0(Â1+Â0)

[Â0(Â1+Â0) + Â1
2w0]-1

Â1

Ḟ0
4

4 Ḟ1
Ḟ

8

F

Figure 1: GF(28) inversion block diagram

9

CHAPTER III

AES OVERVIEW

The Advanced Encryption Standard (AES) declares a symmetric block cipher

that can be used to protect data [23]. It is also known as Rijndael algorithm, since it

is designed by two Belgian cryptographers Joan Daemen and Vincent Rijmen. After

Data Encryption Standard (DES) indicate some weaknesses, the U.S. NIST called

proposal for new cryptographic algorithm, which is Advanced Encryption Standard

in 1997 [2]. After some evaluation rounds NIST announced that it had chosen Rijndael

as the AES on October 2, 2000. In 2001, NIST declared the new AES and published

it as a final standard (FIPS PUB 197).

In this chapter, AES is over viewed. For detailed information about AES, we

refer to [23].

3.1 Notation and Conventions

In this section; inputs, outputs and state of AES are explained.

3.1.1 Inputs and Outputs

As shown in Figure 2 The input of AES is a sequence of 128 bits called as plain

text. The output is also a sequence of 128 bits and it is called as cipher text. Cipher

key is also another input, it could be 128, 192, 256 bits.

3.1.2 The State

The basic unit in processed in AES is byte, a sequence of 8 bits. The array

of bytes is represented as a0a1a2 ... an. The 128-bit input plain text block (in bit 0

to in bit 127) of AES firstly grouped to array of bytes like in0in1 ... a15. Then it is

10

AES
Plain

128 128

Cipher

128/192/256

Key

Figure 2: AES inputs and outputs

putted into a 4x4 array of bytes, called as state. AES operates on this 4x4 state

array.

The state goes through repetition of processing steps and finally cipher text is

outputted in same fashion, 128-bit output (out bit 0 to out bit 127). These conven-

tions are depicted in Figure 3.

3.2 AES Encryption Algorithm

The AES cipher converts input plain text into output cipher text after specified

repetitions of round transformation. The pseudo code for cipher is given below. It is

taken from FIPS PUB 197 [23]. The Nr is a generic number, representing number of

rounds, depends on the key size. It is value is 10, 12 and 14 for key sizes of 128, 192,

256, respectively. The array w contains the key schedule.

11

in
bit
0

...
in
bit
7

in
bit
8

...
in
bit
15

in
bit
120

...
in
bit
127

. . .

in
0

in
1

...
in
15

in
0

in
4

in
8

in
12

in
1

in
5

in
9

in
13

in
2

in
6

in
10

in
14

in
3

in
7

in
11

in
15

st
0,0

st
0,1

st
0,2

st
0,3

st
1,0

st
1,1

st
1,2

st
1,3

st
2,0

st
2,1

st
2,2

st
2,3

st
3,0

st
3,1

st
3,2

st
3,3

out
0

out
4

out
8

out
12

out
1

out
5

out
9

out
13

out
2

out
6

out
10

out
14

out
3

out
7

out
11

out
15

out
0

out
1

...
out
15

out
bit
0

...
out
bit
7

out
bit
8

...
out
bit
15

out
bit
120

...
out
bit
127

. . .

Figure 3: AES I/O and state conventions

12

1

Cipher (byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

begin

byte state[4, Nb]

state = in

AddRoundKey(state, w[0, Nb−1])
for round = 1 step 1 to Nr−1

SubBytes(state)

ShiftRows(state)

MixColumns(state)

AddRoundKey(state, w[round*Nb, (round+1)*Nb−1])
end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb−1])
out = state

end

Table 1: AES key sizes and number of rounds (Nr)

key size Nr

128 bits 10

192 bits 12

256 bits 14

Basically there are four transformations (AddRoundKey, SubBytes, ShiftRows,

MixColums) in the algorithm. In the following sections, these transformations are

described.

3.3 AddRoundKey

It is the simplest transformation in AES. The subkey, which derived from original

encryption key, is added to state as shown in Figure 4. Addition is equivalent to

bitwise XOR, since operations performed over finite fields. The subkey derived using

key schedule and each subkey is the same size with the original key. The AES key

scheduling algorithm also described in Section 3.7.

13

key
0,0

key
0,1

key
0,2

key
0,3

key
1,0

key
1,1

key
1,2

key
1,3

key
2,0

key
2,1

key
2,2

key
2,3

key
3,0

key
3,1

key
3,2

key
3,3

out
0,0

out
0,1

out
0,2

out
0,3

out
1,0

out
1,1

out
1,2

out
1,3

out
2,0

out
2,1

out
2,2

out
2,3

out
3,0

out
3,1

out
3,2

out
3,3

in
0,0

in
0,1

in
0,2

in
0,3

in
1,0

in
1,1

in
1,2

in
1,3

in
2,0

in
2,1

in
2,2

in
2,3

in
3,0

in
3,1

in
3,2

in
3,3

in
1,1

key
1,1

out
1,1

Figure 4: AES AddRoundKey transformation

3.4 SubBytes

The SubBytes transformation, also known as S-box, updates each input byte

of state according to a substitution box. This is a non-linear transformation. The

substitution box (S-box) is derived from following affine transformation.

out0
out1
out2
out3
out4
out5
out6
out7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

inv in0

inv in1

inv in2

inv in3

inv in4

inv in5

inv in6

inv in7

+

1
1
0
0
0
1
1
0

[in7in6in5in4in3in2in1in0] and [out7out6out5out4out3out2out1out0] are input and out-

put bytes, respectively. [inv in7 inv in6 inv in5 inv in4 inv in3 inv in2 inv in1 inv in0]

is the multiplicative inverse of the input byte. All arithmetic operations are performed

on GF(28) with the irreducible polynomial p(x) = x8 + x4 + x3 + x + 1.

14

out
0,0

out
0,1

out
0,2

out
0,3

out
1,0

out
1,1

out
1,2

out
1,3

out
2,0

out
2,1

out
2,2

out
2,3

out
3,0

out
3,1

out
3,2

out
3,3

in
0,0

in
0,1

in
0,2

in
0,3

in
1,0

in
1,1

in
1,2

in
1,3

in
2,0

in
2,1

in
2,2

in
2,3

in
3,0

in
3,1

in
3,2

in
3,3

SubBytes

Figure 5: AES SubBytes transformation

3.5 ShiftRows

The ShiftRows transformation cyclically shifts the bytes in each rows as shown

in Figure 6. The first row of state matrix is not changed, the second row of the state

matrix is shifted by three bytes to the right, the third row is shifted by two bytes to

the right and the fourth row is shifted by one byte to the right by the ShiftRows.

out
0,0

out
0,1

out
0,2

out
0,3

out
1,1

out
1,2

out
1,3

out
1,0

out
2,2

out
2,3

out
2,0

out
2,1

out
3,3

out
3,0

out
3,1

out
3,2

in
0,0

in
0,1

in
0,2

in
0,3

in
1,0

in
1,1

in
1,2

in
1,3

in
2,0

in
2,1

in
2,2

in
2,3

in
3,0

in
3,1

in
3,2

in
3,3

ShiftRows

Figure 6: AES ShiftRows transformation

3.6 MixColumns

The MixColumns is a linear transformation which mixes each column of state

matrix. Each 4-byte column is considered as a polynomial over GF(28) and multiplied

modulo x4 + 1 by a fixed constant 4x4 matrix as follows:

out0,c
out1,c
out2,c
out3,c

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

in0,c

in1,c

in2,c

in3,c

15

out
0,0

out
0,1

out
0,2

out
0,3

out
1,1

out
1,2

out
1,3

out
1,0

out
2,2

out
2,3

out
2,0

out
2,1

out
3,3

out
3,0

out
3,1

out
3,2

in
0,0

in
0,1

in
0,2

in
0,3

in
1,0

in
1,1

in
1,2

in
1,3

in
2,0

in
2,1

in
2,2

in
2,3

in
3,0

in
3,1

in
3,2

in
3,3

MixColumns

Figure 7: AES MixColumns transformation

3.7 Key Expansion

In AES algorithm, a key schedule is generated from original encryption key. The

hey schedule consists of subkeys, each of them is used as a key in a round. Pseudo

code of Key Expansion, which is taken from [23], given below. It is a generic Key

Expansion code, which supports key sizes 128, 192 and 256. w[] is the output key

schedule. Nr is the number of rounds, which is 10, 12 and 14 for key sizes of 128, 192

and 256, respectively. Nk is 4, 6 and 8 for key sizes of 128, 192 and 256, respectively.

SubWord is 4-byte version of Subbytes. RotWord shifts bytes of a word to left

by one byte. Rcon[i] contains the values given by [{02}i-1,{00},{00},{00}], with xi-1

being powers of x in GF(28).

16

1

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

begin

word temp

i = 0

while (i < Nk)

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])

i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]

temp = w[i−1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)

end if

w[i] = w[i−Nk] xor temp

i = i + 1

end while

end

17

CHAPTER IV

AEGIS OVERVIEW

AEGIS is a dedicated authenticated encryption algorithm, which is constructed

from the AES encryption round function [7]. It is one of the proposed submission

to CAESAR(Competition for Authenticated Encryption: Security, Applicability, and

Robustness), one of the latest cryptographic competition, by Hongjun Wu and Bart

Preneel [24]. According to the designers of AEGIS, the algorithm offer high levels

of security. There are three version of AEGIS, which are AEGIS-128, AEGIS-256,

and AEGIS-128L. Depending on AEGIS version 5, 6 and 8 AES Round operation

performed in AEGIS-128, AEGIS-256, and AEGIS-128L, respectively. Intermediate

cipher results are called state also in AEGIS, however, in contrast to AES, a state

consists of 5, 6 or 8 16-byte data blocks in AEGIS-128, AEGIS-256, and AEGIS-128L,

respectively. A function called StateUpdate performs 5, 6, 8 AES rounds on state in

AEGIS-128, AEGIS-256, and AEGIS-128L, respectively. Initialization, Process-

ing The Authenticated Data, Encryption, and Finalization are processing

phases of AEGIS. Depending on which AEGIS algorithm performed and the length

of data to be processed, each step also consists of different numbers of StateUpdate

iterations. So, the number of AES rounds are not fixed, it depends on data.

In the following section, there are brief description of AEGIS-128 and it’s phases. For

a detailed explanation of AEGIS, we refer to [7].

4.1 Notations, Variables and Functions

In this section; notations, variables, constants and functions, which are used in

AEGIS, are explained.

18

4.1.1 Notations

& : bitwise AND ⊕ : bitwise XOR

‖ : concatenation dxe : ceiling operation.

4.1.2 Variables and Constants

P : plaintext

Pi : a 16-byte plaintext block

Si : state at the beginning of i th step

Si, j : j th 16-byte element of the state Si

K128 : 128-bit key of AEGIS-128

AD : associated data

ADi : a 16-byte associated data block

adlen : bit length of associated data with 0 ≤ adlen < 264

IV128 : 128-bit initialization vector of AEGIS-128

const : a 32-byte constant, which consists of Fibonacci sequence modulo 256, in

hexadecimal format; const = 00 ‖ 01 ‖ 01 ‖ 02 ‖ 03 ‖ 05 ‖ 08 ‖ 0d ‖ 15 ‖ 22 ‖

37 ‖ 59 ‖ 90 ‖ e9 ‖ 79 ‖ 62 ‖ db ‖ 3d ‖ 18 ‖ 55 ‖ 6d ‖ c2 ‖ 2f ‖ f1 ‖ 20 ‖ 11 ‖

31 ‖ 42 ‖ 73 ‖ b5 ‖ 28 ‖ dd.

const0 : first 16 bytes of const

const1 : last 16 bytes of const

C : ciphertext

Ci : a 16-byte ciphertext block

msglen : bit length of the plaintext/ciphertext with 0 ≤ msglen < 264

mi : a 16-byte data block

T : authentication tag

t : bit length of the authentication tag with 64 ≤ t ≤ 128

19

u : u = d adlen
128
e

v : u = d msglen
128

e

4.1.3 Functions

4.1.3.1 AES Round

The AES round function, which consists of SubBytes, ShiftRows, MixColumns

and AddRoundKey, is used in AEGIS.

AESRound(S, K): S and K are 16-byte state and round key, respectively.

4.1.3.2 StateUpdate

The StateUpdate function of AEGIS updates state Si with performing 5, 6 and

8 AESRound(S, m) in AEGIS-128, AEGIS-256 and AEGIS-128L, respectively.

4.2 AEGIS-128

In AEGIS-128, key length and initialization vector (IV) are 128 bits. The as-

sociated data length and plain text length are less than 264 bits. The authentication

tag is less than or equal to 128 bits.

The Si+1 = StateUpdate128(Si, mi) function of AEGIS-128 updates the 80-byte

state Si as follows:

Si+1, 0 = AESRound(Si,4, Si,0 ⊕ mi)

Si+1, 1 = AESRound(Si,0, Si,1)

Si+1, 2 = AESRound(Si,1, Si,2)

Si+1, 3 = AESRound(Si,2, Si,3)

Si+1, 4 = AESRound(Si,3, Si,4)

20

4.3 The Initialization Phase of AEGIS-128

The initialization phase of AEGIS-128 consists of loading 128-bit initialization

vector and key into the state and updating state 10 times as follows:

1. Load K128 and IV into state S-10:

S-10, 0 = K128 ⊕ IV128;

S-10, 1 = const1;

S-10, 2 = const0;

S-10, 3 = K128 ⊕ const0;

S-10, 4 = K128 ⊕ const1;

2. For i = -10 to -1, run Si+1 = StateUpdate128(Si, mi) with mi = K128 ⊕ IV128 for

odd i ’s and mi = K128 for even i ’s.

4.4 The Authenticated Data Processing Phase of AEGIS-
128

After initialization phase, state updated with using associated data AD.

For i = 0 to d adlen
128
e - 1 run Si+1 = StateUpdate128(Si, ADi).

If adlen = 0, the state will not update. If the last block of AD is not full block, it

should be padded with 0 bits.

4.5 The Encryption Phase of AEGIS-128

In this phase each Pi block is encrypted to Ci and meanwhile Pi is used to

update state Si. For i = 0 to v -1, perform encryption and state update as follows:

Ci = Pi ⊕ Su+i, 1 ⊕ Su+i, 4 ⊕ (Su+i, 2 & Su+i,3)

Su+i+1 = StateUpdate128(Su+i, Pi)

where u = d adlen
128
e and v = d msglen

128
e. If msglen = 0, there is no encryption and

state update. If the last block of P is not full block, zero-padding should be done.

21

4.6 The Finalization Phase of AEGIS-128

In the finalization phase of AEGIS-128, an authentication tag is generated.

Firstly state updated seven more times and than tag is generated from state as follows:

For i = u+v to u+v + 6, perform state update.

Si+1 = StateUpdate128(Si, tmp)

where tmp = Su+v,3 ⊕ (adlen ‖ msglen)

Then the authentication tag is generated from the final state Su+v+7:

T = Su+v+7,0 ⊕ Su+v+7,1 ⊕ Su+v+7,2 ⊕ Su+v+7,3 ⊕ Su+v+7,4

22

CHAPTER V

HIGH PERFORMANCE AES + AEGIS ENCRYPTION

CORE ARCHITECTURE

In this chapter, an iterative high performance standalone AES architecture and

our combined high performance AES + AEGIS architecture are explained.

5.1 An Iterative Standalone AES Encryption Core Archi-
tecture

AES consists of round iterations, and the number of round iterations is 10, 12,

14 for the key sizes of 128, 192, 256, respectively. Each intermediate cipher result is

called state. A roundkey for each round iteration is also generated from the encryp-

tion key. Each round consists of SubBytes, ShiftRows, and MixColumns operations

performed on state, finally adding the state and roundkey, which is called AddRound-

Key operation. However, the last round skips MixColumns.

Before introduce to combined AES + AEGIS architecture, it will be more ex-

planatory to give and talk about standalone AES architecture, which is the point of

departure. In Figure 8 standalone AES-128 architecture is given. All data paths and

registers are 128-bit.

In the following subsections module of given architecture is explained briefly.

5.1.1 Input Logic

The input logic unit performs first AddRoundKey operation during load phase

of AES. key add en control is enabled when loading plain text and key to registers,

so the first AddRoundKey is performed meanwhile.

23

Q

Q
S ET

C LR

D

State

S
u
b
B
y
t
e
s

last_round_out

Round_out

+

data_in

key_in

key_add_en

+

round_out

data_out

ROUND UNIT
INPUT LOGIC

round_in

Q

Q
S ET

C LR

D

STATE REGISTERS

128

128

128

128

128

128

 Key
Round

S
h
i
f
t
R
o
w
s

M
i
x
C
o
l
u
m
n
sAddRoundKey

128

128

128

OUTPUT REGISTERS

Figure 8: Standalone AES architecture

24

5.1.2 State Registers

A state of AES-128 stored in 128-bit register. At the beginning plain text is

loaded to registers. Each cycle, current state is rounded and new state is produced

and it is fed to registers as next state.

5.1.3 Round Unit

This unit performs the AES round operation. An AES round consists of Sub-

Bytes, ShiftRows, MixColumns, and AddRoundKey transformations. Since Mix-

Columns is skipped at the last round, ShiftRows output is selected as second operand

of AddRoundKey via a 2-to-1 multiplexer. All modules in round unit consists of

combinational logics.

5.1.3.1 SubBytes Module

SubBytes hardware module in the round unit is given in Figure 9. Input and

output are 128-bit width. Input is grouped into 16 bytes (B0 to B15) like shown in

the Figure 9. Each byte is fed to an identical SubByte module and processed parallel.

A SubByte module is shown in Figure 10.

SubByte SubByte

output

128

128

input

.

8

8

8

8

SubByte SubByte

8

8

8

8

B0 B15

Figure 9: AES SubBytes module

25

GF(28)
Inverter

input

8 8

Affine
Transform 8 8

8

output

0x63

Figure 10: SubByte module

5.1.3.2 ShiftRows Module

The ShiftRows module is given in Figure 11. As mentioned in Section 3.5, it

just shifts each row of the state a certain offset.

output

128

128

input

.

8

8

8

8

8

8

8

8

in0

B15

in1 in14 in15

in
0

in
4

in
8

in
12

in
1

in
5

in
9

in
13

in
2

in
6

in
10

in
14

in
3

in
7

in
11

in
15

in
0

in
4

in
8

in
12

in
5

in
9

in
13

in
1

in
10

in
14

in
2

in
6

in
15

in
3

in
7

in
11

128

128

.

8

8

8

8

8

8

8

8

in0

B15

in5 in6 in11

B0

B0

Figure 11: ShiftRows module

26

5.1.3.3 MixColumns Module

The MixColumn hardware module is shown in Figure 13. Firstly it groups 128-

bit input to 32-bit columns (Col-0 to Col-3), then identical MixColumn modules are

operates on these columns. Inside of a MixColumn module is given in in Figure 12.

All arithmetic operations performed in GF(28).

input

0:31

output

02 03 01 01

01 02 03 01

0:7

8:15

16:23

24:31

0:7

8:15

16:23

24:31

01 01 02 03

03 01 01 02

0:7

8:15

16:23

24:31

0:7

8:15

16:23

24:31

0:7

8:15

16:23

24:31

0:31

Figure 12: MixColumn module

5.1.4 KeyRound Module

The KeyRound module generates subkeys from encryption key. During load

phase initial encryption key is load to a 128-bit register. Then each cycle a new

round key is generated from current subkey. The KeyRound hardware module is

given in Figure 14.SubWord is 4-byte version of the SubBytes, it consists of 4 parallel

27

MixCol MixCol

output

128

128

input

0:31

32

MixCol MixCol

32:63 64:95 96:12732

32 32 32

Col-0 Col-1 Col-2 Col-3

32 32 32

Figure 13: MixColumns module

SubByte modules as shown in Figure 15. RotWord shifts bytes of a word to left

by one byte as shown in Figure 16. Initially Rcon(0) = 0x01000000, and every step

it is updated like this: Rcon(i+1) = 2 ⊗ Rcon(i). The ⊗ symbol represents GF(28)

multiplication.

5.1.5 Output Registers

After performing 10 round operations, the cipher text is outputted via 128-bit

data out register. Note that the last round skips MixColumn transformation. In this

AES architecture a 128-bit plain text block is encrypted in every ten cycle period,

and the next 128-bit plain text block can be fed to the core immediately.

5.2 Combined AES + AEGIS Architecture

In the previous section the standalone AES architecture is explained, which is

our starting point for designing combined AES + AEGIS architecture for high per-

formance applications. In this section, our combined AES + AEGIS architecture is

explained.

28

Key (i+1)

128

128

Key (i)

0:31

32

32:63 64:95 96:12732

32 32 32

w0 w1 w2 w3

32 32 32

w0 w1 w2 w3

RotWord

SubWord

Rcon(i)

Figure 14: The KeyRound module

We examined the AEGIS and tried to design a new architecture that can perform

both AES and AEGIS encryption. To make possible this we made some additions

and modifications on standalone AES encryption core. More complex control logic is

also designed to control the core. The architecture of our combined AES + AEGIS

encryption core is depicted in Figure 17. This core works for 128-bit keys. All data-

paths and registers in this design are 128-bit. The core consists of five components:

input logic, state registers, round unit, AEGIS finalization-tmp unit, output logic.

The core operates in five phases, which are load, initialization, associated data

processing, encryption and finalization . Cycle counts for each phase is given

29

win

32 32

B0

B1

B2

B3

B0
'

wout

8

8

8

8

8

8

8

8

SubByte

SubByte

SubByte

SubByte

B1
'

B2
'

B3
'

Figure 15: The SubWord module

win

32 32

B0

B1

B2

B3

R
o
t
W
o
r
d

B1

B2

B3

B0

wout

8

8

8

8

8

8

8

8

Figure 16: The RotWord module

in Table 2, where u = d adlen
128
e and v = d msglen

128
e.

Table 2: Cycle counts for AEGIS-128 and AES-128 operation phases

Phases AEGIS-128 AES-128

0: Load 5 cycles 1 cycle

1: Initialization 10× 5 cycles −
2: AD processing u× 5 cycles −
3: Encryption v × 5 cycles 10 cycles

4: Finalization 7× 5 cycles −

5.2.1 Input Logic

The input logic unit performs key addition during load and initialization phases

of AES and AEGIS, and input data selection for state registers.

30

S
u
b
B
y
t
e
s

last_round_out

Round_out

+

data_in

key_in

key_add_en

+

round_out

ROUND UNIT
INPUT LOGIC

round_in

STATE REGISTERS

128

128

128

128

AES Key
Round

S
h
i
f
t
R
o
w
s

M
i
x
C
o
l
u
m
n
s

AddRoundKey

128

Q

Q
S ET

C LR

D

S_temp

Q

Q
S ET

C LR

D

S0

Q

Q
S ET

C LR

D

S1

Q

Q
S ET

C LR

D

S2

Q

Q
S ET

C LR

D

 S3

Q

Q
S ET

C LR

D

S4

Q

Q
S ET

C LR

D

final_tmp

+
AEGIS FINALIZATION-TMP UNIT

+

m
i_

ad
d_

en

m

128

128

128

128

128

128

+
+ +

+ +

data_out

+ OUTPUT LOGIC

Q

Q
S ET

C LR

D

128

128

128

Figure 17: Combined AES + AEGIS encryption core architecture

31

5.2.1.1 data in:

The data in is used for plain text input in AES and initialization vector, const0,

const1, associated data, plain text input in AEGIS. Depending on phase, state update,

cycle, AEGIS and AES which data block must be fed to data in is shown in Table 3.

Table 3: data in schedule for AES-128 and AEGIS-128 operation phases

phase state update cycle data in data in

(AEGIS) (AES)

0 - (load) 0 init. vector (IV) plain text

1 const1 –

2 const0 –

3 const0 –

4 const1 –

1 -10, -8, -6, -4, -2 0 – –

-9, -7, -5, -3, -1 0 init. vector (IV) –

1-4 – –

2 all 0 assoc. data (AD) –

all 1-4 – –

3 all 0 plain text –

except last 1-4 – –

last 4 (adlen ‖ msglen) –

4 all all – –

5.2.1.2 key in:

128-bit key input for both AES and AEGIS. In AES, initial encryption key is

also fed to the AES KeyRound Unit.

5.2.1.3 m output:

Table 4 shows m output of the input logic unit depending on phase, state update,

cycle, AEGIS and AES.

32

Table 4: The m signal of input logic for AES-128 and AEGIS-128 operation phases

phase state update cycle m m

(AEGIS) (AES)

0 - (load) 0 key in ⊕ data in key in ⊕ data in

1 data in –

2 data in –

3 key in ⊕ data in –

4 key in ⊕ data in –

1 -10, -8, -6, -4, -2 0 key in –

-9, -7, -5, -3, -1 0 key in ⊕ data in –

1-4 – –

2 all 0 data in –

all 1-4 – –

3 all 0 data in –

except last 1-4 – –

last 4 data in –

4 all 0 finalization tmp –

all 1-4 – –

5.2.2 State Registers

This unit consists of six 16-byte shift registers. First five registers, which are

S4, S3, S2, S1 and S0, store a state of AEGIS-128. S temp is an additional 16-byte

register for storing the previous S0. It is a necessity coming from the AEGIS-128

State Update128 function. As stated in [7], AEGIS State Update128 function rounds

firstly Si,4, then it rounds Si,0. So we designed our AES + AEGIS encryption core

as follows: In the first cycle of each State Update128 operation, S4, which stores

Si,4, is fed into the Round Unit. Since Si,0 must be rounded in the second cycle of

State Update128, it is shifted from S0 to S temp at first cycle, and stored in S temp.

Except the first cycle, S temp always contains the proper one fifth part of a state,

which must be fed into Round Unit. Contents of registers, depending on the cycle,

are given in Table 5. Register contents are shifted each cycle, and parts of a state is

33

propagated through the S temp register.

Table 5: State register contents for AES-AEGIS operation cycles

cycle S4 S3 S2 S1 S0 S temp

0 Si,4 Si,3 Si,2 Si,1 Si,0 Si−1,4

1 Si+1,0 Si,4 Si,3 Si,2 Si,1 Si,0

2 Si+1,1 Si+1,0 Si,4 Si,3 Si,2 Si,1

3 Si+1,2 Si+1,1 Si+1,0 Si,4 Si,3 Si,2

4 Si+1,3 Si+1,2 Si+1,1 Si+1,0 Si,4 Si,3

5.2.3 The Round Unit

The Round Unit performs the AES round operation. An AES round consists of

SubBytes, ShiftRows, MixColumns, and AddRoundKey transformations. In the first

cycle (cycle 0) of AEGIS State Update128, S4 is rounded, whereas S temp is rounded

in all other cycles (cycle 1-4) of State Update128. Depending on which encryption is

performing, AES or AEGIS, subkey or S0 is added to round out, respectively. It is

switched via a 2-to-1 multiplexer as shown in Figure 17.

5.2.4 AEGIS Finalization-Tmp Unit

This unit computes and stores the 16-byte tmp value in the finalization step of

the AEGIS-128. tmp is defined as Su+v,3 ⊕ (adlen ‖ msglen) in [7]. The Su+v,3 is

stored in S3 register and the (adlen ‖ msglen) is fed to the unit via data in, where

the ‖ symbol represents concatenation. After tmp is computed, it is stored in 128-bit

final tmp register, which shown in Figure 17, and the same tmp used in all seven

State Update128 iterations of finalization phase.

5.2.5 Output Logic

The Output Logic unit consists of combinational logics as depicted in Figure 17.

This unit performs computation of output values cipher text and tag. The proper

34

output is selected by a multiplexer with respect to the performed encryption (AES

or AEGIS) and output type (cipher text or tag). In the case of AEGIS, cipher text

is output at the first cycle of each state update in encryption phase (phase 3). For

AES, there is no State Update128 iteration. However, since ten round iterations of

AES are correspond to two state update of AEGIS (2 x 5 = 10 cycles), the last round

of AES corresponds to last round of second state update of phase 3 and cipher text

is output after that round. data out values are shown in Table 6.

Table 6: data out schedule for AES and AEGIS

phase state update cycle data out data out

(AEGIS) (AES)

0 all all – –

1 all all – –

2 all all – –

3 all 0 data in ⊕ S1 ⊕ S4 ⊕ (S2 & S3) –

last 4 – round out

4 7 4 S4 ⊕ S3 ⊕ S2 ⊕ S1 ⊕ S0 –

35

CHAPTER VI

LIGHTWEIGHT AES + AEGIS ENCRYPTION CORE

ARCHITECTURE

In this chapter, our lightweight AES + AEGIS architecture is introduced. For

AES, several lightweight hardware implementations are reported in literature [13] [14] [15].

These are FPGA and ASIC implementations of AES with 8-bit datapaths. Based on

our knowledge, the lowest power and lowest area implementation of AES encryption

hardware core have been reported in [12], where 8-bit datapaths are employed and

one AES round performed in 16 clock cycles. Only 128-bit keys are supported in

that architecture. In that implementation, processing a single plain text block takes

176 cycle including loading and unloading. Since loading and unloading can be per-

form simultaneously with encryption, sequential encryption with same key takes 160

cycles. Combining reported lightweight AES architecture in [12] and our proposed

architecture in Chapter 5, we proposed a new lightweight hardware core that performs

both AES-128 and AEGIS-128 encryption based on a 1-bit selection input. Basically,

we modified some parts of the design in [12] and added some new parts to make

AEGIS-128 encryption possible. Our new lightweight design is a compact combina-

tion of the design in [12]] and our AES + AEGIS core design approach, which was

presented in chapter 5. Our lightweight core also employs 8-bit datapaths, and the

effective cycle count for one AES round is 16. Operation phases are same with high

performance architecture presented in Chapter 5. Cycle counts for phases are given

in Table 7. High-level architecture of our design is depicted in Figure 18. Modules

of the architecture are detailed in following sections.

36

data_in

Key Expansion Unit
key_in

M
od

if
ie

d
 P

ar
al

le
l-

to
-

Se
ri

al
 C

o
nv

er
te

r

Byte Permutation Unit

S-box 1

S-box 2

MixColums
Multiplier

ke
y_

ad
d_

en

key_delayed_out

+

AEGIS State Registers

+
S_temp_add_en

fi
n

a
liz

at
io

n
_t

m
p

R

eg
is

te
r

O
ut

p
ut

 L
og

ic

data_out

Delay Unit

+

AEGIS const
ROM

0

S i
,3

_a
d

d_
en

Si,3

ke
y_

o
u

t

m_4cyc_delayed

m

last_round_out

S3_in S_temp_out

8

8

8

Figure 18: Lightweight AES + AEGIS encryption core architecture

37

Table 7: Cycle counts for lightweight AEGIS-128 and AES-128 operation phases

Phases AEGIS-128 AES-128

0: Load 5× 16 cycles 16 cycle

1: Initialization 10× 16× 5 cycles −
2: AD processing u× 16× 5 cycles −
3: Encryption v × 16× 5 cycles 10× 16 cycles

4: Finalization 7× 16× 5 cycles −

6.1 Top Level I/O Ports

Top level I/O ports of our design are data input, key input and data out.

Initialization vector, (adlen ‖ msglen), associated data in AEGIS, plain text in both

AES and AEGIS fed to the core as serial bytes via data input port. Encryption key

is fed into the core via key input port. Authentication tag in AEGIS, ciphertext in

both AES and AEGIS output via data out port. One AES round is performed in 16

clock cycles. Input schedule for data input port is given in Table 8.

Table 8: Input schedule for data in

phase state update round data input data input

(AEGIS) (AES)

0 - (load) 0 init. vector (IV) plain text

1-4 – –

1 -10 0 (adlen ‖ msglen) –

-8, -6, -4, -2 all – –

-9, -7, -5, -3, -1 0 init. vector (IV) –

all 1-4 – –

2 all 0 assoc. data (AD) –

all 1-4 – –

3 all (except last) 0 plain text –

all 1-4 – –

4 all all – –

38

6.2 S-box Module

The S-box module performs SubByte operation. This module same as the Sub-

Byte module depicted in Figure 10 in Section 5.1.3.1. There are two identical S-box

in our design same as in [12]. Sbox-1 used for state rounding and Sbox-2 is used for

AES key rounding.

6.3 Byte Permutation Unit

The byte permutation unit performs ShiftRows operation and stores 12 bytes of

a state. Remaining 4 bytes part of state are processed in other data paths registers.

The hardware of byte permutation unit is depicted in Figure 19. It consists of 12

8-bit registers, 3 2-to-1 multiplexer and 1 4-to-1 multiplexer. Table 9 shows how

input, contents of registers and output is changing during one round operation. It

also explains how ShiftRows operation performed by this module. bi ’s and Ni ’s

represent ith byte of current state and next state, respectively. Boxed byte in each

row is selected for output via 4-to-1 multiplexer. Bold bytes are coming from R0

register in previous row, which are not outputted yet.

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D

Q

Q
S ET

CLR

D8

in

8

out

R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

8
88

Figure 19: Byte permutation unit

6.4 MixColumns Multiplier

MixColumns multiplication performed by this module. A column of a state is

fed to the unit byte by byte, so one column multiplication is completed in 4 clock cycle.

A complete MixColumns transformation takes 16 cycle. The mixcolumns multiplier

is depicted in Figure 20. MixColumns transformation for a column performed by

39

Table 9: Register and output schedule for byte permutation unit

cycle in R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 out

0 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b0

1 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b5

2 b14 b13 b12 b11 b10 b9 b8 b7 b6 b1 b4 b3 b2 b10

3 b15 b14 b13 b12 b11 b2 b9 b8 b7 b6 b1 b4 b3 b15

4 N0 b3 b14 b13 b12 b11 b2 b9 b8 b7 b6 b1 b4 b4

5 N1 N0 b3 b14 b13 b12 b11 b2 b9 b8 b7 b6 b1 b9

6 N2 N1 N0 b3 b14 b13 b12 b11 b2 b1 b8 b7 b6 b14

7 N3 N2 N1 N0 b3 b6 b13 b12 b11 b2 b1 b8 b7 b3

8 N4 N3 N2 N1 N0 b7 b6 b13 b12 b11 b2 b1 b8 b8

9 N5 N4 N3 N2 N1 N0 b7 b6 b13 b12 b11 b2 b1 b13

10 N6 N5 N4 N3 N2 N1 N0 b7 b6 b1 b12 b11 b2 b2

11 N7 N6 N5 N4 N3 N2 N1 N0 b7 b6 b1 b12 b11 b7

12 N8 N7 N6 N5 N4 N3 N2 N1 N0 b11 b6 b1 b12 b12

13 N9 N8 N7 N6 N5 N4 N3 N2 N1 N0 b11 b6 b1 b1

14 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1 N0 b11 b6 b6

15 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1 N0 b11 b11

multiplication with coefficients, adding and cyclically shifting the intermediate results.

Addition controlled with add en signal. After completion of a column multiplication,

the 4 bytes result is fed to the modified parallel-to-serial converter. Register contents

for a column multiplication, which takes 4 cycle, is given in Table 10.

Table 10: MixColumns multiplier registers contents for a column multiplication

Registers t0 t1 t2 t3

R0 in0 in0 ⊕ in1 {03}in0 ⊕ in1 ⊕ in2 {02}in0 ⊕ {03}in1 ⊕ in2 ⊕ in3

R1 in0 {03}in0 ⊕ in1 {02}in0 ⊕ {03}in1 ⊕ in2 in0 ⊕ {02}in1 ⊕ {03}in2 ⊕ in3

R2 {03}in0 {02}in0 ⊕ {03}in1 in0 ⊕ {02}in1 ⊕ {03}in2 in0 ⊕ in1 ⊕ {02}in2 ⊕ {03}in3

R3 {02}in0 in0 ⊕ {02}in1 in0 ⊕ in1 ⊕ {02}in2 {03}in0 ⊕ in1 ⊕ in2 ⊕ {02}in3

6.5 Modified Parallel-to-Serial Converter

The parallel-to-serial converter module presented in [12] is a very simple mod-

ule. Basically, it is used for converting the parallel coming output of MixColumns

40

+
Q

Q
S ET

CLR

D

add_en

+
Q

Q
S ET

CLR

D

+
Q

Q
S ET

CLR

D

+
Q

Q
S ET

CLR

D

add_en

add_en

add_en

out2

out3

out0

out1

03

02

in
8

8

8

8

8

R0

R1

R2

R3

Figure 20: MixColumns multiplier

multiplier to serial bytes. It selects and shifts the data coming from the data in port

while data feeding to the data in port. Our module is very similar to the parallel-

to-serial converter presented in [12] with some modification. However, since our core

supports also AEGIS-128 authenticated encryption, we made some modifications. In

AEGIS, associated data, plain text, and finalization tmp is added to Si,0 in proper

state update128 operation. Since the rounded part of an AEGIS state is transferred

from MixColumns multiplier to parallel-to-serial converter, adding m to Si,0 is per-

formed by modified parallel-to-serial converter. The module is depicted in Figure 21.

6.6 AEGIS State Registers

This unit stores an AEGIS-128 state partially . S3, S2, S1 and S0 consists of 16

8-bit registers. At the beginning of each state update, S3, S2, S1, and S0 store Si,3, Si,2,

Si,1 and Si,0, respectively. Each clock cycle, register contents are shifted and bytes of

AEGIS state is propagated through S temp out. Si,4 is stored in the byte permutation

unit and the modified parallel-to-serial converter partially. These registers are used

41

Q

Q
S ET

CLR

D

+

p
a
r_
ad
d
_e
n

Q

Q
S ET

CLR

D

+

pa
r_
a
d
d
_e
n

Q

Q
S ET

CLR

D

+

p
a
r_
ad
d
_e
n

Q

Q
S ET

CLR

D

+

pa
r_
ad
d
_e
n

d_in

d_out
par_in[0]

par_in[1]

par_in[2]

par_in[3]

8

8

8

8

8

8

Figure 21: Modified parallel-to-serial converter

Q

Q
S ET

C LR

D

 b0

Q

Q
S ET

C LR

D

b15 b14......b1

Q

Q
S ET

C LR

D

 b0

Q

Q
S ET

C LR

D

b15 b14......b1

Q

Q
S ET

C LR

D

 b0

Q

Q
S ET

C LR

D

b15 b14......b1

Q

Q
S ET

C LR

D

 b0

Q

Q
S ET

C LR

D

b15 b14......b1

S3_in S_temp_out

S3 S2 S1 S0

AEGIS State Registers

Q

Q
S ET

C LR

D

 b0

Q

Q
S ET

C LR

D

b15 b14......b1

S_temp

Figure 22: AEGIS state registers

for the same logical reason, which was mentioned in our high performance AES +

AEGIS hardware encryption core in Chapter 5. The module depicted in Figure 22.

6.7 Key Expansion Unit

The key expansion unit generates subkeys from the encryption key in AES mode.

The key expansion unit in our design is almost the same as the architecture presented

in [12]. Since there is no key rounding in AEGIS, our key expansion unit works like

a ring shift register when AEGIS is employed. Figure 23 shows key expansion unit

42

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

8

key_in

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D

Q

Q
SE T

CLR

D+

+
Rcon

Rcon_en
Q

Q
SE T

C LR

D

S-box-2

+

rk_delayed_out rk_last_out

counter

8 8

R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

Figure 23: Key expansion unit

circuit details. During the load phase, initial encryption key is load to 16 8-bit

register (R0 to R15). After the encryption key is loaded once into the unit, if the core

is working in AES mode, the unit performs regular key rounding operation, otherwise

it just shifts the register contents. Since it is the last register output fed into first

register input in AEGIS mode, encryption key is shifted in a ring. The rk delayed out

output is 4 cycle delayed output of key/subkey, which aligns the key with parallel-

to-serial converter output delay caused by MixColumns multiplier. The rk last out is

for last round in AES, which skips MixColumns multiplication. For more information

about the key expansion unit, we refer to [12].

6.8 AEGIS const ROM

The AEGIS const ROM stores 32 bytes const value, which is the Fibonacci

sequence module 256. First 16 bytes of it is called const0 and the last 16 bytes is

called const1. During the initialization phase of AEGIS, it is fed into the encryption

core via multiplexer in the input and S-10, 1, S-10, 2, S-10, 3, S-10, 4 initialized like in

Section 4.3.

6.9 AEGIS finalization tmp Register

This unit stores 16-byte AEGIS finalization tmp, which is used during state

updates in finalization phase. The tmp computed at the beginning of finalization

phase, then it is stored and added to first round output of each state update. Before

43

the finalization phase, this unit stores (adlen ‖ msglen). As shown in Table 8, (adlen

‖ msglen) is fed to the core at the first round of phase 1. By using (adlen ‖ msglen),

control module of core computes u and v, which are number of State Update128

iterations in AD Processing phase (phase 2) and encryption phase (phase 3). In the

first round of AEGIS finalization phase, to compute the finalization tmp Si,3 is exored

with (adlen ‖ msglen) and the result stored again in finalization tmp register unit.

tmp is outputted and added to state first round of each state update in finalization

phase of AEGIS.

6.10 Delay Unit

This unit consists of four 8-bits back to back registers. It just delays its input 4

clock cycles. Since the latency of MixColums Multiplier is 4 clock cycles, this delay

unit aligns the input coming from data input and MixColumns Multiplier output for

calculations in the output logic.

6.11 Output Logic

The output logic unit is designed to perform cipher text calculation in the

encryption phase (phase 3) for both encryption algorithms and the AEGIS tag calcu-

lation in the finalization phase (phase 4). Data output schedule is given in Table 11.

This unit same as the output logic in Section 5.2.5, but datapaths are 8-bit.

Table 11: Output schedule for data out
phase state round data out data out

update (AEGIS) (AES)

0 all all – –

1 all all – –

2 all all – –

3 all 0 m 4cyc delayed ⊕ S1 ⊕ S3 in ⊕ (S2 & S3) –

last 4 – rnd last out ⊕ rk last out

4 7 4 S3 in ⊕ S3 ⊕ S2 ⊕ S1 ⊕ S0 –

44

CHAPTER VII

CONCLUSION

We describe both high performance architecture and lightweight architecture

cores in Verilog HDL at register transfer level. Then synthesize our implementations

using UMC 90 nm low-leakage standard cell library and Cadence RTL Compiler.

Resulted cell counts, area and the number of gate equivalent (GE) are reported in

Table 12.

Table 12: Synthesis results

Implementation Frequency Cells Area Gates Cycles per block Throughput

High Perf. AES 91 MHz 5606 40137 12885 11 1059 Mbps

High Perf. AES + AEGIS 91 MHz 8062 61525 19619 11 (AES) 1059 Mbps (AES)

Lightweight AES 100 KHz 1026 8805 2807 160 80 Kbps

Lightweight AES + AEGIS 100 KHz 3386 29293 9340 160 (AES) 80 Kbps (AES)

The high performance AES + AEGIS core occupies a total area of 19.6K GE,

while standalone version occupies only 12.8K GE. Both of them can run up to a

maximum frequency of 91 MHz. This corresponds to a maximum throughput of 1163

Mbps for AES mode. Since cycles per block in AEGIS depends on associated data

length and plain text length, it is impossible to give a fixed throughput value. But,

we assume both associated data length and plain text length are 128-bit, we can say

that cycles per block are 100 for AEGIS.

Since the lightweight version was targeted for lightweight applications, we syn-

thesized it for a fixed target frequency of 100 KHz. We did not test its highest

frequency. At this frequency, it offers a throughput of 80 Kbps. The lightweight AES

+ AEGIS core occupies a total area of 9.3K GE, while standalone version occupies

45

2.8K GE. The area is tripled with respect to standalone version.

In high performance case, the area of the combined architecture is only 52.2%

higher than that of a standalone AES module, while for the lightweight case, the

area is tripled. For both cases, there is no loss in terms of throughput. These results

support the claims of the designers of AES-based AE cipher schemes in general.

Our future work possibly involve implementing our architectures using other

cell libraries as well as on various FPGA platforms, in order to verify our initial

observations.

Another important future work could be adding power consumption figures for

each module and analyzing them.

Furthermore, we are planning to investigate ways of integrating other AES-based

AE schemes in our architecture with minimal additional resource usage.

46

Bibliography

[1] H. Liddell, Greek - English Lexicon: Abridged from Liddell & Scott’s Greek -
English Lexicon. Oxford University Press, 1984.

[2] C. Paar and J. Pelzl, Understanding Cryptography - A Textbook for Students and
Practitioners. Springer, 2010.

[3] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced En-
cryption Standard. Berlin, Heidelberg, New York: Springer Verlag, 2002.

[4] “Formal Specification of the CCM Mode of Operation,” 2005.

[5] “Information Technology - Security Techniques - Authenticated Encryption,”
2009.

[6] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser,
“Lightweight AES-Based Authenticated Encryption,” in Proceedings of Fast Soft-
ware Encryption (FSE), (Singapore), March 2013.

[7] H. Wu and B. Preneel, “AEGIS: A Fast Authenticated Encryption Algorithm.”
Cryptology ePrint Archive, Report 2013/695, 2013. http://eprint.iacr.org/.

[8] A. Brokalakis, A. Kakarountas, and C. Goutis, “A High-throughput Area Effi-
cient FPGA Implementation of AES-128 Encryption,” IEEE Workshop on Signal
Processing Systems Design & Implementation, p. 116, 2005.

[9] X. Zhang and K. Parhi, “High-speed VLSI Architectures for the AES Algo-
rithm.,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 12, pp. 957 – 967, September 2014.

[10] M. Liberatori, F. Otero, J. Bonadero, and J. Castineira, “AES-128 Cipher
High Speed, Low Cost FPGA Implementation,” Southern Conference on Pro-
grammable Logic, pp. 195–198, 2007.

[11] R. V. Kshirsagar and M. V. Vyawahare, “FPGA Implementation of High Speed
VLSI Architectures for AES Algorithm,” in Proceedings of International Confer-
ence on Emerging Trends in Engineering and Technology (ICETET), pp. 239–
242, IEEE, 2012.

[12] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen, “Design and
Implementation of Low-area and Low-power AES Encryption Hardware Core,” in
Proceedings of The EUROMICRO Conference on Digital System Design (DSD),
(Washington, DC, USA), pp. 577–583, IEEE Computer Society, 2006.

[13] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Small-
est.,” in Proceedings of Cryptographic Hardware and Embedded Systems (CHES),
vol. 3659 of Lecture Notes in Computer Science, pp. 427–440, Springer, 2005.

47

[14] S. M. Farhan, S. A. Khan, and H. Jamal, “An 8-bit Systolic AES Architecture for
Moderate Data Rate Applications,” Microprocess. Microsyst., vol. 33, pp. 221–
231, May 2009.

[15] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation on A Grain
of Sand,” IEEE Transactions on Information Security, vol. 152, pp. 13 – 20, 2005.

[16] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authentication for
RFID Systems Using the AES Algorithm,” in Proceedings of Cryptographic Hard-
ware and Embedded Systems (CHES), vol. 3156 of Lecture Notes in Computer
Science, pp. 357 – 370, Springer, 2004.

[17] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA-based Performance
Evaluation of the AES Block Cipher Candidate Algorithm Finalists,” IEEE
Transactions On Very Large Scale Integration (VLSI) Systems, vol. 9, pp. 545–
557, 2001.

[18] M. McLoone and J. V. McCanny, “Rijndael FPGA Implementations Utilising
Look-Up Tables,” Journal of VLSI Signal Processing Systems, vol. 34, pp. 261–
275, July 2003.

[19] K. U. Järvinen, M. T. Tommiska, and J. O. Skyttä, “A Fully Pipelined Memory-
less 17.8 Gbps AES-128 Encryptor,” in Proceedings of the ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays (FPGA), (New York,
USA), pp. 207–215, ACM, 2003.

[20] N. Iyer, P. Anandmohan, D. Poornaiah, and V. Kulkarni, “High-throughput,
Low-cost, Fully Pipelined Architecture for AES Crypto Chip,” in Proceedings of
Annual IEEE India Conference, p. 1, IEEE, 2006.

[21] D. A. R. Wallace, Groups, Rings, and Fields. Springer-Verlag, 1998.

[22] G. L. Mullen, Handbook of Finite Fields. CRC Press, 2013.

[23] N. I. of Standards and Technology, “Advanced Encryption Standard,” NIST
FIPS Pub 197, 2001.

[24] “Caesar: Competition for authenticated encryption: Security, applicability, and
robustness,” 2014. http://competitions.cr.yp.to/caesar.html/.

48

VITA

Furkan Şahin was born in Mersin. He received the BS degree in Electronics

Engineering from Istanbul Technical University in 2010. He was an MSEE student

and graduate assistant in nEMESysLab at Özyeğin University under the supervision

of professors H. Fatih Uğurdağ and Tolga Yalçın between 2011 and 2014. He was

partly supported by Vestek Electronics R&D, a subsidiary of Vestel, besides gradu-

ate assistantship at Özyeğin University. His research interests include cryptographic

reconfigurable hardware design, computer arithmetic, embedded systems, machine

vision and image processing.

49

